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Capítulo 1

1 Introducción
Debido al aumento de servicios que desde hace un tiempo se esta dando en las 
comunicaciones móviles, cada vez se necesitan dispositivos que puedan funcionar a una 
frecuencia mayor para aplicaciones como GPS, Galileo, UMTS, Bluetooth, etc.

La necesidad de altas prestaciones y la tendencia cada vez mayor de reducir las 
dimensiones hacen que en las últimas décadas los filtros acústicos hayan tomado el 
mercado de los filtros de radiofrecuencia. Hoy en día los filtros SAW (Surface Acoustic 
Wave) son los dominadores del mercado, pero las mejoras de la tecnología TFR (Thin 
Film Resonator) hacen que los BAW (Bulk Acoustic Wave) estén al acecho, ya que son 
compatibles con el procesado CMOS, cosa que permite la integración de este tipo de 
filtros en un circuito integrado. Además permiten un uso de mayores niveles de potencia 
y su tamaño es incluso menor que el de los filtros SAW.

Actualmente, parece que los filtros BAW, también denominados FBAR (Film Bulk 
Acoustic Resonator), son sobre los que más se está investigando, mientras que los SAW 
y los filtros cerámicos no reciben grandes aportes a estas alturas. Una de las razones que 
justifique este cambio, además de las prestaciones, es que hoy en día sí existe la 
tecnología de fabricación necesaria para la realización de los filtros BAW.

Otro de los inconvenientes que mostraba la tecnología FBAR era que, hasta hace poco, 
el diseño de este tipo de filtros se realizaba por optimización. La aparición de una 
metodología sistemática para el diseño de filtros FBAR mediante distintas topologías 
aumentan la presencia de estos dispositivos en los elementos comerciales actuales.

En este trabajo veremos como diseñar filtros basados en resonadores de onda acústica, 
concretamente CRF (Coupled Resonator Filter) que incorporan un acoplamiento 
acústico entre los resonadores apilados. Para ello veremos la teoría ya planteada para 
este tipo de tecnología y partiremos de ella para diseñar CRF de ordenes mayores a los 
ya existentes, que permitan obtener unas altas prestaciones con un alto grado de 
miniaturización, algo que todavía no estaba desarrollado formalmente.

Además, se pretende introducir la posibilidad de incorporar los CRF asimétricos a 
configuraciones CRF ya realizadas, de forma que mejoren las prestaciones debido a la 
inclusión de ceros de transmisión en la respuesta.

Con este fin, en este trabajo se presentará, primero, la tecnología de filtros acústicos, 
dando un repaso a varias de las opciones que existen actualmente para realizar filtros de 
este tipo. En el Capítulo 3 se hará una introducción a los fenómenos relacionados con la 
piezoelectricidad, algo que será clave para comprender los desarrollos posteriores que, 
en el Capítulo 4, obtendrán unos modelos equivalentes para los CRF simétricos y 
asimétricos de orden 2, los más sencillos de la familia CRF.

En el Capítulo 5 se planteará el método de diseño sistemático de CRF, combinando los 
modelos equivalentes obtenidos con la teoría clásica de filtros, que será presentada. En 
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este capítulo se mostrará el procedimiento por el que se pueden obtener filtros de orden 
4 que proporcionan unas altas prestaciones, y que reducen las dimensiones muy 
notablemente en comparación con los filtros cerámicos.

Por último, se plantearán las variantes asimétricas al filtro de orden 4 que se desarrolla, 
proponiendo una expansión del método, que permite introducir un par de ceros de
transmisión, a otras configuraciones de CRF.
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Capítulo 2

2 Filtros de RF
En este capítulo se darán a conocer los principales tipos de filtros utilizados actualmente 
en RF. En los rangos frecuenciales a los que pretendemos trabajar no es posible utilizar 
elementos concentrados para la realización de los filtros debido a que los mismos 
elementos provocan demasiadas perdidas. Por otra banda, los filtros de elementos 
distribuidos, pasobanda, cada vez requieren más selectividad, menores perdidas de 
inserción y una frecuencia de funcionamiento mayor para ser usados en sistemas GPS, 
Bluetooth, de telefonía móvil, etc.

2.1 Filtros cerámicos

Los filtros cerámicos son los clásicos filtros de microondas que usan elementos 
distribuidos. Estos elementos son stripline o microstrip, y reducen las perdidas 
considerablemente respecto a los filtros de elementos discretos, especialmente a altas 
frecuencias.

El problema que plantean estos filtros es su excesivo tamaño. Aunque la longitud de 

onda se reduzca a razón de r , donde r  es la permitividad dieléctrica del material, 

las longitudes serán demasiado grandes ya que es complicado encontrar materiales 
cerámicos con valores de r  superiores a 80 [1]. Si, además, nuestro filtro requiere de 

varias etapas de líneas de transmisión, las proporciones del filtro aumentan más todavía. 
Este inconveniente ha motivado la investigación de otros métodos para la realización de 
filtros como el uso de ondas acústicas.

2.2 Filtros acústicos

En los filtros acústicos no se propaga una onda electromagnética, como sucede en los 
filtros cerámicos. En este tipo de filtros la onda es acústica y la velocidad de 
propagación de la onda acústica en los materiales que se usan para la realización de 
estos filtros es muy baja en proporción a la velocidad de propagación de la onda 
electromagnética, del orden de 104 veces menor. Si recordamos que

pv

f
  (2.1)

veremos que la longitud de onda de la onda acústica en un filtro acústico será 104 veces 
más baja que la de la onda electromagnética en un filtro cerámico, aumentando mucho 
el grado de miniaturización que se puede conseguir con este tipo de filtros.

La diferencia entre la onda electromagnética y la acústica consiste en que la segunda se 
propaga mediante contacto entre partículas, es decir, la onda provoca una tensión 
mecánica que se propaga y hace que la onda avance.
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2.2.1 SAW (Surface Acoustic Wave)

Los dispositivos SAW están constituidos por unas estructuras metálicas que reciben el 
nombre de transductores interdigitales (IDTs) colocadas sobre un sustrato 
piezoeléctrico. Dos IDTs se entrelazan como se ve en la Figura 2.1, dejando una 
distancia de λ0 entre cada uno de sus fingers.

Figura 2.1 Superficie de un dispositivo SAW

En este tipo de dispositivos se aplica una tensión eléctrica en la entrada que produce una 
serie de campos eléctricos entre los IDTs, que a su vez crea una tensión mecánica entre 
ellos. Estas tensiones mecánicas se comportan como fuentes de ondas acústicas. Si la 
distancia entre los fingers de un mismo lado corresponde a la longitud de onda a la 
frecuencia de trabajo del filtro las ondas acústicas se sumarán en fase y crearan una 
onda de longitud mayor [2]. En el lado de la salida sucederá el proceso inverso: las 
ondas acústicas producirán campos eléctricos que generarán una tensión a la salida.

Estos filtros proporcionan buena estabilidad, bajas perdidas de inserción, poca distancia 
entre la banda de paso y la de rechazo del filtro y un tamaño muy reducido. Por otra 
parte tienen los inconvenientes de que no funcionan correctamente a frecuencias por 
encima de 2.5 GHz, no es recomendable exceder 1 W de potencia por problemas de 
sobrecalentamiento y el sustrato piezoeléctrico que usan no es compatible con los 
procesos de fabricación actuales.

2.2.2 BAW (Bulk Acoustic Wave)

Los filtros BAW, al igual que los SAW, tienen la característica de que sus dimensiones 
son muy reducidas debido a la baja velocidad de propagación de la onda acústica. Esta 
característica, junto con la que permite conservar la energía dentro de la lámina de 
material, permite realizar filtros muy pequeños con altos valores de Q, del orden de 104. 
La conservación de la energía se da por la baja impedancia del aire, cercana a 0, que 
provoca que toda la energía de la onda incidente se refleje. Otras ventajas de este tipo de 
filtros es que sí es compatible con la tecnología CMOS, aspecto que no se da en los 
filtros SAW y juega en su contra, y pueden manejar potencias superiores con menor 
riesgo de calentamiento.

El principio de funcionamiento de los filtros BAW es el mismo que el de los cristales de 
cuarzo, y se basa en que los electrodos de los extremos del filtro provocan una vibración 
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mecánica resultante en una onda acústica, y cuando el grosor de la lámina es de λ/2 para 
el modo fundamental se obtiene un resonador. A partir del uso de forma apropiada de 
varios de estos resonadores acústicos se obtienen filtros pasobanda de diferente orden. 
A diferencia de los SAW, en este tipo de filtros la onda no se da tan solo en la superficie 
sino que es el piezoeléctrico por completo el que propaga la onda acústica.

2.2.3 Realización de resonadores BAW

La tecnología empleada en el diseño de resonadores acústicos de sustrato se denomina 
TFR (Thin Film Resonator). Esta tecnología, junto con procesos MEMS (Micro-
ElectroMechanical Systems) permite aplicar el principio de funcionamiento de los 
cristales del cuarzo a frecuencias mucho mayores a las que estos suelen funcionar, 
permitiendo su uso en filtros de alta frecuencia. Los resonadores construidos mediante 
esta tecnología se denominan FBAR (Film Bulk Acoustic Resonator) y sus rangos 
frecuenciales van desde los 500 MHz hasta los 20 GHz.

A partir de aquí, los resonadores FBAR, en función de la forma en que se construyan, 
pueden ser clasificados en dos tipos:

2.2.3.1 BAW con membrana

Los BAW con membrana consisten en fabricar el piezoeléctrico y los electrodos sobre 
una capa de membrana muy fina que realiza las funciones de soporte [3], como se ve en 
la Figura 2.2a.

Figura 2.2. Esquema de la sección cruzada de un resonador BAW



Diseño de filtros basados en resonadores acústicos

12

Este soporte es temporal, y cuando se retira deja un hueco de aire entre el resonador y el 
sustrato donde se monta, Figura 2.2b, que facilita la conservación de la energía dentro 
del piezoeléctrico.

A favor de los BAW con membrana está la sencillez. Se necesitan pocas capas para la 
fabricación y los valores de Q que se obtienen son muy altos. Por el contrario, la 
estructura es relativamente débil y las tensiones mecánicas a las que se somete pueden 
deformarla, pudiendo limitar su funcionamiento.

2.2.3.2 SMR BAW

Los SMR BAW (Solid Mounted Resonator BAW) son la alternativa a la fabricación con 
membrana. Para conseguir el aislamiento que proporciona la capa de aire en los 
resonadores con membrana se utilizan espejos acústicos que se basan en el 
funcionamiento de los reflectores Bragg, técnica proveniente de la óptica. Estos espejos 
acústicos consisten en colocar capas de λ/4 de alta y baja impedancia de forma 
consecutiva, Figura 2.3.

Figura 2.3. Sección de BAW con espejos acústicos

Obviamente, este método de fabricación es más robusto que el anterior, pero necesita de 
la colocación de muchas capas para la fabricación, incrementando la complejidad y los 
costes.

2.2.4 Respuesta de un resonador BAW

La respuesta típica de un resonador BAW en impedancia muestra un gran salto de 
impedancia dentro de un rango de frecuencias que incluya la de resonancia y la de 
antiresonancia, que se encuentran muy cercanas entre ellas, ver Figura 2.4. La 
impedancia del resonador es compleja pura, tomando el valor de la capacidad estática 
del resonador cuando nos alejamos del rango frecuencial anterior. Debido a este 
dominio capacitivo, lejos de las frecuencias de resonancia y antiresonancia la 
impedancia es inversamente proporcional a la frecuencia y la fase es de -90º.
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La frecuencia de resonancia esta definida como aquella en que la impedancia es mínima 
y la fase cruza por 0º, pasando de -90º a 90º. Podemos identificarla en la Figura 2.4. La 
frecuencia de antiresonancia se define como la frecuencia donde la impedancia es 
máxima, ver de nuevo Figura 2.4, y a esta frecuencia la fase vuelve a pasar por 0º. En el 
tramo de frecuencias entre la de resonancia y la de antiresonancia la fase se mantiene en 
90º, llegando a -90º al dejar atrás esta última.

Figura 2.4. Respuesta en impedancia de un resonador BAW

La posición de la frecuencia de resonancia y antiresonancia depende del acoplamiento 
piezoeléctrico kt. Este coeficiente determina el grado de intercambio de energía entre el 
dominio eléctrico y el dominio mecánico [4], su expresión es (2.2) y su relación con los 
parámetros físicos de la lámina de material es (2.3), donde Zacus es la impedancia por 
unidad de superficie del material, 

2

4
a r

t
a

f f
k

f


 (2.2)

2
2

t
acus p

e
k

Z v


 
(2.3)

Hasta hoy, no se ha podido aplicar directamente la teoría clásica de filtros a los filtros 
BAW ya que el circuito equivalente resultante de un resonador BAW no puede 
desensamblarse para usar las bobinas y condensadores necesarios para la realización de 
un filtro determinado. Sin embargo, conectando acústica o eléctricamente formando 
diferentes topologías se pueden usar como resonadores, muy útiles para la realización 
de filtros pasobanda con las ventajas de tamaño y prestaciones ya mencionadas. Para 
que estos filtros tengan unas u otras características de filtrado se varía el área del 
resonador, principal parámetro de diseño.

2.2.5 Topologías para filtros BAW

Existen diferentes configuraciones de resonadores BAW a la hora de realizar los filtros, 
a continuación veremos algunas de ellas.
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2.2.5.1 Ladder

Los filtros ladder se constituyen a partir de diversos resonadores en serie y en paralelo
con distintas frecuencias de resonancia [5], Figura 2.5, para obtener una determinada 
respuesta pasobanda.

Figura 2.5. Filtro ladder de 2,5 etapas

El filtro ladder más sencillo asigna una frecuencia de resonancia a todos los resonadores 
serie y una frecuencia de resonancia más baja a los resonadores paralelos, haciendo 
coincidir la frecuencia de antiresonancia del resonador paralelo con la frecuencia de 
resonancia del resonador serie. Se denomina frecuencia de desintonización, o detune, a 
la diferencia entre las frecuencias de resonancia de los resonadores serie y los 
resonadores paralelo. Mediante esta configuración, en la banda de paso la onda se 
encontrará con mínima impedancia en los resonadores serie, y máxima en los 
resonadores paralelo, permitiendo así su paso hacia la salida del filtro. Veamos la Figura 
2.6 para ver la respuesta en impedancia de los resonadores de una etapa y su coeficiente 
de transmisión.

El principal beneficio de esta topología se basa en el par de ceros de transmisión 
cercanos a la banda de paso que nos proporcionan un gran rechazo fuera de la banda. 
Este rechazo se puede controlar mediante los propios resonadores, ya que forman un 
divisor de tensión intrínsecamente. Uno de los aspectos negativos es que al aumentar el 
orden del filtro para obtener un mejor rechazo fuera de banda crece el ancho de banda y 
aumentan las perdidas de inserción.

Hoy en día existen expresiones cerradas que permiten relacionar el número de etapas 
del filtro y sus características con las especificaciones del filtro, sin embargo, y a pesar 
de que los procesos tecnológicos han mejorado notablemente, el reto ahora es utilizar 
estos filtros en aplicaciones que requieran de un FBW>0.04.
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Figura 2.6. Respuesta en impedancia y coeficiente
de transmisión de una etapa de un filtro ladder [5]

2.2.5.2 Lattice

Los filtros lattice, también llamados de puente balanceado, tienen una sensible 
desventaja: estos filtros solo funcionarán de forma adecuada si las señales en los dos 
puertos son de igual magnitud pero signo opuesto, es decir, si están balanceados. Las 
componentes de señal no balanceadas o con errores de fase no serán filtradas de forma 
adecuada.

Cada etapa de un filtro lattice esta formada por una estructura en forma de puente con 
cuatro resonadores. Dos resonadores serie van colocados en las ramas horizontales (uno 
en la superior y otro en la inferior) y otros dos en las diagonales, como indica la Figura 
2.7. Existe una frecuencia de desintonización entre los resonadores serie y paralelo, del 
mismo modo que en los filtros con topología ladder.

Figura 2.7.  Filtro con topología lattice
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El principio de funcionamiento en el que se basan los filtros lattice consiste en que los 
resonadores serie y paralelo permitirán el paso de señal a sus respectivas frecuencias de 
resonancia. Si los resonadores tienen, todos, el mismo tamaño, la atenuación será 
prácticamente infinita fuera de la banda de paso debido al perfecto balanceo de la
estructura.

El gran beneficio de los filtros lattice es que con tan sólo una etapa se puede obtener una 
gran atenuación en la banda de rechazo. Además el ancho de banda puede ser hasta el 
30 % mayor que en los filtros ladder para un mismo Q. Sin embargo, además del 
inconveniente de los puertos balanceados, también se debe tener en cuenta que estos 
filtros no incorporan un par de ceros de transmisión a su respuesta. No obstante, hay dos 
formas para poder incorporarlos: la primera consiste en reducir ligeramente los 
resonadores paralelo respecto a los serie, aunque como contrapartida el rechazo fuera de 
banda será menor. La segunda consiste en usar dos etapas lattice en serie, una con una 
buena atenuación fuera de banda y otra con un par de ceros de transmisión.

2.2.5.3 Stacked Crystal Filter (SCF)

Los filtros SCF se componen de varias láminas de material piezoeléctrico apiladas, 
como se ve en la Figura 2.8, y una serie de electrodos colocados en las interficies 
piezoeléctrico-piezoeléctrico y en los terminales del filtro.

Figura 2.8. Configuración básica de un SCF

Los electrodos que unen dos piezoeléctricos deben ser conductores y además tener las 
propiedades acústicas adecuadas. De esta forma, conectando estos electrodos a masa, se 
permite pasar la onda acústica a la frecuencia de resonancia pero no permite la 
transmisión de campo eléctrico entre la entrada y la salida debido al apantallamiento 
que constituye.

La principal ventaja de esta configuración es la de conseguir una gran atenuación del 
filtro fuera de la banda de paso junto con una banda lo suficientemente estrecha, lo que 
permite utilizarla en aplicaciones como GPS [6]. Por el contrario, el principal 
inconveniente de los filtros SCF es la existencia de respuestas espurias cerca de la banda 
de paso. Podemos ver en la Figura 2.9 como existen tres picos correspondientes a tres
resonancias. La primera coincide con la frecuencia a la que el grosor de las dos láminas 
equivale a λ/2, la segunda cuando equivale con λ y la tercera cuando equivale a 3λ/2. 
Esto, sin embargo, se puede solventar si utilizamos tecnología SMR en la fabricación.
Si el ancho de banda del reflector acústico es lo suficientemente pequeño las 
resonancias espurias se atenúan notablemente, obteniendo una respuesta como la de la
Figura 2.10.
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Figura 2.9. Respuesta de dos secciones SCF [7]

Figura 2.10. Respuesta de dos secciones SCF realizadas con SMR [6]

2.2.5.4 Coupled Resonator Filter (CRF)

Se conoce como CRF la configuración que incorpora un conjunto de capas apiladas con 
una transmitividad acústica determinada cercana a la banda de paso entre cada uno de 
los resonadores de un SCF, Figura 2.11. De esta forma se consigue un mejor ancho de 
banda que en el caso SCF. A partir de ahora asumiremos que un CRF es equivalente a 
un SCF con acoplamiento acústico entre piezoeléctricos.
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Figura 2.11. Filtro CRF de orden 2

El sistema de funcionamiento es muy similar al SCF. Cuando se aplica un campo 
eléctrico al piezoeléctrico de la entrada se propaga una onda acústica a través de éste,
las capas de acoplamiento y el piezoeléctrico de la salida. Los electrodos conectados a 
masa juegan el mismo papel que en el SCF, no permiten el paso de campo eléctrico, de 
forma que desacoplan eléctricamente los elementos de la estructura. Finalmente, cuando 
la onda acústica llega al final del segundo piezoeléctrico se transforma en una onda 
eléctrica.

Dentro del conjunto de CRF se pueden diferenciar dos clases: el CRF simétrico, que se 
ha mostrado ya en la Figura 2.11 con un montaje SMR, cuyas láminas de material 
piezoeléctrico son de las mismas dimensiones. La segunda versión de CRF es la del 
CRF asimétrico, en el que los piezoeléctricos no guardan las mismas dimensiones,
como se puede apreciar en la Figura 2.12. En posteriores capítulos se mostrarán los 
modelos circuitales equivalentes de ambos tipos de CRF, así como conjuntos de etapas 
de CRF que proporcionarán filtros de orden superior a 2 y veremos qué conlleva tener 
unas capas de piezoeléctrico de dimensiones distintas.

Si bien los CRF permiten obtener un alto rechazo fuera de banda, además de tener unas 
dimensiones muy reducidas, como contrapartida tienen que la fabricación de los filtros 
es muy compleja ya que no solo tienen una capa de piezoeléctrico, sino que usan dos, 
además de las capas de acoplamiento acústico.

2.3 Conclusiones del capítulo

Las necesidades de las aplicaciones actuales hacen que cada vez más debamos recurrir a 
los filtros acústicos en detrimento de los filtros concentrados e incluso de los cerámicos. 
Esto es debido a que con los filtros acústicos podemos obtener buenos valores de Q a 
altas frecuencias, además de ser extremadamente reducidos en comparación con los 
otros dos tipos de filtros citados.
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Figura 2.12. Filtro CRF asimétrico de orden 2

Los filtros SAW tienen unas prestaciones muy interesantes, pero son los BAW, y 
concretamente los CRF que nos ocupan en este trabajo, los que tienen más posibilidades 
de investigación en el futuro. Con este tipo de filtros podremos trabajar a altas 
frecuencias manejando potencias de hasta 4 W.

A partir de los filtros CRF más sencillos se pueden desarrollar distintas alternativas de 
diseño, como se ha comentado y se explicará en próximos capítulos, permitiendo tener 
ordenes mayores o la inclusión de ceros de transmisión. Estas características mejorarán 
las prestaciones vistas hasta ahora de este tipo de filtros.
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Capítulo 3

3 Modelo de propagación de onda 
acústica y modelo de Mason

En este capítulo se explicará el fenómeno de piezoelectricidad y se introducirán 
aspectos relacionados como los stresses y los strains. A partir de ellos se desarrollará la 
ecuación de onda acústica para un material no piezoeléctrico y se comparará con el 
mecanismo de propagación de onda electromagnética. Finalmente se generalizarán los 
resultados para el caso de materiales piezoeléctricos, con lo que obtendremos el modelo 
de Mason.

3.1 Piezoelectricidad

La piezoelectricidad es el fenómeno que aparece en determinados materiales que 
consiste en la aparición de una polarización eléctrica a consecuencia de deformaciones 
en su geometría. A esto se le conoce como efecto piezoeléctrico directo. Este fenómeno 
también se da a la inversa, es decir, una onda eléctrica provoca una tensión mecánica 
que recorre el material, recibiendo el nombre de efecto piezoeléctrico inverso.

Cuando las deformaciones en la geometría son provocadas por tensiones mecánicas 
(stresses) se denominan strains. Se ha definido stress como la distribución de fuerzas 
internas por unidad de área que equilibran o reaccionan a las cargas externas que se 
aplican a un cuerpo material o medio continuo.

El efecto piezoeléctrico directo se manifiesta mediante la aparición de cargas en las 
superficies del medio deformado. Este fenómeno es lineal, y por tanto cuando el signo 
de la deformación cambia también lo hace la polaridad de las cargas. El fenómeno de 
piezoelectricidad está relacionado con la estructura física de los materiales. Los átomos, 
y por tanto los electrones, de un cuerpo sólido se desplazan cuando se da una 
deformación en él. A raíz de esto se producen dipolos en el interior del medio que al 
combinarse ofrecen una polarización eléctrica.

Este efecto piezoeléctrico directo siempre va acompañado del efecto inverso. El efecto 
piezoeléctrico inverso también es lineal y también el signo de la deformación cambia de 
acuerdo con el de la polaridad eléctrica.

3.2 Tensión mecánica (stress)

Las tensiones mecánicas que se producen en un medio se definen utilizando como
partículas de material elementos de volumen de un sistema de coordenadas ortogonal, 
tal como se muestra en la Figura 3.1. La tensión mecánica a la que se ve sometida cada 
partícula del material debido a las fuerzas presentes en el material se descompone en 
tres componentes:
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ˆ ˆ ˆx xx yx zxT xT yT zT   (3.1)

ˆ ˆ ˆy xy yy zyT xT yT zT   (3.2)

ˆ ˆ ˆz xz yz zzT xT yT zT   (3.3)

Figura 3.1. Stresses sobre una partícula de material

Si suponemos que las dimensiones en las direcciones x e y del material son mucho 
mayores que en la dirección z, según [8] podemos realizar la aproximación 
unidimensional donde solo se contempla la componente Tzz. De esta forma solo 
tendremos en cuenta la deformación longitudinal en el material. Así, expresamos la 
tensión mecánica de acuerdo con la expresión (3.4), donde F es la fuerza y A el área de 
la lámina de material.

F
T

A





(3.4)

3.3 Deformación del material (strain)

Debido al stress que sufre el material se produce una deformación en éste. De esta 
forma las partículas sufren un desplazamiento definido como

ˆ ˆ ˆx y zu xu yu zu   (3.5)

El strain, o deformación del material, se define como el gradiente del desplazamiento. 
El strain no tiene unidades ya que se trata de una medida diferencial del desplazamiento 
de la partícula respecto a la posición.

S u  (3.6)

Aplicando el modelo unidimensional del mismo modo que en el caso del stress, u 
quedará como uz. De esta forma, considerando que los stresses se dan de forma 
uniforme en los puntos de la dirección z obtenemos una simplificación de la expresión 
(3.6):

u
S

z





(3.7)
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3.4 Ecuación de onda acústica

Consideremos una partícula de material de volumen dV y superficie ds. La fuerza que 
actúa sobre ella será la integral de la tensión mecánica en toda la superficie:

ˆ
s

F T n ds


   (3.8)

La aceleración de la partícula es
2

2

u
a

t





(3.9)

Aplicando la tercera ley de Newton, que relaciona la fuerza con la aceleración, podemos 
reescribir la expresión (3.8) como

2

2
ˆ

s V

u
T n ds dV

t


 


  

  (3.10)

donde ρ es la densidad de masa del cuerpo en equilibrio, [kg/m2].

Si consideramos que el volumen de la partícula es lo suficientemente pequeño, los 
integrandos de la integral de volumen son prácticamente constantes. Además, cuando 
dV→0 la parte izquierda de la ecuación se define como la divergencia de la tensión 
mecánica, de forma que reescribimos (3.10) como

2

2

u
T

t
 

 


(3.11)

En el caso unidimensional del que partimos resulta de la siguiente manera:
2

2

T u

z t
 


 

(3.12)

La velocidad de desplazamiento de la partícula está definida como
u

v
t





(3.13)

Según la ley de Hooke existe una relación lineal entre la tensión mecánica (stress, T) y 
la deformación (strain, S), controlada por una constante denominada stiffness (c), de 

unidades 
kg

m s
 
  

:

T c S  (3.14)

Derivando la expresión (3.14) respecto a z, introduciendo en ella las expresiones (3.7) y 
(3.12) e invirtiendo el orden de la igualdad obtenemos la ecuación de onda acústica

2 2

2 2

u u

z c t

 


 
(3.15)

Se deduce de la expresión (3.15) la velocidad de fase de la onda acústica, que será
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p

c
v


 (3.16)

Si consideramos régimen permanente sinusoidal podemos asumir que la ecuación de 
onda en el dominio fasorial para cualquier excitación armónica será:

2
2

2
0

u
u

z c

 
 


(3.17)

La solución de la ecuación de onda acústica en la dirección z, que es la solución de una 
ecuación diferencial de orden 2, será

  jkz jkzu z A e A e     (3.18)

Como se aprecia, la expresión de la solución de ecuación de onda para la onda acústica 
es la misma que para la onda electromagnética.

Finalmente se puede definir la constante de fase de la onda acústica (de unidades 

[rad/m]) y su impedancia acústica por metro cuadrado (unidades
2

kg

s m
 
  

= Rayls [4]) 

de acuerdo con las siguientes expresiones:

p

k
c v

   (3.19)

T c k
Zacus c

v



 

   (3.20)

De esta forma la impedancia acústica de la lámina de material será directamente 
proporcional a Zacus y al área de la lámina.

Z Zacus A  (3.21)

3.5 Equivalencia entre modelo de propagación acústico 
y eléctrico

Para comparar los modelos de propagación acústico y eléctrico y poder obtener una 
equivalencia entre ellos analizaremos una lámina de material no piezoeléctrico, como la 
presentada en la Figura 3.2.

Partiremos de la solución de ecuación de onda acústica presentada en (3.18). Para 
obtener la velocidad de la partícula la multiplicaremos por jω. En el dominio Laplaciano 
la derivada respecto del tiempo se expresa multiplicando por s y para obtener la 
respuesta en frecuencia se aplica s = jω (Fourier). Así, la velocidad de la partícula queda 
como (3.22).

 jkz jkzv j A e A e      (3.22)

Aplicando las condiciones de contorno en la ecuación anterior obtendremos la velocidad 
de la partícula en cada una de las caras del material:
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Figura 3.2. Lámina de material no piezoeléctrico

 1 1
1

jkz jkzv j A e A e     (3.23)

 2 2
2

jkz jkzv j A e A e     (3.24)

A partir de (3.23) y (3.24) se puede demostrar que la fuerza en cada una de las caras de 
la lámina de material es:

   1 1 2 1tan
sin 2

Z kd
F v v jZ v

j kd
     
 

(3.25)

   2 1 2 2tan
sin 2

Z kd
F v v jZ v

j kd
     
 

(3.26)

A partir de estas ecuaciones podemos observar ciertas analogías entre el modelo 
mecánico y el modelo eléctrico. La fuerza en el dominio mecánico es equivalente a la 
tensión en el dominio eléctrico, mientras que la velocidad de la partícula en el dominio 
mecánico será equivalente a la corriente eléctrica. Teniendo en cuenta esto, y a partir de 
(3.25) y (3.26), podemos realizar un esquema de impedancias acústicas como el que se 
muestra en la Figura 3.3.

Figura 3.3. Modelo de impedancias acústicas para lámina de material no piezoeléctrico
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El circuito equivalente para cualquier red recíproca bipuerto es como el que se muestra 
en la Figura 3.4, donde se muestra el esquema y el valor de las impedancias en función 
de los coeficientes de la matriz de impedancias. A partir del circuito equivalente
podremos hallar la matriz de impedancias de la lámina de material. Dado que la matriz 
de parámetros S del circuito será simétrica y con todos los valores de la diagonal 
idénticos (por los principios de simetría y reciprocidad de las matrices de parámetros S)
podemos afirmar que la matriz de impedancias será simétrica y con los mismos valores 
en la diagonal. Por lo tanto Z11 = Z22 y Z12 = Z21. La matriz de impedancias que se 
obtiene es la mostrada en la expresión (3.27).

 
   

   
lámina

tan sin

sin tan

Z Z

j kd j kd
Z

Z Z

j kd j kd

 
 
 
 
 
 

(3.27)

Figura 3.4. Equivalente circuital de una red recíproca de dos puertos

Mediante las ecuaciones que relacionan la matriz de impedancias con la de parámetros 
ABCD que se muestran en (3.28) y la identidad trigonométrica (3.29) podemos obtener 
la matriz ABCD del circuito.

11

21

11 22 12 21

21

21

22

21

1

Z
A

Z

Z Z Z Z
B

Z

C
Z

Z
D

Z










(3.28)

1 cos
tan

2 sin

 


   
 

(3.29)
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La matriz ABCD del circuito es:

 lámina

cos sin

sin
cos

kd jZ kd
ABCD j kd

kd
Z

 
 
 
 

(3.30)

Por otra parte la matriz ABCD de una línea de transmisión de impedancia característica 
Z0 y longitud l es:

 
0

LT

0

cos sin

sin
cos

l jZ l

ABCD j l
l

Z

 
 

 
   
  

(3.31)

Si comparamos la matriz ABCD de la línea de transmisión de (3.31) con la de la lámina 
de material no piezoeléctrico mostrada en (3.30) podemos apreciar que existen ciertas 
analogías entre algunos parámetros del dominio acústico y eléctrico. Estas relaciones se 
muestran en la Tabla 3.1.

Dominio acústico Dominio eléctrico
Impedancia acústica de la 
lámina

(Z)

Impedancia característica 
de la línea de transmisión 

(Z0)
Grosor de la lámina

(d)
Longitud de la línea de 
transmisión

(l)
Constante de fase de la 
onda acústica

(k)

Constante de fase de la 
onda eléctrica

(β)
Tabla 3.1. Relación entre parámetros de una línea de transmisión en el dominio eléctrico y una 

lámina de material no piezoeléctrico en el dominio acústico

3.6 Modelo de Mason

Una vez visto como se transmite la onda en un medio no piezoeléctrico obtendremos las 
ecuaciones que rigen el comportamiento en un medio piezoeléctrico.

En un medio no piezoeléctrico las ecuaciones electromagnéticas y acústicas son 
independientes. En el caso de un medio piezoeléctrico son ecuaciones acopladas. Las 
expresiones (3.25) y (3.26) no son válidas para un material piezoeléctrico pues no tienen 
en cuenta el efecto electro-acústico propio de este tipo de materiales.

La corriente en el piezoeléctrico tiene dos componentes: la primera se corresponde con 
el comportamiento capacitivo del piezoeléctrico, que funciona como un dieléctrico. La 
segunda se origina en la conversión de energía acústica en energía eléctrica por parte del 
dieléctrico. Para poder contemplar de forma correcta las ecuaciones que muestran las 
fuerzas que sufre el material dieléctrico en las caras incorporaremos el término que 

corresponde al efecto electro-acústico [4], sumando a cada una de las ecuaciones 
h

I
j

, 
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donde 
e

h


  y I es la corriente eléctrica. De este modo las ecuaciones se reescriben 

como:

   1 1 2 1tan
sin 2

Z kd h
F v v jZ v I

j kd j
     
 

(3.32)

   2 1 2 2tan
sin 2

Z kd h
F v v jZ v I

j kd j
     
 

(3.33)

Habiendo variado las ecuaciones que relacionan la fuerza en las caras del material y la 
velocidad de las partículas deberemos replantear el modelo de impedancias acústicas 
presentado en Figura 3.3. Si añadimos el efecto electro-acústico a este modelo se 
obtiene el modelo de Mason, que se observa en la Figura 3.5. Podemos ver como el 
modelo de Mason tiene dos puertos acústicos, donde se dan las fuerzas 1 y 2, y un 
puerto eléctrico, donde una tensión puede provocar las fuerzas en los otros puertos o 
donde las fuerzas en otros puertos pueden provocar una tensión.

Figura 3.5. Modelo de Mason

3.7 Uso del modelo de Mason en esquema multicapa

En los apartados 3.5 y 3.6 hemos obtenido los circuitos equivalentes para láminas de
material no piezoeléctrico y piezoeléctrico, respectivamente. Conociendo estos 
modelos, e identificando cual corresponde a cada uno de los elementos que forman el 
esquema de un CRF, podemos obtener un modelo circuital equivalente para el conjunto, 
en el que todos los elementos sean de naturaleza eléctrica. Esto nos permitirá utilizar 
herramientas de simulación electromagnética para ver el funcionamiento de un esquema 
que contiene elementos eléctricos y mecánicos.
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Por ejemplo, realizaremos el equivalente circuital del conjunto de capas que forman un 
resonador SMR BAW, con sólo un piezoeléctrico, dos electrodos y capas de alta y baja 
impedancia sobre un sustrato, como el de la Figura 3.6. En este caso el piezoeléctrico lo 
representaremos con el modelo de Mason y el resto de elementos, que son materiales no 
piezoeléctricos, con el modelo presentado en la Figura 3.3, cada uno con sus respectivas 
constantes.

Figura 3.6. Resonador SMR BAW

El modelo equivalente resultante es el que se muestra en la Figura 3.7:

Figura 3.7. Modelo circuital equivalente del resonador de la Figura 3.6

3.8 Impedancia eléctrica en los terminales de un 
piezoeléctrico

Para concluir el capítulo nos disponemos a observar el comportamiento de la 
impedancia eléctrica de una lámina de material piezoeléctrico. Para ello se debe cargar 
los terminales acústicos de la lámina con ZL y ZR. Podremos reescribir las ecuaciones 
(3.32) y (3.33) teniendo en cuenta estas impedancias:

1 2
1 tan sinL

v v h
Z v Z I

j kd j kd j
 

    
 

(3.34)
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1 2
2 sin tanR

v v h
Z v Z I

j kd j kd j
 

    
 

(3.35)

Mediante estas dos expresiones y la expresión (3.36) obtenida de [4] podremos calcular 
la impedancia eléctrica mediante ZELEC=V/I, que resulta en la expresión (3.37), donde 

2

kd   y 
2

2
t

acus p

e
k

Z v


 
.

 0 0 1 2I j C V hC v v   (3.36)
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                           

(3.37)

Podemos simplificar la expresión anterior aproximando ZR y ZL por 0, obteniendo una 
versión reducida de la expresión que resulta en (3.38). La aproximación de las 
impedancias es correcta ya que el aire tiene una impedancia acústica muy baja y la 
impedancia equivalente de un conjunto de capas que formen un espejo acústico también 
será muy baja.

2

0

1 tan
1ELEC tZ k

j C


 

 
  

 
(3.38)

Analizando la ecuación (3.38) vemos como la impedancia eléctrica dependerá de la 
capacidad estática de la lámina de material no piezoeléctrico (C0). Por lo tanto, el área 
de la lámina (parámetro que forma parte de C0) será un parámetro a tener en cuenta a la 
hora de obtener un comportamiento determinado. Por otra parte, obtendremos que la 
frecuencia de antiresonancia, aquella donde la impedancia es máxima y por tanto otro 
aspecto clave en el diseño, será:

2
p

a

v
f

d
 (3.39)

Si recordamos la expresión (2.1) sabremos que el grosor de la lámina es λ/2 a la 
frecuencia de antiresonancia.

Como ya se mostró en el apartado 2.2.4 la respuesta en impedancia eléctrica típica de 
una lámina de material piezoeléctrico será la de la Figura 3.8, que muestra la frecuencia 
de resonancia y la de antiresonancia están muy cerca como expresa la ecuación (2.2).
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Figura 3.8. Respuesta en impedancia de una lámina de piezoeléctrico

3.9 Conclusiones del capítulo

En este capítulo hemos analizado el comportamiento de la onda acústica en los medios 
sólidos. Hemos observado que existe una analogía entre varios parámetros del dominio 
acústico y del dominio eléctrico. A partir del análisis de la onda acústica hemos 
obtenido el modelo de línea de transmisión de la lámina de material no piezoeléctrico y 
el modelo de Mason en el material piezoeléctrico. Mediante estos modelos equivalentes 
podremos obtener otros más complejos que nos permitirán diseñar filtros compuestos 
por resonadores apilados con capas de acoplamiento acústico.

Por otra parte, al estudiar la impedancia eléctrica, hemos observado que tanto el área del 
material como la frecuencia de antiresonancia, controlable mediante el grosor del 
mismo, serán parámetros de diseño a partir de los cuales podremos controlar el 
comportamiento del material como veremos en el próximo capítulo.
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Capítulo 4

4 Modelo y síntesis de CRF 
simétrico y asimétrico

En este capítulo se mostrará como se obtiene un modelo circuital eléctrico a partir del 
modelo de Mason de las láminas de material que forman una estructura CRF, como la 
vista en el apartado 2.2.5.4. Los elementos de estos modelos serán usados en el próximo
capítulo para el diseño de filtros de 2 y 4 polos a partir de la teoría clásica de filtros.

Además, el hecho de que consigamos un modelo circuital eléctrico nos permitirá usar 
las herramientas de análisis electromagnético con las que se trabaja habitualmente, 
simplificando el trabajo.

También se modelará la estructura asimétrica del CRF partiendo del modelo de Mason. 
El conocimiento del funcionamiento del CRF asimétrico es importante ya que se 
desarrollará una variación del filtro de 4 polos comentado anteriormente para que 
incluya ceros de transmisión que mejoren su respuesta.

4.1 Modelo del circuito equivalente CRF básico de dos 
polos

Mediante el uso de dos láminas de piezoeléctricos apiladas se obtiene un filtro de orden 
dos de onda acústica. Este modelo sería el de un SCF, ya que no se estaría 
contemplando el uso de capas de acoplamiento acústico situadas entre ambos 
resonadores.

El CRF puede conseguir mejores anchos de banda y mayor rechazo fuera de la banda de 
paso ya que introduce más polos en la respuesta del SCF debido a que existe un 
desacoplo acústico entre cada una de las etapas, provocado por las capas de 
acoplamiento acústico. Mientras el SCF solo introduce un polo porque no existe este 
desacoplo acústico, el CRF introduce un polo por cada sección de piezoeléctrico.

El esquema a partir del cual obtendremos el modelo es el de la Figura 4.1, que cuenta 
con dos piezoresonadores apilados unidos por una serie de capas de acoplamiento 
acústico. Entre piezoresonadores y capas de acoplamiento existirán electrodos
conectados a masa que apantallaran el campo eléctrico. De esta forma tan solo se 
propagará la onda acústica a la frecuencia de resonancia mecánica. A la hora de llevar a 
cabo el desarrollo se toman los electrodos como electrodos infinitesimales y las capas 
de acoplamiento como un inversor ideal, para simplificar. También se obvia el reflector 
acústico que sostiene el conjunto de piezoresonadores y capas ya que lo que hace es 
confinar la energía dentro del conjunto y no contribuye en el circuito equivalente del 
que partiremos para el diseño del CRF.
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Figura 4.1. Esquema de partida del CRF básico

4.1.1 Desarrollo del modelo

Para empezar con el desarrollo del modelo volveremos a fijarnos en el modelo de 
Mason presentándolo de nuevo en la Figura 4.2.

Figura 4.2. Modelo de Mason

Las impedancias tienen unos valores

1 tan
2

kd
Z jZ

   
 

(4.1)

2 sin

Z
Z

j kd
 (4.2)

donde Z = Zacus·A, d será el grosor del piezoeléctrico y k la constante de propagación de 
la onda acústica (2π/λ).
La relación de transformador será 1:t, siendo t según [4]:

0 0

e
t hC C


  (4.3)
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El condensador tendrá un valor de

0

A
C

d
 (4.4)

y d será, según (3.39):

a

p

f

v
d




2
(4.5)

es decir, λ/2 a la frecuencia de antiresonancia.

Para comenzar el desarrollo uniremos las láminas de material piezoeléctrico, aplicando 
sus modelos de Mason, mediante el inversor de impedancias ideal de valor kcoup, que 
estará conectado a uno de los puertos acústicos del modelo de cada una de las láminas. 
Como ambos lados del circuito serán idénticos y estarán conectados de forma simétrica 
podremos aplicar a ambos lo que desarrollemos para uno de ellos. El circuito de partida 
para el modelo conjunto del CRF formado por las dos láminas será el de la Figura 4.3a.

Figura 4.3. Transformaciones de red del modelo inicial
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Si desplazamos uno de los dos transformadores hasta el mismo nodo donde se encuentra 
el otro, estos se anularán resultando en la Figura 4.3b. Los elementos del circuito por los 
que desplacemos el transformador quedarán escalados. Sus valores ahora serán:

1 2
tan

2

Z kd
Z j

t
    
 

(4.6)

2 2 sin

Z
Z

jt kd
 (4.7)

,
, 2

' R L
R L

Z
Z

t
 (4.8)

2
' coup

coup

k
k

t
 (4.9)

En la Figura 4.3b ya se han eliminado las impedancias de carga acústicas ZL y ZR ya 
que estas se aproximan por un cortocircuito si la energía se conserva dentro del 
piezoeléctrico, como sucede en un montaje con espejos acústicos (SMR).

Podemos obtener una red de impedancias en Π a partir de la red en Τ, aplicando 
transformación de redes mediante matrices de parámetros ABCD. Esto nos 
proporcionará el circuito de la Figura 4.3c. Los valores de Za y Zb son:

1 2
0

2
2aZ Z Z

j C
    (4.10)

1 1 2
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j C
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



     
 

 
(4.11)

La expresión (4.11) puede quedar de la siguiente forma introduciendo Za obteniendo 
(4.12). De esta simplificación podremos obtener la relación entre Zb y Za, que nos será 
útil y que se muestra en (4.13).

1
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1
a
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Z Z
Z

Z
j C


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 
(4.12)
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Z Z

Z Z
j C




 
(4.13)

Siguiendo con Zb, desarrollándola nos quedará como la siguiente expresión, que 
simplificamos a partir de la relación de las impedancias de (4.13).

1
1 1

2
0

2 2
1

b
b

a

ZZ
Z Z Z

ZZ
j C

 
         
     
 

(4.14)
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Zb nos quedará en función de Z1’ y de Za como muestra (4.15). Teniendo en cuenta que 

según (4.6) 1Z    a la frecuencia de antiresonancia, podremos aproximar 

definitivamente Zb por la expresión mostrada en (4.16).
1

1

1 1
2

'b
a

Z
Z Z


 

  
 

(4.15)

2b aZ Z  (4.16)

En [9] se estudia esta última aproximación y se observa que en un rango del 10% de la 
frecuencia de antiresonancia de la lámina de material Za y Zb se comportan de forma 
lineal cumpliendo esta relación.

Para acabar de simplificar la red de impedancias multiplicaremos las matrices ABCD de 
los seis elementos del circuito de la Figura 4.3d, obviando el inversor de impedancias. 
Después, una vez obtengamos el circuito resultante, podremos volver a introducirlo 
dejando una parte de la red equivalente a cada lado.

1 0 1 0 1 0 1 0
1 1 1

1 1 1 1
1 1 1 10 1 0 1 0 1

2 2

a a a

a a a a

Z Z Z

Z Z Z Z

       
                                             

(4.17)

La matriz ABCD resultante en (4.17) se corresponde con una impedancia serie de valor 
Za. Podremos introducir de nuevo el inversor dejando a cada lado de éste una 
impedancia de valor Za/2 y obteniendo la red reducida de la Figura 4.3e. Si no 
contempláramos el inversor de nuevo estaríamos hablando de un SCF. Vemos como de 
esa forma tan solo se introduciría un polo en la respuesta porque ambas láminas se 
comportarían como una sola del doble de grosor, mientras que con el acoplamiento 
acústico se introducen dos polos en el CRF básico, uno por lámina.

Antes de pasar al siguiente apartado buscaremos el valor de Kinv de la Figura 4.3e, el 
valor del inversor de impedancias del circuito resultante. En este circuito ya todos los 
elementos son eléctricos gracias al desarrollo del modelo de Mason. Para encontrar Kinv

deberemos igualar mediante matrices ABCD el conjunto de elementos de la Figura 4.3d 
con los de la Figura 4.3e, es decir (4.18) y (4.19).
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(4.18)
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(4.19)

A partir de igualar (4.18) y (4.19) se obtiene el valor del inversor de impedancias del 
modelo simplificado:

'

24 4
coup coup

inv

K K
K

t
  (4.20)

4.1.2 Síntesis de Za

En estos momentos disponemos de un circuito eléctrico equivalente que solo tiene como 
elementos un par de impedancias complejas en serie, un par de condensadores en 
paralelo y un inversor de impedancias.

Como hicimos en el apartado anterior en la expresión (4.17) trataremos la estructura 
como si no tuviera inversor de impedancia, es decir, con una sola impedancia Za. 
Cuando hayamos conseguido aproximarla volveremos a descomponer el resultado 
obtenido en dos volviendo al circuito de la Figura 4.3e.

La impedancia Za es una función trigonométrica de la frecuencia. Lo que haremos será 
descomponerla en uno o más elementos que guarden cierta linealidad en las frecuencias 
próximas a la frecuencia de antiresonancia.

La opción preferente según [4] es la de un resonador LC serie en serie con el circuito. 
Otras opciones como elementos reactivos por separado o un resonador LC en paralelo 
no son válidos, porque no permiten realizar una aproximación lineal que cumpla 
nuestros requisitos.

Para realizar la síntesis, en [9] se procede a aproximar Za por una recta en función de la 
frecuencia mediante un desarrollo en serie de Taylor de primer orden alrededor de la 
frecuencia de antiresonancia fa:

  ( )
a aa Z ZZ f j A f B   (4.21)

donde
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La impedancia de un resonador LC serie es
1

2
2LCZ j L

C



   
 

(4.24)
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Para obtener los valores de la bobina y el condensador que formarán el resonador LC 
serie que sintetiza Za deberemos introducir (4.22) y (4.23) en (4.21) y compararlo con 
(4.24). Aislando L y C de está última expresión se obtienen

2
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(4.25)
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(4.26)

donde C0 es la capacidad asociada a la lámina de material piezoeléctrico. Si además de 
desarrollar el valor del condensador, desarrollamos kt según la expresión (2.3)
obtenemos los valores del resonador LC serie en función de los parámetros 
tecnológicos:
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El último elemento del circuito que queda por describir es el condensador de la entrada 
y la salida, cuyo valor es

0 0 0

2 a
r r

p

fA
C A

d v
     (4.29)

De este modo ya tenemos todos los valores de los elementos del modelo final del 
circuito equivalente de un CRF básico de dos polos, que resulta en la Figura 4.4 y cuyos 
valores se encuentran en (4.20), (4.27), (4.28) y (4.29), todos ellos en función de los 
parámetros tecnológicos. De modo inverso al paso previo a este desarrollo, ahora 
deberemos dividir el resonador LC en dos partes para colocarlas a cada lado del inversor 
de impedancias, de forma que la bobina se nos divide por dos y el condensador se 
multiplica. Los únicos valores que no corresponden a parámetros propios del material a 
partir del cual se realicen los piezoresonadores serán el área de estos y la frecuencia de 
antiresonancia. Estos parámetros serán nuestros parámetros de diseño a la hora de 
realizar los filtros.

Figura 4.4. Modelo equivalente circuital final de dos láminas de
piezoeléctrico acopladas acústicamente
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Éste es buen momento para explicar que a las láminas de material piezoeléctrico que 
componen un CRF también se las puede denominar piezoresonadores. Como se puede 
ver en el circuito resultante de la Figura 4.4, el modelo equivalente de una lámina es un 
resonador LC. Este resonador está constituido por un material por el que se propaga una 
onda acústica y que realiza una conversión electro-acústica. Por lo tanto, de resonador 
piezoeléctrico pasamos a denominarlo sencillamente piezoresonador.

4.1.3 Validación del modelo CRF simétrico

Para validar el modelo del CRF simétrico obtenido durante este apartado compararemos 
la respuesta que se obtiene mediante la aproximación realizada (Figura 4.4) y en el que 
los resonadores son representados por Za/2 con la respuesta del modelo de partida, el de 
la Figura 4.3a, que tiene incorporado el modelo de Mason en el lugar donde están las 
láminas de material.

Ambas respuestas serán obtenidas mediante el software Advanced Design System, ADS 
en adelante. Para simular la Figura 4.4 se emplea el circuito de la Figura 4.5. Para la 
simulación de la Figura 4.3a emplearemos la Figura 4.6, donde los bloques de tres 
puertos a cada lado del inversor representan el modelo de Mason para una lámina de 
piezoeléctrico. El primero de los tres puertos es eléctrico conformando la entrada o la 
salida del circuito. Los puertos 2 y 3 son acústicos. Uno de ellos esta conectado a masa, 
debido a la baja impedancia del aire como ya hemos comentado anteriormente, y el otro 
al inversor de impedancias.

C
C1
C=C0

C
C2
C=C0

SLC
SLC1

C=2*Ca
L=La/2

SLC
SLC2

C=2*Ca
L=La/2

TLIN
TL2

F=fa
E=90
Z=kcoup/(4*t^2)

Term
Term2

Z=50 Ohm
Num=2

Term
Term1

Z=50 Ohm
Num=1

Figura 4.5. Circuito para simular en ADS la Figura 4.4

TLIN
TL1

F=fa
E=90
Z=kcoup

MASON
MM2

epr=epr
ee=ee
A=A
Zac_mat=Zacus
fa=fa
vp=vp

MASON
MM1

epr=epr
ee=ee
A=A
Zac_mat=Zacus
fa=fa
vp=vp

Term
Term3

Z=50 Ohm
Num=3

Term
Term4

Z=50 Ohm
Num=4

Figura 4.6. Circuito para simular en ADS la Figura 4.3a

Como ya se ha dicho, en estos momentos la respuesta del filtro tan solo depende del 
área de los resonadores, la frecuencia de antiresonancia y los parámetros tecnológicos 
del material. Todavía no hemos desarrollado la forma de obtener un valor de kcoup que 
proporcione una respuesta del filtro correcta, esto se realizará en el próximo capítulo 
donde se mostrará como realizar filtros de forma sistemática. Para el caso de la 
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validación hemos dado un valor de kcoup que proporciona un rizado de 3 dB y un ancho 
de banda relativo del 1%. Los parámetros de diseño se muestran en la Tabla 4.1:

Parámetro Valor
área 400 μm x 400 μm

fa 2.5 GHz
kcoup 0.203

Tabla 4.1. Parámetros de diseño de la validación del modelo CRF simétrico

La comparación de las respuestas de ambos circuitos, Figura 4.7, muestra que la 
aproximación por un resonador LC es muy buena en un rango frecuencial de 
aproximadamente el ±10% de la frecuencia de antiresonancia.
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Figura 4.7. Respuesta del CRF original mediante modelo de Mason (azul) y mediante la 
aproximación por LC serie

4.2 Modelo del circuito equivalente CRF asimétrico 
básico

A continuación veremos el modelo circuital equivalente de un CRF asimétrico de dos 
polos. Este tipo de CRF se caracteriza porque sus piezoresonadores superior e inferior 
tienen distinta superficie. Para desarrollar el modelo equivalente partiremos desde el 
modelo de Mason de los piezoresonadores como hicimos a la hora de desarrollar el 
modelo simétrico. Al final acabaremos obteniendo un modelo como el del CRF 
simétrico en el que solo se añaden los elementos circuitales que corresponden al nuevo 
fragmento de material.

Este apartado nos proporcionará las herramientas con las que realizar un CRF de orden 
4 con ceros de transmisión formado por dos etapas de CRF asimétrico básico. Este 
desarrollo se presentará en el próximo capítulo, donde se muestra el procedimiento de 
diseño sistemático de filtros con CRF.
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4.2.1 Desarrollo del modelo

CRF asimétrico es aquel que esta formado por piezoresonadores de distinta área. Según 
esta definición un CRF asimétrico se corresponde con el de la Figura 4.8. Podremos 
diferenciar dos partes básicas de un CRF asimétrico: la primera es la equivalente a la de 
un CRF simétrico, llamada área activa o AA. La segunda será el área total o AT, que está 
formado tanto por área activa como por no activa. Veremos como el área no activa que 
conforma el resonador asimétrico nos provocará un 0 de transmisión a una frecuencia, 
determinada por el grosor del piezoresonador.

Figura 4.8. Sección cruzada de un CRF asimétrico

Para desarrollar el modelo circuital equivalente partiremos desde el mismo punto que en 
4.1.1: el modelo de Mason de los piezoresonadores que conforman el CRF. Podemos 
ver en la Figura 4.9a como existe una circuito en paralelo conectado al puerto 2. Esto se 
debe al área de resonador que no pertenece al área activa. Vemos como en un extremo 
tiene el puerto y en el otro la impedancia acústica del aire. Los elementos circuitales de 
esta sección en paralelo estarán en función del área no activa del CRF.

El primer paso que llevaremos a cabo para desarrollar el modelo consiste en desplazar 
los transformadores. Si el transformador del área no activa lo desplazamos hacia el 
cortocircuito de su extremo, en sentido opuesto al puerto de salida del CRF, quedará 
eliminado. El transformador correspondiente al área activa de la lámina de 
piezoeléctrico inferior lo desplazaremos hasta la entrada, de forma que tengamos los dos 
transformadores consecutivos. El resultado de estas operaciones de red se aprecia en la 
Figura 4.9b.

Multiplicando las matrices ABCD de los dos transformadores de la entrada 
obtendremos (4.30). Por lo tanto C02/C01:1 será la relación del transformador resultante 
que quedará, Figura 4.9c. Si C02 y C01 fuesen iguales la relación será 1:1, es decir, el 
transformador no seria tenido en cuenta.
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Figura 4.9. Desarrollo del modelo circuital equivalente a partir del modelo de Mason.

Para hacer que los condensadores estén al lado de la red de impedancias en T 
desplazaremos el transformador que nos ha quedado hacia al principio del circuito. De 
esta forma podremos aprovechar los desarrollos realizados para transformar la red en T
del CRF simétrico en el apartado 4.1.1. Los condensadores, al pasar al otro lado del 
transformador quedan escalados. El circuito con las operaciones realizadas hasta ahora 
es el de la Figura 4.9d.

Una vez hemos llegado a este punto podemos observar como existen tres conjuntos de 
elementos compuestos por dos condensadores, uno positivo en paralelo y uno negativo 
en serie, y una red de impedancias en T. A partir de estos conjuntos, en la misma 
disposición, se llegó a un circuito de condensador paralelo y resonador LC serie en serie 
en el apartado 4.1.1. Por lo tanto podemos sustituir los tres conjuntos de elementos de la 
misma manera, el resultado se aprecia en Figura 4.9e. El valor del inversor de 
impedancias acústicas también resultará modificado del mismo modo que 
anteriormente. Los valores resultantes son los siguientes:
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Es destacable comentar que Kinv seguirá teniendo la misma forma que en (4.20) y por 
tanto dependerá del transformador que había en la salida antes de realizar todas las 
simplificaciones, porque es este el que se desplaza a través del inversor, y no del 
transformador que aparece al realizarlas.

Es importante, porque es el hecho diferenciador entre el CRF asimétrico y el CRF 
simétrico, que el resonador LC de la salida por el que se ha sustituido el conjunto 
condensadores-red de impedancias correspondiente al área no activa del CRF está en 
paralelo. Por lo tanto el cero de transmisión del CRF asimétrico estará a la frecuencia 
donde el condensador y la bobina resultantes resuenen. Esta frecuencia será
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(4.40)

Gracias a esta expresión podemos colocar un cero de transmisión a una frecuencia que 
acentúe el rechazo fuera de banda en zonas cercanas a la banda de paso. Veremos esto 
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cuando diseñemos el filtro de orden 4 con ceros de transmisión. El problema que se 
plantea es que una frecuencia de antiresonancia distinta provoca un grosor de la lámina 
de material distinto. Al tener distinto grosor la fabricación de un CRF asimétrico de 
estas características puede complicarse excesivamente.

Además, de (4.40) se deducen otras dos cosas: la frecuencia de resonancia siempre 
estará por debajo de la de antiresonancia. Y el área no activa del CRF asimétrico no 
interviene en la posición del cero de transmisión. Si bien, después de diversas 
simulaciones con ADS se ha comprobado que el ancho del cero de transmisión sí es 
directamente proporcional al área no activa.

4.2.2 Validación del modelo CRF asimétrico

Del mismo modo que con el CRF simétrico, procederemos a validar el modelo circuital 
equivalente obtenido para el CRF asimétrico. Para ello compararemos el modelo 
circuital obtenido, que se muestra en Figura 4.9e, con el circuito que tiene los modelos 
de Mason de las láminas de piezoeléctrico, Figura 4.9a.

El modelo circuital obtenido es el que aparece en la Figura 4.10. El circuito que 
contiene el modelo de Mason de las láminas de piezoeléctrico se expone en la Figura 
4.11. El cero de transmisión, según la expresión (4.40) y los parámetros de la Tabla 4.2
debería estar a 2.441 GHz.
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Figura 4.10. Modelo circuital equivalente del CRF asimétrico.
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Figura 4.11. Modelo del CRF asimétrico formado por los modelos de Mason de sus capas
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Parámetro Valor
área activa 400 μm x 400 μm

fa 2.5 GHz
kcoup 0.203

área no activa 0.1·Aactiva

Tabla 4.2. Parámetros para la validación del CRF asimétrico

El resultado de estas simulaciones mediante ADS se observa en la Figura 4.12. Vemos 
como de nuevo los valores en un rango de ±10% de fa son prácticamente idénticos, 
demostrando la validez del modelo equivalente para el CRF asimétrico.
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Figura 4.12. Respuesta del modelo equivalente para el CRF asimétrico (rojo) y
para el diseño implementado mediante los modelos de Mason (azul)

4.3 Conclusiones del capítulo

En este capítulo se ha visto como se obtiene un modelo circuital equivalente totalmente 
eléctrico del conjunto de elementos de un CRF que nos permite trabajar con los filtros 
acústicos de forma simplificada. Una vez desarrollados los circuitos eléctricos 
equivalentes para el CRF simétrico y asimétrico hemos podido comprobar que estos son 
iguales salvo por los elementos circuitales que corresponden al área no activa del CRF 
asimétrico. Debido al resonador LC serie en paralelo, en el CRF asimétrico se da un 
cero de transmisión a una frecuencia determinada. Nosotros podremos controlar la 
posición de esta frecuencia a través de la frecuencia de antiresonancia del 
piezoresonador.

El haber obtenido estos modelos circuitales nos permitirá utilizar los elementos por los 
que hemos sustituido el modelo de Mason, es decir, el condensador paralelo y el 
resonador LC serie, como elementos que conforman un filtro pasobanda, tal como 
veremos en el capítulo 0.
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Capítulo 5

5 Diseño sistemático de filtros 
con CRF

En este capítulo estudiaremos primero cuál es la teoría clásica de filtros. Para esto nos 
ayudaremos de [10]. Una vez conozcamos cual es el procedimiento habitual para la 
obtención de filtros, adaptaremos la teoría a los elementos circuitales equivalentes que 
obtuvimos en el capítulo 0 para realizar filtros basados en resonadores de onda acústica. 
Nuestros filtros, CRF, incorporan un acoplamiento acústico entre los piezoresonadores.

De esta forma conseguiremos filtros pasobanda mediante CRF de orden 2 y orden 4. El 
desarrollo del filtro de orden 4 será replanteado de nuevo en el próximo capítulo 
utilizando CRF asimétricos para introducir ceros de transmisión en la respuesta.

5.1 Teoría clásica de filtros

El primer paso para el diseño de filtros se basa en realizar un prototipo pasobajo con 
elementos concentrados. Veremos como después del desarrollo tendremos oportunidad 
de sustituir estos elementos concentrados por los del modelo equivalente para el CRF.

Existen diferentes tipos de prototipos pasobajo, dependiendo del tipo de filtro que se va 
a realizar. Los más sencillos serán los Butterworth y los Chebyshev, que comparten
prototipo. Ambos poseen los ceros de transmisión en el infinito, y su diferencia estriba 
en la posición de los polos en el plano complejo. Si observamos la Figura 5.1, vemos 
como los polos en el semiplano complejo para el caso Butterworth (a) forman una 
circunferencia, mientras que para el caso Chebyshev (b) forman una elipse.

Figura 5.1. Semiplano complejo para un filtro Butterworth (a) y para un filtro
Chebyshev (b), ambos de orden 5 [10]
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La respuesta de estos tipos de filtros en el prototipo pasobajo será diferente debido a la 
posición de los polos. Observando la Figura 5.2a, donde se muestra la atenuación 
respecto frecuencia del prototipo, vemos como la respuesta en la banda de paso es 
plana. Por este motivo los filtros de tipo Butterworth también se denominan filtros 
maximalmente planos. En la Figura 5.2b vemos como los filtros de Chebyshev se 
caracterizan por tener un rizado constante en la banda de paso. Este rizado provoca que 
la pendiente de la respuesta sea mucho más aguda al final de la banda de paso. Es por 
este motivo que los filtros Chebyshev tienen un mayor rechazo que los Butterworth a la 
misma distancia en frecuencia.

Figura 5.2. Atenuación de un filtro Butterworth (a) y de un Chebyshev (b) [10]

El prototipo pasobajo para un filtro Chebyshev o Butterworth es el que se muestra en la 
Figura 5.3. El prototipo pasobajo se define como aquel que tiene los valores de sus 
elementos normalizados para tener una impedancia de fuente igual a 1 (g0=1) y una
frecuencia de corte angular también a 1 (Ωc=1). Vemos como el prototipo pasobajo se 
realiza colocando tantos condensadores en paralelo y bobinas serie como el valor del 
orden del filtro. Es indistinto comenzar colocando bobinas o condensadores. El valor de 
estos elementos discretos se puede calcular según unas formulas u obtener directamente 
de unas tablas, ver anexo.

El siguiente paso será realizar una transformación frecuencial y de impedancias para 
obtener las características frecuenciales y los valores de los elementos. La 
transformación frecuencial que llevaremos a cabo será la de un filtro pasobanda, ya que 
para este caso aparecen elementos L y C, y de esta forma aprovecharemos la 
aproximación de los CRF por un resonador LC.

La transformación frecuencial será

0
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 
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(5.1)

donde FBW será el ancho de banda fraccional, ω0 la frecuencia central del filtro y ω1 y 
ω2 las frecuencias de corte pasobanda. La relación entre estos parámetros es

2 1
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 



 (5.2)

0 1 2  (5.3)
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Figura 5.3. Prototipo pasobajo de un filtro Butterworth o Chebyshev

De esta forma, los elementos que antes figuraban en nuestro prototipo pasobajo ahora se 
convertirán en lo siguiente:

- Los condensadores paralelo se convertirán en un resonador LC paralelo en paralelo 
con la estructura. Los valores de estos elementos en paralelo serán
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(5.4)
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- Las bobinas serie se convertirán en un resonador LC serie en serie con la estructura.
Sus valores quedarán como

0
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donde γ0 representa en este caso la impedancia característica.

Esto lo podemos considerar un escalado en impedancias, ya que las impedancias de 
fuente y de carga serán multiplicadas por la impedancia característica del circuito. Así 
pues, el prototipo pasobajo de la Figura 5.3 pasará a convertirse en el circuito mostrado 
en la Figura 5.4.
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Figura 5.4. Prototipo con transformación frecuencial y de impedancias realizadas

En estos momentos nuestra estructura consta de resonadores LC serie y paralelo de 
forma consecutiva. A nosotros nos interesa que todos los resonadores sean de un mismo 
tipo, preferiblemente serie porque es lo que se asemeja más al modelo equivalente del 
CRF obtenido en el apartado 4.1.2.

El método para transformar los resonadores consiste en introducir inversores de 
impedancias [9], de modo que al desplazarlos sobre un resonador, éste pasa de paralelo 
a serie o de serie a paralelo. Es destacable citar que se puede trabajar con inversores de 
impedancias de varias maneras: Una, mantener los resonadores iguales y variar los 
inversores de impedancias. Dos, mantener iguales los inversores de impedancias y 
variar los resonadores. Y tres, una mezcla de las dos opciones anteriores, en que ni 
resonadores ni inversores de impedancias son fijos. Nosotros optaremos por la primera 
alternativa, de forma que todos los resonadores piezoeléctricos sean idénticos y solo 
debamos tratar con distintos valores de acoplamiento.

El esquema resultado de insertar inversores de impedancias en la Figura 5.4 es:

Figura 5.5. Esquema circuito pasobanda con inversores de impedancia

Los valores de los inversores de impedancias serán:
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A partir de estas ecuaciones se pueden controlar algunas de las características del filtro. 
FBW y ω0 serán especificaciones del filtro, los valores de los coeficientes del filtro (g) 
se obtendrán de las tablas, y las bobinas y condensadores se obtendrán a partir de estos
parámetros y las ecuaciones (5.4), (5.5), (5.6) y (5.7).

5.2 Diseño sistemático de filtros de orden 2 con CRF 
simétrico

A continuación, siguiendo los pasos a donde nos ha llevado la teoría clásica de filtros, 
realizaremos un filtro pasobanda Chebyshev de orden 2 mediante la construcción de un 
CRF.

A la hora de realizar los CRF debemos plantearnos, en primer lugar, la posición de los 
elementos que forman el modelo circuital equivalente ya presentado en la Figura 4.4. En 
el caso del CRF de orden 2 el esquema para el filtro pasobanda según la teoría clásica
de filtros será:

Figura 5.6. Esquema del filtro pasobanda según la teoría clásica para el CRF de orden 2

Los resonadores LC se implementarán según el modelo equivalente que presenta un 
resonador serie LC por cada lámina de material piezoeléctrico. Cuanto más pequeño sea 
el ancho de banda del filtro mejor será la aproximación que realizamos en el apartado 
4.1.2, ya que dijimos que el modelo se comportaría linealmente cerca de una cierta 
frecuencia. El inversor K1,2 será un inversor de impedancias acústico ya que a él están 
conectados los puertos acústicos del primer y del segundo piezoresonador. El siguiente 
paso será implementar los inversores de impedancias de la entrada y la salida, 
aprovechando la presencia de un condensador paralelo en el modelo equivalente [9].

Estos inversores de impedancias de los extremos se pueden realizar mediante una T de 
condensadores como la de la siguiente figura:

Figura 5.7. Inversor de impedancias formado por T de condensadores
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Si comparamos la matriz ABCD de la T de condensadores (expresión (5.11)) con la 
matriz ABCD de un inversor de impedancias (expresión (5.12)) vemos que se tiene que 
cumplir (5.13).
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Para poder implementar la T de condensadores descrita y que en nuestro filtro no quede 
afectado el diseño inicial deberemos introducir un condensador en serie del mismo valor 
que el condensador negativo, pero signo opuesto. Este condensador afectará al valor del 
resonador LC del modelo equivalente. De esta forma el circuito de la Figura 5.6 pasará 
a ser:

Figura 5.8. Circuito equivalente del CRF simétrico con inversores implementados

En un filtro pasobanda, los resonadores por los que esta formado deben resonar a la 
frecuencia central del filtro, que en este caso será:

0

0

0

1

2
2

2 2
a a

a

f
L C C

C C






(5.14)

Esta condición nos proporcionará una ecuación de diseño al introducir (4.27), (4.28) y
(4.29) en (5.14) y es que la frecuencia de antiresonancia de los piezoresonadores deberá 
ser la frecuencia central del filtro:

0af f (5.15)

Volviendo a los inversores de impedancias laterales vistos anteriormente hemos visto 
que K01 se expresa como (5.8) y que se tiene que cumplir (5.13), con lo que podemos 
plantear otra igualdad, (5.16), en la que si introducimos (4.27), (4.29) y (5.15) podremos 
aislar el área del piezoresonador como queda en (5.17), obteniendo la segunda ecuación 
de diseño. Este es buen momento para comentar que el condensador negativo externo de 
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la T de condensadores es despreciado, ya que una red de condensadores en L puede ser 
una buena aproximación a la red en T

0 0

0 01 0 1

1 2
a

c

L
Z FBW

C g g







(5.16)

2
0 1

2 3 2
0 0

2

acus

e g g
A

f Z FBW Z 
 (5.17)

Finalmente, el único parámetro del que nos queda conocer su valor es el acoplamiento 
acústico, kcoup. Este acoplamiento acústico se corresponderá con K12 para este caso del 
CRF básico, cuya expresión hemos visto en (5.9). Si introducimos la formula de La vista 
en (4.27) obtendremos que kcoup tendrá un valor de

1 22
acus

coup

FBW Z A
k

g g

 
 (5.18)

Llegados a este punto ya disponemos de las ecuaciones de diseño para realizar un filtro 
Chebyshev mediante resonadores piezoeléctricos. Ahora disponemos de dos ecuaciones 
de diseño con las que obtendremos el área y el grosor de las láminas de material (a 
partir de la frecuencia de antiresonancia). Por otra parte, también conocemos el 
acoplamiento acústico que deberá ofrecer el conjunto de capas de acoplamiento 
acústico.

En la Tabla 5.1 se muestran las requisitos del filtro que diseñaremos, mientras que en la 
Tabla 5.2 se muestran los parámetros que resultan de aplicar las ecuaciones de diseño.

Parámetro Valor
Orden 2

f0 2.5 GHz
FBW 0.01

Impedancia de 
fuente y de carga

50 Ω

Rizado 3 dB
Tabla 5.1. Requisitos del filtro a realizar

Parámetro Valor
fa 2.5 GHz
A 4.504·10-7 m2

kcoup 0.203
Tabla 5.2. Parámetros de diseño del filtro

Para corroborar el buen funcionamiento del filtro Chebyshev mediante CRF simétrico 
de orden 2, se muestra en la simulación el filtro realizado con CRF y un filtro ideal
Chebyshev con elementos discretos. Los esquemáticos de la simulación y sus 
parámetros se pueden observar en la Figura 5.9.
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S_Param
SP1

Step=0.1 MHz
Stop=2.6e9
Start=2.4e9

S-PARAMETERS

Term
Term4

Z=50 Ohm
Num=4

Term
Term2

Z=(g3*50) Ohm
Num=2

PLC
PLC1

C=Cp
L=Lp

SLC
SLC1

C=Cs
L=Ls

Term
Term1

Z=50 Ohm
Num=1

TLIN
TL1

F=f0
E=90
Z=kcoup

Term
Term3

Z=50 Ohm
Num=3

MASON
MM1

epr=epr
ee=ee
A=A
Zac_mat=Zac_mat
fa=fa
vp=vp

MASON
MM2

epr=epr
ee=ee
A=A
Zac_mat=Zac_mat
fa=fa
vp=vp

VAR
Elementos_filtro_concentrados

Cp=g2/(FBW*2*pi*f0*Z0)
Lp=1/(((2*pi*f0) 2̂)*Cp)
Cs=1/(((2*pi*f0)^2)*Ls)
Ls=(Z0*g1)/(FBW*2*pi*f0)

Eqn
Var

VAR
Valores_diseño

fa=f0
d=vp/(2*fa)
ep=eps*epr
eps=8.854187e-12
A=2*ee^2*g0*g1/(f0 2̂*Z0*FBW*pi^3*Zac_mat*ep 2̂)
kcoup=(pi*FBW*Zac_mat*A)/(2*((g1*g2) (̂1/2)))

Eqn
Var

VAR
Parametros_filtro

g3=5.8096
g2=0.5339
g1=3.1015
g0=1.0

Eqn
VarVAR

Requerimientos

Z0=50
FBW=0.01
f0=2.500001e9

Eqn
VarVAR

Parametros_material

Zac_mat=3.7e7
ee=1.5
epr=10.5
vp=11350

Eqn
Var

Figura 5.9. Esquemático del filtro realizado con CRF simétrico

Podemos apreciar en la Figura 5.10 como ambos filtros coinciden perfectamente a lo 
largo de la banda de paso. Las perdidas de inserción son despreciables y el rizado de 3 
dB cumple con lo especificado.
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Figura 5.10. Respuesta del CRF de orden dos (azul) y del Chebyshev ideal (rojo)

5.3 Diseño sistemático de filtros de orden 4 con CRF 
simétrico

Una vez realizado el filtro de orden 2 con CRF simétrico, daremos un paso más, para 
realizar un filtro de orden 4 usando dos etapas de CRF simétrico de dos polos cada una 
con acoplamientos eléctricos y acústicos.

El diseño consiste en unir dos CRF simétricos mediante un acoplamiento eléctrico que 
implementaremos mediante una línea de transmisión. El esquema es el siguiente:

Figura 5.11. Esquema de un filtro de orden 4 con CRF

Según la imagen, podemos ver como este filtro de 4 polos esta compuesto por dos 
etapas básicas de CRF. Dentro de cada etapa, entre los piezoresonadores, existe un 
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acoplo acústico. Entre ambas etapas el acoplamiento es eléctrico, ya que se ha vuelto a 
transformar la señal al dominio eléctrico a la salida del primer CRF básico.

Para obtener un modelo circuital de esta configuración podemos unir los modelos
circuitales equivalentes de cada uno de los CRF simétricos básicos, uniéndolos
mediante la línea de transmisión. El acoplo se realiza mediante este elemento debido a 
que es el único que unido a los condensadores intrínsecos del CRF básico puede 
modelar un inversor de impedancias. Observando los pasos realizados en el apartado 
5.2, una vez se han añadido los condensadores de valor C0 para poder realizar los 
inversores de impedancia de los extremos podremos representar el circuito equivalente 
para el CRF de orden 4 como se muestra en la Figura 5.12. De nuevo, en el inversor de 
impedancias en T podremos prescindir del condensador negativo externo, de modo que 
en realidad tendremos un inversor en L.

Figura 5.12. Circuito equivalente para el filtro de 4 polos de dos CRF simétricos

Ahora es el momento de obtener las ecuaciones de diseño de forma análoga a como lo 
hicimos para el caso del CRF básico.

Al ser los mismos resonadores LC, la frecuencia a la que resonarán (por tanto la 
frecuencia central del filtro) será la misma que en el caso del CRF básico: la frecuencia 
de antiresonancia.

0 af f (5.19)

De nuevo la igualdad (5.16), que relaciona el valor del inversor de impedancias en T 
con el teórico, sigue siendo válida, por lo que el área de los resonadores seguirá siendo

2
0 1

2 3 2
0 0

2

acus

e g g
A

f Z FBW Z 
 (5.20)

Y el acoplo acústico se calculará de la misma manera, llegando a la ecuación (5.21). 
Como el circuito es simétrico, el acoplo acústico de la primera etapa será igual al de la 
segunda etapa.

1 22
acus

coup

FBW Z A
k

g g

 
 (5.21)

El único nuevo aspecto cuyas características deberemos calcular serán los parámetros de
la línea de transmisión que realizará el acoplamiento eléctrico. Debemos entender el 
bloque de K2,3 como un inversor de impedancias, de modo que el producto de matrices 
ABCD de los elementos de su interior debe ser igual a la matriz ABCD de un inversor 
de impedancias. El coeficiente de acoplamiento K será el calculado según (5.9) para 
K2,3. La matriz ABCD de un inversor de impedancias, aunque se ha visto con 
anterioridad, es la de (5.22). El producto de las matrices ABCD que conformarán el 
inversor de impedancias será (5.23).
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Al igualar (5.22) y (5.23) se obtienen las siguientes dos expresiones:
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  (5.24)
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De forma que, si resolvemos el sistema que forman (5.24) y (5.25), encontraremos la 
longitud eléctrica de la línea (βl) y su impedancia característica (Za):

 1
0cosl K C  (5.26)

2 2
0
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K C





 (5.27)

Notemos como la longitud eléctrica βl será un valor negativo para que Za sea un valor 
real.

Podemos añadir estas dos ecuaciones a las ecuaciones de diseño que necesitamos para 
realizar el Chebyshev de orden 4 mediante CRF. Una vez conocemos la impedancia 
característica y la longitud eléctrica de la línea de transmisión conocemos como obtener 
todos los parámetros de diseño, de forma que pasaremos a realizar la simulación de un 
filtro de 4 polos con este método.

Las especificaciones del filtro serán las de la Tabla 5.3:

Parámetro Valor
Orden 4

f0 2.5 GHz
FBW 0.001

Impedancia de 
fuente y de carga

50 Ω

Rizado 0.1 dB
Tabla 5.3. Requisitos del filtro a realizar
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Parámetro Valor
fa 2.5 GHz
A 1.61·10-6 m2

kcoup 0.065
βlLT -89.19º
ZaLT 68.56 Ω

Tabla 5.4. Parámetros de diseño del filtro

El esquemático que se ha simulado en ADS para comparar el funcionamiento del 
Chebyshev de 4 polos mediante CRF con el Chebyshev con elementos ideales es el 
siguiente:

VAR
VAR10

ZLT=-sin(betaL)/(kelec*(2*pi*f 0) 2̂*(ep*A1/d) 2̂)
betaL=-acos(kelec*2*pi*f 0*ep*A1/d)

Eqn
Var

VAR
Lamedios

Lde=Zac_mat*v p 2̂/(2*32*ee 2̂*f 0 3̂*A1)
Liz=Zac_mat*v p 2̂/(2*32*ee 2̂*f 0 3̂*A1)

Eqn
Var

VAR
Elementos_f iltro_concentrados

Cp4=g4/(FBW*2*pi*f 0*Z0)
Cp2=g2/(FBW*2*pi*f 0*Z0)
Lp4=1/(((2*pi*f 0) 2̂)*Cp4)
Lp2=1/(((2*pi*f 0) 2̂)*Cp2)
Cs3=1/(((2*pi*f 0) 2̂)*Ls3)
Cs1=1/(((2*pi*f 0) 2̂)*Ls1)
Ls3=(Z0*g3)/(FBW*2*pi*f 0)
Ls1=(Z0*g1)/(FBW*2*pi*f 0)

Eqn
Var

VAR
Parametros_f iltro

g5=1.3554
g4=0.8181
g3=1.7704
g2=1.3062
g1=1.1088
g0=1

Eqn
Var

VAR
Valores_diseño

d=v p/(2*f 0)
ep=eps*epr
eps=8.854187e-12
kt=(ee 2̂/(Zac_mat*ep*v p)) (̂1/2)
A2=2*ee 2̂*g4*g5/(f 0 2̂*Z0*FBW*pi 3̂*Zac_mat*ep 2̂)
A1=2*ee 2̂*g0*g1/(f 0 2̂*Z0*FBW*pi 3̂*Zac_mat*ep 2̂)

Eqn
Var

VAR
VAR4

kelec=FBW*2*pi*f 0*(Liz*Lde/(g2*g3)) (̂1/2)
k2=pi*FBW*Zac_mat*A2/(2*g3*g4)
k1=pi*FBW*Zac_mat*A1/(2*g1*g2)

Eqn
Var

VAR
SP1

Z0=50
FBW=0.001
f 0=2.5e9

Eqn
Var

VAR
Parametros_material

Zac_mat=3.7e7
ee=1.5
epr=10.5
v p=11350

Eqn
Var

S_Param
SP1

Step=0.1 MHz
Stop=f 0+0.5e9
Start=f 0-0.5e9

S-PARAMETERS

Term
Term2

Z=50 Ohm
Num=2MASON

MM3

epr=10.5
ee=1.5
A=A2
Zac_mat=3.7e7
f a=f 0
v p=11350

TLIN
TL2

F=f 0
E=90
Z=k2MASON

MM4

epr=10.5
ee=1.5
A=A2
Zac_mat=3.7e7
f a=f 0
v p=11350

TLIN
TL3

F=f 0
E=betaL*180/pi
Z=ZLT

MASON
MM7

epr=10.5
ee=1.5
A=A1
Zac_mat=3.7e7
f a=f 0
v p=11350

Term
Term3

Z=50 Ohm
Num=3

Term
Term4

Z=50 Ohm
Num=4

PLC
PLC2

C=Cp4
L=Lp4

SLC
SLC4

C=Cs3
L=Ls3

PLC
PLC1

C=Cp2
L=Lp2

SLC
SLC1

C=Cs1
L=Ls1

Term
Term1

Z=50 Ohm
Num=1

MASON
MM1

epr=10.5
ee=1.5
A=A1
Zac_mat=3.7e7
f a=f 0
v p=11350

TLIN
TL1

F=f 0
E=90
Z=k1

Figura 5.13. Esquemático del Chebyshev de orden 4

Para este filtro de orden 4 hemos reducido el ancho de banda debido a que así el 
funcionamiento será mejor. Esto se debe a que al aumentar el orden del filtro la 
aproximación que hicimos de Za en el apartado 4.1.2 deja de ser tan precisa a una cierta 
distancia frecuencial. El resultado de la simulación se muestra en la siguiente captura:
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Figura 5.14. Respuesta del filtro de orden 4 realizado con CRF (rojo)
y con elementos ideales (azul)

La respuesta en la banda de paso es muy similar a la ideal, mientras que fuera de esta el 
rechazo es algo mayor para el filtro diseñado con CRF, lo cual no perjudica el 
comportamiento. Este tipo de respuesta, tan estrecha, y con un rechazo fuera de banda 
tan alto puede ser muy útil en aplicaciones donde existen muchos canales y estos tienen 
poca separación entre sí.

5.4 Conclusiones del capítulo

En este capítulo se ha desarrollado la teoría clásica para el diseño de filtros pasobanda y 
la hemos adaptado a los elementos de que disponemos en el modelo equivalente de un 
CRF, de forma que podamos disponer de un conjunto de etapas LC serie y así poderlas 
sustituir por nuestros piezoresonadores.

De esta forma hemos conseguido realizar un filtro Chebyshev de orden 2 con CRF, lo 
cual mantiene las prestaciones y nos beneficia en lo que respecta al tamaño del 
dispositivo resultante.

Para el filtro de orden 4 también hemos desarrollado un método cerrado de diseño que 
permite mejorar las prestaciones significativamente respecto otros ordenes. Aunque el 
aumento de dimensiones que conlleva un filtro de este orden es relativamente grande 
debemos tener en cuenta que hablaremos de dimensiones del orden de pocos μm2.



60



Diseño de filtros con CRF asimétricos

61

Capítulo 6

6 Diseño de filtros con CRF 
asimétricos

Para cerrar el trabajo, en este último capítulo veremos un posible método para realizar 
un filtro con un par de ceros de transmisión. Este método está basado en sustituir los 
CRF simétricos por CRF asimétricos. Esto puede hacer que mejoren las prestaciones de 
los filtros realizados anteriormente, proporcionando un mayor rechazo fuera de banda.
En concreto veremos que sucede al realizar estos cambios en el filtro de orden 4 del 
capítulo 0.

6.1 Filtro de orden 4 con CRF asimétrico

Anteriormente realizamos un filtro de cuatro polos uniendo dos etapas de CRF 
simétrico. Podríamos realizar el mismo proceso, pero en lugar de unir dos etapas CRF 
simétricas, poniendo dos etapas de CRF asimétrico. De esta forma obtenemos un filtro 
de orden 4 con un par de ceros de transmisión que permiten mejorar el rechazo fuera de 
banda.

El esquema del conjunto sería igual al del caso de resonadores simétricos, salvo que los 
resonadores que se encuentran junto a la entrada y la salida del filtro tendrán un mayor 
área:

Figura 6.1. Filtro de 4 polos con CRF asimétricos

Según explicamos anteriormente, el modelo equivalente para un CRF asimétrico es 
similar que el de un CRF simétrico con la particularidad de que hemos de añadir un 
resonador LC serie en paralelo y un condensador debido al área no activa, tanto en la 
entrada como en la salida como muestra el esquema de la Figura 6.1. Estos resonadores 
provocan los ceros de transmisión en la respuesta del filtro. Veamos como quedaría el 
circuito equivalente para este caso:
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Figura 6.2. Circuito equivalente para un filtro de orden 4 con dos etapas de CRF asimétrico

A la hora de realizar este circuito equivalente no hemos colocado los transformadores 
de la entrada de las etapas asimétricas para simplificar el conjunto. En principio esto no 
afecta porque el área y grosor de todos los resonadores del área activa será el mismo 
según las ecuaciones de diseño. Vemos como para este caso volvemos a tener una línea
de transmisión que unida a los condensadores intrínsecos de las láminas de material 
piezoeléctrico formarán el acoplamiento eléctrico entre las dos etapas de CRF. Los 
elementos correspondientes a los resonadores que introducen los ceros de transmisión 
son Lri/2, 2Cri, Lrf/2 y 2Crf, mientras que los condensadores que existen junto a ellos, 
también provocados por las asimetrías son Ci y Cf. Las ecuaciones para calcular sus 
valores serán las mismas que vimos en el momento de desarrollar el circuito equivalente 
para el CRF asimétrico, pero debemos tener en cuenta que es posible que el área no 
activa no sea la misma para las dos etapas y el grosor tampoco coincida:
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donde AT1 y AT2 serán el área total de la primera y segunda etapa de CRF asimétrico, di

y df serán el grosor de la zona no activa para cada una de las etapas, Ci y Cf serán los 
condensadores que aparecen al inicio y al final del filtro, también provocados por las 
asimetrías, y ωa,i y ωa,f serán las frecuencias angulares de antiresonancia de cada etapa 
asimétrica.
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En la realización de este filtro nos interesa poder colocar los ceros a unas frecuencias 
concretas que permitan aumentar el rechazo fuera de banda. Para eso, asignaremos unas 
frecuencias de antiresonancia para la sección asimétrica de cada etapa. Hemos de tener 
en cuenta que los resonadores acústicos deberán tener todos una frecuencia de
antiresonancia igual a la frecuencia central del filtro según la condición (5.15), que 
sigue siendo vigente, y que por lo tanto el grosor de sus áreas no activas será distinto al 
del área activa. Esta diferencia de grosores plantea una serie de problemas en la 
fabricación de este tipo de dispositivos, ya que las técnicas de fabricación aún se están 
perfeccionando para estos resonadores y no se puede afirmar a día de hoy que sea viable 
realizar este tipo de filtros.

Los ceros de transmisión aparecerán a la frecuencia de resonancia del resonador LC 
serie en paralelo. Habiendo simulado en distintas condiciones, para un FBW=0.01 lo 
óptimo parece situar los ceros de transmisión un 2% por encima y por debajo de la 
frecuencia central del filtro. A partir de estas características y reescribiendo (4.40) como 
(6.7) podremos conocer la frecuencia de antiresonancia de la lámina, y por lo tanto su 
grosor.
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Ya que las diferencias entre el filtro que nos ocupa y el realizado en el apartado 5.3 son 
los resonadores de la entrada y la salida y sus condensadores asociados, todos los 
parámetros de diseño que tuvimos que resolver para el caso simétrico, incluido la línea
de transmisión que realiza el acoplo eléctrico, se calcularán de la misma manera.

A continuación plantearemos las ecuaciones de diseño para el filtro de orden 4 
compuesto por dos etapas de CRF asimétrico.
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El filtro que realizaremos para comprobar la validez de este método de diseño tendrá las 
características que podemos ver en Tabla 6.1, mientras que los parámetros de diseño 
que se obtienen están en la Tabla 6.2.

Parámetro Valor
Orden 4

f0 2.5 GHz
FBW 0.01

Impedancia de 
fuente y de carga

50 Ω

Rizado 0.1 dB
f0TX1 2.45 GHz
f0TX2 2.55 GHz

Tabla 6.1. Requisitos del filtro a realizar

Parámetro Valor
fa 2.5 GHz
A 1.61·10-6 m2

kcoup 0.065
βlLT -81.907º
ZaLT 67.891 Ω
fa-res1 2.509 GHz
fa-res2 2.612 GHz
Ares1 1.61·10-8 m2

Ares2 3.22·10-9 m2

Tabla 6.2. Parámetros de diseño del filtro

fa-res1 y Ares1 representan la frecuencia de antiresonancia y el área de la sección de 
piezoeléctrico que no forma parte del área activa de la primera etapa de CRF asimétrico, 
mientras que fa-res2 y Ares2 son los de la segunda etapa de CRF asimétrico. Las áreas de
los resonadores asimétricos se han obtenido por optimización, de forma que los ceros de 
transmisión no afectaran a la banda de paso. Realizando la optimización se ha 
comprobado que, generalmente, para asegurar un buen funcionamiento, el área del 
primer resonador paralelo es mayor que la del segundo.

El esquemático que se simula mediante ADS para realizar este filtro con ceros de 
transmisión es:
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PLC
PLC2

C=Cp4
L=Lp4

SLC
SLC4

C=Cs3
L=Ls3

PLC
PLC1

C=Cp2
L=Lp2

SLC
SLC1

C=Cs1
L=Ls1

C
C1
C=Cres2

SLC
SLC2

C=Crf
L=Lrf

C
C2
C=Cres1

SLC
SLC3

C=Cri
L=Lri

Term
Term3

Z=50 Ohm
Num=3

Term
Term4

Z=50 Ohm
Num=4

VAR
VAR9

mult2=0.02 {t}
mult1=0.1 {t}

Eqn
VarVAR

VAR5

Lde=Zac_mat*vp^2/(2*32*ee^2*f0^3*A1)
Liz=Zac_mat*vp 2̂/(2*32*ee 2̂*f0^3*A1)

Eqn
Var

VAR
Elementos_filtro_concentrados

Cri=(4/(((pi/kt) 2̂)-8))*Cres1
Crf=(4/(((pi/kt) 2̂)-8))*Cres2
Lri=0.25*((pi/kt)^2)*(1/(Cres1*((2*pi*fares1)^2)))
Lrf=0.25*((pi/kt)^2)*(1/(Cres2*((2*pi*fares2)^2)))
Cp4=g4/(FBW*2*pi*f0*Z0)
Cp2=g2/(FBW*2*pi*f0*Z0)
Lp4=1/(((2*pi*f0)^2)*Cp4)
Lp2=1/(((2*pi*f0)^2)*Cp2)
Cs3=1/(((2*pi*f0) 2̂)*Ls3)
Cs1=1/(((2*pi*f0) 2̂)*Ls1)
Ls3=(Z0*g3)/(FBW*2*pi*f0)
Ls1=(Z0*g1)/(FBW*2*pi*f0)

Eqn
Var

VAR
Parametros_filtro

g5=1.3554
g4=0.8181
g3=1.7704
g2=1.3062
g1=1.1088
g0=1

Eqn
Var

VAR
Valores_diseño

d=vp/(2*f0)
ep=eps*epr
eps=8.854187e-12
kt=(ee 2̂/(Zac_mat*ep*vp)) (̂1/2)
A2=2*ee^2*g4*g5/(f0^2*Z0*FBW*pi^3*Zac_mat*ep 2̂)
A1=2*ee^2*g0*g1/(f0^2*Z0*FBW*pi^3*Zac_mat*ep 2̂)

Eqn
Var

VAR
VAR4

kelec=FBW*2*pi*f0*(Liz*Lde/(g2*g3)) (̂1/2)
k2=pi*FBW*Zac_mat*A2/(2*g3*g4)
k1=pi*FBW*Zac_mat*A1/(2*g1*g2)

Eqn
Var

VAR
Resonador_paralelo_II

fares2=f02/(((pi/kt) 2̂-8)/(pi/kt)^2) (̂1/2)
fares1=f01/(((pi/kt) 2̂-8)/(pi/kt)^2) (̂1/2)
f02=f0*1.02
f01=f0*0.98

Eqn
VarVAR

Resonador_paralelo_I

d2=vp/(2*fares2)
d1=vp/(2*fares1)
Cres2=ep*Ares2/d2
Cres1=ep*Ares1/d1
Ares2=mult2*A1
Ares1=mult1*A1

Eqn
Var

S_Param
SP1

Step=0.1 MHz
Stop=f0+0.5e9
Start=f0-0.5e9

S-PARAMETERS

VAR
Parametros_material

Zac_mat=3.7e7
ee=1.5
epr=10.5
vp=11350

Eqn
Var

VAR
Requerimientos

Z0=50
FBW=0.01
f0=2.5e9

Eqn
Var

VAR
VAR10

ZLT=-sin(betaL)/(kelec*(2*pi*f0)^2*(ep*A1/d) 2̂)
betaL=-acos(kelec*2*pi*f0*ep*A1/d)

Eqn
Var

Term
Term2

Z=50 Ohm
Num=2

MASON
G12

epr=10.5
ee=1.5
A=Ares2
Zac_mat=3.7e7
fa=fares2
vp=11350

MASON
MM3

epr=10.5
ee=1.5
A=A2
Zac_mat=3.7e7
fa=f0
vp=11350

TLIN
TL2

F=f0
E=90
Z=k2MASON

MM4

epr=10.5
ee=1.5
A=A2
Zac_mat=3.7e7
fa=f0
vp=11350

TLIN
TL3

F=f0
E=betaL*180/pi
Z=ZLT

MASON
MM7

epr=10.5
ee=1.5
A=A1
Zac_mat=3.7e7
fa=f0
vp=11350

Term
Term1

Z=50 Ohm
Num=1

MASON
MM8

epr=10.5
ee=1.5
A=Ares1
Zac_mat=3.7e7
fa=fares1
vp=11350

MASON
MM1

epr=10.5
ee=1.5
A=A1
Zac_mat=3.7e7
fa=f0
vp=11350

TLIN
TL1

F=f0
E=90
Z=k1

Figura 6.3. Esquemático para la simulación del filtro de 4 polos con ceros de transmisión

En la Figura 6.4 se muestra la simulación. En ella visualizamos la respuesta del filtro 
con los CRF asimétricos y una respuesta de un filtro Chebyshev ideal con ceros de 
transmisión modelados mediante resonadores LC serie. Podemos visualizar como en 
este caso la respuesta no es tan precisa, en comparación con la ideal, como en los filtros 
sin asimetrías. Esto se puede deber a que los valores obtenidos mediante la 
aproximación para el LC ya no están tan cerca de los reales. Además el hecho de que el 
filtro ya no sea simétrico debido al distinto grosor de sus resonadores en paralelo 
distorsiona el funcionamiento. Estas inexactitudes se ven reflejadas en aspectos como el 
rizado descompensado en la banda de paso y el pico junto al cero de transmisión 
inferior, aunque su valor queda por debajo de los -25 dB. A favor queda que los ceros 
de transmisión disminuyen varios dB el coeficiente de transmisión fuera de la banda.

A la vista de los resultados parece que el método para incorporar los ceros de 
transmisión es bueno, pero no es lo suficiente preciso, por lo que se plantea el desarrollo 
de un método similar como línea futura de investigación.
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Figura 6.4. Respuesta del diseño realizado con CRF asimétricos (azul)
y con elementos ideales (rojo)

6.2 Otras variantes con CRF asimétricos

Del mismo modo que para el filtro de dos etapas de CRF simétrico pudimos añadirle un 
par de ceros de transmisión, se podría realizar un método que aplicara los mismos
conceptos a distintas configuraciones de CRF.

De este modo, a un CRF de orden 3 como el desarrollado en [4], podríamos añadirle un 
par de ceros de transmisión si aumentamos el área de sus piezoresonadores, tanto del 
superior como del inferior. El esquema del conjunto sería el de la Figura 6.5

Figura 6.5. Estructura de un CRF asimétrico de orden 3

Así, como líneas de investigación futuras, además de la expuesta en el apartado anterior,
se plantea el aplicar el concepto de CRF asimétricos a configuraciones como ésta u 
otras:

 CRF de orden 3 como el de la Figura 6.5
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 Método de diseño sistemático para cualquier ancho de banda en el filtro de 
orden 4 del apartado 6.1

 CRF asimétrico de orden 2, que tendría una muy buena relación 
prestaciones/tamaño.

6.3 Conclusiones del capítulo

Habiendo llegado hasta este apartado vemos como la introducción de ceros de 
transmisión en la respuesta de los filtros pude ser beneficiosa, si bien, es posible que 
para conseguir un buen funcionamiento deban rehacerse algunas aproximaciones del 
modelo circuital de los piezoresonadores asimétricos.

En lo que a líneas futuras se refiere, parece que la introducción de etapas asimétricas 
puede aportar mejores prestaciones a los dispositivos. Los inconvenientes básicamente 
serán cómo fabricarlo, debiéndonos plantear si es óptimo sostener las secciones 
asimétricas sobre membrana o si se deberá plantear otro método, además de la 
complejidad de unir las capas de piezoresonador como ya sucedía en el CRF simple. A 
favor de la inclusión de asimetrías se debe decir que, a cambio de un incremento de 
tamaño pequeño, las prestaciones mejorarán significativamente con el par de ceros de 
transmisión.
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Capítulo 7

7 Conclusiones
Una vez concluido el trabajo hemos visto cuales son los principios de funcionamiento 
de los filtros basados en resonadores de onda acústica. Además de obtener el modelo del 
filtro básico de onda acústica con resonadores apilados y acoplados acústicamente 
hemos obtenido un método para diseñar un filtro de orden 4 con acoplamientos 
acústicos (en cada etapa del CRF) y eléctricos (entre distintas etapas CRF). Para ello 
hemos asimilado los conceptos relacionados con la piezoelectricidad y se ha 
desarrollado detenidamente el modelo equivalente del CRF básico a partir de los 
modelos de Mason de las láminas de material piezoeléctrico. A partir de este desarrollo 
básico hemos obtenido nuestro método, apreciando las similitudes y diferencias y 
resolviendo los parámetros de los elementos que hemos tenido que introducir al 
esquema para cumplir con la teoría de filtros clásica.

Después de haber desarrollado el modelo equivalente para el CRF básico hemos 
desarrollado, también detenidamente, el del CRF asimétrico, que nos permitirá 
introducir ceros de transmisión en la respuesta de los filtros en los que se introduzca. 
Como último paso, hemos realizado la sustitución de los CRF simétricos del filtro de 
orden 4 realizado por unos CRF asimétricos que muestren la respuesta con los ceros de 
transmisión. Finalmente, se ha planteado la posibilidad de realizar filtros con ceros de 
transmisión para diferentes configuraciones de CRF.
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A.Constantes de materiales

A continuación se muestran los parámetros tecnológicos de los materials que se 
emplean en la construcción de resonadores CRF: piezoeléctrico, electrodos, capas de 
acoplamiento y sustratos [9].

Tipo Material
εr

[F/m]
e 

[A·s/m]
Zacus ·107

[kg/(m2·s)]
ρ 

[Kg/m3]
vp

[m/s]
ZnO 3.95 1.32 3.01 5665 6080

Piezoeléctrico
AlN 10.5 1.5 3.7 3260 11350
Pt 1 - 9.09 21500 4230
Al 1 - 1.75 2700 6490
Au 1 - 3.3 19300 1740
Cu 1 - 3.18 8920 3570
Ag 1 - 2.72 10490 2600

Metal

W 1 - 9.9 19250 5174
SiO2 3.9 - 1.31 2200 5970

Sustrato
Si 11.7 - 8.35·10-2 2330 8433
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B.Coeficientes prototipo pasobajo Chebyshev

De las siguientes tablas se pueden obtener los valores de los elementos del prototipo 
pasobajo para distintos valores de rizado [10].
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C.Transformaciones entre matrices de parámetros Z, 
Y, S y ABCD [10]
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D.Parámetros ABCD de las principales redes 
bipuerto [10]






