Universitat
Autonoma
de Barcelona

" ,
etse

Gestor de contrasefias en un dispositivo movil
accesible por Bluetooth

Memoria del Proyecto de Fin de

Carrera de Ingenieria en Informatica
realizado por

Sergio Laguna Garcia

y dirigido por

Helena Rifa Pous

Bellaterra, 18 de Setiembre de 2008.

Universitat
'.‘ Autonoma e t S 3)

de Barcelona Escola Técnica Superior d’Enginyeria

El sotasignat, Helena Rifa Pous

Professor/a de 1'Escola Téecnica Superior d'Enginyeria de la UAB,
CERTIFICA:

Que el treball a que correspon aquesta memoria ha estat realitzat sota la
seva direcci6 per en Sergio Laguna Garcia

I per tal que consti firma la present.

Signat: Helena Rifa Pous

Bellaterra, 18 de Setembre de 2008

Agradecimientos

Este proyecto no habria sido posible sin la direccion de mi tutora de proyecto,
Helena Rifa Pous.

No podia tampoco olvidarme del apoyo constante de mi hermano y mi madre,
gue han sabido animarme constantemente.

Finalmente mencién especial para Melisa Pérez Zamora que ha sabido
aguantarme durante este largo verano dandome su apoyo incondicional en
todo momento.

Para ellos, muchas gracias.

Vi

[ndice General

SR [1= o 11T o [N 1
1.1. Y [0 11V 7Y el [0] N PRI 1
1.2. (0]=1]3 1176 PP 2
1.3. PLANIFICACION ..ttt eet ettt ettt et et e et e et e e et e e et e st e saa e saaeeaaesaaeessaesanestnsrsnsestnersnresrneesnnns 2

2. TECNOLOGIAS......correeerreeeerreeessetssessssesssssssessessssssenssssnsssssessessnssssnssssssssessssesessesssessnsssesensenssessnens 6
2.1. N 7

2.1.1. Andlisis de la plataforma JaVQ 2ccceeeeueeeiieeeeeeeeiiiieeee e e eeescitaae e e e ee st e e e e e e 7
2.1.2. COMPONENLES J2ZME.......ccceeeeeeeeiieeeeeeeeeeeeee et eeeee e e e et tee e e e e e e ttttass e s e aeeeasssassssaessnnns 9
2.1.2.1. 1Y T T T Y A g (U E= YL USSP 10
2.1.2.2. CONFIGUIACIONES.eiiieieie e e ettt e e ettt e e e e e e e e e e e e e s sateaaeeeeeeassssssaeeeeaasssssaeeaeeesssnnrsnees 11
2.1.2.3. L= o 1] =T 12

2.2. D P 14
D B 1Yo 3 a o X ol 1] o) . T2t 14
D N 0 - o)Vt 17
2.2.3. DOM....coeeeeeeeeee ettt ettt ettt e e ettt et et ——t .t —t————a———————————————— 18
DB T {610 1Y RN 20
2.3. 5100 =5 o T 1 TR 22
DG B N Vo KN (o 1V ol o Yo [o N 21 [V 1=1 e Yo 1 o Nt 22

R I Vo 6 o Yo [o N 21 [V =1 e o 1 o Nt 25

3. DISENO Y ARQUITECTURA ...cuveieeieeeneestieessessesseesssesessesssessessesstsssesssssesssessessessssnsessessesssensessessesnes 27
3.1. INTRODUCCION uuevvruneerrruneerssuneeessueessseeesssaeesssneesssnessssssessssnsessssnsessssnsessssnsessssnsersrnnnersrnnrens 27
3.2. SERVIDOR WEB .. etuuesuueruneesunerunesenesunsssneesnneesnsssnsssnessnsssnsessnsesnsessnsssnsennnsesnseennsesnsessnrennnernnsees 28
3.3. L= N =T - RN 29
3.4. (O 1= =301/ o AV U 31

4, IMPLEMENTACION.....ccuveeeereeneieeseeeseeseessessessesssesssesessesssessessessssssessessesssessessessesnsessessesssensessessesnes 33
4.1. SOFTWARE USADOD ...etuueruneetieesuneesueesunessneesnnestnsessnessnssssnsssnsssnsssnsesnnsssnsesnnsesnseennsesnseesneesnsernnnees 35
4.2. HARDWARE EMPLEADO ...evuueetunetunersneernnessneesnessnsssnnsssnsesnnsssnsesnnsssnsessnsesnsesnersnsesnnsesnsesnneesnsernns 36
4.3. SERVIDOR 1uuetuuetuneeuueesunessueesunessneesnnessnsesnnessnessnsssnnsssnsssnsssnnsssnsesnnsssnssesnessnseenneesnsessnsesnnernnrees 37
4.4, LI =N =0T = RN 38

4.4.1. Creacion del componente XPCOM €N C++uvvvveeeeeeeeesiiireeeeeeeeeiiissseeeeseeessisssssssesessssnns 43
4.5, (O 1= =301/ o AV 49
4.6. HILO DE LA IMPLEMENTACION ..evvuueeettineertteeerssieeesssneessssneessssneessssnsessssnsessssssessssnsesssssessssnnerssnneens 53

5. CONGCLUSIONES. ... ctteeeertenniereenniereensierensssersnsssersanssessasssessasssessnssssssnssssssnsssessnssssssnssssssnssssssnssssen 55
5.1. PROBLEMAS ENCONTRADOS ... evtueetunertnersunessneesnessnsssnessnsessessnsessessnsesnnsesnsessnessnsessnsesnmesnnnesnsesnns 57
5.2. TRABAJO FUTURD evtuerunertneesunessneesnnessnessnnessnessnnsssnnsssnessnnsssnsssnsessnsssnnsssnsesnnsssnsesnnersnsesnneesnnesnns 61

6. BIBLIOGRAFIAveeveereireieeeseeseitesseesesstsssessessesssssssssessesssessessesstsnsessessesstessessessssnssessessesnssssessessesnes 62

Vi

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

1. Introduccion

El crecimiento exponencial de los usuarios y organizaciones conectadas
a Internet (gran ejemplo de canal de comunicacion no segura) hace que circule
por la red informacion de todo tipo, desde noticias mas o menos importantes,
datos personales que no queremos que se conozcan publicamente y hasta la
realizacion de gestiones econdmicas como podrian ser las transacciones
bancarias, que requieren medidas especificas de seguridad que garanticen la
confidencialidad, la integridad y la constatacion del origen de los datos.

Este proyecto nace de la necesidad de dar un grado mas de seguridad cuando
nos encontramos delante de un formulario del tipo login/password mientras
navegamos con uno de los navegadores de Mozilla, como podrian ser Firefox o
ThunderBird.

1.1. Motivaciones

Una de las principales motivaciones que me han llevado a la realizaciéon
de este proyecto ha sido el tema de la seguridad y la proteccidon de datos, tema
por el cual estoy muy interesado, pero no tengo mucha experiencia y estoy
seguro que al acabarlo podré dar un grado mas de seguridad a mis datos, lo

gue hace que me adentre en él con muchas ganas.

Otra motivacion es la de trabajar con los navegadores de Mozilla, como el
ThunderBird o el Firefox. Este Ultimo en especial, que es sobre el cual se basa
el proyecto y es el navegador que utilizo en la actualidad. Desde que salio al
mercado, ha ofrecido a los usuarios una estabilidad notable y cuenta con
muchisimas utilidades. Una de estas utilidades son las extensiones, que
afiaden mas funcionalidad al navegador. En definitiva, me parece que el
navegador Firefox es una mas que buena alternativa a su principal competidor,

el Internet Explorer de Microsoft.

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Para finalizar, decir que este proyecto, lo podré aprovechar para mi mismo una
vez esté finalizado. Se podrd continuar trabajando en él con las mejoras
propuestas en el apartado mejoras futuras, dado que se tendr& mucho mas
tiempo para el desarrollo. Con esto, se podr4 hacer una extension mas
completa y acabar de dar mas seguridad a los datos, sobre todo a mis
transacciones bancarias, que todo sea dicho, son bastantes a lo largo del afio.

1.2. Objetivos

El objetivo principal del proyecto es crear una extension para el
navegador Firefox, que sea capaz de capturar los formularios del tipo
login/password, comunicarse con un dispositivo movil, a través de Bluetooth,
gue servird de gestor de contrasefas y rellenar los campos del formulario
automaticamente con la contrasefia proporcionada por el mévil. Estos objetivos

los podriamos resumir en los siguientes puntos:

e Crear la parte de la interfaz gréfica.

e Crear un Midlet en el dispositivo moévil, que sea capaz de
proporcionarnos la contrasefia para un formulario conocido.

e Crear un componente XPCOM que se encargue de la comunicacion
Bluetooth con el dispositivo.

e Validar el formulario de login/password y rellenar los campos del

formulario con la contrasefa obtenida por el componente XPCOM.

1.3. Planificacion

La planificacion del proyecto se ha estructurado en varias fases que a

continuacién pasamos a resumir:

e Fase 1 (Noviembre — Enero): Se ha de llevar a cabo toda la recolecta

de informacion. En lo referente al navegador, estaria el como crear una

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

extension en Firefox, que lenguaje se ha de utilizar para la interfaz
gréfica, como crear la conexion Bluetooth para comunicarnos con el
dispositivo mévil y que herramientas tenemos para el desarrollo.

En cuanto al movil, hay que buscar informacion sobre el lenguaje de
programacion Java para dispositivos méviles (J2ME) para crear sockets
gue nos permitan establecer la comunicacion con el PC. También habria
gue ver qué herramientas de desarrollo tenemos, como podria ser
NetBeans o Eclipse.

Al finalizar la recolecta de la primera fase, se tendrd que elaborar un
estudio de viabilidad que sera entregado el 14 de Enero.

e Fase 2 (Febrero — 2 primeras semanas): En las dos primeras semanas

de febrero se creara el disefio del sistema y los casos de uso.

e Fase 3 (Febrero — 2 segundas semanas): Las dos semanas siguientes
del mes de febrero se dedicaran a crear los médulos del navegador

Firefox.

e Fase 4 (Marzo — mediados Abril): Las 6 semanas correspondientes al
mes de Marzo y las 2 primeras de Abril, se hara la creacion de un
programa que sea capaz de realizar una comunicacion Bluetooth basada
en sockets y recibimiento de datos. También se creara la integracion de
dicho programa con el navegador Firefox. Dado que es un periodo de
tiempo bastante largo, se avanzara, en la medida de lo posible, en la

memoria del proyecto.

e Fase 5 (mediados Abril — 2 segundas semanas): En las 2 ultimas
semanas de Abril, se crearan los modulos del J2ME, es decir, la

programacién del MIDlet.

e Fase 6 (Mayo — 2 primeras semanas):. Las 2 primeras semanas de
Mayo se utilizaran para hacer la integracion de todo junto y acabar la

memoria.

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

e Fase 7 (Mediados Mayo — Junio): Las 2 Ultimas semanas de Mayo y
las 2 primeras de Junio serviran para acabar de pulir la memoria ya que
ésta sera redactada mientras se va avanzando en la faena. También se
acabara de pulir todo el programa. Finalmente se creara la presentacion

en PowerPoint del proyecto.

En la Figura 1 se observa un Diagrama de Gantt donde se representan las 7

fases explicadas anteriormente.

<P ‘
project _' o007 poos
Nembre | Fechadzinco | Fechadefin | 43 Lm ‘45 ‘45 ‘4? ‘48 ‘49 ‘50 ‘51 ‘52 ‘1 ‘2 ‘3 ‘4 ‘5 ‘5 ‘? ‘a ‘9 ‘10 ‘11 ‘12‘13 ‘14 ‘15 ‘15 ‘17‘18 ‘19 ‘20 ‘21 ‘22 ‘23 ‘24‘
~-Proyecto 11107 14/06/08 [
--Fase 1 111fo7 i 3fo1jos [I
-Fase 2 1f02fo8 14j02/08 [
-Fase 3 15/02/08 29/02/08 [—
-Fase 4 3/03/08 12j04/08 [
-Fase 5 15/04/08 30/04/08 [
-Fase 6 1/os/08 14/05/08 O
-Fase 7 15/05/08 14/08/08 O

Figura 1. Diagrama de Gantt

El proyecto estaba previsto para ser entregado en la primera convocatoria, la
de Junio, pero no se tuvo en cuenta la gran carga de trabajo que se tenia
debido a las asignaturas que aun quedaban pendientes para el segundo
semestre. Por esa razon principalmente, se abandondé un poco el proyecto
dejandolo de lado hasta la finalizacion de los examenes de Junio. Una vez
concluidos los examenes, a mediados de Junio, hubo una dedicacion total al
proyecto para poder presentarlo en la segunda convocatoria, correspondiente
al mes de Setiembre, por eso la planificacidon sufrié unos ligeros cambios que

seran presentados a continuacion:

La primera fase queda tal y como se ha descrito anteriormente, es la Unica que

se ha mantenido como se habia dicho en la planificacion inicial.

A partir de finales de febrero y hasta mediados de Junio se avanz6 en la

programacién de los médulos del Firefox, creando la validacion del formulario y

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

el rellenado automatico. También se creé el disefio del sistema y los casos de

uso.

Fue a principio de Julio cuando se creé el médulo J2ME, pero no en 2 semanas

como estaba previsto en la planificacion, sino en 1.

Después de esto, hubo muchos problemas para crear la comunicacion desde el
PC, como se describe en el apartado de los problemas encontrados y no se
acab6 dicha comunicacion hasta finales de Agosto. También se cred la
integracion de dicho programa con el navegador. Habiamos planificado que
iban a ser 6 semanas, pero se tardaron 7. Estas 7 semanas se aprovecharon
para adelantar gran parte de la memoria, dejando sin hacer los apartados de la

implementacion y las conclusiones.

Estos apartados de la memoria se terminarian en las 2 primeras semanas de
Setiembre, junto con los detalles de la memoria y la integracion de todo el

programa junto.

La tercera semana se Setiembre se hara la presentacion en PowerPoint del

proyecto, que esta previsto ser defendido para la ultima semana de Setiembre.

En la Figura 2 podemos ver el diagrama de Gantt correspondiente a los

cambios efectuados en la planificacion.

£ 2~

project '. 2007 2003

Nombre Fecha dz fin | Fechadzinico | 30404 142434 8454E474B49E051521 [2 (3 14 (5 6 [7 B 9 {10112 131415161 7151 S2021(2223 24 2526712629430 3134333434367 39
~Proyecto 180908 111jo7 I]
-Fase 1 31/01/08 1/11f07 I |
- Fage 2 14/08/08 1/02/08 I |
-Fase 3 14/06/08 1oz
~Fase 4 31/08/08 9jo7
~Fase 5 8/07/08 140
~Fase b 12/09/08 1/09/08 (]
~Fase 7 18/09/08 12/09/08 O

=

Figura 2. Diagrama de Gantt modificado

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

2. Tecnologias

En este capitulo hablaremos de las tecnologias usadas a lo largo de la
creacion del proyecto.

En un primer plano hablaremos de la tecnologia J2ME desarrollada por Sun
Microsystems y que es una variante del Lenguaje Java orientado para
dispositivos moviles. Esta tecnologia ser4 usada para la creacién de la
aplicacion del dispositivo movil.

Por otro lado hablaremos de la tecnologia XUL que es un lenguaje de interfaz
de usuario basado en XML'. Es la tecnologia usada en la creacién de toda la
interfaz grafica de Firefox, por esa razon tendremos que hacer uso de ella, para
variar dicha interfaz. Dentro de este apartado también se vera como dar
funcionalidad a nuestras aplicaciones con Javascript y no solo eso, también se

vera como aumentar aun mas esa funcionalidad.

Finalmente se hablara de la tecnologia Bluetooth, que permite la conectividad
inalambrica entre dispositivos remotos. Obviamente, es la tecnologia que se

usara para comunicar nuestro PC con el dispositivo mévil remoto.

! Extensible Markup Language (lenguaje de marcas extensible)

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

2.1. J2ME

J2ME es el acronimo de Java 2 Micro Edition, la version del lenguaje de
programacién Java desarrollada por Sun Microsystems y orientada al desarrollo
de creacion de aplicaciones para dispositivos moviles con pocas capacidades
graficas, de procesamiento y de memoria, como podrian ser los teléfonos

moviles o las PDA’s?.

La gran expansion de los teléfonos moviles en la ultima década ha hecho que
las companiias telefénicas ofrezcan cada vez mas prestaciones y servicios para
sus terminales, como podria ser juegos u otras aplicaciones. Estos servicios de

los terminales estan desarrollados con la tecnologia J2ME.

J2ME viene a ser la tecnologia del futuro para la industria de los dispositivos
moviles ya que proporciona una plataforma estandar para el desarrollo de
aplicaciones y la facilidad de portar dichas aplicaciones entre diferentes

dispositivos, sean o0 no del mismo fabricante.

Ya se estan implantando los protocolos y los dispositivos necesarios para
soportar la tecnologia J2ME. Actualmente la mayoria de los terminales que

salen al mercado ya estan habilitados para usar esta tecnologia.

2.1.1. Analisis de la plataforma Java 2

La version de Java 2 de Sun se puede dividir en 3 ediciones distintas.
J2SE (Java Standard Edition) orientada al desarrollo de aplicaciones
independientes, J2EE (Java Enterprise Edition) orientada al entorno

empresarial y J2ME (Java Micro Edition) orientada a dispositivos moviles.

% Personal Digital Assistant (Asistente Digital Personal)

" Universitat
g Autdrnoma
de Barcelona
etse ~ : s o
) Gestor de contrasefias en un dispositivo movil

La Figura 3 nos muestra la arquitectura de la plataforma Java 2. En la parte
inferior de la Figura 3 se pueden ver las diferentes méaquinas virtuales
soportadas por las diferentes tecnologias, JVM y KVM, que se explicaran mas

adelante, como también se hara con los términos CDC, CLDC y MIDP.

Java 2

En?e.rprise Java 2 Java 2 Micro Edition
Edition Standard ———

Edition A

Parsonal
Profile

Figura 3. Arquitectura de la plataforma Java 2 de Sun

Como se puede ver en la Figura 4, J2ME representa una parte simplificada de

J2SE y a su vez ésta, representa una parte de J2EE.

Sun separé estas tecnologias por razones de eficiencia, ya que por ejemplo
J2EE requiere unas caracteristicas especiales de E/S® cosa que J2SE no.
J2ME esta pensado para dispositivos con pocas capacidades gréficas y de
proceso, cosa que no sucede en J2SE, por eso también existe una separacion

bien clara entre estas dos tecnologias.

® Entrada/Salida

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

T e B T

AR AT

Figura 4. Relacion entre las APIs de la plataforma Java.

2.1.2. Componentes J2ME

En este apartado vamos a ver cuales son los componentes que forman

parte de esta tecnologia.

Maquinas virtuales de Java (JVM), es un programa que se encarga de
interpretar codigo precompilado por un programa Java. Gracias a las
maquinas virtuales, los programas escritos en Java tienen

independencia de la maquina donde han sido ejecutados.

Configuraciones, son un conjunto de clases basicas en una categoria
de dispositivos. Las categorias se miden por las prestaciones del
dispositivo, capacidad de procesamiento o capacidad grafica. Digamos
gue la configuracion define la familia de dispositivos, segun las

capacidades de los dispositivos, se incluiran en una familia o en otra.

Perfiles, son conjunto de clases que complementan a una configuraciéon
para unos dispositivos especificos. Los perfiles definen las
caracteristicas de un dispositivo. Son mas especificos que las

configuraciones.

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Podemos ver en la Figura 5 la arquitectura de un entorno de ejecucion. A
continuaciéon detallaremos un poco mas cada uno de los tres componentes

presentados anteriormente.

2.1.2.1. Maquinas Virtuales

Como ya se ha explicado antes, una maquina virtual de Java (JVM) es
un programa encargado de interpretar cédigo precompilado por un programa
Java. La tecnologia J2ME define varias maquinas virtuales, adecuandose a las
dos configuraciones existentes en el mercado, la Configuracion de
dispositivos limitados con conexion, CLDC (Connected Limited Device
Configuration) y la Configuracion de dispositivos con conexion, CDC
(Connected Limited Configuration). Nosotros solo nos centraremos en la
primera de ellas, que es la que se adapta mejor a las caracteristicas de nuestro
dispositivo movil. Estas configuraciones seran explicadas mas profundamente

en el apartado de configuraciones.

Como se ha comentado anteriormente, existe una maquina virtual para cada
configuracion, ya que éstas tienen caracteristicas muy diferentes entre si. Para
la configuracion CLDC, que es la que nos concierne, la maquina virtual se
denomina KVM (Kilo Virtual Machine), por su reducida memoria para ser
ejecutada. Mientras que para la configuracion CDC, la maquina virtual se

denomina CVM (Compact Virtual Machine).
A continuacion veremos las caracteristicas principales de la KVM.
e KVM

Es una maquina virtual orientada para dispositivos con pocas
capacidades de procesamiento y de memoria. Fue disefiada para ser:
e Pequeiia
e Alta portabilidad.
e Modulable.

e Lo méas completa y rapida posible.

10

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Perfiles

Contiguracion

Magq. Virtual Java

Sistema Operativo

Figura 5. Entorno de ejecucion

2.1.2.2. Configuraciones

Las configuraciones son el conjunto basico de APIs* que permiten
desarrollar aplicaciones para una familia de dispositivos. Como ya se ha
mencionado anteriormente, existen dos configuraciones en J2ME: CLDC,
orientada a dispositivos con limitaciones de proceso y de memoria y CDC,
orientada a dispositivos con mayores capacidades. Ahora veremos un poco

mas en profundidad estas configuraciones.

e Configuracion de dispositivos limitados con conexién, CLDC
(Connected Limited Device Configuration), un buen ejemplo de estos
dispositivos con capacidades limitadas son los teléfonos méviles o las
PDAs. Incluye las librerias java.lang, java.util, java.io Y
javax.microedition.io. Estas dos Ultimas librerias las

necesitaremos para crear nuestra aplicacion para el dispositivo movil.

e Configuracion de dispositivos con conexién, CDC (Connected
Device Configuration), como se ha mencionado anteriormente, esta

configuracion esta orientada a dispositivos con mas capacidades que en

* Aplication Programming Interface (Interfaz de Programacion de Interfaces)

11

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

la anterior configuracién. Un buen ejemplo de estos dispositivos podria
ser televisores con Internet o GPS®. Esta configuracién afiade mas
librerias que la anterior, que no vamos a numerar ya que no nos van a

concernir en la realizacién del proyecto.

2.1.2.3. Perfiles

Los perfiles definen las caracteristicas mas detalladas de un dispositivo,
como podria ser la interfaz de usuario o las conexiones de red. Identifican a los
diferentes grupos de dispositivos por las funciones especificas que
desempeiian y por el tipo de aplicacion que se ejecutara en ellos. Los perfiles
se construyen sobre una configuracion determinada y permiten la portabilidad
de aplicaciones J2ME entre diferentes dispositivos.

Como ocurria en el apartado de configuraciones, aqui también hay diferentes
perfiles segun el tipo de configuraciéon sobre la que queramos construir la
aplicacion. Existen perfiles especificos para la configuracion CDC y otros para

la configuracion CLDC.
Para la configuracion CDC tenemos los siguientes perfiles:

e Foundation Profile
e Personal Profile
e RMI °Profile

Para la configuracion CLDC tenemos los siguientes perfiles:

e PDA Profile

e Mobile Information Device Profile (MIDP)

® Global Positioning System (Sistema de Posicionamiento Global)
® Remote Method Invocation (Invocacion de Método Remoto)

12

" Lnmiversitat

. Autdrnoma
de Barcelona

St. E> Gestor de contrasefias en un dispositivo movil

Como ya se ha marcado, nos centraremos en el perfil MIDP, que dentro de la
configuracion CLDC (la que nos concierne) es el perfil que mas se adecua a las

caracteristicas de nuestro dispositivo movil.

Mobile Information Device Profile (MIDP): Como ya se ha visto en la
clasificacion anterior, este perfil esta construido sobre la configuracién CLDC.
Decimos que es el que mejor se adapta a las caracteristicas de nuestro
dispositivo, ya que es un perfil orientado a teléfonos moviles, como lo es

nuestro dispositivo.

Este perfil incluye algunas de las librerias basicas para la creacion de nuestra
aplicacion en el dispositivo movil, mas concretamente la interfaz de éste, como

javax.microedition.lcdui 0 javax.microedition.midlet.

Las aplicaciones que realizamos utilizando el perfil MIDP reciben el nombre de
MIDlets (por simpatia con Applets’). Entonces podemos afirmar que un MIDlet
es una aplicacion Java realizada con el perfil MIDP sobre la configuracion
CLDC.

" Componente de una aplicacion que se ejecuta en el contexto de otro programa.

13

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

2.2. XUL

XUL es el acronimo de XML-based User-interface Language, o mejor
dicho, Lenguaje Basado en XML para la Interfaz de Usuario. Es el lenguaje que
utiliza el software de Mozilla, en nuestro caso el navegador Firefox, para definir
su interfaz de usuario. Con él, podremos modificar dicha interfaz a nuestro
antojo, no sin antes tener claros algunos conceptos que pasaremos a explicar a

lo largo de este apartado.

Al estar basado en XML hace que los datos estén almacenados en simples
archivos de texto, facilitando asi la portabilidad de dichos datos.

Como anteriormente se ha comentado, tiene la gran desventaja de ser
excluyente, razén que hace que el lenguaje XUL no se haya convertido en un

lenguaje estandar.

Pero también se puede ver esa desventaja como una ventaja. Los
desarrolladores que quieran hacer una interfaz de usuario o una extension para
el navegador, lo tendran mucho mas facil, ya que XUL fue concebido con esa

idea, la de aligerar el trabajo de los desarrolladores.

Este proyecto se basa en uno de los productos de Mozilla, el navegador

Firefox, por lo que para nosotros esta ventaja supone una gran ayuda.

En la Figura 6 se puede ver un ejemplo de una aplicacion creada en XUL, se

trata de un simple TPV® para la administracién de una tienda.

2.2.1. Registro chrome

El procesamiento de XUL va muy ligado al procesamiento HTML®, ya

gue este ultimo accede a un sitio web deseado por el usuario y descarga su

& Terminal Punto de Venta

14

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

contenido. Este contenido recién descargado, es transformado por el motor de
Mozilla en un arbol. Los nodos del &rbol, a su vez, se convierten en un conjunto
de objetos, que representan las partes las partes del documento que seran

mostradas en pantalla.

El procesamiento es muy parecido a HTML, pero XUL tiene algunas
caracteristicas propias, como puede ser los Overlays®®, que se explicaran en el

siguiente apartado o el registro chrome, que ahora explicaremos.

u Dependiente# PEDRO & Cliente | Cliente Contado
CB REF NOM |4 Vender
F!eferencia[MNombre I Talla Caolor I PVP/Unidad] | I
w1077 GORROS LANA s amarillo 0,00 EUR |~ v
P1079 pantalon pana 42 amarillo 0,00 EUR | | \/ Cancelar venta
P1079 pantalon pana 44 blanco 0,00 EUR — Mensaje
Q1080 camiseta unica unico 0,00 EUR
. | Elije local ~
K1084 PANTALON CHINOS 42 unico 0,00 EUR (&
Reservar pieza
Venta Actual
me teneis que resenvar
Referancia | Nombre Talla Color | Unidades [Descue... | PVP/UNidad | |
7592 PANTALON BRILLO 42 marron 3 32,00 EUR
Y1051 PAMTALOM PAMA 36 unico 1 44,00 EUR
W1lo77 GORROS LANA =1 amarillo 1 12.00 EUR
Erviar Cancelar
TOTAL: 152,00 EUR Salir TPV

Figura 6. Aplicacidon creada en XUL

Como es obvio, el contenido de una fuente remota como podria ser una pagina
web, no puede acceder, por ejemplo, a los archivos de directorios locales del

usuario o ejecutar operaciones privilegiadas, por razones de seguridad.

Por esta razén, Mozilla creé un registro especial, llamado el registro chrome,
para poder instalar el contenido de las aplicaciones en directorios locales y
guedar de esta manera registrados en el sistema, para que dichas aplicaciones

tengan permisos ampliados.

° HyperText Markup Language (Lenguaje de Marcas de Hipertexto)
Revestimientos

15

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Para acceder a estos archivos se usa una URL™ especial, la URL chrome. Al
acceder a un archivo usando esta URL especial, éste gana privilegios
especiales, como podria ser el acceso a archivos locales o ejecutar
operaciones privilegiadas.

La URL chrome se refiere al directorio chrome que hay dentro de la instalacién
de Mozilla Firefox, pero al crear una extension, no vamos a crear los archivos
dentro de ese directorio, sino que crearemos una jerarquia de directorios tal
qgue en el directorio principal, (cuyo nombre puede ser el nombre de la
extension) tendremos un directorio llamado chrome el cual contendra los
archivos necesarios para crear la extension y es el directorio que Firefox
ahadira al registro chrome para ganar los privilegios mencionados

anteriormente.

Dentro del directorio principal, junto al directorio chrome, crearemos un archivo
llamado install.rdf para que Firefox “vea” las caracteristicas principales de
nuestra extension. También en ese mismo directorio se creard un archivo
llamado chrome.manifest para que Firefox sepa donde buscar los archivos
principales que conforman nuestra extension y para afadir los Overlays, que
seran explicados en el siguiente apartado. Como se acaba de decir, los
archivos principales de nuestra extension estaran dentro del directorio chrome
y los dividiremos en varios directorios. En un directorio llamado skin
crearemos los archivos de los estilos 0 CSS' y en otro llamado content
crearemos los archivos XUL de la interfaz y los archivos Javascript para la

funcionalidad.

Finalmente todo esto se empaquetard con un compresor de archivos, como
podria ser winrar y se cambiara el nombre de la extension, en vez de acabar en
.rar tiene que acabar en .xpi para que Firefox lo reconozca como una
extension y proceda a su instalacion, ya sea en nuestro equipo o en cualquier

otro. De ahi la importancia de la jerarquia de directorios, ya que una mala

! Uniform Resource Locator (localizador uniforme de recurso)
'2 cascading Style Sheets (Hoja de estilo en cascada)

16

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

jerarquia hara que Firefox no “entienda” lo que contiene la extension y haga

gue no funcione correctamente.

Como acabamos de ver, las extensiones no son solo archivos XUL, sino que
también estan formadas por hojas de estilo y archivos Javascript entre otros

gue explicaremos mas adelante.

Como se ha visto en este apartado, el registro chrome juega un papel muy
importante a la hora de la creacidén de extensiones, ya que necesitaremos tener
los privilegios otorgados por tal registro para poder llevar a cabo la elaboracion
de una extension.

También se ha comentado el concepto de los Overlays, que también juegan un

papel importante y que pasaremos a explicar en el siguiente apartado.

2.2.2. Overlays

Los Overlays sirven para definir contenido extra en la interfaz grafica de

usuario.

Podemos afiadir componentes adicionales a la interfaz de usuario , como
podria ser por ejemplo, una nueva entrada en el menu “Herramientas” de

nuestro navegador Firefox.

Gracias a los archivos Overlay podemos conseguir esto sin tener que reescribir

toda la interfaz de usuario del navegador.

Si desde nuestra extension queremos afiadir algun elemento adicional a la
interfaz de usuario, esto se tendra que hacer mediante el uso de los Overlays.
Como se ha comentado en el apartado anterior, en el archivo
chrome.manifest se tiene que especificar que se quiere hacer un Overlay

sobre una parte de la interfaz de usuario.

17

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Pongamos un ejemplo, supongamos que queremos afiadir como acabamos de
comentar, una nueva entrada en el menl “Herramientas” del navegador.
Para hacer posible esto se tendria que crear una entrada parecida a la

siguiente en el archivo chrome .manifest:

Overlay chrome://browser/content/browser.xul

chrome://nombre extension/content/nombre archivo.xul

El parametro Overlay nos esta indicando que se trata de un Overlay,
seguidamente separado por un espacio hay que poner el archivo base que se
quiere “revestir’ y finalmente separado con otro espacio, el archivo creado por
nosotros que anadird el elemento al menu “Herramientas” del navegador.
Como se puede suponer, el primero de los archivos se trata de toda la interfaz

del navegador Firefox al cual le vamos a afiadir el nuevo elemento.

2.2.3. DOM

Como ya se ha comentado anteriormente, una extension no solo se
compone de archivos XUL, sino no tendriamos nada de funcionalidad en
nuestra aplicacion. Hace falta afiadir archivos Javascript a nuestra extension
para afadir dicha funcionalidad. Esta funcionalidad se basa en interactuar con
las partes del cédigo de una pagina web y realizar acciones. ¢Pero como

accedemos al codigo de una pagina web?

Anteriormente, en el apartado de procesamiento de XUL, se ha descrito el
procesamiento de éste, diciendo que el lenguaje HTML accede a la web
deseada por el usuario y descarga el contenido, pasandolo al motor de Mozilla
gue transforma este contenido en un arbol y los nodos del arbol, a su vez, se
convierten en un conjunto de objetos. Pues bien, a este conjunto de obijetos,

Javascript puede acceder a ellos gracias al DOM.

18

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

DOM es el acrénimo de Document Object Model o mejor dicho, Modelo de
Objetos para la representacion de Documentos y es una API para documentos
HTML y XML.

El DOM permite el acceso a los elementos HTML de una péagina web. Estos

elementos se convierten en nodos y cada trozo de texto en un nodo de texto.

Es importante entender la diferencia entre elementos y nodos de textos. Los
elementos normalmente estan asociados a las etiquetas. En HTML todas las
etiquetas son elementos, tales como <p>, Yy <div> por lo que tienen
atributos y contienen nodos hijo. Sin embargo, los nodos de textos no poseen
atributos e hijos.

En el siguiente ejemplo se puede ver la diferencia entre nodos de texto y

elementos:

<body>

<p>Esto es un péarrafo que <contiene un
enlace en el medio. </p>

Primer punto en la lista</1li>

<1li>Otro punto en la lista</1li>

</body>

Como podemos observar el elemento <a> esta dentro del elemento <p>
convirtiétndose en su hijo. También podemos observar diferentes nodos de

texto entre los elementos.

Javascript permite acceder a cada uno de los elementos de una pagina
utilizando tan s6lo algunos métodos y propiedades. Dos de los mas importantes
y que mMAas vamos a usar en nuestra extension son los métodos

getElementById Yy getElementsByTagName. El primero nos servira para

19

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

encontrar un elemento de la pagina web solo con saber su atributo id. Véase

el siguiente ejemplo:

<p>
Contactenos

</p>

Puede usarse el atributo id del elemento a para poder acceder a él, como se

muestra a continuacion:
var elementoContacto = document.getElementById ("contacto");

El segundo de los métodos sirve para trabajar sobre un grupo de elementos. Si
llamasemos al método con el parametro input, nos devolveria todos los

elementos del documento que se denominen input.

Con el DOM se puede encontrar, cambiar, adicionar y eliminar elementos de
una pagina web. Es una técnica poderosa para poder ser usada en el

desarrollo de nuestra extension.

2.2.4. XPCOM

Ya hemos visto como afiadir funcionalidad a nuestra extension mediante
Javascript y el DOM. Pero imaginemos que necesitamos hacer alguna cosa
bastante compleja, como podria ser el acceso mediante Bluetooth a un

dispositivo movil, si, como en la extension que vamos a creatr.

Con Javascript no podemos hacer cosas complejas como la que acabamos de
describir, ya que fue disefiado para ejecutar aplicaciones muy limitadas. Un
programa escrito es Javascript no puede, por ejemplo, acceder a los archivos

de nuestro ordenador.

20

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Por ese motivo necesitamos algo que nos deje ejecutar aplicaciones mas
complejas en nuestra extension, porque solo con Javascript se limita mucho la

funcionalidad de la extension.

Mozilla penso en esto y por eso nos proporciond una herramienta potentisima,
los componentes XPCOM (Cross-platform Component Object Model o Modelo

de Objeto de Componentes Multiplataforma).

Los componentes XPCOM estan escritos en codigo nativo, por lo que pueden
hacer cosas que Javascript por si solo no podria. Pero seguimos teniendo el
mismo problema, ya que en principio no podemos usar mas que Javascript
para crear nuestra extension, y los componentes estan escritos en otro codigo.
Por esa razon Mozilla nos proporciona una capa que permite que los objetos
Javascript accedan y manipulen los objetos XPCOM, para poder ser usados
desde Javascript. Esta capa se llama XPConnect.

Por lo tanto tenemos que los componentes XPCOM implementan la
funcionalidad y las interfaces describen como se debe implementar esa

funcionalidad mediante un conjunto de definiciones.

Mozilla tiene implementadas muchas interfaces, para poder ser usadas a
nuestro antojo. Estas interfaces se las reconoce porque el nombre suele
empezar con el prefijo nsI. Asi, existen interfaces para el manejo de

archivos, nsILocalFile 0 para la reproduccion de sonidos, nsISound.

Si no existiera una interfaz determinada para la necesidad que queremos
cubrir, en nuestro caso la comunicacion Bluetooth, tendriamos que crearla
nosotros mismos y registrarla en el navegador para poder usarla desde
Javascript. En el capitulo de la implementacién se explica cdmo crear un

componente XPCOM desde cero.

21

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

2.3. Bluetooth

Bluetooth es una tecnologia de radio de corto alcance, que permite la
conexion entre dispositivos remotos sin la necesidad de cables. Fue disefiado
pensando basicamente en tres objetivos: pequefio tamafio, minimo consumo y

bajo precio.

Todas las compafias telefénicas estan incorporando esta tecnologia en todos
los dispositivos moéviles que lanzan al mercado. Ya hace tiempo que casi todos

los moviles que salen nuevos al mercado incorporan la tecnologia Bluetooth.

Es obvio entonces, que utilicemos esta tecnologia para la comunicacion entre

PC y dispositivo movil para la transferencia de datos.

En el lado del dispositivo movil, utilizaremos la tecnologia Bluetooth para el
desarrollo de una aplicacion en J2ME y en el lado del PC utilizaremos esta
misma tecnologia pero para el desarrollo de una aplicacién escrita en C++.*% Es
por esta razén que deberemos usar APIs diferentes a la hora de programar las

aplicaciones del PC y del dispositivo movil.

Ahora pasaremos a ver las principales caracteristicas de las diferentes APIs

gue vamos a usar en el desarrollo de la extension.

2.3.1. APIs Java para Bluetooth

Hasta que no aparecié la especificacion JSR' 82 no se podia crear
aplicaciones Java Bluetooth. Esta especificacion fue la que estandarizé la

manera de crear aplicaciones Bluetooth usando la tecnologia Java.

'3 Lenguaje de Programacion Orientado a Objeto.
4 Java Specification Request (Peticion de Especificacion de Java)

22

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Aqui no vamos a describir toda la APl JSR 82 pero si algunas caracteristicas
gue nos serdn Uutiles a la hora de desarrollar la comunicacion en el lado del

dispositivo mévil.

Primeramente vamos a ver la parte de la APl que se encarga de descubrir
dispositivos remotos disponibles dentro del radio de cobertura.

Para empezar tenemos la clase javax.bluetooth.LocalDevice que es la
encargada de acceder y controlar el dispositivo local, el nuestro. Dentro de esta
clase tenemos el método getLocalDevice Que nOs proporcionara el acceso
a nuestro dispositivo remoto. El acceso a nuestro dispositivo con el método
anterior, se usara para hacer que nuestro movil sea visible para otros

dispositivos remotos. Esto se conseguira con el método setDiscoverable.

Para descubrir dispositivos remotos tendremos que recurrir a la clase
javax.bluetooth.DiscoveryAgent. Dentro de esta clase tenemos el
método getDiscoveryAgent que nos retornara los dispositivos encontrados
por nuestro dispositivo local. Con estos dispositivos encontrados, tendremos
gue seleccionar al que queramos acceder para establecer la comunicacion.
Para hacer esta seleccion primero tendremos que utilizar el método
selectService de la clase anterior, que como parametro habra que pasarle
el identificador Uunico del dispositivo al que queramos acceder. Este
identificador lo tienen todos los dispositivos para ser diferenciados entre si, ya
que el identificador es Gnico (UUID™). Este identificador lo proporciona la clase
javax.bluetooth.UUID y sirve tanto para crear el identificador en el lado
del servidor, como para descubrir dicho identificador si se le pasa como
parametro al método selectService, comentado anteriormente, en el lado

del cliente.

Con todo lo acabado de comentar, ya seremos capaces tanto de descubrir

dispositivos remotos como de ser descubiertos por otros.

'* Universally Unique Identifier (Identificador Universal Unico)

23

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Ahora solo nos haré falta llegar a realizar la conexion con el dispositivo que
hayamos elegido para el intercambio de datos. Esto es precisamente lo que
vamos a ver, la parte de conexion de la API.

Para crear una conexion, si estamos en el lado del servidor, lo primero que
tenemos que crear es una URL con una serie de parametros especificos. En el

siguiente ejemplo podemos ver una URL valida:
btspp:// localhost:UUID

El primer parametro determina que estamos creando una URL para dispositivos
Bluetooth con conexion al puerto serie. Localhost es para saber que estamos
en el lado del servidor y el UUID, como se ha dicho anteriormente, es el
identificador Unico del dispositivo. Ahora tendremos que hacer uso de los
métodos de la clase javax.microedition.io.Connector para poder
establecer la conexion. Concretamente usaremos el método open, al que le
pasaremos como parametro la URL creada. Este método sera el encargado de
crear y abrir la conexion. Ahora solo hace falta esperar a que alguien solicite
conectarse con nosotros, entonces nosotros estableceremos dicha conexion

con el método acceptAndOpen Y pasaremos a procesar la peticion.

Si estamos del lado del cliente la cosa es mas sencilla. Ya sabemos cémo
seleccionar el dispositivo mediante el UUID, ya que se explicado anteriormente.
Entonces solo nos hace falta llamar al método open Yy esperar que el servidor

acepte nuestra conexion.

Con todo lo descrito, aparte de descubrir dispositivos, ya seremos capaces de
realizar una conexion a éstos o esperar una peticion de conexién para poder

establecerla.

24

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

2.3.2. APIs C++ para Bluetooth

La API que usaremos para desarrollar la aplicacion en el lado del PC,
sera la APl C++ para Bluetooth de Microsoft.

Vamos a empezar definiendo todo lo necesario para poder crear una conexion

en el lado del cliente, usando sockets*® y la tecnologia Bluetooth.

Para empezar, tenemos que llamar a la funcibn WSAStartup que nos
proporcionara informacion necesaria sobre Winsock'’, como podria ser la
version y los detalles de la implementacion. Una vez ya hemos recogido la
informacion necesaria de Winsock, ya podemos pasar a crear el socket que
vincularemos con el del servidor para establecer la conexion. La creacion de un
socket se efectia mediante la funcibn socket con unos parametros
especificos, que variaran segun el tipo de conexion que hagamos. En nuestro
caso, queremos realizar una conexion Bluetooth, por lo que los parametros
seran, AF BT, SOCK STREAM Yy BTHPROTO RFCOMM. Siempre usaremos estos

parametros cuando queramos realizar una conexion mediante Bluetooth.

Una vez creado el socket, tendremos que guardar informacién sobre el
dispositivo Bluetooth al que nos queremos conectar. Para realizar esto se usara
la estructura SOCKADDR BTH que nos proporciona la API. Rellenaremos los
campos de dicha estructura, con la informacién necesaria proveniente del

dispositivo servidor.

Ahora ya podemos crear la conexién. Esta se hara mediante la funcion
connect que recibird como parametros, el socket local y la estructura con la

informacion necesaria del dispositivo remoto para iniciar la vinculacion.

Una vez producida la conexion, ya podremos enviar y recibir datos mediante

las funciones send y recv, respectivamente.

'® punto de acceso, por el cual otro dispositivo remoto puede conectarse a nosotros.
' Sockets de Windows

25

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Esta ha sido la descripcion de como crear una conexion en el lado del cliente,

ahora vamos a ver coémo hacerlo en el lado del servidor.

La conexion en el lado del servidor empieza de la misma manera que en la del

cliente, con la llamada a la funcion WSAStartup Yy con la creacidén del socket.

Ahora hay una pequeiia diferencia con respecto a la parte cliente, en vez de
rellenar la estructura SOCKADDR BTH con la informacion del dispositivo al que
nos queremos conectar, tendremos que rellenarla con la informacion de

nuestro dispositivo, ya que ahora nos encontramos en el lado del servidor.

Una vez tenemos la estructura creada, tenemos que asociar dicha estructura a
nuestro socket. Esto se consigue con la funcidon bind, haciendo que el socket

creado al inicio tenga la informacion de la estructura.

Ahora solo tenemos que esperar a conexiones de entrada por el lado del
cliente. Esto se consigue utilizando la funcion 1isten. Ahora solo nos queda

aceptar dichas conexiones mediante la funcién accept.

Por ultimo y no menos importante, no olvidarnos de cerrar el socket al acabar la

conexion mediante la funcidon closesocket.

Con esta introduccién a la API Bluetooth de Microsoft, ya seremos capaces de
realizar una aplicacion que detecte a un dispositivo remoto y se conecte a él

para realizar algun tipo de intercambio de datos.

26

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

3. Diseio y Arquitectura

3.1. Introduccion

El disefio determina la arquitectura general del sistema que mejor
satisface los requisitos: componentes del sistema, el software utilizado y la

interaccion con el usuario. Define como debe realizar su funcién el sistema.

Los actores son personas o entidades externas que intercambian informacion
con el sistema. En éste sistema tenemos 1 actor, el usuario que utiliza la

extension y activa la aplicacion de su dispositivo movil.

Un caso de uso representa una interaccion tipica entre el usuario y el sistema.
Los casos de uso se utilizan para capturar los requisitos funcionales del
sistema. La descripcion de éstos se centra en el comportamiento y no en la
implementacion de las partes que define. En la figura 7 podemos ver los casos

de uso de nuestro sistema.

o

\\\'——r _—
Cliente movil
,,/\\‘ i[
=/ C
\\\77 S N
Extension Servidor web
Usuario
\\\'——r —
Cliente Web

Figura 7. Diagrama de casos de Uso

27

Lniversitat
. Autdrnoma
de Barcelona

etse)

Gestor de contrasefias en un dispositivo movil

3.2.

Servidor web

El servidor Web es el encargado de recoger los datos introducidos en el
navegador y dar acceso a la pagina web deseada. También es el responsable

de recoger los datos introducidos en el formulario de la pagina web con acceso

restringido a la que deseamos acceder, validar estos datos introducidos en la

base de datos y si todo es correcto, dar acceso al usuario a la pagina web

solicitada.

Extensién

RellenarFormulario

Cliente web Servidor web

SolicitarAccesoWeb

g

DarAccesoWeb

MostrarWeb U

=

m ValidarDatos

DarAcceso

| MostrarWeb

=

Figura 8. Diagrama del caso de uso Servidor Web

28

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

3.3. Cliente Web

Como cliente Web entendemos al navegador web, que en nuestro caso
serd el Firefox de Mozilla y a la extension en si, que es la encargada primero
de detectar si la pagina web en la cual estamos en el momento de activar la
extension, contiene un formulario de login/password, con lo que iniciara el
proceso de comunicacion con el movil. Si no existiera el formulario de
login/password en la pagina web en que nos encontramos, saldria una alerta

por pantalla mostrando un mensaje de error.

Se barajaron varias opciones a la hora de iniciar la aplicacion, una es la que
acabamos de comentar, tener que ir al mend “Herramientas” del navegador

Firefox y activar manualmente la extension.

La otra opcidon que se barajo, fue la de que cada vez que entremos en una
pagina web nueva, la aplicacion se inicie automaticamente sin tener que ir al
menld “Herramientas” del navegador e inicie el todo el proceso necesario

para rellenar el formulario automaticamente.

Aunque la segunda opcidbn es mas comoda en principio, ya que se inicia
automaticamente cada vez que entramos en una pagina web, al final se hace
MAas engorrosa ya que cada vez que una pagina no contenga un formulario de
login/password saldr4 el mensaje de error por pantalla. Si por casualidad
entramos en una pagina que si contiene ese tipo de formularios pero para el
cual no tenemos la contrasefia guardada en el mévil también nos saldra un
mensaje de error por pantalla. Por estas dos incomodidades, se ha preferido

usar la primera opcion, aungue se tenga que activar manualmente.

Para incorporar en el menu “Herramientas” de nuestro navegador la opcion
de iniciar la aplicacién, se ha creado un pequefio programa en XUL y se ha
colocado en el directorio de extensiones de Firefox. Se ha elegido incorporar el
elemento de inicio de la aplicacién en dicho menu, ya que como hemos podido

contemplar con otras extensiones, éstas siempre incorporan elementos

29

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

adicionales al menU “Herramientas” una vez estdn instaladas en el

navegador.

Mediante el registro de la extension en la URL chrome del navegador y gracias
a los Overlays, podremos afadir la nueva entrada deseada, en el menu

“Herramientas” en nuestro caso.

El cliente Web se comunica con el dispositivo mévil mediante la creacion de
sockets y gracias a la API Bluetooth de Microsoft. Se creara un componente
XPCOM para tal efecto que también sera el encargado de recibir los datos
necesarios para rellenar los campos del formulario. Una vez nuestra extension
tiene los datos, ésta se encarga de rellenar automaticamente los campos del

formulario mediante una funcion escrita en Javascript.

En la Figura 9 podemos ver el diagrama del caso de los casos de uso
Extension y Cliente Web. Se ha unido el diagrama de los dos ya que la

Extension es un complemento del Cliente Web, por tanto forma parte de él.

X Cliente Web Extension Disposi_tivo
: Usuario Movil

InWebAccesoRestringido;

IniciarExtension

U PedirContrasefia

RecibirDatos

RellenarFormulario

Figura 9. Diagrama del caso de uso Extension

30

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

3.4. Cliente Movil

El cliente movil, en nuestro caso un teléfono mdvil, es el encargado de
esperar peticiones procedentes del navegador y satisfacer dichas peticiones.
Ademas, una vez llegue una peticion procedente del “exterior” se hara un
proceso de emparejamiento de dispositivos, para asegurar que nadie, excepto
nosotros, tenemos acceso a la contrasefia que nos brindara el dispositivo

movil.

Este emparejamiento se realiza una vez que llega una peticion. El dispositivo
movil nos pide que introduzcamos una contrasefia, que una vez introducida,
esperara a que el otro lado de la conexion introduzca la misma contrasefia para
poder hacer la vinculacion. El otro lado de la conexién, en nuestro caso el PC
donde estemos ejecutando la extension, nos pedira que entremos una
contrasefia, que introduciendo la misma que acabamos de poner en el
dispositivo movil, se producird la vinculacion y se podra empezar la
transferencia de datos. Al producirse la primera vinculacion, tendremos una
opcion en el dispositivo movil de guardar dicha vinculacion, para que las
proximas veces que se intente acceder al dispositivo movil desde el mismo PC
gue la primera vez, no haga falta la introduccion de ninguna contrasefa,

evitando asi que la vinculacién se convierta en una tarea muy engorrosa.

La aplicacion del dispositivo mévil esta escrita en el lenguaje de programacion
Java para moviles, J2ME y se comunica con la extension mediante sockets y
mediante la tecnologia inalambrica de redes, Bluetooth, gracias a la APl Java

para dicha tecnologia.

Esta aplicacién consiste en un bucle® infinito que se dedica a esperar
peticiones y cuando una de éstas se produce, se crea un canal de salida por

donde iran los datos hacia la extension.

La aplicacion ha sido escrita con el entorno de programacion NetBeans mas el

paguete Mobility, que facilita mucho las cosas ya que dentro de éste hay una

'8 repeticion

31

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

opcion para crear Midlets, que nos crea los archivos necesarios, una vez ya
tenemos la aplicacion programada, para instalar nuestras aplicaciones en
nuestro dispositivo movil. Estos archivos consisten en dos archivos llamados
nombre de extensidn.jar y nombre de extensidn.jad que
simplemente los tendremos que transferir a nuestro movil, ya sea por cable
serie, infrarrojos o bluetooth, para poder usar la aplicacion en nuestro

dispositivo mévil.

Una vez que iniciemos la aplicaciéon en nuestro movil, ya estaré lista para

esperar peticiones procedentes del navegador.

En la Figura 10 podemos ver el diagrama del caso de uso del cliente movil.

O
) . Movil Extension
: Usuario
IniciarAplicacion |
~ : |

EsperarPeticion

; PedirContrasefia

Emparejar

Emparejar

DarContrasefia

Figura 10. Diagrama del caso de uso Movil

32

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

4. Implementacion

La fase de implementacion consiste en la traduccion del disefio realizado

anteriormente a un lenguaje de programacion.

Los lenguajes de programacién propuestos han sido java y su variante para
dispositivos méviles J2ME, C++, XUL y Javascript. Como veremos en el punto
4.4. ha habido diferentes variantes en la implementacién, a causa de los

problemas encontrados.

En la Figura 11lpodemos ver el diagrama de clases de nuestro sistema, que

describe las clases, atributos y las relaciones entre ellos.

BlueExtension

BlueServer

Dispositivo Movil

&Applicaciones i"* $EsperarPeticion()

$DarContrasefia()

Bluetooth 1 XPCOM 1 XPConnect 1

¥ProcesarCampos()
YRellenarFormulario(’
0.* ~ ¥nstanciarXPCOM()

%conexion()

1 YgetEditablelnputs()
manual
1
Usuario Navegador |1
1 manual . |&extensiones :
%nitExtNavegador() Formulario
¥InitAppMavil() SIrAwWeb () & NombreUsuario
%hnitNavegador() $MostrarWeb()‘ &Contrasefia
1
HTTP 0.*
0"*
Servidor 1

BBDD . Pagina Web
— &Contenido

WalidarWeb()
%DarAccesoWeb()
$ValidarDatos()

Figura 11. Diagrama de clases

Para empezar, tenemos la clase Usuario, que es la clase que nos representa,

y los métodos son iniciar el navegador, iniciar la aplicacion moévil e iniciar la

33

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

extension del navegador. La clase Usuario se comunicara con el navegador y

con el dispositivo moévil de forma manual.

La clase Dispositivo Moévil tiene agregada la clase BlueServer que
representa la aplicacion del dispositivo movil. Esta Ultima clase tiene los
métodos necesarios para esperar la peticion procedente de la extension y dar

la contrasefa.

La clase Navegador tiene agregada la clase BlueExtension que representa
la extension del navegador Firefox y que tiene los métodos necesarios para la
comunicacion con el dispositivo movil y el relleno automatico de los campos del
formulario. Para iniciar la conexidn, la clase BlueExtension tendra que
hacer uso de la clase XPCOM y la conexidn entre estas dos clases se realiza
mediante XPConnect. La clase XPCOM se comunicard con la clase

Dispositivo Mévil mediante Bluetooth.

La clase Navegador, por su parte, se comunicara con la clase Servidor
mediante HTTP. La clase Servidor sera la encargada de validar las paginas
web introducidas por la clase Navegador y de dar acceso a ellas. También
sera la encargada de validar los datos del formulario. Para validar las paginas
web, la clase Navegador tendra que “mirar’ en su Base de Datos (BBDD) y si

existe dicha web, dar acceso a ella.

La clase Pagina Web tendra como agregacion la clase Formulario, que es

la que contendra los atributos nombre de usuario y contrasefia.

34

" Lniversitat

. Autdrnoma
de Barcelona

St. E> Gestor de contrasefias en un dispositivo movil

4.1. Software usado

El software usado para la implementacion de la aplicacién es el

siguiente:

e Microsoft Windows XP service Pack 3
e Microsoft Office 2007

e Microsoft Visual Studio 6.0

e Microsoft Platform SDK

e Notepad ++

e Netbeans mobility pack

e Nokia Wireless Toolkit

e Firefox

e XulRunner SDK o Gecko SDK
e XulExplorer

e DOM Inspector

e Extension Developer

35

" Lniversitat
. Autdrnoma
de Barcelona
St. E> Gestor de contrasefias en un dispositivo movil

4.2. Hardware empleado

e Sony Vaio FS-515b

e Procesador Intel Pentium M a 1,73 GHz
e 1GB RAM

e HDD de 80 GB

e WidComm Bluetooth USB Adapter

e Nokia 6300

e Impresora Epson Stylus DX9400F

36

Lniversitat
. Autdrnoma
de Barcelona

etse ~ : " -
) Gestor de contrasefias en un dispositivo movil

4.3. Servidor

En el servidor nosotros no tenemos que programar nada, simplemente
esperar primero a que nos dé acceso a la pagina web que deseemos entrar y
luego a que cuando hayamos introducido nuestros datos en el formulario
deseado, los valide y si los datos son correctos, nos de acceso al area
restringida a la que queremos acceder. Todos estos datos seran introducidos

por el usuario mediante el Cliente Web.

Nuestra aplicacion solo servird para entrar en una sola pagina web, ya que en
nuestro dispositivo movil solo tendremos guardada la contrasefia para un solo

formulario.

La pagina que se ha escogido para nuestra aplicacion es una pagina Web muy
conocida por nosotros, (éste ha sido el motivo de la eleccidon de la pagina en

concreto) la Web del mail de los alumnos de la UAB (ver Figura 12).

| Informacid del Servei |

Correu electronic estudiants AL

Universitat Autdnoma

deBarcelona

UserName:

Password:

Figura 12. Webmail alumnos UAB

37

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

4.4. C(Cliente Web

La programacion del cliente web se podria dividir en 3 partes:
e Lainterfaz gréfica, creada en XUL.
e El script que da funcionalidad a la aplicacion, en JavaScript.

e El componente XPCOM, hecho en C++.

La primera parte, no es solo la interfaz grafica, es crear todos los
archivos y jerarquia de directorios para que nuestro cliente Web, Firefox,

entienda que hemos creado una extension y la instale.

Para empezar con esta tarea, crearemos un archivo, alli donde esta ubicado el
directorio perteneciente a las extensiones instaladas en nuestro cliente Web,
gue suele ser un directorio parecido a éste: “C: \Documents and Settings\
usuario\ Datos de programa\ Mozilla\ Firefox\ Profiles\
83x0s50h.default\extensions”, ese archivo lo hemos Ilamado
BluetoothExtension@foo.net y contiene la direccion de nuestro PC
donde vamos a crear la extension. Es una forma de ahorrar tiempo a la hora de
navegar por los directorios y a la vez es necesario crear un archivo como el
nuestro, ya que si no, Firefox no detectaria que hay una nueva extension

instalada.

En el directorio donde vamos a crear la extension, tendremos una jerarquia tal
gue en el directorio principal vamos a tener dos archivos, el install.rdf y el

chrome.manifest y 3 directorios, content, skin y components.

En el directorio skin, van los archivos CSS que son los encargados del estilo
de la aplicacion. Con ellos podemos cambiar colores y alineaciones a nuestro
gusto, tal y como se explicé en el apartado de tecnologias. En nuestra
extension no se ha utilizado ningun estilo, se ha preferido dejar todo por

defecto.

38

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

En el directorio components, van los archivos correspondientes a la creacion
de componentes XPCOM, ya sea en JavaScript o en C++. En el punto 4.4.1 se

explicara la creacion de componentes mas detalladamente.

Antes de explicar el contenido del directorio content, se hablar4 de los dos
archivos que tenemos en el directorio principal, el install.rdf y el

chrome.manifest.

El archivo install.rdf es el archivo que una aplicacion XUL usa para
determinar informacion sobre cémo tiene que ser instalada esa aplicacion.
Contiene metadatos® identificando la extensién, quien la cred, donde se
puede encontrar la informacion referente a la extension, que versiones de
aplicaciones con las cuales es compatible, etc. En la Figura 13 podemos ver el
archivo install.rdf para nuestra aplicacion, cabe destacar los atributos id,
para identificar donde estan los datos de la extension, el type, que se ha
puesto un 2 ya que es el nimero que identifica a las extensiones. El atributo
name Y description seran los que nos aparezcan una vez tengamos
instalada la extensidon en el menud “Complementos” dentro del menu

“Herramientas” de nuestro navegador, ver Figura 14.

El otro archivo que nos concierne, el chrome .manifest, es el encargado de
decirle al registro chrome, que hay un nuevo chrome disponible. Nosotros
necesitamos registrar nuestro archivo XUL que esta en el directorio content y
lo haremos de la siguiente manera:

content bluextension chrome/content/
Donde el primer parametro es el tipo de directorio, el segundo es el nombre de

nuestro paquete y el tercero es la uri % hacia nuestros archivos.

!9 Datos que describen otros datos.
% Uniform Resource Identifier (Identificador uniforme de recurso).

39

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Con esto le decimos al navegador donde estan los archivos para el registro
chrome, pero lo que nosotros queremos es superponer nuestro archivo XUL a
nuestro navegador, esto se consigue de la siguiente manera en el archivo
chrome.manifest:

overlay chrome://browser/content/browser.xul

chrome://bluextension/content/bluextension.xul

<?xml version="l1.0"%>

<RDF xzmlns="http:/

f22-rdf-syntax-nss"

2
xmlns:em="http:; f2004/em—-rdEx" >

<Description about="urn:mozilla:install-manifest">

<em:id>Bluetoo o.net</em:id>

<em:version>l.0</em
<em:type>Z</em:tcype>

<!—— Target Application this extension can install into,
with minimum and maximum supported versions. —->
<em:targethApplication>
<Description>

</Description>
</em:targecipplication>

<!-- Front End MetaData -->
<em:name>Bluetooth Extension!</em:name:>

<em:description>Gestor de aseflas en dispositivo méwvil accesible por bluetooth</em:description>

<em:creator>Sergic Laguna Garcia</em:icreator>
<em:homepageURL>http: /.,
</Description>

</RDF>

.foo.com/</em: homepageURL>

Figura 13. Archivo install.rdf

Lo que estamos diciendo con la instruccion overlay es que superponga a la
interfaz del navegador (browser.xul) nuestro archivo, Bluextension.xul,

podemos ver el resultado en la Figura 15.

En el directorio, content, se hallaran los archivos de la interfaz grafica (XUL) y
los de funcionalidad (JS?'). El archivo escrito en XUL se encarga de crear la
interfaz grafica de nuestro navegador, que junto al archivo chrome.manifest
da el resultado que vemos en la Figura 15. Al clicar en la nueva entrada en el

menu “Herramientas” se da inici6 a la funcionalidad de la extension.

! Javascript

40

Lniversitat
. Autdrnoma
de Barcelona

etse)

Gestor de contrasefias en un dispositivo movil

) Complementos

B

Extensiones Temas

,; Bluetooth Bxtension? 1.0
Gestor de contrase #as en dispositivo m€vil accesible por bluetooth

- Desactivar Desinstalar
| L |

BugMeNot 2.0
Eypass compulsory web registration with the context menu via wwww.bugmenot. com, —

ﬁ DOM Inspector 1.5.1.158
Inspects the structure and properties of a window and its contents,

5 Extension Developer 0.3.0.20080725
% A suite of tools for extension developers

L% Firebug 1.05 hud

@ Buscar actualizaciones Chtener extensiones

Figura 14. Extension instalada

El archivo JavaScript contiene basicamente wuna funcion Illamada
ProcesarCampos, que es la encargada de realizar todo el proceso de
verificacion. Este proceso consiste en ver si la pagina en la cual estamos en
ese mismo instante contiene un formulario de login/password valido, es decir,
gue si la web no contiene un formulario o contiene uno que no es del tipo
http/https, nos “saltard” una advertencia por pantalla diciendo que la web no
contiene un formulario de login/password valido. Hemos hecho una prueba
para ver lo sucedido en una pégina cualquiera y hemos tomado como ejemplo
una web de Mozilla que nos habla de XPCOM, ver Figura 16. Como se puede
observar, al no tener un formulario valido, nos aparece la advertencia por

pantalla.

por el contrario, nos encontramos ante un formulario valido, la funcién
ProcesarCampos llamara a otra funcién llamada getEditableInputs, que
se encarga de almacenar las entradas editables de un formulario, que nos

servira posteriormente para rellenar el campo de la contrasefia del mismo. Si

41

Lniversitat
. Autdrnoma
de Barcelona

etse ~ : " -
) Gestor de contrasefias en un dispositivo movil

nuestra variable donde guardamos las entradas editables del formulario se
llama formulario, para entrar un valor se debe llamar al atributo “value”, por
ejemplo, con formulario.value[0] rellenariamos el campo de la primera
entrada editable del formulario, que usualmente corresponde con la del nombre
de usuario y con formulario.value[l] rellenariamos el campo de la

segunda entrada editable, correspondiéndose normalmente con el de la

contrasena.

) Sun Java ™ System Communications Express - Mozilla Firefox

Archivo Editar Ver Historidl Marcadores iUl Ayuda

A | Buscar enlaweb Cri+ 7
'@ /u’} & https "> a[+[») G
Descargss Ctrl+)
Complementos
Java Corsole
ﬁ FireFTP
Sxipper 4
Firebug L - - U " B
ronic estudiants
DOM Inspector Chrl+Mayts, +1 Universitat Autonoma
Exfension Developer 4 deBarcelona
Informacidn de |z pégina
Limpiar informacion privada Ctrl+Mayds, +5upr,
Cpdanes...
Bluetooth Extension

Figura 15. Nueva entrada en el menu Herramientas

Después de llamar a la funcién getEditableInputs, lo que hay que iniciar
es la comunicacion via Bluetooth con el dispositivo mévil. Desde JavaScript no
podemos hacer esto, por las limitaciones comentadas en el apartado de
tecnologias, entonces necesitamos crear un componente XPCOM en C++ que
sea capaz de comunicarse con el dispositivo movil y recibir los datos. Una vez
creado el componente, lo podremos instanciar desde JavaScript utilizando
XPConnect y utilizar su servicio para poder comunicarnos mediante Bluetooth

con el movil.

42

Lniversitat
. Autdrnoma
de Barcelona

etse ~) .. ,
) Gestor de contrasefias en un dispositivo movil

600U lecil e

@ - b @ E " hitp: ffwww.mozila.orgfprojects/xpcom/ "‘ l>] "‘

P

"2 mozilla.org

Projects QOEVEILLELE Community Contribute Foundation About

XPCOM

Roadmap
Projects Welcome to the XPCOM page. This area is intended to be a central clearinghouse for information
& related to XPCOM.
Coding
General
Module Owners
v Crogiisssi e 2 ool Do sacagd Ian Oeschger that introduces XPCOM
Hacking and cko-based applications.
Get the Source * An sh.
Build It e 2902
Pr poz)
Testing * St 5lone.
In leaks.
Releases
Nightly Builds Rules and guidelines for writing new code
Report A Problem & IDL Interface Rules - Guidelines for writing interfaces. Requirements for freezing.
Tools ® Rules we break lists and comments on xpcom rules being broken in our codebase
Bugzilla Smart Pointers and Ownership
Tinderbox * Some COM Ownership Guidelines gives a brief set of guidelines to help you build a supportable
Bonsai ownership model.
o lisina nerousss dascrihes a 'smart-nnintar Flase far XBOOM

Figura 16. Alerta de formulario no vélido

4.4.1. Creacion del componente XPCOM en C++

Para empezar a crear un componente XPCOM en C++ hay que tener
instalado el Gecko SDK. El Gecko SDK es un conjunto de archivos XPIDL?,
cabeceras y herramientas para desarrollar componentes XPCOM para poder

acceder a ellos desde Javascript.

Lo primero que tenemos que crear es un GUID # para nuestra interfaz con la
herramienta guidgen® de Windows. En la Figura 17 se puede ver la plantilla
para crear la interfaz que rellenaremos con la GUID creada y los métodos y
atributos que queramos. En nuestro caso solo habra un método que se llamara
conexion que nos devolvera el string correspondiente a la contrasefia que

estard almacenada en el dispositivo movil.

2| enguaje de descripcion de interfaces multi plataforma.
%3 Globally Unique Identifier (Identificador Global Unico).
" Herramienta incluida en Windows para generar GUIDs.

43

Lniversitat
. Autdrnoma
de Barcelona

etse ~ : " -
) Gestor de contrasefias en un dispositivo movil
Finclude "nsISupports.idl"™
[scriptable, uuid(SFOSDFEE-0AS5E-4e44-B2TF-8ELSSASBEDEZ)]

interface nslBluseComp @ neslSupports

string connexion():

O

Figura 17. Plantilla para crear la interfaz

Con la herramienta xpidl que viene con el Gecko crearemos el archivo de
cabecera (.h) y el archivo typelib (.xpt) de la interfaz creada. El primero
nos servira como plantilla de cabecera e implementacion para crear los
archivos cPP® donde iran la implementacién de la conexion y la creacion del
moédulo. El segundo, junto con el archivo DLL*® que crearemos al finalizar el
proceso de creacion del componente, seran los archivos necesarios para
registrar el componente en el navegador y poder instanciar la interfaz recién

creada a nuestro antojo.

Con el archivo de cabecera (.h) creado, usaremos la parte referente a la
cabecera, como plantilla para crear nuestra cabecera real. A esto le tendremos
gue afadir unas lineas de cddigo para identificar a nuestro componente (ver
Figura 18).

:ﬁ'lnf-rn Rlvelnme .""m.]'-::."_"‘ II'-:'e'n--ra TR Rl
QEILNE ZIUELOIMD Wik = CELallale QO DIUCVOlE, 2

: . S . ; . .
tdefine BlueComn CLASSNAME "WECom comunicacidn Bluetooth!
Tuledadhh davLivlil wollcoullilis el LUllGldwblealli. gl bililivdl

| {42949080-1543-4c09-ASFE-33ET68F65C31)

e ' A

Fdefine BlueComp CID { Ox42949d3d, 0x1543, Oxdcald, { Oxa3, Oxfe, 0x33, Oxe7, 0x68, Oxfe, Oxbc, 0x31 } |

Figura 18. Archivo de cabecera

% Archivos de implementacion del lenguaje C++.
% Dinamic Link Library (Libreria de conexién dinamica)

44

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

El primer define, define como instanciar a nuestro componente XPCOM
desde Javascript. El segundo es una pequefia definicion y el tercero es otro

identificador Unico.

Antes de empezar con la implementacién de la conexion, tendremos que crear
otro archivo CpP que sera el encargado de generar el componente cuando lo

instanciemos. En la Figura 19 se puede ver como quedé el archivo en cuestion.

Finclude "n=slGenericFactory . h”
¥include "BluseComp.h”

HS_GENERIC FACTORY CONSTRUCTOR{ElueComp)

=tatic nsHoduleComponentInfo component=[] =
i
i
BlueConp CLASSHANE .
BlueComnp_ CID,

BlueConp_ COHTERACTID,
BlueConpConstructor,

I
NS TIMPL_HSGETHODULE! "MiHModuloComponente", components)

Figura 19. Archivo del Médulo.

Ahora toca crear el otro archivo CcPP donde ira la implementacion de la
conexion. Como se ha hecho antes, cogemos la plantilla de cabecera creada y
con la parte de la implementacion crearemos el archivo CpP, al cual, solo
tendremos que afadir la implementacion del método connexion creado en la

interfaz.

Para empezar la implementaciéon hemos tenido que instalar el Platform SDK %’
de Microsoft, ya que contiene las librerias necesarias para realizar la
comunicacion por Bluetooth, tal y como se ha explicado en el apartado de API

C++ para Bluetooth del capitulo de las tecnologias.

La implementacion de la conexion se empieza llamando a la funcion
WSAStartup, que es la encargada de iniciar la DLL, WinSock por un proceso.

Se crea el socket, con los pardmetros necesarios para realizar la comunicacion

%" Software Development Kit

45

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Bluetooth y ahora tenemos que pasar la direccion fisica de nuestro dispositivo
moévil, que esta en el formato “xx:xx:xx:xx:xx:xx” como string, a una
direccion Bluetooth. Una vez acabo esto, hay que crear la estructura
SOCKADDR BTH (sab en nuestro caso) para contactar con nuestro dispositivo

remoto. En la Figura 20 se puede ver como ha quedado esta estructura.

zab.addressFamily = AF _BTH;

zab.btaddr = ululRemoteBthiddr; s/direccicn Bluetooth del dispositivo remoto
sab.serviceClassld = SerialPortServiceClass UUID;
zab.port = 25;

Figura 20. Estructura SOCKADDR_BTH

Acto seguido lo que tenemos que hacer es conectar con el dispositivo remoto,
esto se consigue con la funcidbn connect, pasandole como parametro la
estructura que recién se ha creado. Una vez hecho esto, la conexién se habra
establecido y solo nos quedara recibir la contrasefia procedente del dispositivo
movil. Para conseguirlo es necesario llamar a la funcién recv, afiadiendo a uno
de los parametros un buffer donde almacenar los datos. Después de la llamada
a dicha funcion, ya tendremos los datos almacenados en una variable listos
para ser devueltos como valor de retorno de la funcién. Solo hace falta una
cosa mas, cerrar el socket creado con la funcion closesocket y ya estara el

asunto resuelto.

Ahora que ya tenemos todos los archivos en condiciones solo nos hace falta
crear la DLL. Para ello tendremos que abrir un proyecto en el Visual Studio con
la opcion de crear una Win32 Dinamic-Link Library. Se afiaden todos los

archivos al proyecto y se construye la DLL.

Una vez tenemos la DLL construida solo tenemos que afiadirla, junto con el
archivo XPT creado al principio de todo el proceso de creacién del componente,
al directorio components de nuestro navegador, que suele estar en la ruta

‘C:\Archivos de programa\Mozilla Firefox\components”.

46

Lniversitat
. Autdrnoma
de Barcelona

etse ~ : " -
) Gestor de contrasefias en un dispositivo movil

Con el componente ya creado, se puede proseguir en la creacion de la

aplicacion.

Si recordamos, se habia llamado a la funcibn getEditableInputs para
poder rellenar el campo de la contrasefia, pues bien ahora hay que instanciar al
componente XPCOM. En la Figura 21 se puede ver un ejemplo de cémo se ha
logrado esto. Primero se activa el privilegio de poder usar XPConnect, luego
se crea una instancia del componente y finalmente se llama al método
deseado, que en este caso es el método connexion, para que nos devuelva

un string con la contraseia deseada.

netscape. security. Privilegelanager enahlefrivilege(" Universal{FConnect');
var ofyComponent =Components.classes['@laguna.con/BlueComp;1'] createlnstance(Conponents. interfaces nsIBlueConp)
if (oMyComponent == null} {

alert{"offyConponent iz null");

var pazs = offyConponent . connexion();

Figura 21. Instanciar Componente.

Una vez acabado este proceso, solo hay que rellenar el campo de la
contrasefia devuelto por la funcibn getEditableInputs con el string
devuelto por el método connexion del componente XPCOM. En las Figuras
22 y 23 se puede ver el resultado de llamar a la extension desde la pagina del
Webmail de los alumnos de la UAB y como nos da permiso el servidor Web

para entrar al area restringida.

| Informacic del Servei |

Correu electronic estudiants YAl

Universitat Autbnoma|
de Barcelona

UserName: 2135224

Password:

Figura 22. Formulario después de iniciar la extension

47

Lniversitat
. Autdrnoma
de Barcelona

etse o) .. , .
) Gestor de contrasefias en un dispositivo mévil

Correu electronic

Benvingut Sergio Laguna Garcia

m Canvi de Paraula de Pas = Tanca la Sessié = Ajuda

Correu | Llibreta d'Adreces Carpeta actual:

Carpetes | Safata d'entrada | Enviats | Paperera | Esborranys

edaccid @ Obtencidé de correu & Consulta del correu extern @Cerca de missatges
=2

Qpcions

Safata d'entrada

m |— Accions del missatge — % |— Mou els missatges a la carpeta: — % Anterior | Esta mostrantll-zo—v de 214 missatges | S
tn

- - - De - Assumpte - Rebut
] [~ Direccié ETS d'Enginyeria Mail 3 todos mis alumnos 5/9/08
O [Centre de Recursos Docents Oferta de treball 4/a/08
[} [Facultat de Ciéncies de Master de secundaria: informacid d'interés per 2/9/08
[} 4 Helena Rifa Re: JavaxPCOM 1/9/08
O 4 Helena Rif3 Re! JavaxPCoOM 31/8/08
[} 4 Helena Rifa Re: Dubte comunicacié 26/8/08
O 4 Helena Rifa Re: Dubte comunicacié 26/8/08
O < HelenaRifa Re: Dates PFC 27/7/08
Ll o Ama Cackallama CambraeamA Famanaral 1 amar 2Ai7INA

Figura 23. Acceso permitido

48

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

4.5. Cliente Movil

Para la parte del cliente mévil se ha utilizado el IDE?® de desarrollo
NetBeans, con un paquete adicional de “movilidad”, necesario para trabajar
sobre dispositivos moviles, crear Midlets y muy util ya que nos provee de
emuladores para probar nuestros programas sin tener que instalarlos en ningdn

dispositivo.

El entorno de desarrollo no contiene librerias para trabajar sobre la tecnologia
Bluetooth, asi que lo primero que hay que hacer es bajarse una libreria para
poder empezar a crear el Midlet.

Se decide usar Bluecove, que provee una implementacion del protocolo JSR-
82, que es el que necesitamos. Solamente tenemos que incluir al archivo JAR
que acabamos de descargar en el path® de nuestro IDE y ya estaremos listos

para usar la libreria.

Ahora tenemos que crear un nuevo proyecto, abrimos dentro de la categoria
‘mobility”, la parte de creacion de una aplicacion MIDP. Ahora salen unas
opciones que dependiendo del dispositivo mévil se escogen unas u otras. En el
caso de este proyecto se han escogido CLDC 1.1 yMIDP 2.0. Ahora si ya se

esta listo para empezar a crear el Midlet.

Dentro del paquete se ha de crear un “visual Midlet” para ir creando los
elementos visualmente, sin tener que picar cédigo, aunque no todo se podra

hacer “visualmente”.

Creamos un nuevo formulario que sera la pantalla de bienvenida cuando
ejecutemos la aplicacion. Como se puede ver en la Figura 24, se ha puesto
como titulo del formulario “Servidor esperando peticion”, ya que cuando se
inicie la aplicacion, el dispositivo ya estara listo para dar la contrasefa.

También se ha afiadido la opcion de salir de la aplicacibn mediante un

*8 |ntegrated Development Environment (Entorno de Desarrollo Integrado)
% Ruta o forma de referenciar un archivo.

49

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

comando de “Exit” que al apretar la tecla correspondiente del dispositivo movil,

saldremos de la aplicacion.

Servidor esperando peticion

Figura 24. Formulario inicial de la aplicacion

Antes de crear el formulario visual, hay que hacer una serie de cosas. Primero
tenemos que conseguir el objeto Dispositivo local para nuestro
dispositivo Bluetooth local, eso se consigue con la funcion getLocalDevice.
Segundo tenemos que hacer que nuestra aplicacion sea visible para otras
aplicaciones, para eso hace falta llamar al método setDiscoverable, que
nos dice si se ha llevado a cabo bien la peticion. Ahora hay que crear una URL,
con su identificador Unico y otros parametros como “localhost” diciendo que
estamos en la parte servidora, para que otros dispositivos se puedan conectar

a nosotros a través de ella. Finalmente, se Illamarda al método

50

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Connector.open para crear un stream® de entrada con la URL creada

anteriormente.

Después de hacer un display™

del formulario de inicio, el programa se
guedara esperando a que le llegue una peticion, esto se consigue con un bucle
infinito. Dentro de este bucle, estard el método acceptAndOpen que
devolver4 un objeto streamConnexion que representara la conexion por

socket del lado del servidor.

Acto seguido, se lanzard un hilo que ser& el encargado de realizar el proceso

de enviar la contrasenia al cliente.

Al lanzarse el hilo, significara que ya se ha recibido una peticion, y se mostrara
por la pantalla del dispositivo un mensaje confirmandolo, ver Figura 25.

Ahora solo tenemos que crear un stream de salida llamando al método
openDataOutputStream y con el método write enviar la contrasefia por

ese stream de salida.

Finalmente, solo nos quedara por hacer, cerrar la conexion creada y el stream

de salida.

30 H
flujo
3 Método para mostrar un formulario por la pantalla del dispositivo mévil.

51

" Lniversitat
. Autdrnoma
de Barcelona
etse - , " -
) Gestor de contrasefias en un dispositivo movil

et W 20'1
Servidor esperando peticion

recibida una peticion
de un cliente

Exit

Figura 25. Formulario de peticién recibida

52

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

4.6. Hilo de la implementacion

Lo primero que se empez0 a implementar fue todo lo relacionado con la
interfaz gréfica, se creo la jerarquia de directorios y los archivos necesarios
para que el navegador entendiera que habia una nueva extension instalada,
luego se paso a crear el archivo XUL en si, para afiadir el nuevo elemento en

menu herramientas.

Lo segundo, fue crear el archivo Javascript, que detectara si en la web en la
gue nos encontramos hay un formulario valido y si es asi recoger las entradas

editables de dicho formulario para ser rellenadas posteriormente.

Después de lo realizado anteriormente, se pasé a crear el programa del
dispositivo movil, pero sin llegarlo a instalar, solamente se hacia funcionar en el

emulador del NetBeans.

Entonces, se intentd crear el programa que conectara con el dispositivo en
C++, pero como veremos en el apartado de problemas encontrados, no se
pudo inicialmente y se pasO a probar otra opcion. Esta opcion fue crear el
mismo programa pero en Java. Con la libreria usada para crear el programa del

dispositivo movil fue bastante facil crear el programa.

Para probar el programa con el servidor que ya teniamos creado, teniamos que
crear el programa de conexion en forma de Midlet para poder simularlo y
realizar la conexion entre los dos simuladores, el servidor y el cliente, para

ahorra tiempo de instalacion.

En cuanto ya se producia la conexion y se recibian los datos correctamente, se
paso a crear el componente XPCOM mediante la tecnologia JavaXPCOM, pero
como también se podra ver en el apartado de problemas encontrados, esto era

una opcion inviable y tuvimos que pensar otras opciones.

53

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Se volvid a pensar en crear el programa en C++ y tras muchos problemas se
acabé consiguiendo. Ahora si podiamos crear un componente XPCOM en C++,

ya que esto si que era una opcion viable.

Después de crear el componente XPCOM en C++ solo habia que volver al
archivo Javascript y desde ahi instanciar el componente para que realice la
conexion con el dispositivo movil y con el resultado de ésta conexién rellenar

los campos del formulario automaticamente.

54

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

5. Conclusiones

El lenguaje XUL ha demostrado ser muy fécil de utilizar y a la vez muy
potente, capaz de crear interfaces graficas con unas pocas lineas de codigo y
cualquiera podria adentrarse en él, ya que en unos pocos dias seremos

capaces de trabajar con €l habiendo empezado desde cero.

Pero para crear una extension no solo nos va hacer falta saber XUL, a menos
gue hagamos una extensibn muy, muy simple. Si queremos afadir
funcionalidad tendremos que saber algo de Javascript, lenguaje que a lo mejor
no es tan facil de aprender como XUL pero si que es bastante facil hacerse con
el. Con XUL y Javascript ya seremos capaces de crear extensiones de mayor
complejidad, que nos sean de utilidad y sin mucho esfuerzo. Esto, hace que
existan miles de extensiones creadas por usuarios que son enormemente
Utiles. Esto es una de las cosas por las que el navegar Firefox es tan popular

entre la comunidad programadora.

Si queremos hacer cosas todavia mas complejas, tendremos que recurrir a
coédigo nativo, ya que en Javascript no podemos hacer por ejemplo, una
comunicacion via Bluetooth con un dispositivo movil. Para realizar esto,
tendremos que crear componentes XPCOM en C++ para afadir mas
funcionalidad a nuestras extensiones. Crear un componente no es tan sencillo
como podria serlo XUL o Javascript, pero existen tutoriales muy buenos que
nos guian paso a paso en la creacion del mismo. Una vez ya hemos creado
uno, crear otro ya no tendra mas misterio y se podran crear extensiones

enormemente mas potentes, gracias a la tecnologia XPCOM.

Gracias a todo esto, es posible crear extensiones muy potentes para nuestro
navegador, que con un poco de imaginacién, podemos llegar a crear cosas
verdaderamente provechosas para el usuario, como puede ser la realizada en

éste proyecto.

55

Universitat
. Autdrnoma
de Barcelona

etse ~ : " -
) Gestor de contrasefias en un dispositivo movil

En cuanto a la programacion de Midlets, también es una cosa muy provechosa
ya que se pueden hacer virguerias con el dispositivo movil. Si se tienen
conocimientos previos de Java, nos serd muy facil coger la dinamica de J2ME y
si no la tenemos puede ser que nos cueste algo mas, pero tampoco mucho ya
gue Java es un lenguaje muy intuitivo y que se le coge el hilo bastante rapido.
En este proyecto se ha creado un Midlet que simplemente habria un canal de
comunicacion por el cual enviaba una contrasefa, pero como se ha podido ver
en diferentes foros, se le han visto maltiples utilidades y de mucha potencia

para nuestro dispositivo movil.

La parte del Midlet ha sido una parte muy provechosa, como todo el proyecto,
ya que se ha aprendido a crear un Midlet desde cero y ya se esta pensando en

crear otras aplicaciones para el dispositivo movil.

56

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

5.1. Problemas encontrados

Han sido bastantes los problemas encontrados a lo largo de toda la
implementacion y por consiguiente vamos a dividir los problemas encontrados
en tres partes que seran por un lado la parte de creacion de todo lo relacionado
con Javascript, la creacion del componente XPCOM vy finalmente la creacién

del Midlet en el dispositivo movil.

En lo referente a la primera parte, la creacion de la validacion del formulario de
login/password, instanciar el componente XPCOM vy el relleno automético del
formulario, decir que la instanciacion del componente XPCOM no supuso

ningun problema, en cambio las otras dos si dieron problemas.

Para validar un formulario en una web primero teniamos que encontrar dicho
formulario, para hacerlo, tenemos que recorrer los tags>? html hasta encontrar
un tag input que nos lleve hasta un tag form, entonces sabremos que esa
web contiene un formulario. Pero no se era capaz de “navegar’ por esos tags,
sino que se navegaba por los tags de la interfaz del navegador. Entonces aqui
surgio el primer problema, como recorriamos los tags de la web en la que nos

encontrdbamos y no la interfaz del navegador?

La respuesta fue llamando a un objeto del DOM que nos adentraba en el
contenido de la web en la que nos encontrabamos, el “window. content”.
Asi ya éramos capaces de recorrer los tags de la web para poder asi validar el

formulario de login/password.

El otro problema fue el saber acceder a los campos del formulario una vez ya lo
teniamos validado, pero gracias a una extension descargada, se supo cOmo
hacer esto y se cred una funcién adaptada a la de la extension descargada. No
fue un problema tan grande como el anterior, pero se tardaron algunos dias en

poder solucionarlo.

% etiquetas

57

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

Ahora pasamos a la parte de creacion del Midlet, para seguir el orden en que

se implementaron las cosas.

Aqui el primer problema fue encontrar una libreria que nos permitiera trabajar
con la tecnologia Bluetooth desde Java o J2ME. Buscando por diversos foros
se encontré Bluecove, que funciona a las mil maravillas. Después de resolver
el tema de la libreria, se empezo a crear el Midlet, cosa que no se habia hecho
nunca por mi y por lo tanto no se sabia por donde empezar. La creacion de los
formularios no supuso muchos problemas pero si el crear el resto del
programa. Primero fue la creacion de una URL para que otros dispositivos nos
pudieran detectar, habia que poner varios parametros especificos por tratarse
de una conexion por Bluetooth y por estar del lado del servidor. Estos
parametros supusieron problemas que se solucionaron como no, en los
diferentes foros relacionados con J2ME y la comunicacion Bluetooth. Todo lo
demas fue rodado excepto un pequefio detalle a la hora de enviar la
contrasefia por el stream de salida, al final hay que cerrar la conexion creada y

el stream de salida creado.

Ahora viene la parte de la creaciéon del componente XPCOM, que con

diferencia es la parte que mas problemas dio de toda la implementacion.

Para empezar, antes de crear el componente se pens6 en crear un programa
gue creara una conexion Bluetooth y recibiera datos, asi seria mas facil de
comprobar los fallos. Se utilizé6 un IDE como es Visual Studio para tal efecto y

se empezo a crear el programa.

El programa escrito en C++, no se era capaz de hacerlo funcionar, aunque todo
parecia indicar que el programa era correcto, era un misterio que no se sabia

como resolverlo.

Entonces se penso en otra solucién y se vio que en la web de desarrollo de
Mozilla habia una solucién para crear componentes en Java, la solucién se
llamaba JAVAXPCOM y prometia mucho, ya que se podria crear el programa

en Java que seria mucho mas facil dado que ya teniamos creado el MIDlet en

58

" Liniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

J2ME y en teoria no deberia ser muy diferente. Y asi fue, tal y como se habia
pensado no fue muy dificil crear el programa en el IDE NetBeans y comunicarlo
con el MIDlet, el problema vino a la hora de crear el componente en XPCOM en

Java.

Leyendo la informacion que habia sobre el tema parecia que si incrustabas el
Mozilla en la aplicacién Java si podias crear el componente para que se
comunicaran entre ellos, pero no se queria hacer eso, ya que lo que se queria
es lanzar la aplicacion desde el navegador, no desde una aplicacion Java. Y
eso no era posible hacer, no es posible lanzar cddigo escrito en Java desde
una extension, como bien se ha comentado en este foro
(osdir.com/ml/mozilla.devel.netlib). Sin embargo, Si que existe una
manera de lograrlo, dandonos unos permisos que en principio no tenemos para
asi poder llamar al cédigo Java tal y como se muestra en la extension
“Java_Firefox_Extension”, pero se descarto la opcion por la complejidad y por

no parecer muy licito.

En la parte de intentar la creacion del componente en Java se perdid6 mucho
tiempo y se pensé entonces en volver al inicio e intentar resolver los problemas

gue tenia el programa escrito en C++.

Los problemas se resolvieron, no sin varias consultas en foros, resultando ser
gue la versiéon del SDK que se tenia instalada no era la correcta, se tenia que

tener instalada una version anterior.

Pero so6lo con esto no se solucion6 el problema, habia otro problema que
solucionar. El dispositivo Bluetooth que se ha usado para este proyecto, viene
con unos drivers que se instalaron correctamente. Pues éste era el problema,
habia que desinstalar los drivers y dejar que Windows instala los suyos propios
automaticamente. Y asi fue, en cuanto Windows instalo los drivers, el programa

en C++ pasé a funcionar perfectamente.

Ahora tocaba la creacién del componente XPCOM en C++, que siguiente este

tutorial, muy recomendado, no se tuvo mayores problemas excepto en el valor

59

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

de retorno del componente, que tenia que ser la contrasefia en cuestion. En la
web de desarrollo de Mozilla y mas concretamente en el apartado de creacion
de componentes XPCOM en C++ hay una guia de cémo usar los strings, que

se siguid y se consiguio6 solucionar el dltimo problema que se tuvo.

60

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

5.2. Trabajo futuro

Se pueden hacer muchas mejoras al programa, con un poco mas de
tiempo se puede llegar a hacer de esta extensién una extension completisima

lista para que otros usuarios puedan descargarsela y usarla.

Para empezar solo se puede tener acceso a un formulario de login/password,
gue como se ha dicho anteriormente es el Webmail de los alumnos de la UAB.
Una posible ampliacion seria que el dispositivo movil gestionara todas las webs
gue nosotros queramos Yy darnos la contrasefia apropiada para una web dada.
Esto se podria conseguir afladiendo una pequefia base de datos, que tendria
como campos la pagina web y la contrasefia, se presentaria como un
formulario donde el usuario rellenaria con los campos mencionados. Entonces
al activar la extension el dispositivo movil buscaria en su base de datos la
pagina web en la que nos encontramos y si la encuentra dar la contrasefa

especifica para esa web.

Otra posible mejora también relacionada con el dispositivo movil, es que al
iniciar la aplicacion, ésta se queda esperando sin que nosotros podamos
realizar otro tipo de operacion con nuestro dispositivo. La mejora propuesta
seria esa, hacer que al iniciar la aplicacion se quede funcionando pero en la
pantalla de inicio del dispositivo, haciendo que podamos hacer otras cosas con

nuestro movil.

61

" Lniversitat
. Autdrnoma
de Barcelona
etse ~) .. , .
) Gestor de contrasefias en un dispositivo movil

6. Bibliografia

No existe Bibliografia en si, toda la informacién ha sido extraida de
fuentes Web.

e es.wikipedia.org: es una enciclopedia libre.

e Jjava.sun.com: pagina oficial de Sun MicroSystems.

e ganttproject.biz/webstart.php: pagina para crear diagramas de
Gantt.

e developer.mozilla.org/En: web de desarrollo de Mozilla.

e mozilla.org: Web principal de Mozilla.

e iosart.com/firefox/xpcom: excelente guia sobre cdémo crear
componentes XPCOM.

e xulplanet.com: excelente web para todo lo relacionado con XUL.

e lcc.uma.es/~galvez/J2ME.html: pagina web con informacion
sobre dispositivos moviles.

e bluetooth.org/apps/content: pagina principal de la tecnologia
Bluetooth.

e forum.nokia.com: excelente web con herramientas e informacion
para la creacién de aplicaciones en dispositivos Nokia.

e msdn.microsoft.com: pagina web de desarrollo de Microsoft.

¢ wainu.ii.uned.es:8081/WAINU/canal- programacioén
/tutoriales/java/tutorial-j2me.pdf: buen tutorial sobre como
crear aplicaciones J2ME en un dispositivo movil con Netbeans y el
paguete Mobility.

e rational.com: pagina oficial de la herramienta UML Rational Rose.

62

Sergio Laguna Garcia

Bellaterra, 18 de Setiembre de 2008

RESUMEN

Este proyecto nace de la necesidad de dar mas seguridad a nuestros datos
cuando navegamos por Internet.

Se ha implementado una plug-in para el navegador Firefox de Mozilla, que
detecta un formulario de login/password conocido y rellena el campo de la
contrasefia automaticamente.

La contrasefia estard en nuestro dispositivo mévil y la comunicacion entre el

navegador y el dispositivo se hara mediante la tecnologia Bluetooth.

RESUM

Aquest projecte neix de la necessitat de donar un grau més de seguretat a les
nostres dades quan naveguem per Internet.

S’ha implementat un plug-in per el navegador Firefox de Mozilla, que detecta
un formulari de login/password conegut y emplena el camp corresponent a la
contrasenya automaticament.

La contrasenya estara en el nostre dispositiu mobil i la comunicacio entre el

navegador i el dispositiu es fara mitjancant la tecnologia Bluetooth.

ABSTRACT

This Project stems from the need to give more security to our data when we surf
the Internet.

It has implemented a plug-in for the Mozilla Firefox browser, which detects a
known login/password form and fills the password field automatically.

The password will be in our mobile device and the communication between the

browser and the device will be using Bluetooth technology.

