

Gestor de contraseñas en un dispositivo móvil
accesible por Bluetooth

Memoria del Proyecto de Fin de

Carrera de Ingeniería en Informática

realizado por

Sergio Laguna García

y dirigido por

Helena Rifà Pous

Bellaterra, 18 de Setiembre de 2008.

II

III

Escola Tècnica Superior d’Enginyeria

El sotasignat, Helena Rifà Pous

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota la
seva direcció per en Sergio Laguna García

I per tal que consti firma la present.

Signat: Helena Rifà Pous

Bellaterra, 18 de Setembre de 2008

IV

V

Agradecimientos

Este proyecto no habría sido posible sin la dirección de mi tutora de proyecto,

Helena Rifà Pous.

No podía tampoco olvidarme del apoyo constante de mi hermano y mi madre,

que han sabido animarme constantemente.

Finalmente mención especial para Melisa Pérez Zamora que ha sabido

aguantarme durante este largo verano dándome su apoyo incondicional en

todo momento.

Para ellos, muchas gracias.

VI

VII

Índice General

1. INTRODUCCIÓN .. 1

1.1. MOTIVACIONES .. 1
1.2. OBJETIVOS .. 2
1.3. PLANIFICACIÓN ... 2

2. TECNOLOGÍAS ... 6

2.1. J2ME .. 7
2.1.1. Análisis de la plataforma Java 2 ... 7
2.1.2. Componentes J2ME.. 9

2.1.2.1. Máquinas Virtuales .. 10
2.1.2.2. Configuraciones ... 11
2.1.2.3. Perfiles .. 12

2.2. XUL .. 14
2.2.1. Registro chrome... 14
2.2.2. Overlays .. 17
2.2.3. DOM.. 18
2.2.4. XPCOM .. 20

2.3. BLUETOOTH... 22
2.3.1. APIs Java para Bluetooth.. 22
2.3.2. APIs C++ para Bluetooth... 25

3. DISEÑO Y ARQUITECTURA .. 27

3.1. INTRODUCCIÓN .. 27
3.2. SERVIDOR WEB ... 28
3.3. CLIENTE WEB... 29
3.4. CLIENTE MÓVIL .. 31

4. IMPLEMENTACIÓN .. 33

4.1. SOFTWARE USADO .. 35
4.2. HARDWARE EMPLEADO .. 36
4.3. SERVIDOR ... 37
4.4. CLIENTE WEB... 38

4.4.1. Creación del componente XPCOM en C++ ... 43
4.5. CLIENTE MÓVIL .. 49
4.6. HILO DE LA IMPLEMENTACIÓN .. 53

5. CONCLUSIONES ... 55

5.1. PROBLEMAS ENCONTRADOS ... 57
5.2. TRABAJO FUTURO ... 61

6. BIBLIOGRAFÍA ... 62

Gestor de contraseñas en un dispositivo móvil

 1

1. Introducción

 El crecimiento exponencial de los usuarios y organizaciones conectadas

a Internet (gran ejemplo de canal de comunicación no segura) hace que circule

por la red información de todo tipo, desde noticias más o menos importantes,

datos personales que no queremos que se conozcan públicamente y hasta la

realización de gestiones económicas como podrían ser las transacciones

bancarias, que requieren medidas específicas de seguridad que garanticen la

confidencialidad, la integridad y la constatación del origen de los datos.

Este proyecto nace de la necesidad de dar un grado más de seguridad cuando

nos encontramos delante de un formulario del tipo login/password mientras

navegamos con uno de los navegadores de Mozilla, como podrían ser Firefox o

ThunderBird.

1.1. Motivaciones

 Una de las principales motivaciones que me han llevado a la realización

de este proyecto ha sido el tema de la seguridad y la protección de datos, tema

por el cual estoy muy interesado, pero no tengo mucha experiencia y estoy

seguro que al acabarlo podré dar un grado más de seguridad a mis datos, lo

que hace que me adentre en él con muchas ganas.

Otra motivación es la de trabajar con los navegadores de Mozilla, como el

ThunderBird o el Firefox. Éste último en especial, que es sobre el cual se basa

el proyecto y es el navegador que utilizo en la actualidad. Desde que salió al

mercado, ha ofrecido a los usuarios una estabilidad notable y cuenta con

muchísimas utilidades. Una de estas utilidades son las extensiones, que

añaden más funcionalidad al navegador. En definitiva, me parece que el

navegador Firefox es una más que buena alternativa a su principal competidor,

el Internet Explorer de Microsoft.

Gestor de contraseñas en un dispositivo móvil

 2

Para finalizar, decir que este proyecto, lo podré aprovechar para mi mismo una

vez esté finalizado. Se podrá continuar trabajando en él con las mejoras

propuestas en el apartado mejoras futuras, dado que se tendrá mucho más

tiempo para el desarrollo. Con esto, se podrá hacer una extensión más

completa y acabar de dar más seguridad a los datos, sobre todo a mis

transacciones bancarias, que todo sea dicho, son bastantes a lo largo del año.

1.2. Objetivos

 El objetivo principal del proyecto es crear una extensión para el

navegador Firefox, que sea capaz de capturar los formularios del tipo

login/password, comunicarse con un dispositivo móvil, a través de Bluetooth,

que servirá de gestor de contraseñas y rellenar los campos del formulario

automáticamente con la contraseña proporcionada por el móvil. Estos objetivos

los podríamos resumir en los siguientes puntos:

 Crear la parte de la interfaz gráfica.

 Crear un Midlet en el dispositivo móvil, que sea capaz de

proporcionarnos la contraseña para un formulario conocido.

 Crear un componente XPCOM que se encargue de la comunicación

Bluetooth con el dispositivo.

 Validar el formulario de login/password y rellenar los campos del

formulario con la contraseña obtenida por el componente XPCOM.

1.3. Planificación

 La planificación del proyecto se ha estructurado en varias fases que a

continuación pasamos a resumir:

 Fase 1 (Noviembre – Enero): Se ha de llevar a cabo toda la recolecta

de información. En lo referente al navegador, estaría el cómo crear una

Gestor de contraseñas en un dispositivo móvil

 3

extensión en Firefox, que lenguaje se ha de utilizar para la interfaz

gráfica, como crear la conexión Bluetooth para comunicarnos con el

dispositivo móvil y que herramientas tenemos para el desarrollo.

En cuanto al móvil, hay que buscar información sobre el lenguaje de

programación Java para dispositivos móviles (J2ME) para crear sockets

que nos permitan establecer la comunicación con el PC. También habría

que ver qué herramientas de desarrollo tenemos, como podría ser

NetBeans o Eclipse.

Al finalizar la recolecta de la primera fase, se tendrá que elaborar un

estudio de viabilidad que será entregado el 14 de Enero.

 Fase 2 (Febrero – 2 primeras semanas): En las dos primeras semanas

de febrero se creará el diseño del sistema y los casos de uso.

 Fase 3 (Febrero – 2 segundas semanas): Las dos semanas siguientes

del mes de febrero se dedicarán a crear los módulos del navegador

Firefox.

 Fase 4 (Marzo – mediados Abril): Las 6 semanas correspondientes al

mes de Marzo y las 2 primeras de Abril, se hará la creación de un

programa que sea capaz de realizar una comunicación Bluetooth basada

en sockets y recibimiento de datos. También se creará la integración de

dicho programa con el navegador Firefox. Dado que es un periodo de

tiempo bastante largo, se avanzará, en la medida de lo posible, en la

memoria del proyecto.

 Fase 5 (mediados Abril – 2 segundas semanas): En las 2 últimas

semanas de Abril, se crearán los módulos del J2ME, es decir, la

programación del MIDlet.

 Fase 6 (Mayo – 2 primeras semanas): Las 2 primeras semanas de

Mayo se utilizarán para hacer la integración de todo junto y acabar la

memoria.

Gestor de contraseñas en un dispositivo móvil

 4

 Fase 7 (Mediados Mayo – Junio): Las 2 últimas semanas de Mayo y

las 2 primeras de Junio servirán para acabar de pulir la memoria ya que

ésta será redactada mientras se va avanzando en la faena. También se

acabará de pulir todo el programa. Finalmente se creará la presentación

en PowerPoint del proyecto.

En la Figura 1 se observa un Diagrama de Gantt donde se representan las 7

fases explicadas anteriormente.

Figura 1. Diagrama de Gantt

El proyecto estaba previsto para ser entregado en la primera convocatoria, la

de Junio, pero no se tuvo en cuenta la gran carga de trabajo que se tenía

debido a las asignaturas que aun quedaban pendientes para el segundo

semestre. Por esa razón principalmente, se abandonó un poco el proyecto

dejándolo de lado hasta la finalización de los exámenes de Junio. Una vez

concluidos los exámenes, a mediados de Junio, hubo una dedicación total al

proyecto para poder presentarlo en la segunda convocatoria, correspondiente

al mes de Setiembre, por eso la planificación sufrió unos ligeros cambios que

serán presentados a continuación:

La primera fase queda tal y como se ha descrito anteriormente, es la única que

se ha mantenido como se había dicho en la planificación inicial.

A partir de finales de febrero y hasta mediados de Junio se avanzó en la

programación de los módulos del Firefox, creando la validación del formulario y

Gestor de contraseñas en un dispositivo móvil

 5

el rellenado automático. También se creó el diseño del sistema y los casos de

uso.

Fue a principio de Julio cuando se creó el módulo J2ME, pero no en 2 semanas

como estaba previsto en la planificación, sino en 1.

Después de esto, hubo muchos problemas para crear la comunicación desde el

PC, como se describe en el apartado de los problemas encontrados y no se

acabó dicha comunicación hasta finales de Agosto. También se creó la

integración de dicho programa con el navegador. Habíamos planificado que

iban a ser 6 semanas, pero se tardaron 7. Éstas 7 semanas se aprovecharon

para adelantar gran parte de la memoria, dejando sin hacer los apartados de la

implementación y las conclusiones.

Estos apartados de la memoria se terminarían en las 2 primeras semanas de

Setiembre, junto con los detalles de la memoria y la integración de todo el

programa junto.

La tercera semana se Setiembre se hará la presentación en PowerPoint del

proyecto, que está previsto ser defendido para la última semana de Setiembre.

En la Figura 2 podemos ver el diagrama de Gantt correspondiente a los

cambios efectuados en la planificación.

Figura 2. Diagrama de Gantt modificado

Gestor de contraseñas en un dispositivo móvil

 6

2. Tecnologías

 En este capítulo hablaremos de las tecnologías usadas a lo largo de la

creación del proyecto.

En un primer plano hablaremos de la tecnología J2ME desarrollada por Sun

Microsystems y que es una variante del Lenguaje Java orientado para

dispositivos móviles. Esta tecnología será usada para la creación de la

aplicación del dispositivo móvil.

Por otro lado hablaremos de la tecnología XUL que es un lenguaje de interfaz

de usuario basado en XML1. Es la tecnología usada en la creación de toda la

interfaz gráfica de Firefox, por esa razón tendremos que hacer uso de ella, para

variar dicha interfaz. Dentro de este apartado también se verá como dar

funcionalidad a nuestras aplicaciones con Javascript y no solo eso, también se

verá como aumentar aún más esa funcionalidad.

Finalmente se hablará de la tecnología Bluetooth, que permite la conectividad

inalámbrica entre dispositivos remotos. Obviamente, es la tecnología que se

usará para comunicar nuestro PC con el dispositivo móvil remoto.

1
 Extensible Markup Language (lenguaje de marcas extensible)

Gestor de contraseñas en un dispositivo móvil

 7

2.1. J2ME

 J2ME es el acrónimo de Java 2 Micro Edition, la versión del lenguaje de

programación Java desarrollada por Sun Microsystems y orientada al desarrollo

de creación de aplicaciones para dispositivos móviles con pocas capacidades

gráficas, de procesamiento y de memoria, como podrían ser los teléfonos

móviles o las PDA’s2.

La gran expansión de los teléfonos móviles en la última década ha hecho que

las compañías telefónicas ofrezcan cada vez más prestaciones y servicios para

sus terminales, como podría ser juegos u otras aplicaciones. Estos servicios de

los terminales están desarrollados con la tecnología J2ME.

J2ME viene a ser la tecnología del futuro para la industria de los dispositivos

móviles ya que proporciona una plataforma estándar para el desarrollo de

aplicaciones y la facilidad de portar dichas aplicaciones entre diferentes

dispositivos, sean o no del mismo fabricante.

 Ya se están implantando los protocolos y los dispositivos necesarios para

soportar la tecnología J2ME. Actualmente la mayoría de los terminales que

salen al mercado ya están habilitados para usar esta tecnología.

2.1.1. Análisis de la plataforma Java 2

 La versión de Java 2 de Sun se puede dividir en 3 ediciones distintas.

J2SE (Java Standard Edition) orientada al desarrollo de aplicaciones

independientes, J2EE (Java Enterprise Edition) orientada al entorno

empresarial y J2ME (Java Micro Edition) orientada a dispositivos móviles.

2
 Personal Digital Assistant (Asistente Digital Personal)

Gestor de contraseñas en un dispositivo móvil

 8

La Figura 3 nos muestra la arquitectura de la plataforma Java 2. En la parte

inferior de la Figura 3 se pueden ver las diferentes máquinas virtuales

soportadas por las diferentes tecnologías, JVM y KVM, que se explicarán más

adelante, como también se hará con los términos CDC, CLDC y MIDP.

Figura 3. Arquitectura de la plataforma Java 2 de Sun

Como se puede ver en la Figura 4, J2ME representa una parte simplificada de

J2SE y a su vez ésta, representa una parte de J2EE.

Sun separó estas tecnologías por razones de eficiencia, ya que por ejemplo

J2EE requiere unas características especiales de E/S3 cosa que J2SE no.

J2ME está pensado para dispositivos con pocas capacidades gráficas y de

proceso, cosa que no sucede en J2SE, por eso también existe una separación

bien clara entre estas dos tecnologías.

3
 Entrada/Salida

Gestor de contraseñas en un dispositivo móvil

 9

Figura 4. Relación entre las APIs de la plataforma Java.

2.1.2. Componentes J2ME

 En este apartado vamos a ver cuáles son los componentes que forman

parte de esta tecnología.

 Máquinas virtuales de Java (JVM), es un programa que se encarga de

interpretar código precompilado por un programa Java. Gracias a las

máquinas virtuales, los programas escritos en Java tienen

independencia de la máquina donde han sido ejecutados.

 Configuraciones, son un conjunto de clases básicas en una categoría

de dispositivos. Las categorías se miden por las prestaciones del

dispositivo, capacidad de procesamiento o capacidad gráfica. Digamos

que la configuración define la familia de dispositivos, según las

capacidades de los dispositivos, se incluirán en una familia o en otra.

 Perfiles, son conjunto de clases que complementan a una configuración

para unos dispositivos específicos. Los perfiles definen las

características de un dispositivo. Son más específicos que las

configuraciones.

Gestor de contraseñas en un dispositivo móvil

 10

Podemos ver en la Figura 5 la arquitectura de un entorno de ejecución. A

continuación detallaremos un poco más cada uno de los tres componentes

presentados anteriormente.

2.1.2.1. Máquinas Virtuales

 Como ya se ha explicado antes, una máquina virtual de Java (JVM) es

un programa encargado de interpretar código precompilado por un programa

Java. La tecnología J2ME define varias máquinas virtuales, adecuándose a las

dos configuraciones existentes en el mercado, la Configuración de

dispositivos limitados con conexión, CLDC (Connected Limited Device

Configuration) y la Configuración de dispositivos con conexión, CDC

(Connected Limited Configuration). Nosotros solo nos centraremos en la

primera de ellas, que es la que se adapta mejor a las características de nuestro

dispositivo móvil. Estas configuraciones serán explicadas más profundamente

en el apartado de configuraciones.

Como se ha comentado anteriormente, existe una máquina virtual para cada

configuración, ya que éstas tienen características muy diferentes entre sí. Para

la configuración CLDC, que es la que nos concierne, la máquina virtual se

denomina KVM (Kilo Virtual Machine), por su reducida memoria para ser

ejecutada. Mientras que para la configuración CDC, la máquina virtual se

denomina CVM (Compact Virtual Machine).

A continuación veremos las características principales de la KVM.

 KVM

 Es una máquina virtual orientada para dispositivos con pocas

capacidades de procesamiento y de memoria. Fue diseñada para ser:

 Pequeña

 Alta portabilidad.

 Modulable.

 Lo más completa y rápida posible.

Gestor de contraseñas en un dispositivo móvil

 11

Figura 5. Entorno de ejecución

2.1.2.2. Configuraciones

 Las configuraciones son el conjunto básico de APIs4 que permiten

desarrollar aplicaciones para una familia de dispositivos. Como ya se ha

mencionado anteriormente, existen dos configuraciones en J2ME: CLDC,

orientada a dispositivos con limitaciones de proceso y de memoria y CDC,

orientada a dispositivos con mayores capacidades. Ahora veremos un poco

más en profundidad estas configuraciones.

 Configuración de dispositivos limitados con conexión, CLDC

(Connected Limited Device Configuration), un buen ejemplo de estos

dispositivos con capacidades limitadas son los teléfonos móviles o las

PDAs. Incluye las librerías java.lang, java.util, java.io y

javax.microedition.io. Estas dos últimas librerías las

necesitaremos para crear nuestra aplicación para el dispositivo móvil.

 Configuración de dispositivos con conexión, CDC (Connected

Device Configuration), como se ha mencionado anteriormente, esta

configuración está orientada a dispositivos con más capacidades que en

4
 Aplication Programming Interface (Interfaz de Programación de Interfaces)

Gestor de contraseñas en un dispositivo móvil

 12

la anterior configuración. Un buen ejemplo de estos dispositivos podría

ser televisores con Internet o GPS5. Esta configuración añade más

librerías que la anterior, que no vamos a numerar ya que no nos van a

concernir en la realización del proyecto.

2.1.2.3. Perfiles

 Los perfiles definen las características más detalladas de un dispositivo,

como podría ser la interfaz de usuario o las conexiones de red. Identifican a los

diferentes grupos de dispositivos por las funciones específicas que

desempeñan y por el tipo de aplicación que se ejecutará en ellos. Los perfiles

se construyen sobre una configuración determinada y permiten la portabilidad

de aplicaciones J2ME entre diferentes dispositivos.

Como ocurría en el apartado de configuraciones, aquí también hay diferentes

perfiles según el tipo de configuración sobre la que queramos construir la

aplicación. Existen perfiles específicos para la configuración CDC y otros para

la configuración CLDC.

Para la configuración CDC tenemos los siguientes perfiles:

 Foundation Profile

 Personal Profile

 RMI 6Profile

Para la configuración CLDC tenemos los siguientes perfiles:

 PDA Profile

 Mobile Information Device Profile (MIDP)

5
 Global Positioning System (Sistema de Posicionamiento Global)

6
 Remote Method Invocation (Invocación de Método Remoto)

Gestor de contraseñas en un dispositivo móvil

 13

Como ya se ha marcado, nos centraremos en el perfil MIDP, que dentro de la

configuración CLDC (la que nos concierne) es el perfil que más se adecúa a las

características de nuestro dispositivo móvil.

Mobile Information Device Profile (MIDP): Como ya se ha visto en la

clasificación anterior, este perfil está construido sobre la configuración CLDC.

Decimos que es el que mejor se adapta a las características de nuestro

dispositivo, ya que es un perfil orientado a teléfonos móviles, como lo es

nuestro dispositivo.

Este perfil incluye algunas de las librerías básicas para la creación de nuestra

aplicación en el dispositivo móvil, más concretamente la interfaz de éste, como

javax.microedition.lcdui o javax.microedition.midlet.

Las aplicaciones que realizamos utilizando el perfil MIDP reciben el nombre de

MIDlets (por simpatía con Applets7). Entonces podemos afirmar que un MIDlet

es una aplicación Java realizada con el perfil MIDP sobre la configuración

CLDC.

7
 Componente de una aplicación que se ejecuta en el contexto de otro programa.

Gestor de contraseñas en un dispositivo móvil

 14

2.2. XUL

 XUL es el acrónimo de XML-based User-interface Language, o mejor

dicho, Lenguaje Basado en XML para la Interfaz de Usuario. Es el lenguaje que

utiliza el software de Mozilla, en nuestro caso el navegador Firefox, para definir

su interfaz de usuario. Con él, podremos modificar dicha interfaz a nuestro

antojo, no sin antes tener claros algunos conceptos que pasaremos a explicar a

lo largo de este apartado.

Al estar basado en XML hace que los datos estén almacenados en simples

archivos de texto, facilitando así la portabilidad de dichos datos.

Como anteriormente se ha comentado, tiene la gran desventaja de ser

excluyente, razón que hace que el lenguaje XUL no se haya convertido en un

lenguaje estándar.

Pero también se puede ver esa desventaja como una ventaja. Los

desarrolladores que quieran hacer una interfaz de usuario o una extensión para

el navegador, lo tendrán mucho más fácil, ya que XUL fue concebido con esa

idea, la de aligerar el trabajo de los desarrolladores.

Este proyecto se basa en uno de los productos de Mozilla, el navegador

Firefox, por lo que para nosotros esta ventaja supone una gran ayuda.

En la Figura 6 se puede ver un ejemplo de una aplicación creada en XUL, se

trata de un simple TPV8 para la administración de una tienda.

2.2.1. Registro chrome

 El procesamiento de XUL va muy ligado al procesamiento HTML9, ya

que este último accede a un sitio web deseado por el usuario y descarga su

8
 Terminal Punto de Venta

Gestor de contraseñas en un dispositivo móvil

 15

contenido. Este contenido recién descargado, es transformado por el motor de

Mozilla en un árbol. Los nodos del árbol, a su vez, se convierten en un conjunto

de objetos, que representan las partes las partes del documento que serán

mostradas en pantalla.

El procesamiento es muy parecido a HTML, pero XUL tiene algunas

características propias, como puede ser los Overlays10, que se explicarán en el

siguiente apartado o el registro chrome, que ahora explicaremos.

Figura 6. Aplicación creada en XUL

Como es obvio, el contenido de una fuente remota como podría ser una página

web, no puede acceder, por ejemplo, a los archivos de directorios locales del

usuario o ejecutar operaciones privilegiadas, por razones de seguridad.

Por esta razón, Mozilla creó un registro especial, llamado el registro chrome,

para poder instalar el contenido de las aplicaciones en directorios locales y

quedar de esta manera registrados en el sistema, para que dichas aplicaciones

tengan permisos ampliados.

9
 HyperText Markup Language (Lenguaje de Marcas de Hipertexto)

10
 Revestimientos

Gestor de contraseñas en un dispositivo móvil

 16

Para acceder a estos archivos se usa una URL11 especial, la URL chrome. Al

acceder a un archivo usando esta URL especial, éste gana privilegios

especiales, como podría ser el acceso a archivos locales o ejecutar

operaciones privilegiadas.

La URL chrome se refiere al directorio chrome que hay dentro de la instalación

de Mozilla Firefox, pero al crear una extensión, no vamos a crear los archivos

dentro de ese directorio, sino que crearemos una jerarquía de directorios tal

que en el directorio principal, (cuyo nombre puede ser el nombre de la

extensión) tendremos un directorio llamado chrome el cual contendrá los

archivos necesarios para crear la extensión y es el directorio que Firefox

añadirá al registro chrome para ganar los privilegios mencionados

anteriormente.

Dentro del directorio principal, junto al directorio chrome, crearemos un archivo

llamado install.rdf para que Firefox “vea” las características principales de

nuestra extensión. También en ese mismo directorio se creará un archivo

llamado chrome.manifest para que Firefox sepa dónde buscar los archivos

principales que conforman nuestra extensión y para añadir los Overlays, que

serán explicados en el siguiente apartado. Como se acaba de decir, los

archivos principales de nuestra extensión estarán dentro del directorio chrome

y los dividiremos en varios directorios. En un directorio llamado skin

crearemos los archivos de los estilos o CSS12 y en otro llamado content

crearemos los archivos XUL de la interfaz y los archivos Javascript para la

funcionalidad.

Finalmente todo esto se empaquetará con un compresor de archivos, como

podría ser winrar y se cambiará el nombre de la extensión, en vez de acabar en

.rar tiene que acabar en .xpi para que Firefox lo reconozca como una

extensión y proceda a su instalación, ya sea en nuestro equipo o en cualquier

otro. De ahí la importancia de la jerarquía de directorios, ya que una mala

11

 Uniform Resource Locator (localizador uniforme de recurso)
12

 Cascading Style Sheets (Hoja de estilo en cascada)

Gestor de contraseñas en un dispositivo móvil

 17

jerarquía hará que Firefox no “entienda” lo que contiene la extensión y haga

que no funcione correctamente.

Como acabamos de ver, las extensiones no son solo archivos XUL, sino que

también están formadas por hojas de estilo y archivos Javascript entre otros

que explicaremos más adelante.

Como se ha visto en este apartado, el registro chrome juega un papel muy

importante a la hora de la creación de extensiones, ya que necesitaremos tener

los privilegios otorgados por tal registro para poder llevar a cabo la elaboración

de una extensión.

También se ha comentado el concepto de los Overlays, que también juegan un

papel importante y que pasaremos a explicar en el siguiente apartado.

2.2.2. Overlays

 Los Overlays sirven para definir contenido extra en la interfaz gráfica de

usuario.

Podemos añadir componentes adicionales a la interfaz de usuario , como

podría ser por ejemplo, una nueva entrada en el menú “Herramientas” de

nuestro navegador Firefox.

Gracias a los archivos Overlay podemos conseguir esto sin tener que reescribir

toda la interfaz de usuario del navegador.

Si desde nuestra extensión queremos añadir algún elemento adicional a la

interfaz de usuario, esto se tendrá que hacer mediante el uso de los Overlays.

Como se ha comentado en el apartado anterior, en el archivo

chrome.manifest se tiene que especificar que se quiere hacer un Overlay

sobre una parte de la interfaz de usuario.

Gestor de contraseñas en un dispositivo móvil

 18

Pongamos un ejemplo, supongamos que queremos añadir como acabamos de

comentar, una nueva entrada en el menú “Herramientas” del navegador.

Para hacer posible esto se tendría que crear una entrada parecida a la

siguiente en el archivo chrome.manifest:

Overlay chrome://browser/content/browser.xul

chrome://nombre_extension/content/nombre_archivo.xul

El parámetro Overlay nos está indicando que se trata de un Overlay,

seguidamente separado por un espacio hay que poner el archivo base que se

quiere “revestir” y finalmente separado con otro espacio, el archivo creado por

nosotros que añadirá el elemento al menú “Herramientas” del navegador.

Como se puede suponer, el primero de los archivos se trata de toda la interfaz

del navegador Firefox al cual le vamos a añadir el nuevo elemento.

2.2.3. DOM

 Como ya se ha comentado anteriormente, una extensión no solo se

compone de archivos XUL, sino no tendríamos nada de funcionalidad en

nuestra aplicación. Hace falta añadir archivos Javascript a nuestra extensión

para añadir dicha funcionalidad. Esta funcionalidad se basa en interactuar con

las partes del código de una página web y realizar acciones. ¿Pero cómo

accedemos al código de una página web?

Anteriormente, en el apartado de procesamiento de XUL, se ha descrito el

procesamiento de éste, diciendo que el lenguaje HTML accede a la web

deseada por el usuario y descarga el contenido, pasándolo al motor de Mozilla

que transforma este contenido en un árbol y los nodos del árbol, a su vez, se

convierten en un conjunto de objetos. Pues bien, a este conjunto de objetos,

Javascript puede acceder a ellos gracias al DOM.

Gestor de contraseñas en un dispositivo móvil

 19

DOM es el acrónimo de Document Object Model o mejor dicho, Modelo de

Objetos para la representación de Documentos y es una API para documentos

HTML y XML.

El DOM permite el acceso a los elementos HTML de una página web. Estos

elementos se convierten en nodos y cada trozo de texto en un nodo de texto.

Es importante entender la diferencia entre elementos y nodos de textos. Los

elementos normalmente están asociados a las etiquetas. En HTML todas las

etiquetas son elementos, tales como <p>, y <div> por lo que tienen

atributos y contienen nodos hijo. Sin embargo, los nodos de textos no poseen

atributos e hijos.

En el siguiente ejemplo se puede ver la diferencia entre nodos de texto y

elementos:

<body>

<p>Esto es un párrafo que contiene un

enlace en el medio. </p>

Primer punto en la lista

Otro punto en la lista

</body>

Como podemos observar el elemento <a> está dentro del elemento <p>

convirtiéndose en su hijo. También podemos observar diferentes nodos de

texto entre los elementos.

Javascript permite acceder a cada uno de los elementos de una página

utilizando tan sólo algunos métodos y propiedades. Dos de los más importantes

y que más vamos a usar en nuestra extensión son los métodos

getElementById y getElementsByTagName. El primero nos servirá para

Gestor de contraseñas en un dispositivo móvil

 20

encontrar un elemento de la página web solo con saber su atributo id. Véase

el siguiente ejemplo:

<p>

Contáctenos

</p>

Puede usarse el atributo id del elemento a para poder acceder a él, como se

muestra a continuación:

var elementoContacto = document.getElementById("contacto");

El segundo de los métodos sirve para trabajar sobre un grupo de elementos. Si

llamásemos al método con el parámetro input, nos devolvería todos los

elementos del documento que se denominen input.

Con el DOM se puede encontrar, cambiar, adicionar y eliminar elementos de

una página web. Es una técnica poderosa para poder ser usada en el

desarrollo de nuestra extensión.

2.2.4. XPCOM

 Ya hemos visto como añadir funcionalidad a nuestra extensión mediante

Javascript y el DOM. Pero imaginemos que necesitamos hacer alguna cosa

bastante compleja, como podría ser el acceso mediante Bluetooth a un

dispositivo móvil, sí, como en la extensión que vamos a crear.

Con Javascript no podemos hacer cosas complejas como la que acabamos de

describir, ya que fue diseñado para ejecutar aplicaciones muy limitadas. Un

programa escrito es Javascript no puede, por ejemplo, acceder a los archivos

de nuestro ordenador.

Gestor de contraseñas en un dispositivo móvil

 21

Por ese motivo necesitamos algo que nos deje ejecutar aplicaciones más

complejas en nuestra extensión, porque solo con Javascript se limita mucho la

funcionalidad de la extensión.

Mozilla pensó en esto y por eso nos proporcionó una herramienta potentísima,

los componentes XPCOM (Cross-platform Component Object Model o Modelo

de Objeto de Componentes Multiplataforma).

Los componentes XPCOM están escritos en código nativo, por lo que pueden

hacer cosas que Javascript por sí solo no podría. Pero seguimos teniendo el

mismo problema, ya que en principio no podemos usar mas que Javascript

para crear nuestra extensión, y los componentes están escritos en otro código.

Por esa razón Mozilla nos proporciona una capa que permite que los objetos

Javascript accedan y manipulen los objetos XPCOM, para poder ser usados

desde Javascript. Esta capa se llama XPConnect.

Por lo tanto tenemos que los componentes XPCOM implementan la

funcionalidad y las interfaces describen cómo se debe implementar esa

funcionalidad mediante un conjunto de definiciones.

Mozilla tiene implementadas muchas interfaces, para poder ser usadas a

nuestro antojo. Estas interfaces se las reconoce porque el nombre suele

empezar con el prefijo nsI. Así, existen interfaces para el manejo de

archivos, nsILocalFile o para la reproducción de sonidos, nsISound.

Si no existiera una interfaz determinada para la necesidad que queremos

cubrir, en nuestro caso la comunicación Bluetooth, tendríamos que crearla

nosotros mismos y registrarla en el navegador para poder usarla desde

Javascript. En el capítulo de la implementación se explica cómo crear un

componente XPCOM desde cero.

Gestor de contraseñas en un dispositivo móvil

 22

2.3. Bluetooth

 Bluetooth es una tecnología de radio de corto alcance, que permite la

conexión entre dispositivos remotos sin la necesidad de cables. Fue diseñado

pensando básicamente en tres objetivos: pequeño tamaño, mínimo consumo y

bajo precio.

Todas las compañías telefónicas están incorporando esta tecnología en todos

los dispositivos móviles que lanzan al mercado. Ya hace tiempo que casi todos

los móviles que salen nuevos al mercado incorporan la tecnología Bluetooth.

Es obvio entonces, que utilicemos esta tecnología para la comunicación entre

PC y dispositivo móvil para la transferencia de datos.

En el lado del dispositivo móvil, utilizaremos la tecnología Bluetooth para el

desarrollo de una aplicación en J2ME y en el lado del PC utilizaremos esta

misma tecnología pero para el desarrollo de una aplicación escrita en C++.13 Es

por esta razón que deberemos usar APIs diferentes a la hora de programar las

aplicaciones del PC y del dispositivo móvil.

Ahora pasaremos a ver las principales características de las diferentes APIs

que vamos a usar en el desarrollo de la extensión.

2.3.1. APIs Java para Bluetooth

 Hasta que no apareció la especificación JSR14 82 no se podía crear

aplicaciones Java Bluetooth. Esta especificación fue la que estandarizó la

manera de crear aplicaciones Bluetooth usando la tecnología Java.

13

 Lenguaje de Programación Orientado a Objeto.
14

 Java Specification Request (Petición de Especificación de Java)

Gestor de contraseñas en un dispositivo móvil

 23

Aquí no vamos a describir toda la API JSR 82 pero sí algunas características

que nos serán útiles a la hora de desarrollar la comunicación en el lado del

dispositivo móvil.

Primeramente vamos a ver la parte de la API que se encarga de descubrir

dispositivos remotos disponibles dentro del radio de cobertura.

Para empezar tenemos la clase javax.bluetooth.LocalDevice que es la

encargada de acceder y controlar el dispositivo local, el nuestro. Dentro de esta

clase tenemos el método getLocalDevice que nos proporcionará el acceso

a nuestro dispositivo remoto. El acceso a nuestro dispositivo con el método

anterior, se usará para hacer que nuestro móvil sea visible para otros

dispositivos remotos. Esto se conseguirá con el método setDiscoverable.

Para descubrir dispositivos remotos tendremos que recurrir a la clase

javax.bluetooth.DiscoveryAgent. Dentro de esta clase tenemos el

método getDiscoveryAgent que nos retornará los dispositivos encontrados

por nuestro dispositivo local. Con estos dispositivos encontrados, tendremos

que seleccionar al que queramos acceder para establecer la comunicación.

Para hacer esta selección primero tendremos que utilizar el método

selectService de la clase anterior, que como parámetro habrá que pasarle

el identificador único del dispositivo al que queramos acceder. Este

identificador lo tienen todos los dispositivos para ser diferenciados entre sí, ya

que el identificador es único (UUID15). Este identificador lo proporciona la clase

javax.bluetooth.UUID y sirve tanto para crear el identificador en el lado

del servidor, como para descubrir dicho identificador si se le pasa como

parámetro al método selectService, comentado anteriormente, en el lado

del cliente.

Con todo lo acabado de comentar, ya seremos capaces tanto de descubrir

dispositivos remotos como de ser descubiertos por otros.

15

 Universally Unique Identifier (Identificador Universal Único)

Gestor de contraseñas en un dispositivo móvil

 24

Ahora solo nos hará falta llegar a realizar la conexión con el dispositivo que

hayamos elegido para el intercambio de datos. Esto es precisamente lo que

vamos a ver, la parte de conexión de la API.

Para crear una conexión, si estamos en el lado del servidor, lo primero que

tenemos que crear es una URL con una serie de parámetros específicos. En el

siguiente ejemplo podemos ver una URL válida:

btspp:// localhost:UUID

El primer parámetro determina que estamos creando una URL para dispositivos

Bluetooth con conexión al puerto serie. Localhost es para saber que estamos

en el lado del servidor y el UUID, como se ha dicho anteriormente, es el

identificador único del dispositivo. Ahora tendremos que hacer uso de los

métodos de la clase javax.microedition.io.Connector para poder

establecer la conexión. Concretamente usaremos el método open, al que le

pasaremos cómo parámetro la URL creada. Este método será el encargado de

crear y abrir la conexión. Ahora solo hace falta esperar a que alguien solicite

conectarse con nosotros, entonces nosotros estableceremos dicha conexión

con el método acceptAndOpen y pasaremos a procesar la petición.

Si estamos del lado del cliente la cosa es más sencilla. Ya sabemos cómo

seleccionar el dispositivo mediante el UUID, ya que se explicado anteriormente.

Entonces solo nos hace falta llamar al método open y esperar que el servidor

acepte nuestra conexión.

Con todo lo descrito, aparte de descubrir dispositivos, ya seremos capaces de

realizar una conexión a éstos o esperar una petición de conexión para poder

establecerla.

Gestor de contraseñas en un dispositivo móvil

 25

2.3.2. APIs C++ para Bluetooth

 La API que usaremos para desarrollar la aplicación en el lado del PC,

será la API C++ para Bluetooth de Microsoft.

Vamos a empezar definiendo todo lo necesario para poder crear una conexión

en el lado del cliente, usando sockets16 y la tecnología Bluetooth.

Para empezar, tenemos que llamar a la función WSAStartup que nos

proporcionará información necesaria sobre Winsock17, como podría ser la

versión y los detalles de la implementación. Una vez ya hemos recogido la

información necesaria de Winsock, ya podemos pasar a crear el socket que

vincularemos con el del servidor para establecer la conexión. La creación de un

socket se efectúa mediante la función socket con unos parámetros

específicos, que variarán según el tipo de conexión que hagamos. En nuestro

caso, queremos realizar una conexión Bluetooth, por lo que los parámetros

serán, AF_BT, SOCK_STREAM y BTHPROTO_RFCOMM. Siempre usaremos estos

parámetros cuando queramos realizar una conexión mediante Bluetooth.

Una vez creado el socket, tendremos que guardar información sobre el

dispositivo Bluetooth al que nos queremos conectar. Para realizar esto se usará

la estructura SOCKADDR_BTH que nos proporciona la API. Rellenaremos los

campos de dicha estructura, con la información necesaria proveniente del

dispositivo servidor.

Ahora ya podemos crear la conexión. Ésta se hará mediante la función

connect que recibirá como parámetros, el socket local y la estructura con la

información necesaria del dispositivo remoto para iniciar la vinculación.

Una vez producida la conexión, ya podremos enviar y recibir datos mediante

las funciones send y recv, respectivamente.

16

 Punto de acceso, por el cual otro dispositivo remoto puede conectarse a nosotros.
17

 Sockets de Windows

Gestor de contraseñas en un dispositivo móvil

 26

Ésta ha sido la descripción de cómo crear una conexión en el lado del cliente,

ahora vamos a ver cómo hacerlo en el lado del servidor.

La conexión en el lado del servidor empieza de la misma manera que en la del

cliente, con la llamada a la función WSAStartup y con la creación del socket.

Ahora hay una pequeña diferencia con respecto a la parte cliente, en vez de

rellenar la estructura SOCKADDR_BTH con la información del dispositivo al que

nos queremos conectar, tendremos que rellenarla con la información de

nuestro dispositivo, ya que ahora nos encontramos en el lado del servidor.

Una vez tenemos la estructura creada, tenemos que asociar dicha estructura a

nuestro socket. Esto se consigue con la función bind, haciendo que el socket

creado al inicio tenga la información de la estructura.

Ahora solo tenemos que esperar a conexiones de entrada por el lado del

cliente. Esto se consigue utilizando la función listen. Ahora solo nos queda

aceptar dichas conexiones mediante la función accept.

Por último y no menos importante, no olvidarnos de cerrar el socket al acabar la

conexión mediante la función closesocket.

Con esta introducción a la API Bluetooth de Microsoft, ya seremos capaces de

realizar una aplicación que detecte a un dispositivo remoto y se conecte a él

para realizar algún tipo de intercambio de datos.

Gestor de contraseñas en un dispositivo móvil

 27

3. Diseño y Arquitectura

3.1. Introducción

 El diseño determina la arquitectura general del sistema que mejor

satisface los requisitos: componentes del sistema, el software utilizado y la

interacción con el usuario. Define como debe realizar su función el sistema.

Los actores son personas o entidades externas que intercambian información

con el sistema. En éste sistema tenemos 1 actor, el usuario que utiliza la

extensión y activa la aplicación de su dispositivo móvil.

Un caso de uso representa una interacción típica entre el usuario y el sistema.

Los casos de uso se utilizan para capturar los requisitos funcionales del

sistema. La descripción de éstos se centra en el comportamiento y no en la

implementación de las partes que define. En la figura 7 podemos ver los casos

de uso de nuestro sistema.

Usuario

Cliente móvil

Extensión Servidor web

Cliente Web

Figura 7. Diagrama de casos de Uso

Gestor de contraseñas en un dispositivo móvil

 28

3.2. Servidor web

 El servidor Web es el encargado de recoger los datos introducidos en el

navegador y dar acceso a la página web deseada. También es el responsable

de recoger los datos introducidos en el formulario de la página web con acceso

restringido a la que deseamos acceder, validar estos datos introducidos en la

base de datos y si todo es correcto, dar acceso al usuario a la página web

solicitada.

Extensión Cliente web Servidor web

SolicitarAccesoWeb

DarAccesoWeb

MostrarWeb

RellenarFormulario

ValidarDatos

DarAcceso

MostrarWeb

Figura 8. Diagrama del caso de uso Servidor Web

Gestor de contraseñas en un dispositivo móvil

 29

3.3. Cliente Web

 Como cliente Web entendemos al navegador web, que en nuestro caso

será el Firefox de Mozilla y a la extensión en sí, que es la encargada primero

de detectar si la página web en la cual estamos en el momento de activar la

extensión, contiene un formulario de login/password, con lo que iniciará el

proceso de comunicación con el móvil. Si no existiera el formulario de

login/password en la página web en que nos encontramos, saldría una alerta

por pantalla mostrando un mensaje de error.

Se barajaron varias opciones a la hora de iniciar la aplicación, una es la que

acabamos de comentar, tener que ir al menú “Herramientas” del navegador

Firefox y activar manualmente la extensión.

La otra opción que se barajó, fue la de que cada vez que entremos en una

página web nueva, la aplicación se inicie automáticamente sin tener que ir al

menú “Herramientas” del navegador e inicie el todo el proceso necesario

para rellenar el formulario automáticamente.

Aunque la segunda opción es más cómoda en principio, ya que se inicia

automáticamente cada vez que entramos en una página web, al final se hace

más engorrosa ya que cada vez que una página no contenga un formulario de

login/password saldrá el mensaje de error por pantalla. Si por casualidad

entramos en una página que si contiene ese tipo de formularios pero para el

cual no tenemos la contraseña guardada en el móvil también nos saldrá un

mensaje de error por pantalla. Por estas dos incomodidades, se ha preferido

usar la primera opción, aunque se tenga que activar manualmente.

Para incorporar en el menú “Herramientas” de nuestro navegador la opción

de iniciar la aplicación, se ha creado un pequeño programa en XUL y se ha

colocado en el directorio de extensiones de Firefox. Se ha elegido incorporar el

elemento de inicio de la aplicación en dicho menú, ya que como hemos podido

contemplar con otras extensiones, éstas siempre incorporan elementos

Gestor de contraseñas en un dispositivo móvil

 30

adicionales al menú “Herramientas” una vez están instaladas en el

navegador.

Mediante el registro de la extensión en la URL chrome del navegador y gracias

a los Overlays, podremos añadir la nueva entrada deseada, en el menú

“Herramientas” en nuestro caso.

El cliente Web se comunica con el dispositivo móvil mediante la creación de

sockets y gracias a la API Bluetooth de Microsoft. Se creará un componente

XPCOM para tal efecto que también será el encargado de recibir los datos

necesarios para rellenar los campos del formulario. Una vez nuestra extensión

tiene los datos, ésta se encarga de rellenar automáticamente los campos del

formulario mediante una función escrita en Javascript.

En la Figura 9 podemos ver el diagrama del caso de los casos de uso

Extensión y Cliente Web. Se ha unido el diagrama de los dos ya que la

Extensión es un complemento del Cliente Web, por tanto forma parte de él.

Figura 9. Diagrama del caso de uso Extensión

 : Usuario
Cliente Web Extensión Dispositivo

Móvil

IrWebAccesoRestringido

IniciarExtensión

PedirContraseña

RecibirDatos

RellenarFormulario

Gestor de contraseñas en un dispositivo móvil

 31

3.4. Cliente Móvil

 El cliente móvil, en nuestro caso un teléfono móvil, es el encargado de

esperar peticiones procedentes del navegador y satisfacer dichas peticiones.

Además, una vez llegue una petición procedente del “exterior” se hará un

proceso de emparejamiento de dispositivos, para asegurar que nadie, excepto

nosotros, tenemos acceso a la contraseña que nos brindará el dispositivo

móvil.

Este emparejamiento se realiza una vez que llega una petición. El dispositivo

móvil nos pide que introduzcamos una contraseña, que una vez introducida,

esperará a que el otro lado de la conexión introduzca la misma contraseña para

poder hacer la vinculación. El otro lado de la conexión, en nuestro caso el PC

donde estemos ejecutando la extensión, nos pedirá que entremos una

contraseña, que introduciendo la misma que acabamos de poner en el

dispositivo móvil, se producirá la vinculación y se podrá empezar la

transferencia de datos. Al producirse la primera vinculación, tendremos una

opción en el dispositivo móvil de guardar dicha vinculación, para que las

próximas veces que se intente acceder al dispositivo móvil desde el mismo PC

que la primera vez, no haga falta la introducción de ninguna contraseña,

evitando así que la vinculación se convierta en una tarea muy engorrosa.

La aplicación del dispositivo móvil está escrita en el lenguaje de programación

Java para móviles, J2ME y se comunica con la extensión mediante sockets y

mediante la tecnología inalámbrica de redes, Bluetooth, gracias a la API Java

para dicha tecnología.

Esta aplicación consiste en un bucle18 infinito que se dedica a esperar

peticiones y cuando una de éstas se produce, se crea un canal de salida por

donde irán los datos hacia la extensión.

La aplicación ha sido escrita con el entorno de programación NetBeans más el

paquete Mobility, que facilita mucho las cosas ya que dentro de éste hay una

18

 repetición

Gestor de contraseñas en un dispositivo móvil

 32

opción para crear Midlets, que nos crea los archivos necesarios, una vez ya

tenemos la aplicación programada, para instalar nuestras aplicaciones en

nuestro dispositivo móvil. Estos archivos consisten en dos archivos llamados

nombre_de_extensión.jar y nombre_de_extensión.jad que

simplemente los tendremos que transferir a nuestro móvil, ya sea por cable

serie, infrarrojos o bluetooth, para poder usar la aplicación en nuestro

dispositivo móvil.

Una vez que iniciemos la aplicación en nuestro móvil, ya estará lista para

esperar peticiones procedentes del navegador.

En la Figura 10 podemos ver el diagrama del caso de uso del cliente móvil.

 : Usuario
Móvil Extensión

IniciarAplicación

EsperarPeticion

PedirContraseña

Emparejar

Emparejar

DarContraseña

Figura 10. Diagrama del caso de uso Móvil

Gestor de contraseñas en un dispositivo móvil

 33

4. Implementación

 La fase de implementación consiste en la traducción del diseño realizado

anteriormente a un lenguaje de programación.

Los lenguajes de programación propuestos han sido java y su variante para

dispositivos móviles J2ME, C++, XUL y Javascript. Como veremos en el punto

4.4. ha habido diferentes variantes en la implementación, a causa de los

problemas encontrados.

En la Figura 11podemos ver el diagrama de clases de nuestro sistema, que

describe las clases, atributos y las relaciones entre ellos.

Formulario

NombreUsuario
Contraseña

Pagina Web

Contenido

0..*

1Servidor

ValidarWeb()
DarAccesoWeb()
ValidarDatos()

0..*1

BlueExtension

ProcesarCampos()
RellenarFormulario()
InstanciarXPCOM()
getEditableInputs()

XPCOM

conexion()

1 1

BlueServer

EsperarPeticion()
DarContraseña()

11

0..*1

1

0..*

1 0..*

1

0..*

11
XPConnect

11
BluetoothDispositivo Móvil

Applicaciones
0..*1

1

Navegador

extensiones

IrAWeb()
MostrarWeb()

0..*

1

0..*

1

0..*

1

Usuario

InitExtNavegador()
InitAppMóvil()
InitNavegador()

1

1

1 0..*1

manual

manual

1

0..*
HTTP

BBDD

Figura 11. Diagrama de clases

Para empezar, tenemos la clase Usuario, que es la clase que nos representa,

y los métodos son iniciar el navegador, iniciar la aplicación móvil e iniciar la

Gestor de contraseñas en un dispositivo móvil

 34

extensión del navegador. La clase Usuario se comunicará con el navegador y

con el dispositivo móvil de forma manual.

La clase Dispositivo Móvil tiene agregada la clase BlueServer que

representa la aplicación del dispositivo móvil. Esta última clase tiene los

métodos necesarios para esperar la petición procedente de la extensión y dar

la contraseña.

La clase Navegador tiene agregada la clase BlueExtension que representa

la extensión del navegador Firefox y que tiene los métodos necesarios para la

comunicación con el dispositivo móvil y el relleno automático de los campos del

formulario. Para iniciar la conexión, la clase BlueExtension tendrá que

hacer uso de la clase XPCOM y la conexión entre estas dos clases se realiza

mediante XPConnect. La clase XPCOM se comunicará con la clase

Dispositivo Móvil mediante Bluetooth.

La clase Navegador, por su parte, se comunicará con la clase Servidor

mediante HTTP. La clase Servidor será la encargada de validar las páginas

web introducidas por la clase Navegador y de dar acceso a ellas. También

será la encargada de validar los datos del formulario. Para validar las páginas

web, la clase Navegador tendrá que “mirar” en su Base de Datos (BBDD) y si

existe dicha web, dar acceso a ella.

La clase Pagina Web tendrá como agregación la clase Formulario, que es

la que contendrá los atributos nombre de usuario y contraseña.

Gestor de contraseñas en un dispositivo móvil

 35

4.1. Software usado

 El software usado para la implementación de la aplicación es el

siguiente:

 Microsoft Windows XP service Pack 3

 Microsoft Office 2007

 Microsoft Visual Studio 6.0

 Microsoft Platform SDK

 Notepad ++

 Netbeans mobility pack

 Nokia Wireless Toolkit

 Firefox

 XulRunner SDK o Gecko SDK

 XulExplorer

 DOM Inspector

 Extension Developer

Gestor de contraseñas en un dispositivo móvil

 36

4.2. Hardware empleado

 Sony Vaio FS-515b

 Procesador Intel Pentium M a 1,73 GHz

 1GB RAM

 HDD de 80 GB

 WidComm Bluetooth USB Adapter

 Nokia 6300

 Impresora Epson Stylus DX9400F

Gestor de contraseñas en un dispositivo móvil

 37

4.3. Servidor

 En el servidor nosotros no tenemos que programar nada, simplemente

esperar primero a que nos dé acceso a la página web que deseemos entrar y

luego a que cuando hayamos introducido nuestros datos en el formulario

deseado, los valide y si los datos son correctos, nos de acceso al área

restringida a la que queremos acceder. Todos estos datos serán introducidos

por el usuario mediante el Cliente Web.

Nuestra aplicación solo servirá para entrar en una sola página web, ya que en

nuestro dispositivo móvil solo tendremos guardada la contraseña para un solo

formulario.

La página que se ha escogido para nuestra aplicación es una página Web muy

conocida por nosotros, (éste ha sido el motivo de la elección de la página en

concreto) la Web del mail de los alumnos de la UAB (ver Figura 12).

Figura 12. Webmail alumnos UAB

Gestor de contraseñas en un dispositivo móvil

 38

4.4. Cliente Web

 La programación del cliente web se podría dividir en 3 partes:

 La interfaz gráfica, creada en XUL.

 El script que da funcionalidad a la aplicación, en JavaScript.

 El componente XPCOM, hecho en C++.

 La primera parte, no es solo la interfaz gráfica, es crear todos los

archivos y jerarquía de directorios para que nuestro cliente Web, Firefox,

entienda que hemos creado una extensión y la instale.

Para empezar con esta tarea, crearemos un archivo, allí donde está ubicado el

directorio perteneciente a las extensiones instaladas en nuestro cliente Web,

que suele ser un directorio parecido a éste: “C:\Documents and Settings\

usuario\ Datos de programa\ Mozilla\ Firefox\ Profiles\

83x0s50h.default\extensions”, ese archivo lo hemos llamado

BluetoothExtension@foo.net y contiene la dirección de nuestro PC

donde vamos a crear la extensión. Es una forma de ahorrar tiempo a la hora de

navegar por los directorios y a la vez es necesario crear un archivo como el

nuestro, ya que si no, Firefox no detectaría que hay una nueva extensión

instalada.

En el directorio donde vamos a crear la extensión, tendremos una jerarquía tal

que en el directorio principal vamos a tener dos archivos, el install.rdf y el

chrome.manifest y 3 directorios, content, skin y components.

En el directorio skin, van los archivos CSS que son los encargados del estilo

de la aplicación. Con ellos podemos cambiar colores y alineaciones a nuestro

gusto, tal y como se explicó en el apartado de tecnologías. En nuestra

extensión no se ha utilizado ningún estilo, se ha preferido dejar todo por

defecto.

Gestor de contraseñas en un dispositivo móvil

 39

En el directorio components, van los archivos correspondientes a la creación

de componentes XPCOM, ya sea en JavaScript o en C++. En el punto 4.4.1 se

explicará la creación de componentes más detalladamente.

Antes de explicar el contenido del directorio content, se hablará de los dos

archivos que tenemos en el directorio principal, el install.rdf y el

chrome.manifest.

El archivo install.rdf es el archivo que una aplicación XUL usa para

determinar información sobre cómo tiene que ser instalada esa aplicación.

Contiene metadatos19 identificando la extensión, quien la creó, donde se

puede encontrar la información referente a la extensión, que versiones de

aplicaciones con las cuales es compatible, etc. En la Figura 13 podemos ver el

archivo install.rdf para nuestra aplicación, cabe destacar los atributos id,

para identificar donde están los datos de la extensión, el type, que se ha

puesto un 2 ya que es el número que identifica a las extensiones. El atributo

name y description serán los que nos aparezcan una vez tengamos

instalada la extensión en el menú “Complementos” dentro del menú

“Herramientas” de nuestro navegador, ver Figura 14.

El otro archivo que nos concierne, el chrome.manifest, es el encargado de

decirle al registro chrome, que hay un nuevo chrome disponible. Nosotros

necesitamos registrar nuestro archivo XUL que está en el directorio content y

lo haremos de la siguiente manera:

content bluextension chrome/content/

Donde el primer parámetro es el tipo de directorio, el segundo es el nombre de

nuestro paquete y el tercero es la uri 20 hacia nuestros archivos.

19

 Datos que describen otros datos.
20

 Uniform Resource Identifier (Identificador uniforme de recurso).

Gestor de contraseñas en un dispositivo móvil

 40

Con esto le decimos al navegador donde están los archivos para el registro

chrome, pero lo que nosotros queremos es superponer nuestro archivo XUL a

nuestro navegador, esto se consigue de la siguiente manera en el archivo

chrome.manifest:

overlay chrome://browser/content/browser.xul

chrome://bluextension/content/bluextension.xul

Figura 13. Archivo install.rdf

Lo que estamos diciendo con la instrucción overlay es que superponga a la

interfaz del navegador (browser.xul) nuestro archivo, Bluextension.xul,

podemos ver el resultado en la Figura 15.

En el directorio, content, se hallarán los archivos de la interfaz gráfica (XUL) y

los de funcionalidad (JS21). El archivo escrito en XUL se encarga de crear la

interfaz gráfica de nuestro navegador, que junto al archivo chrome.manifest

da el resultado que vemos en la Figura 15. Al clicar en la nueva entrada en el

menú “Herramientas” se da inició a la funcionalidad de la extensión.

21

 Javascript

Gestor de contraseñas en un dispositivo móvil

 41

Figura 14. Extensión instalada

El archivo JavaScript contiene básicamente una función llamada

ProcesarCampos, que es la encargada de realizar todo el proceso de

verificación. Éste proceso consiste en ver si la página en la cual estamos en

ese mismo instante contiene un formulario de login/password válido, es decir,

que si la web no contiene un formulario o contiene uno que no es del tipo

http/https, nos “saltará” una advertencia por pantalla diciendo que la web no

contiene un formulario de login/password válido. Hemos hecho una prueba

para ver lo sucedido en una página cualquiera y hemos tomado como ejemplo

una web de Mozilla que nos habla de XPCOM, ver Figura 16. Como se puede

observar, al no tener un formulario válido, nos aparece la advertencia por

pantalla.

Si por el contrario, nos encontramos ante un formulario válido, la función

ProcesarCampos llamará a otra función llamada getEditableInputs, que

se encarga de almacenar las entradas editables de un formulario, que nos

servirá posteriormente para rellenar el campo de la contraseña del mismo. Si

Gestor de contraseñas en un dispositivo móvil

 42

nuestra variable donde guardamos las entradas editables del formulario se

llama formulario, para entrar un valor se debe llamar al atributo “value”, por

ejemplo, con formulario.value[0] rellenaríamos el campo de la primera

entrada editable del formulario, que usualmente corresponde con la del nombre

de usuario y con formulario.value[1] rellenaríamos el campo de la

segunda entrada editable, correspondiéndose normalmente con el de la

contraseña.

Figura 15. Nueva entrada en el menú Herramientas

Después de llamar a la función getEditableInputs, lo que hay que iniciar

es la comunicación vía Bluetooth con el dispositivo móvil. Desde JavaScript no

podemos hacer esto, por las limitaciones comentadas en el apartado de

tecnologías, entonces necesitamos crear un componente XPCOM en C++ que

sea capaz de comunicarse con el dispositivo móvil y recibir los datos. Una vez

creado el componente, lo podremos instanciar desde JavaScript utilizando

XPConnect y utilizar su servicio para poder comunicarnos mediante Bluetooth

con el móvil.

Gestor de contraseñas en un dispositivo móvil

 43

Figura 16. Alerta de formulario no válido

4.4.1. Creación del componente XPCOM en C++

 Para empezar a crear un componente XPCOM en C++ hay que tener

instalado el Gecko SDK. El Gecko SDK es un conjunto de archivos XPIDL22,

cabeceras y herramientas para desarrollar componentes XPCOM para poder

acceder a ellos desde Javascript.

Lo primero que tenemos que crear es un GUID 23 para nuestra interfaz con la

herramienta guidgen24 de Windows. En la Figura 17 se puede ver la plantilla

para crear la interfaz que rellenaremos con la GUID creada y los métodos y

atributos que queramos. En nuestro caso solo habrá un método que se llamará

conexión que nos devolverá el string correspondiente a la contraseña que

estará almacenada en el dispositivo móvil.

22

 Lenguaje de descripción de interfaces multi plataforma.
23

 Globally Unique Identifier (Identificador Global Único).
24

 Herramienta incluida en Windows para generar GUIDs.

Gestor de contraseñas en un dispositivo móvil

 44

Figura 17. Plantilla para crear la interfaz

Con la herramienta xpidl que viene con el Gecko crearemos el archivo de

cabecera (.h) y el archivo typelib (.xpt) de la interfaz creada. El primero

nos servirá como plantilla de cabecera e implementación para crear los

archivos CPP25
 donde irán la implementación de la conexión y la creación del

módulo. El segundo, junto con el archivo DLL26 que crearemos al finalizar el

proceso de creación del componente, serán los archivos necesarios para

registrar el componente en el navegador y poder instanciar la interfaz recién

creada a nuestro antojo.

Con el archivo de cabecera (.h) creado, usaremos la parte referente a la

cabecera, como plantilla para crear nuestra cabecera real. A esto le tendremos

que añadir unas líneas de código para identificar a nuestro componente (ver

Figura 18).

Figura 18. Archivo de cabecera

25

 Archivos de implementación del lenguaje C++.
26

 Dinamic Link Library (Librería de conexión dinámica)

Gestor de contraseñas en un dispositivo móvil

 45

El primer define, define como instanciar a nuestro componente XPCOM

desde Javascript. El segundo es una pequeña definición y el tercero es otro

identificador único.

Antes de empezar con la implementación de la conexión, tendremos que crear

otro archivo CPP que será el encargado de generar el componente cuando lo

instanciemos. En la Figura 19 se puede ver cómo quedó el archivo en cuestión.

Figura 19. Archivo del Módulo.

Ahora toca crear el otro archivo CPP donde irá la implementación de la

conexión. Como se ha hecho antes, cogemos la plantilla de cabecera creada y

con la parte de la implementación crearemos el archivo CPP, al cual, solo

tendremos que añadir la implementación del método connexion creado en la

interfaz.

Para empezar la implementación hemos tenido que instalar el Platform SDK 27

de Microsoft, ya que contiene las librerías necesarias para realizar la

comunicación por Bluetooth, tal y como se ha explicado en el apartado de API

C++ para Bluetooth del capítulo de las tecnologías.

La implementación de la conexión se empieza llamando a la función

WSAStartup, que es la encargada de iniciar la DLL WinSock por un proceso.

Se crea el socket, con los parámetros necesarios para realizar la comunicación

27

 Software Development Kit

Gestor de contraseñas en un dispositivo móvil

 46

Bluetooth y ahora tenemos que pasar la dirección física de nuestro dispositivo

móvil, que está en el formato “xx:xx:xx:xx:xx:xx” como string, a una

dirección Bluetooth. Una vez acabo esto, hay que crear la estructura

SOCKADDR_BTH (sab en nuestro caso) para contactar con nuestro dispositivo

remoto. En la Figura 20 se puede ver como ha quedado esta estructura.

Figura 20. Estructura SOCKADDR_BTH

Acto seguido lo que tenemos que hacer es conectar con el dispositivo remoto,

esto se consigue con la función connect, pasándole como parámetro la

estructura que recién se ha creado. Una vez hecho esto, la conexión se habrá

establecido y solo nos quedará recibir la contraseña procedente del dispositivo

móvil. Para conseguirlo es necesario llamar a la función recv, añadiendo a uno

de los parámetros un buffer donde almacenar los datos. Después de la llamada

a dicha función, ya tendremos los datos almacenados en una variable listos

para ser devueltos como valor de retorno de la función. Solo hace falta una

cosa más, cerrar el socket creado con la función closesocket y ya estará el

asunto resuelto.

Ahora que ya tenemos todos los archivos en condiciones solo nos hace falta

crear la DLL. Para ello tendremos que abrir un proyecto en el Visual Studio con

la opción de crear una Win32 Dinamic-Link Library. Se añaden todos los

archivos al proyecto y se construye la DLL.

Una vez tenemos la DLL construida solo tenemos que añadirla, junto con el

archivo XPT creado al principio de todo el proceso de creación del componente,

al directorio components de nuestro navegador, que suele estar en la ruta

“C:\Archivos de programa\Mozilla Firefox\components”.

Gestor de contraseñas en un dispositivo móvil

 47

Con el componente ya creado, se puede proseguir en la creación de la

aplicación.

Si recordamos, se había llamado a la función getEditableInputs para

poder rellenar el campo de la contraseña, pues bien ahora hay que instanciar al

componente XPCOM. En la Figura 21 se puede ver un ejemplo de cómo se ha

logrado esto. Primero se activa el privilegio de poder usar XPConnect, luego

se crea una instancia del componente y finalmente se llama al método

deseado, que en este caso es el método connexion, para que nos devuelva

un string con la contraseña deseada.

Figura 21. Instanciar Componente.

Una vez acabado este proceso, solo hay que rellenar el campo de la

contraseña devuelto por la función getEditableInputs con el string

devuelto por el método connexion del componente XPCOM. En las Figuras

22 y 23 se puede ver el resultado de llamar a la extensión desde la página del

Webmail de los alumnos de la UAB y como nos da permiso el servidor Web

para entrar al área restringida.

Figura 22. Formulario después de iniciar la extensión

Gestor de contraseñas en un dispositivo móvil

 48

Figura 23. Acceso permitido

Gestor de contraseñas en un dispositivo móvil

 49

4.5. Cliente Móvil

 Para la parte del cliente móvil se ha utilizado el IDE28 de desarrollo

NetBeans, con un paquete adicional de “movilidad”, necesario para trabajar

sobre dispositivos móviles, crear Midlets y muy útil ya que nos provee de

emuladores para probar nuestros programas sin tener que instalarlos en ningún

dispositivo.

El entorno de desarrollo no contiene librerías para trabajar sobre la tecnología

Bluetooth, así que lo primero que hay que hacer es bajarse una librería para

poder empezar a crear el Midlet.

Se decide usar Bluecove, que provee una implementación del protocolo JSR-

82, que es el que necesitamos. Solamente tenemos que incluir al archivo JAR

que acabamos de descargar en el path29 de nuestro IDE y ya estaremos listos

para usar la librería.

Ahora tenemos que crear un nuevo proyecto, abrimos dentro de la categoría

“mobility”, la parte de creación de una aplicación MIDP. Ahora salen unas

opciones que dependiendo del dispositivo móvil se escogen unas u otras. En el

caso de este proyecto se han escogido CLDC 1.1 y MIDP 2.0. Ahora si ya se

está listo para empezar a crear el Midlet.

Dentro del paquete se ha de crear un “Visual Midlet” para ir creando los

elementos visualmente, sin tener que picar código, aunque no todo se podrá

hacer “visualmente”.

Creamos un nuevo formulario que será la pantalla de bienvenida cuando

ejecutemos la aplicación. Como se puede ver en la Figura 24, se ha puesto

como titulo del formulario “Servidor esperando petición”, ya que cuando se

inicie la aplicación, el dispositivo ya estará listo para dar la contraseña.

También se ha añadido la opción de salir de la aplicación mediante un

28

 Integrated Development Environment (Entorno de Desarrollo Integrado)
29

 Ruta o forma de referenciar un archivo.

Gestor de contraseñas en un dispositivo móvil

 50

comando de “Exit” que al apretar la tecla correspondiente del dispositivo móvil,

saldremos de la aplicación.

Figura 24. Formulario inicial de la aplicación

Antes de crear el formulario visual, hay que hacer una serie de cosas. Primero

tenemos que conseguir el objeto Dispositivo local para nuestro

dispositivo Bluetooth local, eso se consigue con la función getLocalDevice.

Segundo tenemos que hacer que nuestra aplicación sea visible para otras

aplicaciones, para eso hace falta llamar al método setDiscoverable, que

nos dice si se ha llevado a cabo bien la petición. Ahora hay que crear una URL,

con su identificador único y otros parámetros como “localhost” diciendo que

estamos en la parte servidora, para que otros dispositivos se puedan conectar

a nosotros a través de ella. Finalmente, se llamará al método

Gestor de contraseñas en un dispositivo móvil

 51

Connector.open para crear un stream30 de entrada con la URL creada

anteriormente.

Después de hacer un display31
 del formulario de inicio, el programa se

quedará esperando a que le llegue una petición, esto se consigue con un bucle

infinito. Dentro de este bucle, estará el método acceptAndOpen que

devolverá un objeto streamConnexion que representará la conexión por

socket del lado del servidor.

Acto seguido, se lanzará un hilo que será el encargado de realizar el proceso

de enviar la contraseña al cliente.

Al lanzarse el hilo, significará que ya se ha recibido una petición, y se mostrará

por la pantalla del dispositivo un mensaje confirmándolo, ver Figura 25.

 Ahora solo tenemos que crear un stream de salida llamando al método

openDataOutputStream y con el método write enviar la contraseña por

ese stream de salida.

Finalmente, solo nos quedará por hacer, cerrar la conexión creada y el stream

de salida.

30

 flujo
31

 Método para mostrar un formulario por la pantalla del dispositivo móvil.

Gestor de contraseñas en un dispositivo móvil

 52

Figura 25. Formulario de petición recibida

Gestor de contraseñas en un dispositivo móvil

 53

4.6. Hilo de la implementación

 Lo primero que se empezó a implementar fue todo lo relacionado con la

interfaz gráfica, se creó la jerarquía de directorios y los archivos necesarios

para que el navegador entendiera que había una nueva extensión instalada,

luego se pasó a crear el archivo XUL en sí, para añadir el nuevo elemento en

menú herramientas.

Lo segundo, fue crear el archivo Javascript, que detectará si en la web en la

que nos encontramos hay un formulario válido y si es así recoger las entradas

editables de dicho formulario para ser rellenadas posteriormente.

Después de lo realizado anteriormente, se pasó a crear el programa del

dispositivo móvil, pero sin llegarlo a instalar, solamente se hacía funcionar en el

emulador del NetBeans.

Entonces, se intentó crear el programa que conectara con el dispositivo en

C++, pero como veremos en el apartado de problemas encontrados, no se

pudo inicialmente y se pasó a probar otra opción. Esta opción fue crear el

mismo programa pero en Java. Con la librería usada para crear el programa del

dispositivo móvil fue bastante fácil crear el programa.

Para probar el programa con el servidor que ya teníamos creado, teníamos que

crear el programa de conexión en forma de Midlet para poder simularlo y

realizar la conexión entre los dos simuladores, el servidor y el cliente, para

ahorra tiempo de instalación.

En cuanto ya se producía la conexión y se recibían los datos correctamente, se

pasó a crear el componente XPCOM mediante la tecnología JavaXPCOM, pero

como también se podrá ver en el apartado de problemas encontrados, esto era

una opción inviable y tuvimos que pensar otras opciones.

Gestor de contraseñas en un dispositivo móvil

 54

Se volvió a pensar en crear el programa en C++ y tras muchos problemas se

acabó consiguiendo. Ahora si podíamos crear un componente XPCOM en C++,

ya que esto sí que era una opción viable.

Después de crear el componente XPCOM en C++ solo había que volver al

archivo Javascript y desde ahí instanciar el componente para que realice la

conexión con el dispositivo móvil y con el resultado de ésta conexión rellenar

los campos del formulario automáticamente.

Gestor de contraseñas en un dispositivo móvil

 55

5. Conclusiones

 El lenguaje XUL ha demostrado ser muy fácil de utilizar y a la vez muy

potente, capaz de crear interfaces gráficas con unas pocas líneas de código y

cualquiera podría adentrarse en él, ya que en unos pocos días seremos

capaces de trabajar con él habiendo empezado desde cero.

Pero para crear una extensión no solo nos va hacer falta saber XUL, a menos

que hagamos una extensión muy, muy simple. Si queremos añadir

funcionalidad tendremos que saber algo de Javascript, lenguaje que a lo mejor

no es tan fácil de aprender como XUL pero sí que es bastante fácil hacerse con

él. Con XUL y Javascript ya seremos capaces de crear extensiones de mayor

complejidad, que nos sean de utilidad y sin mucho esfuerzo. Esto, hace que

existan miles de extensiones creadas por usuarios que son enormemente

útiles. Esto es una de las cosas por las que el navegar Firefox es tan popular

entre la comunidad programadora.

Si queremos hacer cosas todavía más complejas, tendremos que recurrir a

código nativo, ya que en Javascript no podemos hacer por ejemplo, una

comunicación vía Bluetooth con un dispositivo móvil. Para realizar esto,

tendremos que crear componentes XPCOM en C++ para añadir más

funcionalidad a nuestras extensiones. Crear un componente no es tan sencillo

como podría serlo XUL o Javascript, pero existen tutoriales muy buenos que

nos guían paso a paso en la creación del mismo. Una vez ya hemos creado

uno, crear otro ya no tendrá más misterio y se podrán crear extensiones

enormemente más potentes, gracias a la tecnología XPCOM.

Gracias a todo esto, es posible crear extensiones muy potentes para nuestro

navegador, que con un poco de imaginación, podemos llegar a crear cosas

verdaderamente provechosas para el usuario, como puede ser la realizada en

éste proyecto.

Gestor de contraseñas en un dispositivo móvil

 56

En cuanto a la programación de Midlets, también es una cosa muy provechosa

ya que se pueden hacer virguerías con el dispositivo móvil. Si se tienen

conocimientos previos de Java, nos será muy fácil coger la dinámica de J2ME y

si no la tenemos puede ser que nos cueste algo más, pero tampoco mucho ya

que Java es un lenguaje muy intuitivo y que se le coge el hilo bastante rápido.

En este proyecto se ha creado un Midlet que simplemente habría un canal de

comunicación por el cual enviaba una contraseña, pero como se ha podido ver

en diferentes foros, se le han visto múltiples utilidades y de mucha potencia

para nuestro dispositivo móvil.

La parte del Midlet ha sido una parte muy provechosa, como todo el proyecto,

ya que se ha aprendido a crear un Midlet desde cero y ya se está pensando en

crear otras aplicaciones para el dispositivo móvil.

Gestor de contraseñas en un dispositivo móvil

 57

5.1. Problemas encontrados

 Han sido bastantes los problemas encontrados a lo largo de toda la

implementación y por consiguiente vamos a dividir los problemas encontrados

en tres partes que serán por un lado la parte de creación de todo lo relacionado

con Javascript, la creación del componente XPCOM y finalmente la creación

del Midlet en el dispositivo móvil.

En lo referente a la primera parte, la creación de la validación del formulario de

login/password, instanciar el componente XPCOM y el relleno automático del

formulario, decir que la instanciación del componente XPCOM no supuso

ningún problema, en cambio las otras dos si dieron problemas.

Para validar un formulario en una web primero teníamos que encontrar dicho

formulario, para hacerlo, tenemos que recorrer los tags32 html hasta encontrar

un tag input que nos lleve hasta un tag form, entonces sabremos que esa

web contiene un formulario. Pero no se era capaz de “navegar” por esos tags,

sino que se navegaba por los tags de la interfaz del navegador. Entonces aquí

surgió el primer problema, cómo recorríamos los tags de la web en la que nos

encontrábamos y no la interfaz del navegador?

La respuesta fue llamando a un objeto del DOM que nos adentraba en el

contenido de la web en la que nos encontrábamos, el “window._content”.

Así ya éramos capaces de recorrer los tags de la web para poder así validar el

formulario de login/password.

El otro problema fue el saber acceder a los campos del formulario una vez ya lo

teníamos validado, pero gracias a una extensión descargada, se supo cómo

hacer esto y se creó una función adaptada a la de la extensión descargada. No

fue un problema tan grande como el anterior, pero se tardaron algunos días en

poder solucionarlo.

32

 etiquetas

Gestor de contraseñas en un dispositivo móvil

 58

Ahora pasamos a la parte de creación del Midlet, para seguir el orden en que

se implementaron las cosas.

Aquí el primer problema fue encontrar una librería que nos permitiera trabajar

con la tecnología Bluetooth desde Java o J2ME. Buscando por diversos foros

se encontró Bluecove, que funciona a las mil maravillas. Después de resolver

el tema de la librería, se empezó a crear el Midlet, cosa que no se había hecho

nunca por mí y por lo tanto no se sabía por dónde empezar. La creación de los

formularios no supuso muchos problemas pero si el crear el resto del

programa. Primero fue la creación de una URL para que otros dispositivos nos

pudieran detectar, había que poner varios parámetros específicos por tratarse

de una conexión por Bluetooth y por estar del lado del servidor. Estos

parámetros supusieron problemas que se solucionaron como no, en los

diferentes foros relacionados con J2ME y la comunicación Bluetooth. Todo lo

demás fue rodado excepto un pequeño detalle a la hora de enviar la

contraseña por el stream de salida, al final hay que cerrar la conexión creada y

el stream de salida creado.

Ahora viene la parte de la creación del componente XPCOM, que con

diferencia es la parte que más problemas dio de toda la implementación.

Para empezar, antes de crear el componente se pensó en crear un programa

que creará una conexión Bluetooth y recibiera datos, así sería más fácil de

comprobar los fallos. Se utilizó un IDE como es Visual Studio para tal efecto y

se empezó a crear el programa.

El programa escrito en C++, no se era capaz de hacerlo funcionar, aunque todo

parecía indicar que el programa era correcto, era un misterio que no se sabía

cómo resolverlo.

Entonces se pensó en otra solución y se vio que en la web de desarrollo de

Mozilla había una solución para crear componentes en Java, la solución se

llamaba JAVAXPCOM y prometía mucho, ya que se podría crear el programa

en Java que sería mucho más fácil dado que ya teníamos creado el MIDlet en

Gestor de contraseñas en un dispositivo móvil

 59

J2ME y en teoría no debería ser muy diferente. Y así fue, tal y como se había

pensado no fue muy difícil crear el programa en el IDE NetBeans y comunicarlo

con el MIDlet, el problema vino a la hora de crear el componente en XPCOM en

Java.

Leyendo la información que había sobre el tema parecía que si incrustabas el

Mozilla en la aplicación Java si podías crear el componente para que se

comunicaran entre ellos, pero no se quería hacer eso, ya que lo que se quería

es lanzar la aplicación desde el navegador, no desde una aplicación Java. Y

eso no era posible hacer, no es posible lanzar código escrito en Java desde

una extensión, como bien se ha comentado en este foro

(osdir.com/ml/mozilla.devel.netlib). Sin embargo, sí que existe una

manera de lograrlo, dándonos unos permisos que en principio no tenemos para

así poder llamar al código Java tal y como se muestra en la extensión

“Java_Firefox_Extension”, pero se descartó la opción por la complejidad y por

no parecer muy lícito.

En la parte de intentar la creación del componente en Java se perdió mucho

tiempo y se pensó entonces en volver al inicio e intentar resolver los problemas

que tenía el programa escrito en C++.

Los problemas se resolvieron, no sin varias consultas en foros, resultando ser

que la versión del SDK que se tenía instalada no era la correcta, se tenía que

tener instalada una versión anterior.

Pero sólo con esto no se solucionó el problema, había otro problema que

solucionar. El dispositivo Bluetooth que se ha usado para este proyecto, viene

con unos drivers que se instalaron correctamente. Pues éste era el problema,

había que desinstalar los drivers y dejar que Windows instala los suyos propios

automáticamente. Y así fue, en cuanto Windows instaló los drivers, el programa

en C++ pasó a funcionar perfectamente.

Ahora tocaba la creación del componente XPCOM en C++, que siguiente este

tutorial, muy recomendado, no se tuvo mayores problemas excepto en el valor

Gestor de contraseñas en un dispositivo móvil

 60

de retorno del componente, que tenía que ser la contraseña en cuestión. En la

web de desarrollo de Mozilla y más concretamente en el apartado de creación

de componentes XPCOM en C++ hay una guía de cómo usar los strings, que

se siguió y se consiguió solucionar el último problema que se tuvo.

Gestor de contraseñas en un dispositivo móvil

 61

5.2. Trabajo futuro

 Se pueden hacer muchas mejoras al programa, con un poco más de

tiempo se puede llegar a hacer de esta extensión una extensión completísima

lista para que otros usuarios puedan descargársela y usarla.

Para empezar solo se puede tener acceso a un formulario de login/password,

que como se ha dicho anteriormente es el Webmail de los alumnos de la UAB.

Una posible ampliación sería que el dispositivo móvil gestionara todas las webs

que nosotros queramos y darnos la contraseña apropiada para una web dada.

Esto se podría conseguir añadiendo una pequeña base de datos, que tendría

como campos la página web y la contraseña, se presentaría como un

formulario donde el usuario rellenaría con los campos mencionados. Entonces

al activar la extensión el dispositivo móvil buscaría en su base de datos la

página web en la que nos encontramos y si la encuentra dar la contraseña

específica para esa web.

Otra posible mejora también relacionada con el dispositivo móvil, es que al

iniciar la aplicación, ésta se queda esperando sin que nosotros podamos

realizar otro tipo de operación con nuestro dispositivo. La mejora propuesta

sería esa, hacer que al iniciar la aplicación se quede funcionando pero en la

pantalla de inicio del dispositivo, haciendo que podamos hacer otras cosas con

nuestro móvil.

Gestor de contraseñas en un dispositivo móvil

 62

6. Bibliografía

 No existe Bibliografía en sí, toda la información ha sido extraída de

fuentes Web.

 es.wikipedia.org: es una enciclopedia libre.

 java.sun.com: página oficial de Sun MicroSystems.

 ganttproject.biz/webstart.php: página para crear diagramas de

Gantt.

 developer.mozilla.org/En: web de desarrollo de Mozilla.

 mozilla.org: Web principal de Mozilla.

 iosart.com/firefox/xpcom: excelente guía sobre cómo crear

componentes XPCOM.

 xulplanet.com: excelente web para todo lo relacionado con XUL.

 lcc.uma.es/~galvez/J2ME.html: página web con información

sobre dispositivos móviles.

 bluetooth.org/apps/content: página principal de la tecnología

Bluetooth.

 forum.nokia.com: excelente web con herramientas e información

para la creación de aplicaciones en dispositivos Nokia.

 msdn.microsoft.com: página web de desarrollo de Microsoft.

 wainu.ii.uned.es:8081/WAINU/canal- programación

/tutoriales/java/tutorial-j2me.pdf: buen tutorial sobre cómo

crear aplicaciones J2ME en un dispositivo móvil con Netbeans y el

paquete Mobility.

 rational.com: página oficial de la herramienta UML Rational Rose.

__

Sergio Laguna García

Bellaterra, 18 de Setiembre de 2008

RESUMEN

Este proyecto nace de la necesidad de dar más seguridad a nuestros datos

cuando navegamos por Internet.

Se ha implementado una plug-in para el navegador Firefox de Mozilla, que

detecta un formulario de login/password conocido y rellena el campo de la

contraseña automáticamente.

La contraseña estará en nuestro dispositivo móvil y la comunicación entre el

navegador y el dispositivo se hará mediante la tecnología Bluetooth.

RESUM

Aquest projecte neix de la necessitat de donar un grau més de seguretat a les

nostres dades quan naveguem per Internet.

S’ha implementat un plug-in per el navegador Firefox de Mozilla, que detecta

un formulari de login/password conegut y emplena el camp corresponent a la

contrasenya automàticament.

La contrasenya estarà en el nostre dispositiu mòbil i la comunicació entre el

navegador i el dispositiu es farà mitjançant la tecnologia Bluetooth.

ABSTRACT

This Project stems from the need to give more security to our data when we surf

the Internet.

It has implemented a plug-in for the Mozilla Firefox browser, which detects a

known login/password form and fills the password field automatically.

The password will be in our mobile device and the communication between the

browser and the device will be using Bluetooth technology.

