UNB

Universitat Autonoma
de Barcelona

Departament d’Arquitectura de
Computadors i Sistemes Operatius

Master en Computacioé d’Altes Prestacions

Analisis y Sintonizacién de Aplicaciones
Paralelas /Distribuidas
de Bioinformatica: Caso de Estudio mpiBLAST

Memoria del trabajo de investiga-
ciéon relizado por Claudia Rosas
Mendoza para optar al titulo de
“Méster en Computacién de Altas
Prestaciones”, bajo la direccién de
la Dra. Anna Barbara Morajko.

Presentada en la Escuela Técni-
ca Superior de Ingenieria (Departa-
mento de Arquitectura de Compu-
tadores y Sistemas Operativos)

Bellaterra, Julio de 2009






Trabajo de investigacion

Master en Computacion de Altas Prestaciones
Curso 2008-09

Anilisis y Sintonizacién de Aplicaciones Paralelas/Distribuidas de
Bioinformatica: Caso de Estudio mpiBLAST

Autor
Claudia A. Rosas Mendoza

Directora

Anna Barbara Morajko

Departamento Arquitectura de Computadores y Sistemas Operativos
Escuela Técnica Superior de Ingenierfa (ETSE)

Universitat Autonoma de Barcelona

Firma directora Firma Autor






Resum

En termes de temps d’execucié i s de dades, les aplicacions paral-leles/ distribuides poden tenir exe-
cucions variables, fins i tot quan sémpra el mateix conjunt de dades déntrada. Existeixen certs aspectes de
rendiment relacionats amb léntorn que poden afectar dinamicament el comportament de I'aplicacié, tals
com: la capacitat de la memoria, latéencia de la xarxa, el nombre de nodes, lﬁeterogene'z:tat dels nodes, entre
d’altres. Es important considerar que ’aplicacié pot executarse en diferents configuracions de maquinari
i el desenvolupador d’aplicacions no pot garantir que els ajustaments de rendiment per a un sistema en
particular continuin essent valids per a altres configuracions. L’analisi dinamica de les aplicacions ha
demostrat ser el millor enfocament per a ’analisi del rendiment per dues raons principals. En primer
lloc, ofereix una solucié molt comoda des del punt de vista dels desenvolupadors mentre que aquests
dissenyen i evaluen les seves aplicacions paral-leles. En segon lloc, perque s’adapta millor a ’aplicacié du-
rant ’execucié. Aquest enfocament no requereix la intervencié de desenvolupadors o fins i tot ’accés al
codi font de I'aplicacié. S’analitza ’aplicacié en temps real d’execucié i es considera i analitza la recerca
dels possibles colls d’ampolla i optimitzacions. Per a optimitzar I'execucié de 'aplicacié bioinformética
mpiBLAST, vam analitzar el seu comportament per a identificar els parametres que intervenen en el ren-
diment d’ella, tals com: 'is de la memoria, 1'ds de la xarxa, patrons d’E/S, el sistema de fitxers emprat,
I’arquitectura del processador, la grandaria de la base de dades biologica, la grandaria de la seqiiencia
de consulta, la distribucié de les seqiiencies dintre délles, el nombre de fragments de la base de dades
i/o la granularitat dels treballs assignats a cada procés. El nostre objectiu és determinar quins d’aquests
parametres tenen major impacte en el rendiment de les aplicacions i com ajustarlos dinamicament per a
millorar el rendiment de 'aplicacié. Analitzant el rendiment de ’aplicacié mpiBLAST hem trobat un con-
junt de dades que identifiquen cert nivell de serial-litzacié dintre de ’execucié. Reconeixent I'impacte de la
caracteritzacio de les seqiiencies dintre de les diferents bases de dades i una relaci6 entre la capacitat dels
workers i la granularitat de la carrega de treball actual, aquestes podrien ser sintonitzades dinamicament.
Altres millores també inclouen optimitzacions relacionades amb el sistema de fitxers paral-lel i la possi-
bilitat d’execucié en multiples multinucli. La grandaria de gra de treball esta influenciat per factors com
el tipus de base de dades, la grandaria de la base de dades, i la relacié entre la grandaria de la carrega
de treball i la capacitat dels treballadors.

Paraules claus: Analisi de Rendiment, Sintonizacion Dinamica, mpiBLAST, Aplicacions
Paral-leles Bioinfomaticas.

Resumen

En términos de tiempo de ejecucién y uso de datos, las aplicaciones paralelas/distribuidas pueden
tener ejecuciones variables, incluso cuando se emplea el mismo conjunto de datos de entrada. Existen
ciertos aspectos de rendimiento relacionados con el entorno que pueden afectar dindamicamente el com-
portamiento de la aplicacion, tales como: la capacidad de la memoria, latencia de la red, el niimero de
nodos, la heterogeneidad de los nodos, entre otros. Es importante considerar que la aplicaciéon puede
ejecutarse en diferentes configuraciones de hardware y el desarrollador de aplicaciones no puede garan-
tizar que los ajustes de rendimiento para un sistema en particular continten siendo validos para otras
configuraciones. El andlisis dindmico de las aplicaciones ha demostrado ser el mejor enfoque para el anali-
sis del rendimiento por dos razones principales. En primer lugar, ofrece una solucién muy cémoda para
el punto de vista de los desarrolladores mientras que el disena y evalua sus aplicaciones paralelas. En
segundo lugar, porque se adapta mejor a la aplicacién durante la ejecucion. Este enfoque no requiere la
intervencion de desarrolladores o incluso el acceso al cédigo fuente de la aplicacion. Se analiza la aplica-
cién en tiempo real de ejecucién y se considera y analiza la buisqueda de los posibles cuellos de botella
y optimizaciones. Para optimizar la ejecucién de la aplicacién bioinformatica mpiBLAST, analizamos su
comportamiento para identificar los pardmetros que intervienen en el rendimiento de ella, tales como: el
uso de la memoria, el uso de la red, patrones de E/S, el sistema de ficheros empleado, la arquitectura del
procesador, el tamano de la base de datos bioldgica, el tamano de la secuencia de consulta, la distribucién
de las secuencias dentro de ellas, el niimero de fragmentos de la base de datos y/o la granularidad de



los trabajos asignados a cada proceso. Nuestro objetivo es determinar cudl de estos pardmetros tienen
mayor impacto en el rendimiento de las aplicaciones y cémo ajustarlos dindmicamente para mejorar el
rendimiento de la aplicacién. Analizando el rendimiento de la aplicaciéon mpiBLAST hemos encontrado
un conjunto de datos que identifican cierto nivel de serializacion dentro de la ejecucion. Reconociendo
el impacto de la caracterizacién de las secuencias dentro de las diferentes bases de datos y una relacién
entre la capacidad de los workers y la granularidad de la carga de trabajo actual podrian ser sintonizadas
dindmicamente. Otras mejoras también incluyen optimizaciones relacionadas con el sistema de ficheros
paralelo y la posibilidad de ejecucién en multiples multinticleo. El tamano de grano de trabajo estd in-
fluenciado por factores como el tipo de base de datos, el tamano de la base de datos, y la relacién entre
el tamano de la carga de trabajo y la capacidad de los trabajadores.

Palabras clave: Anadlisis de Rendimiento, Sintonizacién Dinamica, mpiBLAST, Aplicaciones
Paralelas Bioinformaticas.

Abstract

In terms of execution time and data usage, parallel/distributed applications may have variable runti-
mes, even when using the same input data. There are certain performance aspects related to environment
that may affect the dynamic behavior of the application, such as: memory capacity, network latency,
number of nodes, node heterogeneity, among others. It is important to consider that the application
can be executed on different hardware configurations. The application developer cannot guarantee that
performance tuning for a particular system is still valid for other configurations. Dynamic analysis of
applications has shown to be the best approach for performance analysis for two main reasons. First, it
offers a very comfortable solution for developerspoint of view while designing and evaluation its parallel
applications. Second, because it adapts better during the application execution. This approach does not
require developer intervention or even access to the source code of the application. The current appli-
cation runtime is considered and analyzed finding relevant bottlenecks and possible optimizations. To
optimize the execution of mpiBLAST application, we analyze its behavior to identify the parameters
involved in the application performance, such as: memory usage, network usage, I/O patterns, file system
employed, processor architecture, biological database size, query sequence size, the sequence distribution
inside them, number of database fragments and/or granularity of work assigned to each process. Our goal
is to determine which of these parameters have higher impact in the application performance and how
to tune them dynamically to improve the performance of the application. Analyzing the performance of
mpiBLAST application we have found a data set that identifies certain level of serialization inside the
execution. Recognize the impact of the characterization of the sequences inside the different databases
and a relationship between the capacity of workers and the granularity of existing work that could be
tuned dynamically. Other improvements also include optimizations related with the parallel file systems
and the possibility of execution in a multithreaded multicore. The work grain size is influenced by factors
as database type, database size, and the relationship between the size of workload and workers capacity.

Keywords: Performance Analysis, Dynamic Tuning, mpiBLAST, Parallel Biological Appli-
cations
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Capitulo 1
Introduccion

“Cuando estds buscando una aguja en un pajar, el mds optimista usa guantes.”

El pequeno libro de cosas para tener presentes.

En el siguiente capitulo se presenta la decripciéon general de la problematica que existe en
cuanto a rendimiento en aplicaciones bioinformaticas del tipo mpiBLAST. Asi como también se
definen nuestros objetivos y restricciones asumidas, junto con la organizacién de este trabajo de

investigacién como tal.

1.1. Descripcién general

El poder de cémputo de los ordenadores ha venido en aumento durante los dltimos anos [31]
que junto con la introduccién de conceptos como multiprocesamiento o procesamiento paralelo,
facilitan el manejo de mayor cantidad de datos en menor tiempo; consiguiendo de esta manera
alcanzar a resolver problemas cada vez mas complejos con la ayuda de los computadores.

En campos cientificos tan variados como el biolégico, matematico, fisico, médico, entre otros,
se utilizan cada vez mas aplicaciones que exigen grandes capacidades de procesamiento de datos,
tales como: simulaciones en tiempo real, calculos matematicos complejos, bisqueda de genomas
completos, etc. Aplicaciones que a su vez habrdn de estar disenadas para funcionar sobre sistemas
de computo paralelos/distribuidos.

Para conseguir dar respuesta a esta solicitud de capacidad de procesamiento, se hace nece-
sario comenzar a interconectar mas de dos computadores para formar las conocidas granjas de
computacion (clisteres), que a su vez pudieran formar entornos multiclisters, y que actualmen-
te, han crecido hasta formar los centros de supercomputacion. Permitiendo asi ejecutar mas de
una tarea simultdneamente y exigiendo de esta manera la introduccién de términos y enfoques
relacionados con programacién paralela.

La misién ahora, de todos los desarrolladores, es disenar aplicaciones no sélo eficientes sino

que ademas sean capaces de sacar provecho de las capacidades de los sistemas de computacion



de altas prestaciones (HPC, High Performance Computing); convirtiéndose esto en una de las
situaciones mas complejas de solventar cuando de rendimiento de aplicaciones se trata.

El diseno y analisis de rendimiento de las aplicaciones paralelas exige que los desarrolladores
tengan un alto nivel de experticia y comprensiéon de la aplicacién y el entorno sobre el cual
va a ser ejecutada. El conocimiento del comportamiento de la aplicaciéon es primordial para su
paralelizacién ya que facilita su desarrollo y consigue que sea llevado a cabo adecuadamente,
obteniendo el mejor rendimiento posible.

Las aplicaciones paralelas no son sélo dificiles de concebir sino también dificiles de analizar,
comprender y depurar, es por ello que muchas veces los desarrolladores se valen de herramientas
adicionales para observar el comportamiento que estan presentando sus aplicaciones. Labor que
no libera al desarrollador de tener que comprender los resultados graficos y /o numéricos que éstas
herramientas arrojan y tener que modificar de vez en cuando alguna linea de cddigo, recompilar
y reiniciar su aplicacion para visualizar si el cambio que se ha hecho ha sido suficiente para
solventar la situacién de ineficiencia.

Cuando se trata de ineficiencias es necesario saber identificar el punto exacto donde se debe
realizar la modificacién, y conocer a fondo el comportamiento de la aplicaciéon bajo uno u otro
entorno. Jain [19] senala que una metodologia de mejora de rendimiento tipica involucra tres
fases claramente identificables, que son: monitorizacién, andlisis y modificacién de codigo.

Varios trabajos han sido llevados a cabo [26],[37],[32] para facilitar ésta tarea a los desarrolla-
dores y eximirlos de tener que entrar en cédigo “desconocido”. Herramientas que bajo diferentes
enfoques de andlisis y mejoras de rendimiento, han sido diseniadas con la finalidad de hacer mas
comodo el proceso de evaluacion de aplicaciones bajo entornos paralelos.

Inicialmente éstas se basaban en un enfoque estético y/o automatico; es decir, una vez que
la aplicacién ha finalizado su ejecucién era posible observar los cuellos de botella que se habian
presentado durante esa tunica ejecucién. Situacién que tal como se ha sefialado antes obliga al
desarrollador a pausar la aplicacién para realizar las modificaciones pertinentes y luego iniciar
una nueva ejecucién.

El proceso de anilisis de rendimiento de las aplicaciones paralelas era llevado a cabo de
forma estatica, esto quiere decir que, una vez que la aplicaciéon finalizaba se podia observar,
basandose en datos o graficos, la posible existencia de ineficiencias en esa tnica ejecucién. Los
datos sobre los que se tomaba alguna decisién eran producto de ejecuciones anteriores, en los que
si la aplicaciéon presentaba comportamientos irregulares atin con un mismo conjunto de datos,
no era aconsejable emplearlos como base para tomar alguna decisién en particular.

Estos datos podian ser observados a través de trazas de eventos en los que se reflejan todas
las funciones que ha ejecutado la aplicacion en tiempo de ejecucién. Estas trazas eran obtenidas
como producto de una instrumentacién previa que se realizaba en funciones que componen la
aplicacién, generando un alto nivel de intrusién en las ejecuciones, que afectaba el tiempo de
real de ejecucién de la aplicacién.

Este tipo de anélisis es conocido como analisis post-mortem por su caracteristica de visualizar



el comportamiento de la aplicacién una vez que la ejecucién ha “muerto” (finalizado). De forma
que se trabajaba en funcién de datos antig’/uos, que no garantizaban que la modificacién que se
realizara posteriormente solventara la ineficiencia existente o en el peor de los casos generara
alguna otra.

Hace algunos afios y partiendo de éstos enfoques, surge la posibilidad de realizar todo el
proceso de anélisis de prestaciones de aplicaciones paralelas/distribuidas de forma dindmica; es
decir, identificar los cuellos de botella, realizar las modificaciones adecuadas y sacar conclusiones
de los resultados que se obtengan una vez que han sido efectuados los cambios, todo esto en
tiempo de ejecucion. El desarrollador no se veria en la necesidad de conocer el proceso interno de
la aplicacion ni habria necesidad de pausar las ejecuciones para tomar mediciones. Ejemplo de
ello son las aproximaciones como la de Morajko [25] que, con su herramienta MATE (Monitoring
Analysis and Tuning Environment, por sus siglas en inglés) crea un entorno que se encarga de
la monitorizacién, andlisis de rendimiento y sintonizacién de aplicaciones paralelas/distribuidas
de forma dinamica.

Se desean acercar todos estos enfoques de analisis de rendimiento y sintonizaciéon dindmica
a las aplicaciones cientificas existentes hoy en dia en el mercado. Incorporando conceptos de
computacion de altas prestaciones en el analisis de rendimiento de aplicaciones bioinforméticas
como mpiBLAST [12].

El contexto bajo el que se desenvuelven las aplicaciones bioinformaéticas como mpiBLAST
estd directamente relacionado con el estudio de los seres vivos en general. Un ser humano tiene
en su organismo un cierto cédigo genético formado por largas cadenas de caracteres denominadas
ADN (4cido desoxirribonucleico), estas cadenas tienen forma de doble hélice en la que moléculas
de azucar denominados desoxirribosa y estan ligados a compuestos como la Adenina, Timina,
Guanina y Citosina, que a su vez estan agrupados en pares; cada uno de estos caracteres es
conocido como una base y nuestro cédigo genético, asi como el de la mosca de la fruta, el ratén
o la levadura, esta representado por cadenas de texto conformadas por A, C, T o G. Es decir, el
ADN de una persona siguiendo el formato FASTA (descrito en el capitulo 4podria verse como:

>ADN_de XXXXXXXX
ACGGGGGTTACTACGTCCCAAACTGACGTACCCGTAAACCCACGGGGGTTACT...

Por lo tanto una de las tareas més importantes de este tipo de aplicaciones de alineamiento
de secuencias es encontrar rasgos en comun, tanto estructurales como de procesos generales entre
genomas, lo que se podria traducir a la capacidad que tiene el ser humano de heredar ciertos
rasgos basandose en una caracteristica propia de herencia existente en la mosca de la fruta
Drosophila melanogaster 1. Es por ello que lo importante de las herramientas de bioinformatica
es que son utilizadas alineamientos de secuencias que en lugar de experimentos de laboratorio se
pueden estudiar las funciones de genes ya descubiertos buscando secuencias gendémicas en bases
de datos.

La biologia logré obtener su primer conjunto de datos fundamental: las secuencias molecu-

!Drosophila=“amante del rocio” melanogaster= “estémago negro”



lares. A principios de 1960, las primeras proteinas conocidas fueron almacenadas lentamente
(cabe resaltar que las computadoras capaces de analizarlas no habian sido desarrolladas atin) las
secuencias eran ensambladas, analizadas y comparadas (manualmente) escribiéndolas en hojas
de papel, adhiriendo una al lado de la otra en las paredes de los laboratorios y/o moviéndolas
alrededor hasta encontrar el alineamiento 6ptimo, conocido actualmente como patrones.

Tan pronto como las primeras computadoras estuvieron disponibles (grandes y répidas con
8KB de RAM), los primeros bi6logos computacionales comenzaron a insertar estos algoritmos
manuales en los bancos de memoria. Surgiendo ésta nueva tendencia, ya que nadie antes de esto
habia manipulado las secuencias biolégicas como texto; la mayoria de los métodos tuvieron que
ser inventados desde cero y a medida que avanzaba el proceso, una nueva area de investigacion,
el andlisis de secuencias de proteinas usando computadoras, era creada. Este fue entonces el
génesis de la bioinformaética.

La primera técnica eficiente de secuenciacién de ADN fue descubierta en 1977 y en 1995, la
primera secuencia de un genoma entero (del microbio Hemophilus influenzae) fue determinada.
Entre éstas dos fechas, las tecnologias de secuenciacién de ADN fueron mejorando constante-
mente, pero dichas tecnologias atin tienden a concentrarse en la bisqueda de genes individuales
para detallar informacién sobre ellos. Durante este periodo los biolégos estuvieron secuencian-
do fragmentos de ADN que eran unos cuantos miles de nucleétidos de longitud, simplemente
porque ellos estaban interesados en genes 2 especificos con los que habfan empezado a trabajar
anos atras. La mayoria de las herramientas bioinformaticas fueron creadas durante esta época,
incluyendo: todos los programas béasicos de alineamiento de secuencias, métodos de clasificacién
filogenéticos y varias herramientas de visualizacién adaptadas a pequenas cadenas de proteinas
de no méas que unos miles de carateres de longitud.

Las bases de datos de secuencias son excelentes herramientas porque permiten aprender del
pasado. Ellas permiten responder las interrogantes biolégicas de hoy en dia permitiendonos ana-
lizar secuencias que pueden haber sido determinadas hace méas de 25 anos atras, cuando toda
la tecnologia habia surgido. Haciendo esto, ellas conectan el pasado y el presente de la biologia
molecular. Las primeras bases de datos fueron creadas, de hecho, como una especie de museo
de secuencias, donde las secuencias podian ser preservadas para toda la eternidad de una forma
pristina, tal como fueron determinadas, interpretadas y publicadas por sus autores originales.
Esta perspectiva histérica se mantiene en el banco genético (GenBank), el repositorio lider de
secuencias de nucleétidos mantenida como un consorcio entre el National Center for Biotech-
nology Information (NCBI) de los Estados Unidos, el European Molecular Biology Laboratory
(EMBL) y el DNA Data Bank de Japén (DDBJ).

Estos repositorios de bases de datos son herramientas muy ttiles cuando se quiere obtener
toda la informacion relacionada con una secuencia en particular, pero no proveen facil acceso

a la informacién de la secuencia cuando ésta abarca muchos tépicos relacionados a un gen o a

2Del griego genos = nacimiento, raza; del latin genus = raza, origen: segmentos especificos de ADN que
controlan las estructuras y funciones celulares; la unidad funcional de la herencia. Secuencia de bases de ADN
que usualmente codifican para una secuencia polipetidica de aminodcidos.



una funcién del gen mas alla de su papel especifico. Es por ello, que una segunda generacién de
bases de datos de nucleétidos ha adoptado una perspectiva mas orientada al gen, donde toda la
informacién relevante de un gen dado es accesible de una vez.

Actualmente, las secuencias de nucleétidos son determinadas de forma rutinaria a escalas que
oscilan desde un genoma completo hasta el nivel de cromosomas. Ahora tenemos informaciéon
no solo acerca de secuencias de genes, sino también de sus posiciones relativas a su orientacion,
y la presencia o ausencia de funcionas bioquimicas sobre un organismo completo. Para sacar
provecho de esta informacion en forma global, los investigadores han tenido que disenar un
estado de arte centrado en el manejo de sistemas de informacion de secuenciacién gendémica que
pueden conectar colecciones de secuencias especializadas con herramientas de busqueda.

Una de las principales problematicas que disciplinas como la bioinformética ha tenido que
enfrentar ha sido el aumento considerable del nimero de datos con los que tienen que trabajar
cada dia; el tamafno de las bases de datos de ADN o proteinas han presentado un crecimiento
exponencial durante los tltimos anos (ver figura 1.1), trayendo consigo la necesidad de disponer
de sistemas computacionales que logren procesar este volumen de datos y generar resultados de
la forma mas rapida posible.

Tareas como el alineamiento local de secuencias, que versa en la comparacion de dos secuen-
cias para encontrar su homologia, el cémo se pareces respecto a un ancerstro en comun, es unas
de las principales actividades llevadas a cabo més a menudo entre los bidlogos.

Para agilizar este proceso se han actualizado algunos algoritmos de alineamiento existen-
tes hasta la época, como en el caso del algoritmo de Smith-Waterman [33] donde identificar el
maximo nivel de homologia entre subsecuencias biolégicas y conjuntos de largas secuencias era
uno de los problemas més importantes en andlisis molecular, y con la intencién de conseguir un
aumento en la velocidad de respuesta para cada consulta, intentos como [21] y la herramienta
Basic Local Alignment Sequence Tool (BLAST)[1] descrito en 4.2.1 fueron las primeras aproxi-
maciones a la automatizaciéon de dicho algoritmo, convirtiéndose ésta ultima en la herramienta
base de referencia para la bioinformatica en la dltima década.

Este tipo de aplicaciones ha dado pie al interés de diferentes grupos de investigacion y desa-
rrollo de construir una herramienta que permitiera que la filosofia de BLAST como tal, que se
habia convertido en parte fundamental de procesos de busqueda de homologia de secuencias,
comulgara con el nuevo paradigma de paralelismo caracteristico de la computacién de altas
prestaciones; naciendo de esta forma mpiBLAST, que sin duda alguna por ser una aplicacion
paralela requiere cierto nivel de analisis y evaluacién para garantizar su maximo rendimiento en
todas y cada una de sus ejecuciones segiin la méquina paralela en la que se esté ejecutando. Con-
vergiendo de esta forma ambos, analisis de rendimiento de aplicaciones paralelas y aplicaciones
bioinformaéticas para dar lugar a nuestro trabajo de investigacion.

La herramienta bioinformética paralela mpiBLAST, ha sido disefiada basada en el algoritmo
bésico de BLAST [1] (Basic Local Alignment Sequence Tool) que versa en un conjunto de

pasos de programacién dindmica planteados por Smith-Waterman [33] en el ano 1981 donde se
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Figura 1.1: Crecimiento de las bases de datos biolégicas en los ultimos anos.

considera cada cadena biolégica como una cadena de texto, y luego se comparan uno a uno cada
caracter de cada una de las dos cadenas que se estén secuenciando.

Inicialmente, siguiendo el algoritmo de BLAST, cada una de las secuencias se ubica una en
el eje ‘X’ y otra en el eje Y’ de una matriz de puntuacion PAM o BLOSUM (la seleccién de
la matriz depende de la naturaleza de las secuencias bioldgicas), y cada uno de los aciertos y
desaciertos entre las secuencias es puntuado o penalizado respectivamente con un determinado
valor.

Una vez que se ha construido todo el camino de alineamiento entre ambas secuencias se
procede a seleccionar aquéllas con mayor grado de relevancia bioldgica, puntuando esta carac-
teristica bajo un valor obtenido (e-value) a través de datos estadisticos de la base de datos y de
las secuencias resultantes como tal, de esta forma se descartan aquéllos que podrian haber sido
generados y acertados solamente por azar.

Tomando en consideracién el crecimiento exponencial que vienen presentando las bases de
datos bioldgicas en los dltimos diez anos, existen costos en los que es necesario comparar cadenas
de miles de caracteres, lo que quizd por ser comparacion de caracteres no consuma tanto poder
de cémputo como una multiplicacién de matrices sino que en cambio estamos hablando del
manejo de un volumen superior a las capacidades de un servidor estandar.

Dado que el algoritmo en si no presenta dependencia de datos entre una secuencia y otra, y
que muchas de las bases de datos ya no caben en la memoria de un sélo ordenador, los creadores
de mpiBLAST se han planteado separar la base de datos en fragmentos manejables de menor
tamano que puedan ser alojados en la memoria de los nodos de cémputo de las granjas de
ordenadores, de esta forma llevando a cabo ejecuciones embarazosamente paralelas, se puede

realizar la bisqueda de algunas secuencias en bases de datos bioldgicas cada vez mayores.



Para llevar a cabo una consulta en un entorno paralelo, es necesario preformatear las bases de
datos en un conjunto de fragmentos que seran distribuidos a cada uno de los nodos de computo,
entiéndase que es una aplicacién paralela disenada bajo un paradigma Master/Worker, en el que
existe un nodo que figura como méster y coordina y distribuye el trabajo que va a realizar cada
uno de los nodos de computo que figuran como workers, y que posteriormente recolectard los
datos generados por cada uno de ellos para construir un fichero resultante final. La fase de
formateo de la base de datos que acabamos de comentar basicamente fragmenta la base de datos
en un numero de segmentos igual o mayor al niimero de workers disponibles y para lograr esto
han generado una estrategia en la que se leen todas las cadenas de la base de datos contra la que
se va a realizar la busqueda y se organizan de mayor a menor tamano en un fichero temporal
desde el cual se van a ir seleccionando de igual forma en orden descendente las cadenas para
completar cada uno de los fragmentos, de forma que todos tengan el mismo tamano, sin embargo
no tendran la misma cantidad de secuencias.

La herramienta mpiBLAST saca provecho del paralelismo de los nuevos centros de cémputo,
enviando fragmentos de la base de datos (uno como minimo) junto con la secuencia de consulta
a cada worker; y todos de forma simultdnea buscaran las secuencias similares dentro de su
fragmento particular, de esta forma cada worker cubre una parte de la base de datos y se toma en
cuenta como carga de trabajo la cantidad de datos existentes dentro de la misma. Fraccionando
los datos de esta forma y repartiéndolos entre todos los workers se consigue abarcar conjuntos
de datos masivos que son demasiado grandes para ser procesados en un sélo ordenador.

En estudios recientes se ha logrado llevar esta aplicacién a entornos de supercomputacion
como el Blue Gene/P [23] en el que sacan provecho del paralelismo presente en la arquitectura
del computador, y consiguen un 93 % de eficiencia en la ejecucién de la aplicacidn, pero vale la
pena recalcar que es un ordenador que estd disenado para ejecutar aplicaciones cientificas que
requieren un gran poder de cémputo y almacenamiento.

La importancia de esta investigacién, es que analiza el rendimiento mpiBLAST como una
aplicacién bioinformética que emplea BLAST como algoritmo de alineamiento de secuencias, y

estudiar y optimizar su rendimiento para grandes cantidades de datos.

1.2. Objetivos y Limitaciones

En los dltimos anos las aplicaciones cientificas han tomado una posicién significativa entre
los diferentes grupos de investigaciéon y han pasado a ser parte importante en el desarrollo de
proyectos; mpiBLAST no es la excepcidn y precisa de ser analizada y evaluada en aras de alcanzar
el mejor rendimiento posible en las consultas efectuadas. Las aplicaciones paralelas requieren un
cuidado mayor durante su fase de disefio y desarrollo para que se adapten mejor a los entornos
paralelos/distribuidos en los que va a ser ejecutada.

Cuando hablamos de andlisis de rendimiento de aplicaciones paralelas, nos referimos al

proceso de evaluacién y busqueda de ineficiencias. Ineficiencias, que a medida que se conoce el



comportamiento de la aplicacién se podran solventar con estrategias de sintonizacion.

El objetivo general de éste trabajo de investigacién es evaluar el rendimiento presentado
por la aplicacion paralela de andlisis de secuencias bioldgicas mpiBLAST, con la finalidad de
determinar aquéllos pardmetros influyentes y sintonizables para aumentar el nivel de desempeno
en términos de tiempo de ejecucion bajo un determinado entorno paralelo. El proceso de andlisis
de rendimiento estd descrito en el capitulo 2.

En analisis de prestaciones es necesario realizar una monitorizacién previa de la aplicacién;
este proceso se realiza con el fin de identificar aquéllas funciones representativas durante la
ejecucién; es decir, las que estan relacionadas con la aplicacién y que consumen la mayor cantidad
de tiempo, convirtiéndose en posibles cuellos de botella para el rendimiento de, en nuestro caso,
mpiBLAST como tal.

Para las aplicaciones paralelas en general debemos conocer sus puntos de ineficiencia deno-
minados cuellos de botella, donde el rendimiento de la aplicacion se ve limitado a cierto conjunto
de parametros que le impiden alcanzar un mejor desempeno y conseguir sacar el mayor provecho
posible del entorno paralelo/distribuido bajo el que estédn siendo ejecutadas.

Por tanto nuestra labor es, tener la habilidad para entender e identificar los factores contri-
buyentes en el rendimiento de un programa paralelo basandonos en el impacto que generan los
diferentes parametros del entorno en la generacién de cuellos de botella dentro de mpiBLAST y
proponer una estrategia que permita solventarlos con la finalidad de mejorar su rendimiento.

Para lograr este objetivo, es necesario:

1. Conocer y monitorizar la aplicaciéon para identificar los procesos y funciones involucra-

dos en la ejecucion, y detectar cudles consumen mayor cantidad de tiempo y recursos.

2. Entender e identificar los factores que contribuyen en el rendimiento basado en el
impacto que ocasionan los diferentes parametros relacionados con la aplicacién y el

clister que generen cuellos de botella.

3. Identificar los problemas de rendimiento y efectuar los ajustes necesarios a los factores
directamente relacionados con la ejecuciéon de mpiBLAST que sean influyentes a fin de

mejorar el nivel de desempeno.

La modificacién y sintonizacién de c6digo una vez finalizado el andlisis, no deja de ser una
tarea menos ardua; es por ello que una vez que hayan sido identificados los principales problemas
de rendimiento de la aplicacion se puede proceder a efectuar los ajustes respectivos en los factores
influyentes con la finalidad de alcanzar los mejores niveles de desempeno posibles durante la
ejecuciéon. Es por ello que se espera conseguir durante la investigacion la informacion suficiente
que permita determinar los puntos en que mpiBLAST, como aplicacién paralela/distribuida de
andlisis de secuencias biolégicas, pueda mejorar.

El alcance de nuestra investigacion se ve limitado al estudio del comportamiento de la apli-

cacion bioinformatica mpiBLAST sin entrar al médulo de alineamiento de secuencias como tal;



es decir, no se planea mejorar el algoritmo de BLAST sobre el que se basa mpiBLAST, sino de-
terminar la mejor estrategia de configuracién de los diferentes factores influyentes para obtener

el mejor rendimiento en un clister especifico.

1.3. Organizacién del Trabajo

En este capitulo hemos introducido la situacién general en la que se encuentra enmarcado
nuestro proyecto de investigacion, y el alcance que ésta tendrd. Los siguientes capitulos estardn
dedicados a detallar los aspectos que estan ligados a nuestro trabajo. Quedando de la siguiente

manera:

Capitulo 2. Analisis de Rendimiento de Aplicaciones Paralelas. Introduce una descrip-
cién general del enfoque clasico de andlisis de rendimiento de aplicaciones paralelas.
En él se describe cudl es el objetivo que se persigue mientras se realiza esta clase de
andlisis y las caracteristicas béasicas de ineficiencia de una aplicaciéon, conjuntamente
con el enfoque inicial que se ha de tomar cuando se inicia un proceso de andlisis de
aplicaciones en cuanto a rendimiento. De igual forma, se presenta de forma descriptiva
el estado de arte actual para lo que Andlisis de Rendimiento de Aplicaciones Parale-
las se refiere, tomando como base aportes previos y actuales proporcionados por los

principales grupos de investigacién en esta area a nivel mundial.

Capitulo 3. Modelos de Prestaciones y Sintonizacion. Describe detalladamente ba-
jo qué situaciones se hace necesaria la participacién de un proceso de Sintonizacion
Dindmica y bajo cuales caracteristicas es posible desarrollar un modelo de prestaciones

que facilite la prediccion del comportamiento de la aplicacién.

Capitulo 4. Aplicaciones Bioinformaticas. Se centra en la descripcién del conjunto de
herramientas de las cuales se ha valido la bioinformatica con el pasar de los anos,
sirviendo como base para la introduccién general de la aplicacién con la cual nos

hemos planteado trabajar y que es nuestro objetivo aumentar su rendimiento.

Capitulo 5. Experimentacion. Caso de Estudio: mpiBLAST En este capitulo se deta-
llan todas y cada una de las diferentes evaluaciones y mediciones que le fueron hechas
a mpiBLAST, junto con el modelado del comportamiento de la aplicacién bajo deter-

minadas condiciones de ejecucion.

Capitulo 6. Conclusiones y Trabajos Futuros. Sumariza y concluye nuestro trabajo, se
presentan los problemas que forman parte de nuestras lineas abiertas y se discuten

direcciones para trabajos futuros.






Capitulo 2

Analisis de Rendimiento

“Mide lo que sea medible y haz medible lo que no lo sea.”

Galileo Galilei (1564-1642).

Este capitulo estd dedicado a introducir los conceptos de andlisis de rendimiento necesarios
para enmarcar el desarrollo del presente trabajo. Partiendo de la descripcién del enfoque inicial
de andlisis basado en el uso de herramientas de visualizacién, y de los procesos de captura de
informacién, tales como profiling y tracing, como puntos de referencia para determinar el ren-
dimiento; seguidamente este enfoque de analisis de rendimiento fue sustituido por metodologias
automaticas y dindmicas, que son la base de varias de las herramientas de analisis disponibles

actualmente, las cuales seran comentadas brevemente al final del capitulo.

2.1. Introduccion

Investigar el comportamiento de un sistema de computo o de una aplicaciéon paralela, y en-
contrar limitantes en su rendimiento junto con los factores que las ocasionan, usualmente genera
una modificacién posterior. En el caso de una aplicacién paralela esto seria cierta modificacién
del c6digo fuente con la intencién de mejorarla y/o adaptarla para evitar futuras pérdidas de
rendimiento.

Este proceso se encuentra definido en el analisis de rendimiento en tres grandes etapas

descrito por Jain [19], donde inicialmente se realiza:

s Una fase de monitorizaciéon y conocimiento de la aplicacén, bien sea observando re-
sultados graficos o numéricos obtenidos luego de cada ejecucion o con la ayuda de
herramientas automaticas o dindmicas, que proporcionard al analista un conjunto de

datos e informacién.

s Una fase de andlisis, en la que determinara la existencia de limitantes de rendimiento

dentro de la aplicacién.
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= Y la fase de sintonizacién, en la que se corregirdan las posibles ineficiencias que se

estuvieran presentando.

Si miramos el analisis de rendimiento dentro del campo experimental de la computacién de
altas prestaciones se puede tomar como un proceso en el que se combina medicion, interpretacion
y comunicacién de cierta caracteristica del objeto que esta siendo evaluado, caracteristica que
puede ser su tiempo de ejecucion, su capacidad para escalar, el nimero de tareas que es capaz de
llevar a cabo en un determinado periodo de tiempo. Cuando se plantea la intencién de realizar
andlisis de rendimiento, usualmente surge la interrogante en cuanto a la forma en que debe
realizarse la medicion o la interpretacion de los datos; por ello se suele valerse de la inventiva y
la imaginacién de cada uno de los analistas para disenar o proponer estrategias que se adectien
de mejor forma al objetivo que se persigue, realizando la menor perturbacién posible dentro de
la aplicacion que se estudia.

Antes de comenzar el proceso de andlisis de rendimiento, es necesario identificar no sélo los
aspectos relacionados con la aplicacién como tal sino también auéllas cosas ttiles o interesantes

para medir [22]. Usualmente suelen medirse caracteristicas como:
s El nimero de veces que se repite un evento.
s La duracion en tiempo o instrucciones de un proceso.
= El tamano de algin parametro.

Al final se convierten en nuestras métricas de rendimiento, que son diferentes valores medidos
que se emplean para describir el rendimiento de la aplicacion, por ejemplo: el niimero de veces
que se entra a cierta rutina o sub-rutina, cudnto tiempo se estd gastando en ella o la cantidad
de datos que estan siendo transmitidos en determinado momento.

Escoger una métrica apropiada depende de la situacién especifica para la que es requerida
y la inversion necesaria para la recoleccién de los datos, asi como también debe ser tomado en

cuenta que la métrica para que realmente sea util para nosotros como analistas.

Linearidad: se suele esperar que la métrica seleccionada varie en cierta proporcién

directamente proporcional con las variaciones observadas en el rendimiento del sistema.

= Confiabilidad: si existe una variacién X en la aplicacién, se espera que la métrica

indique que ésa variacién va a suceder.

= Repetibilidad: una métrica es repetible si cada vez que se realice un mismo experimento

se obtienen valores similares, es decir, con una desviacion estandar baja.

s Facilidad de medida: cuanto mas dificil es determinar una métrica, mayor posibilidad
existe de que el valor sea errado o impreciso; y ain més que dicha métrica no sea
utilizada del todo.

12



= Consistencia: una métrica consistente es aquélla para la cual las unidades de medida
y su definicién exacta es la misma para diferentes sistemas o configuraciones de un

mismo sistema.
= Independencia: la métrica no debe verse influenciada por factores externos.

Para nuestra investigacion, métrica que se tomara en cuenta es el tiempo de ejecucion, debido
a que uno de los objetivos fundamentales de la HPC es brindar respuestas en un menor tiempo,
y en el caso de la bioinformdatica que obliga a trabajar con datos de tamano significativo, este
tiempo de respuesta es un valor muy importante y muy facil de comparar para tomar decisiones.
Es por ello que es importante saber cémo medir el tiempo de ejecucién de una aplicacién, de una
porcién de la aplicacién, y entender las limitaciones de la herramienta de medida; sin embargo

estos conceptos seran ampliados en el capitulo 5.

2.1.1. Objetivos del Analisis de Rendimiento

En todo proceso de analisis de rendimiento, el objetivo es conocer el comportamiento de la
aplicacién para poder evaluarla y determinar cierto rendimiento deseado. Inicialmente, obser-
vando el proceso de andlisis de rendimiento como una secuencia de pasos que deben llevarse a

cabo se pueden definir como objetivos los siguientes [20]:

= Se persigue determinar si existen problemas de rendimiento, factores de ineficiencia y

caracteristicas que faciliten su identificacion.

= Espera detallar el punto exacto donde se esta sucediendo el problema de rendimiento

y/o cuello de botella, qué lo ocasiona.

» Trazar una estrategia para evitar que se genere el problema de rendimiento o de ser

posible, eliminarlo.

= Comprobar si una vez corregido el problema inicial de rendimiento, existe algin otro

mas y si es necesario iniciar el proceso de andlisis de nuevo.

De acuerdo a lo senalado por Jorba [20], se podrian considerar modelos en los que pueda ser
interesante el minimo tiempo de ejecucion de la aplicacién, un cierto grado de eficiencia de uso
de recursos(como el balanceo de trabajo entre los procesadores), una escalabilidad apropiada

segun el incremento de procesadores involucrados en el proceso.

2.2. Ineficiencia en las Aplicaciones Paralelas.

Cuando comenzamos a hablar de aplicaciones paralelas, es necesario realizar el analisis y eva-
luacién de las mismas, que en un principio es el pilar fundamental de este trabajo de investigacion

siendo necesaria la descripcion de algunos conceptos fundamentales, descritos a continuacién.
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2.2.1. Ecuaciones para Analisis de Tiempo de Ejecucion Paralelo.

La primera interrogante que nos planteamos es cuan réapida la implementacién paralela puede
ser, para ello es necesario conocer el tiempo de ejecucién en un tnico computador, ts, contando
los pasos computacionales del mejor algoritmo secuencial. Para un algoritmo paralelo, en aras de
determinar el niimero de pasos computacionales, es necesario estimar el overhead de comunica-
cién. En un sistema de paso de mensajes, el tiempo de envio de mensajes debe ser considerado en
el tiempo total de ejecucién de un problema. El tiempo de ejecucién paralelo, t,, estd compuesto
de dos partes, una parte computacional, llamada t.om, y una parte de comunicacién, llamada

tecomm; de forma que nos queda que:

ZL/p = tcomp + tcomm (21)

Tiempo Computacional: viene dado al igual que con los algoritmos secuenciales por contar el
nimero de pasos computacionales. Cuando mas de un proceso estd siendo ejecutado simultdnea-
mente, solamente podemos contar los pasos computacionales del proceso més complejo. A me-
nudo, todos los procesos estan llevando a cabo la misma operacién, por lo que se puede contar
los pasos computacionales de uno de los procesos. Sin embargo pueden presentarse situaciones
en las que se obtenga el mayor niimero de pasos computacionales contando la concurrencia de
algunos procesos. Muchas veces este tiempo se fragmenta en partes deteminadas por el paso de
mensajes para luego determinar el tiempo computacional de cada parte [36]. Y viene dado por

la funcién:

teomp = f(n,p) (2.2)

De donde n es el nimero de veces que el proceso p realiza cierto conjunto de pasos compu-
tacionales. Pudiendo determinar el tiempo total de cémputo con la suma de los diferentes tiempos

de computo de cada proceso.

tcomp = tcompl + tcomp2 + tcomp?; + ... (23)

Usualmente cuando se analizan aplicaciones paralelas se asume que los tiempos de cémputo
seran semejantes porque los procesadores son el mismo y el sistema operativo es el mismo.
Ssin embargo, y tomando en cuenta que con el HPC todo el cémputo ha migrado a clusters
es necesario recordar la posibilidad de que el entorno no sea homogéneo, para nuestro trabajo
de investigacién con la aplicacién paralela master/worker mpiBLAST, vamos a considerar que
estamos trabqgajando sobre una arquitectura paralela homogénea y especifica.

Tiempo de Comunicacion: el tiempo de comunicacion va a depender del nimero de mensajes,
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el tamano de cada mensaje, la estructura de comunicaciéon que exista por debajo y el modo de

transferencia. Para una primera aproximacién se puede decir que [36]:

teomml = tstartup + wtdata (24)

Para el tiempo de comunicacién del mensaje 1, donde tst4rtup, €s el tiempo de inicio, algunas
veces llamada latencia del mensaje. Este tiempo es esencialmente el tiempo necesitado para
enviar un mensaje sin datos. Incluye el tiempo del empaquetado del dato en la fuente y desem-
paquetar el mensaje en el destino y es considerado constante. 4,44, €s el tiempo de transmision
para enviar una palabra de datos, también asumido como constante, y hay w palabras de datos.
La tasa de transmisién normalmente es medida en bits/segundos. El tiempo de comunicacién
final tcomm, serd la sumatoria de los tiempos de comunicacién de todos los mensajes secuenciales

provenientes de los procesos. De esta forma:

7fcomp = tcompl + tcomp2 + tcompS + ... (25)

Una vez que ha sido determinado el valor de tiempo secuencial tg, el tiempo de cémputo
teomp ¥ €l tiempo de comunicacion teomm, podemos establecer el factor de speedup, que se refiere

a:

S(p) = - (2.6)

El maximo speedup posible es p con p procesadores, conocido como speedup linear. El speedup
de p serd adquirido cuando la computacién puede ser dividida en pasos computacionales de igual
tiempo de duracién, con un proceso mapeado en un procesador y sin overhead adicional en la
solucion paralela.

Adicionalmente, es importante hacer mencién sobre el concepto de eficiencia, y se refiere al

cuan utilizados estan los procesadores. La eficiencia F, estd definida por:

(2.7)

Sin embargo, suelen aparecer factores dentro de las aplicaciones paralelas que limitan el
speedup notablemente, como periodos en los que no todos los procesadores estdn llevando a cabo
tareas, computo extra que no existe dentro de la version secuencial, y el tiempo de comunicacion
entre los procesos. Era de esperar que algunas partes de la computacién no puedan ser divididas
en tareas concurrentes, y deban ser llevadas a cabo de forma secuencial. Asumiendo la posibilidad

de que algunas partes sean realizadas por un sélo procesador, la situacién ideal seria que todos
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los procesadores disponibles trabajaran simultdaneamente para los otros momentos. Si la fraccién
de computo que no puede ser dividida en partes concurrentes es f, y no se incurre en overhead
alguno cuando el computo es dividido en partes concurrentes, el tiempo para llevar a cabo el
cémputo con p procesadores viene dado por fts+(1— f)ts/p. De esta forma Amdahl [3] identifica

que el speedup seria:

_ ts _ P
S+ (A= fits/p 1+ (p—-1)f

S(p) (2.8)

Que senala que adn con infinitos procesadores, la parte secuencial va a limitar el rendimiento

global de la aplicacién.

2.2.2. Casos de ineficiencias.

Cuando se realiza un proceso de andlisis de rendimiento, se pueden encontrar diferentes
enfoques bajo los que ocurren problemas de eficiencia; existiendo ciertas caracteristicas muy
relacionadas al tipo de comunicaciéon empleada en el paso de mensajes, bien sean punto a punto

o colectivas o segin su estructura [20].

Punto a Punto

Existen problemas relacionados con las tareas participantes que emplean operaciones de re-
cepcién bloqueante y no bloqueantes, siendo las primeras las principales causantes de los mayores
tiempos de espera; sin embargo, las no bloqueantes pudieran llegar a presentar comportamientos

similares dependiendo del esquema de comunicaciéon que se esté empleando.

1. Late Sender: ésta se presenta cuando el envio del mensaje por parte del emisor se ha
efectuado tiempo después de que el receptor (ver figura 2.1) haya iniciado el proceso
de recepcién, ocasionando al proceso receptor un tiempo inactivo que pudo haberse

empleado en computo util.

2. Late Receiver: en este caso el emisor ya ha generado la senal de envio del mensaje,
pero el proceso receptor ain no ha llegado al punto de estar listo para recibirlo (figura
2.2); este bloqueo suele observarse cuando es una recepcién sincrona y hasta que el

receptor no esté apto para responder a la peticién de recepcion.

3. Blocked Sender: en este se ven involucradas al menos tres tareas (figura 2.3), donde una
comunicacién entre dos procesos se encuentra previamente bloqueada porque el emisor
estd bloqueado esperando la respuesta de un proceso anterior a €él, suele presentarse

cuando existe cierta dependencia entre los datos con los que se estd trabajando.

4. Wrong Order: suele suceder cuando se esta trabajando con operaciones de comunica-

cién no bloqueantes donde la estrategia de comunicacién ha fallado, se ven involucrados
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varios procesos con sus respectivos envios y recepciones almacenados en el buffer de

datos de forma diferente a como deberfan ser entregados. En el peor de los casos, los

mensajes pudieran llegar en orden contrario (ver figura 2.4) al que se iban a consumir.

Si este caso se diera con envios bloqueantes, nos encontrariamos frente a una situacién

de deadlock entre las tareas, ya que el receptor estaria esperando el mensaje y el emisor

no lo enviaria hasta que el receptor realice un consumo de mensaje que no va a suceder.
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Figura 2.4: Wrong Order

5. Multiple Output: acd nos encontramos con un conjunto de tareas que son receptoras de

secuencias de mensajes que se inician en serie desde un emisor comun. El envio en serie

provoca que las tareas se bloqueen hasta que les llegue el mensaje que les corresponda

(ver figura 2.5), las tareas se encontrarian bloqueadas esperando un mensaje por parte

del emisor, que atn no ha realizado el envio por estar realizdndolo en ese momento a

otro proceso especifico.
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Colectivas

Las operaciones colectivas, por su necesidad de realizar la operacion de forma conjunta,
suponen un cierto tiempo de bloqueo entre una o todas las tareas, ocasionando que la aplicacién
se detenga casi (0) en su totalidad, con la finalidad de estar sincronizadas para llevar a cabo
la operacién que se estd esperando, convirtiéndose asi en los problemas de prestaciones mas
frecuentes. Estas primitivas estan directamente ligadas con el nimero de procesos involucrados
dentro de la aplicacion y dependiendo del sentido que tengan pueden ser pérdidas de tiempo en
los procesos que estan esperando respuesta desde el proceso raiz 9, en caso contrario se generaria
al momento de la salida de la aplicacién donde el proceso raiz habra de esperar que las demés

tareas hayan finalizado.

1. Blocked at Barrier: en este caso la primera tarea en llegar se encuentra bloqueada hasta
que hayan arrivado todo el conjunto o grupo de tareas que deben acompanarla en una
siguiente tarea (ver figura 2.6). Suele presentarse cuando todo el grupo de tareas habran
de iniciar una operacién al mismo tiempo de forma que hasta que no estén todas en el
mismo punto, el proceso no continuard, esta situacién se ve directamente influenciada
por desbalanceos entre la carga de trabajo, la existencia de entornos heterogéneos o

problemas de eficiencia anteriores que afectaban solo algunas tareas.

A

Tareas

D e

0 EYe

Figura 2.6: Bloqueado por Barrier

2. Colectivas 1 a N: se presenta cuando desde la tarea que ejerce el papel de raiz, ha
enviado un mensaje al resto de tareas y se encontraran bloqueadas aquéllas que hayan
terminado antes y estén solo a la espera de la recepcién de este mensaje (ver figura
2.7).

3. Colectivas N a 1: suele presentarse cuando el proceso que figura como raiz ha finalizado
todas sus tareas antes de que le lleguen los mensajes que espera de las otras tareas
(ver figura 2.8); es decir, al momento en que ha terminado su tarea anterior ain no

esta disponible mas informacién para él.
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4. Colectivas N a N: este tipo de bloqueo se presenta cuando cada una de las tareas
cumple a su vez tarea de recepcién y envio de mensajes (ver figura 2.9). Suele estar
directamente relacionada con las fases de reparticién inicial, generaciéon de los datos
6 envio final a las tareas. Ocasionando que si alguna ha excedido el tiempo medio de
recepcion y envio, el tiempo global de la tarea se verd afectado y se bloquearan las
demas tareas involucradas, y se podrd determinar como la suma total de los tiempos

perdidos en cada tarea.
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Figura 2.9: Colectivas N a N

Estructurales

Suele suceder que algunas etapas del desarrollo de la aplicacién se comporten de forma similar
a ciertos paradigmas de paralelismo, de esta forma se pueden prever posibles variaciones en el
flujo de las tareas dentro del programa paralelo y predecir los problemas de ineficiencia presentes
segun un paradigma u otro. Dado que la aplicacion paralela con la que estamos trabajando
se encuentra disenada bajo un paradigma madster/worker, se observan algunos problemas de
ineficiencias ligados a la forma en que se comunican unas tareas con otras.

Mdster/Worker: basicamente en una aplicacién con este tipo de estructura, se realiza una
fragmentacion de datos por parte del master, que son repartidos a los correspondientes traba-
jadores, éstos realizan el conjunto de tareas preestablecidas y luego devuelven los resultados al
master, pudiendo existir casos en los que éste proceso es llevado a cabo de forma iterativa. En
el caso de éste tipo de paradigmas, suele tenerse en consideracién los siguientes aspectos cuando

de analisis de rendimiento se trata [20]:

1. Granularidad de las tareas: se refiere a la relacién existente entre los bytes enviados y/o
recibidos por una tarea y el computo realizado. Se puede realizar un estudio previo,
con el modelo computacional y el ancho de banda disponible, para tener una idea de

sobre la granularidad méxima posible.
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2. Organizacién de las comunicaciones: estd relacionado con la seleccion del nimero de
mensajes de acuerdo a su longitud, ya que a mayor tamano el tiempo de inicializacién
puede ser menor pero no garantiza que el tiempo global se reduzca, ya que al momento
del manejo de la salida de los datos y procesamiento de los mensajes podria haber
congestion en la red. De igual forma mensajes de un tamano muy pequeno permiten
solapar el cémputo con la comunicacion; aunque normalmente el tamano de los men-
sajes apropiado, y esta capacidad de solapamiento suelen estar estrechamente ligadas

con la aplicacion, convirtiéndose en factor de estudio obligado si se quiere optimizar.

3. Paradigma de Paralelismo: en modelos mas complejos de méster/worker, el tipo de
paralelismo empleado en la aplicacién puede estar relacionado no solo con el parti-
cionado de los datos sino también con cierto paralelismo funcional. Si fuera este el
caso las tareas de los workers podrian afectar directamente el rendimiento global de la
aplicacién segun si realizan todos el mismo proceso o si cada uno varia en funcién de
los datos que ha recibido. De igual forma si el master se ve en la obligacién de realizar
algin otro proceso que no sea sélo la reparticién de datos y posterior recoleccién, que
frenaria algunos procesos de recepcion de los trabajadores que ya estan listos por estar

finalizando alguna tarea previa.

Recordando lo comentado anteriormente, cuando se trata de entornos heterogéneos, ademas
habrd de considerarse la configuracion de las maquinas y la cantidad de carga que pudieran
tener. A medida que se analiza una aplicacién méster/worker visualizando los eventos se puede
determinar la cantidad de carga generada, las comunicaciones existentes, y definir los posibles
desbalanceos o retardos que existen, esto con la intenciéon de determinar el nimero de workers
apropiado para la carga de trabajo y reducir los posibles retrasos existentes durante la ejecucion.

Una vez definidos el conjunto de factores que estdn directamente relacionados con éste tipo

de estructura, se pueden considerar problemas de ineficiencia situaciones tales como:

» Desbalanceo de Carga, suele suceder cuando el trabajo no esta uniformemente distri-
buido entre los workers desocupados disponibles. Problema que suele deberse a va-
riaciones en las tareas (diferentes cédigos o datos) con las que debe trabajar a cada

worker.

s Numero inapropiado de workers, si son muchos pueden generar una tasa de computo
muy baja pero muy alta en cuanto a comunicacién, o si son muy pocos generando

largos periodos de inactividad por parte del méster.

= Retardos en las comunicaciones, debido a problemas previos de balanceo, que pudieran
haberse presentado, o a la carencia de uniformidad en la reparticiéon de las tareas. No

dejando de lado causas como el ancho de banda, latencia, o contencién de los mensajes.

= Tasa inapropiada de relacion entre el tamano de los mensajes y el ntimero de veces que

se envian.
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2.3. Meétodos de Analisis de Rendimiento

Con el paso de los anos y gracias al desarrollo de nuevas herramientas y lenguajes para pro-
gramacién paralela, los enfoques de andlisis de rendimiento han ido actualizandose y adaptandose
mas al comportamiento real de la aplicacién.

Se ha pasado desde una visualizacién post-mortem de las ejecuciones, que solo permitia una
vez finalizada la ejecucion sacar conclusiones basadas en los llamados que se efectuaban de
una funcién a otra, a la fase en que existen herramientas capaces de monitorizar la aplicacion
a medida que ésta se estd ejecutando. Permitiendo introducir modificaciones que mejoren el
rendimiento de la aplicacién sin necesidad de detenerla, conocido como anélisis de rendimiento

dinamico.

Analisis de Rendimiento Clasico

La aproximaciéon clasica de andlisis de rendimiento, ha estado basado en la visualizacién
de las ejecuciones con la ayuda de algunas herramientas. Una vez que las aplicaciones han sido
disenadas y depuradas, son ejecutadas con la ayuda de herramientas de monitorizacién que reco-
lectan la informacion del comportamiento de la aplicaciéon. Usualmente, una vez completada esta
fase, la herramienta de visualizacién muestra la informacién que ha conseguido recolectar em-
pleando vistas variadas (diagramas de Gantt, histogramas, diagramas de barras, entre otros...).
Se cuenta con diferentes herramientas de visualizacion que difieren en interfaz de interaccién
con el usuario o el tipo de datos que muestran, pero sirven para dar una impresién rapida del
rendimiento de la aplicacién y sus posibles problemas principales. La forma ma&s préctica de
conocer si una aplicacién no estd sacando provecho de su disefio o del entorno paralelo sobre el
que estd siendo ejecutada, se puede monitorizar o instrumentar con la finalidad de obtener éstos

datos. Sin embargo, éstas herramientas de monitorizacién pueden ser de diferentes tipos [20]:

Temporales: aquélla que estd relacionada con el tiempo de ejecucion para identificar

donde estd invirtiendo mas tiempo la aplicacion paralela.

= Contadores: empleado para contar la cantidad de veces que se ejecuta una determinada

funcién o evento.

s Muestreo: empleando ésta técnica, se obtienen ciertas mediciones peridédicas del estado
de la aplicacién. Suele realizarse deteniendo la aplicacién en puntos definidos para

tomar la medida.

s Trazas: son secuencias de informacién asociadas a eventos determinados que se suceden

dentro de las aplicaciones paralelas.

A partir de las medidas tomadas se puede obtener un resumen de la informacién asocia-

da con el rendimiento obtenido en la ejecucién de la aplicacion paralela sobre un entorno de

23



cémputo paralelo, este puede estar presentado tanto textual como graficamente. En la aproxi-
macién clasica de la visualizacion de dichos datos, se pasa por una fase de recoleccién de datos,
transformacion de los datos y posterior visualizacion. Los cuales se suelen insertar dentro de un
proceso ciclico por parte del desarrollador en el que se persigue el mejor rendimiento posible
para la aplicaciéon. Con las herramientas de visualizacion se espera identificar los problemas de
la aplicacion relacionados con el rendimiento de las tareas y sus comunicaciones, la estructura
de los algoritmos empleados y su implementacion. En general una herramienta de visualizacién
permite al desarrollador comparar facilmente el patrén de ejecucion observado en su aplicacion
con aquél que espera sea el ideal. Una visién global de la interaccién existente entre las fases
dentro del andlisis de rendimiento clasico, se puede observar en la figura 2.10.

La hipétesis de rendimiento se enriquece y sustenta con los resultados obtenidos de cada uno
de los experimentos de rendimiento realizados, permitiendo asi generar una solucién basada en
la base de conocimientos de rendimientos para realizar los ajustes o las posibles soluciones para

resolver las ineficiencias que se estuvieran presentando.
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Rendimiento <qu

F Y

A4

Comprucha Gienera

Datos de la
" omitribary experimentacion de
Rendimiento

Base de
comocimiento del
Rendimiento

F 3
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Figura 2.10: Analisis Césico de Rendimiento

Entre los diagramas empleados para visualizar la informacién para post-procesamiento se

utilizan los siguientes:

s Grafos de comunicacion. También conocidos como diagramas de Gantt, permiten vi-
sualizar el estado de la ejecucién, la interacciéon de las tareas y sus comunicaciones
dentro de un intervalo de tiempo determinado. Estos estados y/o tareas son represen-

tados con el uso de colores.

» Resumenes estadisticos por tarea. Mostrados con la ayuda de grafico de torta (tarta),
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en los que se representa el porcentaje de tiempo invertido en cada una de las tareas

involucradas en la aplicacion.

s Resumenes estdisticos por comunicacion. Suelen visualizarse como matrices de N x N
tareas, donde cada celda representa la comunicacion entre dos tareas a las que hace
referencia, su unidad de medida acostumbra ser en bytes (Kbytes o Mbytes) enviados y
recibidos. A veces, emplean colores para las celdas segin los tamafios y con la intencién
de facilitar la visualizacién de las comunicaciones con gran volumen de datos. Dado que
principalmente son de naturaleza acumulativa, no suelen ser demasiado ttiles cuando
hay eventos de naturaleza iterativa, porque no serd ficil identificar los problemas o

ineficiencias que hayan estado presentes.

» Arboles de llamada. Consiste en un diagrama de arbol que muestra las llamadas que han
sido efectuadas entre las diferentes funciones dentro de la aplicacién, puede representar
desde objetos hasta subrutinas, o incluso llegar al nivel de bucles y condicionales. Es
muy practico para depurar el algoritmo al ver si la ejecucién refleja el planteamiento

inicial del desarrollador.

Analisis de Rendimiento Automatico

Cuando se desea desligar a los desarrolladores de las tareas relacionadas con andlisis de
informacién gréfica o la deficién de problemas de rendimiento, suele plantearse un analisis de
rendimiento para la aplicacién de forma automadtica. Este proceso requiere un modelo de ren-
dimiento de los resultados esperados de ese proceso[38]. Es decir, “un proceso de examinacién
sistematica del rendimiento basdndose en datos recogidos de una aplicacién, con la finalidad de
identificar propiedades de rendimiento relacionadas con regiones del codigo fuente de la aplica-
cién”.

Las herramientas empleadas para este tipo de anélisis suelen estar basadas en dos principios.
Primero, usan un conjunto de mediciones tomadas a partir de ejecuciones instrumentadas de la
aplicacién y provistas por herramientas de monitorizacién. Segundo, se basan en el conocimiento
de los problemas de rendimiento almacenados en una base de conocimiento [20].

La naturaleza de los datos de rendimiento sin procesar viene dado por las técnicas de moni-
torizacién més comunes, las cuales usualmente entregan los datos en formas de perfiles o trazas
de enventos. Estas herramientas de analisis de rendimiento clésico soportan principalmente el
proceso de busqueda proveyendo vistas de bajo nivel de estos tipos de datos, vista que, usual-
mente incluyen visualizacién textual o gréfica (incluso a veces interactiva) como tablas o graficos
de barras de informacion de profile, lineas de tiempo, diagramas de trazas de eventos y andlisis
estadisticos.

Una vez que las mediciones han sido realizadas, el proceso de andlisis automatico puede ser
llevado a cabo, donde la principal interrogante es cémo detectar los puntos de ineficiencia o

bottlenecks. El trabajo con aplicaciones paralelas ha permitido identificar que muchas de ellas
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tienen problemas de rendimiento bien definidos. Para buscar un problema de rendimiento, la
herramienta debe estar soportada con la informacion acerca de cuales serian los posibles puntos
de ineficiencia y como reconocerlos. Estos cuellos de botella se pueden hacer llegar a la aplicacién
como una base de conocimiento, conteniendo los modelos de rendimiento que proveen una via
para entender los problemas de rendimiento. Usualmente se emplea un buen modelo analitico que
facilitara la prediccion de los cuellos de botella junto con sus causas y posibles optimizaciones,
cabe destacar que cuando se desea crear un modelo de rendimiento, simplicidad y precisién no
siempre van de la mano.

En este enfoque la busqueda de cuellos de botella esta atin basada en archivos de trazas gene-
radas una vez que ha finalizado la ejecucion, siendo conocido como analisis estatico post-mortem.
Las visualizaciones han sido reemplazadas por un andlisis automaético y la emisién de recomen-
daciones directas sobre los problemas detectados, es por ello que las herramientas basadas en
este enfoque reducen significativamente la cantidad de tiempo invertida por los desarrolladores
en analisis de rendimiento, ya que estan soportados por la automatizacion, y recepcion de datos
m&s precisos, dentro del proceso global de sintonizacién. Las observaciones generadas por la
herramienta suelen ser pistas muy ttiles para conocer el comportamiento de la aplicacion, sin
embargo dado que son conclusiones obtenidas de una ejecucién que ya ha finalizado, para una
siguiente ejecucién y dadas las caracteristicas cambiantes de algunas aplicaciones puede que lo
que ha funcionado para una ejecucién anterior, no funcione para la siguiente, estableciéndose
asi que estas herramientas y este tipo de andlisis es mas adecuado para aplicaciones estables con

datos de entrada similares.

Analisis de Rendimiento Dinamico

Aun cuando el desarrollador se ha visto beneficiado con la inserciéon de los procesos de
andlisis automaticos durante la ejecucién sin sintonizacién, ain continuaba siendo necesario
realizar manualmente los pasos de sintonizacién de la aplicacion y viéndose involucrados muchos
de los aspectos relacionados con el analisis clasico, tales como: la necesidad de instrumentar
la aplicacién, analisis basado en ficheros de trazas, realizar solo una ejecucién a la vez en un
entorno dado y un cierto comportamiento estable requerido [25]. Por ello, el andlisis automético
fue llevado de un punto de vista estatico a uno més dindmico, donde el analisis de rendimiento es
llevado a cabo durante la ejecuciéon de la aplicaciéon de forma totalmente automatica para evitar
la necesidad de realizar alguna instrumentacién manual, sustituyendo un analisis post-mortem
por uno en tiempo real; esto implica la necesidad de una monitorizacion constante, donde la
principal ventaja es que ya no es necesario continuar usando ficheros de trazas para efectuar el
andlisis.

Este enfoque permite el control de la cantidad de instrumentacién insertada en la aplicacién
con la ayuda de técnicas de instrumentacién dindmica. La monitorizacién puede iniciar con
una instrumentacién muy sencilla y cuando ciertas condiciones particulares sean detectadas,

sea instroducida instrumentacion adicional. Cuando las condiciones desaparezcan, es posible
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eliminar esa instrumentacién extra. Bajo este enfoque el andlisis debe ser realizado durante la
ejecuciéon de la aplicacion, lo que conlleva a introducir cierto overhead dentro de ella. Por ello,
el analisis debe ser relativamente simple para introducir la menor cantidad de overhead posible.

El analisis de rendimiento dindmico es el mejor acoplado a aquéllos programas que son itera-
tivos y puede soportar aplicaciones con tiempos de ejecucién muy altos y grandes volimenes de
datos. De igual forma, para resolver los problemas detectados, es necesario detener la aplicacion,
modificar, recompilar y ejecutarla de nuevo.

Cuando el andlisis de rendimiento estd basado en un enfoque dindmico no es necesaria la
intervencion del desarrollador ni el acceso al cédigo fuente de la aplicacién. La ejecucion de
la aplicacién paralela es monitoreada, analizada y sintonizada automadaticamente en tiempo de
ejecucidn, sin la necesidad de recompilar y reiniciar. El comportamiento que esté presentando la
aplicacién sera considerado y analizado buscando los cuellos de botella existentes y sus posibles
optimizaciones.

Adn asi, si la aplicaciéon tiene un comportamiento diferente en diferentes ejecuciones, la sin-
tonizacion dinamica lo adapta tomando en cuenta cambios en el comportamiento de la ejecucion
actual y cuando se ejecuta la aplicacién bajo un entorno de andlisis dindmico permitird que
el comportamiento de la aplicacién se adapte también a las condiciones cambiantes dentro del
entorno paralelo.

La sintonizacién dinamica debe proveer los siguientes servicios cooperando entre ellos en

tiempo de ejecucién [25]:

= Monitorizacién dinamico de la ejecucién de la aplicacién paralela. Este servicio permite
la recoleccién de los datos a partir de la ejecucién de la aplicacién. Puede estar basado
en cualquiera de las técnicas de monitorizacién que hemos venido mencionando, tales
como: medicién de tiempo, profiling, o trazas de eventos. Aun asi, dado que el objetivo
es reducir la intervencion del usuario, la instrumentacién debe ser llevada a cabo de
forma automatica por el sistema. Este servicio libera al desarrollador de la instrumen-
tacién manual dentro del cédigo y lo exime de invocar todas las fases de recompilado

y ejecucion de nuevo una vez que se ha modificado el cdédigo de la aplicacion.

= Andlisis de rendimiento automético en tiempo de ejecucién. Este servicio analiza las
mediciones que se vienen generando, encontrando los cuellos de botellas y dando solu-
ciones sobre como sobreponerlos. Para encontrar los puntos de ineficiencia y determinar
como mejorar el rendimiento, el andlisis debe tener incorporada una base de conoci-
miento de rendimiento acerca de los cuellos de botella que son representativos para
la aplicacién paralela. Para que sea ttil debe incluir senalizacién de los problemas de-
tectados y sugerencias para el usuario, a través de una interfaz grafica o impresién en

pantalla.

= Sintonizacién automética del programa en tiempo de ejecucion. Permite usar las suge-

rencias generadas en el proceso de analisis para modificar automaticamente la aplica-
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cién paralela en tiempo de ejecucién. Evitando asi por completo el acceso al codigo o la
necesidad de recompilacion y reinicio de la aplicacién. La sintonizacién dinamica libera
a desarrollador de tener que modificar el cédigo dado que se modifica autométicamente

a medida que se ejecuta.
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Aplicacion

Icidn
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Rendimiento
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Morajko, 2003

Figura 2.11: Anélisis y Sintonizacién Dindmica

Lo que se observa graficamente en la figura 2.11 es que todo el proceso de monitorizacion,
analisis y sintonizacién esta sucediendo fuera de la vista del usuario de forma que no sea necesaria

su intervencién para realizar las modificaciones necesarias en la aplicacién.

2.4. Herramientas de analisis de rendimiento

Inicialmente las principales herramientas existentes para analisis de rendimiento se encuen-
tran distribuidas entre los diferentes enfoques antes explicados en la seccién 2.3 y emplean dife-
rentes técnicas de monitorizacién, algunas de ellas como Jumpshot[8], PARAVER[30] y VAMPIR
[26] emplean visualizaciin por trazas, en cambio otras como TAU [32] o Paradyn [24] estdn ba-
sados en profiling. Estas y otras herramientas como MATE [25], GMATE [10], KOJAK [37]
y SCALASCAJ15] estédn disponibles actualmente para llevar a cabo el proceso de andlisis de
rendimiento y seran descritas a lo largo de esta seccién.

Jumpshot: Jumpshot es una herramienta de visualizacién de andlisis de rendimiento post-
mortem basada en Java. Empleando Java aumenta la portabilidad, mantenibilidad y las funcio-
nalidades de las herramientas. La 1ltima versién disponible es Jumpshot-4, y presenta un redi-
seno total de la herramienta grafica para SLOG-2. El nuevo formato de archivo de log es escalable
y permite al visualizador detallar el archivo a cualquier nivel de acercamiento. Adicionalmente,
posee nuevas funcionalidades de acercamiento y alejamiento,desplazamiento, expansién vertical

de la linea de tiempo asi como manipulacién de la linea de tiempo disponible tanto en el médulo
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de histograma como el de linea de tiempo. Posee una nueva tabla de leyendas que provee un
control central para ambos mdédulos y permite que la manipulacién de los graficos sea mucho
més facil. El nuevo visualizador posee un convertidor de archivo de log integrado que permite
convertir otros formatos de traza como CLOG, CLOG-2, RLOG y UTE.
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Figura 2.12: Visualizacién de ejecucion con Jumpshot.

E

Paraver: se trata de un visualizador de trazas de eventos disenado en la Universitat Po-
litecnica de Catalunya (UPC) que soporta una gran gama de sistemas de programacion dis-
tribuidos sobre plataforma UNIX. Visualiza trazas en lineas de tiempo, de eventos producidos
en llamadas de sistema, junto con contadores de hardware y llamadas a funciones. Una carac-
teristica particular de este sistema es la capacidad de definir las métricas que el usuario desea
visualizar, a través de instrucciones u operaciones realizadas con la herramienta. Es empleada
como visualizador de una herramienta denominada Dimemas, que es empleada para andlisis de
prestaciones mediante simulacion de la aplicacién.

VAMPIR (Visualization and Analysis of MPI Resources): es una herramienta que permite
generar trazas de ejecucion de aplicaciones paralelas con MPI, ha sido desarrollado por la empresa
Pallas y se basa en la generacién de trazas con la ayuda de contadores de tiempo, de subrutinas
y/o bloques de cédigo. Cuenta con multiples vistas graficas y generacién de estadisticas sobre el
tiempo empleado en cada funcién de la aplicacién, referentes a MPI y otras; asi como controlar el
flujo y tamanino de los mensajes. Emplea la libreria VAMPIRTrace para realizar la monitorizacion
de todas las comunicaciones y permite la visualizacién de las métricas en gréaficas de linea de
tiempo, graficas de barras, tarta e histogramas, tanto de forma global como también para cada
uno de los procesos. Las salidas generadas por VAMPIR tienen un aspecto como el de la figura
2.13.

KOJAK: es un conjunto de herramientas disenados para el anélisis de rendimiento automati-

co de aplicaciones paralelas en MPI, OpenMP, y aplicaciones hibridas desarrolladas en C, C++
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Figura 2.13: Salida de VAMPIR.

y FORTRAN; KOJAK genera trazas de eventos para aplicaciones en ejecucién y luego deter-
mina las posibles ineficiencias existentes dentro de los patrones de ejecucién. KOJAK ha sido
un proyecto conjunto por Forschungszentrum Jiilich en Alemania y la Universidad de Tenesse,
Estados Unidos [37]. Cuenta con un médulo de generacién de trazas (EPILOG) y un mdédulo
de instrumentacién automatica empleando TAU [32]. Una vez que se ha completado la fase
de postprocesado, la traza global es sujeta a un andlisis en frio realizado por el componen-
te EXPERT, el cual intenta identificar propiedades de rendimiento especificas. Internamente,
EXPERT representa las propiedades de rendimento en la forma de patrones de ejecucién que
modelan un comportamiento ineficiente. Estos patrones son usados durante el proceso de anélisis
para reconocer, clasificar y cuantificar el comportamiento ineficiente en la aplicacién. El proce-
so de andlisis de forma automaética transforma las trazas en rutas de llamadas compactas que
incluyen las penalizaciones de tiempo ocasionadas por los diferentes patrones y que pueden ser

visualizadas empleando herramientas como CUBE, tal como se muestra en la figura 2.14.
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DiMeMas es una herramienta de simulacién de ejecuciones [4] que estuvo disponible comer-
cialmente a través de PALLAS, y no tiene registro de desarrollo activo desde 2005, sin embargo
es usada continuamente en el Barcelona Supercomputer Center (BSC). DiMeMas suaviza el uso
de simulaciones basadas en instrucciones a través de la repeticién de trazas obtenidas durante
la ejecucién de la aplicacion. Soporta la evaluacion bajo diferentes arquitecturas de méaquinas
paralelas a través de la regeneracién de trazas. Este enfoque ha demostrado un uso exitoso en
maquinas de mas de 1000 elementos de procesamiento. El basarse en trazas evita tener que
tocar el cdédigo y permite identificar los puntos necesarios para realizar la sintonizaciéon manual
o generar los cambios necesarios en el modelo de rendimiento, dado que el cédigo esta conte-
nido implicitamente dentro de la traza en vez de ser capturado explicitamente en un modelo
abstracto editable por el usuario. Editar una estructura tan compleja no es trivial y la creacién
inicial requiere que el cédigo sea escrito y ejecutado. Las trazas empleadas ocupan cierto espacio
considerable en disco y memoria del sistema, generando limites severos en el tamano maximo
del modelo que puede ser procesado en una séla maquina.

DiMeMas es una herramienta de simulacién para el anélisis paramétrico del comportamiento
de aplicaciones MPI, desarrollada por el Centro Europeo de Paralelismo de Barcelona (CEPBA)
de la Universitat Politecnica de Catalunya. Permite al usuario desarrollar y sintonizar aplica-
ciones paralelas, mientras genera una prediccién bastante precisa de su comportamiento en una
maquina paralela determinada. Habiendo leido los registros desde el archivo de trazas y espe-
cificado los parametros de la arquitectura, Dimemas puede reconstruir el comportamiento de
una aplicacién paralela a través del tiempo. La herramienta simula la ejecucién de la aplicacion,
escalando el tiempo empleado en cada bloque de acuerdo a la velocidad de la unidad central de
proceso objetivo. Dimemas genera como salida archivos de trazas que son acoplables a diferentes
herramientas como Paraver o Vampir. Los resultados incluyen informacién global de la aplica-
cion: tiempo de ejecucién y speedup. Adicionalmente, para cada proceso entrega la informacion
sobre el tiempo de ejecucion, el tiempo en que permanece bloqueado, el de cémputo, el niime-
ro de mensajes enviados y recibidos, volumen de comunicacién de datos. Aun mé&s, Dimemas
estd disenado para determinar la ruta critica que devuelve el camino mas largo de comunicacién
de la aplicacién.

TAU (Tuning and Analysis Utilities): el sistema de andlisis de rendimiento paraleo TAU, es
el producto de 14 anos de desarrollo para crear un framework robusto, flexible, portable e in-
tegrado y un conjunto de herramientas para instrumentacién, medicién, andlisis y visualizacién
de sistemas y aplicaciones paralelos de gran tamano [32]. El éxito de este proyecto representa un
trabajo conjunto entre los investigadores y colegas de la Universidad de Oregon y el Centro de
Investigacién de Jiilich junto con el Los Alamos National Laboratory. El sistema de rendimiento
TAU considera los problemas de rendimiento desde tres niveles: instrumentacién, medicién, y
andlisis. TAU soporta la configuracion e integraciéon de estas tres capas para conseguir resol-
ver problemas de rendimiento puntuales. De igual forma, la exploracién efectiva de rendimiento

requiere seleccionar prudentemente de un conjunto de metodos alternativos. TAU permite la
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combinacién de experimentos de rendimiento significativos que facilitan la obtencién de propie-
dades de rendimiento relevantes. Para lograr esto, TAU ofrece soporte para realizar andlisis de
rendimiento de diferentes maneras, incluyendo la capacidad de realizar un proceso de instru-
mentacion multinivel bastante robusto, modalidades de medicién empleando trazado y profiling,
andlisis de rendimiento interactivo y gestién de datos de rendimiento, los datos obtenidos a
través del profiling pueden visualizarse en diferentes graficos estadisticos, algunos de ellos como

el histograma mostrado en la figura 2.15.
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Figura 2.15: Histograma de eventos generado por TAU

Paradyn: es una herramienta desarrollada en la Universidad de Wisconsin y Maryland que
monitoriza el rendimiento de aplicaciones paralelas[24]. Es capaz de monitorizar y realizar anali-
sis automatico en tiempo de ejecucion. Emplea técnicas de profiling dinamicas a través de la
instrumentacién realizada con la ayuda de la libreria DyninstAPI (http://www.dyninst.org/)
que evita tener que modificar el codigo fuente de la aplicacion, que inserta pequenos trozos de
cédigo (snippets) en la entrada y salida de las funciones. Paradyn facilita el anélisis automatico
de las aplicaciones que estan siendo ejecutada, procurando indentificar aquéllas partes dentro
de la misma que consumen mayores periodos de tiempo y recursos, estd basado en un modelo
de identificacién de cuello de botellas denominado W3 (Why, Where, When; Por qué, donde y
cuando), con los que se espera determinar por qué la aplicacién estd presentando un rendimiento
bajo, en que parte de los recursos esta ocurriendo el cuello de botella (CPU, comunicaciones,
E/S) y cudndo sucede.

El objetivo que esta herramienta persigue es aislar de la forma maés rapida y precisa posible
el problema sin tener que examinar demasiada informacién; ademés cuenta con un mdédulo
denominado consultor de rendimiento que libera al desarrollador de tomar decisiones sobre el
control de los datos dentro de la aplicacion. Este consultor busca cuales son los problemas, decide
qué datos necesita almacenar y cuando debe aplicar la sintonizacién, todo esto en tiempo de

ejecucion. Mientras se realiza el proceso se informa al desarrollador los cambios que han sido
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llevados a cabo. Adicionalmente cuenta con herramientas de visualizacién llamadas Performance
Visualizations, que informan el rendimiento de la aplicacién y el trabajo realizado por Paradyn
en tiempo de ejecucién, visualizando los datos que se han estado obteniendo a medida que la
ejecucién del programa avanza.

SCALASCA: La versién actual de SCALASCA[15] soporta medicién y anélisis para apli-
caciones de plataformas HPC que emplean MPI, OpenMP y programaciéon hibrida, escritas
tanto en C/C++ como Fortran. Antes de que cualquier dato de rendimiento sea recolectado, la
aplicacién que se va a estudiar debe ser instrumentada.

Cuando se ejecuta la aplicacién sobre la maquina paralela, el usuario puede generar un reporte
condensado (profile) con métricas agregadas para rutas de llamadas de funciones individuales
(ver figura 2.16, y/o trazas de eventos que almacenan aquéllos que han sucedido en tiempo de
ejecucién, cuyo perfil o visualizaciéon de linea de tiempo sera generada mas adelante.

Dado que las trazas tienden a hacerse demasiado grandes en poco tiempo, puntuar el re-
porte condensado es mas recomendable. Cuando el traceado estd activo, cada proceso genera
un archivo de traza que contiene los eventos para cada proceso local. Una vez que la aplicacion
ha finalizado, SCALASCA carga los archivos de trazas en memoria principal y las analiza en
paralelo empleando tantas unidades de proceso (CPUs) como procesos hayan sido empleados
dentro de la aplicacién misma.

Durante el analisis, SCALASCA busca por patrones caracteristicos que indiquen estados
de espera o inactividad que estén relacionados con las propiedades de rendimiento, clasifica las
instancias detectadas por categorias y cuantifica su significancia. El resultado es un reporte de
andlisis de patrén similar en estructura al reporte condensado pero enriquecido con metricas de
comunicacién y sincronizacién de alto nivel.

Tanto el reporte condensado como el de patrones contienen métricas de rendimiento para
cada una de las rutas de llamadas de las funciones y de los procesos y/o threads, que pueden ser
examinados de forma interactiva en el reporte de anélisis provisto o con un navegador de profile
como el ParaProf de TAU. Adicionalmente, al anéalisis de trazas escalabe, es también posible
ejecutar el andlisis secuencial de KOJAK después de unir los archivos de traza locales.

El analisis secuencial ofrece caracteristicas que no estan aun disponibles en esta versién
paralela, incluyendo los anélisis extendidos de MPI y OpenMP, y la habilidad de generar trazas
de instancias de patrones (también conocidas como trazas de propiedades de rendimiento).
Como una alternativa para la busqueda automética de patrones, las trazas unidas pueden ser
convertidas e investigadas empleando navegadores externos como Paraver o Vampir, sacando
partido de sus completas funcionalidades de visualizacién en lineas de tiempo y estadisticas.

MATE (Monitoring, Analysis and Tuning Environment): es una herramienta de monitori-
zacion, analisis de rendimiento y sintonizacién de aplicaciones paralelas de forma dindmica, ha
sido disenada en la Universitat Autonoma de Barcelona [25], ha basado el monitoreo dinamico
en trazas de eventos (entrada y salida de funciones). Inicialmente estaba pensada para sintonizar

aplicaciones PVM paralelas/distribuidas desarrolladas en C/C++ ejecutandose en plataformas
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Figura 2.16: Analisis de Rendimiento con Scalasca

UNIX. MATE realiza la sintonizacién dindmica en tres fases bdsicas y continuas: monitoreo,
anélisis de rendimiento y modificaciones. Este entorno dindmica y automéaticamente instrumen-
ta una aplicacién en ejecucién para reunir la informacién acerca del comportamiento de la
aplicacién. La fase de analisis recibe los eventos, busca e identifica los posibles cuellos de botella
existentes, detecta que los ha causado y da soluciones sobre como corregirlos. Finalmente, la
aplicacién es sintonizada dindmicamente determinando, los puntos de medicién, el modelo y las
acciones a tomar, que permitiran la creacion del tunlet especifico.

MATE involucra ciertos componentes principales colaborando entre ellos para controlar y
tratar de mejorar el rendimiento de la aplicacién: un controlador de la aplicacion, que vigila la
ejecucién de la aplicacién en un huesped dado (gestién de tareas y mdaquinas), que provee la
gestién de la tarea de instrumentacién y modificacion; una libreria de monitorizacion dindmica,
cargada por las tareas del controlador de la aplicacion para facilitar la instrumentacion y la reco-
leccion de los datos, esta libreria contiene funciones que son responsables del registro de eventos
con todos los atributos necesarios para ser analizados; v un analizador, que es un proceso que
lleva a cabo el andlisis de rendimeinto de la aplicacién, automéaticamente detecta los problemas
de rendimiento en ejecucién y solicita los cambios necesarios para mejorar el rendimiento de la
aplicacion.

GMATE (Grid Monitoring, Analysis and Tuning Environment): es una herramienta desa-
rrollada en la Universitat Autonoma de Barcelona[l0] basada en la herramienta MATE que ha
sido descrita anteriormente, por lo que posee el enfoque de instrumentacion, monitorizacion,
andlisis y sintonizacién de aplicaciones paralelas/distribuidas ejecutdndose bajo entornos Grid,;
desde el punto de vista de la aplicacién, la heterogeneidad es la caracteristica que mas influencia

la ejecucion y en entornos de Grid, la heterogeneidad existente entre las diferentes unidades de
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cémputo y las comunicaciones involucradas es un hecho. GMATE consta de un tunlet desarrolla-
do en Java que puede encapsular la légica de lo que debe ser medido, como deben interpretarse
los datos por el modelo de rendimento y que puede ser cambiado para obtener mejor tiempo
de ejecucion o mejor uso de recursos; cuenta con actuadores y sensores que estan asociados a
conjuntos de procesos o variables de sistema usadas como datos fuente.

En el caso de andlisis de rendimiento de aplicaciones paralelas, la ordenacién de los eventos
y la sincronizacion son situaciones cruciales para la deteccion de los cuellos de botella. De modo
que para proveer procesos de monitorizacion de eventos de sincronizacién dentro de la aplicacion
emplea dos enfoques, una herramienta de monitoreo y un sistema basados en sincronizacién del

reloj.
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Capitulo 3

Modelo de Prestaciones y

Sintonizacion

“Investigar es ver lo que todo el mundo ha visto, y pensar lo que nadie mds ha

pensado”

Albert Szent-Gyorgi (1893-1986).

3.1. Introduccion

En este capitulo se describe en términos generales la finalidad para la que se disena un
modelo analitico de prestaciones y las principales consideraciones que se deben tomar en cuenta.
Realizar la mediciéon para todos y cada uno de los posibles valores de entrada en un sistema o
aplicacién nos permite tener el conocimiento general de cémo serd el comportamiento real de
éste para un determinado conjunto de condiciones; sin embargo el consumo de tiempo y recursos
que ésto significa es considerable (sino es que imposible) [22].

El rendimiento de aplicaciones paralelas en maquinas de High Performance Computing
(HPC) se basa en factores como el algoritmo, implementacién, compilador, sistema operativo,
arquitectura del procesador y tecnologias de interconexién. Es por ello que, se puede concluir que
los modelos de rendimiento para aplicaciones cientificas en sistemas complejos debe estar acorde
a todos los atributos de la aplicacién y del sistema. Los métodos para evaluacién de rendimiento
pueden ser separados en dos dreas [19]: modelos estructurales y modelos funcionales analiticos.

Los modelos estructurales emplean descripciones de componentes individuales del sistema
y sus interacciones, tales como los modelos detallados de simulacion; mientras que los modelos
analiticos y funcionales, separan los factores de rendimiento de un sistema para crear un modelo
matematico.

Los simuladores detallados [19]son normalmente construidos por desarrolladores durante la
fase de diseno de las arquitecturas para agregarlo al diseno. Para maquinas paralelas se suelen

usar dos simuladores, uno para los procesadores y otros para la red de interconexién. Estos
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simuladores tienen la ventaja de predecir el rendimiento de la aplicacién de forma automaética
desde el punto de vista del usuario.

La desventaja es que la mayoria de estos simuladores suelen ser propietarios y no estar dis-
ponibles para usuarios y centros HPC. Ademads, dado que ellos capturan el comportamiento de
la simulacion de los procesadores pueden tomar hasta un millon de veces mas tiempo que una
ejecucién real. Esto significa que para simular una hora de una aplicacion, podria tomar aproxi-
madamente 114 afnos de tiempo de CPU [19]. Los métodos de ejecucién directos son empleados
comunmente para acelerar las simulaciones de arquitectura pero atn tendrian ralentizacién del
tiempo de ejecucion.

Para evitar estos inmensos costos computacionales, los simuladores de precisién por ciclos
son usualmente s6lo empleados para simular unos pocos segundos de una aplicacién. Esto oca-
siona un dilema de modelado, para la mayoria de las aplicaciones cientificas el comportamiento
completo de una ejecuciéon no puede ser capturado en unos pocos segundos. Las aplicaciones
raramente tardan todo su tiempo en una rutina y su comportamiento puede cambiar a medida
que la aplicacién evoluciona a lo largo de su simulacién (en algunos casos el problema que se
estd resolviendo cambia fisicamente). Estos simuladores de ciclo estan limitados a sélo trabajar
con el modelado del comportamiento del procesador para el cual han sido desarrollados, de forma
que no son aplicables para otras arquitecturas.

En la segunda &drea de evaluacion de rendimiento, los modelos analiticos y funcionales, el
rendimiento de la aplicacién en una maquina definida puede ser descrito en una ecuacién ma-
tematica compleja.

Grupos como el de andlisis de rendimiento de la Universitat Auténoma de Barcelona y del
Jiilich Supercomputer Centre han disenado diferentes modelos para aplicaciones Méster/Wor-
ker [11], aplicaciones MPI [38], aplicaciones PVM [25] y ejecucién de aplicaciones en entornos
heterogéneos de grid [10].

La evaluacién de rendimiento de sistemas y aplicaciones paralelas puede generar cantidades
considerables de datos y hace necesario que el analisis de los resultados para tantos experimentos
de rendimiento se convierta en uno de los problemas que estan siendo investigados. Por ello
la gestion de la informacién de rendimiento es el corazén de las herramientas de andlisis de
rendimiento.

Existe cierto contraste entre el rendimiento nominal de un sistema (el pico de desempeno
posible) y el rendimiento actual de algunas aplicaciones paralelas; a medida que los sistemas
paralelos crecen en tamano y complejidad, este contraste se hace méas y mds importante, lo que
justifica la bisqueda por herramientas y técnicas que permitan a los usuarios entender las fuentes
donde se degrada el rendimiento, ya que una vez que se consigue comprender el rendimiento,
es importante no sélo, aumentar la eficiencia de las aplicaciones, sino también plantear las
modificaciones de acuerdo al sistema y al entorno de programacion.

Existen dos estrategias bésicas para llevar a cabo un andlisis de rendimiento de aplicaciones

paralelas, estos son: medicion (y modificaciéon) y modelado. El proceso de medicidn, se refiere a
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pasos que se realizan de forma iterativa, en los que el usuario captura mediciones de rendimiento
de una aplicacién en tiempo de ejecucion, identifica los cambios que son necesarios, modifica el
programa y repite todo el proceso de nuevo. En cambio, el modelado, filtra ciertos pardmetros
del sistema paralelo en forma de abstracciones que son expresadas tanto como componentes del
sistema como la interacciéon entre dichos componentes.

El enfoque de tomar mediciones y realizar modificaciones es insuficiente para entender la
razon detras de los cuellos de botella de rendimiento porque puede ser un poco mas dificil
conectar el disenio con los problemas de rendimiento. Esta limitacién es més evidente cuando los
problemas de rendimiento son influenciados por factores externos tales como: las condiciones el
entorno y los parametros de ejecucién, lo que genera que la conexién entre la implementacién y
los cuellos de botella existentes sea atin més complicado de detectar. Auin peor, cuando se realice
alguna modificaciéon en el programa para solucionar alguno de los problemas de rendimiento,
puede generar nuevos problemas ocasionando un ain peor rendimiento.

Los modelos proveen una forma més estructurada de comprender los problemas de rendi-
miento, ya que toman en cuenta la influencia de factores externos y relacionan las fuentes de
degradacién del rendimiento con las caracteristicas del sistema de rendimiento.

Adicionalmente, los modelos presentan una habilidad de prediccién aiin mayor, permitiendo
al usuario estimar los efectos en el rendimiento ocasionados por diferentes paralelizaciones o
variaciones en el entorno de ejecucion. Esta habilidad es importante porque guia al usuario a
encontrar un diseno “Optimo” del sistema, mas alld de una busqueda repetitiva de problemas
entre grandes cantidades de datos.

La tarea de composicién de modelos no es de las mas sencillas que existen, dado que las
abstracciones de los sistemas paralelos pueden ser dificiles de especificar debido a que no todas
son lo suficientemente sencillas para ser manejadas, y lo suficientemente detalladas para que

sean precisas.

3.2. Modelo de Prestaciones

El modelado de rendimiento, tal como se ha comentado anteriormente, permite observar en un
nivel de abstraccion mayor la interaccién que existe entre los diferentes elementos que conforman
un sistema o aplicacién paralela, permitiendo hasta cierto punto generar una cierta prediccién
del comportamiento que esta presentara cuando se ha variado uno u otro parametro. Sin duda
alguna, el diseno de modelos analiticos no ocasiona intrusién alguna dentro del comportamiento
de la aplicacién como pudiera generarlo algiin tipo de instrumentacién; sin embargo, este diseno
requiere especial atencién en los parametros involucrados y al comportamiento de la aplicaciéon
como tal.

Existen varios enfoques de modelado de rendimiento, donde uno de los primeros han sido el

bottom-up y el top-down, que seran descritos a continuacién:

s Bottom-up: los sistemas son descritos a través de conjuntos de parametros o funciones
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que abstraen el software, el hardware y las interacciones entre ellos. El significado y la
importancia de éstos pardmetros diferencia cada uno de ellos (HW de SW, por ejemplo).

Las técnicas de modelado analitico y sus extensiones son ejemplos de modelado bottom-

up.

s Top-down: El punto de inicio para el modelado top-down es la estructura de la aplica-
cién. Los parametros de los modelos se obtienen de las caracteristicas de la aplicacion, y
de su interaccion entre el hardware y el software derivadas de la aplicacion. Los modelos

basados en descripcién y el andlisis estatico son ejemplos de éste tipo de modelado.

En general, el modelado bottom-up estd mejor adaptado a la investigacion de factores de
arquitectura o del entorno, y el software se define a través de parametros. El modelado Top-down
se enfoca en la paralelizacion de la aplicacion, el estilo de particionado de datos, y otros aspectos

del software y por tanto estd mejor ajustado al estudio de los problemas dentro de la aplicacion.

3.2.1. Modelado Analitico

La técnica de modelado analitico abstrae las caracteristicas de un sistema paralelo como
un conjunto de pardmetros o funciones parametrizadas con la intencién de hacer la tarea de
modelado maés facil. Esta técnica ha sido ampliamente utilizada en el desarrollo y modelado de
sistemas paralelos. Como ventajas de emplear este tipo de modelado, se encuentra que es usual-
mente muy econdémico y provee una visién abstracta del hardware y del software. Aun asi, los
modelos son pocas veces lo suficientemente precisos cuando se compara con las ejecuciones reales
debido a las simplificaciones en las que se incurre a medida que se realiza el modelado. Segtn
la literatura existen tres enfoques que difieren en la forma en que los modelos son expresados,
cada uno de los cuales seran descritos en la siguiente seccién.

Cuando se trabaja con modelado analitico hay que tener en consideracién algunos aspectos
como el nivel de detalle del sistema que se estd estudiando (o nivel de abstraccién) que est4 rela-
cionado con el modelo. Los parametros por si mismos y su representacién, determinan el nivel de
abstraccién. A medida que aumenta el nimero de pardmetros disminuye el nivel de abstraccién
(més detalles en el modelo) y se incrementa el costo del modelo en tiempo de desarrollo. En
cuanto a la representacion, los parametros escalares son més sencillos que las herramientas es-
tadisticas y las funciones, pero menos flexibles. Las funciones requieren que se determine no solo
sus coeficientes, sino también su forma. Las herramientas estadisticas requieren un conocimiento
especializado que los programadores en promedio no poseen.

Otra consideracion que hay que tomar en cuenta cuando se disefia el modelo analitico, es el
grado de dificultad para determinar los valores de los pardmetros, los coeficientes de las funciones
o las especificaciones de las herramientas estadisticas (parametros de distribucién de variables,
por ejemplo). Si los pardmetros son demasiado especificos, pueden ser dificiles de capturar debido
a la carencia de herramientas adecuadas o conocimiento de la aplicacién. Si el parametro es de

muy alto nivel, puede requerir la representacion de comportamientos caracteristicos del sistema.
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Los modelos analiticos, suelen tener bajo costo computacional, a excepcién de algunas he-

rramientas estadisticas que requieren esfuerzos significativos de simulacién.

Modelado Analitico con Parametros Escalares

Este enfoque emplea un conjunto de pardmetros escalares (nimero de workers por ejemplo)
para modelar el comportamiento de un sistema paralelo. Estos parametros expresan el compor-
tamiento promedio de un sistema paralelo bajo condiciones especificas; los parametros suelen

variar en nimero e informacién expresada segun la finalidad con la que se disefia el modelo.

Modelado Analitico con Funciones

Con la finalidad de expresar los efectos de los pardmetros de hardware y software en el tiempo
de ejecucién, muchos investigadores han adoptado las funciones matematicas en vez de valores
escalares en sus modelos. Ya que el empleo de funciones aumenta la flexibilidad y el nivel de
expresividad del modelo, pero también puede aumentar la complejidad de los mismos, debido a
la necesidad de determinar la forma y los coeficientes de las funciones. Los modelos basados en
parametros escalares son un caso simplificado del modelado con funciones, donde las funciones

son constantes.

Modelado Analitico Estadistico

Otro enfoque para el modelado analitico de rendimiento para sistemas paralelos esta carac-
terizado por el uso de herramientas de modelado estadistico como distribucién de variables y
modelos de Markov. Estos difieren del enfoque de parametros escalares en el sentido que los

“parametros” ahora son herramientas estadisticas.

3.2.2. Descomposiciéon del Modelado Analitico

La descomposicién del modelado analitico es una extensién del enfoque analitico. En éste en-
foque los pardmetros y funciones son usados para caracterizar el sistema paralelo. La idea detras
de la descomposicién es simplificar el proceso de modelado. Permitiendo el diseno de mode-
los modulares, donde varias piezas pueden ser actualizadas o reemplazadas independientemente
unas de otras. Los sistemas paralelos pueden ser descompuestos de varias formas dependiendo
de la finalidad del modelado.

En general, la descomposicién simplifica el proceso de modelado porque divide el sistema
paralelo en partes que son mas amenas y modelables. La principal diferencia entre las estrategias
de descomposicion es la forma en que el sistema es dividido y las implicaciones de la division.

La descomposicién vertical y horizontal estan limitadas por la interfaz entre las piezas. En la
descomposicién horizontal, las interfaces limitan el rango de la aplicacion que puede ser tratado
por el modelo. Mientras que en la descomposicién vertical, el modelo para cada pieza no considera

la influencia de las piezas que la preceden, lo cual puede llevar a una imprecisién considerable.
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La descomposicién por overhead no tiene limitacién por interfaz, porque usualmente asume que
las categorias son mutuamente exclusivas.
Cabe destacar también que la descomposicién no aborda los problemas o limitaciones de las

técnicas empleadas para modelar las piezas.

Descomposicién Horizontal

Bajo el enfoque de descomposicién horizontal, un sistema paralelo es dividido en varias capas
(por ejemplo se podria dividir en: aplicacién, entorno de ejecucidn, y capas de arquitectura), cada
uno de los cuales es modelado individualmente. La complejidad y el nimero de capas depende

de las necesidades de modelado; la interfaz entre las capas es determinada por el modelo.

Descomposicién Vertical

Cuando se trata de descomposicién vertical, las operaciones de alto nivel como las rutinas de
comunicacién o las operaciones con vectores, son las unidades de modelado. Este enfoque suele
llamarse asi porque el objetivo principal esta sobre las operaciones en el nivel de aplicacion, y
los modelos capturan las caracteristicas de los componentes del sistema paralelo en multiples
niveles. Una de las principales caracteristicas de la descomposicion vertical es el uso de modelos
basado en operaciones para predecir el rendimiento de la aplicaciéon. Sin embargo, el nivel de
imprecisién en las predicciones es proporcional a las variaciones de comportamiento en una
operacion. Tales variaciones pueden ser ocasionadas por diferentes distribuciones de datos al

momento en que la operacion es activada.

Descomposiciéon por fuente de Overhead

En general, podemos definir el overhead como un retraso en la ejecuciéon que aparece debido a
la paralelizacion y previene la utilizacién del potencial de paralelismo del sistema. Este overhead
suele aparecer implicitamente como pardametros de la arquitectura tales como: latencia, tiempo
de pérdidas de cache; o como una consecuencia natural de la paralelizacién del software, como por
ejemplo: un desbalanceo de carga o contencién de los recursos. La descomposicién por overhead
divide estos overheads en categorias significativas que ayudan tanto al usuario como a la tarea
de modelado.

El aspecto clave de la descomposicién por overhead es la seleccién de las categorias. Mas
especificamente, éstas categorias pueden clasificarse en dos tipos: cualitativas y cuantitativas.
El significado y el propésito (bajo el contexto de modelado) de cada categoria son ejemplos de
aspectos cualitativos, junto con la habilidad de medir la categoria. Sin embargo, los aspectos
cuantitativos, como el nimero de categorias dentro del modelo, afecta la complejidad y el costo
de la tarea de modelado. Cabe acotar que la descomposicion por overhead ayuda a entender el

rendimiento del sistema pero no mejora las técnicas empleadas para modelar cada categoria.
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3.2.3. Modelado Estructural

En el modelado estructural el punto de inicio en el proceso de modelado es la aplicaciéon
como tal. La informacién estructurada es obtenida tanto a través de descripciones del usuario

como a través de andlisis de compilador.

Modelado Basado en Descripcién

Para modelos basados en descripcién, el proceso de modelado estd basado en informacion
descriptiva provista por el usuario acerca de la estructura y comportamiento del sistema paralelo.
Existen modelos que estructuran el cémputo en forma de arbol. Sus marcos de trabajo dividen
los modelos en parametros relacionados con el hardware y el sistema de software. Los parametros
relacionados con el hardware incluyen el tiempo de computo y de comunicacién de la aplicacion.

El tiempo de comunicacion esta dividido en comunicacion que puede ser solapada con cémpu-
to y comunicacion que no puede ser solapada. La generacién del modelo se inicia desde las hojas
del grafico de tareas y los tiempos son combinados de acuerdo a la semdantica de los nodos.
Con respecto a los pardmetros de hardware, éstos son intuitivos pero dificiles de capturar (por
ejemplo, el solapamiento entre cémputo y comunicacién). Ademds, otra fuente comin de de-
gradacién de rendimiento, como la contencién, no es considerada. Adicionalmente, el modelo de
programacién se vuelve restrictivo dada la dependencia de los gréaficos de tareas en forma de
arbol. Eventos como sincronizacion y barriers no son soportados por el modelo.

Los modelos basados en descripcién se caracterizan por una descripcién del programa que
consiste en un grafico de tareas (o equivalente) describiendo la parelizacién de la aplicacién y
algunos pardmetros que expresan las caracteristicas del hardware. La mayor ventaja en emplear
graficos de tareas es que son mdas amenos para modelar. Sin embargo, algunos modelos de
programacién no pueden ser caracterizados precisamente a través de este tipo de gréficos, un
hecho que limita la aplicabilidad de ésta técnica. En cuanto a los parametros que caracterizan el
hardware, los factores a considerar son similares a los enfoques analiticos basados en parametros:

el nivel de abstraccién de los parametros y la dificultad para obtenerlos.

Modelado con Analisis Estatico

El andlisis estatico difiere del enfoque descriptivo en que requiere mucha menos informacién
y esfuerzo por parte del usuario. La informacion de rendimiento es producida automaticamente
desde el cédigo fuente original. Esta informacién es empleada para la paralelizacién y la seleccién
de la particién de datos o para ayudar a sintonizar la aplicacion.

Las herramientas de andlisis estatico suelen ser parte de entornos de compilacion, donde
proveen informacion de rendimiento acerca de la paralelizacion y la particion de los datos dentro
de la aplicacién. Estas herramientas son costosas en términos de desarrollo e implementacién, ya
que involucran técnicas un poco mas sofisticadas. De todas maneras, su uso es trivial y el costo

computacional para producir predicciones es insignificante. Con respecto a la precisién, no son
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precisas en términos generales, pero usualmente suelen ser apropiadas para clasificar diferentes

paralelizaciones.

3.3. Metodologia

Para llevar ésta investigacién a buen término y una vez que se han definido los principales
conceptos tedricos en cuanto a analisis de rendimiento de sistemas paralelos y la realizacién del
modelado de la aplicacién, es importante senialar que el conjunto de pasos a seguir para conseguir
realizar el trabajo pueden estar basados en el enfoque dado por Jain [19], enfoque de andlisis de
rendimiento disenado hace casi dos décadas atras, que no deja de ser un fundamento apropiado
para llevar a cabo el proceso de evaluacién de aplicaciones paralelas y sistemas computacionales.
Inicialmente estd basado en mostrar el enfoque apropiado para realizar la evaluacién evitando
incurrir en errores tipicos como el perder el objetivo por el que se esté realizando todo el proceso.
Entre las etapas més relevantes que senala el autor y que se deberian considerar a medida que

se avanza estan:

1. Establecer los objetivos y definir el sistema: el primer paso en cualquier proyecto de
evaluacién de rendimiento es establecer los objetivos del estudio y definir qué consituye
el sistema, delineando los limites del sistema. Dado un sistema o una aplicacién, la
definicién del sistema puede variar dependiendo de los objetivos del estudio. Dada una
aplicacién paralela el objetivo podria ser determinar cuan flexible es la aplicacién para
ser ejecutada en uno u otro entorno, o el punto en que ésta esté sacando provecho del
paralelismo del entorno sobre el que esté siendo ejecutada. La eleccién de las limitantes
del sistema afecta las métricas de rendimiento asi como las cargas de trabajo empleadas

para comparar los sistemas.

Aun asi, entender éstas limitantes es importante; ya que la consideracion clave en
establecer las limitaciones del sistema es el objetivo del estudio. Otras consideraciones,
como control administrativo de los auspiciadores del estudio, también podrian ser
tomados en cuenta. Si los auspiciadores no tienen control sobre ciertos componentes,

quizd quieran mantener esos componentes fuera de los limites del sistema.

2. Listar los servicios y las salidas: cada sistema provee un conjunto de servicios. Por
ejemplo, una aplicacion paralela permite realizar un trabajo que serialmente en un sélo
ordenador es mucho més complejo, distribuyendo el trabajo entre dos o mas unidades
de cémputo. El siguiente paso cuando se analiza un sistema es listar esos servicios.
Cuando un usuario solicita cualquiera de estos servicios, existe un nimero de posibles
salidas. Algunas de estas salidas son deseables otras quizas no. La aplicaciéon paralela
con la que se estuviera trabajando, puede no entregar los resultados esperados, debido a
algin error en el disefio o en el entorno paralelo sobre el que se ejecuta, o sencillamente

no entregar resultado alguno debido a un deadlock o problemas similares. Una lista de
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servicios y salidas posibles es ttil mas tarde cuando se desean seleccionar las métricas

adecuadas y las cargas de trabajo.

Seleccionar las métricas: el siguiente paso es seleccionar un criterio para comparar el
rendimiento. Estos criterios son denominados métricas. En general, las métricas estan
relacionadas con la velocidad, precisién y disponibilidad de servicios. El rendimiento
de las aplicaciones paralelas puede estar, por ejemplo, relacionado con el nivel de
escalabilidad que ésta puede alcanzar, la precisién de célculo, la cantidad de datos que

puede manejar, o la rapidez con que entrega los resultados al usuario.

Para cada estudio de rendimiento, un conjunto de criterios de rendimiento o métricas
deben ser seleccionadas. Una forma de preparar este conjunto es listando los servicios
ofrecidos por el sistema. Para cada solicitud de servicio realizado por el sistema, exis-
ten varias salidas posibles. Generalmente éstas salidas pueden ser clasificadas en tres
categorias; el sistema puede realizar el servicio (1) correctamente, (2) incorrectamente
o (3) reusarse a realizar el servicio. Si el sistema realiza el servicio correctamente, su
rendimiento es medido por el tiempo que le ha tomado realizar el servicio, la tasa a la
que el servicio es llevado a cabo y la cantidad de recursos consumidos a medida que la

tarea es llevada a cabo.

Estas tres métricas relacionadas con el tiempo-tasa-recursos para un rendimiento exito-
so son también denominadas métricas de respuesta, productividad y utilizacion, respec-
tivamente. El recurso con mayor retraso o utilizacién bajo este enfoque es denominado
cuello de botella. La optimizaciéon del rendimiento ligado con este recurso es el que
generara mayor beneficio. Determinando la utilizacién de varios recursos dentro del

sistema es la parte importante de la evaluacién de rendimiento.

Si el sistema lleva a cabo el servicio incorrectamente, se dice que ha ocurrido un error.
Es muy 1tili clasificar los errores y determinar la probabilidad de cada clase de errores.
Si el sistema no lleva a cabo el servicio, se dice que esta “caido”, fallado o no disponible.
Una vez maés es util clasificar los modos de falla y determinar las probabilidades de

cada clase.

Las métricas asociadas con las tres salidas, denominadas servicio exitoso, error y no
disponibilidad, son también denominadas métricas de velocidad, confianza y disponi-
bilidad (métricas de respuesta, productividad y utilizacién, respectivamente). Deberia
ser obvio que para cada servicio ofrecido por el sistema, se deberia tener un nimero de
métricas de velocidad, confianza y disponibilidad. La mayoria de los sistemas ofrecen

mas de un servicio y por ello el nimero de métricas crece proporcionalmemte.

Para muchas métricas, el valor medio es lo tinico importante, pero sin embargo, nunca
se debe subestimar el efecto de la variabilidad. Por ejempli un tiempo medio de res-
puesta muy alto en un sistema de tiempo compartido, asi como una alta variabilidad

del tiempo de respuesta puede degradar la productividad significativamente. En estos

45



casos, es necesario estudiar ambas métricas.

En sistemas computacionales compartidos por varios usuarios, se deben considerar dos
tipos de métricas, las individuales y las globales. Las métricas individuales reflejan
el uso de cada usuario, mientras que las métricas globales reflejan el uso completo
del sistema. La utilizaciéon de recursos, confiabilidad y disponibilidad son métricas
globales, mientras que el tiempo de respuesta y el throughput pueden ser medidos

tanto individual como globalmente para el sistema.

Existen casos cuando la decisién que optimiza métricas individuales es diferente de
aquella que optimiza una métrica del sistema. Dado un nimero de métricas, es reco-
mendable emplear las siguientes consideraciones para seleccionar un subconjunto: poca
variabilidad, que ayuda a reducir el niimero de repeticiones necesarias para obtener un
nivel de confianza estadistica; no redundacia, que los mismos datos no sean obtenidos
en otra variable totalmente diferente; y exhaustividad, que se refiere a que los datos

reflejen lo que en realidad se quiere mostrar.

Métricas de Rendimiento Comiumente Empleadas

= Tiempo de Respuesta, esta definido como el intervalo entre la solicitud del usuario
y la respuesta del sistema [19]. Esta definicién sin embargo, es simplista debido
a que las solicitudes asi como las respeustas no son instantaneas. El tiempo de
tipeo de la solicitud por parte del ususario y el tiempo que le toma al sistema
generar la salida son omitidos. Por ello el tiempo de respuesta puede presentar
dos posibles definiciones, puede ser definido tanto como el intervalo entre la fi-
nalizacién de una solicitur y el inicio de su respuesta correspondiente por parte
del sistema, o como el intervalo entre la finalizacién de la solicitud y el fin de la
respuesta correspondiente. Ambas definiciones son aceptables siempre y cuando

estén claramente especificadas.

» Throughput, estd definido como la tasa (solicitudes por unidad de tiempo) en
que las solicitudes son atendidas por el sistema. Para sistemas interactivos (sis-
temas de video bajo demanda), este es medido en solicitudes por segundo; para
CPU’s, se mide en Millones de Instrucciones Por Segundo (MIPS) o Millones de
Operaciones de Punto Flotante por Segundo (MFLOPS). Para redes es medido
en paquetes por segundo (pps) o bits por segundo (bps). El throughput de un
sistema generalmente aumenta a medida que la carga del sisteme aumenta. El
throughput maximo alcanzable bajo unas condiciones de carga de trabajo ideal
es denominado capacidad nominal del sistema. En algunos casos, es méas intere-
sante saber que el maximo throughput alcanzable sin exceder un tiempo limite de

respuesta prestablecido, puede ser llamado como la capacidad usable del sistema.

= La utilizacién de un recurso es medida como la fraccién de tiempo que el recurso

es ocupado atendiendo solicitudes. Esta es la relacion entre el tiempo ocupado
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y el tiempo total transcurrido en un periodo dado. El periodo durante el cual el
recurso no estd siendo utilizado es denominado tiempo de inactividad. Los gestores
de sistemas normalmente estdn interesados en balancear la carga de forma que
un recurso no sea utilizado mas que otros. Sin embargo, no siempre es posible

lograrlo.

= La fiabilidad de un sistema es usualmente medida por la probabilidad de errores
o por el tiempo medio entre errores. Este dltimo es conocido como segundos libres

de errores.

= La disponibilidad de un sistema estd definida por la fraccién de tiempo que el
sistema estd disponible para servir las solicitudes de los usuarios. El tiempo du-
rante el cual el sistema no estd disponible es denominado downtime; y el tiempo

durante el cual es sistema esta dispuesto es llamado uptime.

Clasificacion de Utilidad de las Métricas de Rendimiento

Dependiendo de la utilidad de una métrica de rendimiento, esta puede ser categorizada

en tres clases:

s Higher is Better o HB, los usuarios del sistema y los gestores del sistema prefieren

valores altos en éstas métricas. Por ejemplo: el troughput es una de ellas.

s Lower is Better o LB, los gestores y usuarios del sistema prefieren los valores mas

pequenos posibles en dichas métricas, como en el caso del tiempo de respuesta.

= Nominal vs Best o NB. Tanto valores muy altos como muy bajos no son desea-
bles. Mientras que un valor particular en el medio es considerado lo mejor. Por
ejemplo, la utilizacién es considerada una caracteristica NB. Ya que si existe una
utilizacion muy alta es considerada mala por parte del usuario por tener un tiem-
po de respuesta muy alto. Pero una utilizacién muy baja es considerada mala por
los administradores del sistema ya que los recursos del sistema no estan siendo
utilizados. Es por ello que se esperan valores entre un determinado rango para ser

considerados los mejores.

4. Listar los pardmetros, el siguiente paso en proyectos de rendimiento es realizar una lista
de todos los parametros que afectan el rendimiento. Esa lista puede ser dividida en
parametros del sistema y pardametros de carga de trabajo. Los parametros de sistema
incluyen tanto los de hardware como los de software, los cuales generalmente no varian

a lo largo de varias instalaciones en el sistema.

Los parametros de carga de trabajo son caracteristicas de las solicitudes de los usuarios,
lo cuales varian de una instalacién a la siguiente. La lista de pardmetros puede que no
esté completa; esto es, que luego de una primera revision de andlisis, se puede descubrir

que existen parametros adicionales que afectan el rendimiento.
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Entonces pueden ser anadidos a la lista, pero todo el tiempo es recomendable conservar
la lista lo mas facil de entender posible. Esto permite al analista y a aquéllos encar-
gados de tomar decisiones de discutir el impacto de varios pardmetros y determinar

qué parametros son necesarios para recolectar despueés o durante el andlisis.

Seleccionar los Factores para estudiar, la lista de parametros puede ser dividida en
dos partes: aquellos que serdn verificados durante la evaluacion y aquéllos que no.
Los parametros que seran variados, son llamados factores y sus valores son llamados
niveles. En general, la lista de factores, y sus posibles niveles, es mayor que la que los
recursos disponibles podria permitir. De todas maneras, la lista continuaria creciendo
hasta que se torne obvio que no hay suficientes recursos para estudiar el problema.
Es mejor empezar con una lista corta de factores y un pequeno niimero de niveles por
cada factor y luego extender la lista en la siguiente fase del proyecto, que es la seleccién

de la técnica de evaluacion si los recursos lo permiten.

Los parametros que se espera que tenga un impacto mayor en el rendimiento son los que
se deben seleccionar preferiblemente como factores. Tal como sucede con las métricas,
un error comun cuando se seleccionan los factores es que los parametros que son faciles
de variar y medir son usados como factores mientras que otros més influyentes son
ignorados sencillamente por la dificultad que traen consigo para ser medidos. Cuando
se seleccionan factores, es importante considerar las restricciones econémicas y técnicas
que existen asi como incluir las limitaciones impuestas por las personas encargadas
de la decision final y el tiempo disponible para tomar la decision. Esto aumenta las

oportunidades de encontrar una solucién que es aceptable e implementable.

Seleccionar la técnica de evaluacion. Las tres técnicas para evaluacion de rendimiento
son el modelado analitico, la simulacion y la medicién sobre un sistema real. La selec-
cién de la técnica adecuada depende del tiempo y recursos disponibles para resolver el

problema y el nivel de precisién deseado.

Seleccionar la carga de trabajo. La carga de trabajo consiste en una lista de solicitudes
de servicios para el sistema. Por ejemplo la carga de trabajo para la comparacién
de varias bases de datos puede consistir en un conjunto de consultas. Dependiendo
de la técnica de evaluacion seleccionada, la carga de trabajo puede ser expresada de
diferentes formas. Para el modelado analitico, la carga de trabajo puede ser expresada
como la probabilidad de varias solicitudes. Para simulacién, se puede usar una traza
de solicitudes medidas en un sistema real. Y para las mediciones, la carga de trabajo
puede consistir en scripts que seran ejecutados en el sistema. En todos los casos, es
escencial que la carga de trabajo sea representativa del uso del sistema en la vida real.
Para producir cargas de trabajo representativas, es necesario medir y caracterizar la

carga de trabajo en sistemas existentes.
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8.

10.

Diseriar los experimentos. Una vez que se tiene una lista de factores y sus niveles,
es necesario decidir una secuencia de experimentos que ofrezcan la mayor cantidad de
informacién con el menor esfuerzo. En la préactica, es muy tutil realizar los experimentos
en dos fases. En la primera fase, el nimero de factores puede ser grande pero el niimero
de niveles lo més pequeno posible. El objetivo es determinar el efecto relativo de varios
factores. Muchas veces, esto puede ser llevado a cabo con un disefio de experimentos en
factorial. En la segunda fase, el niimero de factores es reducido y el niimero de niveles

de esos factores que tienen impacto significativo incrementados.

Analizar e interpretar los datos. Es importante reconocer que las salidas de las me-
diciones y simulaciones son cantidades aleatorias y que la salida puede ser diferente
cada vez que el experimento es repetido. Comparando las dos alternativas, es necesario
tomar en cuenta la variabilidad de los resultados. Simplemente comparando las me-
dias puede llevar a conclusiones imprecisas. Para ello habra que hacer uso de técnicas

estadisticas para comparar las dos alternativas.

Interpretando los resultados de un analisis es parte clave cuando se trata de analizar
el rendimiento. Se debe comprender que el anélisis solo produce resultados y no con-
clusiones. Los resultados proveen las bases sobre las que los analistas pueden dibujar
conclusiones. Cuando a un grupo de analistas les son dados los mismos conjuntos de

resultados, la conclusién generada por cada uno de ellos puede ser diferente.

Presentar los resultados. El paso final de todo proyecto de andlisis de rendimiento es
comunicar los resultados a otros miembros del grupo de investigaciéon o aquéllas per-
sonas relacionadas con la toma de decisién al final de la investigacion. Es importante
que los resultados sean presentados de forma que se puedan entender facilmente. Nor-
malmente esto requiere la presentacion de forma grafica y sin jerga estadistica. Los

graficos deben estar disenados con la escala apropiada.

A menudo en este punto, todo el conocimiento generado una vez finalizado el estudio
del proyecto, puede requerir que el desarrollador vuelva atras y reconsiderar algunas
de las decisiones tomadas en fases anteriores. Definir de nuevo algunas limitaciones
del proyecto que podrian proporcionar mayor informacién para la decisién final con

respecto a la aplicacién o la idea final obtenida luego de todo el trabajo.

Todas estas etapas del enfoque de evaluacién de rendimiento podrian ir acompanadas de

enfoques de gestion de proyectos como Plan, Do, Check, Act, también conocido como el circulo de
Demming (http://www.balancedscorecard.org/TheDemingCycle/tabid /112 /Default.aspx), en el
que cada una de estas fases es planificada con un alto nivel de atencién, luego llevada a cabo
con la intencién de obtener determinados resultados que seran revisados y basdndose en ellos se
decide que acto habra de ser llevado a cabo para continuar con la investigacién. Entiéndase que
este proceso iterativo va acompaniando cada una de las fases que habran de ser completadas en

aras de realizar un analisis de rendimiento apropiado y preciso.
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Existen diferentes técnicas de evaluacion de rendimiento en un sistema o en una aplicacién
como tal, éstas van directamente relacionadas con la fase de desarrollo en que se encuentre
el proyecto, la cantidad de tiempo que consumen, las herramientas o recursos necesarios para
llevarlos a cabo, el nivel de precisén que brinda una u otra, el costo que genera, entre otras.
Inicialmente se identifican tres técnicas diferentes para la observacion del comportamiento de
una aplicacién: (1) Medicién, (2) Simulacién y (3) Modelado; principalmente la seleccién de
una u otra técnica de medicion viene ligada con el estado de desarrollo en que se encuentre el
proyecto.

Segin lo senala Jain [19] inicialmente la medicién es mds facil de ser llevada a cabo en
proyectos que ya estan finalizados; es decir, que ya existe una versién del producto, pero si
se tratase de una nueva idea o concepto que se quisiera evaluar, solamente el modelado y la
simulacién son capaces de brindar las respuestas necesarias, ya que son usados en situaciones
donde no es posible realizar una medicién; sin embargo, seria mucho méas convincente para otros
si el modelo analitico o la simulacién estan basados en mediciones previas.

Otro factor determinante al momento de seleccionar una técnica de evaluacion es el tiempo
disponible para realizar todo el proceso, cabe recordar que en el campo cientifico la mayoria de
las veces los resultados se necesitan para ayer; si este fuera el tnico factor determinante seria
necesario considerar el modelado analitico, ya que las simulaciones consumen una gran cantidad
de tiempo, y aunque las mediciones toman mucho menos tiempo que las simulaciones, tienden
a tomar un poco mas que con el modelado, pero como cuando “nada puede ir mal seguramente
ird”, el tiempo para las mediciones es el mas variable de las tres técnicas.

Una consideracién que debe ser tomada en cuenta es la disponibilidad de herramientas y el
nivel de habilidad del analista, ésta vendrd ligada directamente con el campo que mejor domine.
Si es habil con lenguajes de simulacién probablemente se mantendra alejado de técnicas de
medicién o modelado; pero si se le da muy bien el manejo de modelos, apostara por esta técnica
o en su defecto se limitarda a mediciéon y simulacién. Por lo que la seleccién de la técnica de
evaluacién termina convirtiéndose en algo muy relativo.

Asimismo, factores como el grado de precisién que se persigue en los resultados, se obtendran
valores reales muy variables provenientes de las mediciones tomadas sobre el objeto de estudio,
sin embargo si el modelado y la simulacién fueran llevados a cabo, el grado de precisién seria
muy bajo y moderado respectivamente, ya que esta directamente ligado con el nivel de similitud
existente entre el modelo o el simulador con el entorno en la realidad. Un simulador es la
aproximacion mas real que se puede generar para observar el comportamiento de un entorno en
el que no es facil realizar medidas.

Si el objetivo del proceso de evaluacién es determinar el nivel en que diferentes factores
afectan el desempeno de cierto sistema, es mucho maés til y viable realizar un modelo que permita
observar la influencia que genera cada uno de los diferentes factores sobre el comportamiento
global; aunque, si se desea comparar diferentes alternativas y determinar un valor exacto de

un factor que es capaz de brindar el mejor rendimiento, técnicas como la de medicién son las
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més recomendables. Con la simulacién es posible obtener un conjunto de datos que representan
el punto més alto de rendimiento en el sistema, sin embargo no siempre es facil identificar la
influencia de cada uno de los factores.

En cuanto al costo, la generacién de un modelo analitico, en contraposiciéon con la técnica
de medicién, se convierte en la opciéon mas econdémica, esto debido a que consume pocos recur-
sos, muchas veces solo con lapiz y papel es posible generarlo, en cambio cuando hablamos de
tomar medidas, es necesario tener el sistema a evaluar funcionando, invertir en herramientas
de medicién y en tiempo. Adn asi suele ser recomendable acompanar cada una de las técnicas
de evaluacion con alguna de las otras dos simultdnea o secuencialmente, de forma que pueda
validarse cualquier evaluacion realizada anteriormente.

En un principio el proceso de evaluacion y obtencion de resultados requiere cierto fundamento
estadistico que permita darle validez a los datos obtenidos y posteriormente realizar el andlisis
necesario para sacar las conclusiones pertinentes que se persiguen durante el proceso de anélisis
de rendimiento; para ello es necesario seguir un cierto nimero de pasos que nos orientan como
analistas durante el proceso de investigacion y anélisis de la aplicacion.

Inicialmente es necesario haber definido concretamente cual es el problema y su alcance,
con ello se consigue tener una idea general del enfoque que habra que darle al proceso de
experimentacién de forma que genere los resultados necesarios para obtener las conclusiones
pertinentes de la forma més practica y que consuma la menor cantidad de tiempo y recursos
posibles. Una vez que el problema ha sido enmarcado y se ha definido la salida que se espera
obtener cuando los experimentos concluyan, se logra definir variable de respuesta; con la que se
procede posteriormente a la seleccién de las variables que afectan su comportamiento y de los
cuales se pueden tener varias alternativas, identificadas como factores. Factores que segin los
posibles valores que pudieran tomar tendran ciertos niveles que habran de ser considerados al
momento de disenar el grupo de experimentos que se van a realizar.

De igual forma los factores antes mencionados, podran ser factores primarios o factores
secundarios, estos se seleccionan de acuerdo a aquéllos que influyen en el comportamiento de los
experimentos y que habran de ser cuantificados o no, respectivamente. Suelen existir un gran
numero de factores que impactan en los resultados obtenidos y que algunas veces sera necesario
tener registros de los efectos que éstos generen, si este fuera es caso se trataria de factores
primarios; mientras que si no se estd interesado en cuantificar el impacto que éstos generen,
éstos terminan clasificados como factores secundarios. Asimismo, habra que fijar el niimero de
veces que se plantea realizar un determinado experimento para obtener los resultados necesarios,
este valor es conocido como replicacion.

Por otro lado, es importante senalar que como unidad experimental se conoce a cualquier
entidad que es usada para el experimento, generalmente solo aquéllas unidades experimentales
que son consideradas como uno de los factores en el estudio son las que interesan; el objetivo del
diseno experimental es minimizar el impacto de variacién entre unidades experimentales, por

ejemplo: en el caso de una aplicacién paralela, el entorno sobre el que ésta esta siendo probada o
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donde estén siendo llevado a cabo los experimentos. Asimismo, no se debe dejar de lado el nivel
de interaccion existente entre dos o mas factores; se dice que dos factores interactiian uno con
el otro cuando el efecto de uno depende del nivel del otro.

El desarrollo de la metodologia se vera reflejado en el capitulo 5, donde se detalla cada una de
las fases y los datos que se han tomado en consideracién para realizar el analisis de rendimiento
de mpiBLAST como aplicacién paralela de bioinformdtica, y del cual se espera generar una

conclusién sobre sus restricciones, limitantes y ventajas.
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Capitulo 4
Aplicaciones Bioinformaticas

La genética... “Serd una sequnda pirdmide de Keops: un coloso que estd ahi y

que nadie puede usar”

Erwin Chargaff (1905-2002).

4.1. Introduccion

En los tltimos anos se ha observado un inmenso nimero de organismos que han sido secuen-
ciados en proyectos de gendmica e incluidos en bases de datos gendémicas cada vez mas grandes,
con ello el desarrollo de la biologia molecular ha ido tomando méas y maés fuerza y forma a me-
dida que pasa el tiempo. Las bases de datos genémicas fueron disenadas con la idea de tener un
“respaldo” de la informacién biolégica de los organismos para que puedan ser analizadas luego.

Observando estudios realizados por el GenBank [5] que es una de las principales bibliotecas
de bases de datos bioldgicas, el crecimiento de estas en los 1ltimos anos ha sido de forma
exponencial, aumentando en hasta varios 6rdenes de magnitud; adicionalmente, éstas bases de
datos son consultadas de forma intensiva diariamente. Los biélogos han tenido que enfrentarse al
problema de lidiar con bases de datos inmensas durante la bisqueda de similitudes significativas
entre secuencias biolégicas. Para alcanzar este objetivo, ha sido necesario recurrir a un gran
poder de cémputo y grandes espacios de almacenamiento. Atin més todavia, han tenido que
recurrir al empleo de algoritmos sofisticados para modelar las relaciones realisticas entre los
organismos.

Los bancos de datos gendémicos son escrutados rutinaria y diariamente por miles de investi-
gadores. Una de las tareas mas comunes en biologfa molecular es tratar de asignar una funcién !
a un gen o proteina desconocido. Cuando se escanean las bases de datos, los bidlogos lidian con
un gran dilema: velocidad o calidad. Los datos genémicos crecen exponencialmente (se duplican
cada 12-15 meses) tan o més rapido que el poder de cémputo (que se duplica cada 18 me-

ses). En un ordenador estdndar, una busqueda de alta calidad puede tomar horas mientras que

!Una funcién es la respuesta a la pregunta de por qué algunos elementos o procesos ocurren en un sistema, que
ha evolucionado a través del proceso de seleccion.
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una busqeda apenas aproximada pudiera tomar solo unas cuantas décimas de segundos. Claro
estd que las bisquedas de alta calidad estdn basadas en métodos de programacién dinamica que
consumen gran cantidad de tiempo. Mientras que los aproximados como en el caso de BLAST,
estan basados en heuristicas.

2 con la cual se

Este proceso de busqueda es conocido como Alineamiento de Secuencias
puede realizar la medicién del grado de similitud ? existente entre dos secuencias. Para ello se
superponen las secuencias de forma que se consiga determinar la cantidad de letras o simbolos
que coinciden. Obteniéndose una matriz, en la que las filas son las secuencias y las columnas,
son las posiciones de las letras.

BLAST (Basic Local Alignment Search Tool) [1] es la herramienta heuristica mas usada,
que busca las similitudes entre secuencias biolégicas. A diferencia de métodos exactos como
el de Needleman [27] y el de Smith-Waterman [33] que presentan complejidad cuadrética de
tiempo y espacio, BLAST es a menudo ejecutado rapidamente para comparacion de pares de
secuencias en pequeiios espacios de memoria. Ain asi, los biélogos usualmente no comparan sélo
dos secuencias sino un conjunto de secuencias descubiertas con toda una secuencia gendmica.
En este caso, los tiempos de ejecucién de BLAST pueden ser muy altos, y enfoques alternativos
como computo paralelo y distribuido, deberia producir resultados en un menor tiempo, ya que
facilitan el manejo de un mayor volimen de datos y permiten la posibilidad de ejecutar varias
tareas simultdneamente. La ejecucién serial de BLAST versa en que sélo un nédo de computo
es el que se encarga de realizar la bisqueda en la totalidad de la extensién de la base de datos
bioldgica, realizando los alineamientos y obteniendo aquéllas secuencias homologas. Sin embargo,
cuando se plantea el paradigma de paralelismo, este trabajo puede ser distribuido entre diferentes
maquinas, de forma que 2 o mas nodos de cémputo estaran realizando los alineamientos contra
la base de datos.

Los ficheros de datos gendémicos con los que las secuencias de consulta o patrones son com-
parados, son compilados en grandes bases de datos. GenBank, una coleccién de informacion
de ADN y proteinas, mantiene méas de 44 billones de pares bases en mas de 40 millones de
secuencias. De esta forma, el tamano de cada caracter que representa una base en una cadena
es solamente un byte, que considerados en conjunto estariamos hablando de una considerable
cantidad de datos. Los archivos de las bases de datos son a menudo mayores a un gigabyte cada
uno. Por lo que la cantidad de cémputo requerido para completar una busqueda es proporcional
a la longitud de la secuencia de consulta y el tamano de la base de datos. La rapidez con que un
ordenador pueda finalizar el trabajo de busqueda esta determinada por la capacidad de solapar

procesamiento y gestion de los datos de forma eficiente, de manera que se obtenga un mejor

2Las moléculas ADN, ARN y proteina se pueden considerar cadenas de las moléculas componentes, lo que en
el lenguaje de la bioinformatica se traduce por secuencias. Cada una de las moléculas componentes se abrevia con
una letra, de manera que trataremos con secuencias de letras.

3Generalmente, una alta similitud entre dos secuencias se debe a que estas dos secuencias son homdlogas.
Esto significa que las dos secuencias tienen un ancestro comun, es decir, que derivan de una misma molécula. La
acumulacién de mutaciones en el ADN a lo largo del tiempo es la causa de que las dos secuencias ya no sean
idénticas, sino sélo similares. Cuando tratamos con un conjunto de proteinas homoélogas, se utiliza el término
familia de proteinas.[34]
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rendimiento. Ordenadores disefiados a medida con muchos procesadores son usualmente muy
costosos y exceden el tope financiero de laboratorios pequenos o individuales. Es por ello que
busquedas en huéspedes basado en web son sujeto de una afluencia intensiva de usuarios y el
tiempo para obtener una respuesta aumenta durante los picos de uso.

Dado que BLAST es una herramienta bioinformatica base en situaciones de alineamientos
de secuencias se han planteado estrategias de ejecucion fuera de las usuales en custers de or-
denadores dedicados y se ha considerado el uso de grids, trabajo que puede ser observado en
[39]. De forma que se pueda contar con mayores recursos de cémputo para realizar la tarea. Sin
embargo siempre se puede carecer el control total de los parametros relacionados con el entorno
de ejecucién que para nuestra investigacién es relevante.

El dicho “muchas manos aligeran el trabajo”, se aplica bastante bien al computo. Muchos
nodos de computo colaborando en una manera centralmente coordinada permite realizar mucho
ma4s trabajo en una forma mucho mas rapida que si se hiciera en solo un ordenador. Esto debido a
la necesidad de contrastar ficheros tan grandes como pudieran ser el genoma humano contrastado
contra el genoma de otro mamifero como los ratones. Estarfamos hablando de la necesidad de
repartir entre cada “mano” una gran parte del trabajo de forma que se consiga agilizar este tipo
de alineamientos que son cémputointensivos y requieren cada vez mayor cantidad de recursos
para poder gestionar la E/S de los datos involucrados. Acudir al paradigma de paralelismo en
el caso de alineamientos masivos representa la principal opcion para resolver este tipo de tareas.

El speedup ideal de una aplicacién deberia ser dado por un factor n, donde n es el nimero
de nodos sobre los que la aplicacién es distribuida. En realidad este speedup tedrico no es
alcanzable. Tal como lo senalé Amdahl [3], el maximo speedup viene determinado por la parte
de la aplicacion que no puede ser distribuida. La parte de computo més intensiva de los programas
de BLAST es la parte en la que se realiza el alineamiento de secuencia, que ademds es la porcién
que puede ser distribuida entre multiples nodos. Por lo tanto, aplicaciones que distribuyen la
bisqueda de BLAST son las més eficientes.

En contrapartida, las particiones de las bases de datos deben ser distribuidas a las memorias
locales, lo que requiere que el envio de datos a procesar sea méas rapidos que la entrada y salida

y se puedan solapar con el cémputo.

4.2. Alineamiento de Secuencias

La comparacion de secuencias biolégicas es una operacién fundamental en la bioinformaética,
ya que facilita el relacionamiento entre ellas y permite la descripcién de las funciones principales
de cada una de ellas. Es de hecho un problema de correspondencia de patrones, que consiste en
encontrar qué partes de las secuencias son homélogas o comparten una funcién. El alineamiento
de secuencias es un proceso de comparacién de dos (o més) secuencias de forma que se consiga,
que un conjunto de caracteres individuales o patrones de caracteres se encuentren en el mismo

orden en un “alineamiento” vertical.
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Dado que una secuencia biolégica contiene toda la informacién referente a un genoma o
proteina determinado representado en caracteres, estamos hablando del manejo de la “esencia”
de la vida como cadenas de texto; toda la informacién genética de una especie como tal se
encuentra resumida en lineas de compuestos biolégicos, que a su vez han ido evolucionando y/o
mutando a través del proceso natural de selecciéon dejando herencias unas cadenas en otra.

Para comprender la realidad de este tipo de comparaciones biolégicas partimos de la idea de
que un ser humano tiene una cadena biolégica caracteristica que lo identifica como ser humano;
esta cadena biolégica es el ADN (Acido Desoxirribonucléico). E1 ADN estd representado como
una cadena de doble hélice compuesta por pares de dos de cuatro elementos constituyentes
denominados nucledtidos (un nucleétido estd conformado por un grupo de fosfatos enlazados
con algunos azicares denominado desoxirribosa, que a su vez estan ligados a uno de cuatro tipos
de bases orgénicas de nitrégeno de nombre Adenina, Timina, Guanina y Citosina). Simplificando
asi nuestra esencia como organismo vivo en todo su esplendor estd reducido a cadenas de texto
compuesta de los caracteres A, C, T y G.

Las proteinas estdn construidas de pequenios bloques denominados aminodacidos, que son
moléculas que por si sélas ya son bastante complejas, compuestas de carbono, hidrégeno, oxigeno,
nitrégeno y atomos de azufre.

Estos aminoacidos se encontraban ligados entre ellos como una cadena, y la esencia de la
proteina estaba determinada no sélo por la cantidad de aminoacidos que contenian sino por el
orden exacto en que éstos estaban distribuidos. La primera secuencia de aminodcidos de una
proteina, fue determinada en 1951 y se trataba de la insulina, la cual se derivaba de la siguiente
cadena:

Insulina = MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFF
YTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLEN
YCN.

Una vez que tenemos en consideracién el tipo de cadenas biolégicas (también denominadas
secuencia) con las que estamos tratando podemos introducir el concepto de lo que un alinea-
miento representa en si. Basicamente, hay dos tipos de comparaciones, las globales y las locales,
v la seleccion de una u otra depende del interés que tenga el bidlogo de descifrar alguna funcién
basdndose en la totalidad de la secuencia o sélo parcialmente [7].

Los alineamientos globales se refieren a un alineamiento total de la secuencia, donde todas las
bases (nitrogendda o aminodcido) son alineadas con otras bases o con un gap (“”). Los algoritmos
de alineamientos globales comienzal al principio de las dos secuencias (cadenas biolégicas) y
adicionan los gaps en la medida que construyen el alineamiento.

En los alineamientos locales, se alinean partes de la secuencia. No existe necesidad de alinear
todas las bases y los algoritmos de este tipo de alineamiento buscan las regiones con mayor
similitud y comienzan el alineamiento a partir de alli.

Para comparar dos secuencias, es necesario conseguir el mejor alineamiento entre ellas, el cual

es colocar una secuencia sobre la otra, realizando la correspondencia entre caracteres similares.
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En un alineamiento, los espacios pueden ser insertados en localidades arbitrarias a lo largo de
las secuencias de forma que terminen con el mismo tamano. Habiendo obtenido un alineamiento
entre dos secuencias biolégicas = e y, un puntaje puede ser asignado de la siguiente manera. Para
cada columna, se asigna por ejemplo, por cada base, 0 si los dos caracteres son iguales, -1 si
los caracteres son diferentes y -2 si uno de ellos es un espacio[35]. Estos puntajes se determinan
de acuerdo al nivel de relevancia que se desea que tenga el alineamiento. El puntaje es la suma
de los valores computados para cada columna y el mayor puntaje es la similitud entre las dos
secuencias.

El algoritmo exacto de Needleman-Wunsh (NW)[27] estd basado en programacién dindmi-
ca, genera el mejor alineamiento global entre dos secuencias. Para calcular alineamientos de
secuencias locales, Smith y Waterman[33], propusieron un algoritmo (SW), también basado en

programacion dindmica (ver figura 4.1), con complejidad cuadritica de tiempo y espacio.

W =4, ACGARGTANGIENECAST

GGTC s la palabra con coincidencia
exacta.

5e extienden |as diagonales hasta que

las incompatibilidades tengan un
puntaje por debajo del 50 %,

El resultado final es:

GATOETE@BATTGED

GTAAGGTCT

T

GTTAGGTCC u

Figura 4.1: Alineamiento de secuencias basado en programacién dinédmica

Hirschberg [18] propuso un algoritmo exacto que calcula el alineamiento entre dos secuencias
x e y en tiempo cuadratico pero espacio lineal. Este enfoque separa la secuencia x por la mitad,
generando subsecuencias x; y x2, y calcula el lugar correspondiente para partir la secuencia
y, generando las subsecuencias y; e yo, de esta forma el problema de alineamiento puede ser
resuelto de forma recursiva en un divide and conquer.

Usualmente, una secuencia biolégica dada es comparada contra miles o incluso millones de
secuencias que componen las bases de datos genéticas. Uno de los més importantes repositorios
es aquél que es parte de una colaboracién que involucra al GenBank del National Center for
Biotechnology Information (NCBI), el European Molecular Biology Laboratoy (EMBL) y el
Banco de Datos de ADN de JAPON (DDBJ, DNA Data Bank of Japan). Estas organizaciones
intercambian datos diariamente y una versiéon nueva es generada cada dos meses.

Bajo este escenario, el uso de métos exactos como el de Needleman-Wunsh y Smith-Waterman

es prohibitivo. Por esta razén, métodos heuristicos mas rapidos son propuestos, sin embargo,
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estos no garantizan que el mejor alineamiento serd producido. Normalmente, estos métodos
heuristicos son evaluados empleando los conceptos de sensibilidad y selectividad. Sensibilidad es
la habilidad para reconocer tantos alineamientos significativos como sean posibles, incluyendo

secuencias distantemente relacionadas. Vendria dada por:

. Numero de coincidencias encontradas
Sensibilidad = — — - — (4.1)
Nidmero de coincidencias signi ficativas de la Base de datos

Mientras que la Selectividad es la habilidad de acercar la busqueda con la intencién de
descartar los falsos positivos. Tipicamente, existe una cierta separacion entre sensibilidad y
selectividad, ya que un algoritmo muy sensible es aquél que va a perseguir encontrar sélo aquéllos
valores que coincidan exactamente unos con otros, €j. el algoritmo de SmithWaterman, mientras
que un algoritmo como BLAST que es selectivo busca aquéllos alineamientos similares lo mas
rapido posible; es por ello que se acota que si se requieren resultados muy precisos y detallados
habra de usarse un método muy sensible, en cambio si se desean aproximaciones rapidas se
emplearan aquéllos con un alto nivel de selectividad.

Los métodos heuristicos acostumbran usar matrices de puntuacién para calcular las pena-
lizaciones de no coincidir entre dos proteinas diferentes; algunas diferencias son mas posibles
que sucedan que otras y pueden indicar aspectos evolutivos. Es por esto que, los métodos de
alineamiento de proteinas usan matrices con valores que penalizan la existencia de diferencias
entre las secuencias, con la finalidad de reflejar posteriormente el nivel de similitud existente
cuando han habido cambios entre ellas.

Las matrices de puntuaciéon mayormente usadas son las matrices PAM (Percent Accepted
Mutations)[9, 13] y las BLOSUM (Blocks Substitution Matrix) [17]. Las matrices PAM son el
resultado de un trabajo extensivo que analiza la frecuencia en que un aminoacido determinado
es reemplazado por otro aminoacido durante la evolucién. Las matrices de puntuacién BLOSUM
son generadas considerando las tasas de evolucién de una regién de proteinas (un bloque) mas
que la proteina completa.

Conjuntamente con BLAST [1] que es una de las heuristicas mds usadas para comparacién
de secuencias, existe FASTA [29], que ademas emplean tanto matrices PAM como las BLOSUM.

FASTA es el nombre de un programa de alineamiento de secuencias y busqueda en bases
de datos biolégicas creado por W.R Pearson y D.J Lipman en 1988. Las secuencias usadas por
FASTA deben estar descritas con el siguiente formato:

>Nombre_de_la_secuencia
ARCGTCRGCKINTANDRGCKINTANDCKINTANDARCGTCRGCKINTANDRGCKINTAND

La linea que inicia con >, es llamada la linea de definicion, contiene un identificador dnico
seguido de una descripcién corta opcional. Las lineas que la suceden contienen la secuencia de
ADN o la proteina, hasta que el siguiente simbolo > indique que ha iniciado una nueva secuencia.

Dado que FASTA es fécil de analizar, este formato se ha vuelto sumamente popular y es
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actualmente el formato predeterminado de entrada en muchos software de anélisis de secuencia,
incluyendo BLAST, por ejemplo una secuencia de consulta puede tener la forma que se presenta
en la figura 4.2 donde se puede percibir facilmente donde comienza un nucledtido, donde termina
y donde comienza la siguiente.

Las bases de datos biolégicas estan construidas como conjuntos de secuencias (proteinas o
ADN) almacenadas en ficheros texto bajo formatos como el FASTA descrito anteriormente, y se
encuentran almacenadas en repositorios de datos genéticos como el GenBank 4 donde se pueden

visualizar nucleétidos como el de la figura 4.3

4.2.1. BLAST Basic Local Alignment Sequence Tool

BLAST fue disenado por Altschul [1] en 1990. Estd basado en un algoritmo heuristico que
fue disenado para ejecutarse rapidamente manteniendo un alto nivel de sensibilidad. La primer
versién de BLAST buscaba alineamientos locales sin considerar gaps ° y su motivacién fue
mejorar el rendimiento de los algoritmos FASTA [29], esto fue conseguido integrando el uso
de matrices PAM en el primer paso del algoritmo. En 1996 y 1997, versiones mejoradas de
BLAST que soportaban la insercién de gaps fueron propuestas, como en el caso de NCBI-BLAST
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) y Gapped BLAST [2].

BLAST provee programas para comparar diferentes combinaciones de tipos de secuencias
y secuencias de bases de datos, traduciendo secuencias a medida que se ejecuta. Los diferentes
programas que forman parte de la familia de BLAST se encuentran representados en la figura
4.4, donde dependiendo de la naturaleza de la secuencia de consulta o de la base de datos se

emplea uno u otro.

Nombre de Tipo de Secuencia Tipo de Base de Traduce

busqueda de Consulta Datos

blastn Nucleétido Nucleétido Ninguna

tblastn Proteina Nucleétido Base de Datos

blastz Nucleétido Proteina Secuencia de consulta
blastp Proteina Proteina Ninguna

tblastz Nucleétido Nucleétido Secuencia de consulta y la

Base de Datos

Tabla 4.1: Programas de la familia de BLAST

El algoritmo de BLAST esta dividido en tres fases definidas:

1. Seeding, BLAST compara las secuencias de consulta contra todas las secuencias dentro

de una base de datos. BLAST emplea el concepto de palabras que estdn conformadas

4 (http://www.ncbi.nlm.nih.gov/Genbank/)
5Un gap es un espacio en blanco representado con un guién () que se introduce en una secuencia con la finalidad
de asemejarla lo més posible a la otra secuencia con la que se estd alineando
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FECH3937_v3_14491;

GTGLTTGTGGGGC TTTCTC AL ATTAATTG TGGGGC TTTTC COGGTTGC AGGTTCALAACGTGCCATTCGC LACCGGTGTT
TTCGGCGCTCACCGOCCCGLARACC LATAACTGE

>ECH3937_v3_14492;
GTGCCGGATTTATCGCCATGCGUCTTC AGCGGAGLATTTTTTGC ATGGCACAGECGTTC AGLLALTAGACTAATTCAGGL
GTGTTATACTGATGATAAGLALATGTTGATAGCACTAACAGGCAAAACCATAGGTATALATTATC AATTTTTGC TATATC
LATAG

>ECH3937_v3_14493;
TTGLGATGTGAGGTGCCGGACATGTTCCCGTTCAGAGC CTGGTTGC AGACGCAGATTGATGAC TACCGGCGGCAGTTHCG
TAATGCCACGATGGAGTTTTATC TGGCGGAGTTATCGC TGGAGC GEGATGACGGC GAGATTGGCGAATTGCGGCACTACT
ACCTGACCGGTGTGCAAATGGCGGLACTGAGCCALC AGCAGGGCGACGALAACAGTTACCTGTTC AGCCTGATC LAGATC
CACCAGCATCTGATTCATGARATCAACAATACCGAGCGCGACCACTTATTCCGGGTGCAGAGTTACTACTTTGCACGCCA
GACGTTGCAGCACATTTGCACCC AGTTCAGCCTGATGGGTALTTGGGACAAAGCCACCGCCTTCCARACCGATTTTATGE
LGCGGGTGGCTTTTATCCCCTGA

»ECH3937_v3_14494;

GTGATGCTGTGGALACGTAGCGTAGATATTGAGC AGTTGAACCAGATGGCGGTCGACGGCATGGCCGGCCATATCGGAT
CCGTATGACGCGCCTEACCOACG ACACGU TEGAAGGCOTGATGC COGTGRATC ATCGCACGCGTCAGCCTTTCGGGCTGE
TGCATGGCGGCGCATCGGTAGCHCTGRCHEAATCGCTGGGGTCGATCGCCGETTATC TG TG TTCGGAAGGCGAGCAGTGE
GTGGTGGGEGTAGLLLTCLACGCCLACCACCTGCGCGC GG TGAC GELAGGCGLGETGCGCGGCGTGTGCCGCGCGITHL
CACCGGCARACGGATGCAGGTCTGGCARLTTGATATTTTTGACAGC COTGACCGGCTCTGTTGCACCTCACGCTTGACCL
CGGCGGTGATCACGOCGRATGCC TG

>ECH3937_v3_14495;
GTGCTGAGCTTTTTGGAAGCC TTGLAGC LA LATGGTTTTACCGGCGATATCGCCACCCAGTACGCCGATCGCCTGACGAT
GGCGACGGATAACAGTATTTATC ALCTGC TGCCGGACGCCGTGGTTTTCCCCCGTTC TACC GCCGACGTGGCGC TGTTGE
CCCGETTGECGEATEAGGATCGC TTTCGUGAGCTGETC TTCACGCC GCGCGGCGGECEGEC ACCGEC ACCAACGGGCAGHCG
CTCAATCACGGGATTGTGGTGGATATGTCCCGCTACATGRACCGTATTTTGGLAARTC ALCCCOGAGCAGGGTTGGGTACG
GGTGGAAGCCGGGGTCATC ARGGATCAAC TGAACCAGTACCTGAAGCCGTTCGGC TACTTTTTTGCGCCGGAGTTGTCCL
CCAGTAACCGCGCCACGCTGGGUGGCATGATCARTACCGACGCTTCGGGGCAGGGCTCGCTGGTGTACGGCARLACCTCG
GACCATGTGC TGGGGC TGCGCGUGETGTTGCCGGGCGGTGAACTGC TGGATAC TC AGGCGATGCCGETGGCGCTGGCGHEL
ACAGCTGGCGCAGGAAGATTCGUCGATCGGTCGTATTTATCACACCGTATTGC ATCGCTGC COTGAGCGTCGTGAGCTGA
TTGTAGACAAATTCCCCAAACTGAACCGTTTCCTGACCGGTTAC GACCTGCGCCATGTGTTCAGC GATGACATGCALACG
TTTGACCTGACACGCATCCTGACCGGCGUCEAGGGEACGC TGGCGTTCATCACCGAAGC GAAGCTGGATATCACGCCGTT
GCCCAAGGTGCGACGACTGGTCAACGTCAAGTACGACTCGTTCGATTCCGCGC TGCOCAGCGCGLCGTTCATGGTGGAAG
CGCGGGCOCTGTCOOTGRALACGGTGAC TCOAAGGTGCTGANTCTGGCGCGCGRAGATATCGTETGGCACTCGGTCAGS
GAACTGATTACCGATGTGCCCGHCGAAGAGATGCTGGGGC TGAACATCOTCGAGTTCGCCOGCGACGACGAACCGCTGAT
COACGGCCAGGTGECGTCGCTETETGAGCGTCTOGATGGGCTEC TEGCGGCCCGCGAGGCEGEAGTGATCOGCTATCAGS
TTTGCCGTEAGE TEGCGGGCATCGLACGTATTTACGGC ATGCGC AAGARLGCGGTCGGC CTGC TEGGC LACAGC LALGGE
CAGGCGALACCEATTCCGTTTGC CGLAGACACCTGCGTGC CGCCCC AGCATCTGECGGATTAC ATCGTCGAGTTCCGTGE
GCTGCTGGAC AGCCACAAGCTGAGTTACGGCATGTTCGGTCATG TEGACGCCGGC GTGTTGCATGTGCGTCCGGCGCTGE
ATATGTGCGACCCGCAGCAGGLAGTGC TRATGAAGC AGCTGTCCGATC AGATTGTGGCGCTGACC GCCARATACGGCGGE
TTGCTGTGGGGCGAACACGGC AL AGGTTTCCGCGCCGAATAC AGCCCGGCGTTCTTCGGGC COGLACTGTATGLAGAGCT
GCGCCGGGTC AAGGCGGCGTTCGACCCGHATAACCGTC TC AACCCCGGCAGATTTGTGCGCTGC TGGGGATGGACGCGC
CGATGATGRLGGTGGATGCGGTG ALLCGCGGCACCTACGATCGGCAGATTCCGCTGACGGTGUGC ACCGCATACCGCGGE
GCGATGGAGTGC LACGGCAACGGCC TGTGCTTCALCTTCGATACCCGCAGCCCGATGTGTCCOTCGATGALAATCACCGE
CAACCGTATCCATTCGCCC AR AGGCCGCGCCACGCTEGTGCGCGAGTGGC TGCGTC TGC TGTCGGEAGC LAGGCGTGGATC
CGCTGGCGTTGELLALCGCGCTGCCGCATCAGCGCGTC AGTTTCCGCOGGCTGATCGCC ALALCCCGTAATACGCTGGCC
GCGCGTCAGGGCGTGTATGACTTCTCGCATGAGGTC AAGGAGGC GATGTCCGGCTGTCTGRCC TGCARAGCCTGCTCCAC
CCAGTGCCCGATCARGATTGATGTTCCCGGTTTTCGCGCCCGCTTCCTGCAGC TGTACC ACACCCGCTATC TGCGCCTGE
CGCGGGACTATC TGGTGGCCGGUGTGRALAGC TACGCTCC GO TGATGGCGCACAGCCCGARALCCTTCARCTTTTTCCTG
CGCCAGCCGTGGGTCAATGCGGTGAGCCGCAAGTTCATCGGC ATGETGGATTTACCGTTGC TGTC GGCECCOTCOCTHCG
CCGGCAATTTGTCHGCCACCGGETEATGACCACCACGC TGGAGC AGTTGGAAC AGATGTCGCOGCARGCGCGCGCCGATS
ATGTGCTGATCGTGCAGGATCCOTTTACC AGCTATTACGACGCGCAGGTGGTGGCGEATTTTGTCCOGCTGGTGGALLAL
CTGGGATTGC GECCGETEC TECTECCGTTTTCGCCGAACGGC AAGCCACAACATATC AAAGGGTTCCTGCAGCGCTTTGE
CLRLACCGCCGGTARLACCGCGGALTTCC TCAACCGGGTGGCTE GTC TTGGGC TECCGATGGTGGGGGTGEATC COGCGE
TGGTGC TATGC TATCGGGATG LA TACCGGGLAGTGC TGGGCGATCGGCGCGGCGATTTTCAGGTGC AACTGGTGCATGAG
TGGC TGACGGCGC TATTGACC AGCCGCGACGATCGCGC TECGGE AC TGCGCGACGAGCCGTGGTATCTGTTCGGTCAC TG

Figura 4.2: Ejemplo fichero de secuencias en formato FASTA
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1021
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1141
1201
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1441
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accccgatat
ttgcecgecga
ttgatctgat
acgcattaca
tocottggeca
aagattctgyg
tetgccggac
actacgctgyg
atgctgecge
ttgatcgatt
agcttcacca
gctgaattta
cactctggtec
ttogtttgoy
taacatggca
ggocgoctgaty
ctotgtoggc
cgatagoccty
agatgagaaa
tgagcgtaat
togecctgoaa
attgcgtgaa
aagccagatc
ataccgccog
tatgacgcocg
ggccttaacco

Figura 4.3:

caaaaagcag
cgtcgcagge
aacaaataat
ctgcgcgaac
ccttttctgg
attattactc
acccgcgegt
ttgacctgcyg
ttcocgacogg
gectocggatt
ctgactatca
ttcaacctgyg
atctggtgga
gtcagtaaca
gtcatagegt
gaaaaacaaa
ctggaatcca
gtttccgaag
attgagttta
gacaccacag
coctggocctga
gggcgcatca
aagagaatgc
ctggccttot
acggatgatt
gatgactttt
gocgccagat

Proteinas _—

Nucledtidos

Traducidosi

gccacgcagyg
gttgccgeac
gtggaagaat
gatgtttcce
caggacggag
gacgagatcyg
tgggaaggaa
tgocotgtete
goctggcgatt
gggacataag
gggccagtty
cgaacgcatec
agatttcgac
catacgcatc
gggtgccgeo
ctgocgaaaay
gcgatggaag
cggoactgta
tcgaagatag
cgocgoctgoy
cocogoateoct
accagctgtt
gtgagggtga
gtgaaggtat
ttgacgcoccg
catccggoga
gttoccgecoat
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gtgatgaatt
taaaagacca
acgcocggea
agccaactca
ataaagtctt
tgacccgtta
tttocgecteo
aacgacgceg
catattgccg
cacggtatcg
atgatttceg
gocccagatga
gccaccgacco
cgaataacgt
tggcaagtge
gaaccgtcge
ccaacgtatc
tocgocactto
cctgattact
toctgattgtyg
cactggtcat
cgagcgtatt
aggttacacc
gctgtcacgt
ctggcecgceta
gtttctttaa
tteococggctto

aacaataaaa
tcgaccctac
aaaacgtatc
aggatttaac
accgcttgag
tgatgaaaaa
cgacttatge
tagaactggc
atccttcact
tgcttggtaa
tgtggaaccyg
tttttgttce
gcggtgaagg
cataacatag
ttattttcag
gaggaaatac
acgacggcaa
cccagtaaga
cgcatcaaceo
ttgoctgcoctte
gcgotaatgt
gaagogcage
accgatgaaa
tttgtccgeca
attgocggcca
acgccaaact
tcttocagg

atggttaaaa
gtcgttggat
cgtaaaaacc
agcgacaaca
cgcaaagage
aatcgacgtt
cacctctgge
tccgggtgac
ggcggoaaty
cctggtagga
tggtcaggac
ggtagtacag
cggetttggt
ccgcaaacat
gggtattttg
ttcagtctct
aactggccge
ccogocatgtt
tgattctgaa
tcggttttgg
ttgaacagga
tgcgccaggt
ccctgectgge
gcgaatttaa
gttgcagtaa
cttcgecgata

Nucleétido disponible en el GenBank

Basede
Datosde
.._Proteinas

" Basede
Datosde
- Nucledtidos

Base de Datos
| de Nucleotidos
._Traducidos

Figura 4.4: Programas de la familia de BLAST.
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por un conjunto finito de palabras de longitud w que aparecen dentro de una secuen-
cia dada. Por ejemplo, la secuencia CTAGGT contiene cuatro palabras de longitud 3:
CTA, TAG, AGG, GGT. El algoritmo de BLAST asume que alineamientos significa-
tivos tienen palabras en comun. La ubicacion de todas las palabras compartidas, de
w cantidad de letras, entre dos secuencias dadas estd determinada por la coincidencia
exacta entre las palabras; la secuencia de consulta, también puede ser comparada con
una base de datos gendémica, generando las palabras compartidas entre la secuencia y
las secuencias dentro de la base de datos; estas palabras identificadas son conocidas
como palabras idénticas y solo las regiones con palabras idénticas pueden ser usadas
como semillas (seeds, de ahi el nombre de la fase) para el alineamiento. Esta lista es
evaluada usando la matriz de substitucion y el concepto de vecindario. El vecino de
una palabra incluye la palabra en si misma y cualquier otra palabra que puntie en
al menos igual a un umbral T, cuando sea comparada con la matriz de substitucién.
El puntaje umbral (7T") es empleado para reducir el nimero de posibles aciertos. Una
seleccién apropiada de w y T', y de la matriz de substituciéon es una forma efectiva de

controlar el rendimiento y la sensibilidad de BLAST.

2. Extensién. Las semillas obtenidas en la fase anterior, deben ser extendidas con la
intencién de generar un alineamiento. Esto es hecho a medida que se inspeccionan
los caracteres cercanos a la semilla en ambas direcciones y concantenandolos a la
semilla hasta que se alcance un puntaje umbral X. Este umbral define cuanto puede
ser reducido el puntaje, considerando de tltimo el maximo valor. Luego de eso, el

algoritmo regresa al mejor puntaje para obtener el alineamiento.

3. Evaluacion. Los alineamientos generados en la fase de extensién deben ser evaluados
con la intencién de remover aquéllos no significativos. Los alineamientos significativos
llamados High Score Segment Pairs (HSP) son aquellos cuyos puntajes son iguales o
superiores a un umbral S. De igual forma, los grupos consistentes de HSP son genera-
dos sin incluir los HSP no solapados que estdn més cercanos a la misma diagonal (de
programacién dindmica); y son los que serdn comparados contra un umbral final, cono-
cido como el e-value, y solo los alineamientos que superen este valor seran considerados.
El e-value (valor esperado) da un estimado del nimero de alineamientos de secuencias
no relacionados que tendran valores muy altos, mientras que los valores mas bajos del

e-value, mayor es la probabilidad de estar frente a un alineamiento significativo.

En términos globales el comportamiento de BLAST para cada una de las secuencias se
puede observar en la grafica 4.5 y la descripcion general del algoritmo que sigue esté descrito en

el pseudocédigo 4.1.
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T C como ejemplo), asi
/ 4!'16 posibles
C A palabras {AA, AC,
Datos de entrada R TCAGACTTTTTTGATTG = AG, AT, CA, CC, CG,
(Secuencia y 80) TCAGACOOOGATTG A G CT, GA, GC, GG, GT,
G A TA, TC, TG, TT}
A C
Busca las
exactamente ..
iguales dentro de Evaluacién
la base de datos.
aTds. SI Extension
(Hits y su Puntiia las coincidencias segiin su
relevancia). similitud. (Programacién Dinadmica) = ndo ks
T C >x v puntuaciones con
c A un pardmeliros
Han igualado o =X v - umbral. (X)
guperado el umbral?, A G =¥ x
G A <y x
NO A ¢
v
Se rechazan

Figura 4.5: Flujo del Algoritmo de BLAST

/x Ejecuci\ ’on de BLAST x/

Inicio
Para cada secuencia de consulta S,
Para cada base de datos D;,
Para cada secuencia D en D;,
Compara S con D usando BLAST;
Actualiza las estadisticas;
Fin Para
Fin Para
Reporta los resultados para le secuencia S;
Fin Para

Fin Pseudocodigo

Cédigo fuente 4.1: Ejecuciéon de BLAST
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4.2.2. Gapped BLAST y PSI-BLAST

Gapped BLAST y PSI-BLAST son herramientas muy ttiles provistas por el servidor de
BLAST (conocidas como la versién 2.0)[2]. El BLAST original, no tomaba en cuenta el uso de
gaps (espacios sin informacién), ya que acostumbraba buscar alineamientos sencillos de al menos
longitud T y luego cada “acierto positivo” era extendido; en cambio, Gapped BLAST permite
realizar dos alineamientos simultdneos no solapados de longitud 7' con una distancia A el uno
del otro y posteriormente estos eran los que serian extendidos.

El algoritmo de Gapped BLAST permite la inserciéon y borrado de gaps dentro de los ali-
neamientos que seran devueltos. Permitir esto significa que regiones similares no van a ser parti-
cionadas en varios segmentos. La puntuacién de estos alineamientos con gaps tienden a reflejar

mas cercanamente las relaciones bioldgicas.

BLAST GappedBLAST

ABCDE ABCDE
ACD- - A-CD-

Tabla 4.2: Alineamientos BLAST y Gapped BLAST

Mientras que PSI-BLAST (Position-Specific Iteraded BLAST) provee una busqueda auto-
matizada del perfil, de facil uso, la cual es una forma bastante sensitiva de buscar secuencias
homélogas. El programa inicialmente realiza una bisqueda de gappedBLAST en la base de datos
v luego el programa PSI-BLAST usa esta informacién.

Para cualquier alineamiento significativo que ha sido retornado en la fase anterior construye
una matriz de puntuaciéon con posiciones especificas, la que reemplazara la secuencia para la
siguiente iteracién de busqueda dentro de la base de datos.

PSI-BLAST debe realizar iteraciones hasta que no se encuentren més alineamientos sig-
nificativos. Hasta el momento PSI-BLAST puede ser usado solo para comparar secuencias de
proteinas contra bases de datos de proteinas. Antes de la llegada de PSI-BLAST, sus técnicas
ya habian sido usadas, pero un alto grado de experticia e intervencién por parte de los bidlogos
era requerida.

PSI-BLAST, hace necesario empezar con una secuencia de consulta y una matriz de puntua-
cién (por ejempo BLOSUMG62, que es un tipo caracteristico de matriz BLOSUM). Las secuencias
homoélogas son encontradas empleando los fundamentos de BLAST (alineando la base de datos
con la secuencia de consulta). A diferencia de BLAST el e-value es empleado como criterio para
insertar la secuencia encontrada dentro del perfil que se esta generando. De donde, un perfil
(pl) es construido una vez que se ha pasado la secuencia por la matriz de puntuacién. Se realiza
una busqueda nueva de homélogos empleando BLAST (ahora alineando la base de datos con el
perfil obtenido), nuevamente el e-value determina si se inserta en el perfil y se genera un perfil

(p2) con las secuencias aprobadas y la matriz de puntuacion.
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4.3. Paralelizacion en Alineamiento de Secuencias

A excepcidén de secuencias de consulta sencillas y pequenas bases de datos, el procesamiento
de BLAST consume gran cantidad de tiempo al contrastar secuencias biolégicas completas contra
bases de datos de cientos de miles de secuencias biolégicas mas en un sélo ordenador, para dar
una idea, imaginen que tienen que comparar tu solito/a todas y cada una de las lineas de una
obra literaria como El Quijote de Cervantes con una frase nueva que acabas de encontrar, sélo
para saber si pertenece al mismo tiempo literario en el que fue escrita esta obra, (esto sin sumar
cuanto te tomaria realizar esa consulta cada vez que le agregaran una pagina nueva a ese libro),
serfa mucho maés rapido y si repartieras el trabajo entre personas de tu grupo de lectura favorito.

De esta forma, muchas ideas han sido planteadas para mejorar los tiempos de ejecucién de
BLAST. Las estrategias de computo paralelo y distribuido en clusters y grids ha sido de las
mas atractivas. Desde el punto de vista de la base de datos, existen dos enfoques basicos: la
replicacién de la informacién genémica en todos los nodos de procesamiento (nodos sencillos o
clisters) junto con la segmentacién de la secuencia de consulta; o la informacién genémica es
separada en fragmentos disjuntos y la secuencia de consulta es introducida en una sola pieza
para ser ejecutada la consulta en todos los sitios [12].

Mientras que la estrategia de replicacion de la base de datos esta determinada por el parale-
lismo en la relacién de los segmentos de la secuencia de consulta, la situacién de fragmentar la
base de datos lidera una situacién un poco mas complicada, dado que la ejecucién de fragmentos
més pequenos pudiera no generar el resultado correcto (y secuencial) si los pardmetros estadisti-
cos en tiempo de ejecucién no estan bien definidos. Adn mas, igual que en otros problemas de
computacion paralela, cuando no hay una carga de trabajo pareja, los beneficios que vienen con

estos enfoques se pierden.

4.3.1. Segmentacion de la secuencia de consulta

La segmentacién de la secuencia de consulta, fragmenta dicha secuencia de modo que cada
nodo dentro de un clister sea capaz de realizar la bisqueda con una fraccién de la secuencia
de consulta. Haciendo esto, muchas bisquedas de BLAST pueden ser ejecutadas con diferentes
secuencias de consulta; ésta estrategia aplicada a un cldster tipicamente replica la base de datos
por completo en el sistema local de almacenamiento de cada nodo. Si la base de datos es mayor
que la memoria del nodo, las busquedas con segmentacion de la secuencia de consulta sufre los
mismos efectos adversos de e E/S que el BLAST tradicional. Cuando la base de datos cabe en la
memoria local, efectivamente, la segmentacion de la consulta puede conseguir casi escalabilidad

linear para todos los tipos de buiisqueda de BLAST.

ScalaBLAST

ScalaBLAST es una implementacién paralela del algoritmo original de NCBI de alineamien-

to de secuencias (BLAST); puede ser usado para identificar secuencias rdpidamente que son
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similares a un conjunto de secuencias de proteinas suministradas por el usuario. Una lista de
secuencias de consulta suele contener miles o millones de secuencias, cada una de las cuales se
espera que se compare contra una base de datos inmensa de informacién genética y disponible
publicamente, tal como la base de datos de proteinas no reduntante (nr). ScalaBLAST ha sido
construido empleando el compilador intel y gnu y ha funcionado en arquitecturas tanto de 32
como 64 bits. Funciona eficientemente enviando los resultados y leyendo los archivos sobre siste-
mas de ficheros montados globalmente (Lustre), desde espacio de disco local (/scratch) y sobre
sistemas de ficheros en red (/home)|[28].

Scala BLAST alcanza un speedup considerable en entornos multiplocesador, gracias a dos

métodos concurrentes:

1. Segmentando la lista de secuencia de consulta en pequenas listas y gestionando que la
buisqueda de BLAST sea llevada a cabo con cada lista generada por un determinado

grupo de procesamiento.

2. Gestionando eficientemente el acceso a la base de datos gendémica empleando Arreglos
Globales[28], una implementacién de una interfaz de memoria compartida que puede

ser usada en arquitecturas de memoria compartida o distribuida.

Esta combinacion tnica de separar la lista de secuencias de consulta y gestionar la memoria
en una forma eficiente da cierta escalabilidad para trabajos de tamano considerable. ScalaBLAST
estuvo usando 1000 secuencias de consulta contra la base de datos nr. ScalaBlast emplea comu-
nicacién no bloqueante disponible en el pack de herramientas de Arreglos Globales para ocultar
virtualmente todo el costo de comunicacion dentro de entornos de clister. ScalaBLAST ha sido
portado a una variedad de arquitecturas, incluidos sistemas con memoria compartida y dis-
tribuida. Ha sido ejecutada con diferentes grados de interconexién: gigabit ethernet, myrinet,

quadrics.

4.3.2. Segmentacion de la base de datos

Cuando se habla de segmentacién de la base de datos, se realiza la bisqueda independiente
de cada fragmento en cada procesador o nodo, y los resultados son recolectados en un tinico
fichero final de salida. Existen diferentes implementaciones de segmentacién de bases de datos,
la primera de ellas fue la de los NCBI BLAST, ya que implementa la segmentacién de la base
de datos a través de la buisqueda multihilo de forma que cada procesador dentro de un sistema
SMP tiene asignada una porcién diferente de la base de datos. Esta estrategia también fue
implementada en una versién comercial (de cédigo cerrado) de la empresa TurboWorx, Inc.
denominada TurboBLAST [6].

TurboBLAST

TurboBLAST provee una segmentacion de la base de datos y una estrategia de distribuciéon

disenada explicitamente para ser usadas en NoWs (Networks of Workstations). Empleando el
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gestor y balanceador de carga propietario de TurboWorx denominado TurboHub, TurboBLAST
puede adaptarse dindmicamente al entorno de claster sobre el que se estd ejecutando. Sin em-
bargo por tratarse de una aplicacion propietaria el uso es casi nulo. También estd disponible
otra versién de aplicacién bioinformatica que emplee segmentacién de base de datos, denomi-
nada ParallelBLAST, que estd compuesto por un conjunto de scripts que se pueden ejecutar
sobre entornos PVM/Sun Grid Engine. Ademds de requerir un entorno PVM/SGE, difiere de
mpiBLAST por no tener integrado directamente el NCBI Toolbox y no provee un mecanismo
explicito de balanceo de carga.

TurboBLAST se basa en realizar un trabajo individual de BLAST donde especifica el niime-
ro de secuencias de consulta de entrada que van a ser buscadas contra una o més bases de
datos gendémicas. TurboBLAST separa los trabajos de BLAST en muchas piezas pequenas; que
seran procesadas de forma paralela y posteriormente combinadas en un fichero final de salida.
Aplicando esta estrategia, el fichero de salida presenta el mismo formato que el generado por
NCBI BLAST en su sitio local.

Para conseguir coordinar las actividades en multiples maquinas, lleva a cabo los siguientes

procesos:

» Creando las tareas de BLAST, cada una de las méquinas necesita comparar un pequeno
grupo de secuencias (aproximadamente entre 10 y 20 secuencias) contra una particién
de tamano modesto de la base de datos, de forma que la tarea pueda ser llevada a cabo

sin generar paginacion de disco.
» Aplica el programa estdndar de NCBI BLAST para completar cada tarea.

» La integracién de las tareas culmina en un fichero de salida unificado.

Este enfoque tiene la ventaja de garantizar la generacion de un fichero de salida idéntico
al obtenido en la versién serie de BLAST. Primero, el tamano de cada tarea de BLAST es
configurada de forma que el procesamiento en cada procesador sea lo mas eficiente posible.
Segundo, un conjunto de tareas lo suficientemente grande es creado de forma que todos los
procesadores realicen trabajo 1til y se obtenga un balanceo de carga casi perfecto.

La creacion de tareas ocurre en dos pasos:

1. En el momento del envio del trabajo, se crean las tareas iniciales que buscan un grupo

de 10 a 20 secuencias contra las bases de datos.

2. Si alguna de las tareas iniciales es demasiado grande para el procesamiento de BLAST
en la maquina sobre la que estd siendo llevada a cabo, la tarea es separada dinamica-

mente en sub-tareas lo suficientemente pequenas para ser ejecutadas en esa maquina.

PackageBLAST

PackageBLAST [35] es una implementacién de BLAST bajo entornos Grid, que puede operar

bajo dos modos de ejecucién: un primer modo, una secuencia larga sencilla es comparada con
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una base de datos gendmica. En este caso, cada méquina que figura como worker compara la
misma secuencia con un conjunto de diferentes segmentos de la base de datos. La salida de éste
modo es un reporte de BLAST parcial, que necesita ser procesado més adelante. En el modo 2,
un conjunto de secuencias es comparado con la base de datos genémica completa. La salida de
este modo es el reporte final de BLAST para cada secuencia comparada. En la figura 4.6[35], se

puede observar las estrategias de ejecucién que han disenado.

MODE 1 MODE2

database
Master —>segment

1

_— _—

-

database
Master =segment

T

Internet Internet

sequencel o oquence3
< 3

% — -
g —

-
sequenceZ

sequencel _— sequencel
e R
ST

sequencel

Slave

‘ Slave Slave ‘ ‘ Slave ‘ ‘ Slave ‘ Slave ‘

BTTTTTT) CIITTTI [TTTTHA EEEEEEEE EEEEESEN S5

(a) The database is replicated in the nodes, (b) The database is replicated in the nodes,

but only part of it is processed in each node and each node compares a different sequence

with the entire database

Figura 4.6: Modos de ejecucién PackageBLAST.

Habiendo decidido que la base de datos genética seria fragmentada y replicada, seleccionan
cuales unidades de trabajo serian procesadas por cada nodo worker del grid. Las unidades de
trabajo son definidas como segmentos de base de datos (en el caso del modo 1) o secuencias de
consulta (en el modo 2). Esto involucra muchas politicas de alocacién de tareas, por lo que han
desarrollado un framework que permite diferentes politicas de alocacion que el usuario puede

emplear segin sus necesidades y entorno disponible.

MpiBLAST

mpiBLAST [12] es una herramienta de cdédigo fuente abierto, desarrollada el Los Alamos
National Laboratory (LANL) para ejecutar NCBI-BLAST 4.2.1 en clisters de nodos de cémputo.
El algoritmo tiene dos fases. Primero, la base de datos genética es segmentada y colocada en un
medio de almacenamiento compartido. Posteriormente, la secuencia de consulta es distribuida a
los nodos del cluster. Si el nodo no tiene el fragmento de la base de datos, se realiza una copia
local. El método ha sido propuesto para asociar los fragmentos de datos con los nodos del cluster,
tratando de minimizar el nimero de copias. Cuando los workers finalizan el procesamiento,
ellos envian los reportes locales al méaster, y éste habiendo recibido los reportes locales para le
secuencia de consulta, los combina todos para crear el reporte final de BLAST.

El formateo de la base de datos en mpiBLAST es una funcién que es llevada a cabo de la

siguiente manera:

s Analiza la correspondencia entre las secuencias y comprobar las opciones de la linea

de comando.
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» Lee la base de datos de entrada en formato FASTA; indexando la ubicacién y longitud

de cada secuencia dentro del archivo de entrada.

s Escribe un fichero temporal con las secuencias reordenadas para que las mas largas

estén primero.

Llama a la funcién formatdb dentro del Main, que estd encargada de crear el
nimero deseado de fragmentos de la base de datos. Dado que esta funcién siempre
agrega la siguiente secuencia en la lista temporal al fragmento mas pequeno, garantiza

que los tamanos de los fragmentos seran iguales.

= Crea y actualiza los archivos soportados por la aplicacion, tales como .mbf, .dbs, y los

An, p} del nombre del fichero.

Una vez que mpiBLAST ha formateado la base de datos, y dependiendo del tipo de base
de datos que estd siendo formateada, se generan 7 ficheros con extensiones diferentes, los cuales

estan descritos en las tablas 4.3 y 4.4.

Extension Contenido Formato
nhr Definicién de Lineas Binario
nin Indices Binario
nsq Datos de la Secuencia Binario
nnd Datos GI Binario
nni Indices GI Binario
nsd Datos que no son GI Binario
nsi Indices de los datos que no son Binario
GI

Tabla 4.3: Extensién ficheros de la base de datos de nucle6tidos formateada

Extension Contenido Formato
phr Definicion de Lineas Binario
pin Indices Binario
psq Datos de la Secuencia Binario
pnd Datos GI Binario
pni Indices GI Binario
psd Datos que no son GI Binario
psi Indices de los datos que no son Binario
GI

Tabla 4.4: Extensién ficheros de la base de datos de proteinas formateada

Asimismo, el trabajo correspondiente a cada uno de los procesos, dependiendo de si es méster
o worker, estd descrito en los algoritmos presentados a continuacién que han sido tomados de
[12], de esta forma se puede visualizar el comportamiento tedrico que habria de presentar la

aplicacion.
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/* Méster de mpiBLAST */

Inicio
resultados es el conjunto de resultados de BLAST.
F = {f1, f2,...} es el conjunto de fragmentos de la base de datos.
SinBuscar C F es el conjunto de fragmentos de la base de datos en los que no se ha buscado.
SinAsignar C F es el conjunto de fragmentos de la base de datos en los que no se han asignado.
W = {w;,ws,...} es el conjunto de workers disponibles.
D; C W es el conjunto de workers que tienen el fragmento f; en almacenamiento local.
Distribuidos = { Dy, D5, ...} es el conjunto de Datos para cada fragmento.
Requiere que: |W|#0
Asegirese que: |SinBuscar| =0
SinBuscar «— F
SinAsignar «— F
resultados «— vacio
Envia las secuencias a los workers via Broadcast
Mientras estadoActual # 0 haga
Recibe un mensaje desde un worker w;
Si mensagje es un estado de solicitud entonces
Si |SinAsignar| = 0 entonces
Envia al worker w; el estado BUSQUEDA,COMPLETA
De lo contrario
Envia al worker w; el estado de BUSCAR_.FRAGMENTO
Fin Si
De lo contrario Si mensaje es una solicitud de fragmento entonces
Encuentra f; de forma que sea el minD; € Datospistribuidos|D;| y f; € SinAsignar
Si |D;| = 0 entonces
Agrega wjaD;
Fin Si
Remueve f; de SinAsignar
Envia la asignacién del fragmento f; al worker w;
De lo contrario Si mensaje es un conjunto de resultados para el fragmento f; entonces
Combina mensaje con resultados
Remueve f; de SinAsignar
Fin Si
Fin Mientras
Imprime resultados

Cédigo fuente 4.2: Méster de mpiBLAST

70



anoRs W N =

© 0 N o

10
11
12
13
14

El proceso méster usa un algoritmo ambicioso (descrito en el pseudocédigo 4.2) para deter-
minar cudles fragmentos asignar a cada worker. Inicialmente, si un worker inactivo tiene en su
almacenamiento local un fragmento sobre el que ain no se ha realizado la busqueda, el worker
es asignado para realizar el alineamiento con ese fragmento. Si el worker no tiene un tnico frag-
mento, se le asigna buscar en aquél que esté repartido el menor niimero de veces entre los demés
workers. Finalmente, si un worker inactivo no tiene fragmentos en los que aiin no se ha buscado,
se le indica que copie un fragmento no utilizado existente en la menor cantidad de workers. El
conjunto de fragmentos que se esté copiando en ese instante es controlado por el master para

prevenir la copia duplicada de asignaciones a workers diferentes.

/x Worker de mpiBLAST x/

Inicio
secuencias < Recibe las secuencias de consulta desde el master
estadoActual < Recibe el estado desde el méster
Mientras estadoActual # BIjSQUEDA,COMPLETA haga
fragmentoActual «— Recibe una asignacién de fragmento desde el master
Si fragmentoActual no esté en el almacenamiento local entonces
Copia fragmentoActual al almacenamiento local
Fin Si
resultados «— BLAST secuencias,fragmentoActual
Envia resultados al méster
estadoActual — Recibe el estado desde el méster
Fin Mientras

Cédigo fuente 4.3: Worker de mpiBLAST

El algoritmo seguido por el worker se describe en el pseudocédigo 4.3, donde una vez que
el worker completa su bisqueda, reporta los resultados al master. El méaster es el encargado de
fusionar todos los resultados de cada worker y ordenarlos de acuerdo al puntaje que traen. Una
vez que todos los resultados han sido recibidos, son escritos a un fichero de salida especificado
por el usuario empleando las funciones de salida de BLAST de la libreria de desarrollo de NCBI.
Este enfoque de generar resultados combinados le permite a mpiBLAST producir resultados
en cualquier formato soportado por NCBI-BLAST, incluyendo XML, HTML, texto delimitado
por espacios en blanco, y ASN.1. Todo el proceso que realiza mpiBLAST, se puede ver a modo
general en la figura 4.7.

En el trabajo de Feng [14] han descrito el comportamiento de mpiBLAST en entornos de
supercomputacién, clasificando cada una de las fases involucradas en la ejecucién, tal como se
muestra en la grafica 4.8.

Adicionalmente han mencionado la influencia que podrian tener en la ejecucién factores

COImo:

= Kl tipo de base de datos bioldgica con la que se estad trabajando;

= El tamano de la secuencia de consulta;
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= El tamano de la base de datos biolégica contra la que se realiza la consulta;
= El nimero de workers disponibles; y

= El nivel de similitud entre familias bioldgicas de las bases de datos y las secuencias.

Que repercutirian en el tiempo total de ejecucién de la aplicacion; de esta forma constituye
un enfoque interesante que sustenta nuestra intencién de andlisis de rendimiento durante este

trabajo de investigacion.
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Capitulo 5
Experimentos

“El genio es un uno por ciento de inspiracion, y un noventa y nueve por ciento

de transpiracion.”

Thomas Alva Edison(1847-1931).

5.1. Introduccion

Cuando se desea disenar el grupo de experimentos necesarios para verificar la hipdétesis que
se plantea en cada uno de ellos, es primordial que una vez que se ha reconocido y delimitado
el problema, se proceda a seleccionar aquéllos factores involucrados y los niveles que se van a
a tomar en consideracion, ya que a partir de estos de va a definir cual es nuestra variable de
respuesta esperada. Variable que lleva la motivacién global por la que se estan realizando los
experimentos. Aun asi una vez que éstas variables han sido establecidas, es necesario determinar
el diseno experimental que habra de llevarse a cabo para responder la pregunta que nos hemos
planteado en un inicio. Luego se dedicard gran parte de nuestro tiempo en la realizacién de la
experimentacién para la obtencién de los datos, y su posterior analisis de forma que seamos ca-
paces de emitir las conclusiénes y/o recomendaciones finales; ademads, suele ser necesario realizar
un estudio en que se confirme si los resultados y la conclusion a la que se ha llegado es cierta o
no.

El objetivo detras de los experimentos descritos en este capitulo giran entorno al andlisis
de rendimiento de la aplicacién mpiBLAST, donde se persigue con cada uno de ellos identificar
aquéllos factores significativos en el consumo de tiempo dentro de la ejecucién de la aplicacion.
Como primera aproximacién se ha optado por realizar un anélisis de rendimiento estatico post-
mortem, que se espera dinamizar en trabajos futuros, monitorizando el comportamiento de la

aplicacién dentro de un entorno paralelo controlado, un clister Beowulf dedicado de 32 nodos.
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5.2. Escenario

El proceso de evaluacion de rendimiento para la aplicacion mpiBLAST requiere cierto co-
nocimiento de la interaccion que presenta ella en un determinado entorno paralelo. Dado que
nuestro principal objetivo es conseguir la mejor configuracion de los parametros involucrados en
la ejecucion de mpiBLAST en aras de conseguir el menor tiempo de ejecucién posible, una vez
que la hemos seleccionado como objeto de estudio, es necesario alojarla en nuestras maquinas
paralelas con la finalidad de poder conocerla y evaluarla.

Como principal requisito para ejecutar mpiBLAST en el entorno paralelo (cluster de orde-
nadores) es necesario contar con alguna version de MPI para poder compilar la aplicacién y
posteriormente utilizarla. En nuestro caso contamos con un cluster Beowulf con 32 nodos Intel
Single-core a 3.00 GHz, 1 gigabyte de RAM por nodo de cémputo, 80 gigabytes de disco de
almacenamiento, red Gigabit/Ethernet, sistema de ficheros NFS y configuracién RAID1; en el
cual hemos instalado la versién de MPI mpich2 [16] que permite realizar el traceado con instruc-
ciones MPE (para luego visualizarlas como andlisis inicial de mpiBLAST), y hemos compilado
las versiones disponibles en: http://www.mpiblast.org, mpiBLAST-1.4 y mpiBLAST-1.5-PIO,
que son la udltima versién estable y la que versién més reciente con entrada y salida paralela,
respectivamente.

Para instalar mpiBLAST es necesario desempaquetar el archivo de c6digo fuente (disponible
en: www.mpiblast.org) en un fichero temporal. Se debe disponer de una versién actual de la caja
de herramientas de NCBI (NCBI Toolbox), facilmente descargable desde el sitio web de NCBI.
Una vez que la caja de herramientas ha sido instalada apropiadamente, se procede a realizar el
./configure y posteriormente make y make install.

La aplicacion mpiBLAST debe ser configurada de acuerdo a las librerias y herramientas
disponibles en el entorno paralelo sobre el que se va a ejecutar, es necesario identificar el MPI
con el que se esta trabajando, junto con la direccién donde se van a instalar los archivos binarios
y la direccién donde se ha instalado el pack de herramientas de NCBI.

Una vez que se ha instalado mpiBLAST, en la carpeta local estdn disponibles los binarios:

» mpiformatdb, empleado para formatear la base de datos biolégica en el nimero de

fragmentos necesario;
= mpiblast, que ejecuta la consulta de mpiBLAST como tal;

» mpiblast_cleanup, encargada de limpiar los “residuos” de base de datos que han

quedado en las carpetas locales de cada uno de los worker.

5.3. Analisis de los Factores

En la siguiente seccién detallamos cada uno de los experimentos realizados para analizar

y evaluar la herramienta bioinforméatica mpiBLAST como aplicacién paralela basada en MPI.
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Con la siguiente experimentacion se espera responder las interrogantes sobre la existencia de
ineficiencias de la aplicacién, carencia de paralelismo y/o poca explotacién de los recursos dispo-
nibles. De manera que sea posible verificar los posibles cuellos de botella existentes dentro de la

ejecucion que pudieran ser sintonizados para mejorar el rendimiento que presenta mpiBLAST.

Paralelismo de mpiBLAST

Uno de los principales problemas de las aplicaciones paralelas, es el nivel de escalabilidad que
éstas pudieran tener en clisters de ordenadores, para ello es necesario comprobar las ventajas
que presenta el paralelismo dentro de la aplicacién dentro de un ambiente paralelo especifico.

Hipotesis:

“mpiBLAST no explota el paralelismo para un tamafio de problema demasiado pequeno”.

Esto debido a que el no sacar provecho del paralelismo del disefio de la aplicaciéon o del
entorno paralelo sobre el que se trabaja, se convierte en el principal “talén de Aquiles” de las
aplicaciones paralelas. Es por ello que nos hemos planteado comprobar el nivel de ganancia que
presenta o no la aplicacién al ejecutarla en su versién paralela. Usualmente por problemas de
diseno o limitaciones del entorno, las aplicaciones paralelas tienden a tener peor rendimiento
que cuando han sido ejecutadas secuencialmente, esto debido a cierto nivel de overhead que se
pudiera estar presentando o ineficiencias en el paradigma de paralelismo empleado al momento
del diseno.

Si recordamos cuando hablamos de una aplicaciéon como mpiBLAST, estamos tratando con
una clase de aplicacién diseniada bajo un enfoque embarrasingly parallel, en el que siguiendo
un paradigma Master/Worker el trabajo es repartido a los workers, que se encargan de realizar
la actividad de forma paralela y luego enviar los resultados obtenidos al méaster. Sin embargo,
no todas las veces que se emplea este paradigma aparentemente sencillo se consigue un mejor
desempeno que si se continuara empleando una sola maquina.

Proceso:

Para determinar el grado de ventaja existente al usar o no BLAST en su versién paralela, es
necesario partir de la comparacion del parametro tiempo de ejecucion, con la intencién de poder
observar cuantitativamente si existe o no una mejora entre ambos enfoques. Sin embargo, para
comprobar esto es necesario realizar las mediciones pertinentes de las ejecuciones secuenciales
de BLAST bajo un solo ordenador y determinar el speedup existente con mpiBLAST.

Para lograr esto, hemos decidido ejecutar en un cluster, las consultas a BLAST (la versién
secuencial) con las bases de datos mito.nt de 934 KB, la yeast.nt de 3.635,20 KB, drosoph.nt
de 33.280,00 KB y la NT con 7.130.316,80 KB (todos estos tamafios son de las bases de datos
comprimidas en un fichero .gz), con la secuencia e_chrysanthem.fas de 300KB de longitud. Los
experimentos serdn llevados a cabo en un cluster Beowulf compuesto de nodos de computo Intel
Pentium 4 a 3.00Ghz, con 1 GB de memoria RAM, 80 GB de disco duro SATA, red Gigabit
Ethernet, sistema de ficheros paralelo con RAID1. Posteriormente se calculara el speedup de

mpiBLAST para esa misma carga descrita.
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Se han observado los tiempos de ejecucién para 1, 4, 8, 16, 32 procesadores respectivamente,
los cuales se encuentran reflejados en la grafica 5.1. Se controlard el tiempo de ejecucién tanto
de la version serie como de la version paralela y se podréa definir hasta qué punto favorece el
paralelismo de mpiBLAST la realizacién de dichas consultas.

Tiempo de Consulta por Base de Datos
10000

1000

J—
100 "

== mito.nt

yeast.nt

=s=drosoph.nt

Tiempo en Segundos (Log base 10)

s
|
|

Nimerode Procesadores

Figura 5.1: Tamano base de datos vs. Niumero de Workers

Inicialmente obtenemos un speedup de 4,5 para 32 procesadores con la base de datos N'T, tal
y como se puede ver en la figura 5.3, en la que se encuentran los calculos de speedup para cada
una de las bases de datos que hemos planteado, es posible afirmar la existencia de ganancias de
rendimiento al emplear mpiBLAST.

Si contrastamos los speedup obtenidos con lo que seria el speedup ideal (ver figura 5.3,
podemos observar que las ganancias, aunque pocas, se consiguen a medida que se aumenta el
tamano del problema. Lo que queda por determinar es por qué el speedup es tan bajo para este
tipo de ejecuciones.

Los tiempos de ejecucién estan directamente relacionados con la carga de trabajo que se le
estd proporcionando al algoritmo, si el tamano del problema es demasiado pequeno, el paralelismo
no brinda ventaja alguna, en cambio si el tamano del problema se vuelve significativo, a medida
que se incorporan procesadores que se comportardn como workers y realizar la bisqueda de forma
simultdnea el tiempo de ejecucion reduce considerablemente.

Adicionalmente, con los datos obtenidos en este experimento, somos capaces de calcular el
nivel de eficiencia que tiene la aplicacién (ver figura 5.4), lo que se consigue observar es que la
aplicacién a medida que el nimero de procesadores aumenta se presenta alguna situacién dentro
de la ejecucion que deja entrever que no se estd aprovechando el paralelismo del sistema como
tal. Situacion que se espera descubrir en experimentos siguientes.

Conclusiones:
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Se puede observar en las graficas presentadas que a medida que aumenta el tamano de la
base de datos bioldgica, las exigencias para el algoritmo secuencial se hacen cada vez mayores y
requiere cada vez mas cantidad de recursos. Sin embargo, a medida que se aumenta el nimero
de procesadores sobre los que se ejecuta la aplicacién de forma paralela (ain cuando el tamano
de la base de datos se incremente), y manteniendo fijo un fragmento para cada procesador se
obtiene una ganancia considerable en tiempo de ejecucion. Por lo cual se puede concluir que a
medida que el tamano del problema crece es posible observar la ventaja de realizar las consultas
de forma paralela. Esto debido al tamano de los datos de entrada con los que se esta trabajando,
que al introducir el concepto de fragmentacién es posible llevar a cabo varias tareas de forma
simultdnea sin entorpecer unas con otras en las ejecuciones.

Con esto hemos podido determinar que el tamafnio de base de datos bioldgica con la que
se esté trabajando va a determinar el nivel de ganancia que se puede obtener al realizar las
consultas de forma paralela. Con ello a medida que el tamano de la base de datos aumente
y se disponga de un clister de 32 nodos de computo se podra reducir el tiempo de consulta
en aproximadamente 75%. Bajando de una media de 40 minutos de ejecucién en el BLAST

secuencial a apenas una media de 8 minutos en la ejecucién en paralelo.

Fases de mpiBLAST

Hipotesis:

“mpiBLAST estd desaprovechando el paralelismo dentro de su diseno en algiin punto durante
la ejecucion”.

Igual como se determiné en el experimento anterior que mpiBLAST escala segiin el tamafio
del problema, ahora se plantea determinar si como aplicacién paralela presenta puntos de inefi-

ciencia; puntos que se determinan una vez que se ha realizado el analisis de rendimiento de la
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aplicacion.

Tal como ha sido descrito en capitulos anteriores, este proceso se puede llevar a cabo de dife-
rentes maneras pero el objetivo continta siendo el mismo, el por qué de esto es que normalmente
se busca identificar puntos de ineficiencia en la aplicacion en los que se estd desaprovechando
el paralelismo inherente al entorno paralelo sobre el cual estd siendo ejecutada, e identificar
la causa de su presencia para generar una conclusion adecuada para posteriores mejoras en la
aplicacion.

Proceso:

Se ha decidido identificar la cantidad de tiempo de ejecucion que invierte la aplicacién en
las diferentes fases que la componen, una vez que ha sido formateada la base de datos en un
determinado nimero de fragmentos y se desea realizar una consulta contra la base de datos
de secuencias biolégicas disponible, es importante tomar en consideracion la importancia que
refieren cada una de las etapas por las que el programa ha de pasar para generar el fichero
de salida con la informacién de la secuenciacién. Basandonos en parte en la descripcion que

plantean los disenadores de la aplicacion se han identificado las siguientes fases significativas:

Reparticién de los fragmentos de la base de datos a cada uno de los workers.

Proceso de busqueda de la secuencia de consulta en el(los) respectivo(s) fragmento(s)

asignado(s) a cada worker.

Envio de los resultados por parte de los workers hacia el master, empleando MPI.

Uniodn e impresion de los resultados en el fichero de salida.

Para ello se han tomado como puntos de medicién aquéllos en los que la aplicacién esté eje-
cutando cada una de las funciones anteriormente descritas, consiguiendo de esta manera una
primera impresién de la cantidad de tiempo que se estd perdiendo dentro de la ejecucion.

Presentando un tiempo medio de ejecucién para 7 workers y 7 fragmentos (uno para cada
worker) igual a 627,0916 segundos, se puede determinar una distribucién del tiempo total en
cada una de las fases involucradas en mpiBLAST representada en la figura 5.5 en el que se puede
observar que la mayor parte del tiempo de la ejecucion se estd consumiendo en la reparticion
de fragmentos para cada worker, esto debido a la estrategia de reparticién disenada para el
algoritmo, en la que el worker no inicia su trabajo hasta que ha recibido todos los fragmentos
sobre los que le corresponde realizar la busqueda.

Otra informacién que se pudo obtener durante la experimentacion es que el tiempo medio
de busqueda para cada worker es practicamente similar, como se puede observar en la tabla
5.1 con lo que se concluye que el algoritmo de BLAST independientemente de los datos con los
que esta trabajando consigue realizar la bisqueda en el fragmento asignado en un tiempo muy
similar para cada worker.

De igual forma cuando se aumenta en la ejecucién el nimero de nodos a emplear a 32,

podemos observar el porcentaje de tiempo empleado en cada una de las fases en la figura 5.6. De
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Relacion de consume de tiempo medio con 7 procesadores
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Figura 5.5: Fases de mpiBLAST con siete Fragmentos y siete workers.

forma que se puede percibir que a medida que la base de datos se fragmenta en un mayor niimero
de piezas, cada fragmento disminuye en su tamano. Por lo tanto el tiempo de distribucién de los
fragmentos y de busqueda dentro de cada uno se ve reducido, como se ve reflejado en la tabla
5.1. De forma que se puede observar un mayor solapamiento entre cémputo y distribucién de
datos, que basicamente es lo que se persigue al momento de sacar provecho de las caracteristicas

de paralelismo disponibles en la aplicacion.

Relacion de consumo de tiempo medio con 32 procesadores
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Figura 5.6: Fases de mpiBLAST con 31 fragmentos y 32 nodos.

Hemos podido determinar la estrategia de reparticiéon de fragmentos por parte del méster
hacia los workers, visualizando la traza de ejecucién reflejada en la figura 5.7, en la que los cuadros
pequenos de tamano mas pequeno reflejan el momento en el que el worker esta recibiendo el
fragmento de base de datos que le corresponde. De esta forma hemos podido confirmar que

parte del proceso de reparticién afecta significativamente el tiempo global de ejecucion, ya que
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Rank Worker Tiempo Medio sg

2 276,34
3 277,07
y; 288,39
5 280,23
6 271,22
7 266,69
8 279,46
2 108,76
3 119,49
7 114,06
5 115,85
6 116,56
7 110,08
8 119,69
9 112,19
10 114,18
11 113,41
12 108,36
13 114,89
1 122,20
15 116,61
16 110,41
17 111,93
18 109,97
19 116,18
20 113,21
21 108,93
22 113,75
23 118,42
2] 117,31
25 113,36
26 113,32
27 116,48
28 113,07
29 107,42
30 111,36
31 117,75

Tabla 5.1: Tiempo medio de bisqueda BLAST con para 8 y 32 nodos, con 7 y 31 fragmentos
respectivamente.
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el ultimo worker debe esperar que todos los fragmentos anteriores sean repartidos, para el recibir

el suyo y comenzar el proceso de bisqueda con BLAST.
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N° de No- mito.nt yeast.nt drosoph.nt NT (sg)

dos (sg) (sg) (sg)
8 4,10 3,65 5,76 627,09
32 6,56 6,82 36,10 465,74

Tabla 5.2: Tiempo medio total de bisqueda en mpiBLAST para 8 y 32 nodos con varias bases
de datos.

Esta estrategia, una vez que se ha revisado el cédigo fuente igualmente muestra que los
disenadores se han planteado repartir la totalidad de fragmentos a todos los workers para que
luego ellos comiencen el procesamiento. Y si alguno llegara a terminar antes, y requiriera un
fragmento adicional, el algoritmo busca aquél fragmento en que otro worker no haya buscado y
se lo transmite al worker desocupado.

Los tiempos medios totales de las ejecuciones para 8 y 32 nodos respectivamente, se encuen-
tran representados en la tabla 5.2, donde se puede percibir la diferencia existente en la duracién
de las ejecuciones cuando se varia el niimero de workers y el tamafio de las bases de datos.

Conclusiones:

Gracias a lo que se puede observar en las primeras graficas en las que se presentan la re-
particién de un fragmento para cada worker, y basandonos en los resultados obtenidos luego de
la monitorizacién, hemos podido observar que las ejecuciones de mpiBLAST bajo un entorno
con memoria y procesamiento limitados (en este caso a 32 nodos con 1 GB de RAM cada uno)
tenemos una serializacion en la reparticion de los fragmentos entre los workers involucrados, es
por ello que a medida que se aumenta el nimero de workers se obtiene un mejor desempeno de la
aplicacién, esto porque el tamano del fragmento se ve reducido y con ello consigue ser alojado en
la memoria local de cada uno de los nodos de computo. Sin embargo, la fase de reparticiéon al no
tener un sistema de entrada/salida paralelo presenta ciertas ineficiencias al momento de hacer
llegar los fragmentos a cada nodo. Lo cual cuando se carece de la totalidad de los procesadores,
pudiera generar un cuello de botella considerable en el que se esté perdiendo entre el 35 y 40 %
del tiempo total de ejecucion.

Algo que vale la pena mencionar es que el tiempo de consulta para cada fragmento en cada
nodo aun cuando poseen datos diferentes es practicamente similar, esto debido a la estrategia
empleada por el algoritmo de recorrer la totalidad del fragmento buscando posibles similitudes.
Aparentemente no existe dependencia entre los datos distribuidos en cada fragmento. Situacién

que va a ser comprobada mas adelante.

Rendimiento de la memoria con mpiBLAST

Hipotesis:

“La cantidad de memoria disponible restringe el desempeno de mpiBLAST”.

Recordando lo que hemos venido senalando a todo lo largo de la investigacion el tamano
de las bases de datos con los que se estan enfrentando aplicaciones bioinforméticas como mpi-

BLAST esta convirtiendo, aparentemente, la capacidad de memoria disponible en los nodos de
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computo de las maquinas paralelas en uno de los principales cuellos de botella dado que si se
estd trabajando con tamanos muy por encima de esta capacidad, la velocidad con que se accede
a los datos se ve afectada por una posible paginacién a disco.

Proceso:

Es por ello que se ha considerado, medir el grado de influencia existente en el tiempo de
ejecucién cuando se ha incrementado exponencialmente el tamano de la base de datos sobre la
que se va a llevar a cabo la bisqueda y la cantidad de memoria disponible empleando para la
consulta un mayor nimero de nodos de cémputo. De esta forma se espera comprobar frente a
que tipo de limitaciones se encuentra mpiBLAST. Para ello se ha considerado una base de datos
de la cual se han generado ficheros de tamafos variables hasta llegar a los 2 gigabytes de datos,
y se contrastard con el tiempo de ejecucién promedio que tome realizar la consulta.

Se ha realizado el experimento con la base de datos NT(x 6.8 GB) y la secuencia de consulta
e_chrysantem.fas de 300 KB, con la finalidad de observar el consumo total de memoria al variar
el nimero de workers (de forma que sea demasiado grande para ser alojada en la memoria de
un nodo de cémputo).

Inicialmente con la base de datos NT segmentada en siete piezas se realiza la consulta con
8 nodos de cémputo del cluster (descrito como entorno en péaginas anteriores); cada fragmento
ocupa poco mas de 1GB (mpiBLAST permite formatear la base de datos como fichero compri-
mido con la extensién .gz), no dejando espacio libre suficiente en memoria para el buffer de
resultados que se genera a medida que avanza la ejecuciéon. Lo que obliga al sistema a tener que
paginar en disco para poder alocar todos los elementos necesarios durante la ejecucion.

Para la grafica 5.9 se han seleccionado 7 nodos, tomando en consideracién aquéllos que habian
recibido su fragmento en los primeros 25 segundos de ejecucién, y los que lo habian recibido su
fragmento a 50, 100 y 150 segundos, de forma que se viera el comportamiento que adoptaba la
memoria a medida que éstos eran cargados. Para el caso del nodo 7, 18 y 15, se han seleccionado
por tener el mayor uso de memoria durante la ejecucion, esto debido a que ya que los fragmentos
no reciben igual nimero de secuencias de acuerdo a su tamano, existen algunos fragmentos de
la base de datos que tendran secuencias de mayor longitud que otras y habrdn de consumir
memoria durante mucho mas tiempo. Entiéndase que la base de datos se ha fragmentado en 7
y 31 piezas, y se ha realizado la ejecucién con 8 y 32 nodos en cada caso.

Notese la presencia de dos procesos adicionales en ambas graficas que son el Writer y el
Scheduler, que son aquéllos procesos ejecutados dentro del nodo méster que se encargan de
escribir el fichero de salida en formato BLAST y de gestionar la distribucién de los fragmentos
a cada worker respectivamente.

Si se monitorea el consumo de memoria en dichos procesos (el de escritura y, el de gestién
del fichero de salida y fragmentos de la base de datos), los datos obtenidos estén representados
en las graficas 5.8 y 5.9, en los que se visualiza que el consumo de memoria no supera los 20 MB
mientras que los workers dependiendo del tamano de la secuencia alcanzan medias por encima a

los 500MB, esto se debe a que no se estd alojando gran cantidad de informacién durante tiempo
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de ejecucion.

Asimismo, se tomaron las mediciones del consumo de memoria por parte del méaster y los
workers en un sistema con 32 nodos, manteniendo el tipo de la base de datos y secuencia de
consulta fijo. Y se puede percibir que el nodo que més consume no alcanza a superar el maximo
de memoria fisica disponible y de forma similar que como sucede con 8 nodos, la carga de trabajo
y consumo de memoria para el master se mantiene extremadamente baja.

Conclusiones:

Dado el tamano considerable que han adoptado las bases de datos bioldgicas, la disponibilidad
de recursos en cuanto a memoria para alojar el fragmento, se convierte en un factor determinante
en cuanto a uso eficiente de los recursos, porque de lo contrario se estd generando un overhead
ocasionado por las repetidas veces que el nodo de computo se ve obligado a paginar sus datos a
disco debido a la ausencia de espacio libre para alojar en memoria.

Serd interesante comprobar si aumentando el nimero de fragmentos, existe alguna ventaja
para los clusters con poca memoria disponible, de manera que se trabaje con piezas que consuman

menos de memoria.
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Influencia de MPI en la Aplicacién

Hipotesis:

“MPI consume un porcentaje alto del procesamiento”.

Cuando se paralelizan aplicaciones con la ayuda de interfaces como MPI, muchas veces
suele presentarse la problematica de que se puede consumir un alto porcentaje del tiempo de
ejecucién en funciones propias de la interfaz. La motivacién de este experimento en particular es
la gran cantidad de tiempo que invierten los procesos relacionados al nodo méster, en que espera
continuamente en un bucle el envio de mensajes por parte de los workers. Adn asi y dado que
el envio de los fragmentos a los workers se esta haciendo a través de MPI, es relevante conocer
el nivel de intrusién que genera dentro de la ejecucién global de la aplicacion.

Proceso:

Para determinar la influencia de los pasos de mensajes dentro de la aplicacién, se ha decidido
realizar una ejecucién en la cual se han insertado como datos de entrada la base de datos NT y la
secuencia e_chrysantem.fas empleando 32 nodos de cémputo y fragmentando la base de datos en
31 piezas (una para cada worker). Adicionalmente, con la ayuda de la instrumentacién realizada
para que el traceador de Vampir identifique las funciones que nos interesan, ha sido posible
obtener y visualizar los resultados presentados en la grafica 5.10, siendo una captura de pantalla
de la herramienta VAMPIR, la cual permite mostrar los datos obtenidos. Particularmente en
este caso, estamos interesados en observar el porcentaje de tiempo de ejecucion y procesamiento
que consume mpiBLAST en llamado a funciones propias de MPI.

Conclusiones:

De esta forma podemos visualizar que las funciones que hemos instrumentado para medir
consumo de recursos estan identificadas en la columna CAOS, (por asignar un nombre a la
monitorizacién insertada por nosotros), de igual forma aquélla relacionada con mpiBLAST ex-
clusivamente es la que pone Application y por tltimo Entrada/Salida y MPI estén al final y
encima del grafico respectivamente. Senalando de ésta forma que del ntimero total de llamadas
a funciones que realiza mpiBLAST poco més de un 51 % estd destinado a funciones MPI, lo que
se traduce en un consumo excesivo de funciones no relacionadas directamente con el algoritmo
de la aplicacion.

La funciéon con mayor consumo de tiempo durante la ejecucion es un MPI_Iprobe que vigila
los mensajes que estan siendo enviados desde el worker hacia el maéster, el cual, tal como se
puede ver en la gréafica 5.11 estd consumiendo el 45 % del tiempo total de ejecucion.

Sin embargo es necesario recordar que dado que las comunicaciones master/worker estan
siendo llevadas a través de MPI esto puede generar un incremento en el porcentaje a diferencia
de si se emplera la estrategia de directorio compartido que se pudiera acceder a través de un

sistema de ficheros paralelo.
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Figura 5.10: Porcentajes Globales de MPI en una ejecucién de mpiBLAST

Granularidad de la carga de trabajo

Hipotesis:

“El fragmentar la base de datos en un mayor niimero de segmentos agiliza la ejecuciéon”.

Al plantearnos este experimento la respuesta que pretendemos responder es, qué sucede
cuando los fragmentos de la base de datos son cada vez mas pequenos, se minimiza el tiempo de
ejecucién o en caso contrario la gestién de més piezas de base de datos incrementa el overhead
por comunicacién y envio de los fragmentos por parte del méster a los workers. Situaciones que
suelen aparecer a medida que la cantidad de datos que se hace necesario hacer llegar a los nodos
de cémputo aumenta en cantidad y no en volumen.

Proceso:

Para ello hemos realizado un conjunto de consultas para obtener los tiempos medios de
ejecucion y distribucion para cada fragmento. Hemos empleado la totalidad de los nodos de
cémputo disponibles (32 nodos del cluster Beowulf) y se han repetido las ejecuciones 10 veces
por cada caso. Adicionalmente hemos fijado la base de datos (NT en este caso) y la secuencia de
consulta, nuevamente estamos probando con la e_chrysantem.fas. El factor que hemos variado es
el nimero de fragmentos en el que estd segmentada la base de datos con la finalidad de observar
qué comportamiento presenta la aplicacién con cargas de trabajo variables.

Los resultados de la variable de respuesta tiempo de ejecuciéon medio estan detallados en la
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Figura 5.11: Consumo funciones MPI en la ejecucién del nodo Master.

tabla 5.3 que se presenta a continuacion, donde se puede visualizar que a medida que se aumenta
el nimero de fragmentos de la base de datos, los tiempos de reparticion y procesamiento de cada
uno de ellos es cada vez menor, sin embargo, tal como se sospechaba se observa una variacién
interesante en el tiempo total de ejecucion a medida que el nimero de fragmentos crece, ya que
involucra un mayor tiempo de espera para algunos workers para recibir su fragmento.

Conclusiones: Con lo que podemos concluir que existe cierto beneficio a medida que se dis-
minuye el tamano del grano de la carga de trabajo, esto debido al balanceo de trabajo que se
produce dentro de la aplicacién y el solapamiento que se presenta a medida que se computa y
distribuyen los fragmentos. Sin embargo, al momento de la reparticién sélo los primeros nodos
que reciban la totalidad de fragmentos correspondientes iniciaran el procesamiento y seran los
primeros en terminar. Ya que al carecer de acceso simultdaneo a los fragmentos que le corres-
ponden a cada nodo, los dltimos habran de esperar que todos los anteriores hayan recibido su
porcién de trabajo para poder obtener el suyo y comenzar la consulta al algoritmo.

De igual forma, a nosotros nos parece un punto importante que se podria mejorar en un
futuro dentro del sistema de gestion de fragmentos existente actualmente, de forma que pudie-
ra realizarse la reparticién de forma dindmica a cada uno de los workers que vaya quedando

desocupado, de forma que se reduzca el tiempo de inactividad que presentan lo méas posible.
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Ejecucién con 8 nodos de computo

Numero de Fragmentos 7 14 21
Tiempo Medio de Distribucion por Nodo (sg) 32,89 17,41 10,17
Tiempo Medio de Consulta BLAST por Nodo (sg) 288,39 144,20 122,29
Tiempo Medio de Envio de los Resultados por Nodo(sg) 5,86 3,68 1,92
Tiempo Total de Ejecucion (sg) 627,09 626,14 592,92
Niumero de Fragmentos 31 62 93
Tiempo Medio de Distribucion por Nodo (sg) 5,55 2,79 1,89
Tiempo Medio de Consulta BLAST por Nodo (sg) 113,94 57,77 38,93
Tiempo Medio de Envio de los Resultados por Nodo(sg) 2,02 1,01 0,75
Tiempo Total de Ejecucion (sg) 508,13 417,56 434,29

Tabla 5.3: Tiempos medios variando la granularidad de la carga de trabajo en mpiBLAST para
8 v 32 nodos de cémputo

Composicion de la base de datos NT

Hipotesis:

“Los tamanos de las secuencias dentro de la base de datos son de tamafios similares”.

Si estamos hablando de que la mayor base de datos bioldgica existente hoy en dia es la N'T
(por supuesto excluyendo los genomas humanos), deseamos conocer la naturaleza de los datos
que la conforman, ya que se trata de un fichero de secuencias bioldgicas que descomprimido
(extraido del fichero .gz ocupa disponible en el repositorio) ocupa aproximadamente poco més
de unos 22 GB, que al momento de trabajar con ellos reflejan un consumo masivo de recursos
de almacenamiento y alojamiento en memoria.

Proceso:

Para ello se realizé6 un estudio con la ayuda del paquete estadistico SPSS en el que se
introdujeron todos los datos referentes a la base de datos y que permitié obtener el ntimero
de secuencias existentes dentro de la base de datos, el tamano medio de las secuencias que la
componen y la distribucién de las mismas en el fichero. De ésta forma pudimos identificar el
volumen de datos con los que estamos trabajando y poder predecir la influencia que tiene uno u
otro tamano de secuencia en la ejecucion de la consulta y en la conformacién de los fragmentos
que seran enviados a los workers.

La distribucién de secuencias dentro de la base de datos estd reflejada en la figura 5.12, donde
se puede observar que la NT, un fichero que estd compuesto por méas de 7 millones de secuencias
diferentes, que el tamano medio de una secuencia es de 3000 caracteres (estamos despreciando
por el momento todo significado biolégico que éstas secuencias pudieran tener segiin su tamano),
ya que estamos tratanto cada secuencia biolégica como una cadena de caracteres contra los que
se contrastaran las secuencias que conforman la secuencia de consulta.

Conclusiones:

Al estar trabajando con una aplicacién cuya esencia es la comparacién de cadenas de ca-
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Figura 5.12: Histograma de distribuciéon de secuencias dentro de la base de datos biolégica N'T

racteres, era de vital importancia identificar el “mayor” reto que representaban las secuencias
dentro de la base de datos, de forma que a medida que se realizaran las ejecuciones se conociera
la naturaleza de la carga de trabajo que se introduce a la aplicacién.

Dado que el niimero medio de caracteres dentro de una cadena oscila entre unos cientos de
KB (en contraste con los millones que conforman un genoma humano, TB) podemos saber que
los fragmentos en los que se ha segmentado la base de datos estan compuestos por n cadenas
de tamano variable. Denotando asi que la presencia de cadenas que ocupen MB no es el factor

comun dentro de cada fragmento.

Resumen

Una vez que hemos finalizado la experimentacién, podemos afirmar que mpiBLAST como
aplicacién paralela de bioinformaética presenta algunas situaciones de ineficiencias cuando se
ejecuta en clusters con caracteristicas muy especificas de memoria, sistema de fichero y dispo-
nibilidad de nodos, como el nuestro. Estas ineficiencias estdn directamente relacionadas con los
parametros que hemos evaluado, logrando asi determinar la influencia que generan estos en la
ejecucioén.

El tamano de la base de datos bioldgica con la que se va a trabajar, incluso consultas de
bases de datos contra ellas mismas (para buscar alguna incongruencia entre una y otra) refiere
el mayor consumo de recursos disponibles; es decir, ella fija parte de la cantidad de recursos
que debes tener al alcance para obtener respuestas en un mejor tiempo, tales como ntimero de
workers a emplear, de acuerdo a la cantidad de memoria disponible.

De igual forma, la distribucién de trabajo cuando se aumenta la granularidad de los frag-

mentos de la base de datos, permite el manejo de ficheros de menor tamano, lo que se refleja
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en una mejora en los tiempos de ejecucién momentdnea, ya que si el niimero de fragmentos es
demasiado grande, todo el proceso de gestién y distribucion del méster a los workers introduce

overhead en las comunicaciones e incrementa el tiempo total de ejecucién.

5.4. Diseno del Modelo de Rendimiento Preliminar

Partiendo de los resultados observados a lo largo de los experimentos realizados y de las
trazas de ejecucién obtenidas, podemos plantear una primera aproximacién matemaética del
comportamiento presenta mpiBLAST bajo el entorno paralelo sobre el que se esta ejecutando.

Senalando que en esta aproximacion se estda despreciando parte del tiempo consumido al
momento de generar el fichero de salida con las secuencias resultantes de la bisqueda; de forma
que se perciba la influencia existente por parte del factor de fragmentacién de la base de datos
de secuencias bioldgicas.

Si el tiempo total de ejecucion i viene dado por la siguiente ecuacion:

Ny b Ny
Tiotal = Tsend * m9+§ Toroc, * =2 5.1
tota sen Nproc — proc Np’/‘oc ( )

Y considerando que el tiempo de envio de los fragmentos, Ti.,q, & cada worker, podria
expresarse como la relacion entre el tamano del fragmento s, expresado en megabytes y el ancho

de banda b disponible en la red del cluster, y se ve reflejado en la ecuacién 5.2:

S

Tsend = 7 2
i=" (52)

Una vez definido el tiémpo de envio por fragmento, el volumen de datos por procesar de

mpiBLAST se puede expresar como:

V=sxF (5.3)

Lo que representaria la cantidad total de datos con los que habria de tratar la aplicacion
en una aplicacién determindada. De forma de que si se estuviera tratando con F' fragmentos,
el tiempo de procesar cada uno de ellos realizando la busqueda de mpiBLAST, determinaria la

carga total de trabajo E y estaria determinada por:

W = TpTOCn % F (54)

donde: T} ¢, €s el tiempo que le toma al proceso n dentro de cada worker para llevar a cabo
la funcién de buisqueda de BLAST.
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Pudiendo concluir que la carga W esté condicionada por el volumen en una relacién Proc(V) = W

de forma que determinase el tiempo total de ejecucion a través de:

Vv w
Tiotal = bx P + 2 (5.5)

Cabe destacar que el tiempo de procesamiento 7}, estd condicionado por la capacidad de
memoria disponible dentro del nédo de computo. Este modelo analitico es la aproximacion inicial
para la descripcion del comportamiento de mpiBLAST como aplicacién bioinformética paralela,

bajo un paradigma master/worker.
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Capitulo 6
Conclusiones y Trabajos Futuros

“Si dos hombres vienen caminando por una carretera, cada uno cargando un
pan, y, cuando se encontrasen, intercambiaran los panes, cada hombre se iria
con uno... Pero, si dos hombres vienen caminando por una carretera cada uno
cargando una idea, y, cuando se encontrasen, intercambiaran las ideas, cada

hombre iria ahora con dos...”

Proverbio Chino.

6.1. Conclusiones

Las aplicaciones paralelas hoy en dia representan un gran avance para los campos y discipli-
nas cientificas existentes, ya que ellas hacen posible la realizacion de diversas tareas de forma
simultdnea, el procesamiento de datos de forma mds répida (y eficiente) y a su vez facilitan
el trabajo con volimenes de datos cada vez mayores. Aplicaciones paralelas como mpiBLAST
[12] no son la excepcidn, ya que es una herramienta que ha sido propuesta como una mejora
sustancial al algoritmo de alineamiento de secuencias BLAST [1] publicado en 1990, y que ha
conseguido mantenerse como aplicacion estrella en el el campo de la bioinformatica, dado que
muchas tareas mas complejas estdn basadas en ella.

Recordando que la esencia de BLAST es realizar alineamientos locales (bisqueda de simi-
litudes) entre dos secuencias bioldgicas (cadenas de ADN o Proteinas) 6 entre una secuencia y
una base de datos, que estd compuesta por varias secuencias mas; se parte de la premisa plan-
teada en la publicaciéon de 1990 de que al momento de una consulta es necesario que el nodo
que va a efectuar la busqueda tenga en memoria la base de datos contra la que se va a realizar
la busqueda, de lo contrario no era posible llevar a cabo el algoritmo, claro las capacidades que
tenian los ordenadores de la época no se comparan con las que se han alcanzado hoy en dia.

El problema se presenta cuando una ejecucién secuencial tipica de BLAST se ralentiza a
medida que las bases de datos biolégicas aumentan en tamafno. Por este motivo, los creadores

de mpiBLAST [12] plantearon segmentar la base de datos y repartir el trabajo entre los nodos,
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siguiendo un paradigma de paralelismo basado en Master/Worker; existe un nodo maestro que
se encarga de distribuir y gestionar el trabajo repartido entre n cantidad de nodos worker. Todo
ésto disenado y programado con la ayuda de la interfaz de paso de mensajes (MPI, Message
Passing Interface).

El proceso de comparacion de las cadenas bioldgicas es la fase que consume mayor cantidad
de tiempo dentro de la ejecuciéon de mpiBLAST y si el tamano de los fragmentos supera la
capacidad de memoria del nodo y pagina a disco, este tiempo incrementara considerablemente.
Por lo tanto se necesita un entorno de ejecucién en paralelo (un cluster) que permita llevar a
cabo las ejecuciones de la forma mas eficiente. Nuestra hipotesis ha sido durante todo el proceso
de investigacién que si el problema es demasiado grande para ser resuelto con pocos nodos
de cémputo sin presentarse ineficiencias se hace necesario determinar estrategias que permitan
realizar la ejecucién sacando provecho de los recursos disponibles.

La aplicacién mpiBLAST, posee toda una estrategia de manejo de la entrada/salida que pu-
diera llegar a interpretarse como un problema cuando la carga de trabajo aumenta, el algoritmo
de gestién de E/S no llega a ser capaz de repartir el trabajo de forma eficiente, generando cuellos
de botella al serializarse el inicio y final de la ejecucién.

Como resultados finales obtenidos luego de toda la experimentacién presentada en el capitulo
5, muchos de ellos giraban entorno a un problema existente de gestion de los datos; es decir, a
medida que el volumen de la carga de trabajo aumenta se hace necesario mejorar ain mas las
estrategias de rendimiento existentes, esto debido a que tal como se senalé en su momento, el
consumo de recursos disponibles incrementa considerablemente y la presencia de ineficiencias se
hace inevitable. Por ejemplo, cuando hemos trabajado con bases de datos con un tamano que
no superaba 1 GB, la presencia de ineficiencias no afectaban el tiempo total de ejecucion. La
carga de trabajo era tan pequena que el retraso existente en la distribuciéon de los datos para
ser procesados era imperceptible. Situacién contraria cuando se toman ficheros de varios GB
que necesitan ser formateados en k segmentos y repartidos a n workers. La escala de tiempo
empieza a tornarse mas significativa, los tiempos pasan de ser unos pocos segundos a casi una
hora por cada formateo; sucede de forma similar con el tiempo total de ejecucién de la consulta,
a medida que la secuencia que se contrasta y la base de datos aumentan de tamano, el tiempo de
respuesta aumenta considerablemente, la cantidad de datos influyen directamente con el volumen
de informacién a enviar durante la entrada y la salida.

Otra observacion que se obtuvo a medida que avanzaba la investigacién ha sido la serializacién
de las comunicaciones, en la que gran parte del tiempo total de computo estaba siendo gastado
en el envio de los fragmentos, no decimos que consume mucho tiempo enviar un fragmento, sino
que lo que retrasa la ejecucién es la forma en que éstos estan siendo enviados al worker; esto
se obtuvo una vez que monitorizamos cada una de las fases involucradas en la ejecucién y nos
percatamos que, el nodo n no recibira su fragmento k£ a menos que los nodos 0 hasta n-1 hayan
recibido los fragmentos 0 hasta k-1 respectivamente. La causa a la que atribuimos la presencia

de esta ineficiencia es que dado que se supone la presencia de un sistema de ficheros distribuido,

99



se desprecia la posibilidad de que esta fase se secuenciase, y estariamos hablando de tiempos de
inactividad, para algunos nodos, superiores al 50 % de lo que toma realizar la consulta como tal.

También se presenta una serializacion de la ejecucion a medida que se genera el fichero de
salida. Bajo la configuracién de comunicacién que se ha adoptado durante nuestro estudio de
emplear la interfaz de pasos de mensaje MPI y ya que la construccién del fichero resultante co-
rresponde al proceso escritor (writer) del méster; todos los workers a medida que van terminando
de procesar habran de esperar que dicho proceso sea capaz de atender su peticién, generandose
una cola de tareas por realizar por el master, que a medida que el niimero de procesadores
aumente termina convirtiéndose en uno de los cuellos de botella més significativos dentro de la
aplicacién.

El nimero de ineficiencias relacionadas con gestién de E/S, en mpiBLAST (un M/W con
prereparticién de fragmentos), es relevante, ya que no se estd explotando el paralelismo propio
del diseno de la aplicacion; y consideramos que estas problematicas habran de ser resueltas con
propuestas que tomen en consideracién la presencia de una fuerte dependencia a los datos que
se deben procesar.

Adicionalmente hemos obtenido resultados interesantes cuando se varia el factor de granula-
ridad de la carga de trabajo, entiéndase como este factor el fragmentar la base de datos en 2 y 3
veces el nimero de workers disponibles, de forma que cada worker procesara piezas de base de
datos ain méas pequenas, ganancia que se veria reflejada en la disminucién del tiempo de espera
por el worker n para recibir su porcién de trabajo, sin embargo, nos ha sorprendido la estrategia
de distribucion de fragmentos presente en la herramienta. Ya que al basarse en un sistema de
ficheros distribuido, deciden entregar la totalidad de la carga de trabajo a cada worker antes de
que empiece a procesar el primer fragmento, lo que ocasiona una serializacién de la ejecucién.

Si no existiera el problema que comentamos lineas més arriba sobre la serializacion presente
en la fase de reparticién, debido a la carencia de sistema de ficheros paralelos, la estrategia seria
la més adecuada, pero por el contrario, si no se cuenta con un entorno con estas caracteristicas
obliga a cada nodo esperar hasta que sus predecesores hayan recibido su carga de trabajo, para
luego recibir de igual forma el siguiente fragmento y asi sucesivamente con los dos o tres mas que
pudieran tocarle. Incrementandose de esta forma el tiempo de inactividad en todos los nodos
por el tiempo de espera que habran de pasar mientras reciben sus fragmentos asignados.

El algoritmo de gestién de fragmentos (scheduler, dentro del cédigo fuente) presente en el
nodo master, refleja un intento de dinamismo en esta variable, ya que si un worker ha finalizado
la totalidad de su trabajo busca aquél fragmento en el que ningin otro worker esta buscando y
le sefiala al worker inactivo que lo copie. Pero desde nuestro punto de vista y la respuesta que
se plantea a futuro para hacer més dindamica ésta distribucién, es variar la estrategia de forma
que los workers reciban sélo un fragmento por vez y luego a medida que van quedando inactivos
soliciten maés trabajo de forma que se solapen el computo y la comunicacién. Adicionalmente al
lograrse esto se podria introducir conceptos de nimeros de workers ideales [11] para los nodos

disponibles.
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Al concretarse la propuesta de distribucién dindmica de fragmentos, que queda por ahora
como trabajo futuro para este proyecto se conseguiria aportar mayor flexibilidad al algoritmo
de distribucion de fragmentos presente en el scheduler que sin duda alguna se reflejaria como
ganancia en rendimiento de mpiBLAST como aplicacién paralela.

Un factor relevante que vale la pena destacar es que la investigaciéon ha permitido aplicar
directamente los fundamentos tedricos de andlisis de rendimiento existentes, sobre aplicaciones
cientificas paralelas de uso diario. Descubriendo de esta forma caminos sobre los que se pueden
realizar aportaciones basandonos en la teoria conocida.

Generalizando, las aplicaciones como mpiBLAST que estan planteadas bajo un modelo muy
sencillo pero que les toca procesar volimenes masivos de datos presentan problematicas de

rendimiento relacionadas con:

» La gestion de E/S, que a medida que aumenta el nimero de datos a procesar la

reparticion de los datos junto con la recoleccién de resultados se ven afectados.

= La granularidad de la carga de trabajo, requieren una mejor estrategia para balancear
la distribucién del trabajo (fragmentos de base de datos) entre los nodos de cémputo

disponibles.

» La estrategia de distribucién de fragmentos no toma en consideracién que esta fase se

esté serializando.

6.2. Trabajo Futuro

Una vez alcanzado el objetivo planteado para éste trabajo de investigacién en particular,
quedan algunas lineas abiertas para aportar ain mas conocimiento en cuanto a andlisis de
rendimiento y sintonizacién de aplicaciones paralelas. Para ello hemos definido como posibles
trabajos futuros en los que se encuentren involucradas aplicaciones master/worker del tipo de
mpiBLAST que puedan adaptarse a los modelos de rendimiento existentes y generar ain mayor
informacién para los grupos de investigacién relacionados.

Todo esto con la intencién de que este trabajo de investigacion emplee los aportes obteni-
dos durante las fases de diseno tedrico de modelos de rendimiento y sintonizacién dindmica y
ademads permita incorporar nuevos enfoques de modelado y andlisis de rendimiento de las nuevas
aplicaciones cientificas disponibles en el mercado.

Nos encontramos en este momento en un punto en el que los datos con los que se estdan traba-
jando estdn tomando protagonismo en el consumo de recursos. Estamos saliendo del paradigma
de cémputo complejo y datos sencillos para entrar en una época de cémputo sencillo y cantidad
masiva de datos. Los cuales estdn determinando la cantidad de recursos necesarios para poder
llevar a cabo dichos procesos. Es acd donde cada vez més la Computacién de Altas Prestaciones,

se acerca a los grupos cientificos de diferentes dreas a lo largo del mundo, brindando una opcién
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para sacar provecho de las méquinas paralelas con las que cada uno de ellos cuenta en sus sitios
de trabajo.

Un factor relevante en nuestras préximas investigaciones es la posibilidad de poder repro-
ducir el ambiente sobre el que pudieran estarse ejecutando las aplicaciones a evaluar, si bien el
andlisis realizado a mpiBLAST pudiera ser muy especifico en cuanto a aplicaciéon como tal, el
conocimiento generado a través de su evaluacién de rendimiento nos es ttil para considerar nue-
vos enfoques que adopten las aplicaciones cientificas y generen aportes a los modelos disenados
anteriormente.

Es interesante la idea de sondear un entorno colaborativo, pero tal como senalamos esto
estard directamente relacionado con la capacidad de reproduccién del entorno y de los experi-
mentos. Es decir, subir un nivel siempre y cuando pudiera mantenerse la capacidad de control
de los parametros que se posee ahora en los clisters tradicionales.

Conjuntamente, queddé sobre nuestro grupo de investigacion la posibilidad de estudiar la
influencia que pudiera tener aspectos econémicos dentro del aprovechamiento de la computacién
de altas prestaciones, introducir conceptos de computo colaborativo como Cloud de forma que
aplicaciones del tipo de mpiBLAST puedan ser ejecutadas en entornos de miles de nodos de
cémputos conectados bajo este enfoque, lo que significaria para el grupo que trabaje con este
tipo de herramientas una opcién de procesar grandes cantidades de datos sin la necesidad de tener
un Marenostrum (por poner un ejemplo) en su laboratorio. Por el momento se seguird tratando
como un punto de referencia a futuro ya que dependera de las posibilidades de High Performance
Computing o High Throughput Computing (HPC o HTC) que se planteen, ya que atin restan
por definir.

Queda como linea abierta la gestién de E/S en las aplicaciones biolégicas que integraran el
trabajo con grandes volimenes de datos y nuevas tecnologias de secuenciacién. De donde se puede
plantear la gestion de aplicaciones con datos con un tamano superior a TB y la implementacion
de modelos conocidos de cémputo. Junto con el uso eficiente de los recursos, empleando la
menor cantidad posible de ellos en el manejo de grandes cantidades de datos de forma total y
exhaustiva; de forma que se mantenga la investigacion ligada directamente con la filosofia de
computo de altas prestaciones y se convierta en una solucién para las aplicaciones cientificas
actuales y siguientes.

Sin duda alguna, la bioinformética y sus aplicaciones continuaran formando parte de los
principales beneficiarios del cémputo de altas prestaciones, de forma que todo lo que se pueda
concebir para generar ain mas beneficios en el procesamiento de los datos bioldgicos serd un
aporte bien recibido por los grupos cientificos existentes, y servird de base para atin méas avances

y aportes en el High Performance Computing.
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