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Resum

En termes de temps d’execució i ús de dades, les aplicacions paral·leles/distribuïdes poden tenir exe-
cucions variables, fins i tot quan sémpra el mateix conjunt de dades déntrada. Existeixen certs aspectes de
rendiment relacionats amb léntorn que poden afectar dinàmicament el comportament de l’aplicació, tals
com: la capacitat de la memòria, latència de la xarxa, el nombre de nodes, lh́eterogenëitat dels nodes, entre
d’altres. És important considerar que l’aplicació pot executarse en diferents configuracions de maquinari
i el desenvolupador d’aplicacions no pot garantir que els ajustaments de rendiment per a un sistema en
particular continuïn essent vàlids per a altres configuracions. L’anàlisi dinàmica de les aplicacions ha
demostrat ser el millor enfocament per a l’anàlisi del rendiment per dues raons principals. En primer
lloc, ofereix una solució molt còmoda des del punt de vista dels desenvolupadors mentre que aquests
dissenyen i evaluen les seves aplicacions paral·leles. En segon lloc, perquè s’adapta millor a l’aplicació du-
rant l’execució. Aquest enfocament no requereix la intervenció de desenvolupadors o fins i tot l’accés al
codi font de l’aplicació. S’analitza l’aplicació en temps real d’execució i es considera i analitza la recerca
dels possibles colls d’ampolla i optimitzacions. Per a optimitzar l’execució de l’aplicació bioinformática
mpiBLAST, vam analitzar el seu comportament per a identificar els paràmetres que intervenen en el ren-
diment d’ella, tals com: l’ús de la memòria, l’ús de la xarxa, patrons d’E/S, el sistema de fitxers emprat,
l’arquitectura del processador, la grandària de la base de dades biològica, la grandària de la seqüència
de consulta, la distribució de les seqüències dintre délles, el nombre de fragments de la base de dades
i/o la granularitat dels treballs assignats a cada procés. El nostre objectiu és determinar quins d’aquests
paràmetres tenen major impacte en el rendiment de les aplicacions i com ajustarlos dinàmicament per a
millorar el rendiment de l’aplicació. Analitzant el rendiment de l’aplicació mpiBLAST hem trobat un con-
junt de dades que identifiquen cert nivell de serial·lització dintre de l’execució. Reconeixent l’impacte de la
caracterització de les seqüències dintre de les diferents bases de dades i una relació entre la capacitat dels
workers i la granularitat de la càrrega de treball actual, aquestes podrien ser sintonitzades dinàmicament.
Altres millores també inclouen optimitzacions relacionades amb el sistema de fitxers paral·lel i la possi-
bilitat d’execució en múltiples multinucli. La grandària de gra de treball està influenciat per factors com
el tipus de base de dades, la grandària de la base de dades, i la relació entre la grandària de la càrrega
de treball i la capacitat dels treballadors.

Paraules claus: Anàlisi de Rendiment, Sintonización Dinàmica, mpiBLAST, Aplicacions
Paral·leles Bioinfomáticas.

Resumen

En términos de tiempo de ejecución y uso de datos, las aplicaciones paralelas/distribuidas pueden
tener ejecuciones variables, incluso cuando se emplea el mismo conjunto de datos de entrada. Existen
ciertos aspectos de rendimiento relacionados con el entorno que pueden afectar dinámicamente el com-
portamiento de la aplicación, tales como: la capacidad de la memoria, latencia de la red, el número de
nodos, la heterogeneidad de los nodos, entre otros. Es importante considerar que la aplicación puede
ejecutarse en diferentes configuraciones de hardware y el desarrollador de aplicaciones no puede garan-
tizar que los ajustes de rendimiento para un sistema en particular continúen siendo válidos para otras
configuraciones. El análisis dinámico de las aplicaciones ha demostrado ser el mejor enfoque para el análi-
sis del rendimiento por dos razones principales. En primer lugar, ofrece una solución muy cómoda para
el punto de vista de los desarrolladores mientras que el diseña y evalua sus aplicaciones paralelas. En
segundo lugar, porque se adapta mejor a la aplicación durante la ejecución. Este enfoque no requiere la
intervención de desarrolladores o incluso el acceso al código fuente de la aplicación. Se analiza la aplica-
ción en tiempo real de ejecución y se considera y analiza la búsqueda de los posibles cuellos de botella
y optimizaciones. Para optimizar la ejecución de la aplicación bioinformática mpiBLAST, analizamos su
comportamiento para identificar los parámetros que intervienen en el rendimiento de ella, tales como: el
uso de la memoria, el uso de la red, patrones de E/S, el sistema de ficheros empleado, la arquitectura del
procesador, el tamaño de la base de datos biológica, el tamaño de la secuencia de consulta, la distribución
de las secuencias dentro de ellas, el número de fragmentos de la base de datos y/o la granularidad de



los trabajos asignados a cada proceso. Nuestro objetivo es determinar cuál de estos parámetros tienen
mayor impacto en el rendimiento de las aplicaciones y cómo ajustarlos dinámicamente para mejorar el
rendimiento de la aplicación. Analizando el rendimiento de la aplicación mpiBLAST hemos encontrado
un conjunto de datos que identifican cierto nivel de serialización dentro de la ejecución. Reconociendo
el impacto de la caracterización de las secuencias dentro de las diferentes bases de datos y una relación
entre la capacidad de los workers y la granularidad de la carga de trabajo actual podŕıan ser sintonizadas
dinámicamente. Otras mejoras también incluyen optimizaciones relacionadas con el sistema de ficheros
paralelo y la posibilidad de ejecución en múltiples multinúcleo. El tamaño de grano de trabajo está in-
fluenciado por factores como el tipo de base de datos, el tamaño de la base de datos, y la relación entre
el tamaño de la carga de trabajo y la capacidad de los trabajadores.

Palabras clave: Análisis de Rendimiento, Sintonización Dinámica, mpiBLAST, Aplicaciones
Paralelas Bioinformáticas.

Abstract

In terms of execution time and data usage, parallel/distributed applications may have variable runti-
mes, even when using the same input data. There are certain performance aspects related to environment
that may affect the dynamic behavior of the application, such as: memory capacity, network latency,
number of nodes, node heterogeneity, among others. It is important to consider that the application
can be executed on different hardware configurations. The application developer cannot guarantee that
performance tuning for a particular system is still valid for other configurations. Dynamic analysis of
applications has shown to be the best approach for performance analysis for two main reasons. First, it
offers a very comfortable solution for developersṕoint of view while designing and evaluation its parallel
applications. Second, because it adapts better during the application execution. This approach does not
require developer intervention or even access to the source code of the application. The current appli-
cation runtime is considered and analyzed finding relevant bottlenecks and possible optimizations. To
optimize the execution of mpiBLAST application, we analyze its behavior to identify the parameters
involved in the application performance, such as: memory usage, network usage, I/O patterns, file system
employed, processor architecture, biological database size, query sequence size, the sequence distribution
inside them, number of database fragments and/or granularity of work assigned to each process. Our goal
is to determine which of these parameters have higher impact in the application performance and how
to tune them dynamically to improve the performance of the application. Analyzing the performance of
mpiBLAST application we have found a data set that identifies certain level of serialization inside the
execution. Recognize the impact of the characterization of the sequences inside the different databases
and a relationship between the capacity of workers and the granularity of existing work that could be
tuned dynamically. Other improvements also include optimizations related with the parallel file systems
and the possibility of execution in a multithreaded multicore. The work grain size is influenced by factors
as database type, database size, and the relationship between the size of workload and workers capacity.

Keywords: Performance Analysis, Dynamic Tuning, mpiBLAST, Parallel Biological Appli-
cations
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Modelado Anaĺıtico con Parámetros Escalares . . . . . . . . . . . . . . . . 41
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ix
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2.2 Tiempo de Cómputo Paralelo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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Caṕıtulo 1

Introducción

“Cuando estás buscando una aguja en un pajar, el más optimista usa guantes.”

El pequeño libro de cosas para tener presentes.

En el siguiente caṕıtulo se presenta la decripción general de la problemática que existe en
cuanto a rendimiento en aplicaciones bioinformáticas del tipo mpiBLAST. Aśı como también se
definen nuestros objetivos y restricciones asumidas, junto con la organización de este trabajo de
investigación como tal.

1.1. Descripción general

El poder de cómputo de los ordenadores ha venido en aumento durante los últimos años [31]
que junto con la introducción de conceptos como multiprocesamiento o procesamiento paralelo,
facilitan el manejo de mayor cantidad de datos en menor tiempo; consiguiendo de esta manera
alcanzar a resolver problemas cada vez más complejos con la ayuda de los computadores.

En campos cient́ıficos tan variados como el biológico, matemático, f́ısico, médico, entre otros,
se utilizan cada vez más aplicaciones que exigen grandes capacidades de procesamiento de datos,
tales como: simulaciones en tiempo real, cálculos matemáticos complejos, búsqueda de genomas
completos, etc. Aplicaciones que a su vez habrán de estar diseñadas para funcionar sobre sistemas
de cómputo paralelos/distribúıdos.

Para conseguir dar respuesta a esta solicitud de capacidad de procesamiento, se hace nece-
sario comenzar a interconectar más de dos computadores para formar las conocidas granjas de
computación (clústeres), que a su vez pudieran formar entornos multiclústers, y que actualmen-
te, han crecido hasta formar los centros de supercomputación. Permitiendo aśı ejecutar más de
una tarea simultáneamente y exigiendo de esta manera la introducción de términos y enfoques
relacionados con programación paralela.

La misión ahora, de todos los desarrolladores, es diseñar aplicaciones no sólo eficientes sino
que además sean capaces de sacar provecho de las capacidades de los sistemas de computación
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de altas prestaciones (HPC , High Performance Computing); convirtiéndose esto en una de las
situaciones más complejas de solventar cuando de rendimiento de aplicaciones se trata.

El diseño y análisis de rendimiento de las aplicaciones paralelas exige que los desarrolladores
tengan un alto nivel de experticia y comprensión de la aplicación y el entorno sobre el cual
va a ser ejecutada. El conocimiento del comportamiento de la aplicación es primordial para su
paralelización ya que facilita su desarrollo y consigue que sea llevado a cabo adecuadamente,
obteniendo el mejor rendimiento posible.

Las aplicaciones paralelas no son sólo dif́ıciles de concebir sino también dif́ıciles de analizar,
comprender y depurar, es por ello que muchas veces los desarrolladores se valen de herramientas
adicionales para observar el comportamiento que están presentando sus aplicaciones. Labor que
no libera al desarrollador de tener que comprender los resultados gráficos y/o numéricos que éstas
herramientas arrojan y tener que modificar de vez en cuando alguna ĺınea de código, recompilar
y reiniciar su aplicación para visualizar si el cambio que se ha hecho ha sido suficiente para
solventar la situación de ineficiencia.

Cuando se trata de ineficiencias es necesario saber identificar el punto exacto donde se debe
realizar la modificación, y conocer a fondo el comportamiento de la aplicación bajo uno u otro
entorno. Jain [19] señala que una metodoloǵıa de mejora de rendimiento t́ıpica involucra tres
fases claramente identificables, que son: monitorización, análisis y modificación de código.

Varios trabajos han sido llevados a cabo [26],[37],[32] para facilitar ésta tarea a los desarrolla-
dores y eximirlos de tener que entrar en código “desconocido”. Herramientas que bajo diferentes
enfoques de análisis y mejoras de rendimiento, han sido diseñadas con la finalidad de hacer más
cómodo el proceso de evaluación de aplicaciones bajo entornos paralelos.

Inicialmente éstas se basaban en un enfoque estático y/o automático; es decir, una vez que
la aplicación ha finalizado su ejecución era posible observar los cuellos de botella que se hab́ıan
presentado durante esa única ejecución. Situación que tal como se ha señalado antes obliga al
desarrollador a pausar la aplicación para realizar las modificaciones pertinentes y luego iniciar
una nueva ejecución.

El proceso de análisis de rendimiento de las aplicaciones paralelas era llevado a cabo de
forma estática, esto quiere decir que, una vez que la aplicación finalizaba se podia observar,
basándose en datos o gráficos, la posible existencia de ineficiencias en esa única ejecución. Los
datos sobre los que se tomaba alguna decisión eran producto de ejecuciones anteriores, en los que
si la aplicación presentaba comportamientos irregulares aún con un mismo conjunto de datos,
no era aconsejable emplearlos como base para tomar alguna decisión en particular.

Estos datos pod́ıan ser observados a través de trazas de eventos en los que se reflejan todas
las funciones que ha ejecutado la aplicación en tiempo de ejecución. Éstas trazas eran obtenidas
como producto de una instrumentación previa que se realizaba en funciones que componen la
aplicación, generando un alto nivel de intrusión en las ejecuciones, que afectaba el tiempo de
real de ejecución de la aplicación.

Éste tipo de análisis es conocido como análisis post-mortem por su caracteŕıstica de visualizar
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el comportamiento de la aplicación una vez que la ejecución ha “muerto” (finalizado). De forma
que se trabajaba en función de datos antiǵ’uos, que no garantizaban que la modificación que se
realizara posteriormente solventara la ineficiencia existente o en el peor de los casos generara
alguna otra.

Hace algunos años y partiendo de éstos enfoques, surge la posibilidad de realizar todo el
proceso de análisis de prestaciones de aplicaciones paralelas/distribuidas de forma dinámica; es
decir, identificar los cuellos de botella, realizar las modificaciones adecuadas y sacar conclusiones
de los resultados que se obtengan una vez que han sido efectuados los cambios, todo esto en
tiempo de ejecución. El desarrollador no se veŕıa en la necesidad de conocer el proceso interno de
la aplicación ni habŕıa necesidad de pausar las ejecuciones para tomar mediciones. Ejemplo de
ello son las aproximaciones como la de Morajko [25] que, con su herramienta MATE (Monitoring
Analysis and Tuning Environment, por sus siglas en inglés) crea un entorno que se encarga de
la monitorización, análisis de rendimiento y sintonización de aplicaciones paralelas/distribuidas
de forma dinámica.

Se desean acercar todos estos enfoques de análisis de rendimiento y sintonización dinámica
a las aplicaciones cient́ıficas existentes hoy en d́ıa en el mercado. Incorporando conceptos de
computación de altas prestaciones en el análisis de rendimiento de aplicaciones bioinformáticas
como mpiBLAST [12].

El contexto bajo el que se desenvuelven las aplicaciones bioinformáticas como mpiBLAST
está directamente relacionado con el estudio de los seres vivos en general. Un ser humano tiene
en su organismo un cierto código genético formado por largas cadenas de caracteres denominadas
ADN (ácido desoxirribonucleico), estas cadenas tienen forma de doble hélice en la que moléculas
de azúcar denominados desoxirribosa y están ligados a compuestos como la Adenina, Timina,
Guanina y Citosina, que a su vez están agrupados en pares; cada uno de estos caracteres es
conocido como una base y nuestro código genético, aśı como el de la mosca de la fruta, el ratón
o la levadura, está representado por cadenas de texto conformadas por A, C, T o G. Es decir, el
ADN de una persona siguiendo el formato FASTA (descrito en el caṕıtulo 4podŕıa verse como:

>ADN de XXXXXXXX
ACGGGGGTTACTACGTCCCAAACTGACGTACCCGTAAACCCACGGGGGTTACT...

Por lo tanto una de las tareas más importantes de este tipo de aplicaciones de alineamiento
de secuencias es encontrar rasgos en común, tanto estructurales como de procesos generales entre
genomas, lo que se podŕıa traducir a la capacidad que tiene el ser humano de heredar ciertos
rasgos basándose en una caracteŕıstica propia de herencia existente en la mosca de la fruta
Drosophila melanogaster 1. Es por ello que lo importante de las herramientas de bioinformática
es que son utilizadas alineamientos de secuencias que en lugar de experimentos de laboratorio se
pueden estudiar las funciones de genes ya descubiertos buscando secuencias genómicas en bases
de datos.

La bioloǵıa logró obtener su primer conjunto de datos fundamental: las secuencias molecu-
1Drosophila=“amante del roćıo” melanogaster= “estómago negro”
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lares. A principios de 1960, las primeras protéınas conocidas fueron almacenadas lentamente
(cabe resaltar que las computadoras capaces de analizarlas no hab́ıan sido desarrolladas aún) las
secuencias eran ensambladas, analizadas y comparadas (manualmente) escribiéndolas en hojas
de papel, adhiriendo una al lado de la otra en las paredes de los laboratorios y/o moviéndolas
alrededor hasta encontrar el alineamiento óptimo, conocido actualmente como patrones.

Tan pronto como las primeras computadoras estuvieron disponibles (grandes y rápidas con
8KB de RAM), los primeros biólogos computacionales comenzaron a insertar estos algoritmos
manuales en los bancos de memoria. Surgiendo ésta nueva tendencia, ya que nadie antes de esto
habia manipulado las secuencias biológicas como texto; la mayoŕıa de los métodos tuvieron que
ser inventados desde cero y a medida que avanzaba el proceso, una nueva área de investigación,
el análisis de secuencias de protéınas usando computadoras, era creada. Este fue entonces el
génesis de la bioinformática.

La primera técnica eficiente de secuenciación de ADN fue descubierta en 1977 y en 1995, la
primera secuencia de un genoma entero (del microbio Hemophilus influenzae) fue determinada.
Entre éstas dos fechas, las tecnoloǵıas de secuenciación de ADN fueron mejorando constante-
mente, pero dichas tecnoloǵıas aún tienden a concentrarse en la búsqueda de genes individuales
para detallar información sobre ellos. Durante este peŕıodo los biológos estuvieron secuencian-
do fragmentos de ADN que eran unos cuantos miles de nucleótidos de longitud, simplemente
porque ellos estaban interesados en genes 2 espećıficos con los que hab́ıan empezado a trabajar
años atrás. La mayoŕıa de las herramientas bioinformáticas fueron creadas durante esta época,
incluyendo: todos los programas básicos de alineamiento de secuencias, métodos de clasificación
filogenéticos y varias herramientas de visualización adaptadas a pequeñas cadenas de protéınas
de no más que unos miles de carateres de longitud.

Las bases de datos de secuencias son excelentes herramientas porque permiten aprender del
pasado. Ellas permiten responder las interrogantes biológicas de hoy en d́ıa permitiendonos ana-
lizar secuencias que pueden haber sido determinadas hace más de 25 años atrás, cuando toda
la tecnoloǵıa hab́ıa surgido. Haciendo esto, ellas conectan el pasado y el presente de la bioloǵıa
molecular. Las primeras bases de datos fueron creadas, de hecho, como una especie de museo
de secuencias, donde las secuencias pod́ıan ser preservadas para toda la eternidad de una forma
pŕıstina, tal como fueron determinadas, interpretadas y publicadas por sus autores originales.
Esta perspectiva histórica se mantiene en el banco genético (GenBank), el repositorio lider de
secuencias de nucleótidos mantenida como un consorcio entre el National Center for Biotech-
nology Information (NCBI) de los Estados Unidos, el European Molecular Biology Laboratory
(EMBL) y el DNA Data Bank de Japón (DDBJ).

Estos repositorios de bases de datos son herramientas muy útiles cuando se quiere obtener
toda la información relacionada con una secuencia en particular, pero no proveen fácil acceso
a la información de la secuencia cuando ésta abarca muchos tópicos relacionados a un gen o a

2Del griego genos = nacimiento, raza; del lat́ın genus = raza, origen: segmentos espećıficos de ADN que
controlan las estructuras y funciones celulares; la unidad funcional de la herencia. Secuencia de bases de ADN
que usualmente codifican para una secuencia polipet́ıdica de aminoácidos.
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una función del gen más allá de su papel espećıfico. Es por ello, que una segunda generación de
bases de datos de nucleótidos ha adoptado una perspectiva más orientada al gen, donde toda la
información relevante de un gen dado es accesible de una vez.

Actualmente, las secuencias de nucleótidos son determinadas de forma rutinaria a escalas que
oscilan desde un genoma completo hasta el nivel de cromosomas. Ahora tenemos información
no solo acerca de secuencias de genes, sino también de sus posiciones relativas a su orientación,
y la presencia o ausencia de funcionas bioqúımicas sobre un organismo completo. Para sacar
provecho de esta información en forma global, los investigadores han tenido que diseñar un
estado de arte centrado en el manejo de sistemas de información de secuenciación genómica que
pueden conectar colecciones de secuencias especializadas con herramientas de búsqueda.

Una de las principales problemáticas que disciplinas como la bioinformática ha tenido que
enfrentar ha sido el aumento considerable del número de datos con los que tienen que trabajar
cada d́ıa; el tamaño de las bases de datos de ADN o protéınas han presentado un crecimiento
exponencial durante los últimos años (ver figura 1.1), trayendo consigo la necesidad de disponer
de sistemas computacionales que logren procesar este volumen de datos y generar resultados de
la forma más rápida posible.

Tareas como el alineamiento local de secuencias, que versa en la comparación de dos secuen-
cias para encontrar su homoloǵıa, el cómo se pareces respecto a un ancerstro en común, es unas
de las principales actividades llevadas a cabo más a menudo entre los biólogos.

Para agilizar este proceso se han actualizado algunos algoritmos de alineamiento existen-
tes hasta la época, como en el caso del algoritmo de Smith-Waterman [33] donde identificar el
máximo nivel de homoloǵıa entre subsecuencias biológicas y conjuntos de largas secuencias era
uno de los problemas más importantes en análisis molecular, y con la intención de conseguir un
aumento en la velocidad de respuesta para cada consulta, intentos como [21] y la herramienta
Basic Local Alignment Sequence Tool (BLAST)[1] descrito en 4.2.1 fueron las primeras aproxi-
maciones a la automatización de dicho algoritmo, convirtiéndose ésta última en la herramienta
base de referencia para la bioinformática en la última década.

Este tipo de aplicaciones ha dado pie al interés de diferentes grupos de investigación y desa-
rrollo de construir una herramienta que permitiera que la filosof́ıa de BLAST como tal, que se
hab́ıa convertido en parte fundamental de procesos de búsqueda de homoloǵıa de secuencias,
comulgara con el nuevo paradigma de paralelismo caracteŕıstico de la computación de altas
prestaciones; naciendo de esta forma mpiBLAST, que sin duda alguna por ser una aplicación
paralela requiere cierto nivel de análisis y evaluación para garantizar su máximo rendimiento en
todas y cada una de sus ejecuciones según la máquina paralela en la que se esté ejecutando. Con-
vergiendo de esta forma ambos, análisis de rendimiento de aplicaciones paralelas y aplicaciones
bioinformáticas para dar lugar a nuestro trabajo de investigación.

La herramienta bioinformática paralela mpiBLAST, ha sido diseñada basada en el algoritmo
básico de BLAST [1] (Basic Local Alignment Sequence Tool) que versa en un conjunto de
pasos de programación dinámica planteados por Smith-Waterman [33] en el año 1981 donde se
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Figura 1.1: Crecimiento de las bases de datos biológicas en los últimos años.

considera cada cadena biológica como una cadena de texto, y luego se comparan uno a uno cada
caracter de cada una de las dos cadenas que se estén secuenciando.

Inicialmente, siguiendo el algoritmo de BLAST, cada una de las secuencias se ubica una en
el eje ‘X’ y otra en el eje ‘Y’ de una matriz de puntuación PAM o BLOSUM (la selección de
la matriz depende de la naturaleza de las secuencias biológicas), y cada uno de los aciertos y
desaciertos entre las secuencias es puntuado o penalizado respectivamente con un determinado
valor.

Una vez que se ha construido todo el camino de alineamiento entre ambas secuencias se
procede a seleccionar aquéllas con mayor grado de relevancia biológica, puntuando esta carac-
teŕıstica bajo un valor obtenido (e-value) a través de datos estad́ısticos de la base de datos y de
las secuencias resultantes como tal, de esta forma se descartan aquéllos que podŕıan haber sido
generados y acertados solamente por azar.

Tomando en consideración el crecimiento exponencial que vienen presentando las bases de
datos biológicas en los últimos diez años, existen costos en los que es necesario comparar cadenas
de miles de caracteres, lo que quizá por ser comparación de caracteres no consuma tanto poder
de cómputo como una multiplicación de matrices sino que en cambio estamos hablando del
manejo de un volumen superior a las capacidades de un servidor estándar.

Dado que el algoritmo en śı no presenta dependencia de datos entre una secuencia y otra, y
que muchas de las bases de datos ya no caben en la memoria de un sólo ordenador, los creadores
de mpiBLAST se han planteado separar la base de datos en fragmentos manejables de menor
tamaño que puedan ser alojados en la memoria de los nodos de cómputo de las granjas de
ordenadores, de esta forma llevando a cabo ejecuciones embarazosamente paralelas, se puede
realizar la búsqueda de algunas secuencias en bases de datos biológicas cada vez mayores.
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Para llevar a cabo una consulta en un entorno paralelo, es necesario preformatear las bases de
datos en un conjunto de fragmentos que serán distribúıdos a cada uno de los nodos de cómputo,
entiéndase que es una aplicación paralela diseñada bajo un paradigma Master/Worker, en el que
existe un nodo que figura como máster y coordina y distribuye el trabajo que va a realizar cada
uno de los nodos de cómputo que figuran como workers, y que posteriormente recolectará los
datos generados por cada uno de ellos para construir un fichero resultante final. La fase de
formateo de la base de datos que acabamos de comentar básicamente fragmenta la base de datos
en un número de segmentos igual o mayor al número de workers disponibles y para lograr esto
han generado una estrategia en la que se leen todas las cadenas de la base de datos contra la que
se va a realizar la búsqueda y se organizan de mayor a menor tamaño en un fichero temporal
desde el cual se van a ir seleccionando de igual forma en orden descendente las cadenas para
completar cada uno de los fragmentos, de forma que todos tengan el mismo tamaño, sin embargo
no tendrán la misma cantidad de secuencias.

La herramienta mpiBLAST saca provecho del paralelismo de los nuevos centros de cómputo,
enviando fragmentos de la base de datos (uno como mı́nimo) junto con la secuencia de consulta
a cada worker; y todos de forma simultánea buscarán las secuencias similares dentro de su
fragmento particular, de esta forma cada worker cubre una parte de la base de datos y se toma en
cuenta como carga de trabajo la cantidad de datos existentes dentro de la misma. Fraccionando
los datos de esta forma y repartiéndolos entre todos los workers se consigue abarcar conjuntos
de datos masivos que son demasiado grandes para ser procesados en un sólo ordenador.

En estudios recientes se ha logrado llevar esta aplicación a entornos de supercomputación
como el Blue Gene/P [23] en el que sacan provecho del paralelismo presente en la arquitectura
del computador, y consiguen un 93 % de eficiencia en la ejecución de la aplicación, pero vale la
pena recalcar que es un ordenador que está diseñado para ejecutar aplicaciones cient́ıficas que
requieren un gran poder de cómputo y almacenamiento.

La importancia de esta investigación, es que analiza el rendimiento mpiBLAST como una
aplicación bioinformática que emplea BLAST como algoritmo de alineamiento de secuencias, y
estudiar y optimizar su rendimiento para grandes cantidades de datos.

1.2. Objetivos y Limitaciones

En los últimos años las aplicaciones cient́ıficas han tomado una posición significativa entre
los diferentes grupos de investigación y han pasado a ser parte importante en el desarrollo de
proyectos; mpiBLAST no es la excepción y precisa de ser analizada y evaluada en aras de alcanzar
el mejor rendimiento posible en las consultas efectuadas. Las aplicaciones paralelas requieren un
cuidado mayor durante su fase de diseño y desarrollo para que se adapten mejor a los entornos
paralelos/distribuidos en los que va a ser ejecutada.

Cuando hablamos de análisis de rendimiento de aplicaciones paralelas, nos referimos al
proceso de evaluación y búsqueda de ineficiencias. Ineficiencias, que a medida que se conoce el
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comportamiento de la aplicación se podrán solventar con estrategias de sintonización.
El objetivo general de éste trabajo de investigación es evaluar el rendimiento presentado

por la aplicación paralela de análisis de secuencias biológicas mpiBLAST, con la finalidad de
determinar aquéllos parámetros influyentes y sintonizables para aumentar el nivel de desempeño
en términos de tiempo de ejecución bajo un determinado entorno paralelo. El proceso de análisis
de rendimiento está descrito en el caṕıtulo 2.

En análisis de prestaciones es necesario realizar una monitorización previa de la aplicación;
este proceso se realiza con el fin de identificar aquéllas funciones representativas durante la
ejecución; es decir, las que están relacionadas con la aplicación y que consumen la mayor cantidad
de tiempo, convirtiéndose en posibles cuellos de botella para el rendimiento de, en nuestro caso,
mpiBLAST como tal.

Para las aplicaciones paralelas en general debemos conocer sus puntos de ineficiencia deno-
minados cuellos de botella, donde el rendimiento de la aplicación se ve limitado a cierto conjunto
de parámetros que le impiden alcanzar un mejor desempeño y conseguir sacar el mayor provecho
posible del entorno paralelo/distribuido bajo el que están siendo ejecutadas.

Por tanto nuestra labor es, tener la habilidad para entender e identificar los factores contri-
buyentes en el rendimiento de un programa paralelo basándonos en el impacto que generan los
diferentes parámetros del entorno en la generación de cuellos de botella dentro de mpiBLAST y
proponer una estrategia que permita solventarlos con la finalidad de mejorar su rendimiento.

Para lograr este objetivo, es necesario:

1. Conocer y monitorizar la aplicación para identificar los procesos y funciones involucra-
dos en la ejecución, y detectar cuáles consumen mayor cantidad de tiempo y recursos.

2. Entender e identificar los factores que contribuyen en el rendimiento basado en el
impacto que ocasionan los diferentes parámetros relacionados con la aplicación y el
clúster que generen cuellos de botella.

3. Identificar los problemas de rendimiento y efectuar los ajustes necesarios a los factores
directamente relacionados con la ejecución de mpiBLAST que sean influyentes a fin de
mejorar el nivel de desempeño.

La modificación y sintonización de código una vez finalizado el análisis, no deja de ser una
tarea menos ardua; es por ello que una vez que hayan sido identificados los principales problemas
de rendimiento de la aplicación se puede proceder a efectuar los ajustes respectivos en los factores
influyentes con la finalidad de alcanzar los mejores niveles de desempeño posibles durante la
ejecución. Es por ello que se espera conseguir durante la investigación la información suficiente
que permita determinar los puntos en que mpiBLAST, como aplicación paralela/distribuida de
análisis de secuencias biológicas, pueda mejorar.

El alcance de nuestra investigación se ve limitado al estudio del comportamiento de la apli-
cación bioinformática mpiBLAST sin entrar al módulo de alineamiento de secuencias como tal;
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es decir, no se planea mejorar el algoritmo de BLAST sobre el que se basa mpiBLAST, sino de-
terminar la mejor estrategia de configuración de los diferentes factores influyentes para obtener
el mejor rendimiento en un clúster espećıfico.

1.3. Organización del Trabajo

En este caṕıtulo hemos introducido la situación general en la que se encuentra enmarcado
nuestro proyecto de investigación, y el alcance que ésta tendrá. Los siguientes caṕıtulos estarán
dedicados a detallar los aspectos que están ligados a nuestro trabajo. Quedando de la siguiente
manera:

Caṕıtulo 2. Análisis de Rendimiento de Aplicaciones Paralelas. Introduce una descrip-
ción general del enfoque clásico de análisis de rendimiento de aplicaciones paralelas.
En él se describe cuál es el objetivo que se persigue mientras se realiza esta clase de
análisis y las caracteŕısticas básicas de ineficiencia de una aplicación, conjuntamente
con el enfoque inicial que se ha de tomar cuando se inicia un proceso de análisis de
aplicaciones en cuanto a rendimiento. De igual forma, se presenta de forma descriptiva
el estado de arte actual para lo que Análisis de Rendimiento de Aplicaciones Parale-
las se refiere, tomando como base aportes previos y actuales proporcionados por los
principales grupos de investigación en esta área a nivel mundial.

Caṕıtulo 3. Modelos de Prestaciones y Sintonización. Describe detalladamente ba-
jo qué situaciones se hace necesaria la participación de un proceso de Sintonización
Dinámica y bajo cuales caracteŕısticas es posible desarrollar un modelo de prestaciones
que facilite la predicción del comportamiento de la aplicación.

Caṕıtulo 4. Aplicaciones Bioinformáticas. Se centra en la descripción del conjunto de
herramientas de las cuales se ha valido la bioinformática con el pasar de los años,
sirviendo como base para la introducción general de la aplicación con la cual nos
hemos planteado trabajar y que es nuestro objetivo aumentar su rendimiento.

Caṕıtulo 5. Experimentación. Caso de Estudio: mpiBLAST En este caṕıtulo se deta-
llan todas y cada una de las diferentes evaluaciones y mediciones que le fueron hechas
a mpiBLAST, junto con el modelado del comportamiento de la aplicación bajo deter-
minadas condiciones de ejecución.

Caṕıtulo 6. Conclusiones y Trabajos Futuros. Sumariza y concluye nuestro trabajo, se
presentan los problemas que forman parte de nuestras ĺıneas abiertas y se discuten
direcciones para trabajos futuros.
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Caṕıtulo 2

Análisis de Rendimiento

“Mide lo que sea medible y haz medible lo que no lo sea.”

Galileo Galilei (1564-1642).

Este caṕıtulo está dedicado a introducir los conceptos de análisis de rendimiento necesarios
para enmarcar el desarrollo del presente trabajo. Partiendo de la descripción del enfoque inicial
de análisis basado en el uso de herramientas de visualización, y de los procesos de captura de
información, tales como profiling y tracing, como puntos de referencia para determinar el ren-
dimiento; seguidamente este enfoque de análisis de rendimiento fue sustituido por metodoloǵıas
automáticas y dinámicas, que son la base de varias de las herramientas de análisis disponibles
actualmente, las cuales serán comentadas brevemente al final del caṕıtulo.

2.1. Introducción

Investigar el comportamiento de un sistema de cómputo o de una aplicación paralela, y en-
contrar limitantes en su rendimiento junto con los factores que las ocasionan, usualmente genera
una modificación posterior. En el caso de una aplicación paralela esto seŕıa cierta modificación
del código fuente con la intención de mejorarla y/o adaptarla para evitar futuras pérdidas de
rendimiento.

Este proceso se encuentra definido en el análisis de rendimiento en tres grandes etapas
descrito por Jain [19], donde inicialmente se realiza:

Una fase de monitorización y conocimiento de la aplicacón, bien sea observando re-
sultados gráficos o numéricos obtenidos luego de cada ejecución o con la ayuda de
herramientas automáticas o dinámicas, que proporcionará al analista un conjunto de
datos e información.

Una fase de análisis, en la que determinará la existencia de limitantes de rendimiento
dentro de la aplicación.
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Y la fase de sintonización, en la que se corregirán las posibles ineficiencias que se
estuvieran presentando.

Si miramos el análisis de rendimiento dentro del campo experimental de la computación de
altas prestaciones se puede tomar como un proceso en el que se combina medición, interpretación
y comunicación de cierta caracteŕıstica del objeto que está siendo evaluado, caracteŕıstica que
puede ser su tiempo de ejecución, su capacidad para escalar, el número de tareas que es capaz de
llevar a cabo en un determinado peŕıodo de tiempo. Cuando se plantea la intención de realizar
análisis de rendimiento, usualmente surge la interrogante en cuanto a la forma en que debe
realizarse la medición o la interpretación de los datos; por ello se suele valerse de la inventiva y
la imaginación de cada uno de los analistas para diseñar o proponer estrategias que se adecúen
de mejor forma al objetivo que se persigue, realizando la menor perturbación posible dentro de
la aplicación que se estudia.

Antes de comenzar el proceso de análisis de rendimiento, es necesario identificar no sólo los
aspectos relacionados con la aplicación como tal sino también auéllas cosas útiles o interesantes
para medir [22]. Usualmente suelen medirse caracteŕısticas como:

El número de veces que se repite un evento.

La duración en tiempo o instrucciones de un proceso.

El tamaño de algún parámetro.

Al final se convierten en nuestras métricas de rendimiento, que son diferentes valores medidos
que se emplean para describir el rendimiento de la aplicación, por ejemplo: el número de veces
que se entra a cierta rutina o sub-rutina, cuánto tiempo se está gastando en ella o la cantidad
de datos que están siendo transmitidos en determinado momento.

Escoger una métrica apropiada depende de la situación espećıfica para la que es requerida
y la inversión necesaria para la recolección de los datos, aśı como también debe ser tomado en
cuenta que la métrica para que realmente sea útil para nosotros como analistas.

Linearidad: se suele esperar que la métrica seleccionada vaŕıe en cierta proporción
directamente proporcional con las variaciones observadas en el rendimiento del sistema.

Confiabilidad: si existe una variación X en la aplicación, se espera que la métrica
indique que ésa variación va a suceder.

Repetibilidad: una métrica es repetible si cada vez que se realice un mismo experimento
se obtienen valores similares, es decir, con una desviación estándar baja.

Facilidad de medida: cuanto más dif́ıcil es determinar una métrica, mayor posibilidad
existe de que el valor sea errado o impreciso; y aún más que dicha métrica no sea
utilizada del todo.
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Consistencia: una métrica consistente es aquélla para la cual las unidades de medida
y su definición exacta es la misma para diferentes sistemas o configuraciones de un
mismo sistema.

Independencia: la métrica no debe verse influenciada por factores externos.

Para nuestra investigación, métrica que se tomará en cuenta es el tiempo de ejecución, debido
a que uno de los objetivos fundamentales de la HPC es brindar respuestas en un menor tiempo,
y en el caso de la bioinformática que obliga a trabajar con datos de tamaño significativo, este
tiempo de respuesta es un valor muy importante y muy fácil de comparar para tomar decisiones.
Es por ello que es importante saber cómo medir el tiempo de ejecución de una aplicación, de una
porción de la aplicación, y entender las limitaciones de la herramienta de medida; sin embargo
estos conceptos serán ampliados en el caṕıtulo 5.

2.1.1. Objetivos del Análisis de Rendimiento

En todo proceso de análisis de rendimiento, el objetivo es conocer el comportamiento de la
aplicación para poder evaluarla y determinar cierto rendimiento deseado. Inicialmente, obser-
vando el proceso de análisis de rendimiento como una secuencia de pasos que deben llevarse a
cabo se pueden definir como objetivos los siguientes [20]:

Se persigue determinar si existen problemas de rendimiento, factores de ineficiencia y
caracteŕısticas que faciliten su identificación.

Espera detallar el punto exacto donde se está sucediendo el problema de rendimiento
y/o cuello de botella, qué lo ocasiona.

Trazar una estrategia para evitar que se genere el problema de rendimiento o de ser
posible, eliminarlo.

Comprobar si una vez corregido el problema inicial de rendimiento, existe algún otro
más y si es necesario iniciar el proceso de análisis de nuevo.

De acuerdo a lo señalado por Jorba [20], se podŕıan considerar modelos en los que pueda ser
interesante el mı́nimo tiempo de ejecución de la aplicación, un cierto grado de eficiencia de uso
de recursos(como el balanceo de trabajo entre los procesadores), una escalabilidad apropiada
según el incremento de procesadores involucrados en el proceso.

2.2. Ineficiencia en las Aplicaciones Paralelas.

Cuando comenzamos a hablar de aplicaciones paralelas, es necesario realizar el análisis y eva-
luación de las mismas, que en un principio es el pilar fundamental de este trabajo de investigación
siendo necesaria la descripción de algunos conceptos fundamentales, descritos a continuación.
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2.2.1. Ecuaciones para Análisis de Tiempo de Ejecución Paralelo.

La primera interrogante que nos planteamos es cuán rápida la implementación paralela puede
ser, para ello es necesario conocer el tiempo de ejecución en un único computador, ts, contando
los pasos computacionales del mejor algoritmo secuencial. Para un algoritmo paralelo, en aras de
determinar el número de pasos computacionales, es necesario estimar el overhead de comunica-
ción. En un sistema de paso de mensajes, el tiempo de envio de mensajes debe ser considerado en
el tiempo total de ejecución de un problema. El tiempo de ejecución paralelo, tp, está compuesto
de dos partes, una parte computacional, llamada tcomp y una parte de comunicación, llamada
tcomm; de forma que nos queda que:

tp = tcomp + tcomm (2.1)

Tiempo Computacional : viene dado al igual que con los algoritmos secuenciales por contar el
número de pasos computacionales. Cuando mas de un proceso está siendo ejecutado simultánea-
mente, solamente podemos contar los pasos computacionales del proceso más complejo. A me-
nudo, todos los procesos están llevando a cabo la misma operación, por lo que se puede contar
los pasos computacionales de uno de los procesos. Sin embargo pueden presentarse situaciones
en las que se obtenga el mayor número de pasos computacionales contando la concurrencia de
algunos procesos. Muchas veces este tiempo se fragmenta en partes deteminadas por el paso de
mensajes para luego determinar el tiempo computacional de cada parte [36]. Y viene dado por
la función:

tcomp = f(n, p) (2.2)

De donde n es el número de veces que el proceso p realiza cierto conjunto de pasos compu-
tacionales. Pudiendo determinar el tiempo total de cómputo con la suma de los diferentes tiempos
de cómputo de cada proceso.

tcomp = tcomp1 + tcomp2 + tcomp3 + . . . (2.3)

Usualmente cuando se analizan aplicaciones paralelas se asume que los tiempos de cómputo
serán semejantes porque los procesadores son el mismo y el sistema operativo es el mismo.
Ssin embargo, y tomando en cuenta que con el HPC todo el cómputo ha migrado a clústers
es necesario recordar la posibilidad de que el entorno no sea homogéneo, para nuestro trabajo
de investigación con la aplicación paralela máster/worker mpiBLAST, vamos a considerar que
estamos trabqajando sobre una arquitectura paralela homogénea y espećıfica.

Tiempo de Comunicación: el tiempo de comunicación va a depender del número de mensajes,
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el tamaño de cada mensaje, la estructura de comunicación que exista por debajo y el modo de
transferencia. Para una primera aproximación se puede decir que [36]:

tcomm1 = tstartup + wtdata (2.4)

Para el tiempo de comunicación del mensaje 1, donde tstartup, es el tiempo de inicio, algunas
veces llamada latencia del mensaje. Este tiempo es esencialmente el tiempo necesitado para
enviar un mensaje sin datos. Incluye el tiempo del empaquetado del dato en la fuente y desem-
paquetar el mensaje en el destino y es considerado constante. tdata es el tiempo de transmisión
para enviar una palabra de datos, también asumido como constante, y hay w palabras de datos.
La tasa de transmisión normalmente es medida en bits/segundos. El tiempo de comunicación
final tcomm, será la sumatoria de los tiempos de comunicación de todos los mensajes secuenciales
provenientes de los procesos. De esta forma:

tcomp = tcomp1 + tcomp2 + tcomp3 + . . . (2.5)

Una vez que ha sido determinado el valor de tiempo secuencial ts, el tiempo de cómputo
tcomp y el tiempo de comunicación tcomm, podemos establecer el factor de speedup, que se refiere
a:

S(p) =
ts
tp

(2.6)

El máximo speedup posible es p con p procesadores, conocido como speedup linear . El speedup
de p será adquirido cuando la computación puede ser dividida en pasos computacionales de igual
tiempo de duración, con un proceso mapeado en un procesador y sin overhead adicional en la
solución paralela.

Adicionalmente, es importante hacer mención sobre el concepto de eficiencia, y se refiere al
cuán utilizados están los procesadores. La eficiencia E, está definida por:

E =
ts

tp ∗ p
(2.7)

Sin embargo, suelen aparecer factores dentro de las aplicaciones paralelas que limitan el
speedup notablemente, como peŕıodos en los que no todos los procesadores están llevando a cabo
tareas, cómputo extra que no existe dentro de la versión secuencial, y el tiempo de comunicación
entre los procesos. Era de esperar que algunas partes de la computación no puedan ser divididas
en tareas concurrentes, y deban ser llevadas a cabo de forma secuencial. Asumiendo la posibilidad
de que algunas partes sean realizadas por un sólo procesador, la situación ideal seŕıa que todos
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los procesadores disponibles trabajaran simultáneamente para los otros momentos. Si la fracción
de cómputo que no puede ser dividida en partes concurrentes es f , y no se incurre en overhead
alguno cuando el cómputo es dividido en partes concurrentes, el tiempo para llevar a cabo el
cómputo con p procesadores viene dado por fts+(1−f)ts/p. De esta forma Amdahl [3] identifica
que el speedup seŕıa:

S(p) =
ts

fts + (1− f)ts/p
=

p

1 + (p− 1)f
(2.8)

Que señala que aún con infinitos procesadores, la parte secuencial va a limitar el rendimiento
global de la aplicación.

2.2.2. Casos de ineficiencias.

Cuando se realiza un proceso de análisis de rendimiento, se pueden encontrar diferentes
enfoques bajo los que ocurren problemas de eficiencia; existiendo ciertas caracteŕısticas muy
relacionadas al tipo de comunicación empleada en el paso de mensajes, bien sean punto a punto
o colectivas o según su estructura [20].

Punto a Punto

Existen problemas relacionados con las tareas participantes que emplean operaciones de re-
cepción bloqueante y no bloqueantes, siendo las primeras las principales causantes de los mayores
tiempos de espera; sin embargo, las no bloqueantes pudieran llegar a presentar comportamientos
similares dependiendo del esquema de comunicación que se esté empleando.

1. Late Sender : ésta se presenta cuando el env́ıo del mensaje por parte del emisor se ha
efectuado tiempo después de que el receptor (ver figura 2.1) haya iniciado el proceso
de recepción, ocasionando al proceso receptor un tiempo inactivo que pudo haberse
empleado en cómputo útil.

2. Late Receiver : en este caso el emisor ya ha generado la señal de env́ıo del mensaje,
pero el proceso receptor aún no ha llegado al punto de estar listo para recibirlo (figura
2.2); este bloqueo suele observarse cuando es una recepción śıncrona y hasta que el
receptor no esté apto para responder a la petición de recepción.

3. Blocked Sender : en este se ven involucradas al menos tres tareas (figura 2.3), donde una
comunicación entre dos procesos se encuentra previamente bloqueada porque el emisor
está bloqueado esperando la respuesta de un proceso anterior a él, suele presentarse
cuando existe cierta dependencia entre los datos con los que se está trabajando.

4. Wrong Order : suele suceder cuando se está trabajando con operaciones de comunica-
ción no bloqueantes donde la estrategia de comunicación ha fallado, se ven involucrados

16



Figura 2.1: Late Sender

Figura 2.2: Late Receiver

Figura 2.3: Blocked Sender
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varios procesos con sus respectivos env́ıos y recepciones almacenados en el búffer de
datos de forma diferente a como debeŕıan ser entregados. En el peor de los casos, los
mensajes pudieran llegar en orden contrario (ver figura 2.4) al que se iban a consumir.
Si este caso se diera con env́ıos bloqueantes, nos encontraŕıamos frente a una situación
de deadlock entre las tareas, ya que el receptor estaŕıa esperando el mensaje y el emisor
no lo enviaŕıa hasta que el receptor realice un consumo de mensaje que no va a suceder.

Figura 2.4: Wrong Order

5. Multiple Output : acá nos encontramos con un conjunto de tareas que son receptoras de
secuencias de mensajes que se inician en serie desde un emisor común. El env́ıo en serie
provoca que las tareas se bloqueen hasta que les llegue el mensaje que les corresponda
(ver figura 2.5), las tareas se encontraŕıan bloqueadas esperando un mensaje por parte
del emisor, que aún no ha realizado el env́ıo por estar realizándolo en ese momento a
otro proceso espećıfico.

Figura 2.5: Multiple Output

18



Colectivas

Las operaciones colectivas, por su necesidad de realizar la operación de forma conjunta,
suponen un cierto tiempo de bloqueo entre una o todas las tareas, ocasionando que la aplicación
se detenga casi (o) en su totalidad, con la finalidad de estar sincronizadas para llevar a cabo
la operación que se está esperando, convirtiéndose aśı en los problemas de prestaciones más
frecuentes. Éstas primitivas están directamente ligadas con el número de procesos involucrados
dentro de la aplicación y dependiendo del sentido que tengan pueden ser pérdidas de tiempo en
los procesos que están esperando respuesta desde el proceso ráız ó, en caso contrario se generaŕıa
al momento de la salida de la aplicación donde el proceso ráız habrá de esperar que las demás
tareas hayan finalizado.

1. Blocked at Barrier : en este caso la primera tarea en llegar se encuentra bloqueada hasta
que hayan arrivado todo el conjunto o grupo de tareas que deben acompañarla en una
siguiente tarea (ver figura 2.6). Suele presentarse cuando todo el grupo de tareas habrán
de iniciar una operación al mismo tiempo de forma que hasta que no estén todas en el
mismo punto, el proceso no continuará, esta situación se ve directamente influenciada
por desbalanceos entre la carga de trabajo, la existencia de entornos heterogéneos o
problemas de eficiencia anteriores que afectaban solo algunas tareas.

Figura 2.6: Bloqueado por Barrier

2. Colectivas 1 a N : se presenta cuando desde la tarea que ejerce el papel de ráız, ha
enviado un mensaje al resto de tareas y se encontrarán bloqueadas aquéllas que hayan
terminado antes y estén solo a la espera de la recepción de este mensaje (ver figura
2.7).

3. Colectivas N a 1 : suele presentarse cuando el proceso que figura como ráız ha finalizado
todas sus tareas antes de que le lleguen los mensajes que espera de las otras tareas
(ver figura 2.8); es decir, al momento en que ha terminado su tarea anterior aún no
está disponible más información para él.
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Figura 2.7: Colectivas 1 a N

Figura 2.8: Colectivas N a 1
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4. Colectivas N a N : este tipo de bloqueo se presenta cuando cada una de las tareas
cumple a su vez tarea de recepción y env́ıo de mensajes (ver figura 2.9). Suele estar
directamente relacionada con las fases de repartición inicial, generación de los datos
ó env́ıo final a las tareas. Ocasionando que si alguna ha excedido el tiempo medio de
recepción y env́ıo, el tiempo global de la tarea se verá afectado y se bloquearán las
demás tareas involucradas, y se podrá determinar como la suma total de los tiempos
perdidos en cada tarea.

Figura 2.9: Colectivas N a N

Estructurales

Suele suceder que algunas etapas del desarrollo de la aplicación se comporten de forma similar
a ciertos paradigmas de paralelismo, de esta forma se pueden prever posibles variaciones en el
flujo de las tareas dentro del programa paralelo y predecir los problemas de ineficiencia presentes
según un paradigma u otro. Dado que la aplicación paralela con la que estamos trabajando
se encuentra diseñada bajo un paradigma máster/worker, se observan algunos problemas de
ineficiencias ligados a la forma en que se comunican unas tareas con otras.

Máster/Worker : básicamente en una aplicación con este tipo de estructura, se realiza una
fragmentación de datos por parte del máster, que son repartidos a los correspondientes traba-
jadores, éstos realizan el conjunto de tareas preestablecidas y luego devuelven los resultados al
máster, pudiendo existir casos en los que éste proceso es llevado a cabo de forma iterativa. En
el caso de éste tipo de paradigmas, suele tenerse en consideración los siguientes aspectos cuando
de análisis de rendimiento se trata [20]:

1. Granularidad de las tareas: se refiere a la relación existente entre los bytes enviados y/o
recibidos por una tarea y el cómputo realizado. Se puede realizar un estudio previo,
con el modelo computacional y el ancho de banda disponible, para tener una idea de
sobre la granularidad máxima posible.
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2. Organización de las comunicaciones: está relacionado con la selección del número de
mensajes de acuerdo a su longitud, ya que a mayor tamaño el tiempo de inicialización
puede ser menor pero no garantiza que el tiempo global se reduzca, ya que al momento
del manejo de la salida de los datos y procesamiento de los mensajes podŕıa haber
congestión en la red. De igual forma mensajes de un tamaño muy pequeño permiten
solapar el cómputo con la comunicación; aunque normalmente el tamaño de los men-
sajes apropiado, y esta capacidad de solapamiento suelen estar estrechamente ligadas
con la aplicación, convirtiéndose en factor de estudio obligado si se quiere optimizar.

3. Paradigma de Paralelismo: en modelos más complejos de máster/worker, el tipo de
paralelismo empleado en la aplicación puede estar relacionado no solo con el parti-
cionado de los datos sino también con cierto paralelismo funcional. Si fuera este el
caso las tareas de los workers podŕıan afectar directamente el rendimiento global de la
aplicación según si realizan todos el mismo proceso o si cada uno vaŕıa en función de
los datos que ha recibido. De igual forma si el máster se ve en la obligación de realizar
algún otro proceso que no sea sólo la repartición de datos y posterior recolección, que
frenaŕıa algunos procesos de recepción de los trabajadores que ya están listos por estar
finalizando alguna tarea previa.

Recordando lo comentado anteriormente, cuando se trata de entornos heterogéneos, además
habrá de considerarse la configuración de las máquinas y la cantidad de carga que pudieran
tener. A medida que se analiza una aplicación máster/worker visualizando los eventos se puede
determinar la cantidad de carga generada, las comunicaciones existentes, y definir los posibles
desbalanceos o retardos que existen, esto con la intención de determinar el número de workers
apropiado para la carga de trabajo y reducir los posibles retrasos existentes durante la ejecución.

Una vez definidos el conjunto de factores que están directamente relacionados con éste tipo
de estructura, se pueden considerar problemas de ineficiencia situaciones tales como:

Desbalanceo de Carga, suele suceder cuando el trabajo no está uniformemente distri-
búıdo entre los workers desocupados disponibles. Problema que suele deberse a va-
riaciones en las tareas (diferentes códigos o datos) con las que debe trabajar a cada
worker.

Número inapropiado de workers, si son muchos pueden generar una tasa de cómputo
muy baja pero muy alta en cuanto a comunicación, o si son muy pocos generando
largos peŕıodos de inactividad por parte del máster.

Retardos en las comunicaciones, debido a problemas previos de balanceo, que pudieran
haberse presentado, o a la carencia de uniformidad en la repartición de las tareas. No
dejando de lado causas como el ancho de banda, latencia, o contención de los mensajes.

Tasa inapropiada de relación entre el tamaño de los mensajes y el número de veces que
se env́ıan.
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2.3. Métodos de Análisis de Rendimiento

Con el paso de los años y gracias al desarrollo de nuevas herramientas y lenguajes para pro-
gramación paralela, los enfoques de análisis de rendimiento han ido actualizándose y adaptándose
más al comportamiento real de la aplicación.

Se ha pasado desde una visualización post-mortem de las ejecuciones, que solo permit́ıa una
vez finalizada la ejecución sacar conclusiones basadas en los llamados que se efectuaban de
una función a otra, a la fase en que existen herramientas capaces de monitorizar la aplicación
a medida que ésta se está ejecutando. Permitiendo introducir modificaciones que mejoren el
rendimiento de la aplicación sin necesidad de detenerla, conocido como análisis de rendimiento
dinámico.

Análisis de Rendimiento Clásico

La aproximación clásica de análisis de rendimiento, ha estado basado en la visualización
de las ejecuciones con la ayuda de algunas herramientas. Una vez que las aplicaciones han sido
diseñadas y depuradas, son ejecutadas con la ayuda de herramientas de monitorización que reco-
lectan la información del comportamiento de la aplicación. Usualmente, una vez completada esta
fase, la herramienta de visualización muestra la información que ha conseguido recolectar em-
pleando vistas variadas (diagramas de Gantt, histogramas, diagramas de barras, entre otros...).
Se cuenta con diferentes herramientas de visualización que difieren en interfaz de interacción
con el usuario o el tipo de datos que muestran, pero sirven para dar una impresión rápida del
rendimiento de la aplicación y sus posibles problemas principales. La forma más práctica de
conocer si una aplicación no está sacando provecho de su diseño o del entorno paralelo sobre el
que está siendo ejecutada, se puede monitorizar o instrumentar con la finalidad de obtener éstos
datos. Sin embargo, éstas herramientas de monitorización pueden ser de diferentes tipos [20]:

Temporales: aquélla que está relacionada con el tiempo de ejecución para identificar
donde está invirtiendo más tiempo la aplicación paralela.

Contadores: empleado para contar la cantidad de veces que se ejecuta una determinada
función o evento.

Muestreo: empleando ésta técnica, se obtienen ciertas mediciones periódicas del estado
de la aplicación. Suele realizarse deteniendo la aplicación en puntos definidos para
tomar la medida.

Trazas: son secuencias de información asociadas a eventos determinados que se suceden
dentro de las aplicaciones paralelas.

A partir de las medidas tomadas se puede obtener un resumen de la información asocia-
da con el rendimiento obtenido en la ejecución de la aplicación paralela sobre un entorno de
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cómputo paralelo, este puede estar presentado tanto textual como gráficamente. En la aproxi-
mación clásica de la visualización de dichos datos, se pasa por una fase de recolección de datos,
transformación de los datos y posterior visualización. Los cuales se suelen insertar dentro de un
proceso ćıclico por parte del desarrollador en el que se persigue el mejor rendimiento posible
para la aplicación. Con las herramientas de visualización se espera identificar los problemas de
la aplicación relacionados con el rendimiento de las tareas y sus comunicaciones, la estructura
de los algoritmos empleados y su implementación. En general una herramienta de visualización
permite al desarrollador comparar fácilmente el patrón de ejecución observado en su aplicación
con aquél que espera sea el ideal. Una visión global de la interacción existente entre las fases
dentro del análisis de rendimiento clásico, se puede observar en la figura 2.10.

La hipótesis de rendimiento se enriquece y sustenta con los resultados obtenidos de cada uno
de los experimentos de rendimiento realizados, permitiendo aśı generar una solución basada en
la base de conocimientos de rendimientos para realizar los ajustes o las posibles soluciones para
resolver las ineficiencias que se estuvieran presentando.

Figura 2.10: Análisis Cásico de Rendimiento

Entre los diagramas empleados para visualizar la información para post-procesamiento se
utilizan los siguientes:

Grafos de comunicación. También conocidos como diagramas de Gantt, permiten vi-
sualizar el estado de la ejecución, la interacción de las tareas y sus comunicaciones
dentro de un intervalo de tiempo determinado. Estos estados y/o tareas son represen-
tados con el uso de colores.

Resúmenes estad́ısticos por tarea. Mostrados con la ayuda de gráfico de torta (tarta),
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en los que se representa el porcentaje de tiempo invertido en cada una de las tareas
involucradas en la aplicación.

Resúmenes estd́ısticos por comunicación. Suelen visualizarse como matrices de N x N
tareas, donde cada celda representa la comunicación entre dos tareas a las que hace
referencia, su unidad de medida acostumbra ser en bytes (Kbytes o Mbytes) enviados y
recibidos. A veces, emplean colores para las celdas según los tamaños y con la intención
de facilitar la visualización de las comunicaciones con gran volumen de datos. Dado que
principalmente son de naturaleza acumulativa, no suelen ser demasiado útiles cuando
hay eventos de naturaleza iterativa, porque no será fácil identificar los problemas o
ineficiencias que hayan estado presentes.

Árboles de llamada. Consiste en un diagrama de árbol que muestra las llamadas que han
sido efectuadas entre las diferentes funciones dentro de la aplicación, puede representar
desde objetos hasta subrutinas, o incluso llegar al nivel de bucles y condicionales. Es
muy práctico para depurar el algoritmo al ver si la ejecución refleja el planteamiento
inicial del desarrollador.

Análisis de Rendimiento Automático

Cuando se desea desligar a los desarrolladores de las tareas relacionadas con análisis de
información gráfica o la defición de problemas de rendimiento, suele plantearse un análisis de
rendimiento para la aplicación de forma automática. Este proceso requiere un modelo de ren-
dimiento de los resultados esperados de ese proceso[38]. Es decir, “un proceso de examinación
sistemática del rendimiento basándose en datos recogidos de una aplicación, con la finalidad de
identificar propiedades de rendimiento relacionadas con regiones del código fuente de la aplica-
ción”.

Las herramientas empleadas para este tipo de análisis suelen estar basadas en dos principios.
Primero, usan un conjunto de mediciones tomadas a partir de ejecuciones instrumentadas de la
aplicación y provistas por herramientas de monitorización. Segundo, se basan en el conocimiento
de los problemas de rendimiento almacenados en una base de conocimiento [20].

La naturaleza de los datos de rendimiento sin procesar viene dado por las técnicas de moni-
torización más comunes, las cuales usualmente entregan los datos en formas de perfiles o trazas
de enventos. Éstas herramientas de análisis de rendimiento clásico soportan principalmente el
proceso de búsqueda proveyendo vistas de bajo nivel de estos tipos de datos, vista que, usual-
mente incluyen visualización textual o gráfica (incluso a veces interactiva) como tablas o gráficos
de barras de información de profile, lineas de tiempo, diagramas de trazas de eventos y análisis
estad́ısticos.

Una vez que las mediciones han sido realizadas, el proceso de análisis automático puede ser
llevado a cabo, donde la principal interrogante es cómo detectar los puntos de ineficiencia o
bottlenecks. El trabajo con aplicaciones paralelas ha permitido identificar que muchas de ellas
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tienen problemas de rendimiento bien definidos. Para buscar un problema de rendimiento, la
herramienta debe estar soportada con la información acerca de cuales seŕıan los posibles puntos
de ineficiencia y cómo reconocerlos. Estos cuellos de botella se pueden hacer llegar a la aplicación
como una base de conocimiento, conteniendo los modelos de rendimiento que proveen una via
para entender los problemas de rendimiento. Usualmente se emplea un buen modelo anaĺıtico que
facilitará la predicción de los cuellos de botella junto con sus causas y posibles optimizaciones,
cabe destacar que cuando se desea crear un modelo de rendimiento, simplicidad y precisión no
siempre van de la mano.

En este enfoque la búsqueda de cuellos de botella está aún basada en archivos de trazas gene-
radas una vez que ha finalizado la ejecución, siendo conocido como análisis estático post-mortem.
Las visualizaciones han sido reemplazadas por un análisis automático y la emisión de recomen-
daciones directas sobre los problemas detectados, es por ello que las herramientas basadas en
este enfoque reducen significativamente la cantidad de tiempo invertida por los desarrolladores
en análisis de rendimiento, ya que están soportados por la automatización, y recepción de datos
más precisos, dentro del proceso global de sintonización. Las observaciones generadas por la
herramienta suelen ser pistas muy útiles para conocer el comportamiento de la aplicación, sin
embargo dado que son conclusiones obtenidas de una ejecución que ya ha finalizado, para una
siguiente ejecución y dadas las caracteŕısticas cambiantes de algunas aplicaciones puede que lo
que ha funcionado para una ejecución anterior, no funcione para la siguiente, estableciéndose
aśı que estas herramientas y este tipo de análisis es más adecuado para aplicaciones estables con
datos de entrada similares.

Análisis de Rendimiento Dinámico

Aún cuando el desarrollador se ha visto beneficiado con la inserción de los procesos de
análisis automáticos durante la ejecución sin sintonización, aún continuaba siendo necesario
realizar manualmente los pasos de sintonización de la aplicación y viéndose involucrados muchos
de los aspectos relacionados con el análisis clásico, tales como: la necesidad de instrumentar
la aplicación, análisis basado en ficheros de trazas, realizar solo una ejecución a la vez en un
entorno dado y un cierto comportamiento estable requerido [25]. Por ello, el análisis automático
fue llevado de un punto de vista estático a uno más dinámico, donde el análisis de rendimiento es
llevado a cabo durante la ejecución de la aplicación de forma totalmente automática para evitar
la necesidad de realizar alguna instrumentación manual, sustituyendo un análisis post-mortem
por uno en tiempo real ; esto implica la necesidad de una monitorización constante, donde la
principal ventaja es que ya no es necesario continuar usando ficheros de trazas para efectuar el
análisis.

Este enfoque permite el control de la cantidad de instrumentación insertada en la aplicación
con la ayuda de técnicas de instrumentación dinámica. La monitorización puede iniciar con
una instrumentación muy sencilla y cuando ciertas condiciones particulares sean detectadas,
sea instroducida instrumentación adicional. Cuando las condiciones desaparezcan, es posible
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eliminar esa instrumentación extra. Bajo este enfoque el análisis debe ser realizado durante la
ejecución de la aplicación, lo que conlleva a introducir cierto overhead dentro de ella. Por ello,
el análisis debe ser relativamente simple para introducir la menor cantidad de overhead posible.

El análisis de rendimiento dinámico es el mejor acoplado a aquéllos programas que son itera-
tivos y puede soportar aplicaciones con tiempos de ejecución muy altos y grandes volúmenes de
datos. De igual forma, para resolver los problemas detectados, es necesario detener la aplicación,
modificar, recompilar y ejecutarla de nuevo.

Cuando el análisis de rendimiento está basado en un enfoque dinámico no es necesaria la
intervención del desarrollador ni el acceso al código fuente de la aplicación. La ejecución de
la aplicación paralela es monitoreada, analizada y sintonizada automáticamente en tiempo de
ejecución, sin la necesidad de recompilar y reiniciar. El comportamiento que esté presentando la
aplicación será considerado y analizado buscando los cuellos de botella existentes y sus posibles
optimizaciones.

Aún aśı, si la aplicación tiene un comportamiento diferente en diferentes ejecuciones, la sin-
tonización dinámica lo adapta tomando en cuenta cambios en el comportamiento de la ejecución
actual y cuando se ejecuta la aplicación bajo un entorno de análisis dinámico permitirá que
el comportamiento de la aplicación se adapte también a las condiciones cambiantes dentro del
entorno paralelo.

La sintonización dinámica debe proveer los siguientes servicios cooperando entre ellos en
tiempo de ejecución [25]:

Monitorización dinámico de la ejecución de la aplicación paralela. Este servicio permite
la recolección de los datos a partir de la ejecución de la aplicación. Puede estar basado
en cualquiera de las técnicas de monitorización que hemos venido mencionando, tales
como: medición de tiempo, profiling, o trazas de eventos. Aún aśı, dado que el objetivo
es reducir la intervención del usuario, la instrumentación debe ser llevada a cabo de
forma automática por el sistema. Este servicio libera al desarrollador de la instrumen-
tación manual dentro del código y lo exime de invocar todas las fases de recompilado
y ejecución de nuevo una vez que se ha modificado el código de la aplicación.

Análisis de rendimiento automático en tiempo de ejecución. Este servicio analiza las
mediciones que se vienen generando, encontrando los cuellos de botellas y dando solu-
ciones sobre como sobreponerlos. Para encontrar los puntos de ineficiencia y determinar
como mejorar el rendimiento, el análisis debe tener incorporada una base de conoci-
miento de rendimiento acerca de los cuellos de botella que son representativos para
la aplicación paralela. Para que sea útil debe incluir señalización de los problemas de-
tectados y sugerencias para el usuario, a través de una interfaz gráfica o impresión en
pantalla.

Sintonización automática del programa en tiempo de ejecución. Permite usar las suge-
rencias generadas en el proceso de análisis para modificar automáticamente la aplica-
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ción paralela en tiempo de ejecución. Evitando aśı por completo el acceso al código o la
necesidad de recompilación y reinicio de la aplicación. La sintonización dinámica libera
a desarrollador de tener que modificar el código dado que se modifica automáticamente
a medida que se ejecuta.

Figura 2.11: Análisis y Sintonización Dinámica

Lo que se observa gráficamente en la figura 2.11 es que todo el proceso de monitorización,
análisis y sintonización está sucediendo fuera de la vista del usuario de forma que no sea necesaria
su intervención para realizar las modificaciones necesarias en la aplicación.

2.4. Herramientas de análisis de rendimiento

Inicialmente las principales herramientas existentes para análisis de rendimiento se encuen-
tran distribúıdas entre los diferentes enfoques antes explicados en la sección 2.3 y emplean dife-
rentes técnicas de monitorización, algunas de ellas como Jumpshot[8], PARAVER[30] y VAMPIR
[26] emplean visualizacíın por trazas, en cambio otras como TAU [32] o Paradyn [24] están ba-
sados en profiling. Éstas y otras herramientas como MATE [25], GMATE [10], KOJAK [37]
y SCALASCA[15] están disponibles actualmente para llevar a cabo el proceso de análisis de
rendimiento y serán descritas a lo largo de esta sección.

Jumpshot : Jumpshot es una herramienta de visualización de análisis de rendimiento post-
mortem basada en Java. Empleando Java aumenta la portabilidad, mantenibilidad y las funcio-
nalidades de las herramientas. La última versión disponible es Jumpshot-4, y presenta un redi-
seño total de la herramienta gráfica para SLOG-2. El nuevo formato de archivo de log es escalable
y permite al visualizador detallar el archivo a cualquier nivel de acercamiento. Adicionalmente,
posee nuevas funcionalidades de acercamiento y alejamiento,desplazamiento, expansión vertical
de la ĺınea de tiempo aśı como manipulación de la ĺınea de tiempo disponible tanto en el módulo
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de histograma como el de ĺınea de tiempo. Posee una nueva tabla de leyendas que provee un
control central para ambos módulos y permite que la manipulación de los gráficos sea mucho
más fácil. El nuevo visualizador posee un convertidor de archivo de log integrado que permite
convertir otros formatos de traza como CLOG, CLOG-2, RLOG y UTE.

Figura 2.12: Visualización de ejecución con Jumpshot.

Paraver : se trata de un visualizador de trazas de eventos diseñado en la Universitat Po-
litècnica de Catalunya (UPC) que soporta una gran gama de sistemas de programación dis-
tribúıdos sobre plataforma UNIX. Visualiza trazas en ĺıneas de tiempo, de eventos producidos
en llamadas de sistema, junto con contadores de hardware y llamadas a funciones. Una carac-
teŕıstica particular de este sistema es la capacidad de definir las métricas que el usuario desea
visualizar, a través de instrucciones u operaciones realizadas con la herramienta. Es empleada
como visualizador de una herramienta denominada Dimemas, que es empleada para análisis de
prestaciones mediante simulación de la aplicación.

VAMPIR (Visualization and Analysis of MPI Resources): es una herramienta que permite
generar trazas de ejecución de aplicaciones paralelas con MPI, ha sido desarrollado por la empresa
Pallas y se basa en la generación de trazas con la ayuda de contadores de tiempo, de subrutinas
y/o bloques de código. Cuenta con múltiples vistas gráficas y generación de estad́ısticas sobre el
tiempo empleado en cada función de la aplicación, referentes a MPI y otras; aśı como controlar el
flujo y tamanño de los mensajes. Emplea la libreŕıa VAMPIRTrace para realizar la monitorización
de todas las comunicaciones y permite la visualización de las métricas en gráficas de ĺınea de
tiempo, gráficas de barras, tarta e histogramas, tanto de forma global como también para cada
uno de los procesos. Las salidas generadas por VAMPIR tienen un aspecto como el de la figura
2.13.

KOJAK : es un conjunto de herramientas diseñados para el análisis de rendimiento automáti-
co de aplicaciones paralelas en MPI, OpenMP, y aplicaciones h́ıbridas desarrolladas en C, C++
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Figura 2.13: Salida de VAMPIR.

y FORTRAN; KOJAK genera trazas de eventos para aplicaciones en ejecución y luego deter-
mina las posibles ineficiencias existentes dentro de los patrones de ejecución. KOJAK ha sido
un proyecto conjunto por Forschungszentrum Jülich en Alemania y la Universidad de Tenesse,
Estados Unidos [37]. Cuenta con un módulo de generación de trazas (EPILOG) y un módulo
de instrumentación automática empleando TAU [32]. Una vez que se ha completado la fase
de postprocesado, la traza global es sujeta a un análisis en fŕıo realizado por el componen-
te EXPERT, el cual intenta identificar propiedades de rendimiento espećıficas. Internamente,
EXPERT representa las propiedades de rendimento en la forma de patrones de ejecución que
modelan un comportamiento ineficiente. Estos patrones son usados durante el proceso de análisis
para reconocer, clasificar y cuantificar el comportamiento ineficiente en la aplicación. El proce-
so de análisis de forma automática transforma las trazas en rutas de llamadas compactas que
incluyen las penalizaciones de tiempo ocasionadas por los diferentes patrones y que pueden ser
visualizadas empleando herramientas como CUBE, tal como se muestra en la figura 2.14.

Figura 2.14: Visualización en Cube de un profile de KOJAK
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DiMeMas es una herramienta de simulación de ejecuciones [4] que estuvo disponible comer-
cialmente a través de PALLAS, y no tiene registro de desarrollo activo desde 2005, sin embargo
es usada continuamente en el Barcelona Supercomputer Center (BSC). DiMeMas suaviza el uso
de simulaciones basadas en instrucciones a través de la repetición de trazas obtenidas durante
la ejecución de la aplicación. Soporta la evaluación bajo diferentes arquitecturas de máquinas
paralelas a través de la regeneración de trazas. Este enfoque ha demostrado un uso exitoso en
máquinas de más de 1000 elementos de procesamiento. El basarse en trazas evita tener que
tocar el código y permite identificar los puntos necesarios para realizar la sintonización manual
o generar los cambios necesarios en el modelo de rendimiento, dado que el código está conte-
nido impĺıcitamente dentro de la traza en vez de ser capturado expĺıcitamente en un modelo
abstracto editable por el usuario. Editar una estructura tan compleja no es trivial y la creación
inicial requiere que el código sea escrito y ejecutado. Las trazas empleadas ocupan cierto espacio
considerable en disco y memoria del sistema, generando ĺımites severos en el tamaño máximo
del modelo que puede ser procesado en una sóla máquina.

DiMeMas es una herramienta de simulación para el análisis paramétrico del comportamiento
de aplicaciones MPI, desarrollada por el Centro Europeo de Paralelismo de Barcelona (CEPBA)
de la Universitat Politècnica de Catalunya. Permite al usuario desarrollar y sintonizar aplica-
ciones paralelas, mientras genera una predicción bastante precisa de su comportamiento en una
máquina paralela determinada. Habiendo léıdo los registros desde el archivo de trazas y espe-
cificado los parámetros de la arquitectura, Dimemas puede reconstruir el comportamiento de
una aplicación paralela a través del tiempo. La herramienta simula la ejecución de la aplicación,
escalando el tiempo empleado en cada bloque de acuerdo a la velocidad de la unidad central de
proceso objetivo. Dimemas genera como salida archivos de trazas que son acoplables a diferentes
herramientas como Paraver o Vampir. Los resultados incluyen información global de la aplica-
ción: tiempo de ejecución y speedup. Adicionalmente, para cada proceso entrega la información
sobre el tiempo de ejecución, el tiempo en que permanece bloqueado, el de cómputo, el núme-
ro de mensajes enviados y recibidos, volumen de comunicación de datos. Aún más, Dimemas
está diseñado para determinar la ruta cŕıtica que devuelve el camino más largo de comunicación
de la aplicación.

TAU (Tuning and Analysis Utilities): el sistema de análisis de rendimiento paraleo TAU, es
el producto de 14 años de desarrollo para crear un framework robusto, flexible, portable e in-
tegrado y un conjunto de herramientas para instrumentación, medición, análisis y visualización
de sistemas y aplicaciones paralelos de gran tamaño [32]. El éxito de este proyecto representa un
trabajo conjunto entre los investigadores y colegas de la Universidad de Oregon y el Centro de
Investigación de Jülich junto con el Los Alamos National Laboratory. El sistema de rendimiento
TAU considera los problemas de rendimiento desde tres niveles: instrumentación, medición, y
análisis. TAU soporta la configuración e integración de estas tres capas para conseguir resol-
ver problemas de rendimiento puntuales. De igual forma, la exploración efectiva de rendimiento
requiere seleccionar prudentemente de un conjunto de metodos alternativos. TAU permite la
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combinación de experimentos de rendimiento significativos que facilitan la obtención de propie-
dades de rendimiento relevantes. Para lograr esto, TAU ofrece soporte para realizar análisis de
rendimiento de diferentes maneras, incluyendo la capacidad de realizar un proceso de instru-
mentación multinivel bastante robusto, modalidades de medición empleando trazado y profiling,
análisis de rendimiento interactivo y gestión de datos de rendimiento, los datos obtenidos a
través del profiling pueden visualizarse en diferentes gráficos estad́ısticos, algunos de ellos como
el histograma mostrado en la figura 2.15.

Figura 2.15: Histograma de eventos generado por TAU

Paradyn: es una herramienta desarrollada en la Universidad de Wisconsin y Maryland que
monitoriza el rendimiento de aplicaciones paralelas[24]. Es capaz de monitorizar y realizar análi-
sis automático en tiempo de ejecución. Emplea técnicas de profiling dinámicas a través de la
instrumentación realizada con la ayuda de la libreŕıa DyninstAPI (http://www.dyninst.org/)
que evita tener que modificar el código fuente de la aplicación, que inserta pequeños trozos de
código (snippets) en la entrada y salida de las funciones. Paradyn facilita el análisis automático
de las aplicaciones que están siendo ejecutada, procurando indentificar aquéllas partes dentro
de la misma que consumen mayores peŕıodos de tiempo y recursos, está basado en un modelo
de identificación de cuello de botellas denominado W3 (Why, Where, When; Por qué, donde y
cuándo), con los que se espera determinar por qué la aplicación está presentando un rendimiento
bajo, en que parte de los recursos está ocurriendo el cuello de botella (CPU, comunicaciones,
E/S) y cuándo sucede.

El objetivo que esta herramienta persigue es aislar de la forma más rápida y precisa posible
el problema sin tener que examinar demasiada información; además cuenta con un módulo
denominado consultor de rendimiento que libera al desarrollador de tomar decisiones sobre el
control de los datos dentro de la aplicación. Éste consultor busca cuales son los problemas, decide
qué datos necesita almacenar y cuándo debe aplicar la sintonización, todo esto en tiempo de
ejecución. Mientras se realiza el proceso se informa al desarrollador los cambios que han sido
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llevados a cabo. Adicionalmente cuenta con herramientas de visualización llamadas Performance
Visualizations, que informan el rendimiento de la aplicación y el trabajo realizado por Paradyn
en tiempo de ejecución, visualizando los datos que se han estado obteniendo a medida que la
ejecución del programa avanza.

SCALASCA: La versión actual de SCALASCA[15] soporta medición y análisis para apli-
caciones de plataformas HPC que emplean MPI, OpenMP y programación h́ıbrida, escritas
tanto en C/C++ como Fortran. Antes de que cualquier dato de rendimiento sea recolectado, la
aplicación que se va a estudiar debe ser instrumentada.

Cuando se ejecuta la aplicación sobre la máquina paralela, el usuario puede generar un reporte
condensado (profile) con métricas agregadas para rutas de llamadas de funciones individuales
(ver figura 2.16, y/o trazas de eventos que almacenan aquéllos que han sucedido en tiempo de
ejecución, cuyo perfil o visualización de ĺınea de tiempo será generada más adelante.

Dado que las trazas tienden a hacerse demasiado grandes en poco tiempo, puntuar el re-
porte condensado es más recomendable. Cuando el traceado está activo, cada proceso genera
un archivo de traza que contiene los eventos para cada proceso local. Una vez que la aplicación
ha finalizado, SCALASCA carga los archivos de trazas en memoria principal y las analiza en
paralelo empleando tantas unidades de proceso (CPUs) como procesos hayan sido empleados
dentro de la aplicación misma.

Durante el análisis, SCALASCA busca por patrones caracteŕısticos que indiquen estados
de espera o inactividad que estén relacionados con las propiedades de rendimiento, clasifica las
instancias detectadas por categoŕıas y cuantifica su significancia. El resultado es un reporte de
análisis de patrón similar en estructura al reporte condensado pero enriquecido con metricas de
comunicación y sincronización de alto nivel.

Tanto el reporte condensado como el de patrones contienen métricas de rendimiento para
cada una de las rutas de llamadas de las funciones y de los procesos y/o threads, que pueden ser
examinados de forma interactiva en el reporte de análisis provisto o con un navegador de profile
como el ParaProf de TAU. Adicionalmente, al análisis de trazas escalabe, es también posible
ejecutar el análisis secuencial de KOJAK después de unir los archivos de traza locales.

El análisis secuencial ofrece caracteŕısticas que no están aún disponibles en esta versión
paralela, incluyendo los análisis extendidos de MPI y OpenMP, y la habilidad de generar trazas
de instancias de patrones (también conocidas como trazas de propiedades de rendimiento).
Como una alternativa para la búsqueda automática de patrones, las trazas unidas pueden ser
convertidas e investigadas empleando navegadores externos como Paraver o Vampir, sacando
partido de sus completas funcionalidades de visualización en ĺıneas de tiempo y estad́ısticas.

MATE (Monitoring, Analysis and Tuning Environment): es una herramienta de monitori-
zación, análisis de rendimiento y sintonización de aplicaciones paralelas de forma dinámica, ha
sido diseñada en la Universitat Autònoma de Barcelona [25], ha basado el monitoreo dinámico
en trazas de eventos (entrada y salida de funciones). Inicialmente estaba pensada para sintonizar
aplicaciones PVM paralelas/distribuidas desarrolladas en C/C++ ejecutándose en plataformas
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Figura 2.16: Análisis de Rendimiento con Scalasca

UNIX. MATE realiza la sintonización dinámica en tres fases básicas y cont́ınuas: monitoreo,
análisis de rendimiento y modificaciones. Este entorno dinámica y automáticamente instrumen-
ta una aplicación en ejecución para reunir la información acerca del comportamiento de la
aplicación. La fase de análisis recibe los eventos, busca e identifica los posibles cuellos de botella
existentes, detecta que los ha causado y da soluciones sobre como corregirlos. Finalmente, la
aplicación es sintonizada dinámicamente determinando, los puntos de medición, el modelo y las
acciones a tomar, que permitirán la creación del tunlet espećıfico.

MATE involucra ciertos componentes principales colaborando entre ellos para controlar y
tratar de mejorar el rendimiento de la aplicación: un controlador de la aplicación, que vigila la
ejecución de la aplicación en un huesped dado (gestión de tareas y máquinas), que provee la
gestión de la tarea de instrumentación y modificación; una libreŕıa de monitorización dinámica,
cargada por las tareas del controlador de la aplicación para facilitar la instrumentación y la reco-
lección de los datos, esta libreŕıa contiene funciones que son responsables del registro de eventos
con todos los atributos necesarios para ser analizados; y un analizador, que es un proceso que
lleva a cabo el análisis de rendimeinto de la aplicación, automáticamente detecta los problemas
de rendimiento en ejecución y solicita los cambios necesarios para mejorar el rendimiento de la
aplicación.

GMATE (Grid Monitoring, Analysis and Tuning Environment): es una herramienta desa-
rrollada en la Universitat Autònoma de Barcelona[10] basada en la herramienta MATE que ha
sido descrita anteriormente, por lo que posee el enfoque de instrumentación, monitorización,
análisis y sintonización de aplicaciones paralelas/distribúıdas ejecutándose bajo entornos Grid;
desde el punto de vista de la aplicación, la heterogeneidad es la caracteŕıstica que más influencia
la ejecución y en entornos de Grid, la heterogeneidad existente entre las diferentes unidades de
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cómputo y las comunicaciones involucradas es un hecho. GMATE consta de un tunlet desarrolla-
do en Java que puede encapsular la lógica de lo que debe ser medido, como deben interpretarse
los datos por el modelo de rendimento y que puede ser cambiado para obtener mejor tiempo
de ejecución o mejor uso de recursos; cuenta con actuadores y sensores que están asociados a
conjuntos de procesos o variables de sistema usadas como datos fuente.

En el caso de análisis de rendimiento de aplicaciones paralelas, la ordenación de los eventos
y la sincronización son situaciones cruciales para la detección de los cuellos de botella. De modo
que para proveer procesos de monitorización de eventos de sincronización dentro de la aplicación
emplea dos enfoques, una herramienta de monitoreo y un sistema basados en sincronización del
reloj.
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Caṕıtulo 3

Modelo de Prestaciones y

Sintonización

“Investigar es ver lo que todo el mundo ha visto, y pensar lo que nadie más ha
pensado”

Albert Szent-Györgi (1893-1986).

3.1. Introducción

En este caṕıtulo se describe en términos generales la finalidad para la que se diseña un
modelo anaĺıtico de prestaciones y las principales consideraciones que se deben tomar en cuenta.
Realizar la medición para todos y cada uno de los posibles valores de entrada en un sistema o
aplicación nos permite tener el conocimiento general de cómo será el comportamiento real de
éste para un determinado conjunto de condiciones; sin embargo el consumo de tiempo y recursos
que ésto significa es considerable (sino es que imposible) [22].

El rendimiento de aplicaciones paralelas en máquinas de High Performance Computing
(HPC) se basa en factores como el algoritmo, implementación, compilador, sistema operativo,
arquitectura del procesador y tecnoloǵıas de interconexión. Es por ello que, se puede concluir que
los modelos de rendimiento para aplicaciones cient́ıficas en sistemas complejos debe estar acorde
a todos los atributos de la aplicación y del sistema. Los métodos para evaluación de rendimiento
pueden ser separados en dos áreas [19]: modelos estructurales y modelos funcionales anaĺıticos.

Los modelos estructurales emplean descripciones de componentes individuales del sistema
y sus interacciones, tales como los modelos detallados de simulación; mientras que los modelos
anaĺıticos y funcionales, separan los factores de rendimiento de un sistema para crear un modelo
matemático.

Los simuladores detallados [19]son normalmente constrúıdos por desarrolladores durante la
fase de diseño de las arquitecturas para agregarlo al diseño. Para máquinas paralelas se suelen
usar dos simuladores, uno para los procesadores y otros para la red de interconexión. Estos
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simuladores tienen la ventaja de predecir el rendimiento de la aplicación de forma automática
desde el punto de vista del usuario.

La desventaja es que la mayoria de estos simuladores suelen ser propietarios y no estar dis-
ponibles para usuarios y centros HPC. Además, dado que ellos capturan el comportamiento de
la simulación de los procesadores pueden tomar hasta un millón de veces más tiempo que una
ejecución real. Esto significa que para simular una hora de una aplicación, podŕıa tomar aproxi-
madamente 114 años de tiempo de CPU [19]. Los métodos de ejecución directos son empleados
comúnmente para acelerar las simulaciones de arquitectura pero aún tendŕıan ralentización del
tiempo de ejecución.

Para evitar estos inmensos costos computacionales, los simuladores de precisión por ciclos
son usualmente sólo empleados para simular unos pocos segundos de una aplicación. Esto oca-
siona un dilema de modelado, para la mayoŕıa de las aplicaciones cient́ıficas el comportamiento
completo de una ejecución no puede ser capturado en unos pocos segundos. Las aplicaciones
raramente tardan todo su tiempo en una rutina y su comportamiento puede cambiar a medida
que la aplicación evoluciona a lo largo de su simulación (en algunos casos el problema que se
está resolviendo cambia f́ısicamente). Estos simuladores de ciclo están limitados a sólo trabajar
con el modelado del comportamiento del procesador para el cual han sido desarrollados, de forma
que no son aplicables para otras arquitecturas.

En la segunda área de evaluación de rendimiento, los modelos anaĺıticos y funcionales, el
rendimiento de la aplicación en una máquina definida puede ser descrito en una ecuación ma-
temática compleja.

Grupos como el de análisis de rendimiento de la Universitat Autónoma de Barcelona y del
Jülich Supercomputer Centre han diseñado diferentes modelos para aplicaciones Máster/Wor-
ker [11], aplicaciones MPI [38], aplicaciones PVM [25] y ejecución de aplicaciones en entornos
heterogéneos de grid [10].

La evaluación de rendimiento de sistemas y aplicaciones paralelas puede generar cantidades
considerables de datos y hace necesario que el análisis de los resultados para tantos experimentos
de rendimiento se convierta en uno de los problemas que están siendo investigados. Por ello
la gestión de la información de rendimiento es el corazón de las herramientas de análisis de
rendimiento.

Existe cierto contraste entre el rendimiento nominal de un sistema (el pico de desempeño
posible) y el rendimiento actual de algunas aplicaciones paralelas; a medida que los sistemas
paralelos crecen en tamaño y complejidad, este contraste se hace más y más importante, lo que
justifica la búsqueda por herramientas y técnicas que permitan a los usuarios entender las fuentes
donde se degrada el rendimiento, ya que una vez que se consigue comprender el rendimiento,
es importante no sólo, aumentar la eficiencia de las aplicaciones, sino también plantear las
modificaciones de acuerdo al sistema y al entorno de programación.

Existen dos estrategias básicas para llevar a cabo un análisis de rendimiento de aplicaciones
paralelas, estos son: medición (y modificación) y modelado. El proceso de medición, se refiere a
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pasos que se realizan de forma iterativa, en los que el usuario captura mediciones de rendimiento
de una aplicación en tiempo de ejecución, identifica los cambios que son necesarios, modifica el
programa y repite todo el proceso de nuevo. En cambio, el modelado, filtra ciertos parámetros
del sistema paralelo en forma de abstracciones que son expresadas tanto como componentes del
sistema como la interacción entre dichos componentes.

El enfoque de tomar mediciones y realizar modificaciones es insuficiente para entender la
razón detras de los cuellos de botella de rendimiento porque puede ser un poco más dif́ıcil
conectar el diseño con los problemas de rendimiento. Esta limitación es más evidente cuando los
problemas de rendimiento son influenciados por factores externos tales como: las condiciones el
entorno y los parámetros de ejecución, lo que genera que la conexión entre la implementación y
los cuellos de botella existentes sea aún más complicado de detectar. Aún peor, cuando se realice
alguna modificación en el programa para solucionar alguno de los problemas de rendimiento,
puede generar nuevos problemas ocasionando un aún peor rendimiento.

Los modelos proveen una forma más estructurada de comprender los problemas de rendi-
miento, ya que toman en cuenta la influencia de factores externos y relacionan las fuentes de
degradación del rendimiento con las caracteŕısticas del sistema de rendimiento.

Adicionalmente, los modelos presentan una habilidad de predicción aún mayor, permitiendo
al usuario estimar los efectos en el rendimiento ocasionados por diferentes paralelizaciones o
variaciones en el entorno de ejecución. Esta habilidad es importante porque gúıa al usuario a
encontrar un diseño “óptimo” del sistema, más allá de una búsqueda repetitiva de problemas
entre grandes cantidades de datos.

La tarea de composición de modelos no es de las más sencillas que existen, dado que las
abstracciones de los sistemas paralelos pueden ser dif́ıciles de especificar debido a que no todas
son lo suficientemente sencillas para ser manejadas, y lo suficientemente detalladas para que
sean precisas.

3.2. Modelo de Prestaciones

El modelado de rendimiento, tal como se ha comentado anteriormente, permite observar en un
nivel de abstracción mayor la interacción que existe entre los diferentes elementos que conforman
un sistema o aplicación paralela, permitiendo hasta cierto punto generar una cierta predicción
del comportamiento que esta presentará cuando se ha variado uno u otro parámetro. Sin duda
alguna, el diseño de modelos anaĺıticos no ocasiona intrusión alguna dentro del comportamiento
de la aplicación como pudiera generarlo algún tipo de instrumentación; sin embargo, este diseño
requiere especial atención en los parámetros involucrados y al comportamiento de la aplicación
como tal.

Existen varios enfoques de modelado de rendimiento, donde uno de los primeros han sido el
bottom-up y el top-down, que serán descritos a continuación:

Bottom-up: los sistemas son descritos a través de conjuntos de parámetros o funciones
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que abstraen el software, el hardware y las interacciones entre ellos. El significado y la
importancia de éstos parámetros diferencia cada uno de ellos (HW de SW, por ejemplo).
Las técnicas de modelado anaĺıtico y sus extensiones son ejemplos de modelado bottom-
up.

Top-down: El punto de inicio para el modelado top-down es la estructura de la aplica-
ción. Los parámetros de los modelos se obtienen de las caracteŕısticas de la aplicación, y
de su interacción entre el hardware y el software derivadas de la aplicación. Los modelos
basados en descripción y el análisis estático son ejemplos de éste tipo de modelado.

En general, el modelado bottom-up está mejor adaptado a la investigación de factores de
arquitectura o del entorno, y el software se define a través de parámetros. El modelado Top-down
se enfoca en la paralelización de la aplicación, el estilo de particionado de datos, y otros aspectos
del software y por tanto está mejor ajustado al estudio de los problemas dentro de la aplicación.

3.2.1. Modelado Anaĺıtico

La técnica de modelado anaĺıtico abstrae las caracteŕısticas de un sistema paralelo como
un conjunto de parámetros o funciones parametrizadas con la intención de hacer la tarea de
modelado más fácil. Esta técnica ha sido ampliamente utilizada en el desarrollo y modelado de
sistemas paralelos. Como ventajas de emplear este tipo de modelado, se encuentra que es usual-
mente muy económico y provee una visión abstracta del hardware y del software. Aún aśı, los
modelos son pocas veces lo suficientemente precisos cuando se compara con las ejecuciones reales
debido a las simplificaciones en las que se incurre a medida que se realiza el modelado. Según
la literatura existen tres enfoques que difieren en la forma en que los modelos son expresados,
cada uno de los cuales serán descritos en la siguiente sección.

Cuando se trabaja con modelado anaĺıtico hay que tener en consideración algunos aspectos
como el nivel de detalle del sistema que se está estudiando (o nivel de abstracción) que está rela-
cionado con el modelo. Los parámetros por si mismos y su representación, determinan el nivel de
abstracción. A medida que aumenta el número de parámetros disminuye el nivel de abstracción
(más detalles en el modelo) y se incrementa el costo del modelo en tiempo de desarrollo. En
cuanto a la representación, los parámetros escalares son más sencillos que las herramientas es-
tad́ısticas y las funciones, pero menos flexibles. Las funciones requieren que se determine no solo
sus coeficientes, sino también su forma. Las herramientas estad́ısticas requieren un conocimiento
especializado que los programadores en promedio no poseen.

Otra consideración que hay que tomar en cuenta cuando se diseña el modelo anaĺıtico, es el
grado de dificultad para determinar los valores de los parámetros, los coeficientes de las funciones
o las especificaciones de las herramientas estad́ısticas (parámetros de distribución de variables,
por ejemplo). Si los parámetros son demasiado espećıficos, pueden ser dif́ıciles de capturar debido
a la carencia de herramientas adecuadas o conocimiento de la aplicación. Si el parámetro es de
muy alto nivel, puede requerir la representación de comportamientos caracteŕısticos del sistema.
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Los modelos anaĺıticos, suelen tener bajo costo computacional, a excepción de algunas he-
rramientas estad́ısticas que requieren esfuerzos significativos de simulación.

Modelado Anaĺıtico con Parámetros Escalares

Este enfoque emplea un conjunto de parámetros escalares (número de workers por ejemplo)
para modelar el comportamiento de un sistema paralelo. Estos parámetros expresan el compor-
tamiento promedio de un sistema paralelo bajo condiciones espećıficas; los parámetros suelen
variar en número e información expresada según la finalidad con la que se diseña el modelo.

Modelado Anaĺıtico con Funciones

Con la finalidad de expresar los efectos de los parámetros de hardware y software en el tiempo
de ejecución, muchos investigadores han adoptado las funciones matemáticas en vez de valores
escalares en sus modelos. Ya que el empleo de funciones aumenta la flexibilidad y el nivel de
expresividad del modelo, pero también puede aumentar la complejidad de los mismos, debido a
la necesidad de determinar la forma y los coeficientes de las funciones. Los modelos basados en
parámetros escalares son un caso simplificado del modelado con funciones, donde las funciones
son constantes.

Modelado Anaĺıtico Estad́ıstico

Otro enfoque para el modelado anaĺıtico de rendimiento para sistemas paralelos está carac-
terizado por el uso de herramientas de modelado estad́ıstico como distribución de variables y
modelos de Markov. Éstos difieren del enfoque de parámetros escalares en el sentido que los
“parámetros” ahora son herramientas estad́ısticas.

3.2.2. Descomposición del Modelado Anaĺıtico

La descomposición del modelado anaĺıtico es una extensión del enfoque anaĺıtico. En éste en-
foque los parámetros y funciones son usados para caracterizar el sistema paralelo. La idea detrás
de la descomposición es simplificar el proceso de modelado. Permitiendo el diseño de mode-
los modulares, donde varias piezas pueden ser actualizadas o reemplazadas independientemente
unas de otras. Los sistemas paralelos pueden ser descompuestos de varias formas dependiendo
de la finalidad del modelado.

En general, la descomposición simplifica el proceso de modelado porque divide el sistema
paralelo en partes que son mas amenas y modelables. La principal diferencia entre las estrategias
de descomposición es la forma en que el sistema es dividido y las implicaciones de la división.

La descomposición vertical y horizontal están limitadas por la interfaz entre las piezas. En la
descomposición horizontal, las interfaces limitan el rango de la aplicación que puede ser tratado
por el modelo. Mientras que en la descomposición vertical, el modelo para cada pieza no considera
la influencia de las piezas que la preceden, lo cual puede llevar a una imprecisión considerable.
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La descomposición por overhead no tiene limitación por interfaz, porque usualmente asume que
las categoŕıas son mutuamente exclusivas.

Cabe destacar también que la descomposición no aborda los problemas o limitaciones de las
técnicas empleadas para modelar las piezas.

Descomposición Horizontal

Bajo el enfoque de descomposición horizontal, un sistema paralelo es dividido en varias capas
(por ejemplo se podŕıa dividir en: aplicación, entorno de ejecución, y capas de arquitectura), cada
uno de los cuales es modelado individualmente. La complejidad y el número de capas depende
de las necesidades de modelado; la interfaz entre las capas es determinada por el modelo.

Descomposición Vertical

Cuando se trata de descomposición vertical, las operaciones de alto nivel como las rutinas de
comunicación o las operaciones con vectores, son las unidades de modelado. Este enfoque suele
llamarse aśı porque el objetivo principal está sobre las operaciones en el nivel de aplicación, y
los modelos capturan las caracteŕısticas de los componentes del sistema paralelo en múltiples
niveles. Una de las principales caracteŕısticas de la descomposición vertical es el uso de modelos
basado en operaciones para predecir el rendimiento de la aplicación. Sin embargo, el nivel de
imprecisión en las predicciones es proporcional a las variaciones de comportamiento en una
operación. Tales variaciones pueden ser ocasionadas por diferentes distribuciones de datos al
momento en que la operación es activada.

Descomposición por fuente de Overhead

En general, podemos definir el overhead como un retraso en la ejecución que aparece debido a
la paralelización y previene la utilización del potencial de paralelismo del sistema. Este overhead
suele aparecer impĺıcitamente como parámetros de la arquitectura tales como: latencia, tiempo
de pérdidas de cache; o como una consecuencia natural de la paralelización del software, como por
ejemplo: un desbalanceo de carga o contención de los recursos. La descomposición por overhead
divide estos overheads en categoŕıas significativas que ayudan tanto al usuario como a la tarea
de modelado.

El aspecto clave de la descomposición por overhead es la selección de las categoŕıas. Más
espećıficamente, éstas categoŕıas pueden clasificarse en dos tipos: cualitativas y cuantitativas.
El significado y el propósito (bajo el contexto de modelado) de cada categoŕıa son ejemplos de
aspectos cualitativos, junto con la habilidad de medir la categoŕıa. Sin embargo, los aspectos
cuantitativos, como el número de categoŕıas dentro del modelo, afecta la complejidad y el costo
de la tarea de modelado. Cabe acotar que la descomposición por overhead ayuda a entender el
rendimiento del sistema pero no mejora las técnicas empleadas para modelar cada categoŕıa.

42



3.2.3. Modelado Estructural

En el modelado estructural el punto de inicio en el proceso de modelado es la aplicación
como tal. La información estructurada es obtenida tanto a través de descripciones del usuario
como a través de análisis de compilador.

Modelado Basado en Descripción

Para modelos basados en descripción, el proceso de modelado está basado en información
descriptiva provista por el usuario acerca de la estructura y comportamiento del sistema paralelo.
Existen modelos que estructuran el cómputo en forma de árbol. Sus marcos de trabajo dividen
los modelos en parámetros relacionados con el hardware y el sistema de software. Los parámetros
relacionados con el hardware incluyen el tiempo de cómputo y de comunicación de la aplicación.

El tiempo de comunicación está dividido en comunicación que puede ser solapada con cómpu-
to y comunicación que no puede ser solapada. La generación del modelo se inicia desde las hojas
del gráfico de tareas y los tiempos son combinados de acuerdo a la semántica de los nodos.
Con respecto a los parámetros de hardware, éstos son intuitivos pero dif́ıciles de capturar (por
ejemplo, el solapamiento entre cómputo y comunicación). Además, otra fuente común de de-
gradación de rendimiento, como la contención, no es considerada. Adicionalmente, el modelo de
programación se vuelve restrictivo dada la dependencia de los gráficos de tareas en forma de
árbol. Eventos como sincronización y barriers no son soportados por el modelo.

Los modelos basados en descripción se caracterizan por una descripción del programa que
consiste en un gráfico de tareas (o equivalente) describiendo la parelización de la aplicación y
algunos parámetros que expresan las caracteŕısticas del hardware. La mayor ventaja en emplear
gráficos de tareas es que son más amenos para modelar. Sin embargo, algunos modelos de
programación no pueden ser caracterizados precisamente a través de este tipo de gráficos, un
hecho que limita la aplicabilidad de ésta técnica. En cuanto a los parámetros que caracterizan el
hardware, los factores a considerar son similares a los enfoques anaĺıticos basados en parámetros:
el nivel de abstracción de los parámetros y la dificultad para obtenerlos.

Modelado con Análisis Estático

El análisis estático difiere del enfoque descriptivo en que requiere mucha menos información
y esfuerzo por parte del usuario. La información de rendimiento es producida automáticamente
desde el código fuente original. Esta información es empleada para la paralelización y la selección
de la partición de datos o para ayudar a sintonizar la aplicación.

Las herramientas de análisis estático suelen ser parte de entornos de compilación, donde
proveen información de rendimiento acerca de la paralelización y la partición de los datos dentro
de la aplicación. Estas herramientas son costosas en términos de desarrollo e implementación, ya
que involucran técnicas un poco más sofisticadas. De todas maneras, su uso es trivial y el costo
computacional para producir predicciones es insignificante. Con respecto a la precisión, no son
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precisas en términos generales, pero usualmente suelen ser apropiadas para clasificar diferentes
paralelizaciones.

3.3. Metodoloǵıa

Para llevar ésta investigación a buen término y una vez que se han definido los principales
conceptos teóricos en cuanto a análisis de rendimiento de sistemas paralelos y la realización del
modelado de la aplicación, es importante señalar que el conjunto de pasos a seguir para conseguir
realizar el trabajo pueden estar basados en el enfoque dado por Jain [19], enfoque de análisis de
rendimiento diseñado hace casi dos décadas atrás, que no deja de ser un fundamento apropiado
para llevar a cabo el proceso de evaluación de aplicaciones paralelas y sistemas computacionales.
Inicialmente está basado en mostrar el enfoque apropiado para realizar la evaluación evitando
incurrir en errores t́ıpicos como el perder el objetivo por el que se está realizando todo el proceso.
Entre las etapas más relevantes que señala el autor y que se debeŕıan considerar a medida que
se avanza están:

1. Establecer los objetivos y definir el sistema: el primer paso en cualquier proyecto de
evaluación de rendimiento es establecer los objetivos del estudio y definir qué consituye
el sistema, delineando los ĺımites del sistema. Dado un sistema o una aplicación, la
definición del sistema puede variar dependiendo de los objetivos del estudio. Dada una
aplicación paralela el objetivo podŕıa ser determinar cuan flexible es la aplicación para
ser ejecutada en uno u otro entorno, o el punto en que ésta esté sacando provecho del
paralelismo del entorno sobre el que está siendo ejecutada. La elección de las limitantes
del sistema afecta las métricas de rendimiento aśı como las cargas de trabajo empleadas
para comparar los sistemas.

Aún aśı, entender éstas limitantes es importante; ya que la consideración clave en
establecer las limitaciones del sistema es el objetivo del estudio. Otras consideraciones,
como control administrativo de los auspiciadores del estudio, también podŕıan ser
tomados en cuenta. Si los auspiciadores no tienen control sobre ciertos componentes,
quizá quieran mantener esos componentes fuera de los ĺımites del sistema.

2. Listar los servicios y las salidas: cada sistema provee un conjunto de servicios. Por
ejemplo, una aplicación paralela permite realizar un trabajo que serialmente en un sólo
ordenador es mucho más complejo, distribuyendo el trabajo entre dos o más unidades
de cómputo. El siguiente paso cuando se analiza un sistema es listar esos servicios.
Cuando un usuario solicita cualquiera de estos servicios, existe un número de posibles
salidas. Algunas de estas salidas son deseables otras quizás no. La aplicación paralela
con la que se estuviera trabajando, puede no entregar los resultados esperados, debido a
algún error en el diseño o en el entorno paralelo sobre el que se ejecuta, o sencillamente
no entregar resultado alguno debido a un deadlock o problemas similares. Una lista de
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servicios y salidas posibles es útil más tarde cuando se desean seleccionar las métricas
adecuadas y las cargas de trabajo.

3. Seleccionar las métricas: el siguiente paso es seleccionar un criterio para comparar el
rendimiento. Estos criterios son denominados métricas. En general, las métricas están
relacionadas con la velocidad, precisión y disponibilidad de servicios. El rendimiento
de las aplicaciones paralelas puede estar, por ejemplo, relacionado con el nivel de
escalabilidad que ésta puede alcanzar, la precisión de cálculo, la cantidad de datos que
puede manejar, o la rapidez con que entrega los resultados al usuario.

Para cada estudio de rendimiento, un conjunto de criterios de rendimiento o métricas
deben ser seleccionadas. Una forma de preparar este conjunto es listando los servicios
ofrecidos por el sistema. Para cada solicitud de servicio realizado por el sistema, exis-
ten varias salidas posibles. Generalmente éstas salidas pueden ser clasificadas en tres
categoŕıas; el sistema puede realizar el servicio (1) correctamente, (2) incorrectamente
o (3) reusarse a realizar el servicio. Si el sistema realiza el servicio correctamente, su
rendimiento es medido por el tiempo que le ha tomado realizar el servicio, la tasa a la
que el servicio es llevado a cabo y la cantidad de recursos consumidos a medida que la
tarea es llevada a cabo.

Éstas tres métricas relacionadas con el tiempo-tasa-recursos para un rendimiento exito-
so son también denominadas métricas de respuesta, productividad y utilización, respec-
tivamente. El recurso con mayor retraso o utilización bajo este enfoque es denominado
cuello de botella. La optimización del rendimiento ligado con este recurso es el que
generará mayor beneficio. Determinando la utilización de varios recursos dentro del
sistema es la parte importante de la evaluación de rendimiento.

Si el sistema lleva a cabo el servicio incorrectamente, se dice que ha ocurrido un error.
Es muy útili clasificar los errores y determinar la probabilidad de cada clase de errores.
Si el sistema no lleva a cabo el servicio, se dice que está “cáıdo”, fallado o no disponible.
Una vez más es útil clasificar los modos de falla y determinar las probabilidades de
cada clase.

Las métricas asociadas con las tres salidas, denominadas servicio exitoso, error y no
disponibilidad, son también denominadas métricas de velocidad, confianza y disponi-
bilidad (métricas de respuesta, productividad y utilización, respectivamente). Debeŕıa
ser obvio que para cada servicio ofrecido por el sistema, se debeŕıa tener un número de
métricas de velocidad, confianza y disponibilidad. La mayoŕıa de los sistemas ofrecen
más de un servicio y por ello el número de métricas crece proporcionalmemte.

Para muchas métricas, el valor medio es lo único importante, pero sin embargo, nunca
se debe subestimar el efecto de la variabilidad. Por ejempli un tiempo medio de res-
puesta muy alto en un sistema de tiempo compartido, aśı como una alta variabilidad
del tiempo de respuesta puede degradar la productividad significativamente. En estos
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casos, es necesario estudiar ambas métricas.

En sistemas computacionales compartidos por varios usuarios, se deben considerar dos
tipos de métricas, las individuales y las globales. Las métricas individuales reflejan
el uso de cada usuario, mientras que las métricas globales reflejan el uso completo
del sistema. La utilización de recursos, confiabilidad y disponibilidad son métricas
globales, mientras que el tiempo de respuesta y el throughput pueden ser medidos
tanto individual como globalmente para el sistema.

Existen casos cuando la decisión que optimiza métricas individuales es diferente de
aquella que optimiza una métrica del sistema. Dado un número de métricas, es reco-
mendable emplear las siguientes consideraciones para seleccionar un subconjunto: poca
variabilidad, que ayuda a reducir el número de repeticiones necesarias para obtener un
nivel de confianza estad́ıstica; no redundacia, que los mismos datos no sean obtenidos
en otra variable totalmente diferente; y exhaustividad, que se refiere a que los datos
reflejen lo que en realidad se quiere mostrar.

Métricas de Rendimiento Comúmente Empleadas

Tiempo de Respuesta, está definido como el intervalo entre la solicitud del usuario
y la respuesta del sistema [19]. Esta definición sin embargo, es simplista debido
a que las solicitudes aśı como las respeustas no son instantáneas. El tiempo de
tipeo de la solicitud por parte del ususario y el tiempo que le toma al sistema
generar la salida son omitidos. Por ello el tiempo de respuesta puede presentar
dos posibles definiciones, puede ser definido tanto como el intervalo entre la fi-
nalización de una solicitur y el inicio de su respuesta correspondiente por parte
del sistema, o como el intervalo entre la finalización de la solicitud y el fin de la
respuesta correspondiente. Ambas definiciones son aceptables siempre y cuando
estén claramente especificadas.

Throughput, está definido como la tasa (solicitudes por unidad de tiempo) en
que las solicitudes son atendidas por el sistema. Para sistemas interactivos (sis-
temas de video bajo demanda), este es medido en solicitudes por segundo; para
CPU’s, se mide en Millones de Instrucciones Por Segundo (MIPS) o Millones de
Operaciones de Punto Flotante por Segundo (MFLOPS). Para redes es medido
en paquetes por segundo (pps) o bits por segundo (bps). El throughput de un
sistema generalmente aumenta a medida que la carga del sisteme aumenta. El
throughput máximo alcanzable bajo unas condiciones de carga de trabajo ideal
es denominado capacidad nominal del sistema. En algunos casos, es más intere-
sante saber que el máximo throughput alcanzable sin exceder un tiempo ĺımite de
respuesta prestablecido, puede ser llamado como la capacidad usable del sistema.

La utilización de un recurso es medida como la fracción de tiempo que el recurso
es ocupado atendiendo solicitudes. Esta es la relación entre el tiempo ocupado
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y el tiempo total transcurrido en un peŕıodo dado. El peŕıodo durante el cual el
recurso no está siendo utilizado es denominado tiempo de inactividad . Los gestores
de sistemas normalmente están interesados en balancear la carga de forma que
un recurso no sea utilizado más que otros. Sin embargo, no siempre es posible
lograrlo.

La fiabilidad de un sistema es usualmente medida por la probabilidad de errores
o por el tiempo medio entre errores. Éste último es conocido como segundos libres
de errores.

La disponibilidad de un sistema está definida por la fracción de tiempo que el
sistema está disponible para servir las solicitudes de los usuarios. El tiempo du-
rante el cual el sistema no está disponible es denominado downtime; y el tiempo
durante el cual es sistema está dispuesto es llamado uptime.

Clasificación de Utilidad de las Métricas de Rendimiento

Dependiendo de la utilidad de una métrica de rendimiento, esta puede ser categorizada
en tres clases:

Higher is Better o HB, los usuarios del sistema y los gestores del sistema prefieren
valores altos en éstas métricas. Por ejemplo: el troughput es una de ellas.

Lower is Better o LB, los gestores y usuarios del sistema prefieren los valores más
pequeños posibles en dichas métricas, como en el caso del tiempo de respuesta.

Nominal is Best o NB. Tanto valores muy altos como muy bajos no son desea-
bles. Mientras que un valor particular en el medio es considerado lo mejor. Por
ejemplo, la utilización es considerada una caracteŕıstica NB. Ya que si existe una
utilización muy alta es considerada mala por parte del usuario por tener un tiem-
po de respuesta muy alto. Pero una utilización muy baja es considerada mala por
los administradores del sistema ya que los recursos del sistema no están siendo
utilizados. Es por ello que se esperan valores entre un determinado rango para ser
considerados los mejores.

4. Listar los parámetros, el siguiente paso en proyectos de rendimiento es realizar una lista
de todos los parámetros que afectan el rendimiento. Esa lista puede ser dividida en
parámetros del sistema y parámetros de carga de trabajo. Los parámetros de sistema
incluyen tanto los de hardware como los de software, los cuales generalmente no vaŕıan
a lo largo de varias instalaciones en el sistema.

Los parámetros de carga de trabajo son caracteŕısticas de las solicitudes de los usuarios,
lo cuales vaŕıan de una instalación a la siguiente. La lista de parámetros puede que no
esté completa; esto es, que luego de una primera revisión de análisis, se puede descubrir
que existen parámetros adicionales que afectan el rendimiento.
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Entonces pueden ser añadidos a la lista, pero todo el tiempo es recomendable conservar
la lista lo más fácil de entender posible. Esto permite al analista y a aquéllos encar-
gados de tomar decisiones de discutir el impacto de varios parámetros y determinar
qué parámetros son necesarios para recolectar despueés o durante el análisis.

5. Seleccionar los Factores para estudiar, la lista de parámetros puede ser dividida en
dos partes: aquellos que serán verificados durante la evaluación y aquéllos que no.
Los parámetros que serán variados, son llamados factores y sus valores son llamados
niveles. En general, la lista de factores, y sus posibles niveles, es mayor que la que los
recursos disponibles podŕıa permitir. De todas maneras, la lista continuaŕıa creciendo
hasta que se torne obvio que no hay suficientes recursos para estudiar el problema.
Es mejor empezar con una lista corta de factores y un pequeño número de niveles por
cada factor y luego extender la lista en la siguiente fase del proyecto, que es la selección
de la técnica de evaluación si los recursos lo permiten.

Los parámetros que se espera que tenga un impacto mayor en el rendimiento son los que
se deben seleccionar preferiblemente como factores. Tal como sucede con las métricas,
un error común cuando se seleccionan los factores es que los parámetros que son fáciles
de variar y medir son usados como factores mientras que otros más influyentes son
ignorados sencillamente por la dificultad que traen consigo para ser medidos. Cuando
se seleccionan factores, es importante considerar las restricciones económicas y técnicas
que existen aśı como incluir las limitaciones impuestas por las personas encargadas
de la decisión final y el tiempo disponible para tomar la decisión. Esto aumenta las
oportunidades de encontrar una solución que es aceptable e implementable.

6. Seleccionar la técnica de evaluación. Las tres técnicas para evaluación de rendimiento
son el modelado anaĺıtico, la simulación y la medición sobre un sistema real. La selec-
ción de la técnica adecuada depende del tiempo y recursos disponibles para resolver el
problema y el nivel de precisión deseado.

7. Seleccionar la carga de trabajo. La carga de trabajo consiste en una lista de solicitudes
de servicios para el sistema. Por ejemplo la carga de trabajo para la comparación
de varias bases de datos puede consistir en un conjunto de consultas. Dependiendo
de la técnica de evaluación seleccionada, la carga de trabajo puede ser expresada de
diferentes formas. Para el modelado anaĺıtico, la carga de trabajo puede ser expresada
como la probabilidad de varias solicitudes. Para simulación, se puede usar una traza
de solicitudes medidas en un sistema real. Y para las mediciones, la carga de trabajo
puede consistir en scripts que serán ejecutados en el sistema. En todos los casos, es
escencial que la carga de trabajo sea representativa del uso del sistema en la vida real.
Para producir cargas de trabajo representativas, es necesario medir y caracterizar la
carga de trabajo en sistemas existentes.
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8. Diseñar los experimentos. Una vez que se tiene una lista de factores y sus niveles,
es necesario decidir una secuencia de experimentos que ofrezcan la mayor cantidad de
información con el menor esfuerzo. En la práctica, es muy útil realizar los experimentos
en dos fases. En la primera fase, el número de factores puede ser grande pero el número
de niveles lo más pequeño posible. El objetivo es determinar el efecto relativo de varios
factores. Muchas veces, esto puede ser llevado a cabo con un diseño de experimentos en
factorial. En la segunda fase, el número de factores es reducido y el número de niveles
de esos factores que tienen impacto significativo incrementados.

9. Analizar e interpretar los datos. Es importante reconocer que las salidas de las me-
diciones y simulaciones son cantidades aleatorias y que la salida puede ser diferente
cada vez que el experimento es repetido. Comparando las dos alternativas, es necesario
tomar en cuenta la variabilidad de los resultados. Simplemente comparando las me-
dias puede llevar a conclusiones imprecisas. Para ello habrá que hacer uso de técnicas
estad́ısticas para comparar las dos alternativas.

Interpretando los resultados de un análisis es parte clave cuando se trata de analizar
el rendimiento. Se debe comprender que el análisis solo produce resultados y no con-
clusiones. Los resultados proveen las bases sobre las que los analistas pueden dibujar
conclusiones. Cuando a un grupo de analistas les son dados los mismos conjuntos de
resultados, la conclusión generada por cada uno de ellos puede ser diferente.

10. Presentar los resultados. El paso final de todo proyecto de análisis de rendimiento es
comunicar los resultados a otros miembros del grupo de investigación o aquéllas per-
sonas relacionadas con la toma de decisión al final de la investigación. Es importante
que los resultados sean presentados de forma que se puedan entender fácilmente. Nor-
malmente esto requiere la presentación de forma gráfica y sin jerga estad́ıstica. Los
gráficos deben estar diseñados con la escala apropiada.

A menudo en este punto, todo el conocimiento generado una vez finalizado el estudio
del proyecto, puede requerir que el desarrollador vuelva atrás y reconsiderar algunas
de las decisiones tomadas en fases anteriores. Definir de nuevo algunas limitaciones
del proyecto que podŕıan proporcionar mayor información para la decisión final con
respecto a la aplicación o la idea final obtenida luego de todo el trabajo.

Todas estas etapas del enfoque de evaluación de rendimiento podŕıan ir acompañadas de
enfoques de gestión de proyectos como Plan, Do, Check, Act, también conocido como el ćırculo de
Demming (http://www.balancedscorecard.org/TheDemingCycle/tabid/112/Default.aspx), en el
que cada una de estas fases es planificada con un alto nivel de atención, luego llevada a cabo
con la intención de obtener determinados resultados que serán revisados y basándose en ellos se
decide que acto habrá de ser llevado a cabo para continuar con la investigación. Entiéndase que
este proceso iterativo va acompañando cada una de las fases que habrán de ser completadas en
aras de realizar un análisis de rendimiento apropiado y preciso.
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Existen diferentes técnicas de evaluación de rendimiento en un sistema o en una aplicación
como tal, éstas van directamente relacionadas con la fase de desarrollo en que se encuentre
el proyecto, la cantidad de tiempo que consumen, las herramientas o recursos necesarios para
llevarlos a cabo, el nivel de precisón que brinda una u otra, el costo que genera, entre otras.
Inicialmente se identifican tres técnicas diferentes para la observación del comportamiento de
una aplicación: (1) Medición, (2) Simulación y (3) Modelado; principalmente la selección de
una u otra técnica de medición viene ligada con el estado de desarrollo en que se encuentre el
proyecto.

Según lo señala Jain [19] inicialmente la medición es más fácil de ser llevada a cabo en
proyectos que ya están finalizados; es decir, que ya existe una versión del producto, pero si
se tratase de una nueva idea o concepto que se quisiera evaluar, solamente el modelado y la
simulación son capaces de brindar las respuestas necesarias, ya que son usados en situaciones
donde no es posible realizar una medición; sin embargo, seŕıa mucho más convincente para otros
si el modelo anaĺıtico o la simulación están basados en mediciones previas.

Otro factor determinante al momento de seleccionar una técnica de evaluación es el tiempo
disponible para realizar todo el proceso, cabe recordar que en el campo cient́ıfico la mayoŕıa de
las veces los resultados se necesitan para ayer; si este fuera el único factor determinante seŕıa
necesario considerar el modelado anaĺıtico, ya que las simulaciones consumen una gran cantidad
de tiempo, y aunque las mediciones toman mucho menos tiempo que las simulaciones, tienden
a tomar un poco más que con el modelado, pero como cuando “nada puede ir mal seguramente
irá”, el tiempo para las mediciones es el más variable de las tres técnicas.

Una consideración que debe ser tomada en cuenta es la disponibilidad de herramientas y el
nivel de habilidad del analista, ésta vendrá ligada directamente con el campo que mejor domine.
Si es hábil con lenguajes de simulación probablemente se mantendrá alejado de técnicas de
medición o modelado; pero si se le da muy bien el manejo de modelos, apostará por esta técnica
o en su defecto se limitará a medición y simulación. Por lo que la selección de la técnica de
evaluación termina convirtiéndose en algo muy relativo.

Asimismo, factores como el grado de precisión que se persigue en los resultados, se obtendrán
valores reales muy variables provenientes de las mediciones tomadas sobre el objeto de estudio,
sin embargo si el modelado y la simulación fueran llevados a cabo, el grado de precisión seŕıa
muy bajo y moderado respectivamente, ya que está directamente ligado con el nivel de similitud
existente entre el modelo o el simulador con el entorno en la realidad. Un simulador es la
aproximación más real que se puede generar para observar el comportamiento de un entorno en
el que no es fácil realizar medidas.

Si el objetivo del proceso de evaluación es determinar el nivel en que diferentes factores
afectan el desempeño de cierto sistema, es mucho más útil y viable realizar un modelo que permita
observar la influencia que genera cada uno de los diferentes factores sobre el comportamiento
global; aunque, si se desea comparar diferentes alternativas y determinar un valor exacto de
un factor que es capaz de brindar el mejor rendimiento, técnicas como la de medición son las
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más recomendables. Con la simulación es posible obtener un conjunto de datos que representan
el punto más alto de rendimiento en el sistema, sin embargo no siempre es fácil identificar la
influencia de cada uno de los factores.

En cuanto al costo, la generación de un modelo anaĺıtico, en contraposición con la técnica
de medición, se convierte en la opción más económica, esto debido a que consume pocos recur-
sos, muchas veces solo con lápiz y papel es posible generarlo, en cambio cuando hablamos de
tomar medidas, es necesario tener el sistema a evaluar funcionando, invertir en herramientas
de medición y en tiempo. Aún aśı suele ser recomendable acompañar cada una de las técnicas
de evaluación con alguna de las otras dos simultánea o secuencialmente, de forma que pueda
validarse cualquier evaluación realizada anteriormente.

En un principio el proceso de evaluación y obtención de resultados requiere cierto fundamento
estad́ıstico que permita darle validez a los datos obtenidos y posteriormente realizar el análisis
necesario para sacar las conclusiones pertinentes que se persiguen durante el proceso de análisis
de rendimiento; para ello es necesario seguir un cierto número de pasos que nos orientan como
analistas durante el proceso de investigación y análisis de la aplicación.

Inicialmente es necesario haber definido concretamente cual es el problema y su alcance,
con ello se consigue tener una idea general del enfoque que habrá que darle al proceso de
experimentación de forma que genere los resultados necesarios para obtener las conclusiones
pertinentes de la forma más práctica y que consuma la menor cantidad de tiempo y recursos
posibles. Una vez que el problema ha sido enmarcado y se ha definido la salida que se espera
obtener cuando los experimentos concluyan, se logra definir variable de respuesta; con la que se
procede posteriormente a la selección de las variables que afectan su comportamiento y de los
cuales se pueden tener varias alternativas, identificadas como factores. Factores que según los
posibles valores que pudieran tomar tendrán ciertos niveles que habrán de ser considerados al
momento de diseñar el grupo de experimentos que se van a realizar.

De igual forma los factores antes mencionados, podrán ser factores primarios o factores
secundarios, estos se seleccionan de acuerdo a aquéllos que influyen en el comportamiento de los
experimentos y que habrán de ser cuantificados o no, respectivamente. Suelen existir un gran
número de factores que impactan en los resultados obtenidos y que algunas veces será necesario
tener registros de los efectos que éstos generen, si este fuera es caso se trataŕıa de factores
primarios; mientras que si no se está interesado en cuantificar el impacto que éstos generen,
éstos terminan clasificados como factores secundarios. Asimismo, habrá que fijar el número de
veces que se plantea realizar un determinado experimento para obtener los resultados necesarios,
este valor es conocido como replicación.

Por otro lado, es importante señalar que como unidad experimental se conoce a cualquier
entidad que es usada para el experimento, generalmente solo aquéllas unidades experimentales
que son consideradas como uno de los factores en el estudio son las que interesan; el objetivo del
diseño experimental es minimizar el impacto de variación entre unidades experimentales, por
ejemplo: en el caso de una aplicación paralela, el entorno sobre el que ésta está siendo probada o
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donde están siendo llevado a cabo los experimentos. Asimismo, no se debe dejar de lado el nivel
de interacción existente entre dos o más factores; se dice que dos factores interactúan uno con
el otro cuando el efecto de uno depende del nivel del otro.

El desarrollo de la metodoloǵıa se verá reflejado en el caṕıtulo 5, donde se detalla cada una de
las fases y los datos que se han tomado en consideración para realizar el análisis de rendimiento
de mpiBLAST como aplicación paralela de bioinformática, y del cual se espera generar una
conclusión sobre sus restricciones, limitantes y ventajas.
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Caṕıtulo 4

Aplicaciones Bioinformáticas

La genética...“Será una segunda pirámide de Keops: un coloso que está ah́ı y
que nadie puede usar”

Erwin Chargaff (1905-2002).

4.1. Introducción

En los últimos años se ha observado un inmenso número de organismos que han sido secuen-
ciados en proyectos de genómica e incluidos en bases de datos genómicas cada vez más grandes,
con ello el desarrollo de la bioloǵıa molecular ha ido tomando más y más fuerza y forma a me-
dida que pasa el tiempo. Las bases de datos genómicas fueron diseñadas con la idea de tener un
“respaldo” de la información biológica de los organismos para que puedan ser analizadas luego.

Observando estudios realizados por el GenBank [5] que es una de las principales bibliotecas
de bases de datos biológicas, el crecimiento de estas en los últimos años ha sido de forma
exponencial, aumentando en hasta varios órdenes de magnitud; adicionalmente, éstas bases de
datos son consultadas de forma intensiva diariamente. Los biólogos han tenido que enfrentarse al
problema de lidiar con bases de datos inmensas durante la búsqueda de similitudes significativas
entre secuencias biológicas. Para alcanzar este objetivo, ha sido necesario recurrir a un gran
poder de cómputo y grandes espacios de almacenamiento. Aún más todav́ıa, han tenido que
recurrir al empleo de algoritmos sofisticados para modelar las relaciones reaĺısticas entre los
organismos.

Los bancos de datos genómicos son escrutados rutinaria y diariamente por miles de investi-
gadores. Una de las tareas más comunes en bioloǵıa molecular es tratar de asignar una función 1

a un gen o protéına desconocido. Cuando se escanean las bases de datos, los biólogos lidian con
un gran dilema: velocidad o calidad. Los datos genómicos crecen exponencialmente (se duplican
cada 12-15 meses) tan o más rápido que el poder de cómputo (que se duplica cada 18 me-
ses). En un ordenador estándar, una búsqueda de alta calidad puede tomar horas mientras que

1Una función es la respuesta a la pregunta de por qué algunos elementos o procesos ocurren en un sistema que
ha evolucionado a través del proceso de selección.
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una búsqeda apenas aproximada pudiera tomar solo unas cuantas décimas de segundos. Claro
está que las búsquedas de alta calidad están basadas en métodos de programación dinámica que
consumen gran cantidad de tiempo. Mientras que los aproximados como en el caso de BLAST,
están basados en heuŕısticas.

Este proceso de búsqueda es conocido como Alineamiento de Secuencias 2 con la cual se
puede realizar la medición del grado de similitud 3 existente entre dos secuencias. Para ello se
superponen las secuencias de forma que se consiga determinar la cantidad de letras o śımbolos
que coinciden. Obteniéndose una matriz, en la que las filas son las secuencias y las columnas,
son las posiciones de las letras.

BLAST (Basic Local Alignment Search Tool) [1] es la herramienta heuŕıstica más usada,
que busca las similitudes entre secuencias biológicas. A diferencia de métodos exactos como
el de Needleman [27] y el de Smith-Waterman [33] que presentan complejidad cuadrática de
tiempo y espacio, BLAST es a menudo ejecutado rápidamente para comparación de pares de
secuencias en pequeños espacios de memoria. Aún aśı, los biólogos usualmente no comparan sólo
dos secuencias sino un conjunto de secuencias descubiertas con toda una secuencia genómica.
En este caso, los tiempos de ejecución de BLAST pueden ser muy altos, y enfoques alternativos
como cómputo paralelo y distribúıdo, debeŕıa producir resultados en un menor tiempo, ya que
facilitan el manejo de un mayor volúmen de datos y permiten la posibilidad de ejecutar varias
tareas simultáneamente. La ejecución serial de BLAST versa en que sólo un nódo de cómputo
es el que se encarga de realizar la búsqueda en la totalidad de la extensión de la base de datos
biológica, realizando los alineamientos y obteniendo aquéllas secuencias homólogas. Sin embargo,
cuando se plantea el paradigma de paralelismo, este trabajo puede ser distribúıdo entre diferentes
máquinas, de forma que 2 o más nodos de cómputo estarán realizando los alineamientos contra
la base de datos.

Los ficheros de datos genómicos con los que las secuencias de consulta o patrones son com-
parados, son compilados en grandes bases de datos. GenBank, una colección de información
de ADN y protéınas, mantiene más de 44 billones de pares bases en más de 40 millones de
secuencias. De esta forma, el tamaño de cada caracter que representa una base en una cadena
es solamente un byte, que considerados en conjunto estaŕıamos hablando de una considerable
cantidad de datos. Los archivos de las bases de datos son a menudo mayores a un gigabyte cada
uno. Por lo que la cantidad de cómputo requerido para completar una búsqueda es proporcional
a la longitud de la secuencia de consulta y el tamaño de la base de datos. La rápidez con que un
ordenador pueda finalizar el trabajo de búsqueda está determinada por la capacidad de solapar
procesamiento y gestión de los datos de forma eficiente, de manera que se obtenga un mejor

2Las moléculas ADN, ARN y protéına se pueden considerar cadenas de las moléculas componentes, lo que en
el lenguaje de la bioinformática se traduce por secuencias. Cada una de las moléculas componentes se abrevia con
una letra, de manera que trataremos con secuencias de letras.

3Generalmente, una alta similitud entre dos secuencias se debe a que estas dos secuencias son homólogas.
Esto significa que las dos secuencias tienen un ancestro común, es decir, que derivan de una misma molécula. La
acumulación de mutaciones en el ADN a lo largo del tiempo es la causa de que las dos secuencias ya no sean
idénticas, sino sólo similares. Cuando tratamos con un conjunto de protéınas homólogas, se utiliza el término
familia de protéınas.[34]
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rendimiento. Ordenadores diseñados a medida con muchos procesadores son usualmente muy
costosos y exceden el tope financiero de laboratorios pequeños o individuales. Es por ello que
búsquedas en huéspedes basado en web son sujeto de una afluencia intensiva de usuarios y el
tiempo para obtener una respuesta aumenta durante los picos de uso.

Dado que BLAST es una herramienta bioinformática base en situaciones de alineamientos
de secuencias se han planteado estrategias de ejecución fuera de las usuales en cústers de or-
denadores dedicados y se ha considerado el uso de grids, trabajo que puede ser observado en
[39]. De forma que se pueda contar con mayores recursos de cómputo para realizar la tarea. Sin
embargo siempre se puede carecer el control total de los parámetros relacionados con el entorno
de ejecución que para nuestra investigación es relevante.

El dicho “muchas manos aligeran el trabajo”, se aplica bastante bien al cómputo. Muchos
nodos de cómputo colaborando en una manera centralmente coordinada permite realizar mucho
más trabajo en una forma mucho más rápida que si se hiciera en solo un ordenador. Esto debido a
la necesidad de contrastar ficheros tan grandes como pudieran ser el genoma humano contrastado
contra el genoma de otro mamı́fero como los ratones. Estaŕıamos hablando de la necesidad de
repartir entre cada “mano” una gran parte del trabajo de forma que se consiga agilizar este tipo
de alineamientos que son cómputointensivos y requieren cada vez mayor cantidad de recursos
para poder gestionar la E/S de los datos involucrados. Acudir al paradigma de paralelismo en
el caso de alineamientos masivos representa la principal opción para resolver este tipo de tareas.

El speedup ideal de una aplicación deberia ser dado por un factor n, donde n es el número
de nodos sobre los que la aplicación es distribuida. En realidad este speedup teórico no es
alcanzable. Tal como lo señaló Amdahl [3], el máximo speedup viene determinado por la parte
de la aplicación que no puede ser distribuida. La parte de cómputo más intensiva de los programas
de BLAST es la parte en la que se realiza el alineamiento de secuencia, que además es la porción
que puede ser distribúıda entre multiples nodos. Por lo tanto, aplicaciones que distribuyen la
búsqueda de BLAST son las más eficientes.

En contrapartida, las particiones de las bases de datos deben ser distribúıdas a las memorias
locales, lo que requiere que el env́ıo de datos a procesar sea más rápidos que la entrada y salida
y se puedan solapar con el cómputo.

4.2. Alineamiento de Secuencias

La comparación de secuencias biológicas es una operación fundamental en la bioinformática,
ya que facilita el relacionamiento entre ellas y permite la descripción de las funciones principales
de cada una de ellas. Es de hecho un problema de correspondencia de patrones, que consiste en
encontrar qué partes de las secuencias son homólogas o comparten una función. El alineamiento
de secuencias es un proceso de comparación de dos (o más) secuencias de forma que se consiga,
que un conjunto de caracteres individuales o patrones de caracteres se encuentren en el mismo
orden en un “alineamiento” vertical.
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Dado que una secuencia biológica contiene toda la información referente a un genoma o
protéına determinado representado en caracteres, estamos hablando del manejo de la “esencia”
de la vida como cadenas de texto; toda la información genética de una especie como tal se
encuentra resumida en ĺıneas de compuestos biológicos, que a su vez han ido evolucionando y/o
mutando a través del proceso natural de selección dejando herencias unas cadenas en otra.

Para comprender la realidad de este tipo de comparaciones biológicas partimos de la idea de
que un ser humano tiene una cadena biológica caracteŕıstica que lo identifica como ser humano;
esta cadena biológica es el ADN (Ácido Desoxirribonucléico). El ADN está representado como
una cadena de doble hélice compuesta por pares de dos de cuatro elementos constituyentes
denominados nucleótidos (un nucleótido está conformado por un grupo de fosfatos enlazados
con algunos azúcares denominado desoxirribosa, que a su vez están ligados a uno de cuatro tipos
de bases orgánicas de nitrógeno de nombre Adenina, Timina, Guanina y Citosina). Simplificando
aśı nuestra esencia como organismo vivo en todo su esplendor está reducido a cadenas de texto
compuesta de los caracteres A, C, T y G.

Las protéınas están constrúıdas de pequeños bloques denominados aminoácidos, que son
moléculas que por si sólas ya son bastante complejas, compuestas de carbono, hidrógeno, ox́ıgeno,
nitrógeno y átomos de azufre.

Estos aminoácidos se encontraban ligados entre ellos como una cadena, y la esencia de la
protéına estaba determinada no sólo por la cantidad de aminoácidos que conteńıan sino por el
orden exacto en que éstos estaban distribúıdos. La primera secuencia de aminoácidos de una
protéına, fue determinada en 1951 y se trataba de la insulina, la cual se derivaba de la siguiente
cadena:

Insulina = MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFF
YTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLEN
YCN.

Una vez que tenemos en consideración el tipo de cadenas biológicas (también denominadas
secuencia) con las que estamos tratando podemos introducir el concepto de lo que un alinea-
miento representa en śı. Básicamente, hay dos tipos de comparaciones, las globales y las locales,
y la selección de una u otra depende del interés que tenga el biólogo de descifrar alguna función
basándose en la totalidad de la secuencia o sólo parcialmente [7].

Los alineamientos globales se refieren a un alineamiento total de la secuencia, donde todas las
bases (nitrogenáda o aminoácido) son alineadas con otras bases o con un gap (“”). Los algoritmos
de alineamientos globales comienzal al principio de las dos secuencias (cadenas biológicas) y
adicionan los gaps en la medida que construyen el alineamiento.

En los alineamientos locales, se alinean partes de la secuencia. No existe necesidad de alinear
todas las bases y los algoritmos de este tipo de alineamiento buscan las regiones con mayor
similitud y comienzan el alineamiento a partir de alĺı.

Para comparar dos secuencias, es necesario conseguir el mejor alineamiento entre ellas, el cual
es colocar una secuencia sobre la otra, realizando la correspondencia entre caracteres similares.
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En un alineamiento, los espacios pueden ser insertados en localidades arbitrarias a lo largo de
las secuencias de forma que terminen con el mismo tamaño. Habiendo obtenido un alineamiento
entre dos secuencias biológicas x e y, un puntaje puede ser asignado de la siguiente manera. Para
cada columna, se asigna por ejemplo, por cada base, 0 si los dos caracteres son iguales, -1 si
los caracteres son diferentes y -2 si uno de ellos es un espacio[35]. Estos puntajes se determinan
de acuerdo al nivel de relevancia que se desea que tenga el alineamiento. El puntaje es la suma
de los valores computados para cada columna y el mayor puntaje es la similitud entre las dos
secuencias.

El algoritmo exacto de Needleman-Wunsh (NW)[27] está basado en programación dinámi-
ca, genera el mejor alineamiento global entre dos secuencias. Para calcular alineamientos de
secuencias locales, Smith y Waterman[33], propusieron un algoritmo (SW), también basado en
programación dinámica (ver figura 4.1), con complejidad cuadrática de tiempo y espacio.

Figura 4.1: Alineamiento de secuencias basado en programación dinámica

Hirschberg [18] propuso un algoritmo exacto que calcula el alineamiento entre dos secuencias
x e y en tiempo cuadrático pero espacio lineal. Este enfoque separa la secuencia x por la mitad,
generando subsecuencias x1 y x2, y calcula el lugar correspondiente para partir la secuencia
y, generando las subsecuencias y1 e y2, de esta forma el problema de alineamiento puede ser
resuelto de forma recursiva en un divide and conquer.

Usualmente, una secuencia biológica dada es comparada contra miles o incluso millones de
secuencias que componen las bases de datos genéticas. Uno de los más importantes repositorios
es aquél que es parte de una colaboración que involucra al GenBank del National Center for
Biotechnology Information (NCBI), el European Molecular Biology Laboratoy (EMBL) y el
Banco de Datos de ADN de JAPON (DDBJ, DNA Data Bank of Japan). Estas organizaciones
intercambian datos diariamente y una versión nueva es generada cada dos meses.

Bajo este escenario, el uso de métos exactos como el de Needleman-Wunsh y Smith-Waterman
es prohibitivo. Por esta razón, métodos heuŕısticos más rápidos son propuestos, sin embargo,
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estos no garantizan que el mejor alineamiento será producido. Normalmente, estos métodos
heuŕısticos son evaluados empleando los conceptos de sensibilidad y selectividad. Sensibilidad es
la habilidad para reconocer tantos alineamientos significativos como sean posibles, incluyendo
secuencias distantemente relacionadas. Vendŕıa dada por:

Sensibilidad =
Número de coincidencias encontradas

Número de coincidencias significativas de la Base de datos
(4.1)

Mientras que la Selectividad es la habilidad de acercar la búsqueda con la intención de
descartar los falsos positivos. T́ıpicamente, existe una cierta separación entre sensibilidad y
selectividad, ya que un algoritmo muy sensible es aquél que va a perseguir encontrar sólo aquéllos
valores que coincidan exactamente unos con otros, ej. el algoritmo de SmithWaterman, mientras
que un algoritmo como BLAST que es selectivo busca aquéllos alineamientos similares lo más
rápido posible; es por ello que se acota que si se requieren resultados muy precisos y detallados
habrá de usarse un método muy sensible, en cambio si se desean aproximaciones rápidas se
emplearán aquéllos con un alto nivel de selectividad.

Los métodos heuŕısticos acostumbran usar matrices de puntuación para calcular las pena-
lizaciones de no coincidir entre dos protéınas diferentes; algunas diferencias son más posibles
que sucedan que otras y pueden indicar aspectos evolutivos. Es por esto que, los métodos de
alineamiento de protéınas usan matrices con valores que penalizan la existencia de diferencias
entre las secuencias, con la finalidad de reflejar posteriormente el nivel de similitud existente
cuando han habido cambios entre ellas.

Las matrices de puntuación mayormente usadas son las matrices PAM (Percent Accepted
Mutations)[9, 13] y las BLOSUM (Blocks Substitution Matrix) [17]. Las matrices PAM son el
resultado de un trabajo extensivo que analiza la frecuencia en que un aminoácido determinado
es reemplazado por otro aminoácido durante la evolución. Las matrices de puntuación BLOSUM
son generadas considerando las tasas de evolución de una región de protéınas (un bloque) más
que la protéına completa.

Conjuntamente con BLAST [1] que es una de las heuŕısticas más usadas para comparación
de secuencias, existe FASTA [29], que además emplean tanto matrices PAM como las BLOSUM.

FASTA es el nombre de un programa de alineamiento de secuencias y búsqueda en bases
de datos biológicas creado por W.R Pearson y D.J Lipman en 1988. Las secuencias usadas por
FASTA deben estar descritas con el siguiente formato:

>Nombre de la secuencia
ARCGTCRGCKINTANDRGCKINTANDCKINTANDARCGTCRGCKINTANDRGCKINTAND

La ĺınea que inicia con >, es llamada la ĺınea de definición, contiene un identificador único
seguido de una descripción corta opcional. Las lineas que la suceden contienen la secuencia de
ADN o la protéına, hasta que el siguiente śımbolo > indique que ha iniciado una nueva secuencia.

Dado que FASTA es fácil de analizar, este formato se ha vuelto sumamente popular y es
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actualmente el formato predeterminado de entrada en muchos software de análisis de secuencia,
incluyendo BLAST, por ejemplo una secuencia de consulta puede tener la forma que se presenta
en la figura 4.2 donde se puede percibir fácilmente donde comienza un nucleótido, donde termina
y donde comienza la siguiente.

Las bases de datos biológicas están constrúıdas como conjuntos de secuencias (protéınas o
ADN) almacenadas en ficheros texto bajo formatos como el FASTA descrito anteriormente, y se
encuentran almacenadas en repositorios de datos genéticos como el GenBank 4 donde se pueden
visualizar nucleótidos como el de la figura 4.3

4.2.1. BLAST Basic Local Alignment Sequence Tool

BLAST fue diseñado por Altschul [1] en 1990. Está basado en un algoritmo heuŕıstico que
fue diseñado para ejecutarse rápidamente manteniendo un alto nivel de sensibilidad. La primer
versión de BLAST buscaba alineamientos locales sin considerar gaps 5 y su motivación fue
mejorar el rendimiento de los algoritmos FASTA [29], esto fue conseguido integrando el uso
de matrices PAM en el primer paso del algoritmo. En 1996 y 1997, versiones mejoradas de
BLAST que soportaban la inserción de gaps fueron propuestas, como en el caso de NCBI-BLAST
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) y Gapped BLAST [2].

BLAST provee programas para comparar diferentes combinaciones de tipos de secuencias
y secuencias de bases de datos, traduciendo secuencias a medida que se ejecuta. Los diferentes
programas que forman parte de la familia de BLAST se encuentran representados en la figura
4.4, donde dependiendo de la naturaleza de la secuencia de consulta o de la base de datos se
emplea uno u otro.

Nombre de
búsqueda

Tipo de Secuencia
de Consulta

Tipo de Base de
Datos

Traduce

blastn Nucleótido Nucleótido Ninguna
tblastn Protéına Nucleótido Base de Datos
blastx Nucleótido Protéına Secuencia de consulta
blastp Protéına Protéına Ninguna
tblastx Nucleótido Nucleótido Secuencia de consulta y la

Base de Datos

Tabla 4.1: Programas de la familia de BLAST

El algoritmo de BLAST está dividido en tres fases definidas:

1. Seeding, BLAST compara las secuencias de consulta contra todas las secuencias dentro
de una base de datos. BLAST emplea el concepto de palabras que están conformadas

4(http://www.ncbi.nlm.nih.gov/Genbank/)
5Un gap es un espacio en blanco representado con un guión () que se introduce en una secuencia con la finalidad

de asemejarla lo más posible a la otra secuencia con la que se está alineando
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Figura 4.2: Ejemplo fichero de secuencias en formato FASTA
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Figura 4.3: Nucleótido disponible en el GenBank

Figura 4.4: Programas de la familia de BLAST.

61



por un conjunto finito de palabras de longitud w que aparecen dentro de una secuen-
cia dada. Por ejemplo, la secuencia CTAGGT contiene cuatro palabras de longitud 3:
CTA, TAG, AGG, GGT. El algoritmo de BLAST asume que alineamientos significa-
tivos tienen palabras en común. La ubicación de todas las palabras compartidas, de
w cantidad de letras, entre dos secuencias dadas está determinada por la coincidencia
exacta entre las palabras; la secuencia de consulta, también puede ser comparada con
una base de datos genómica, generando las palabras compartidas entre la secuencia y
las secuencias dentro de la base de datos; estas palabras identificadas son conocidas
como palabras idénticas y solo las regiones con palabras idénticas pueden ser usadas
como semillas (seeds, de ah́ı el nombre de la fase) para el alineamiento. Esta lista es
evaluada usando la matriz de substitución y el concepto de vecindario. El vecino de
una palabra incluye la palabra en śı misma y cualquier otra palabra que puntúe en
al menos igual a un umbral T , cuando sea comparada con la matriz de substitución.
El puntaje umbral (T ) es empleado para reducir el número de posibles aciertos. Una
selección apropiada de w y T , y de la matriz de substitución es una forma efectiva de
controlar el rendimiento y la sensibilidad de BLAST.

2. Extensión. Las semillas obtenidas en la fase anterior, deben ser extendidas con la
intención de generar un alineamiento. Esto es hecho a medida que se inspeccionan
los caracteres cercanos a la semilla en ambas direcciones y concantenándolos a la
semilla hasta que se alcance un puntaje umbral X. Este umbral define cuanto puede
ser reducido el puntaje, considerando de último el máximo valor. Luego de eso, el
algoritmo regresa al mejor puntaje para obtener el alineamiento.

3. Evaluación. Los alineamientos generados en la fase de extensión deben ser evaluados
con la intención de remover aquéllos no significativos. Los alineamientos significativos
llamados High Score Segment Pairs (HSP) son aquellos cuyos puntajes son iguales o
superiores a un umbral S. De igual forma, los grupos consistentes de HSP son genera-
dos sin incluir los HSP no solapados que están más cercanos a la misma diagonal (de
programación dinámica); y son los que serán comparados contra un umbral final, cono-
cido como el e-value, y sólo los alineamientos que superen este valor serán considerados.
El e-value (valor esperado) da un estimado del número de alineamientos de secuencias
no relacionados que tendrán valores muy altos, mientras que los valores más bajos del
e-value, mayor es la probabilidad de estar frente a un alineamiento significativo.

En términos globales el comportamiento de BLAST para cada una de las secuencias se
puede observar en la gráfica 4.5 y la descripción general del algoritmo que sigue está descrito en
el pseudocódigo 4.1.
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Figura 4.5: Flujo del Algoritmo de BLAST

1 /∗ Ejecuc i \ ’ on de BLAST ∗/
2

3 Inicio
4

5 Para cada s e cuenc i a de consu l ta S ,
6 Para cada base de datos Di ,
7 Para cada s e cuenc i a D en Di ,
8 Compara S con D usando BLAST;
9 Actua l i za l a s estad́ısticas ;

10 Fin Para
11 Fin Para
12 Reporta l o s r e s u l t a d o s para l e s e cuenc i a S ;
13 Fin Para
14 Fin Pseudocodigo

Código fuente 4.1: Ejecución de BLAST
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4.2.2. Gapped BLAST y PSI-BLAST

Gapped BLAST y PSI-BLAST son herramientas muy útiles provistas por el servidor de
BLAST (conocidas como la versión 2.0)[2]. El BLAST original, no tomaba en cuenta el uso de
gaps (espacios sin información), ya que acostumbraba buscar alineamientos sencillos de al menos
longitud T y luego cada “acierto positivo” era extendido; en cambio, Gapped BLAST permite
realizar dos alineamientos simultáneos no solapados de longitud T con una distancia A el uno
del otro y posteriormente estos eran los que seŕıan extendidos.

El algoritmo de Gapped BLAST permite la inserción y borrado de gaps dentro de los ali-
neamientos que serán devueltos. Permitir esto significa que regiones similares no van a ser parti-
cionadas en varios segmentos. La puntuación de estos alineamientos con gaps tienden a reflejar
más cercanamente las relaciones biológicas.

BLAST GappedBLAST
ABCDE ABCDE
ACD- - A-CD-

Tabla 4.2: Alineamientos BLAST y GappedBLAST

Mientras que PSI-BLAST (Position-Specific Iteraded BLAST ) provee una búsqueda auto-
matizada del perfil, de fácil uso, la cual es una forma bastante sensitiva de buscar secuencias
homólogas. El programa inicialmente realiza una búsqueda de gappedBLAST en la base de datos
y luego el programa PSI-BLAST usa esta información.

Para cualquier alineamiento significativo que ha sido retornado en la fase anterior construye
una matriz de puntuación con posiciones espećıficas, la que reemplazará la secuencia para la
siguiente iteración de búsqueda dentro de la base de datos.

PSI-BLAST debe realizar iteraciones hasta que no se encuentren más alineamientos sig-
nificativos. Hasta el momento PSI-BLAST puede ser usado solo para comparar secuencias de
protéınas contra bases de datos de protéınas. Antes de la llegada de PSI-BLAST, sus técnicas
ya habian sido usadas, pero un alto grado de experticia e intervención por parte de los biólogos
era requerida.

PSI-BLAST, hace necesario empezar con una secuencia de consulta y una matriz de puntua-
ción (por ejempo BLOSUM62, que es un tipo caracteŕıstico de matriz BLOSUM). Las secuencias
homólogas son encontradas empleando los fundamentos de BLAST (alineando la base de datos
con la secuencia de consulta). A diferencia de BLAST el e-value es empleado como criterio para
insertar la secuencia encontrada dentro del perfil que se esta generando. De donde, un perfil
(p1) es constrúıdo una vez que se ha pasado la secuencia por la matriz de puntuación. Se realiza
una búsqueda nueva de homólogos empleando BLAST (ahora alineando la base de datos con el
perfil obtenido), nuevamente el e-value determina si se inserta en el perfil y se genera un perfil
(p2) con las secuencias aprobadas y la matriz de puntuación.
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4.3. Paralelización en Alineamiento de Secuencias

A excepción de secuencias de consulta sencillas y pequeñas bases de datos, el procesamiento
de BLAST consume gran cantidad de tiempo al contrastar secuencias biológicas completas contra
bases de datos de cientos de miles de secuencias biológicas más en un sólo ordenador, para dar
una idea, imaginen que tienen que comparar tu solito/a todas y cada una de las ĺıneas de una
obra literaria como El Quijote de Cervantes con una frase nueva que acabas de encontrar, sólo
para saber si pertenece al mismo tiempo literario en el que fue escrita esta obra, (esto sin sumar
cuanto te tomaŕıa realizar esa consulta cada vez que le agregaran una página nueva a ese libro),
seŕıa mucho más rápido y si repartieras el trabajo entre personas de tu grupo de lectura favorito.

De esta forma, muchas ideas han sido planteadas para mejorar los tiempos de ejecución de
BLAST. Las estrategias de cómputo paralelo y distribuido en clústers y grids ha sido de las
más atractivas. Desde el punto de vista de la base de datos, existen dos enfoques básicos: la
replicación de la información genómica en todos los nodos de procesamiento (nodos sencillos o
clústers) junto con la segmentación de la secuencia de consulta; o la información genómica es
separada en fragmentos disjuntos y la secuencia de consulta es introducida en una sola pieza
para ser ejecutada la consulta en todos los sitios [12].

Mientras que la estrategia de replicacion de la base de datos está determinada por el parale-
lismo en la relación de los segmentos de la secuencia de consulta, la situación de fragmentar la
base de datos lidera una situación un poco más complicada, dado que la ejecución de fragmentos
más pequeños pudiera no generar el resultado correcto (y secuencial) si los parámetros estad́ısti-
cos en tiempo de ejecución no están bien definidos. Aún más, igual que en otros problemas de
computación paralela, cuando no hay una carga de trabajo pareja, los beneficios que vienen con
estos enfoques se pierden.

4.3.1. Segmentación de la secuencia de consulta

La segmentación de la secuencia de consulta, fragmenta dicha secuencia de modo que cada
nodo dentro de un clúster sea capaz de realizar la búsqueda con una fracción de la secuencia
de consulta. Haciendo esto, muchas búsquedas de BLAST pueden ser ejecutadas con diferentes
secuencias de consulta; ésta estrategia aplicada a un clúster t́ıpicamente replica la base de datos
por completo en el sistema local de almacenamiento de cada nodo. Si la base de datos es mayor
que la memoria del nodo, las búsquedas con segmentación de la secuencia de consulta sufre los
mismos efectos adversos de e E/S que el BLAST tradicional. Cuando la base de datos cabe en la
memoria local, efectivamente, la segmentación de la consulta puede conseguir casi escalabilidad
linear para todos los tipos de búsqueda de BLAST.

ScalaBLAST

ScalaBLAST es una implementación paralela del algoritmo original de NCBI de alineamien-
to de secuencias (BLAST); puede ser usado para identificar secuencias rápidamente que son
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similares a un conjunto de secuencias de protéınas suministradas por el usuario. Una lista de
secuencias de consulta suele contener miles o millones de secuencias, cada una de las cuales se
espera que se compare contra una base de datos inmensa de información genética y disponible
públicamente, tal como la base de datos de protéınas no reduntante (nr). ScalaBLAST ha sido
constrúıdo empleando el compilador intel y gnu y ha funcionado en arquitecturas tanto de 32
como 64 bits. Funciona eficientemente enviando los resultados y leyendo los archivos sobre siste-
mas de ficheros montados globalmente (Lustre), desde espacio de disco local (/scratch) y sobre
sistemas de ficheros en red (/home)[28].

Scala BLAST alcanza un speedup considerable en entornos multiplocesador, gracias a dos
métodos concurrentes:

1. Segmentando la lista de secuencia de consulta en pequeñas listas y gestionando que la
búsqueda de BLAST sea llevada a cabo con cada lista generada por un determinado
grupo de procesamiento.

2. Gestionando eficientemente el acceso a la base de datos genómica empleando Arreglos
Globales[28], una implementación de una interfaz de memoria compartida que puede
ser usada en arquitecturas de memoria compartida o distribúıda.

Esta combinación única de separar la lista de secuencias de consulta y gestionar la memoria
en una forma eficiente da cierta escalabilidad para trabajos de tamaño considerable. ScalaBLAST
estuvo usando 1000 secuencias de consulta contra la base de datos nr. ScalaBlast emplea comu-
nicación no bloqueante disponible en el pack de herramientas de Arreglos Globales para ocultar
virtualmente todo el costo de comunicación dentro de entornos de clúster. ScalaBLAST ha sido
portado a una variedad de arquitecturas, inclúıdos sistemas con memoria compartida y dis-
tribúıda. Ha sido ejecutada con diferentes grados de interconexión: gigabit ethernet, myrinet,
quadrics.

4.3.2. Segmentación de la base de datos

Cuando se habla de segmentación de la base de datos, se realiza la búsqueda independiente
de cada fragmento en cada procesador o nodo, y los resultados son recolectados en un único
fichero final de salida. Existen diferentes implementaciones de segmentación de bases de datos,
la primera de ellas fue la de los NCBI BLAST, ya que implementa la segmentación de la base
de datos a través de la búsqueda multihilo de forma que cada procesador dentro de un sistema
SMP tiene asignada una porción diferente de la base de datos. Ésta estrategia también fue
implementada en una versión comercial (de código cerrado) de la empresa TurboWorx, Inc.
denominada TurboBLAST [6].

TurboBLAST

TurboBLAST provee una segmentación de la base de datos y una estrategia de distribución
diseñada expĺıcitamente para ser usadas en NoWs (Networks of Workstations). Empleando el
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gestor y balanceador de carga propietario de TurboWorx denominado TurboHub, TurboBLAST
puede adaptarse dinámicamente al entorno de clúster sobre el que se está ejecutando. Sin em-
bargo por tratarse de una aplicación propietaria el uso es casi nulo. También está disponible
otra versión de aplicación bioinformática que emplee segmentación de base de datos, denomi-
nada ParallelBLAST, que está compuesto por un conjunto de scripts que se pueden ejecutar
sobre entornos PVM/Sun Grid Engine. Además de requerir un entorno PVM/SGE, difiere de
mpiBLAST por no tener integrado directamente el NCBI Toolbox y no provee un mecanismo
expĺıcito de balanceo de carga.

TurboBLAST se basa en realizar un trabajo individual de BLAST donde especifica el núme-
ro de secuencias de consulta de entrada que van a ser buscadas contra una o más bases de
datos genómicas. TurboBLAST separa los trabajos de BLAST en muchas piezas pequeñas; que
serán procesadas de forma paralela y posteriormente combinadas en un fichero final de salida.
Aplicando esta estrategia, el fichero de salida presenta el mismo formato que el generado por
NCBI BLAST en su sitio local.

Para conseguir coordinar las actividades en múltiples máquinas, lleva a cabo los siguientes
procesos:

Creando las tareas de BLAST, cada una de las máquinas necesita comparar un pequeño
grupo de secuencias (aproximadamente entre 10 y 20 secuencias) contra una partición
de tamaño modesto de la base de datos, de forma que la tarea pueda ser llevada a cabo
sin generar paginación de disco.

Aplica el programa estándar de NCBI BLAST para completar cada tarea.

La integración de las tareas culmina en un fichero de salida unificado.

Este enfoque tiene la ventaja de garantizar la generación de un fichero de salida idéntico
al obtenido en la versión serie de BLAST. Primero, el tamaño de cada tarea de BLAST es
configurada de forma que el procesamiento en cada procesador sea lo más eficiente posible.
Segundo, un conjunto de tareas lo suficientemente grande es creado de forma que todos los
procesadores realicen trabajo útil y se obtenga un balanceo de carga casi perfecto.

La creación de tareas ocurre en dos pasos:

1. En el momento del env́ıo del trabajo, se crean las tareas iniciales que buscan un grupo
de 10 a 20 secuencias contra las bases de datos.

2. Si alguna de las tareas iniciales es demasiado grande para el procesamiento de BLAST
en la máquina sobre la que está siendo llevada a cabo, la tarea es separada dinámica-
mente en sub-tareas lo suficientemente pequeñas para ser ejecutadas en esa máquina.

PackageBLAST

PackageBLAST [35] es una implementación de BLAST bajo entornos Grid, que puede operar
bajo dos modos de ejecución: un primer modo, una secuencia larga sencilla es comparada con
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una base de datos genómica. En este caso, cada máquina que figura como worker compara la
misma secuencia con un conjunto de diferentes segmentos de la base de datos. La salida de éste
modo es un reporte de BLAST parcial, que necesita ser procesado más adelante. En el modo 2,
un conjunto de secuencias es comparado con la base de datos genómica completa. La salida de
este modo es el reporte final de BLAST para cada secuencia comparada. En la figura 4.6[35], se
puede observar las estrategias de ejecución que han diseñado.

Figura 4.6: Modos de ejecución PackageBLAST.

Habiendo decidido que la base de datos genética seŕıa fragmentada y replicada, seleccionan
cuales unidades de trabajo seŕıan procesadas por cada nodo worker del grid. Las unidades de
trabajo son definidas como segmentos de base de datos (en el caso del modo 1) o secuencias de
consulta (en el modo 2). Esto involucra muchas poĺıticas de alocación de tareas, por lo que han
desarrollado un framework que permite diferentes politicas de alocación que el usuario puede
emplear según sus necesidades y entorno disponible.

MpiBLAST

mpiBLAST [12] es una herramienta de código fuente abierto, desarrollada el Los Alamos
National Laboratory (LANL) para ejecutar NCBI-BLAST 4.2.1 en clústers de nodos de cómputo.
El algoritmo tiene dos fases. Primero, la base de datos genética es segmentada y colocada en un
medio de almacenamiento compartido. Posteriormente, la secuencia de consulta es distribúıda a
los nodos del clúster. Si el nodo no tiene el fragmento de la base de datos, se realiza una copia
local. El método ha sido propuesto para asociar los fragmentos de datos con los nodos del clúster,
tratando de minimizar el número de copias. Cuando los workers finalizan el procesamiento,
ellos env́ıan los reportes locales al máster, y éste habiendo recibido los reportes locales para le
secuencia de consulta, los combina todos para crear el reporte final de BLAST.

El formateo de la base de datos en mpiBLAST es una función que es llevada a cabo de la
siguiente manera:

Analiza la correspondencia entre las secuencias y comprobar las opciones de la ĺınea
de comando.
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Lee la base de datos de entrada en formato FASTA; indexando la ubicación y longitud
de cada secuencia dentro del archivo de entrada.

Escribe un fichero temporal con las secuencias reordenadas para que las más largas
estén primero.

Llama a la función formatdb dentro del Main, que está encargada de crear el
número deseado de fragmentos de la base de datos. Dado que esta función siempre
agrega la siguiente secuencia en la lista temporal al fragmento más pequeño, garantiza
que los tamaños de los fragmentos serán iguales.

Crea y actualiza los archivos soportados por la aplicación, tales como .mbf, .dbs, y los
.{n, p} del nombre del fichero.

Una vez que mpiBLAST ha formateado la base de datos, y dependiendo del tipo de base
de datos que está siendo formateada, se generan 7 ficheros con extensiones diferentes, los cuales
están descritos en las tablas 4.3 y 4.4.

Extensión Contenido Formato
nhr Definición de Ĺıneas Binario
nin Indices Binario
nsq Datos de la Secuencia Binario
nnd Datos GI Binario
nni Indices GI Binario
nsd Datos que no son GI Binario
nsi Indices de los datos que no son

GI
Binario

Tabla 4.3: Extensión ficheros de la base de datos de nucleótidos formateada

Extensión Contenido Formato
phr Definición de Ĺıneas Binario
pin Indices Binario
psq Datos de la Secuencia Binario
pnd Datos GI Binario
pni Indices GI Binario
psd Datos que no son GI Binario
psi Indices de los datos que no son

GI
Binario

Tabla 4.4: Extensión ficheros de la base de datos de protéınas formateada

Asimismo, el trabajo correspondiente a cada uno de los procesos, dependiendo de si es máster
o worker, está descrito en los algoritmos presentados a continuación que han sido tomados de
[12], de esta forma se puede visualizar el comportamiento teórico que habŕıa de presentar la
aplicación.
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1 /∗ Máster de mpiBLAST ∗/
2

3 Inicio
4 resultados es el conjunto de resultados de BLAST.
5 F = {f1, f2, . . .} es el conjunto de fragmentos de la base de datos.
6 SinBuscar ⊆ F es el conjunto de fragmentos de la base de datos en los que no se ha buscado.
7 SinAsignar ⊆ F es el conjunto de fragmentos de la base de datos en los que no se han asignado.
8 W = {w1, w2, . . .} es el conjunto de workers disponibles.
9 Di ⊆ W es el conjunto de workers que tienen el fragmento fi en almacenamiento local.

10 Distribúıdos = {D1, D2, . . .} es el conjunto de Datos para cada fragmento.
11 Requiere que: |W | 6= 0
12 Asegúrese que: |SinBuscar| = 0
13 SinBuscar ← F
14 SinAsignar ← F
15 resultados ← vacio
16 Env́ıa las secuencias a los workers v́ıa Broadcast
17 Mientras estadoActual 6= 0 haga
18 Recibe un mensaje desde un worker wj

19 Si mensaje es un estado de solicitud entonces
20 Si |SinAsignar| = 0 entonces
21 Env́ıa al worker wj el estado BÚSQUEDA COMPLETA
22 De lo contrario
23 Env́ıa al worker wj el estado de BUSCAR FRAGMENTO
24 Fin Si
25 De lo contrario Si mensaje es una solicitud de fragmento entonces
26 Encuentra fi de forma que sea el minDi ∈ DatosDistribuidos |Di| y fi ∈ SinAsignar
27 Si |Di| = 0 entonces
28 Agrega wjaDi

29 Fin Si
30 Remueve fi de SinAsignar
31 Env́ıa la asignación del fragmento fi al worker wj

32 De lo contrario Si mensaje es un conjunto de resultados para el fragmento fi entonces
33 Combina mensaje con resultados
34 Remueve fi de SinAsignar
35 Fin Si
36 Fin Mientras
37 Imprime resultados

Código fuente 4.2: Máster de mpiBLAST
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El proceso máster usa un algoritmo ambicioso (descrito en el pseudocódigo 4.2) para deter-
minar cuáles fragmentos asignar a cada worker. Inicialmente, si un worker inactivo tiene en su
almacenamiento local un fragmento sobre el que aún no se ha realizado la búsqueda, el worker
es asignado para realizar el alineamiento con ese fragmento. Si el worker no tiene un único frag-
mento, se le asigna buscar en aquél que esté repartido el menor número de veces entre los demás
workers. Finalmente, si un worker inactivo no tiene fragmentos en los que aún no se ha buscado,
se le indica que copie un fragmento no utilizado existente en la menor cantidad de workers. El
conjunto de fragmentos que se esté copiando en ese instante es controlado por el máster para
prevenir la copia duplicada de asignaciones a workers diferentes.

1 /∗ Worker de mpiBLAST ∗/
2

3 Inicio
4 secuencias ← Recibe las secuencias de consulta desde el máster
5 estadoActual ← Recibe el estado desde el máster
6 Mientras estadoActual 6= BÚSQUEDA COMPLETA haga
7 fragmentoActual ← Recibe una asignación de fragmento desde el máster
8 Si fragmentoActual no está en el almacenamiento local entonces
9 Copia fragmentoActual al almacenamiento local

10 Fin Si
11 resultados ← BLASTsecuencias,fragmentoActual
12 Env́ıa resultados al máster
13 estadoActual ← Recibe el estado desde el máster
14 Fin Mientras

Código fuente 4.3: Worker de mpiBLAST

El algoritmo seguido por el worker se describe en el pseudocódigo 4.3, donde una vez que
el worker completa su búsqueda, reporta los resultados al máster. El máster es el encargado de
fusionar todos los resultados de cada worker y ordenarlos de acuerdo al puntaje que traen. Una
vez que todos los resultados han sido recibidos, son escritos a un fichero de salida especificado
por el usuario empleando las funciones de salida de BLAST de la libreŕıa de desarrollo de NCBI.
Este enfoque de generar resultados combinados le permite a mpiBLAST producir resultados
en cualquier formato soportado por NCBI-BLAST, incluyendo XML, HTML, texto delimitado
por espacios en blanco, y ASN.1. Todo el proceso que realiza mpiBLAST, se puede ver a modo
general en la figura 4.7.

En el trabajo de Feng [14] han descrito el comportamiento de mpiBLAST en entornos de
supercomputación, clasificando cada una de las fases involucradas en la ejecución, tal como se
muestra en la gráfica 4.8.

Adicionalmente han mencionado la influencia que podŕıan tener en la ejecución factores
como:

El tipo de base de datos biológica con la que se está trabajando;

El tamaño de la secuencia de consulta;
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Figura 4.7: Algoritmo de mpiBLAST

Figura 4.8: Fases de mpiBLAST
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El tamaño de la base de datos biológica contra la que se realiza la consulta;

El número de workers disponibles; y

El nivel de similitud entre familias biológicas de las bases de datos y las secuencias.

Que repercutiŕıan en el tiempo total de ejecución de la aplicación; de esta forma constituye
un enfoque interesante que sustenta nuestra intención de análisis de rendimiento durante este
trabajo de investigación.
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Caṕıtulo 5

Experimentos

“El genio es un uno por ciento de inspiración, y un noventa y nueve por ciento
de transpiración.”

Thomas Alva Edison(1847-1931).

5.1. Introducción

Cuando se desea diseñar el grupo de experimentos necesarios para verificar la hipótesis que
se plantea en cada uno de ellos, es primordial que una vez que se ha reconocido y delimitado
el problema, se proceda a seleccionar aquéllos factores involucrados y los niveles que se van a
a tomar en consideración, ya que a partir de estos de va a definir cual es nuestra variable de
respuesta esperada. Variable que lleva la motivación global por la que se están realizando los
experimentos. Aún aśı una vez que éstas variables han sido establecidas, es necesario determinar
el diseño experimental que habrá de llevarse a cabo para responder la pregunta que nos hemos
planteado en un inicio. Luego se dedicará gran parte de nuestro tiempo en la realización de la
experimentación para la obtención de los datos, y su posterior análisis de forma que seamos ca-
paces de emitir las conclusiónes y/o recomendaciónes finales; además, suele ser necesario realizar
un estudio en que se confirme si los resultados y la conclusión a la que se ha llegado es cierta o
no.

El objetivo detrás de los experimentos descritos en este caṕıtulo giran entorno al análisis
de rendimiento de la aplicación mpiBLAST, donde se persigue con cada uno de ellos identificar
aquéllos factores significativos en el consumo de tiempo dentro de la ejecución de la aplicación.
Como primera aproximación se ha optado por realizar un análisis de rendimiento estático post-
mortem, que se espera dinamizar en trabajos futuros, monitorizando el comportamiento de la
aplicación dentro de un entorno paralelo controlado, un clúster Beowulf dedicado de 32 nodos.
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5.2. Escenario

El proceso de evaluación de rendimiento para la aplicación mpiBLAST requiere cierto co-
nocimiento de la interacción que presenta ella en un determinado entorno paralelo. Dado que
nuestro principal objetivo es conseguir la mejor configuración de los parámetros involucrados en
la ejecución de mpiBLAST en aras de conseguir el menor tiempo de ejecución posible, una vez
que la hemos seleccionado como objeto de estudio, es necesario alojarla en nuestras máquinas
paralelas con la finalidad de poder conocerla y evaluarla.

Como principal requisito para ejecutar mpiBLAST en el entorno paralelo (clúster de orde-
nadores) es necesario contar con alguna versión de MPI para poder compilar la aplicación y
posteriormente utilizarla. En nuestro caso contamos con un cluster Beowulf con 32 nodos Intel
Single-core a 3.00 GHz, 1 gigabyte de RAM por nodo de cómputo, 80 gigabytes de disco de
almacenamiento, red Gigabit/Ethernet, sistema de ficheros NFS y configuración RAID1; en el
cual hemos instalado la versión de MPI mpich2 [16] que permite realizar el traceado con instruc-
ciones MPE (para luego visualizarlas como análisis inicial de mpiBLAST), y hemos compilado
las versiones disponibles en: http://www.mpiblast.org, mpiBLAST-1.4 y mpiBLAST-1.5-PIO,
que son la última versión estable y la que versión más reciente con entrada y salida paralela,
respectivamente.

Para instalar mpiBLAST es necesario desempaquetar el archivo de código fuente (disponible
en: www.mpiblast.org) en un fichero temporal. Se debe disponer de una versión actual de la caja
de herramientas de NCBI (NCBI Toolbox), facilmente descargable desde el sitio web de NCBI.
Una vez que la caja de herramientas ha sido instalada apropiadamente, se procede a realizar el
./configure y posteriormente make y make install.

La aplicación mpiBLAST debe ser configurada de acuerdo a las librerias y herramientas
disponibles en el entorno paralelo sobre el que se va a ejecutar, es necesario identificar el MPI
con el que se está trabajando, junto con la dirección donde se van a instalar los archivos binarios
y la dirección donde se ha instalado el pack de herramientas de NCBI.

Una vez que se ha instalado mpiBLAST, en la carpeta local están disponibles los binarios:

mpiformatdb, empleado para formatear la base de datos biológica en el número de
fragmentos necesario;

mpiblast, que ejecuta la consulta de mpiBLAST como tal;

mpiblast cleanup, encargada de limpiar los “residuos” de base de datos que han
quedado en las carpetas locales de cada uno de los worker.

5.3. Análisis de los Factores

En la siguiente sección detallamos cada uno de los experimentos realizados para analizar
y evaluar la herramienta bioinformática mpiBLAST como aplicación paralela basada en MPI.
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Con la siguiente experimentación se espera responder las interrogantes sobre la existencia de
ineficiencias de la aplicación, carencia de paralelismo y/o poca explotación de los recursos dispo-
nibles. De manera que sea posible verificar los posibles cuellos de botella existentes dentro de la
ejecución que pudieran ser sintonizados para mejorar el rendimiento que presenta mpiBLAST.

Paralelismo de mpiBLAST

Uno de los principales problemas de las aplicaciones paralelas, es el nivel de escalabilidad que
éstas pudieran tener en clústers de ordenadores, para ello es necesario comprobar las ventajas
que presenta el paralelismo dentro de la aplicación dentro de un ambiente paralelo espećıfico.

Hipotesis:
“mpiBLAST no explota el paralelismo para un tamaño de problema demasiado pequeño”.
Esto debido a que el no sacar provecho del paralelismo del diseño de la aplicación o del

entorno paralelo sobre el que se trabaja, se convierte en el principal “talón de Aquiles” de las
aplicaciones paralelas. Es por ello que nos hemos planteado comprobar el nivel de ganancia que
presenta o no la aplicación al ejecutarla en su versión paralela. Usualmente por problemas de
diseño o limitaciones del entorno, las aplicaciones paralelas tienden a tener peor rendimiento
que cuando han sido ejecutadas secuencialmente, esto debido a cierto nivel de overhead que se
pudiera estar presentando o ineficiencias en el paradigma de paralelismo empleado al momento
del diseño.

Si recordamos cuando hablamos de una aplicación como mpiBLAST, estamos tratando con
una clase de aplicación diseñada bajo un enfoque embarrasingly parallel, en el que siguiendo
un paradigma Máster/Worker el trabajo es repartido a los workers, que se encargan de realizar
la actividad de forma paralela y luego enviar los resultados obtenidos al máster. Sin embargo,
no todas las veces que se emplea este paradigma aparentemente sencillo se consigue un mejor
desempeño que si se continuara empleando una sola máquina.

Proceso:
Para determinar el grado de ventaja existente al usar o no BLAST en su versión paralela, es

necesario partir de la comparación del parámetro tiempo de ejecución, con la intención de poder
observar cuantitativamente si existe o no una mejora entre ambos enfoques. Sin embargo, para
comprobar esto es necesario realizar las mediciones pertinentes de las ejecuciones secuenciales
de BLAST bajo un solo ordenador y determinar el speedup existente con mpiBLAST.

Para lograr esto, hemos decidido ejecutar en un cluster, las consultas a BLAST (la versión
secuencial) con las bases de datos mito.nt de 934 KB, la yeast.nt de 3.635,20 KB, drosoph.nt
de 33.280,00 KB y la NT con 7.130.316,80 KB (todos estos tamaños son de las bases de datos
comprimidas en un fichero .gz ), con la secuencia e chrysanthem.fas de 300KB de longitud. Los
experimentos serán llevados a cabo en un cluster Beowulf compuesto de nodos de cómputo Intel
Pentium 4 a 3.00Ghz, con 1 GB de memoria RAM, 80 GB de disco duro SATA, red Gigabit
Ethernet, sistema de ficheros paralelo con RAID1. Posteriormente se calculará el speedup de
mpiBLAST para esa misma carga descrita.
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Se han observado los tiempos de ejecución para 1, 4, 8, 16, 32 procesadores respectivamente,
los cuales se encuentran reflejados en la gráfica 5.1. Se controlará el tiempo de ejecución tanto
de la versión serie como de la versión paralela y se podrá definir hasta qué punto favorece el
paralelismo de mpiBLAST la realización de dichas consultas.

Figura 5.1: Tamaño base de datos vs. Número de Workers

Inicialmente obtenemos un speedup de 4,5 para 32 procesadores con la base de datos NT, tal
y como se puede ver en la figura 5.3, en la que se encuentran los cálculos de speedup para cada
una de las bases de datos que hemos planteado, es posible afirmar la existencia de ganancias de
rendimiento al emplear mpiBLAST.

Si contrastamos los speedup obtenidos con lo que seŕıa el speedup ideal (ver figura 5.3,
podemos observar que las ganancias, aunque pocas, se consiguen a medida que se aumenta el
tamaño del problema. Lo que queda por determinar es por qué el speedup es tan bajo para este
tipo de ejecuciones.

Los tiempos de ejecución están directamente relacionados con la carga de trabajo que se le
está proporcionando al algoritmo, si el tamaño del problema es demasiado pequeño, el paralelismo
no brinda ventaja alguna, en cambio si el tamaño del problema se vuelve significativo, a medida
que se incorporan procesadores que se comportarán como workers y realizar la búsqueda de forma
simultánea el tiempo de ejecución reduce considerablemente.

Adicionalmente, con los datos obtenidos en este experimento, somos capaces de calcular el
nivel de eficiencia que tiene la aplicación (ver figura 5.4), lo que se consigue observar es que la
aplicación a medida que el número de procesadores aumenta se presenta alguna situación dentro
de la ejecución que deja entrever que no se está aprovechando el paralelismo del sistema como
tal. Situación que se espera descubrir en experimentos siguientes.

Conclusiones:
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Figura 5.2: Speedup de mpiBLAST

Figura 5.3: Speedup Ideal vs. Speedup de mpiBLAST

79



Figura 5.4: Eficiencia

Se puede observar en las gráficas presentadas que a medida que aumenta el tamaño de la
base de datos biológica, las exigencias para el algoritmo secuencial se hacen cada vez mayores y
requiere cada vez más cantidad de recursos. Sin embargo, a medida que se aumenta el número
de procesadores sobre los que se ejecuta la aplicación de forma paralela (aún cuando el tamaño
de la base de datos se incremente), y manteniendo fijo un fragmento para cada procesador se
obtiene una ganancia considerable en tiempo de ejecución. Por lo cual se puede concluir que a
medida que el tamaño del problema crece es posible observar la ventaja de realizar las consultas
de forma paralela. Esto debido al tamaño de los datos de entrada con los que se está trabajando,
que al introducir el concepto de fragmentación es posible llevar a cabo varias tareas de forma
simultánea sin entorpecer unas con otras en las ejecuciones.

Con esto hemos podido determinar que el tamaño de base de datos biológica con la que
se esté trabajando va a determinar el nivel de ganancia que se puede obtener al realizar las
consultas de forma paralela. Con ello a medida que el tamaño de la base de datos aumente
y se disponga de un clúster de 32 nodos de cómputo se podrá reducir el tiempo de consulta
en aproximadamente 75 %. Bajando de una media de 40 minutos de ejecución en el BLAST
secuencial a apenas una media de 8 minutos en la ejecución en paralelo.

Fases de mpiBLAST

Hipotesis:
“mpiBLAST está desaprovechando el paralelismo dentro de su diseño en algún punto durante

la ejecución”.
Igual como se determinó en el experimento anterior que mpiBLAST escala según el tamaño

del problema, ahora se plantea determinar si como aplicación paralela presenta puntos de inefi-
ciencia; puntos que se determinan una vez que se ha realizado el análisis de rendimiento de la
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aplicación.
Tal como ha sido descrito en caṕıtulos anteriores, este proceso se puede llevar a cabo de dife-

rentes maneras pero el objetivo continúa siendo el mismo, el por qué de esto es que normalmente
se busca identificar puntos de ineficiencia en la aplicación en los que se está desaprovechando
el paralelismo inherente al entorno paralelo sobre el cual está siendo ejecutada, e identificar
la causa de su presencia para generar una conclusión adecuada para posteriores mejoras en la
aplicación.

Proceso:
Se ha decidido identificar la cantidad de tiempo de ejecución que invierte la aplicación en

las diferentes fases que la componen, una vez que ha sido formateada la base de datos en un
determinado número de fragmentos y se desea realizar una consulta contra la base de datos
de secuencias biológicas disponible, es importante tomar en consideración la importancia que
refieren cada una de las etapas por las que el programa ha de pasar para generar el fichero
de salida con la información de la secuenciación. Basándonos en parte en la descripción que
plantean los diseñadores de la aplicación se han identificado las siguientes fases significativas:

Repartición de los fragmentos de la base de datos a cada uno de los workers.

Proceso de búsqueda de la secuencia de consulta en el(los) respectivo(s) fragmento(s)
asignado(s) a cada worker.

Env́ıo de los resultados por parte de los workers hacia el máster, empleando MPI.

Unión e impresión de los resultados en el fichero de salida.

Para ello se han tomado como puntos de medición aquéllos en los que la aplicación está eje-
cutando cada una de las funciones anteriormente descritas, consiguiendo de esta manera una
primera impresión de la cantidad de tiempo que se está perdiendo dentro de la ejecución.

Presentando un tiempo medio de ejecución para 7 workers y 7 fragmentos (uno para cada
worker) igual a 627,0916 segundos, se puede determinar una distribución del tiempo total en
cada una de las fases involucradas en mpiBLAST representada en la figura 5.5 en el que se puede
observar que la mayor parte del tiempo de la ejecución se está consumiendo en la repartición
de fragmentos para cada worker, esto debido a la estrategia de repartición diseñada para el
algoritmo, en la que el worker no inicia su trabajo hasta que ha recibido todos los fragmentos
sobre los que le corresponde realizar la búsqueda.

Otra información que se pudo obtener durante la experimentación es que el tiempo medio
de búsqueda para cada worker es practicamente similar, como se puede observar en la tabla
5.1 con lo que se concluye que el algoritmo de BLAST independientemente de los datos con los
que está trabajando consigue realizar la búsqueda en el fragmento asignado en un tiempo muy
similar para cada worker.

De igual forma cuando se aumenta en la ejecución el número de nodos a emplear a 32,
podemos observar el porcentaje de tiempo empleado en cada una de las fases en la figura 5.6. De
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Figura 5.5: Fases de mpiBLAST con siete Fragmentos y siete workers.

forma que se puede percibir que a medida que la base de datos se fragmenta en un mayor número
de piezas, cada fragmento disminuye en su tamaño. Por lo tanto el tiempo de distribución de los
fragmentos y de búsqueda dentro de cada uno se ve reducido, como se ve reflejado en la tabla
5.1. De forma que se puede observar un mayor solapamiento entre cómputo y distribución de
datos, que básicamente es lo que se persigue al momento de sacar provecho de las caracteŕısticas
de paralelismo disponibles en la aplicación.

Figura 5.6: Fases de mpiBLAST con 31 fragmentos y 32 nodos.

Hemos podido determinar la estrategia de repartición de fragmentos por parte del máster
hacia los workers, visualizando la traza de ejecución reflejada en la figura 5.7, en la que los cuadros
pequeños de tamaño más pequeño reflejan el momento en el que el worker está recibiendo el
fragmento de base de datos que le corresponde. De esta forma hemos podido confirmar que
parte del proceso de repartición afecta significativamente el tiempo global de ejecución, ya que
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Rank Worker Tiempo Medio sg

2 276,34
3 277,07
4 288,39
5 280,23
6 271,22
7 266,69
8 279,46
Rank Worker Tiempo Medio sg

2 108,76
3 119,49
4 114,06
5 115,85
6 116,56
7 110,08
8 119,69
9 112,19
10 114,18
11 113,41
12 108,36
13 114,89
14 122,20
15 116,61
16 110,41
17 111,93
18 109,97
19 116,18
20 113,21
21 108,93
22 113,75
23 118,42
24 117,31
25 113,36
26 113,32
27 116,48
28 113,97
29 107,42
30 111,36
31 117,75

Tabla 5.1: Tiempo medio de búsqueda BLAST con para 8 y 32 nodos, con 7 y 31 fragmentos
respectivamente.
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el último worker debe esperar que todos los fragmentos anteriores sean repartidos, para el recibir
el suyo y comenzar el proceso de búsqueda con BLAST.
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N◦ de No-
dos

mito.nt
(sg)

yeast.nt
(sg)

drosoph.nt
(sg)

NT (sg)

8 4,10 3,65 5,76 627,09
32 6,56 6,82 36,10 465,74

Tabla 5.2: Tiempo medio total de búsqueda en mpiBLAST para 8 y 32 nodos con varias bases
de datos.

Esta estrategia, una vez que se ha revisado el código fuente igualmente muestra que los
diseñadores se han planteado repartir la totalidad de fragmentos a todos los workers para que
luego ellos comiencen el procesamiento. Y si alguno llegara a terminar antes, y requiriera un
fragmento adicional, el algoritmo busca aquél fragmento en que otro worker no haya buscado y
se lo transmite al worker desocupado.

Los tiempos medios totales de las ejecuciones para 8 y 32 nodos respectivamente, se encuen-
tran representados en la tabla 5.2, donde se puede percibir la diferencia existente en la duración
de las ejecuciones cuando se vaŕıa el número de workers y el tamaño de las bases de datos.

Conclusiones:
Gracias a lo que se puede observar en las primeras gráficas en las que se presentan la re-

partición de un fragmento para cada worker, y basándonos en los resultados obtenidos luego de
la monitorización, hemos podido observar que las ejecuciones de mpiBLAST bajo un entorno
con memoria y procesamiento limitados (en este caso a 32 nodos con 1 GB de RAM cada uno)
tenemos una serialización en la repartición de los fragmentos entre los workers involucrados, es
por ello que a medida que se aumenta el número de workers se obtiene un mejor desempeño de la
aplicación, esto porque el tamaño del fragmento se ve reducido y con ello consigue ser alojado en
la memoria local de cada uno de los nodos de cómputo. Sin embargo, la fase de repartición al no
tener un sistema de entrada/salida paralelo presenta ciertas ineficiencias al momento de hacer
llegar los fragmentos a cada nodo. Lo cual cuando se carece de la totalidad de los procesadores,
pudiera generar un cuello de botella considerable en el que se esté perdiendo entre el 35 y 40 %
del tiempo total de ejecución.

Algo que vale la pena mencionar es que el tiempo de consulta para cada fragmento en cada
nodo aún cuando poseen datos diferentes es prácticamente similar, esto debido a la estrategia
empleada por el algoritmo de recorrer la totalidad del fragmento buscando posibles similitudes.
Aparentemente no existe dependencia entre los datos distribúıdos en cada fragmento. Situación
que va a ser comprobada más adelante.

Rendimiento de la memoria con mpiBLAST

Hipotesis:
“La cantidad de memoria disponible restringe el desempeño de mpiBLAST”.
Recordando lo que hemos venido señalando a todo lo largo de la investigación el tamaño

de las bases de datos con los que se están enfrentando aplicaciones bioinformáticas como mpi-
BLAST está convirtiendo, aparentemente, la capacidad de memoria disponible en los nodos de
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cómputo de las máquinas paralelas en uno de los principales cuellos de botella dado que si se
está trabajando con tamaños muy por encima de esta capacidad, la velocidad con que se accede
a los datos se ve afectada por una posible paginación a disco.

Proceso:
Es por ello que se ha considerado, medir el grado de influencia existente en el tiempo de

ejecución cuando se ha incrementado exponencialmente el tamaño de la base de datos sobre la
que se va a llevar a cabo la búsqueda y la cantidad de memoria disponible empleando para la
consulta un mayor número de nodos de cómputo. De esta forma se espera comprobar frente a
que tipo de limitaciones se encuentra mpiBLAST. Para ello se ha considerado una base de datos
de la cual se han generado ficheros de tamaños variables hasta llegar a los 2 gigabytes de datos,
y se contrastará con el tiempo de ejecución promedio que tome realizar la consulta.

Se ha realizado el experimento con la base de datos NT(≈ 6.8 GB) y la secuencia de consulta
e chrysantem.fas de 300 KB, con la finalidad de observar el consumo total de memoria al variar
el número de workers (de forma que sea demasiado grande para ser alojada en la memoria de
un nodo de cómputo).

Inicialmente con la base de datos NT segmentada en siete piezas se realiza la consulta con
8 nodos de cómputo del cluster (descrito como entorno en páginas anteriores); cada fragmento
ocupa poco más de 1GB (mpiBLAST permite formatear la base de datos como fichero compri-
mido con la extensión .gz), no dejando espacio libre suficiente en memoria para el búffer de
resultados que se genera a medida que avanza la ejecución. Lo que obliga al sistema a tener que
paginar en disco para poder alocar todos los elementos necesarios durante la ejecución.

Para la gráfica 5.9 se han seleccionado 7 nodos, tomando en consideración aquéllos que hab́ıan
recibido su fragmento en los primeros 25 segundos de ejecución, y los que lo habian recibido su
fragmento a 50, 100 y 150 segundos, de forma que se viera el comportamiento que adoptaba la
memoria a medida que éstos eran cargados. Para el caso del nodo 7, 18 y 15, se han seleccionado
por tener el mayor uso de memoria durante la ejecución, esto debido a que ya que los fragmentos
no reciben igual número de secuencias de acuerdo a su tamaño, existen algunos fragmentos de
la base de datos que tendrán secuencias de mayor longitud que otras y habrán de consumir
memoria durante mucho más tiempo. Entiéndase que la base de datos se ha fragmentado en 7
y 31 piezas, y se ha realizado la ejecución con 8 y 32 nodos en cada caso.

Nótese la presencia de dos procesos adicionales en ambas gráficas que son el Writer y el
Scheduler, que son aquéllos procesos ejecutados dentro del nodo máster que se encargan de
escribir el fichero de salida en formato BLAST y de gestionar la distribución de los fragmentos
a cada worker respectivamente.

Si se monitorea el consumo de memoria en dichos procesos (el de escritura y, el de gestión
del fichero de salida y fragmentos de la base de datos), los datos obtenidos están representados
en las gráficas 5.8 y 5.9, en los que se visualiza que el consumo de memoria no supera los 20 MB
mientras que los workers dependiendo del tamaño de la secuencia alcanzan medias por encima a
los 500MB, esto se debe a que no se está alojando gran cantidad de información durante tiempo
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de ejecución.
Asimismo, se tomaron las mediciones del consumo de memoria por parte del máster y los

workers en un sistema con 32 nodos, manteniendo el tipo de la base de datos y secuencia de
consulta fijo. Y se puede percibir que el nodo que más consume no alcanza a superar el máximo
de memoria f́ısica disponible y de forma similar que como sucede con 8 nodos, la carga de trabajo
y consumo de memoria para el máster se mantiene extremadamente baja.

Conclusiones:
Dado el tamaño considerable que han adoptado las bases de datos biológicas, la disponibilidad

de recursos en cuanto a memoria para alojar el fragmento, se convierte en un factor determinante
en cuanto a uso eficiente de los recursos, porque de lo contrario se está generando un overhead
ocasionado por las repetidas veces que el nodo de cómputo se ve obligado a paginar sus datos a
disco debido a la ausencia de espacio libre para alojar en memoria.

Será interesante comprobar si aumentando el número de fragmentos, existe alguna ventaja
para los clusters con poca memoria disponible, de manera que se trabaje con piezas que consuman
menos de memoria.
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Influencia de MPI en la Aplicación

Hipotesis:
“MPI consume un porcentaje alto del procesamiento”.
Cuando se paralelizan aplicaciones con la ayuda de interfaces como MPI, muchas veces

suele presentarse la problemática de que se puede consumir un alto porcentaje del tiempo de
ejecución en funciones propias de la interfaz. La motivación de este experimento en particular es
la gran cantidad de tiempo que invierten los procesos relacionados al nodo máster, en que espera
cont́ınuamente en un bucle el env́ıo de mensajes por parte de los workers. Aún aśı y dado que
el env́ıo de los fragmentos a los workers se está haciendo a través de MPI, es relevante conocer
el nivel de intrusión que genera dentro de la ejecución global de la aplicación.

Proceso:
Para determinar la influencia de los pasos de mensajes dentro de la aplicación, se ha decidido

realizar una ejecución en la cual se han insertado como datos de entrada la base de datos NT y la
secuencia e chrysantem.fas empleando 32 nodos de cómputo y fragmentando la base de datos en
31 piezas (una para cada worker). Adicionalmente, con la ayuda de la instrumentación realizada
para que el traceador de Vampir identifique las funciones que nos interesan, ha sido posible
obtener y visualizar los resultados presentados en la gráfica 5.10, siendo una captura de pantalla
de la herramienta VAMPIR, la cual permite mostrar los datos obtenidos. Particularmente en
este caso, estamos interesados en observar el porcentaje de tiempo de ejecución y procesamiento
que consume mpiBLAST en llamado a funciones propias de MPI.

Conclusiones:
De esta forma podemos visualizar que las funciones que hemos instrumentado para medir

consumo de recursos están identificadas en la columna CAOS, (por asignar un nombre a la
monitorización insertada por nosotros), de igual forma aquélla relacionada con mpiBLAST ex-
clusivamente es la que pone Application y por último Entrada/Salida y MPI están al final y
encima del gráfico respectivamente. Señalando de ésta forma que del número total de llamadas
a funciones que realiza mpiBLAST poco más de un 51 % está destinado a funciones MPI, lo que
se traduce en un consumo excesivo de funciones no relacionadas directamente con el algoritmo
de la aplicación.

La función con mayor consumo de tiempo durante la ejecución es un MPI Iprobe que vigila
los mensajes que están siendo enviados desde el worker hacia el máster, el cual, tal como se
puede ver en la gráfica 5.11 está consumiendo el 45 % del tiempo total de ejecución.

Sin embargo es necesario recordar que dado que las comunicaciones máster/worker están
siendo llevadas a través de MPI esto puede generar un incremento en el porcentaje a diferencia
de si se emplera la estrategia de directorio compartido que se pudiera acceder a través de un
sistema de ficheros paralelo.
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Figura 5.10: Porcentajes Globales de MPI en una ejecución de mpiBLAST

Granularidad de la carga de trabajo

Hipotesis:
“El fragmentar la base de datos en un mayor número de segmentos agiliza la ejecución”.
Al plantearnos este experimento la respuesta que pretendemos responder es, qué sucede

cuando los fragmentos de la base de datos son cada vez más pequeños, se minimiza el tiempo de
ejecución o en caso contrario la gestión de más piezas de base de datos incrementa el overhead
por comunicación y env́ıo de los fragmentos por parte del máster a los workers. Situaciones que
suelen aparecer a medida que la cantidad de datos que se hace necesario hacer llegar a los nodos
de cómputo aumenta en cantidad y no en volumen.

Proceso:
Para ello hemos realizado un conjunto de consultas para obtener los tiempos medios de

ejecución y distribución para cada fragmento. Hemos empleado la totalidad de los nodos de
cómputo disponibles (32 nodos del cluster Beowulf) y se han repetido las ejecuciones 10 veces
por cada caso. Adicionalmente hemos fijado la base de datos (NT en este caso) y la secuencia de
consulta, nuevamente estamos probando con la e chrysantem.fas. El factor que hemos variado es
el número de fragmentos en el que está segmentada la base de datos con la finalidad de observar
qué comportamiento presenta la aplicación con cargas de trabajo variables.

Los resultados de la variable de respuesta tiempo de ejecución medio están detallados en la
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Figura 5.11: Consumo funciones MPI en la ejecución del nodo Máster.

tabla 5.3 que se presenta a continuación, donde se puede visualizar que a medida que se aumenta
el número de fragmentos de la base de datos, los tiempos de repartición y procesamiento de cada
uno de ellos es cada vez menor, sin embargo, tal como se sospechaba se observa una variación
interesante en el tiempo total de ejecución a medida que el número de fragmentos crece, ya que
involucra un mayor tiempo de espera para algunos workers para recibir su fragmento.

Conclusiones: Con lo que podemos concluir que existe cierto beneficio a medida que se dis-
minuye el tamaño del grano de la carga de trabajo, esto debido al balanceo de trabajo que se
produce dentro de la aplicación y el solapamiento que se presenta a medida que se computa y
distribuyen los fragmentos. Sin embargo, al momento de la repartición sólo los primeros nodos
que reciban la totalidad de fragmentos correspondientes iniciarán el procesamiento y serán los
primeros en terminar. Ya que al carecer de acceso simultáneo a los fragmentos que le corres-
ponden a cada nodo, los últimos habrán de esperar que todos los anteriores hayan recibido su
porción de trabajo para poder obtener el suyo y comenzar la consulta al algoritmo.

De igual forma, a nosotros nos parece un punto importante que se podŕıa mejorar en un
futuro dentro del sistema de gestión de fragmentos existente actualmente, de forma que pudie-
ra realizarse la repartición de forma dinámica a cada uno de los workers que vaya quedando
desocupado, de forma que se reduzca el tiempo de inactividad que presentan lo más posible.
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Ejecución con 8 nodos de cómputo
Número de Fragmentos 7 14 21
Tiempo Medio de Distribución por Nodo (sg) 32,89 17,41 10,17
Tiempo Medio de Consulta BLAST por Nodo (sg) 288,39 144,20 122,29
Tiempo Medio de Env́ıo de los Resultados por Nodo(sg) 5,86 3,68 1,92
Tiempo Total de Ejecución (sg) 627,09 626,14 592,92

Ejecución con 32 nodos de cómputo
Número de Fragmentos 31 62 93
Tiempo Medio de Distribución por Nodo (sg) 5,55 2,79 1,89
Tiempo Medio de Consulta BLAST por Nodo (sg) 113,94 57,77 38,93
Tiempo Medio de Env́ıo de los Resultados por Nodo(sg) 2,02 1,01 0,75
Tiempo Total de Ejecución (sg) 508,13 417,56 434,29

Tabla 5.3: Tiempos medios variando la granularidad de la carga de trabajo en mpiBLAST para
8 y 32 nodos de cómputo

Composición de la base de datos NT

Hipotesis:
“Los tamaños de las secuencias dentro de la base de datos son de tamaños similares”.
Si estamos hablando de que la mayor base de datos biológica existente hoy en d́ıa es la NT

(por supuesto excluyendo los genomas humanos), deseamos conocer la naturaleza de los datos
que la conforman, ya que se trata de un fichero de secuencias biológicas que descomprimido
(extráıdo del fichero .gz ocupa disponible en el repositorio) ocupa aproximadamente poco más
de unos 22 GB, que al momento de trabajar con ellos reflejan un consumo masivo de recursos
de almacenamiento y alojamiento en memoria.

Proceso:
Para ello se realizó un estudio con la ayuda del paquete estad́ıstico SPSS en el que se

introdujeron todos los datos referentes a la base de datos y que permitió obtener el número
de secuencias existentes dentro de la base de datos, el tamaño medio de las secuencias que la
componen y la distribución de las mismas en el fichero. De ésta forma pudimos identificar el
volumen de datos con los que estamos trabajando y poder predecir la influencia que tiene uno u
otro tamaño de secuencia en la ejecución de la consulta y en la conformación de los fragmentos
que serán enviados a los workers.

La distribución de secuencias dentro de la base de datos está reflejada en la figura 5.12, donde
se puede observar que la NT, un fichero que está compuesto por más de 7 millones de secuencias
diferentes, que el tamaño medio de una secuencia es de 3000 caracteres (estamos despreciando
por el momento todo significado biológico que éstas secuencias pudieran tener según su tamaño),
ya que estamos tratanto cada secuencia biológica como una cadena de caracteres contra los que
se contrastarán las secuencias que conforman la secuencia de consulta.

Conclusiones:
Al estar trabajando con una aplicación cuya esencia es la comparación de cadenas de ca-

94



Figura 5.12: Histograma de distribución de secuencias dentro de la base de datos biológica NT

racteres, era de vital importancia identificar el “mayor” reto que representaban las secuencias
dentro de la base de datos, de forma que a medida que se realizaran las ejecuciones se conociera
la naturaleza de la carga de trabajo que se introduce a la aplicación.

Dado que el número medio de caracteres dentro de una cadena oscila entre unos cientos de
KB (en contraste con los millones que conforman un genoma humano, TB) podemos saber que
los fragmentos en los que se ha segmentado la base de datos están compuestos por n cadenas
de tamaño variable. Denotando aśı que la presencia de cadenas que ocupen MB no es el factor
común dentro de cada fragmento.

Resumen

Una vez que hemos finalizado la experimentación, podemos afirmar que mpiBLAST como
aplicación paralela de bioinformática presenta algunas situaciones de ineficiencias cuando se
ejecuta en clústers con caracteŕısticas muy espećıficas de memoria, sistema de fichero y dispo-
nibilidad de nodos, como el nuestro. Estas ineficiencias están directamente relacionadas con los
parámetros que hemos evaluado, logrando aśı determinar la influencia que generan estos en la
ejecución.

El tamaño de la base de datos biológica con la que se va a trabajar, incluso consultas de
bases de datos contra ellas mismas (para buscar alguna incongruencia entre una y otra) refiere
el mayor consumo de recursos disponibles; es decir, ella fija parte de la cantidad de recursos
que debes tener al alcance para obtener respuestas en un mejor tiempo, tales como número de
workers a emplear, de acuerdo a la cantidad de memoria disponible.

De igual forma, la distribución de trabajo cuando se aumenta la granularidad de los frag-
mentos de la base de datos, permite el manejo de ficheros de menor tamaño, lo que se refleja
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en una mejora en los tiempos de ejecución momentánea, ya que si el número de fragmentos es
demasiado grande, todo el proceso de gestión y distribución del máster a los workers introduce
overhead en las comunicaciones e incrementa el tiempo total de ejecución.

5.4. Diseño del Modelo de Rendimiento Preliminar

Partiendo de los resultados observados a lo largo de los experimentos realizados y de las
trazas de ejecución obtenidas, podemos plantear una primera aproximación matemática del
comportamiento presenta mpiBLAST bajo el entorno paralelo sobre el que se está ejecutando.

Señalando que en esta aproximación se está despreciando parte del tiempo consumido al
momento de generar el fichero de salida con las secuencias resultantes de la búsqueda; de forma
que se perciba la influencia existente por parte del factor de fragmentación de la base de datos
de secuencias biológicas.

Si el tiempo total de ejecución Ttotal viene dado por la siguiente ecuación:

Ttotal = Tsend ∗
Nfrag

Nproc
+

k∑
n=1

Tprocn ∗
Nfrag

Nproc
(5.1)

Y considerando que el tiempo de env́ıo de los fragmentos, Tsend, a cada worker, podŕıa
expresarse como la relación entre el tamaño del fragmento s, expresado en megabytes y el ancho
de banda b disponible en la red del clúster, y se ve reflejado en la ecuación 5.2:

Tsend =
s

b
(5.2)

Una vez definido el tiémpo de env́ıo por fragmento, el volumen de datos por procesar de
mpiBLAST se puede expresar como:

V = s ∗ F (5.3)

Lo que representaŕıa la cantidad total de datos con los que habŕıa de tratar la aplicación
en una aplicación determindada. De forma de que si se estuviera tratando con F fragmentos,
el tiempo de procesar cada uno de ellos realizando la búsqueda de mpiBLAST, determinaŕıa la
carga total de trabajo E y estaŕıa determinada por:

W = Tprocn ∗ F (5.4)

donde: Tproc, es el tiempo que le toma al proceso n dentro de cada worker para llevar a cabo
la función de búsqueda de BLAST.
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Pudiendo concluir que la carga W está condicionada por el volumen en una relación Proc(V ) = W

de forma que determinase el tiempo total de ejecución a través de:

Ttotal =
V

b ∗ P
+

W

P
(5.5)

Cabe destacar que el tiempo de procesamiento Tproc está condicionado por la capacidad de
memoria disponible dentro del nódo de cómputo. Este modelo anaĺıtico es la aproximación inicial
para la descripción del comportamiento de mpiBLAST como aplicación bioinformática paralela,
bajo un paradigma máster/worker.
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Caṕıtulo 6

Conclusiones y Trabajos Futuros

“Si dos hombres vienen caminando por una carretera, cada uno cargando un
pan, y, cuando se encontrasen, intercambiaran los panes, cada hombre se iŕıa
con uno... Pero, si dos hombres vienen caminando por una carretera cada uno
cargando una idea, y, cuando se encontrasen, intercambiaran las ideas, cada
hombre iŕıa ahora con dos...”

Proverbio Chino.

6.1. Conclusiones

Las aplicaciones paralelas hoy en d́ıa representan un gran avance para los campos y discipli-
nas cient́ıficas existentes, ya que ellas hacen posible la realización de diversas tareas de forma
simultánea, el procesamiento de datos de forma más rápida (y eficiente) y a su vez facilitan
el trabajo con volúmenes de datos cada vez mayores. Aplicaciones paralelas como mpiBLAST
[12] no son la excepción, ya que es una herramienta que ha sido propuesta como una mejora
sustancial al algoritmo de alineamiento de secuencias BLAST [1] publicado en 1990, y que ha
conseguido mantenerse como aplicación estrella en el el campo de la bioinformática, dado que
muchas tareas más complejas están basadas en ella.

Recordando que la esencia de BLAST es realizar alineamientos locales (búsqueda de simi-
litudes) entre dos secuencias biológicas (cadenas de ADN o Protéınas) ó entre una secuencia y
una base de datos, que está compuesta por varias secuencias más; se parte de la premisa plan-
teada en la publicación de 1990 de que al momento de una consulta es necesario que el nodo
que va a efectuar la búsqueda tenga en memoria la base de datos contra la que se va a realizar
la búsqueda, de lo contrario no era posible llevar a cabo el algoritmo, claro las capacidades que
teńıan los ordenadores de la época no se comparan con las que se han alcanzado hoy en d́ıa.

El problema se presenta cuando una ejecución secuencial t́ıpica de BLAST se ralentiza a
medida que las bases de datos biológicas aumentan en tamaño. Por este motivo, los creadores
de mpiBLAST [12] plantearon segmentar la base de datos y repartir el trabajo entre los nodos,
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siguiendo un paradigma de paralelismo basado en Máster/Worker; existe un nodo maestro que
se encarga de distribúır y gestionar el trabajo repartido entre n cantidad de nodos worker. Todo
ésto diseñado y programado con la ayuda de la interfaz de paso de mensajes (MPI, Message
Passing Interface).

El proceso de comparación de las cadenas biológicas es la fase que consume mayor cantidad
de tiempo dentro de la ejecución de mpiBLAST y si el tamaño de los fragmentos supera la
capacidad de memoria del nodo y pagina a disco, este tiempo incrementará considerablemente.
Por lo tanto se necesita un entorno de ejecución en paralelo (un cluster) que permita llevar a
cabo las ejecuciones de la forma más eficiente. Nuestra hipótesis ha sido durante todo el proceso
de investigación que si el problema es demasiado grande para ser resuelto con pocos nodos
de cómputo sin presentarse ineficiencias se hace necesario determinar estrategias que permitan
realizar la ejecución sacando provecho de los recursos disponibles.

La aplicación mpiBLAST, posee toda una estrategia de manejo de la entrada/salida que pu-
diera llegar a interpretarse como un problema cuando la carga de trabajo aumenta, el algoritmo
de gestión de E/S no llega a ser capaz de repartir el trabajo de forma eficiente, generando cuellos
de botella al serializarse el inicio y final de la ejecución.

Como resultados finales obtenidos luego de toda la experimentación presentada en el caṕıtulo
5, muchos de ellos giraban entorno a un problema existente de gestión de los datos; es decir, a
medida que el volumen de la carga de trabajo aumenta se hace necesario mejorar aún más las
estrategias de rendimiento existentes, esto debido a que tal como se señaló en su momento, el
consumo de recursos disponibles incrementa considerablemente y la presencia de ineficiencias se
hace inevitable. Por ejemplo, cuando hemos trabajado con bases de datos con un tamaño que
no superaba 1 GB, la presencia de ineficiencias no afectaban el tiempo total de ejecución. La
carga de trabajo era tan pequeña que el retraso existente en la distribución de los datos para
ser procesados era imperceptible. Situación contraria cuando se toman ficheros de varios GB
que necesitan ser formateados en k segmentos y repartidos a n workers. La escala de tiempo
empieza a tornarse más significativa, los tiempos pasan de ser unos pocos segundos a casi una
hora por cada formateo; sucede de forma similar con el tiempo total de ejecución de la consulta,
a medida que la secuencia que se contrasta y la base de datos aumentan de tamaño, el tiempo de
respuesta aumenta considerablemente, la cantidad de datos influyen directamente con el volumen
de información a enviar durante la entrada y la salida.

Otra observación que se obtuvo a medida que avanzaba la investigación ha sido la serialización
de las comunicaciones, en la que gran parte del tiempo total de cómputo estaba siendo gastado
en el env́ıo de los fragmentos, no decimos que consume mucho tiempo enviar un fragmento, sino
que lo que retrasa la ejecución es la forma en que éstos están siendo enviados al worker; esto
se obtuvo una vez que monitorizamos cada una de las fases involucradas en la ejecución y nos
percatamos que, el nodo n no recibirá su fragmento k a menos que los nodos 0 hasta n-1 hayan
recibido los fragmentos 0 hasta k-1 respectivamente. La causa a la que atribúımos la presencia
de esta ineficiencia es que dado que se supone la presencia de un sistema de ficheros distribuido,
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se desprecia la posibilidad de que esta fase se secuenciase, y estaŕıamos hablando de tiempos de
inactividad, para algunos nodos, superiores al 50 % de lo que toma realizar la consulta como tal.

También se presenta una serialización de la ejecución a medida que se genera el fichero de
salida. Bajo la configuración de comunicación que se ha adoptado durante nuestro estudio de
emplear la interfaz de pasos de mensaje MPI y ya que la construcción del fichero resultante co-
rresponde al proceso escritor (writer) del máster; todos los workers a medida que van terminando
de procesar habrán de esperar que dicho proceso sea capaz de atender su petición, generándose
una cola de tareas por realizar por el máster, que a medida que el número de procesadores
aumente termina convirtiéndose en uno de los cuellos de botella más significativos dentro de la
aplicación.

El número de ineficiencias relacionadas con gestión de E/S, en mpiBLAST (un M/W con
prerepartición de fragmentos), es relevante, ya que no se está explotando el paralelismo propio
del diseño de la aplicación; y consideramos que estas problemáticas habrán de ser resueltas con
propuestas que tomen en consideración la presencia de una fuerte dependencia a los datos que
se deben procesar.

Adicionalmente hemos obtenido resultados interesantes cuando se vaŕıa el factor de granula-
ridad de la carga de trabajo, entiéndase como este factor el fragmentar la base de datos en 2 y 3
veces el número de workers disponibles, de forma que cada worker procesara piezas de base de
datos aún más pequeñas, ganancia que se veŕıa reflejada en la disminución del tiempo de espera
por el worker n para recibir su porción de trabajo, sin embargo, nos ha sorprendido la estrategia
de distribución de fragmentos presente en la herramienta. Ya que al basarse en un sistema de
ficheros distribúıdo, deciden entregar la totalidad de la carga de trabajo a cada worker antes de
que empiece a procesar el primer fragmento, lo que ocasiona una serialización de la ejecución.

Si no existiera el problema que comentamos ĺıneas más arriba sobre la serialización presente
en la fase de repartición, debido a la carencia de sistema de ficheros paralelos, la estrategia seŕıa
la más adecuada, pero por el contrario, si no se cuenta con un entorno con estas caracteŕısticas
obliga a cada nodo esperar hasta que sus predecesores hayan recibido su carga de trabajo, para
luego recibir de igual forma el siguiente fragmento y aśı sucesivamente con los dos o tres más que
pudieran tocarle. Incrementándose de esta forma el tiempo de inactividad en todos los nodos
por el tiempo de espera que habrán de pasar mientras reciben sus fragmentos asignados.

El algoritmo de gestión de fragmentos (scheduler, dentro del código fuente) presente en el
nodo máster, refleja un intento de dinamismo en esta variable, ya que si un worker ha finalizado
la totalidad de su trabajo busca aquél fragmento en el que ningún otro worker está buscando y
le señala al worker inactivo que lo copie. Pero desde nuestro punto de vista y la respuesta que
se plantea a futuro para hacer más dinámica ésta distribución, es variar la estrategia de forma
que los workers reciban sólo un fragmento por vez y luego a medida que van quedando inactivos
soliciten más trabajo de forma que se solapen el cómputo y la comunicación. Adicionalmente al
lograrse esto se podŕıa introducir conceptos de números de workers ideales [11] para los nodos
disponibles.
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Al concretarse la propuesta de distribución dinámica de fragmentos, que queda por ahora
como trabajo futuro para este proyecto se conseguiŕıa aportar mayor flexibilidad al algoritmo
de distribución de fragmentos presente en el scheduler que sin duda alguna se reflejaŕıa como
ganancia en rendimiento de mpiBLAST como aplicación paralela.

Un factor relevante que vale la pena destacar es que la investigación ha permitido aplicar
directamente los fundamentos teóricos de análisis de rendimiento existentes, sobre aplicaciones
cient́ıficas paralelas de uso diario. Descubriendo de esta forma caminos sobre los que se pueden
realizar aportaciones basándonos en la teoŕıa conocida.

Generalizando, las aplicaciones como mpiBLAST que están planteadas bajo un modelo muy
sencillo pero que les toca procesar volúmenes masivos de datos presentan problemáticas de
rendimiento relacionadas con:

La gestión de E/S, que a medida que aumenta el número de datos a procesar la
repartición de los datos junto con la recolección de resultados se ven afectados.

La granularidad de la carga de trabajo, requieren una mejor estrategia para balancear
la distribución del trabajo (fragmentos de base de datos) entre los nodos de cómputo
disponibles.

La estrategia de distribución de fragmentos no toma en consideración que esta fase se
esté serializando.

6.2. Trabajo Futuro

Una vez alcanzado el objetivo planteado para éste trabajo de investigación en particular,
quedan algunas lineas abiertas para aportar aún más conocimiento en cuanto a análisis de
rendimiento y sintonización de aplicaciones paralelas. Para ello hemos definido como posibles
trabajos futuros en los que se encuentren involucradas aplicaciones máster/worker del tipo de
mpiBLAST que puedan adaptarse a los modelos de rendimiento existentes y generar aún mayor
información para los grupos de investigación relacionados.

Todo esto con la intención de que este trabajo de investigación emplee los aportes obteni-
dos durante las fases de diseño teórico de modelos de rendimiento y sintonización dinámica y
además permita incorporar nuevos enfoques de modelado y análisis de rendimiento de las nuevas
aplicaciones cient́ıficas disponibles en el mercado.

Nos encontramos en este momento en un punto en el que los datos con los que se están traba-
jando están tomando protagonismo en el consumo de recursos. Estamos saliendo del paradigma
de cómputo complejo y datos sencillos para entrar en una época de cómputo sencillo y cantidad
masiva de datos. Los cuales están determinando la cantidad de recursos necesarios para poder
llevar a cabo dichos procesos. Es acá donde cada vez más la Computación de Altas Prestaciones,
se acerca a los grupos cient́ıficos de diferentes áreas a lo largo del mundo, brindando una opción
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para sacar provecho de las máquinas paralelas con las que cada uno de ellos cuenta en sus sitios
de trabajo.

Un factor relevante en nuestras próximas investigaciones es la posibilidad de poder repro-
ducir el ambiente sobre el que pudieran estarse ejecutando las aplicaciones a evaluar, si bien el
análisis realizado a mpiBLAST pudiera ser muy espećıfico en cuanto a aplicación como tal, el
conocimiento generado a través de su evaluación de rendimiento nos es útil para considerar nue-
vos enfoques que adopten las aplicaciones cient́ıficas y generen aportes a los modelos diseñados
anteriormente.

Es interesante la idea de sondear un entorno colaborativo, pero tal como señalamos esto
estará directamente relacionado con la capacidad de reproducción del entorno y de los experi-
mentos. Es decir, subir un nivel siempre y cuando pudiera mantenerse la capacidad de control
de los parámetros que se posee ahora en los clústers tradicionales.

Conjuntamente, quedó sobre nuestro grupo de investigación la posibilidad de estudiar la
influencia que pudiera tener aspectos económicos dentro del aprovechamiento de la computación
de altas prestaciones, introducir conceptos de cómputo colaborativo como Cloud de forma que
aplicaciones del tipo de mpiBLAST puedan ser ejecutadas en entornos de miles de nodos de
cómputos conectados bajo este enfoque, lo que significaŕıa para el grupo que trabaje con este
tipo de herramientas una opción de procesar grandes cantidades de datos sin la necesidad de tener
un Marenostrum (por poner un ejemplo) en su laboratorio. Por el momento se seguirá tratando
como un punto de referencia a futuro ya que dependerá de las posibilidades de High Performance
Computing o High Throughput Computing (HPC o HTC) que se planteen, ya que aún restan
por definir.

Queda como ĺınea abierta la gestión de E/S en las aplicaciones biológicas que integrarán el
trabajo con grandes volúmenes de datos y nuevas tecnoloǵıas de secuenciación. De donde se puede
plantear la gestión de aplicaciones con datos con un tamaño superior a TB y la implementación
de modelos conocidos de cómputo. Junto con el uso eficiente de los recursos, empleando la
menor cantidad posible de ellos en el manejo de grandes cantidades de datos de forma total y
exhaustiva; de forma que se mantenga la investigación ligada directamente con la filosof́ıa de
cómputo de altas prestaciones y se convierta en una solución para las aplicaciones cient́ıficas
actuales y siguientes.

Sin duda alguna, la bioinformática y sus aplicaciones continuarán formando parte de los
principales beneficiarios del cómputo de altas prestaciones, de forma que todo lo que se pueda
concebir para generar aún más beneficios en el procesamiento de los datos biológicos será un
aporte bien recibido por los grupos cient́ıficos existentes, y servirá de base para aún más avances
y aportes en el High Performance Computing.
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