Universitat
& Autonoma
de Barcelona

DESENVOLUPAMENT D’UN VIDEOJOC EN 3D

Memoria del Projecte Fi de Carrera
d'Enginyeria en Informatica
realitzat per

EDUARD RICART LOPEZ

I dirigit per

XAVIER ORIOLS PLADEVALL
Bellaterra, 18 de JUNY de 2009

Proyecte Final de Carrera 2009

Index
1. INrodUCCIO. ..o 3
2. ODJECHIUS.ev i 6
3. Desenvolupament.........cccccevvveieeiieecnenne, 8
3.1.S0ftware BaSIC.........ccoovrererenenieerrie e 8
3.1.1. Microsoft Visual Express 2008............c.ccccuvuenne. 8
3.1.2. Llenguatge CH+......ccoooiriiiiiiiieneeceneeees 8
3.1.3. Ogre3D.....cciiiiiee 9
314, BIender.......ccoooiiiiiiiiie e 9
3141, OgreMeshes.......cccocereriieeriennneneneieeeaeens 11
3.1.4.2. Texture UV Mapping.......ccooeeeverenesivenennens 13
3.2.L0QICA....ecveieieie st 14
3.2.1. ArgQUMENL......oiiiiieiiie e 15
3.2.2. Plataforma.........cccoovvieiiieiiiiccnc e, 16
3.2.3. BlOCS....ciiiiiecce e 18
3.2.3.1. ODJECES.....oiveiiiiciee e 19
3.2.4. MallaVirtual..........cccooooiiiiiiiiicce 19
3.3.Programacio..........cc.cceevivevieresieeneseeiesnanens 20
3.3.1. Generacio de codi importat..............ccceuenennee. 22

3.3.1.1. SceneManager........cocvereeenienieenienennens 22

Proyecte Final de Carrera 2009

3.3.1.1.1. SCENENOMES.covrveviiiireieitrireriere e 23

3312, CAMEIA.iciiiiecieicie e 24

3313, LIUMuii e 26

3.3.14. Entrada DispoSItiusS.........cccoevevererveiennnn, 27

3.3.15. INterficie. ... 27

3318, SO 28

3.3.2. Generacio de codi Propi.........ccceevrereecrenenenne 29

3.3.2.1L. ClaASSES...c.eeiriiriirieiieieeees e 29

3.3.2.1.1. Creacil ESCeNa........cccoevirrinriciiccee 29

3.3.2.1.2. FrameLiStener.........cccoveevieinnniecerne s 30

3.3.22. RULINES.....ccoiviiiiiiitcie e 30

3.3.2.2.1. CalculMOoVImeNt.........coornriviririciirenens 30

3.3.2.2.2. FrameStarted...........ccoecvrvvrnice i 31

3.3.2.3. EStrUCtUIES.viieieecicee e 31

3.3.2.3.1. ODJECtE....cvviiieiiieieree s 31

3.3.2.3.2. ESPAI.c.eieieieiieee e 32
. ReSUIatS......cceeiiic 33
Expectatives de FUtur.........cccoeveiinnnnnn. 36
. CoNCIUSIONS......coiiiieiec e 37
. Bibliografia........ccccoooeiviiiiii, 39
T LUMPS e 39
T.2.LHDIES. ..o 39

AANNEXES . .ot 40

Proyecte Final de Carrera 2009

1 Introducci6

Aquest projecte fi de carrera de la titulacié d’Enginyeria Informatica tracta sobre el
disseny, la programacio i la realitzacié d’un videojoc. Es un projecte diferent del que és
habitual, ja que es tracte d’un projecte auto-proposat per mi mateix. EI motiu per el qual
he escollit fer un videojoc com a treball fi de carrera de la titulacié de Enginyeria
Informatica es que ja des de petit m’agradaven i fascinaven molt conéixer la estructura i
funcionament dels videojocs. De fet uns dels motius per els quals vaig escollir estudiar
la carrera d’Enginyer Informatic Superior va ser el poder veure com funcionen els
videojocs amb tot detall. En aquest sentit, en I’assignatura Grafics per Computador 11,
vaig poder experimentar les bases per poder crear un videojoc a nivell de programacio i
més endavant vaig realitzar un altre assignatura sobre com comengar a dissenyar i
programar un videojoc en 3D. Per tant, la possibilitat de realitzar un videojoc i poder
donar utilitat a les matéries que he aprés a la carrera ha estat una motivacié molt

especial per la realitzaci6 d’aquest projecte de fi de carrera.

Importancia del la industria dels videojocs en la nostre societat actual

Els videojocs cada vegada tenen més importancia en la nostre activitat d’oci actual, i per
tant adquireixen una importancia creixent dins dels camps de treball de la Informatica.
Anem a veure exemples de la importancia que esta adquirint la industria dels videojocs
en la nostre societat actual. Per exemple, I’ultima pel-licula de “Piratas del Caribe” va
ser la pel-licula que més va recaptar durant I’any 2007 amb un volum de facturacio de
406 milions de dollars. Sorprenentment, aquell mateix any, el videojoc conegut com
Grand Theft Auto IV (GTA 1V) desenvolupat per ordinadors i diverses consoles va

facturar 500 milions de dollars.

Un altre exemple el trobem en la industria dels videojocs en els Estats Units. Durant el

mes de juny de 2007 I’industria dels videojocs va registrar vendes per més de 1100

Proyecte Final de Carrera 2009

milions de dollars només dintre dels Estats Units. En aquest sentit, el nombre de llars
dels Estats Units que ha adquirit una consola de Videojocs ha augmentat un 18%
segons un estudi realitzat a finals de 2006, 46 milions de llars de EU tenen una consola

de videojocs.

Segons calculs de experts en aquest ambit, la industria dels videojocs mou al voltant de
30,000 milions de dolars durant I’altim any en tot el mon i el volum de diners

involucrats no para de créixer cada any.

En aquest mateix sentit, la revista espanyola “Consumer” prediu que durant I’any 2010
el valor de la industria de videojocs creixera un 100 %, és a dir 60 mil milions de dolars
aproximadament. Per tal de tenir una idea de I’impacta d’aquestes xifres, podem
mencionar que, per exemple, (i) la industria Pornografica registra ventes mundials de 57
mil milions de dolars, (ii) Hollywood produeix al voltant de 500 films al any i guanya 9
mil milions de dolars, o bé, (iii) Microsoft ven anualment 40 Mil milions de dolars en

Software.

Fins ara hem descrit la importancia de la industria dels videojocs a nivell global, si ens
centrem dins del territori espanyol, la situaci6é també es d’una importancia creixent

d’aquest sector. Veure figura 1.

Proyecte Final de Carrera 2009

ESTIMACION DEL CONSUMO AUDIOVISUAL E INTERACTIVO
EN ESPANA EN 2008

__PELICULAS DV A:g‘m Mill.€

P 245 Mill. €
10%

TAQUILLA DE VIDEQJUEGOS
CINE 1.432 Mill.€
619 Mill. € 57%
25%

HARDWARE; 688 Mill. €
48,

Fuente: M"CULTURA/UVE/PROMUSICAE/ADESE

Figura 1: Estimaci6 del consum audiovisual e interactiu a Espanya durant I’any 2008

Durant I’any 2008, com poder veure a la Figura 1, els videojocs s’emporten gairebé el
60% de les vendes del consum audiovisual e interactiu del pais. Més del doble que el
cinema, més de 5 vegades el consum de musica i mes de 7 vegades les pel-licules en
DVD.

Per tant, com a conclusid, podem dir que la industria de videojocs avui en dia €s una de
els més importants dins de I’industria del oci i el volum de recurs que mou augmenta

espectacularment cada any que passa. En aquets sentit, la programacié de videojocs que
s’ha plantejat en aquest projecte fi de carrera es una activitat d’una importancia creixent
dins de I’ambit de la informatica i una bona font de activitat professional degut a la alta

demanda, per part del public, d’aquest sector en tot el mon.

Proyecte Final de Carrera 2009

2 Objectius

Despres de la introduccié del anterior capitol on hem explicat la motivacio especial
d’aquest projecte fi de carrera, a continuacio, passem a descriure els objectius concrets

d’aquest projecte fi de carrera.

El principal objectiu, que persegueix aquest projecte fi de carrera és el seguent:

e Dissenyar la logica i desenvolupar el software d’un videojoc en 3D

per Ordinador.

Com ja s’ha comentat en la introducci6, durant la carrera com a Enginyer Informatic,
s’han tractat alguns aspectes relacionats amb la programacio i disseny d’un videojoc, i
la possibilitat de realitzar un projecte de fi de carrera en aquest ambit m’ofereix la

possibilitat d’aprofundir en aquesta matéria.

Com s’explicara en el tercer capitol, I’entorn de programacio per a realitzar aquest
projecte fi de carrera es el llenguatge C++ en un entorn de Microsoft Visual Studio 2008
Express, les llibreries de Ogre3D i el programa Blender per a realitzar objectes i

textures 3D.

He escollit Microsoft Visual Studio 2008 Express com a entorn de programacio ja que
les seves propietats son les necessaries per poder realitzar un videojoc amb les

caracteristiques que m’he plantejat i a més la seva llicencia es gratuita.

Per altre banda, he escollit C++ com a llenguatge de programacio ja que segons
I’experiéncia que tinc la majoria de jocs del mercat estan realitzar amb aquets
llenguatge, a mes és un dels llenguatges que mes he vist durant la carrera i amb el que

hem sento més comode treballant.

Proyecte Final de Carrera 2009

He escollit Ogre3D com a motor grafic (llibreries grafiques per poder desenvolupar un
videojoc en 3D) ja que és més potent que altres motors com OpenGL i DirectX ja que
els inclou al dos i alhora abstrau les seves dificultats a més a més la seva llicéncia és
gratuita i esta escrit en C++. Per una altre banda és un dels motor grafics més usats avui

en dia, per tant m’ha semblat interessant aprendre a dominar-lo de cara a un futur.

Finalment, he escollit Blender per dissenyar els models 3D del videojoc ja que també
durant la carrera vaig poder realitzar un curs d’iniciacio, per tant era el software de

dibuix que millor conec a més la seva llicéncia és gratuita.

Per tant, hi ha també una série d’objectius secundaris que s’han d’assolir per tal de
dissenyar el mencionat videojoc 3D. Aquest objectius secundaris del present projecte fi

de carrera son:

e Dissenyar models 3D amb Blender.

e Programar el videojoc amb C++.

e Fer que C++ interpreti els models de Blender.

e Comprendre el funcionament d’Ogre3D.

e Realitzar un Moviment 3D basat en una malla virtual propia.
e Interactuar el codi Ogre3D amb el codi original.

e Afegir So i Mdsica al videojoc.

e Afegir una Interficie Grafica al videojoc.

La correcta realitzacio del present projecte requereix I’assoliment dels mencionats

objectius.

Proyecte Final de Carrera 2009

3 Desenvolupament

En aquest capitol discutirem el desenvolupament del treball realitzat per I’elaboracio del
videojoc 3D. Primerament discutirem el software basic utilitzat per a la realitzacio del

videojoc, posteriorment la logica del joc i finalment la programacio del mateix.

3.1 Software Basic

Per poder realitzar aquest videojoc en 3D es necessiten 4 paquets de software basic que

a continuacioé passem a descriure:

3.1.1 Microsoft Visual Studio Express 2008

El Microsoft Visual Studio Express 2008 es I’entorn global on es desenvolupara el gruix
del codi desenvolupat en aquest projecte, ja que aqui és on es programara tot el codi
C++ i on sera compilat i executat el programa, per tal de poder “debbugar” el programa

per detectar possibles errors i per veure el resultat final.

3.1.2 Llenguatge C++

Llenguatge de programacio que utilitzarem per desenvolupar la major part del projecte
es el C++. El codi C++ que desenvolupem, un cop compilat i executat en I’entorn de
programacio mencionat anteriorment, ens servira per unir les dades que ens donin
diferents paquets de software que hem utilitzat (com per exemple, el motor grafic,

I’entorn de modelatge i el codi original).

El motiu d’escollir el C++ es basa en que es un llenguatge de programacié molt potent

que permet una estructuracio del codi molt professional.

Proyecte Final de Carrera 2009

3.1.3 Ogre3D

El Ogre 3D (Object-Oriented Graphics Rendering Engine) és un conjunt de llibreries C++
que s’han d’incloure al entorn de programacié per tal de poder tenir les bases per crear

el videojoc 3D.

Figura 2: Logotip Ogre3D

En particular, I’Ogre 3D (el logotip es mostra en la Figura 2) és un “motor” que permet obtenir
llibreries amb “subrutines” especifiques per dibuixar objectes i escenes 3D en constant
moviment. El conjunt de llibreries (que anomenem “motor”) esta escrit en el llenguatge de
programacié C++. Aquestes llibreries eviten la dificultat de la utilitzacié de capes inferiors de
llibreries grafiques com OpenGL i Direct3D, i a més, proveeixen una interficie basada en
classes d'alt nivell. El motor és programari lliure, llicenciat sota LGPL i amb una comunitat de
usuaris molt activa. Fins i tot, aquest mateix “motor” s’ha utilitzat professionalment en alguns

jocs comercials.

3.1.4 Blender

El software Blender es I’encarregat de crear els grafics i escenaris 3D que volem fer
amb el nostre videojoc (veure un exemple del entorn del programa Blender en la Figura
3). Un cops creats els objectes 3D amb el programa de dibuix 3D Blender, els hi podem

donar olors, forma, textures i moltes altres propietats.

Proyecte Final de Carrera 2009

Després, per tal de poder fe servir aquest objectes 3D al nostre entorn de programacio,
els haurem d’exportar fent us d’un exportador especial del Blender que es compatible

amb OGRE3D que hem mencionat anteriorment.

El software Blender és, de fet, un programa multi plataforma, dedicat especialment al
modelatge, animacid i creacio de grafics tridimensionals. EI programa va ser inicialment
distribuit de forma gratuita pero sense el codi font, amb un manual disponible per a la
venda, encara que posteriorment va passar a ser programari lliure. Actualment és
compatible amb totes les versions de Windows, Mac US X, Linux, Solaris, FreeBSD i
IRIX. Té una molt peculiar interficie grafica d'usuari que permet la configuracio

personalitzada de la distribucié dels menus i vistes de camera.

En aquesta memaria no s’entrara en detalls de com es realitza un model 3D a traves del
a Blender, ja que no és el objectiu principal del projecte, pero si que comentarem
breument dues de les opcions que s’han utilitzat i que sera rellevant per entendre altres
parts d’aquesta memoria:
En particular, discutirem les segiients dues opcions:

e OgreMeshes.

e Textures UV Mapping.

lam:2 241 (321 88M)

£.001

~ View Select Object (&6 [o (e 2| PHHHHH[E]
Panats [c B [0(@] =l |
¥ Preve

O Mt
-

=] (EEEISVOYN[AT000 sni| [T Gl Cant AT

Figura 3: Models 3D en Blender

10

Proyecte Final de Carrera 2009

3.1.4.1 OgreMeshes

Aquesta opcio del Blender és la que ens permet fer els objectes 3D compatibles amb el
Ogre3D que hem comentat anteriorment. Un cop creats els models 3D amb Blender,
necessitem exportar-los en un format que el nostre entorn de programacié C++ pugui
Ilegir e interpretar i que alhora siguin compatibles amb Ogre3D, en el nostre cas
exportem els models 3D a fitxers .mesh. Per fer-ho farem s d’un script ja creat

anomenat OgreMeshes (Figura 4). Per fer servir aquest script necessitem tenir instal-lat

Python amb la versid 2.6 com a minim en el ordinador on estem executant Blender.

e
Open...

Open Recent
Recover Last Session
Save
Save As.
Compress File

Save Rendered Image... VRML 1.0
Screenshot Subwindow ctiFs DXF.
Screenshat Al ctishitFa STL

Save Game As Runtime & 30 Studia (3ds)
Save Default Settings cm u b AC3D (ag)
Load Factory Setings @ Autodask DXF {dx)
B Autndesk FBX ()

Append or Link Shift F1

@ COLLADA 131 (dae)
#Append or Link (image Browser) Ctrl F1

B COLLADA 1.4(dag)
Itfport »

T 0c O'icc e Fomt (o
B Direct (%)

External Data ¥ @ Lightiave (lwa)

Quit Blender Cirl @ & Lightwave Motion (mof)

B M3G (m3g, java)

& MD2 (md2)

0G 185
& OpenFlight (1t

: ® op

= = EQ, GQuake 3 (map)
0 [B15 [0] @ o Faves i
o $save Curent Theme
B Sofimage XS {xsi)
s Stanford PLY (* ply).
B VRMLST (wrl)
B Vertex Keyframe Animation { mdd)
& wavefront (obj)
@, %30 Exdensible 30 (x3d)
@ i export (fig)

Export meshes and animations to OGRE

iv).

Figura 4: Blender, exportacié models amb ogremeshes.

El OgreMeshes en realitat ens torna fitxers en format XML, pero te I’opcié de
configurar un programa anomenat OgreXMLConverter que permet passar
automaticament un fitxer XML a Mesh per facilitar-nos la feina de tenir que convertir-

los nosaltres.

11

Proyecte Final de Carrera 2009

El Script també es retorna un altre fitxer amb extensié “material” on tenim tots el
materials de tots el models que hem exportat i també les textures associades a aquets

materials.

Tots aquests fitxers son directament interpretables pel Ogre3D.

OgreMeshes té algunes opcions extres com per exemple (Figura 5):

Copy Textures: Ens permet copiar les textures associades al Material a la mateixa ruta

que els Mesh.

Fix Up Axis to Y: Aquesta opcid ens ha estat molt util ja que Ogre3D usa com Up
Axis (Eix Cap amunt) el Y, pero en canvi Blender usa Z per tant si féssim servir
aquesta opcio tindriem problemes de incompatibilitat alhora de moure els models en
Ogre3D.

Skeleton Name Follow Mesh: opci6 util per identificar els fitxer Mesh amb quin model

es corresponen ja que assigna el nom del model a nom del fitxer.

Figura 5: Blender, menu exportacio ogremeshes

12

Proyecte Final de Carrera 2009

3.1.4.2 Textures UV Mapping

Una altre opci6 important del Blender es la textura UV Mapping. La forma més flexible de crear
un “mapping” (adaptar estructura logica) d'una textura 2D en un objecte 3D és un procés
anomenat “UV Mapping” (Figura 6 i 7). Aquest procés, pren les tres dimensions (X, Y i Z) de
lamalla i les aplica en un planol de dos dimensions (X, Y). Els colors de la imatge son
assignats a la malla, i es mostren com el colors de les cares de la malla. L’Us de textures UV
proporciona realisme als objectes, que els procediments de materials i textures no poden
aconseguir, i millora els detalls que pot proporcionar Vertex Painting (una altre técnica per

aplicar textures a models).

A 2 o

cy

PIX.¥Y.Z] <-> P[U.,V]

Figura 6: Exemple UV Mapping

13

Proyecte Final de Carrera 2009

“Blender [CAEQUNETSEVPFCymodels blend] (=0 |
(f]~ File Add Timelme Game Render Help [=[SRz-model % | [=]scEscene :f 6 | Meti4 44M (321.88M) Cube 006

@ L@~ view select mage uvs [#] 2] Metrajng [x][][a]
S

¥ Unwdfode ¥ Sl Miees 550 m Mo b T
Link to Object T

[@Emﬁwm g e = [Dvco | Stick [i [For | Fet |
i Mat1 7 esel. -_mm Lt U]

Osa | Wire [t
it =R Ol Cast

B DA —

Figura 7: Blender, Comparacié Vista 3D (esquerra) amb vista UV Mapping (dreta)

3.2 Logica

Aqui parlarem de tot el que té a veure amb la funcionalitat del videojoc. Es a dir, en les
idees basiques que sustenten el joc 3D, perod sense entrar en detalls de programacio que

els veurem en un altre subapartat.

14

Proyecte Final de Carrera 2009

3.2.1 Argument del Videojoc

Com ja s’ha comentat en la introduccio, el interés principal per desenvolupar un
videojoc era desenvolupar les tecniques de disseny 3D. Per tant, I’argument del joc no
deixa de ser una part anecdotica del projecte. En altres paraules, el mateix
desenvolupament que s’ha fet per aquest videojoc particular, serveix idénticament per a
multitud d’altres arguments de videojocs. En particular, I’argument del videojocs esta
basat en el famos videojoc Arkanoid (veure Figura 8). Pero en aquest cas sera, en 3D,

es clar.

Figura 8: Arkanoid
Per tant, I’'usuari tindra el control d’una plataforma que podra moure per I’escenari 3D

(dreta-esquerra, endavant-enderrera, a dalt i a baix). Mitjancat la plataforma haura de

controlar les boles que aniran movent-se per el escenari. L’Escenari sera una habitacio

15

Proyecte Final de Carrera 2009

on en el sostre, o la part alta del escenari, hi haura tot un conjunt de blocs. El terra estara
dividit en 4 parts que s’aniran trencant a mesura que les boles impactin contra el terra.
Un cop trencades aquestes parta, les boldes podran sortir de I’habitacio per els forats

que hauran deixat, si totes les boles cauen per els forats el jugador perd la partida.
L’objectiu del jugador és fer que les boles impactin contra la plataforma de manera que

aquestes surtin rebotades en direcci6 als blocs impactant-los i aixi destruint-los.

Un cop destruits tots el blocs el jugador ha guanyat la partida.

3.2.2 Plataforma

La plataforma (veure Figura 9) és I’objecte dinamic que el jugador utilitza per
interactuar amb el videojoc. Es I’encarregat de assegurar-se que les boles no xoquen
amb el terra trencant-lo, sind que aquestes impacten contra la plataforma de manera que
reboten cap enlaire i destrueix els blocs amb els que impacten.

La plataforma es controlada per el jugador amb el teclat de la seguient manera:

Tecles esquerra,dreta (fletxes): mou la plataforma en I’eix X a I’esquerra i a la dreta
respectivament.

Tecles amunt,avall (fletxes) mou la plataforma en I’eix Y amunt i avall respectivament.

Tecles repag,avpag: mou la plataforma en I’eix Z endavant i endarrere respectivament.

16

Proyecte Final de Carrera 2009

.| OBRE Render Window

Restart Game

Start Game

Figura 9: Plataforma

17

Proyecte Final de Carrera 2009

3.2.3 Blocs

Els blocs (Figura 10) son els objectes que el jugador té que destruir mitjangant les
boles.

Tots els blocs tenen la mateixa mida. Un cop un bloc és destruit desapareix de I’escena.
Alguns dels blocs un cop destruits deixen caure un objecte nou a I’escena, d’aquests

objectes parlarem al segiient apartat.

I 5| OGRE Render Window J
Restart Game g

Start Game

Music: OFF

Controls

Figura 10: Blocs

18

Proyecte Final de Carrera 2009

3.2.3.1 Objectes

Com ja hem dit, en alguns dels blocs, quan son destruits, quan son destruits apareixen
objectes amb propietats originals pel jugador. Aquestes objectes nomes interactuen amb
la plataforma, és a dir ni xoquen amb les paret ni amb les boles ni amb altres blocs.

Si la plataforma toca el objectes es dispara un esdeveniment i sin0 el toca i el objecte
surt del cub (es a dir I’habitacio) i simplement desapareix. Depenent del tipus d’objecte

el esdeveniment que es “dispara” (activa) és diferent.

Hi ha de tres tipus d’objecte segons I’ esdeveniment que disparen:

Plus: La plataforma augmenta de mida.

Minus: La plataforma disminueix de mida.

Extra: S’afegeix una altre bola al joc.

3.2.3.2 Malla Virtual

Per tal de tenir controlat en tot moment el gran nombre de objectes que interactuen en el
espai real 3D del videojoc simultaniament ens hem creat un mallat virtual que ens
permet conéixer, en tot moment, les posicions dels objectes i les seves possibles
interaccions. .

Aquesta malla esta formada per cubs, cada cub té la mateixa mida i tots junts formen un
cub gran que es I’escenari global que, anteriorment, hem anomenant com a cub,
habitacié o escenari. Evidentment com es un mallat virtual no es visible, siné només

aplicable a la logica del videojoc.

19

Proyecte Final de Carrera 2009

La construccio d’aquest mallat virtual s’ha aconseguit de la segiient manera: Cada cub
del mallat virtual té un index tridimensional que I’identifica en cada eix de I’escena, és a
dir, un nx,ny i nz. Per tant cada objecte pot ocupar un o més cubs en cada frame
depenent de la mida dels cubs i de la mida del objecte. D’aquesta manera tenim
controlat per on estan els objectes en tot moment i podem controlar que en el mateix
instant dos objectes no estan en el mateix cub o s’estan tocant, ja que ocupen el mateix
cub.

Per tal de controlar la interaccio entre els objectes presents al escenari, els cubs tenen
una altre propietat que anomenem “color”. El “color” és un index que identifica quin
tipus d’objecte esta tocant el cub, per exemple, el color 0 vol dir que cap objecte esta

toquen el cub i el color -1 vol dir que un objecte de tipus paret esta tocant el cub.

P er exemple, si un objecte dinamic va a canviar de cub i veu que el color del cub on va
a parar es -1 sap que es una paret per tant abans de tocar el cub xocara i la seva velocitat

prendra una direcci6 oposada a la que tenia inicialment I’objecte dinamic.

Cal a dir que, quan més petita és la mida dels cubs més precisos son el moviments, es a
dir les lleis fisiques que determina el moviment dels objectes i les seves possibles

interaccions.

3.3 Programacié

En aquesta seccid, parlarem del codi del videojoc propiament. Diferenciarem entre codi
generat per llibreries externes és a dir de codi importat (com poden ser els fitxers de
Blender o les llibreries de Ogre) i el codi generat per nosaltres per desenvolupar el

videojoc.
En la figura 11 veiem un diagrama de flux de com funciona el videojoc, i les diferents

rutines que controlen tots els aspectes del joc. En aquest diagrama es barregen tant codi

propi com codi importat.

20

Proyecte Final de Carrera 2009

CONFIGUREM QGRESD

OGRE3D

CRIDEM A LA CLASSE APPLICATION (CREEM LA ESCENA)

APPLICATION
DISSENYEM | EXPORTEM MODELS BLENCER
FRAMELISTENER Y« BLENDER
l INICIALITZEM MALLA VIRTUAL
CREATE_SCENE INI_MALLA
l BUCLE CONTROLADORDEL FLUX DEL VIDEQUOC (FRAMES)
FRAME_STARTED » CALCULAR MOVIMENT
CREATE_CAMERA
MOVIMENT 30 DELS OBJECTES DINAMICS SEGONS LA MALLA VIRTUAL
— PLATAFORMA
CREATE_FRAME_LISTENER

DESTRUCTOR DE LA CLASSE FRAMELISTENER

DESTRUCTOR DE LA CLASSE APPLICATION —| BLOCS

AFRAMELISTENER
SAPPLICATION ’ AUTIO

FIDEL JOC

y CEGUI

LLEGENDA:

O CLASSE Ct

FUNCIO O PROCEDIMENT G+

SOFTWARE

ACCIO OEVENT

Figura 11: Diagrama de Flux del Videojoc

CONTROLDE LA PLATAFORMA

CONTROL DELS BLOCS

CONTROL DEL AUDIO

CONTROL DE LA INTERFICIE CEGUI

21

Proyecte Final de Carrera 2009

3.3.1 Generacio de codi importat

A continuacio, detallem els aspectes mes importants del codi importat que utilitzarem
en I’aplicacid final. Obviament, aquest codi fara referéncia principalment a les llibreries
de Ogre3D mencionades anteriorment, i en part també a la utilitzacio del Blender per el
dibuix d’objectes 3D.

Configuracio Basica Ogre3D

A continuacio destaquem tres propietats basiques que s’han de configurar del motor

grafic Ogre3D abans de poder veure una escena 3D en pantalla.

3.3.1.1 Scene manager

Normalment el Scene manager a Ogre3D es responsable de moltes propietats que
determinen I’escena 3D, aqui citarem les propietats que hem fet servir nosaltres durant

el projecte:

a.- Crear i situar objecte mobils, llums i cameres a I’escena d’una manera que puguem

accedir a elles eficientment.

b.- Implementar consultes a I’escena per obtenir respostes a preguntes com: “Quins

objectes estan continguts en una esfera centrat en un punt determinat de I’escena ? ”

c.- Obviar objectes no visibles i posar objecte visibles en cues de render per tal de poder

visibles en cada frame.

d.- Organitzar i distribuir les llums no direccionals des de la perspectiva del frame

actual.

e.- Configurar i fer render totes les ombres de I’escena.

22

Proyecte Final de Carrera 2009

f.- Configurar i fer render tots els altres objectes de I’escena, com backgrounds i

skyboxes.

g.- Passar tot aquest contingut al sistema de render per ser visible a cada frame.
3.3.1.1.1 Scene Nodes

El Scene manager es també I’origen dels nodes usats per definir I’estructura del graf de

I’escena.

Els Scene Nodes estan organitzats amb el Scene Manager amb jerarquia: un scene node
té un sol pare i pot tenir cero o més fills nodes. Pots assignar i desvincular scene nodes
des de el scene manager a la teva voluntat, el scene node no es destruit fins que tu li dius
al scene manager que el destrueixi. Aix0 va molt bé per fer accés directes, és a dir si
vols fer no visible tota una seccid d’objectes simplement desvincules el scene node root
que es el primer pare de la jerarquia de scene nodes i tant ell com tots els demes no

seran visibles.

Root
Node

(d) (e) U]

Figura 12: Jerarquia Arbres Scene Nodes

23

Proyecte Final de Carrera 2009

En aquesta imatge (Figura 12) veiem grafs de I’escena on des de el “a” fins al “f” anem

afegint fills nodes al node pare (root node).

El Scene manager et garanteix que quan crea un objecte, el crea com a minim amb un
scene node, el root scene node. Aquest és el Unic node en el graf de la escena que esta
exclos de la regla només un pare, el root scene node per definicio no té pare, tu no pots

destruir el root scene node.

3.3.1.2 Camera

Una Cémara és el mateix que el seu analeg en el mon real: fa una foto de la escena en
cada “frame” (fotograma del videojoc), des de un punt particular (és a dir té una posicid
i una orientacid). No és un objecte que es pugui fer “render” (dibuixar en I’escena) , és a
dir, encara que tu tinguis una camera en el camp de visi6 d’una altre camera, tu no
podras veure-la. Les Cameres (com les Llums, després veurem com son) també poden
ser associades a un SceneNodes i d’aquesta manera poder ser controlades per I’aplicaci6
0 existir en un espai lliure (que vol dir que tu les pots moure manualment si tu vols
canviar la seva posici6 o orientaci6 en cada “frame”). Les Cameres tenen camps de
visio amb “near i far planes” (plans de visio propers o llunys a la camera). Aquesta
Geometria defineix el que es conegut com a “frustum”, que es un tipus de piramide
(Figura 13).

24

Proyecte Final de Carrera 2009

1

1

1

1

1

1

1

1

1

|

1

1
p
1
[y!
1.

i

:

1

T

1

1

1

1

1

:

1

Figura 13: Visi6 de la Camara

En aquesta figura, (X,y,z) indica la localitzacié de la Camara. X i Y son la mida del near
clip plane, i sén una funci6 de distancia Z des de la Camera fins al near plane. X'i Y"
son la mida del far plane, i son una funcio de distancia (Z+Z') des de la Camera fins al
far plane. Tu informes les distancies del near i el far plane, el aspect ratio de la camera
(definit com X/Y), i el angle vertical W entre la linia de visio i el més baix (i alt)
“frustrum” bounding plane (que es el camp de Visio del angle Y), i la classe de la
camera calcula el horitzontal, el angle i la mida dels near i els far planes. Posem que tu
vols tenir una camera amb el Standard 4:3 “aspect ratio” (relacio del aspecte. Es a dir
proporcio entre la amplitud i altura de la pantalla), amb la distancia del near plane a 5
unitats de la camera i la distancia far plane a 1000 unitats, amb un angle de 30-graus,
entre la linia de visio i el mes baixos (i alts) “frustum bounding planes” (limits del

“frustrum”). El seglient Codi crea una camera amb aquestes caracteristiques:

I/ sceneMgr és una instancia de una implementaci6 de un SceneManager.

/[Estem creant una camera amb nom "MainCam™ aqui.

Camera *camera = sceneMgr->createCamera("MainCam");

/I normalment calculem aixo amb la mida del viewport
camera->setAspectRatio(1.33333f);

25

Proyecte Final de Carrera 2009

/1 30 graus ens donaran una vista telescopica

camera->setFOVy(30.0f);
camera->setNearClipDistance(5.0f);

camera->setFarClipDistance(1000.0f);

3.3.1.3 Llum

Ogre3D permet determinar 3 tipus de llums diferents:

e Points Lights.
e Spots Lights.
e Directional Lights.

Nosaltres hem fet servir Point Lights:

Point Lights sobn molt comunes en una escena 3D. Tenen les caracteristiques de una
Ilum radiant en totes les direccions des de un punt determinat en I’escena.

Les Point Lights son molt Gtils per simular la radiacié d’una llum.

Exemple de codi de una llum Point Light:

mSceneMgr->setAmbientLight(ColourValue(1, 1, 1));

Light *light = mSceneMgr->createLight('Lightl™);
light->setType(Light::LT_POINT);
light->setPosition(Vector3(250, 150, 250));
light->setDiffuseColour(ColourValue: :White);
light->setSpecularColour(ColourValue: :White);

26

Proyecte Final de Carrera 2009

3.3.1.4 Entrada Dispositius

Per poder realitzar i jugar al videojoc necessitem tenir en compte i poder controlar
I’entrada de dispositius externs, en el nostre cas el mouse i el teclat, per aixo farem
servir una altre llibreria externa anomenada OIS.

Gracies a OIS podrem saber coses com quant una tecla ha estat pitjada o quant un boto

ha estat pitjat o en quina posicié de la pantalla esta situat el Mouse.

3.3.1.5 Interficie

La interficie del videojoc (Figura 14 marcat en vermell) esta feta amb una llibreria

externa anomenada CEGUI que expliquem a continuacio:

5| OGRE Render Window

Resta

Controls:

Plataforma:

Figura 14: Interficie Grafica (CEGUI)

27

Proyecte Final de Carrera 2009

CEGUI

Crazy Eddie’s GUI (CEGUI) és una llibreria de C++ per interficies grafiques d’usuari.
Esta dissenyada particularment per les necessitats dels videojocs, pero la llibreria també
es util pers tasques no relacionades amb videojocs. Esta dissenyada per ser flexible i

també es adaptable a la decisio dels usuaris en quant a sistemes operatius.

En el nostre cas particular, de totes les possibilitats de CEGUI (que s6n moltes), hem fet

servir els botons i les caixes de text.

3.3.1.6 So

Per reproduir musica i sorolls al videojoc utilitzem una llibreria externa de C++

anomenada Fmod.

FMOD

FMOD es una llibreria d’audio comercial dissenyada per “Firelight Technologies”, que
reprodueix fitxers de musica de diversos formats i plataformes. Es usat en jocs i
aplicacions de software per proveir una funcionalitat d’audio. Fmod suporta un ampli

ventall de formats d’audio i nombroses plataformes de sistemes operatius.

Fins la versio 3.75, la llibreria era anomenada simplement com FMOD. Des de llavors

FMOD ha sigut re dissenyada i ara conté 3 grans parts:

o FMOD Ex, el nivell d’audio mes baix

28

Proyecte Final de Carrera 2009

o FMOD Event System, més abstracta, una capa d’aplicacié de més nivell per
simplificar el contingut del play back creat amb FMOD Designer
o FMOD Designer, I’eina per dissenyar audio usada per sorolls més complexes i

musica per play back.

FMOD té una avancgada arquitectura de plugins, que pot ser usada per ampliar el suport

dels formats d’audio i per desenvolupar nous tipus com per exemple: Streaming.

3.3.2 Generacio de codi original

Un cop hem desglossat tot el codi extern que utilitzarem en el nostre videojoc, passem a

descriure el codi original que hem desenvolupat en aquest projecte.

3.3.2.1 Classes

Hem dividit tot el codi C++ del projecte en dos grans classes com es veu en la figura 10.

3.3.2.1.1 Creacio Escena

Es la classe on creem els components basics de I’escena i fem la crida a FrameListener

passant-li tota la informacid necessaria.

29

Proyecte Final de Carrera 2009

3.3.2.1.2 FrameListener

En aquesta classe hi ha el gruix del codi. Com el seu nom indica, aquest classe es dedica
a escoltar i controlar tot el que passa a cada “frame” del joc, la podriem veure com el

bucle principal del videojoc.

3.3.2.2 Rutines

Aqui parlarem de les rutines propies més importants del codi.

3.3.2.2.1 Calcul Moviment

Es una de les funcions més importants del codi, juntament amb FrameStarted que
explicarem al seglient apartat. Aquesta funcié és I’encarregada de moure els objectes
per la Malla Virtual que hem mencionat en I’apartat 3.2.3.2, per tant, té la missio de
controlar moltes variables per tal de que tots els objectes es mogui e interactuin seguint

les regles preestablertes.

Durant cada frame, aquesta funcié es crida un cop per cada objecte dinamic.

Entre els molts calculs que fa aquesta funcid, es troba el saber si el objecte en questio
que esta movent-se es mantindra en el cub de la malla virtual on es troba actualment,
canviara de cub o per el contrari entrara amb contacte amb algun altre objecte dinamic
degut a que en el cub de la malla virtual on I’objecte volia moure’s es troba ocupat per

un altre objecte.

Apart de calcular logicament on anira a parar el objecte que esta tractant també es
dedica a situar-lo fisicament dintre de I’escena i d’actualitzar totes les dades referents al

objecte en si, com per exemple, en quin cub de la malla virtual es troba o les velocitats i

30

Proyecte Final de Carrera 2009

posicions del objecte o el canvi de color del cub de la malla que el objecte que esta

movent esta tocant etc.

3.3.2.2.2 FrameStarted

Es la funcié més important de la classe FrameListener, és I’tnica funcio de tot el codi
que s’executa en cada frame, per tant es la que es dedica a cridar a les altres funcions i
controlar el flux del videojoc.

Des de aqui es crida a cada frame a tots el objectes dinamics (Boles i objectes dels
blocs) com hem comentat abans amb la funcié Calcul Moviment.

També controla quants blocs resten per finalitzar el jocs, és a dir, quants blocs resten per

ser destruits.

3.3.2.3 Estructures

Per tal de tenir controlades totes les dades que es mouen en el videojoc ens hem creat
dues estructures per emmagatzemar les dades de forma organitzada. Hem anomenat a

aquestes estructures, “objectes” i “espai”.

3.3.2.3.1 Obijecte:

Aqui guardem tota d’informacid referent als objectes dinamics del videojoc, és a dir la

plataforma i la bola o boles que puguin estar movent-se per I’escena.

Dintre de I’estructura hi ha les seguents dades:

X: Posici6 del objecte a I’eix X.

Y: Posicio del objecte a I’eix Y.

31

Proyecte Final de Carrera 2009

Z: Posicio del objecte a I’eix Z.

VX

VY:

VZ.

NX:

NY:

NZ:

M:

. Velocitat del objecte a I’eix X.

Velocitat del objecte a I’eix Y.

Velocitat del objecte a I’eix Z.

Posicio del objecte a I’eix X de la malla virtual.

Posicio del objecte a I’eix Y de la malla virtual.

Posicio del objecte a I’eix Z de la malla virtual.

Massa del objecte.

index: Identificador Unic del objecte.

Act

3.3.

Aqui guardem tota I’ informaci6 referent a la malla virtual de I’escena.

iva: Boolea per saber si el objecte esta actiu o no.

2.3.2 Espai

Dintre de I’estructura hi ha les seguents dades:

Inix: Posicio Inicial del Cub de la malla a I’eix X.

Iniy: Posicio Inicial del Cub de la mallaa I’eix Y.

32

Proyecte Final de Carrera 2009

Iniz: Posicio Inicial del Cub de lamallaa I’eix Z.
dx: Mida del Cub de la malla a I’eix X.
dy: Mida del Cub de lamallaa I’eix Y.
dz: Mida del Cub de lamalla a I’eix Z.

Color: Integer usat per identificar quin esdeveniment es dispara quant un objecte

impacta el cub virtual.

4 Resultats

Aqui veurem algunes imatges que mostren els resultats del projecte.

7| OGRE Render Window

33

Proyecte Final de Carrera 2009

Restart Game

Start Game

Music: OFF

Controls

-—g

Restart Game

Start Game

Music: OFF

Controls

Proyecte Final de Carrera 2009
5] OGRE Render Window '

Controls:

Controls Platafarma:

5.1 OGRE .ﬁénder\jl-fir;u.dow

Proyecte Final de Carrera 2009

5 EXxpectatives de Futur

Com s’ha comentat en la introduccid d’aquest projecte, els videojocs passen per molts
bons moments en quan a volum de vendes i de usuaris. Per tant, hi ha una gran industria
al darrera dels videojocs que genera una demanda important de llocs de treball, tot i

que la demanda a Espanya no es tan bona com el numero de vendes.

El temps de realitzacié d’aquest projecte, des de els seu origen fins a la conclusio final,
és limitat. Per tant, hi ha una gran part de les expectatives que s’ha generat durant la
realitzacié d’aquest projecte que no s’ha pogut dur a terme. En un futur immediat, es
pretén millorar i ampliar les capacitats del videojoc (noves pantalles i logiques

diferents...) utilitzant I’’esquelet” de programacié basic pers jocs 3D generat durant

aquest projecte.

La intencio ultima d’ampliar aquest projecte es poder fer-lo servir com a carta de
presentacid per poder obtenir una entrevista per un lloc de treball dins de la industria de

programadors de videojocs.

36

Proyecte Final de Carrera 2009

6 Conclusions

Un projecte final de carrera, consisteix en plantejar-te uns objectius i dur-los a terme
mitjancant investigacions i desenvolupaments basats en els coneixements fonamentals
obtinguts durant la carrera, i/o ampliant-los convenientment, per tal d’ assolir els

objectius establerts al inici del projecte.

Com s’ha comentat en I’apartat d’objectius, la idea original d’aquest projecte ha estat
proposada per mi mateix, com alumne, per donar sortida a les meves propies inquietuds
personals. L’objectiu era realitzar un videojoc en un espai real 3D. Per tal de dur a
terme aquest objectiu, primerament s’ha hagut de decidir quin software especific, ja
desenvolupat, s’utilitzava per facilitar el treballar en I’espai 3D. En el meu cas he triat
Blender per dissenyar els objectes 3D que apareixeran en el videojoc, C++ com a
llenguatge de programacid necessari per desenvolupar el videojoc i Ogre3D que és un

conjunt de llibreries basiques, comunament anomenat com “Motor Grafic”.

Tot i que més anecdotic per avaluar el projecte, també era importar decidir la tematica
del videojoc, i en aquest cas es va decidir realitzar un joc amb una tematica senzilla, del
estil dels classics com per exemple el “Tetris”. Es a dir, un joc que accentua les
habilitats del jugador per assolir uns objectius fent Us de la logica, y que per contra
generalment implica uns grafics més lleugers, una durada del joc més curta i una estil de
joc més repetitiu. En el meu cas he triat realitzar la conversié del famés joc “Arkanoid”

desenvolupat originariament en un pla (espai 2D) a un espai real 3D.

La particularitat més important en la programacié d’aquest videojoc ha estat el fet de
que hem diferit de la el que la majoria de programadors que utilitzen llibreries gratuites
que s’encarreguen de calcular els moviments i interaccions entre objectes, comunament
anomenat com “Motor de Fisica” (per analogia amb el “Motor Grafic” que hem
mencionat durant el projecte). Nosaltres varem decidir des de bon inici implementar
nosaltres mateixos tota la logica de programacio referent al xoc entre particules, sabent

pero de les avantatges i desavantatges que aixo comporta. Les desavantatges son el fet

37

Proyecte Final de Carrera 2009

de que els conjunts de llibreries d’avui en dia son molt complets i pots obtenir una
funcionalitat molt alta i molt eficag i en pocs temps. Per altre banda, les avantatges son
que no hem estat lligats a codificar com unes llibreries ens imposen i hem estat lliures
de decidir tots els detalls del moviment de les particules, aconseguint un “realisme” en

el calcul del moviment i dels xocs molt elevat.

En aquest sentit, també volem destacar que hem hagut de fer coincidir (i col-laborar) el
codi extern de les llibreries del Motor Grafic (OGRE3D) amb el codi intern que
nosaltres hem desenvolupat , tant la part dels xocs de particules com en la dinamica de

cada objecte individual.

També hem aprés a incloure models dissenyats amb Blender al nostre llenguatge de

programacio i fer-los interactuar amb els nostres dos mons: Codi Propi i Motor Grafic.

Personalment, crec que tots els objectius que ens varem plantejar en un origen han estat
assolits satisfactoriament i la realitzacié d’aquest projecte ha estat una experiencia molt

positiva, tant a nivell académic, com personal.

Finalment, com ja he dit en el capitol 5, aquesta memoria no es un punt i final, sin6 un
punt i seguit en el desenvolupament del videojoc 3D que s’ha desenvolupat. La intencid
ultima és ampliar aquest projecte en un futur immediat per, si s’escau, poder fer-lo

servir com a carta de presentacio en la industria de videojocs.

38

Proyecte Final de Carrera 2009

7 Bibliografia

7.1 Url’s

http://www.ogre3d.org/wiki/index.php/Ogre Tutorials

http://www.aserrano.net/2007/12/19/blender-exportar-modelos-a-ogre/

http://www.youtube.com/watch?v=d2U0gOoMtkc

7.2 Llibres

Pro Ogre3D programming Gregory Junker.

Blender Curso de Iniciacién Mercé Galan

39

Proyecte Final de Carrera 2009

8 Annexes

Codi per la col-lisi6 elastica de dues boles

void FL::collision3D(double m1, double m2, double r1, double r2,int aux,int index)

double pi,r12,m21,d,v,theta2,phi2,st,ct,sp,cp,vxlr,vylr,vz1r thetav,phiv,

1

1

dr,alpha,beta,sheta,cbeta,t,a,dvz2,vx2r,vy2r,vz2r,

x21,y21,221,vx21,vy21,vz21,x1,y1,21,x2,y2,22,vx1,vyl,vz1,vx2,vy2 vz2;

x1 = o[index].x;

y1 = o[index].y;

z1 = o[index].z;

x2 = x1-(dx0/1000);
y2 = y1-(dy0/1000);
z2 = 71-(dz0/1000);
vx1 = o[index].vx;
vyl = o[index].vy;
vz1 = o[index].vz;
vX2 = o[aux].vx;
vy2 = o[aux].vy;

vz2 = o[aux].vz;

**** initialize some variables ****
pi=acos(-1.0E0);

ri2=ri+r2;

m21=m2/m1;

X21=x2-x1;

y21=y2-yl;

z221=22-71;

vX21=vx2-vx1,

vy21=vy2-vyl;

vz21=vz2-vz1,;

**** calculate relative distance and relative speed ***
d=sqrt(x21*x21 +y21*y21 +z21*z21);
v=sqrt(vx21*vx21 +vy21*vy21 +vz21*vz21);

{

40

Proyecte Final de Carrera 2009

/I **** shift coordinate system so that ball 1 is at the origin ***
X2=x21;
y2=y21;
22=221;

/I **** hoost coordinate system so that ball 2 is resting ***
vx1=-vx21;
vyl=-vy21;

vz1=-vz21;

/I ****find the polar coordinates of the location of ball 2 ***
theta2=acos(z2/d);

if(aux==104)
phi2=0;
else{
if (x2==0 && y2==0)
{
phi2=0;
}
else
{
phi2=atan2(y2,x2);
}
}

st=sin(theta2);
ct=cos(theta2);
sp=sin(phi2);
cp=cos(phi2);

/I **** express the velocity vector of ball 1 in a rotated coordinate
Il system where ball 2 lies on the z-axis ******

vx1r=ct*cp*vx1l+ct*sp*vyl-st*vzl,;

vylr=cp*vyl-sp*vx1i,

vzlr=st*cp*vx1l+st*sp*vyl+ct*vzl,;

thetav=acos(vz1r/v);

if(aux==104)
phiv=0;

41

Proyecte Final de Carrera 2009

else{
if (vx1r==0 && vylr==0)
{
phiv=0;
}
else
{
phiv=atan2(vylr,vx1r);
}
}

/I **** calculate the normalized impact parameter ***
dr=d*sin(thetav)/r12;

/I **** calculate impact angles if balls do collide ***
alpha=asin(-dr);
beta=phiv;
sbeta=sin(beta);
cheta=cos(beta);

/I **** calculate time to collision ***
t=(d*cos(thetav) -ri2*sqrt(1-dr*dr))/v;
/I *** update velocities ***
a=tan(thetav+alpha);
dvz2=2*(vz1lr+a*(cbeta*vx1lr+sheta*vylr))/((1+a*a)*(1+m21));
vz2r=dvz2;
vx2r=a*cbeta*dvz2;
vy2r=a*sbeta*dvz2;
vzlr=vz1lr-m21*vz2r,

vx1r=vx1lr-m21*vx2r;

vylr=vylr-m21*vy?2r;

/I **** rotate the velocity vectors back and add the initial velocity

42

Proyecte Final de Carrera 2009

Il vector of ball 2 to retrieve the original coordinate system ****

vx1=ct*cp*vx1r-sp*vylr+st*cp*vzir +vx2;
vyl=ct*sp*vxlr+cp*vylr+st*sp*vzlr +vy2;
vzl=ct*vzlr-st*vx1r +vz2;

vX2=ct*cp*vx2r-sp*vy2r+st*cp*vz2r +vx2;
VY2=Ct*sp*vx2r+cp*vy2r+st*sp*vz2r +vy2;

vz2=ct*vz2r-st*vx2r +vz2;

o[index].vx = vx1,;
o[index].vy = vy1;
o[index].vz = vz1,
ofaux].vx = vx2;
o[aux].vy = vy2;

o[aux].vz = vz2;

}

Estructures

Objecte

struct object {
double x,y,z,vx,vy,vz,m;
int index,nx,ny,nz;
bool activa;

¥

Espai

struct cub{
double inix,iniy,iniz,dx,dy,dz;

int color;

43

Proyecte Final de Carrera 2009

Resum

Castella

La industria del los videojuegos crece exponencialmente y esta ya superando a otras industrias
punteras del ocio. En este proyecto, nos hemos planteado la realizacion de un videojuego con
visualizacién en el espacio real 3D. Para la realizacion del videojuego se ha usado el siguiente
Software: Blender para disefiar los modelos 3D, C++ como lenguaje de programacion para
desarrollar el codigo i un conjunto de librerias basicas para desarrollar un videojuego llamadas
Ogre3d (Motor Gréfico).La logica del movimiento 3D y los choques entre las particulas del
juego ha sido disefiada enteramente en este proyecto acorde con las necesidades del videojuego,

y de forma compatible a los ficheros de Blender y a las librerias OGRE3D.

Catala

La inddstria dels videojocs creix exponencialment i esta ja superant a altres industries punteres
de I'oci. En aquest projecte, ens hem plantejat la realitzacio d'un videojoc amb visualitzaci6 en
I'espai real 3D . Per a la realitzacio del videojoc s'ha usat el segiient Programari: Blender per a
dissenyar els models 3D, C++ com llenguatge de programacio per a desenvolupar el codi i un
conjunt de llibreries basiques per a desenvolupar un videojoc cridades Ogre3d (Motor Grafic).
La logica del moviment 3D i els xocs entre les particules del joc ha estat dissenyada enterament
en aquest projecte d'acord amb les necessitats del videojoc, i de forma compatible als fitxers de
Blender i a les llibreries OGRE3D .

Anglés

The gaming industry is growing exponentially and is now outselling other edge of the leisure
industries. In this project, we have considered the realization of a video game display in real 3D
space.

To achieve the game has used the following software: Blender 3D models for design, C + +
programming language as the code and a core set of libraries to develop a video game called
Ogre3d (Graphic Engine).

The logic of the 3D motion and collisions between particles of the game has been entirely
designed in this project consistent with the needs of the game, and compatible with Blender and
file libraries OGRE3D.

44

	portada.doc
	desenvolupament d’un videojoc en 3d

	MemoriaPFC2009EduardRicartLopez.pdf

