Universitat
- Autonoma
de Barcelona

etse

Sistema de navegacio geografica de tipus Google Earth
per a entorns dinamics

Memoria del Projecte Fi de Carrera
d'Enginyeria en Informatica
realitzat per

Sergi Villanueva Canals

1 dirigit per

Lluis Ribas Xirgo

Bellaterra, 18 de Setembre de 2009

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics

Universitat
Autonoma ets e)

de Barcelona

A

Escola Técnica Superior d’Enginyeria

El sotasignat, Lluis Ribas Xirgo

Professor/a de 1'Escola Tecnica Superior d'Enginyeria de la UAB,

CERTIFICA :

Que el treball a qué correspon aquesta memoria ha estat realitzat sota la

seva direccio per en Sergi Villanueva Canals.

I per tal que consti firma la present.

SIGNAL: .oeeeieeceeee e
Bellaterra, 18 de Setembre de 2009

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 3

Index

Capitol 1. INtroducCiO....ccccccccceeeeeennnereeeeccsssssssccceseesssssseeed

1.1. Context del problemacccooooiiiiiiiiiiiiieee e 5
1.2, ODjJECHIUS ...ttt e e e e e e araeeeens 7
1.3. Planificaciocccooviiiiiiiiiie e 10
1.4. Avaluacio de COSTOSccoeveiiiiiiiiieeiie e 11
1.5. Organitzacio de la memoria.................ccceeviiiiiiiiininieeee e, 11

Capitol 2. Estat de I'art i de les tecnologies..........ccceeeee. 12

2.1. Google Earth i Internet..................cooooiiiiiiiinniiie e, 12
2.2. Elllenguatge KIMILcoooiiiiiiiiiieeeeeeeee e 13
2.3. El navegador Google Earth i KML...................c.ooooiiiiiiiin, 14
2.3.1. Mostrar una imatge en el navegadorc...cocccoiiiiiiniiincnc 14
2.3.2. Estructura client-servidorcccooiiiieiiiiniii e 15
2.3.3. DINAMUESINE. ..ottt 16
2.3.4. Comunicacio bi-direccional...................ccccooriiiiniiiini e 16
23.5.8cripting i KMcooouoiiiiiiiiiiieieeeee ettt 17
2.3.6. Capturar 1es IMat@escccoeeiiiieiiieeiiiecie et e ee e 19
2.3.7. Esquema analiticccocoooiiiiiiiiiiiii e 20

Capitol 3. Plataforma de navegacio visual....................21

RN B 1 O =) 1 L TP 21
311 NetWOTK LINK......oooooiiiiiiiiiiiiiiiieieeee ettt teeeaeeaaeaaaeseeeeaseessseeseaseeeeees 22
RIV 01 BT % [(1) TP 26
320 ELSErVIAOT WEDcoooiiiiiiiiii e ettt eeeeeens 26
RIVIVE D) 11 1= o OO PPPPPPPPPPPPRPRPRIR 27
3.2.3. Del video a les imat@escocoevieiiiriiniiiiiiieieeicseeee et 29
3.2.4. Labase de dAES............oouueueuiieieieiiiiieieieeeeeteeeteeeeeeeeeeeeeeaeeeaeeseeseaseeeseeeeaaaaarane 33
B2 LSCEIPL ..o 36

3.2.6. Diagrama d’objectesccoouiieiiiiiiiiiiie e 40

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 4

Capitol 4. Implementacions avaluades.........ccccceeeeeeeeeee. 41
4.1. Implementacio directa.................cccooviiiiiiiiiiiiieee e, 42

4.2. Implementacio amb base de dades sobre memoria....................... 45

Capitol 5. Conclusionscccceceececceccccccccccncccccccccccccccsecceees 0

5.1. Motivacions i ObJectius............cocceveviiiiiiiiiiiiie e 50
5.2, ReSUILALS.......oooiiiiiiiiii e 51
5.3. Linies de continuaciococceviviiiiiiiiiiiiieeee e 52
5.3.1. Diferéncies d’imatgesc.coouiieiiiieiiiieieeeee e 52
5.3.2. Regions d’imat@es...........coccueiiiiiiiiiiiiiiieeiieeeeeeee et 53
5.3.3. Procés Matlabccooooiiiiiiiiie e 54

REfEIEINCIES. ceeueereneeereneereneereneeerereenseseecseseecsessessessessessocse DI
Apendix 1. Codi Procés Matlabcccceeeveeeeeenenecccsseeeeee. 58

Apendix 2. Codi Script PHP.........cceeeeeeeeeeeeeeeeeeseeeeeeeeeeees 02

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 5

Capitol 1.

Introduccio

1.1. Context del problema

Avui en dia, la possibilitat de navegaci6 visual en entorns dindmics com ara plantes de
produccié esta esdevenint una opcié molt interessant per tal de dur a terme un
monitoratge d’una situacid des d’un ordinador 1 actuar en conseqiiencia sense necessitat
de ser-hi present. Si considerem entorns canviants, on hi ha un alt grau de dinamisme, la
supervisio i control d’aquests sistemes esdevé una necessitat. Sovint, aquesta navegacio
convé que sigui remota degut a la propia naturalesa de I’entorn. La navegaci6 visual que
es pot dur a terme utilitzant els computadors actuals pot millorar la capacitat de
supervisidé degut a I’amplia informacié que ofereixen i1 la rapidesa en la seva
visualitzaci6. El problema que se’ns presenta en aquest projecte implica 1’estudi de la
construccié d’un sistema que permeti a [’usuari navegar en un escenari de forma virtual.
Necessitem, a més, que aquesta navegacid per I’escenari sigui el suficientment rapida,
precisa i comode, ¢és a dir, que 1’usuari pugui visualitzar I’entorn amb detall 1 dintre d’uns
marges de temps preestablerts des de que la camera obté la imatge de 1’escena fins que

’usuari la visualitza 1 hi navega des de 1’ordinador.

Per tal de dur a terme aquest projecte, existeixen tecnologies de base que permeten la
navegacid en entorns reals, o virtuals, com ara eines basades en GPS. També hi ha la
possibilitat de fer servir la tecnologia OpenGL, que permet desenvolupar aplicacions de
grafics en 3D 1 crear el nostre propi navegador. Tot i aixi, en aquest projecte volem crear

una aplicacié base sobre la que treballi el navegador geografic Google Earth per tal de

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 6

veure quin pot arribar a ser el rendiment d’utilitzar aplicacions que interactuin entre elles
en el cas de Google Earth. Sabem que el fet d’utilitzar aplicacions que interactuin amb
Google Earth afegira una sobrecarrega enfront de les altres alternatives, que ofereixen
una solucid directa. D’altra banda, la nostre soluci6 sera més facil de desenvolupar i el

manteniment posterior sera més senzill.

Per tant, el que pretenem en aquest projecte €s estudiar la viabilitat d’utilitzar Google
Earth per a la navegacio6 per entorns dinamics captats per una camera. Aquest navegador
¢és capag de traduir codi escrit en el llenguatge de marques KML que representa dades
geografiques, cercar les imatges emmagatzemades en una base de dades geografica i
situar-ho tot en un entorn visual on 'usuari hi pot navegar. Aixi, el llenguatge KML
descriu punts geografics i els ubica sobre una quadricula al moén real. De la mateixa
forma que un navegador convencional llegeix codi en llenguatge HTML 1 el tradueix a
pagines web, un navegador visual interpreta codi en llenguatge KML i el representa sobre
el mapa del mon real. Per la seva banda, una base de dades geografica no és més que una
base de dades que permet guardar, indexar, consultar i manipular informacid geografica.
Per al nostre cas, en aquesta base de dades geografica es desaran imatges captades per

una camera.

El principal inconvenient que es pot trobar utilitzant aquest sistema de visualitzacid és
que ha sigut creat per tal de que funcioni en entorns estatics. De fet, I’eina Google Earth
¢és un navegador visual de KML, el qual llenca consultes a una base de dades geografica
que conté les imatges del mon fotografiades des d’un satel-lit. Aquestes imatges son
guardades cada cert temps, és a dir, s’actualitzen, pero amb una freqiiencia baixa ja que,
obviament, no és necessari obtenir imatges de forma constant si aquestes no sofreixen
canvis de rellevancia per al context en qiiestid. En el nostre context aixo no és cert, ja que
precisament 1’entorn que volem visualitzar canvia constantment. A més, volem que

aquests canvis puguin ser explorats des del navegador.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 7

1.2. Objectius

En el nostre context, 1 seguint amb I’exemple d’una planta de produccid, I’entorn a
visualitzar canvia constantment. Aixi, el grau de dinamisme, o la freqiiéncia
d’actualitzacid de les imatges de I’entorn pel qual 1’usuari navega, ha de ser forca elevat.
La situaci6 ideal es donaria amb una visualitzacido de 25 frames per segon, que és la
maxima freqiiéncia que 1’ull huma pot processar. Els requisits que es presenten davant la
navegacié per una planta de produccié fan que 1’usuari hagi de veure en el navegador

visual unes imatges molt recents en el temps.

Un altre exemple que il-lustraria una situacié on necessitem un seguiment en temps real
seria una zona d’activitats logistiques on es gestionen fluxos de transport, tant
administrativament com fisicament. Aqui el nivell de dinamisme podria ser molt elevat, i
es podria necessitar una exploracié acurada per tal d’evitar embussos, distribuir
carregues, etcetera.. En aquest escenari sembla important arribar a tenir una visualitzacid
de 25 frames per segon. De fet, una freqiiencia menor, tal com 10 frames per segon,
podria resultar també valida ja que ['usuari que esta realitzant la navegacid per I’escena
podria actuar a temps en cas de percebre una situacié que requereixi alguna accid per la

seva part.

Per tant, podriem definir I’objectiu principal com 1’avaluaci6 d’un sistema que hagués de
mostrar les imatges captades per una camera que esta filmant un entorn canviant sobre
I’aplicaci6 Google Earth. Es tractaria d’estudiar com es podria aprofitar aquesta aplicacid
1 analitzar el rendiment que obtenim utilitzant-la per a navegar per un entorn dinamic.
S’hauria d’avaluar si és possible arribar a visualitzar 1’entorn a una freqiiéncia de 25

frames per segon.

Aix0 implicaria construir una aplicacié d’avaluacio per obtenir el rendiment que ofereix
Google Earth per al nostre projecte. Aixi, definim un seguit de subobjectius per a dur a

terme aquesta tasca que serien els segiients:

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 8

e Decidir I’arquitectura del sistema o I’aplicaci6 base sobre la que treballara
Google Earth.

e Construir una plataforma d’avaluaci6 d’acord amb 1’arquitectura dissenyada.

e Realitzar una o varies implementacions d’aquest sistema.

e Avaluar el rendiment de les diferents implementacions.

e Decidir la viabilitat d’aquest tipus de sistema un cop conegut el rendiment.

Per tal de complir aquest objectiu, s’utilitzara un sistema on hi intervenen 3 elements

principals:

e Una camera que gravara I’escenari que necessitem explorar.
e Una base de dades geografica que emmagatzemara les imatges captades per la
camera.

e FEl navegador Google Earth per a visualitzar dades geografiques definides en

format KML.

Una camera estara constantment filmant 1’escenari, sent aquesta gravacio

emmagatzemada en forma d’imatges residents un una base de dades geografica.

Per ultim, 1’usuari podra utilitzar Google Earth, que interactuara amb la base de dades

geografica que conté les imatges captades per la camera.

Aixi, podem fer-nos una idea de quin sera el flux de processos que seguira la nostre

aplicacio:

e Situar la camera en el lloc adient i amb el correcte enfocament.
e QGravar la seqiiencia d’imatges captades per la camera.
e Guardar les imatges en la base de dades geografica GIS.

e Assignar a les imatges coordenades mon.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 9

e Crear I’aplicacié que muntara codi KML amb accés a la base de dades GIS.

e Navegacio per les imatges en el navegador visual de Google Earth.

Aix0 ens duu a realitzar tot un seguit de tasques per tal de complir amb aquests

subobjectius:

e Analisi i comprensio del problema plantejat i els fets que el motiven (15 hores)

e Llegir documentaci6 KML (15 hores)

e Llegir documentaci6 PostGIS (15 hores)

e Llegir documentaci6 entorn Google Earth (10 hores)

o Instal-laci6 de software PostreSQL + PostGIS i Google Earth (1 hora)

e Instal-laci6 d’una camera (1 hora)

e Analisi 1 disseny del sistema per traduir el video de la camera en imatges (15
hores)

e (Creaci0 del sistema per traduir el video de la camera en imatges (10 hores)

e Analisi i disseny de la base de dades GIS (5 hores)

e Creaci0 de la base de dades GIS (5 hores)

e Analisi i disseny de la aplicacié que muntara el codi KML (40 hores)

e Creacio de la aplicacié que muntara el codi KML (30 hores)

e Proves (50 hores)

e Refinament (60 hores)

e Reunions amb el director de projecte (20 hores)

e Documentaci6 del treball realitzat (100 hores)

e Elaboraci6 final de la memoria del projecte (20 hores)

La suma d’hores total necessaries a priori per tal de executar totes aquestes tasques
estaria al voltant de les 412. Hi ha un marge de fins 38 hores fins a les 450 que seria el

maxim de temps disponible per al projecte.

L ST IEW - RTINS (e

e e T R
ST B = Ty R FURE T =

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 10

Llﬂgr dnﬂ.mantwﬁ KM!_{IE hnms}

' Installaci6 de software PostreSQL. + PostGIS i Googl Earth (1 hora)
: Andlis | disseny del sistema per braduir el video de la camera en imatges (15 horesfl

' .ﬁ.nalsl | disseny de Ia base de dades GIS (5 hores)

' Creacid de la apicamd que muntara ef codi KML (30 hores)
' Refinament (60 hares)

' Ducumentaﬂé del krebal realltw (101] hnrss}

1.3. Planificacio

analisi | comprensio del problema plantejat i efs fets que &l motiven {15 hores)

Llegir dnmentam Post@ls (15 hnres}
Lleg documentacio entarn Gaugle Earth (1|] hares;l

Instal‘lacio d'una camera (1 hora)
Creacio del sistema per traduir el video de |a camera en imatges {10 hares)

Crear.ln dela base de dades GIs (5 hures}l
Analisi | u:ﬁsseny dela a;picacm que minkara el codi KML (4-!] hnres;l

Praves (50 hores)
Reunions amb el director de projecte (EEI hores)

Elahoram flnal de ha MEmiria dei projects (20 hures}

Figura 1.1

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 11

1.4. Avaluacio de costos

El cost economic principal d’aquest projecte residiria en les maquines client i servidor
que es necessiten per avaluar el projecte que volem desenvolupar. A més, necessitem
disposar d’una camera per a enregistrar I’escenari que volem visualitzar. Pel que fa al
software que es fara servir durant aquest projecte, es pretén que aquest estigui sempre

sota la llicéncia de programari lliure 1, per tant, no suposaria cap cost economic.

1.5. Organitzacio de la memoria

Seguint a aquesta introduccid, en el capitol 2 es repassara quin €s I’estat de 1’art 1 les
tecnologies disponibles relacionades amb el problema proposat, estudiant a fons la

tecnologia Google Earth i les possibilitats que ofereix per al nostre projecte.

Seguidament, en el capitol 3, s’explicara de forma detallada el desenvolupament del
sistema proposat com a aplicacié base sobre la qual avaluar les prestacions de Google
Earth en el nostre entorn dinamic. En el capitol 4 es mostraran els resultats obtinguts amb
el sistema proposat, comentant varis casos d’estudi 1 avaluant-ne resultats. El capitol 5
contindra les conclusions, amb un resum dels resultats més significatius aixi com linies

possibles de continuacio.

Per a finalitzar el document, trobarem les refereéncies bibliografiques que s’han fet servir

al llarg del desenvolupament d’aquest projecte i, finalment, els apendixs.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 12

Capitol 2.

Estat de I'art i

de les tecnologies

2.1. Google Earth i Internet

En el capitol 1, hem descrit quina sera 1’arquitectura del sistema que resoldra el problema
plantejat, indicant quins son els elements que hi prendran part. Ara, més concretament,
podem diferenciar entre els elements que tracten i proporcionen la informacié final i
aquells elements que treballaran amb aquesta informaci6 generada. Per tant, estem davant
d'un escenari d'aplicacio client-servidor, on el nostre servidor proporciona informacio i el
nostre client la interpreta i treballa amb ella. Més concretament, el client estara format per
un usuari que navegara a través del navegador Google Earth que interpretara la

informaci6 generada pel sistema que actuara com a servidor.

] S

Servidor Client

Figura 2.1

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 13

Cal remarcar que la tecnologia que utilitzem per a la navegacio, Google Earth, esta sent
cada cop més utilitzada arreu d’Internet per a desenvolupar tot tipus d’aplicacions de
sistemes cartografics o SIG (Sistemes d’Informacié Geografica). Es important que el
nostre projecte estigui ben definit dins el context d’Internet i Google Earth per tal
d’assegurar la compatibilitat amb altres projectes que puguin estar relacionats. Aixi,
necessitem que els fitxers resultants del nostre projecte puguin ser sempre interpretats per

un navegador geografic estandard, com ara Google Earth.

De fet, I’¢xit dels nous Sistemes d’Informacié Geografica i les aplicacions que estan
sorgint al voltant d’ells és degut, en gran part, a D’aparici6 de Google Earth. Si
aconseguim que la aplicacid que desenvolupem en aquest projecte sigui totalment
interoperable amb aquestes aplicacions mitjangant Internet, podriem definir

comunicacions entre elles que aportin noves funcionalitats i projectes més complexos.

D’aquesta forma, es pretén que el resultat del sistema que definim en aquest projecte
sigui interpretable a través d’aplicacions que utilitzen Internet i Gogle Earth, amb la
avantatge de que aquest sistema garanteix a 1’usuari un caracter estandard en les dades

que s’utilitzen.

2.2. El llenguatge KML

Com hem comentat anteriorment, el llenguatge en el que es basara el nostre projecte €s
I’anomenat KML (Keyhole Markup Language). Tal i com el seu nom indica, KML ¢és un
llenguatge de marques que esta basat en XML (eXtensible Markup Language) 1 que
representa dades geografiques en tres dimensions. El llenguatge va ser creat per la
empresa Keyhole Inc, que va ser adquirida per Google 1’any 2004. El navegador Google

Earth va ser la primera aplicacié capag¢ d’interpretar i editar arxius KML.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 14

Un llenguatge de marques combina dades i etiquetes que defineixen aquests dades. Tal 1
com hem comentat, KML esta basat en XML, un llenguatge de marques que permet
definir la gramatica de llenguatges especifics, és a dir, per a diferents necessitats per tal
d’afavorir D’intercanvi d’informacié estructurada entre diferents plataformes. KML,
particularment, defineix una gramatica i un format de fitxer XML per a la modelitzaci6 1
I’emmagatzematge d’elements geografics per tal de poder visualitzar-los en un navegador

capag d’interpretar fitxers KML, com ara Google Earth.

Un document KML sera valid si el seu contingut respecta les regles definides en el
Document Type Definition (DTD) definit per al llenguatge KML. Per tant, els elements
que formen el document hauran de seguir unes regles per tal de que aquest sigui valid i
ben format. Aquests elements s’organitzen jerarquicament, de forma que en cada
document sempre hi ha un sol element arrel, que en el cas del llenguatge KML ¢és
I’element <kml>. A partir d’aquest element es defineixen els subelements logics en forma
d’arbre que construeixen el document KML que sera interpretat pel navegador, seguint

sempre ’estructura definida en el DTD.

2.3. El navegador Google Earth i KML

2.3.1. Mostrar una imatge en el navegador

L'eina principal per a l'usuari en el nostre sistema sera el navegador Google Earth.
Aquesta ¢s la interficie per a 'usuari d'un sistema que realitza una tasca semblant a la que
estem tractant: representar imatges del mon captades per satel-lit sobre la superficie de la
Terra 1 mostrar-ho a través del seu navegador. D'aquesta forma, el producte final generat
per la nostre aplicacié ha de ser entes per un navegador de 1'estil Google Earth, ¢s a dir,
ha de ser un document que compleixi amb I'estandard definit en el llenguatge KML. Amb
aixo ja hem definit globalment quin ha de ser el resultat que ofereixi la solucié al nostre

problema de visualitzacid. Des del punt de vista de l'usuari, aquest monitoratge I'ha de

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 15

poder dur a terme obrint la aplicacido Google Earth i fent que aquesta llegeixi el document

KML que hem generat.

Per tant, una primera tecnologia a estudiar des de 1'inici del desenvolupament d'aquest
projecte ¢€s el llenguatge KML. Aixi, cal estudiar-ne la documentacié que es pot trobar al
web de Google Earth i veure quines possibilitats ofereix per a la resolucid del nostre
problema, pel que fa a la representacio d'imatges proporcionades per nosaltres sobre el
navegador. Una solucid que se'ns ofereix és la possibilitat d'incorporar una capa amb una
imatge donada pel programador sobre el mon utilitzant el sistema de referéncia de
coordenades (longitud, latitud i, opcionalment, altitud). Per tant, podem construir un
document KML que carregui una imatge, la situi en una capa i la mostri sobre la
superficie alla on li indiquem. Ara sabem que és possible fer que el navegador mostri
unes imatges diferents de les que mostra per defecte, unes imatges que nosaltres

proporcionem en el moment que vulguem.

2.3.2. Estructura client-servidor

Fins ara, hem tractat un escenari amb informacié de caracter local, és a dir, un navegador
que obre un document KML que tenim en el nostre ordinador. Aquest, perd, no és
exactament el que ens trobem en el nostre context. Al treballar amb un sistema client-
servidor, el client ha de ser només responsable de navegar sense preocupar-se de generar
el codi que li permet dur a terme aquesta navegaci6. Per tant, cal esbrinar si la tecnologia
KML proporciona algun mecanisme per tal de que l'usuari final pugui treballar amb
informacié generada pel servidor. Una possible solucié seria que el client obris un
document KML que simplement s’encarregués de comunicar-se amb el servidor i que
aquest li proporcionés el codi que ha d’interpretar Google Earth. Veurem més endavant

com aixo és possible amb 1’ajut de llenguatges d’scripting, com ara PHP o Phyton.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 16

2.3.3. Dinamisme

El fet de que el navegador mostri la imatge que nosaltres proporcionem des del servidor
¢€s un requisit indispensable per a la nostre aplicaci6. No obstant, si no podem recarregar
constantment aquestes imatges sobre el navegador d'alguna manera, de poc ens servira
emprar aquest navegador per al nostre context. Aixi, la pregunta que cal fer-nos ¢és si és
possible que el navegador accepti constantment documents KML en un espai curt de

temps 1 quin €s exactament aquest temps.

En la documentacié que ofereix Google, veiem que existeix la possibilitat de refresc
d’una imatge definit amb un nombre real, que equival als segons que transcorren entre
refresc 1 refresc. Per tant, sembla viable obtenir un refresc constant en les imatges que el
navegador mostra. Recordem que aquest fet és molt important per al nostre projecte ja
que I’entorn que volem explorar des del navegador Google Earth t¢ un alt nivell de

dinamisme.

2.3.4. Comunicacio bi-direccional

Per ultim, ens queda un requeriment que la tecnologia KML ha de complir per tal de que
es puguin satisfer les necessitats del nostre sistema. Fins ara la comunicacié ha estat
unidireccional, és a dir, la informaci6 ha anat de la nostre aplicacié cap al navegador de
Google Earth, on ha estat interpretada. No obstant, necessitem que el navegador també
envii informaci6 cap a la nostre aplicacio: les coordenades del visor. Aixi, el navegador
enviara a la aplicaci6 quines coordenades esta veient l'usuari a la pantalla cada cop que
vulgui actualitzar el contingut del que s'esta mostrant. El sistema haura de ser capag de
proporcionar una nova imatge tenint en compte aquestes coordenades. Concretament,
s’haura de generar un nou document KML que contingui una capa amb la nova imatge
que 1’usuari ha de visualitzar en el navegador, tenint en compte les coordenades del visor

actuals. Podem veure un esquema d’aquesta situacio a continuacio, en la figura 2.2.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 17

A
. KML
Servidor w Client

Coordenades

Figura 2.2

Necessitem, doncs, que la tecnologia KML, juntament amb el navegador de Google
Earth, permetin aquest bi-direccionalitat de la informacid. Consultant la documentacio
que Google ofereix sobre KML, veiem que hi ha una manera d'aconseguir-ho. Es tracta
d'utilitzar el que Google anomena View-Based Refresh Queries, és a dir, un sistema de
refresc en el que el propi navegador proporciona les coordenades de la regié que 1'usuari
esta veient en un moment donat. Amb aquesta tecnologia podrem enviar constantment les
coordenades del visor a la nostre aplicacid, que les interpretara 1 generara noves imatges
per a les coordenades en qiiestid. D’aquesta manera, aconseguim que ’esquema de dalt
sigui ciclic 1 at eternum, és a dir, el client envia constantment les coordenades al servidor,

que sempre romandra a 1’espera d’aquestes per generar nou codi.

2.3.5. Scripting i KML

Fins aqui, veiem que la utilitzacié de Google Earth sembla factible per al nostre projecte.
Podem generar una comunicacié bi-direccional entre un client Google-Earth i un servidor
que enviara codi cap al client. Aixi, al client necessitem un codi KML que es pugui obrir

amb el navegador de Google Earth i que incorpori un sistema de refresc per tal

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 18

d’actualitzar-se constantment. Tal i com hem comentat anteriorment, descobrim gracies a
la documentacié de KML publicada per Google, que hi ha una forma de fer que el codi
del client apunti a un document situat en un altre maquina, que en el nostre cas sera el
servidor. Aquest document pot ser codi KML o un script escrit en qualsevol llenguatge
d’scripting. Gracies a aquest script, el servidor sera capag¢ de proveir el nou codi per al
client. Aquest link cap a un altre document s’anomena Network Link en KML, i té
associat, entre d’altres propietats, un interval de refresc que sera el que ens permetra
executar I’script del servidor constantment per tal d’obtenir noves imatges. Podem veure

un esquema global del sistema a la figura 2.3.

1— &

Nou KML Google Earth
/

/
/
/
/
/
/
’/

Script KML (Network Link)

Figura 2.3

Aixi, si combinem el Network Link amb una tecnologia d’scripting, podem generar codi
dinamicament, que ¢és el que ens interessa en el nostre projecte. Per tant, sabem que el
client disposara d’un Network Link que apuntara a un script al servidor que generara el
nou codi, tal i com veiem a la figura anterior. Aquest script rebra unes dades i generara el
codi en conseqiiéncia. D’entrada sembla logic pensar que I’script rebra les coordenades
del visor del client 1 generara la d’alguna manera la nova imatge. De fet, la sortida de
I’script hauria de ser un document KML ben format que contingui la nova imatge per a

les coordenades que ha rebut.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 19

Es important que el nostre servidor proporcioni sempre documents KML estrictament ben
formats. Primerament, és possible que el navegador deixi de funcionar si no sap
interpretar el codi KML que esta rebent i, més important encara, volem que el nostre
projecte sigui totalment valid dins la ontologia que abans hem comentat. Si tenim
I’objectiu de fer possible la interactuacido amb altres projectes que treballin amb SIG’s,

necessitem que els documents KML que generem siguin sempre valids.

2.3.6. Capturar les imatges

Ens falta descriure com aconseguirem les imatges de I’entorn que volem explorar.
Necessitarem un camera que obtingui el video que esta enregistrant i I’emmagatzemi
d’alguna manera en una base de dades. De fet, el que emmagatzemarem seran les imatges
que formin aquest video, ja que amb el que treballarem finalment seran imatges, que és el
que pot carregar un document KML. Per tant, hi haura un procés que s’encarregara de
convertir el video que s’esta enregistrant en tot moment en imatges que es guardaran en
una base de dades. Llavors, I’script que generi el nou codi haura de comunicar-se amb

aquesta base de dades 1 recuperar les imatges que siguin necessaries.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 20

2.3.7. Esquema analitic

Per concloure aquest capitol, podem veure en la figura 2.4 quines seran les diferents parts
que intervenen en el nostre projecte i quina €s la informacié que es transferira entre elles
per tal d’obtenir un monitoratge constant d’un entorn dinamic enregistrat per una camera

utilitzant Google Earth.

!
: |
| |
| !
| |
| Camera Imatges Nou KML @ l
| ! '
| @ '
| | :
| | | |
| ! | |
| !
: Base de Script | Coordenades ! :
|
| dades | | Network Link :
e 1 L _ I

Servidor Client

Figura 2.4

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 21

Capitol 3.

Platatforma de

navegacio visual

En el capitol anterior s’han descrit les tecnologies que farem servir per a desenvolupar el
nostre projecte 1 hem descrit les diferents parts que hi participaran. Hem definit el flux
d’informacid entre cada element aixi com la funcionalitat d’aquests. En aquest capitol
aprofundirem en cada un d’aquests elements, descrivint com els hem desenvolupat, 1
entrant en els detalls d’implementacié, amb les possibles modificacions de la idea inicial 1
els problemes que ens hem trobat durant el cami. Aixi, I’objectiu del capitol és detallar
com es construeix la plataforma sobre la que farem les proves d’avaluacio per veure fins

a quin punt €s viable el nostre projecte.

3.1. El Client

Ja hem comentat anteriorment que el client necessitara obrir un link cap al servidor per tal
de comunicar-s’hi. Es tracta d’un codi KML que contindra un element Network Link que
fara referéncia a un script situat al servidor. Per tant, el client només necessitara dues
coses per tal de fer anar I’aplicacio final del nostre projecte. Per una part, necessitara tenir

instal-lat ’aplicaci6 Google Earth. Per a la realitzacidé d’aquest projecte, hem fet servir la

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 22

versio 4.2, perd no hi hauria d’haver cap problema en utilitzar la versi6 més recent de
Google Earth ja que el codi KML amb el que treballem seria sempre valid. D’altra banda,
el client també necessitara un fitxer que contingui ’enllag cap al servidor. Aquest enllag¢

el detallem en el segiient punt.

3.1.1. Network Link

Un element essencial en el client, tal i com hem comentat, seria el fitxer KML que conté
el vincle cap al servidor. En aquest codi KML trobarem, un element Network Link que

apunta al servidor, tal i com veiem a continuacio:

<NetworkLink>

<name>Monitoratge d’entorn dinamic</name>

<visibility>0</visibility>

<open>0</open>

<description> Crida al servidor cada 2 segons. </description>

<refreshVisibility>0</refreshVisibility>

<flyToView>1</flyToView>

<link>
<href>http://localhost/test.php</href>
<refreshMode>onInterval</refreshMode>
<refreshInterval>2</refreshInterval>
<viewRefreshMode>onStop</viewRefreshMode>
<viewRefreshTime>2</viewRefreshTime>
<viewBoundScale>1.25</viewBoundScale>
<viewFormat>

<! [CDATA [BBOX=[bboxWest], [bboxSouth], [bboxEast], [bboxNorth] &
CAMERA=[lookatLon], [lookatLat], [lookatRange], [lookatTilt], [1
ookatHeading]]>>

</viewFormat>

</link>
</NetworkLink>

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 23

Veiem com I’element <NetworkLink> té varis subelements que el defineixen, sent el més

interessant I’element <link>. A continuaci6 descrivim tots aquests elements, alguns d’ells

especifics de Network Link:

name: nom que identifica ’element per a ’usuari i que apareix com una etiqueta

en el navegador Google Earth.
visibility: valor logic que indica si I’element sera visible o no en el navegador.

open: valor logic que indica si el document apareixera tancat o obert en el panell

de control del navegador quan s carrega per primer cop.
description: text que apareixera dins un globus d’informacié al navegador.

refreshVisibility: element especific de Network Link; valor logic que indica si cal
refrescar la visibilitat d’un item cada cop que el Network Link es torna a carregar.
Aixi, si deixem aquesta propietat a 1, en el cas de que 1’usuari desactivi la
visibilitat de la imatge que estem recarregant, quan aquesta es torni a carregar, la

visibilitat tornara a activar-se.

flyToView: element especific de Network Link; valor logic que indica si, a I’obrir
el fitxer a on apuntem, el navegador hi navegara cap a les coordenades on estigui

establert, en cas de tenir-ne de definides.

link: en el nostre aquest element especifica la localitzacido d’un arxiu extern, que
bé pot ser directament un arxiu KML o un script que com a resultat retorni codi

KML.

Potser I’element més interessant és <link>, que t¢é els segiients subelements:

href: indica la URL del fitxer a carregar, que bé pot ser una direcci6 HTTP o un
fitxer local. En el nostre cas, com que el pare de 1’element <link> és un element
<NetworkLink>, href fa referéncia a un fitxer KML (o un script que retorni codi

KML).

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 24

e refreshMode: aquesta propietat especifica un mode de refresc per al link que

carreguem. Hi ha 3 tipus de refresc:

o onChange: refrescar quan el fitxer €és carregat i quan els parametres del

link canviin.
o onExpire: refrescar només quan ha passat el temps d’expiracio.

o onlnterval: refrescar cada n segons, sent n especificat en 1’element
<refreshlnterval>. Aquest és el mode de refresc que en interessa en el
nostre projecte, ja que volem que el contingut de link es recarregui

constantment.

o refreshinterval: sera la quantitat de segons que esperem per a refrescar el Network
Link.. Segons la documentaci6 proporcionada per Google, aquest valor és un real.
Sembla, doncs, factible que puguem ajustar la freqiiencia de refresc al valor que

vulguem.

e viewRefreshMode: especifica com es refresca el link quan la camera canvia, és a
dir, quan ’usuari es mou per 1’escenari a través del navegador. Hi ha 4 opcions

diferents per a aquest mode de refresc:

o never: ignorar canvis en la camera. D’aquesta manera, el refresc només es

donaria a terme segons 1’especificat en 1’element <refreshMode>.

o onStop: refrescar el fitxer n segons després de que el moviment finalitzi,

on n esta especificat en I’element <viewRefreshTime>.

o onRequest: refrescar el fitxer només quan 1’usuari aixi ho desitgi, fent

servir el navegador per seleccionar la opcid de refresc immediat.

o onRegion: refrescar el fitxer quan la regi6 esdevé activa, és a dir, quan la
camera esta enfocant les coordenades de la regid sobre la que treballa el
link. En el nostre cas sembla que aquesta és la opcid adient, ja que només
volem actualitzar el link, que resultara en una imatge, quan aquesta és

visible per al client des del navegador.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 25

e viewRefreshTime: si a I’element <viewRefreshMode> hem indicat la opcid
onStop, aqui indiquem els segons que transcorren des de que la camera s’atura

fins al refresc de la vista.

e viewBoundScale: indica si cal fer un escalat de la imatge que mostrem per
pantalla. El valor que indiquem ¢és el factor d’escalat de la imatge; aixi, un valor
inferior a 1 fa la imatge més petita mentre que un valor més gran que 1 faria la
imatge més gran. En el nostre cas, un factor 1 fa que la imatge ocupi tota la
pantalla. Es decideix aplicar un escalat de 1.25 per tal de que la imatge vagi més
enlla dels limits de la pantalla degut a un petit problema experimentat al moure la
camera. Si no fem la imatge una mica més gran que la pantalla, al moure la vista
d’usuari es pot arribar a veure, durant un instant, el que hi ha més enlla de la
imatge, €s a dir, els mapes que proporciona Google Earth. Aplicar un escalat de

1.25 és suficient per evitar aquest efecte negatiu.

e viewFormat: especifica el format de la cadena alfanumeérica que contindra la
consulta que s’afegira al link indicat en ’element <href>. D’aquesta manera,
aconseguim d’una forma ben senzilla que I’script rebi les coordenades del visor
del navegador. Enviem la variable composta BBOX que conté les coordenades
nord, sud, est 1 oest de la regid que esta veient la camera del navegador fent us del
protocol HTTP. També enviem la variable CAMERA amb el valor lookatRange
que indica la alcada en metres a la que es troba la vista actual. Veurem més
endavant com I’script necessita aquesta variable per a escollir la nova imatge que

mostrarem. Aixi, la URL final que carrega el Network Link sera:

http://SERVIDOR/NOM_SCRIPT?BBOX=[bboxWest,bboxSouth,bboxEast,bboxNorth]
&CAMERA=[lookatRange]

on w,s,e,n son les coordenades oest, sud, est i nord respectivament del visor del

navegador en un moment donat.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 26

3.2. El Servidor

Ja hem comentat que, pel que fa al client, I’Unic fitxer que necessariament disposara per
al funcionament del nostre projecte sera el fitker KML amb el Network Link que apunta
al nostre servidor. El fitxer que conté I’script que generara codi KML que sera retornat al
client, residira en el servidor. Aquest script sera finalment codificat en el llenguatge
d’scripting PHP. Per tal de que el client pugui comunicar-s’hi, tamb¢é sera necessari
instal-lar un servidor web que rebi peticions HTTP 1 envii el codi KML. A més, en el
servidor trobarem també la camera que enregistra 1’escenari aixi com la base de dades on

hi guarda la informacié que genera.

3.2.1. El servidor web

Per tal de que el servidor pugui rebre peticions HTTP procedents del client, a través de la
xarxa, necessitem configurar un servidor web instal-lat en la maquina servidor. Volem un
servidor web fiable 1 senzill ja que només es rebra un tipus de peticio i, segons els
requeriments d’aquest projecte, no haurem de manegar moltes peticions al mateix temps,
tot 1 que continuament estarem treballant amb el client degut a la naturalesa de la

aplicacid.

Aixi, instal'lem en el servidor un paquet de programari lliure anomenat XAMPP, que
conté un servidor web Apache forca simple, aixi com les eines necessaries per a utilitzar
el llenguatge d’scripting PHP, necessari també per al correcte funcionament del servidor
del nostre projecte. La seva simplicitat, aixi com el fet que es distribueixi sota llicéncia

publica general, son les raons principals per a la seva eleccio.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 27

3.2.2. La camera

Per adquirir les imatges de 1’entorn a explorar utilitzem una webcam que enregistrara una
escena de forma ininterrompuda. La webcam utilitzada durant el desenvolupament
d’aquests projecte és una Philips SPC220NC com la que veiem en la figura 3.1 que
enregistra video amb resolucions que van des de 160x120 pixels fins a 1280x960 pixels
amb espai de colors RGB utilitzant 24 bits, el que significa que s’utilitzen 256 bits per a
definir cada component de I’espai RGB, és a dir, disposem de 256*256*256 = 16,7

milions de colors diferents.

Pel que fa a la resolucid, s’haura d’escollir quina és la més adient per al nostre projecte.
Cal arribar, doncs, a un compromis adient entre la quantitat d’informacié que transferim
i la qualitat de la imatge final. Obviament, com més resolucié tinguin les imatges del
video, més informacid caldra transferir entre servidor i client i, per tant, la velocitat de

’aplicacio es veura reduida.

3

™ ? PHILDS

Figura 3.1

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 28

Per tant, cal decidir si estem disposats a perdre velocitat per tal de guanyar qualitat en les
imatges. La nostre aplicacid requereix, sobretot, rapidesa en 1’execucio, ja que volem
explorar un escenari dinamic i volem fer-ho el més rapid i fluid possible; per tant, sembla
logic pensar que el més adient és perdre qualitat en la imatge per tal d’accelerar la
transferéncia d’informaci6 1, per tant, la velocitat d’execucio de la aplicacié final. Per

tant, escollirem inicialment una resolucio baixa: 320x240 pixels.

La camera pot capturar video a una velocitat de fins a 30 fotogrames per segon. Es
decideix, pero, que amb 25 fotogrames per segon €s suficient per a navegar per un entorn
dinamic com el que suposem en aquest projecte. De fet, si aconseguim que el client
visualitzi I’entorn a una freqliencia de 24 frames per segon, ja haurem aconseguit el
maxim que 1’ull huma pot percebre i, per tant, el maxim de fluidesa en la visualitzacid

que es pot obtenir.

Draltra banda, cal remarcar que el nombre de frames que obtenim per segon es traduira, a
fi de comptes, amb el nombre d’imatges que guardem a la base de dades cada segon. Ens
hauriem de preguntar quines son les necessitats que requereix l’entorn que estem
explorant pel que fa a la freqiiencia de mostreig del video. En el cas que hem explicat en
el primer capitol, ’escenari d’una planta de produccié, no sembla excessivament
rellevant el nombre d’imatges per segon que enregistrem i podem concloure que amb 25
frames per segon hi ha més que suficient. Pero en altres escenaris, on hi hagi un nivell de
dinamisme molt alt, podria ser interessant augmentar aquesta freqiiencia de mostreig
independentment de si el client podra percebre o no els canvis mentre explora 1’escenari
amb el navegador. D’aquesta manera, tindriem enregistrat tot el que succeeix en

I’escenari a la base de dades per futures consultes externes a la nostre aplicacio.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 29

3.2.3. Del video a les imatges

Ja hem comentat en I’anterior capitol que el video enregistrat per la webcam havia de ser
traduit a imatges per tal de poder mostrar 1’escena en el navegador Google Earth.
Aquestes imatges hauran de residir en una base de dades per tal de ser emmagatzemades.
Per tant, necessitem un procés intermedi entre la webcam 1 la base de dades. Aquest
procés sera I’encarregat de passar el video inicial a imatges. Podem veure un esquema de

la situaci6 en la figura 3.2.

\

Imatges

[
Webcam Video

= [N s <&

Procés
intermedi

L0

Base de dades

Figura 3.2

Anem a descriure quina sera exactament la tasca que dura a terme el procés intermedi
entre la webcam 1 la base de dades. En un primer moment es decideix que la unica tasca
d’aquest procés sigui la de convertir el video en imatges i emmagatzemar-les en la base
de dades sense modificar de cap forma la imatge, tal i com hem comentat fins ara. No
obstant, aix0 comportaria una limitaci6 per al client. El navegador de Google Earth
permet fer zoom mentre el client explora les imatges, donant la sensaci6é d’algada, és a
dir, les imatges estan captades a diferents resolucions segons 1’algada a la que es trobi el
client. Aquesta algada es pot modificar facilment des del navegador, amb el propi ratoli.
Aixi, I’usuari del navegador té la sensaci6 de poder fer zoom en les zones d’interes, per
tal d’obtenir una imatge més detallada. Per aconseguir aquest efecte amb les nostres

imatges, es decideix que la nostre aplicacié també permeti que 1’usuari pugui utilitzar el

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 30

zoom del navegador per tal d’obtenir imatges més o menys detallades. Aixo vol dir que

tindrem imatges amb més resolucié que d’altres.

Inicialment, es fixen 2 nivells de detall en les imatges, és a dir, ['usuari veura la imatge
completa en el navegador 1, quan decideixi obtenir més detall en la imatge, és a dir,
disminueixi I’al¢ada des del navegador, la imatge que es mostrara tindra més resolucio en
la zona ampliada. Per tant, caldra definir una algada llindar que separi els 2 nivells de

resolucio.

Per a donar la sensaci6 de diferent alcada en les imatges, caldra les imatges de menys
alcada tinguin més nivell de detall que les imatges superiors. Per a les imatges de més
alcada utilitzarem les imatges resultants directament del video; aquestes seran dividides
en quatre quadrants de mateixa mida cada un per tal d’obtenir les imatges de segon nivell
d’alcada. D’aquesta manera, quan 1’usuari baixi per sota ’algada llindar, la imatge que
veura en el navegador no sera la imatge completa si no un dels 4 quadrants de la imatge,

depenent de les coordenades on estigui situada la regi6 del visor del navegador.

Amb aixo aconseguim que 'usuari pugui fer zoom en una de les regions de la imatge.
Tanmateix, d’aquesta manera no aconseguim que 1’usuari experimenti una millora en la
imatge ampliada, és a dir, en un dels quadrants de la imatge completa. Per tal
d’aconseguir-ho, necessitem que la imatge completa (primer nivell) tingui menys nivell
de detall que les imatges corresponents als quatre quadrants (segon nivell). Es decideix,
doncs, que caldria reduir la resolucid de les imatges del primer nivell per tal de que les

del segon nivell tinguin més qualitat.

Per tant, I’efecte d’aconseguir imatges més detallades quan 1’usuari disminueix I’algada
del navegador I’aconseguim dividint la imatge original en 4 parts i fent que aquestes parts
siguin imatges amb més qualitat de detall que la imatge completa. Ja hem indicat que la
resolucio de les imatges del video es de 320x240. Aixo vol dir que cada quadrant de la

imatge sera de 160x120 pixels.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 31

El que podem fer ¢s, un cop hem retallat la imatge per obtenir els quadrants, reduir la
imatge original també a 160x120 pixels. Amb aix0 aconseguim imatges de mateixa mida
pero diferent qualitat, ja que a les imatges de segon nivell utilitzem els mateixos pixels
per a representar una regié més petita de 1’escenari. Podem veure el procés en la figura

3.3.

En un primer moment es decideix emprar 1’entorn Matlab per a la creacié d’aquest procés
que ha de dur a terme aquestes tasques, degut a la simplicitat del llenguatge. Aixi,

desenvolupem una petita aplicacid que segueix el segiient algorisme:

mentre (video)
adquirir frame;
dividir gquadrants;
disminuir resolucidé imatges nivell 1;
introduir informacidé a BD;
fi mentre

Per tant, I’aplicacié desenvolupada en Matlab haura de ser capa¢ d’obtenir constantment
el video que la webcam esta capturant. Per cada fotograma que s’obtingui, s’hauran de
crear 5 imatges. Una sera la imatge completa, de la qual s’haura de reduir la resolucié per
tal de baixar-ne la qualitat. Les altres quatre imatges corresponen als quatre quadrants de

la imatge amb la resolucio original.

Podem trobar el codi complet del procés Matlab al final d’aquest document, a I’apartat

dedicat als annexos.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics

32

Imatge original (320x240)

Imatge original reduida Imatges dels quadrants
(160x120) (160x120)

Figura 3.3

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 33

Arribats a aquest punt, cal decidir quin format tindran les 5 imatges per frame que es
creen. En un primer moment, es decideix que les imatges es gravin en format JPEG
(Joint Photographic Experts Group). Aquest format segueix un algorisme de compressio
que fa disminuir forga la grandaria de la imatge 1, Obviament, la qualitat de la mateixa. No
obstant, aquest fet requereix que, a I’obrir la imatge, s’hagin de fer calculs per aplicar
I’algorisme de descompressio de la imatge. Aixi doncs, aquest format faria que la
transferéncia de les imatges entre client i servidor fos rapid, perd requeriria un treball

constant en el client per tal d’obrir-les.

Una alternativa la tenim en el format BMP (BitMapP); aquest format no comprimeix la
imatge, obtenint uns fitxer forca més grans que amb el format JPEG perd amb molta més
qualitat. L’avantatge, més enlla de la qualitat de la imatge, és que aquests fitxers son
extremadament rapids d’obrir i, per tant, el client no haura de dur a terme calculs

intermedis cada cop que obri les imatges, fet molt important en el nostre projecte.

Aixi, la decisio d’escollir un o altre format per a les imatges amb les que treballem no és
trivial. La grandaria d’un fitxer amb una imatge JPEG pot arribat a ser fins 10 o 20
vegades més petit que la d’una imatge BMP sense que 1’ull huma noti en excés la perdua
de qualitat en la imatge. Tot 1 aixi, volem que el client no hagi de dur a terme calculs
abans d’obrir la imatge amb el navegador, ja que aixo podria disminuir molt la velocitat

d’execucio en el client. Aixi, es pren la decisio de treballar amb imatges en format BMP.

3.2.4. La base de dades

Ja sabem en quin format ha de guardar les imatges el procés Matlab. El seglient pas que
ha de realitzar és la introducci6 de la informaci6 referent a cada frame en la base de dades
que resideix en el servidor. Recordem que aquest procés també es troba en el propi
servidor. Per tant, ens hem de connectar a una base de dades local i introduir-hi

informacid constantment.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 34

Basicament, necessitem que la base de dades guardi, per a cada imatge, la direccio fisica
del fitxer que conté la imatge i les coordenades nord, sud, est 1 oest que cobreix la imatge.
La direccid fisica de la imatge haura de ser accessible per a 1’aplicacido Apache, ¢és a dir,
el directori on estiguin les imatges haura de ser configurat al servidor web per tal de que
aquests fitxers amb imatges siguin accessibles des del client. Aquest fet €s molt important
ja que si hagués cap problema, el servidor web no podria oferir les imatges al client i aixo
comportaria un error durant 1’execucié de Google Earth en la maquina des d’on es vol

navegar per I’entorn que estem enregistrant.

Cal remarcar que, en aquest context, entenem una imatge com qualsevol fitxer resultant
del procés Matlab que hem descrit anteriorment. Es a dir, tant imatges completes com
quadrants de cada frame. Per tant, una tercera dada que hauria de quedar reflectida en la
base de dades és el nivell de detall de la imatge que, tal 1 com hem comentat, pot ser de
primer nivell o segon nivell si es tracta d’un dels quatre quadrants en els que dividim la
imatge original d’un frame donat. Crearem, doncs, dues taules en la base de dades. La
primera taula, anomenada IMG 1, contindra les dades de les imatges completes de cada
frame mentre que la segona taula, que anomenem IMG 4, contindra les dades de les

imatges corresponents a cada un dels quatre quadrants de la imatge original.

Per ultim, assignarem un identificador Unic a cada imatge com a clau primaria. D’aquesta
manera, una tupla de cada una de les taules de la base de dades vindra definida pels

segiients camps, tots obligatoris:

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics

35

Taula IMG 1
Nom Columna Tipus Columna Descripcio
IMG_Id (Clau primaria) | Integer Identificador nic
IMG_Path Text Direcci¢ fisica del fitxer

IMG_North Real Double Precision | Coordenada nord de la imatge

IMG_South Real Double Precision | Coordenada sud de la imatge

IMG_West Real Double Precision | Coordenada oest de la imatge

IMG_East Real Double Precision | Coordenada est de la imatge
Taula IMG 4

Nom Columna

Tipus Columna

Descripcio

IMG _1Id (Clau primaria)

Integer

Identificador Gnic

IMG_Path

Text

Direccio6 fisica del fitxer

IMG_North Real Double Precision | Coordenada nord de la imatge
IMG_South Real Double Precision | Coordenada sud de la imatge
IMG_ West Real Double Precision | Coordenada oest de la imatge
IMG_East Real Double Precision | Coordenada est de la imatge

IMG_Region (Clau primaria)

Small Integer

Quadrant de la imatge

També cal remarcar que es crearan indexs sobre les columnes més utilitzades, que serien

IMG_Path, IMG_ North, IMG_South, IMG West 1 IMG East ja que son aquestes

columnes les que es necessiten per crear el KML que sera enviat al client.

Un cop hem analitzat i dissenyat la base de dades del nostre projecte, cal escollir un

gestor de base de dades per tal de crear-la fisicament. Per la seva naturalesa de software

lliure, es decideix implementar la base de dades en PostrgeSQL, un sistema de gestio de

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 36

bases de dades objecte-relacional que es distribueix sota la llicencia BSD (Berkeley

Sofware Distribution), corresponent a una familia de les llicéncies de programari lliure.

La versi6 de PostgreSQL utilitzada és la 8.3.5 amb la eina PostgreSQL pgAdmin 111, en la
versio 1.8.4, que permet la interactuacié amb la base de dades mitjangant una interficie
d’usuari visual, comode 1 molt intuitiva. Sobre aquesta versi6 de PostgreSQL es va
instal-lar el modul PostGIS, en la seva versié 1.3.5. Aquest modul, desenvolupat sota la
filosofia de codi obert, permet a les bases de dades creades en PostgreSQL la possibilitat
de fer servir objectes geografics en una base dades objecte-relacional, com és el cas.
PostGIS, a més, afegeix suport per a 1’us d’eines especials per aquests tipus de dades

geografiques.

Creant la base de dades sobre una instal-lacié PostgreSQL amb suport per a dades
geometriques, podrem fer servir funcions propies dels sistemes SIG com ara el calcul de
distancies entre punts o, fins i tot, crear codi KML de forma directa amb una consulta
SQL. Cal remarcar, pero, que en aquest projecte no fem servir aquestes funcions pero si
veiem molt interessant deixar la base de dades preparada per a suportar-les per futures

ampliacions en els requeriments del projecte.

3.2.5. L’script

En aquest apartat analitzem 1’script que generara codi KML que sera retornat al client.
Tal 1 com em comentat anteriorment, aquest script és desenvolupat en el llenguatge
d’scripting PHP. El codi complet de I’script el podem trobar al final d’aquest document, a

’apartat dedicar als annexos.

Hi ha 2 fets necessaris per tal de que un script proporcioni correctament codi KML a
través d’una xarxa, com és el cas del nostre projecte. Quan es fa una crida des del client,
¢és a dir, des del navegador Google Earth, cap al servidor, aquest ha de retornar una

resposta HTTP de codi 200, que correspon a una resposta estandard de peticio HTTP

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 37

satisfactoria; el camp Content-Type d’aquesta resposta ha de ser de tipus
application/vnd.google-earth.kml+xml, ja que aquest és el MIME type associat a un arxiu
KML. El segon requisit necessari per al bon funcionament entre client Google Earth i el
servidor ¢és que el codi KML proporcionat estigui ben format, tal i com hem comentat en

el capitol anterior.

Podem desglossar el codi en 3 parts diferenciades. La primera part de 1’script s’encarrega
de fer la connexi6 amb la base de dades amb la que I’script necessitara interactuar.
Aquesta base de dades la descriurem més endavant pero ara cal saber que residira en el
propi servidor on esta I’script. En cas que no es pugui establir aquesta connexio, I’script

no continuara i aixo derivara en un error en el navegador Google Earth del client.

La segtient part de I’script s’encarrega d’adquirir les variables que ha rebut via HTTP 1
guardar-les en variables. De fet, el que es fa és discriminar les 4 coordenades que rebem
en una Unica variable composta anomenada BBOX creant 4 noves variables a I’script
anomenades $west, $south, $east i $north. Seguidament, recupera el valor de I’altre
variable que ha rebut via HTTP, CAMERA, que conté el valor de ’algada en metres de la

vista del navegador i el guarda dins la variable $lookatRange.

La tercera 1 ultima part de I’script €és la que duu a terme la consulta a la base de dades per
tal d’obtenir la imatge que encaixa en les coordenades que ha rebut. Ja hem comentat
anteriorment, que la base de dades conté dues taules. La taula IMG 1 conté les imatges
de nivell 1, mentre que la taula IMG 4 conté les imatges de nivell 2, és a dir, les imatges
corresponents als quatre quadrants de la imatge original. En aquest moment €s on 1’algada
llindar que diferenciava entre un nivell 1 ’altre entra en joc. Es decideix que aquesta
alcada sigui de 150 metres. Per tant, quan la variable $lookatRange sigui major que 150,
efectuarem la consulta sobre la taula IMG 1. En altre cas, la consulta es realitzara sobre
la taula IMG_4. La consulta, en ambdoés casos, retorna un path a una imatge, que sera la

nova imatge que es veura en el navegador del client.

Finalment, es retorna el codi KML que mostra la imatge. Primerament, és important

remarcar la preséncia de les capgaleres en el fitxer que I’script retorna. Aquestes

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 38

capcaleres indiquen al navegador Google Earth que el que enviem ¢és un fitxer KML.

L’script retorna el codi KML que veiem a continuacio:

<GroundOverlay>
<name>
Monitoratge d’entorn dinamic
</name>
<description>
Planta de produccid
</description>
<Icon>
<href> %s </href>
</Icon>
<LatLonBox>
<north>%.14f</north>
<south>%.14f</south>
<east>%.1l4f</east>
<west>%.14f</west>
<maxAltitude>1000</maxAltitude>
</LatLonBox>
</GroundOverlay>

GroundOverlay ¢és 1’element que dibuixa una imatge sobre el terreny en el navegador

Google Earth. Conté dos elements que defineixen aquesta imatge:

e Icon: és I’element que indica la ubicacid fisica de la imatge, especificada en el
subelement <href>. En el nostre cas, el contingut de I’element <href> sera una
URL semblant a la que hem indicat en 1’apartat anterior, quan descriviem el codi
del fitxer que té el client amb el Network Link. En aquest cas, necessitem que
aquesta URL faci referéncia a una imatge ubicada en el servidor, com podem

veure a continuacio:

http://SERVIDOR/NOM_FITXER IMATGE

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 39

El valor que troben en I’script, %s, indica que sera una cadena que es calculara en
temps d’execucio. L’script fara la consulta a la base de dades 1 omplira la URL

completa per a la imatge en qiiestio.

o LatLonBox: especifica les coordenades on s’ubicara la imatge dins el navegador
Google Earth, que seran les mateixes que I’script ha rebut des del navegador.
Aquest element té quatre subelements corresponents a les 4 coordenades
geografiques 1 un cinqué element anomenat <maxAltitude> que indica la
altitud maxima en metres a la que es podra desplacar ’usuari. Es decideix limitar-
ho a 1000 per tal de que 1’usuari no arribi a veure la curvatura de la terra que

mostra Google Earth quan s’arriba a certa altura en el visor del navegador.

Al final de I’script, alliberem la connexi6é amb la base de dades tot tancant la connexio

establerta des de I’script.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 40

3.2.6. Diagrama d’objectes

Ja hem descrit tots els components del nostre projecte, com interactuen entre ells i quins
son els fluxos d’informacié que transcorren durant la execucio de la aplicaci6. A la figura
3.4 podem veure un diagrama complet del nostre projecte, amb aquests components i la

comunicacid entre ells:

5

Imatges
rﬁ \ Matlab
Webcam Video Procés Ei
intermedi
PostGRES
PHP
Coordenades -
/ Script
Apache SERVIDOR
ara CLIENT
Nou KML

Network Link

Figura 3.4

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 41

Capitol 4.

Implementacions

avaluades

En aquest capitol repassarem les implementacions que s’han desenvolupat de la
plataforma que hem descrit detalladament en el capitol anterior. La primera
implementacié consisteix en connectar directament els elements que hem comentat
anteriorment, en una sola maquina. Es a dir, tindrem un ordinador que actuara com a
client 1 com a servidor. Instal-larem, doncs, tots els elements que intervenen en el nostre
sistema:

e Navegador Google Earth

e Entorn PHP 1 script

e Servidor web

e Base de dades PostgreSQL

e Matlab

e Webcam

Aquests elements es connectaran entre si tal i com hem indicat anteriorment 1 s’avaluaran
els resultats que s’hi obtenen pel que fa a la visualitzacié des del navegador Google

Earth. Veurem aquest procés en el punt 4.1.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 42

Per tal d’intentar accelerar la visualitzacié final en el navegador Google Earth, es va
desenvolupar una segona implementacié de I’arquitectura que es diferencia de I’anterior
en el funcionament de la base de dades geografica. En aquesta segona versid, vam decidir
ubicar la base de dades en memoria principal en comptes de memoria secundaria per tal
d’accelerar la transferéncia de les imatges. En el punt 4.2 expliquem per qué es va decidir

implementar aquesta millora 1 s’analitzen els resultats finals.

4.1. Implementacio directa

Aquesta va ser la primera implementacid que es va desenvolupar de l’arquitectura
descrita durant el capitol 3. Es van connectar directament els diferents components en una
mateixa maquina que va actuar tant de client com de servidor. El flux de processos seria
el seglient: la camera capta les imatges d’un escenari, el procés Matlab converteix el
video de la camera a imatges i les guarda a la base de dades. Mentre aixo succeeix, obrim
un navegador Google Earth i hi carreguem el Network Link que es comunica amb I’script
PHP, enviant les dades de les coordenades i al¢ada de la camera del visor via HTTP.
Aquest script rep les dades, fa la consulta a la base de dades i recupera el cami a la imatge
que s’hauria de mostrar en el navegador del client. Llavors, crea el codi KML per a

mostrar aquesta imatge i la envia a I’aplicacié Google Earth fent servir el protocol HTTP.

El primer problema que ens vam trobar va ser amb la propietat de refresc del Network
Link del client. Aquesta propietat indica la freqliencia amb la que el Network Link es
recarregara, ¢és a dir, cada quan enviem la peticio6 HTTP al servidor i, conseqiientment,

cada quan es recarregara la imatge en el navegador del client.

Ja hem explicat anteriorment que aquesta propietat s’indica en I’element anomenat
<refreshlnterval>, que és un subelement de <link>. Haviem dit que aquesta propietat
admet un valor real, segons la documentaci6 publicada per Google. Al realitzar les proves
d’avaluacio d’aquesta primera implementacié descobrim que un refresc de 0,1 segons

dona els mateixos resultats que un de 1 segon. Aix0 voldria dir que la exploracié d’un

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 43

escenari utilitzant aquesta tecnologia estaria limitada a un frame per segon. Per tant,
semblaria poc aconsellable desenvolupar una aplicacié per a entorns on es requeris una
visualitzacidé a temps real on 1’usuari hagués de realitzar un monitoratge de ’escenari

amb rapidesa 1 fluidesa en les imatges.

Després de realitzar varies proves amb KML, provant varis sistemes de refresc, es
descobreix una possibilitat d’augmentar la freqliéncia de refresc a valors per sota del
segon. Es tracta d’enllagar dos elements <NetworkLink> situats en dos fitxers KML
diferents. De fet, només es tracta d’afegir un fitxer KML al nostre sistema. Aquest nou
fitxer contindria un Network Link que apuntaria al mateix fitxer KML del client al que

fins ara ens hem referit, tot seguint I’esquema que tenim a la figura 4.1.

D’aquesta manera, el client només haura d’obrir el fitxer anomenat Network Link 1, que
apuntara al fitxer Network Link 2. Aquest sera el fitxer que apuntara a I’script situat en el
servidor. Aixi, el procés no ha canviat per a I’usuari, que només s’ha de preocupar d’obrir
un fitxer, com fins ara haviem plantejat. Es, doncs, important remarcar que per al client,
la solucid escollida per a resoldre el problema del refresc del Network Link €s totalment

transparent.

Cal remarcar que a la documentaci6 de Google Earth no s’ofereix aquesta possibilitat
d’obtenir taxes de refresc inferiors a 1 segon. Es possible que, degut a la naturalesa de
Google Earth, no s’hagi pensat en aquesta possibilitat. Recordem que Google Earth no
esta concebut per a entorns dinamics, si no per a navegacions sobre entorns que no

canvien constantment.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 44

CLIENT

KML (Network Link 2)
A

KML (Network Link 1)

Figura 4.1

La taxa de refresc del segon Network Link la hem de fixar a un valor alt, ja que ¢és el
primer Network Link el que definira la taxa de refresc amb la que es recarregaran les
imatges en el navegador. De fet, ’efecte de fixar una taxa de refresc inferior a 1 en tots
dos elements és forga negatiu atés a les proves que hem fet, ja que es produeix un efecte
de parpelleig molt elevat que fa impossible navegar per I’escenari de forma comode.
Deixem el refresc del segon element Network Link a 10 segons 1 variem el del primer
Network Link per tal de veure quins resultats s’aconsegueixen. En realitat, el que estem
fent és cridar I’script cada 10 segons i, a més, també el criden amb la freqiiencia que
indiquem en el primer Network Link. Aix0 no comporta cap efecte negatiu visual notable

per a I’usuari.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 45

Si provem de fixar la taxa del primer Network Link a 1 segon, obtenim una visualitzaci
forca fluida pel que fa als canvis entre frames, tot i que es nota un petit interval entre dos
frames consecutius en el que no es veu cap imatge. La velocitat és realment bona, ja que
veiem les imatges gairebé a temps real. De fet, no ho veiem a temps real totalment per les
prestacions de la camera. Creiem que amb una camera de millors prestacions

aconseguiriem una navegacio en temps real.

No obstant, una freqiiéncia d’un frame per segon sembla forca baixa. Fixem una taxa de 2
frames per segon en el primer Network Link 1 veiem que continua existint un interval
entre dos frames consecutius en els que no es veu cap imatge. Aixo provoca un efecte de
parpelleig for¢a molest que fa poc comode la navegacié amb Google Earth. Obviament, a
mesura que augmentem la freqiiéncia de refresc, aquest efecte de parpelleig s’acusa més.
Les proves amb una taxes de refresc de 10 frames per segon, és a dir, 0.1 segons

d’interval de refresc donen uns resultats forca negatius degut al efecte comentat.

Podriem dir que les primeres proves no donen uns resultats massa satisfactoris per a taxes
de refresc superiors a 0.5 segons. Aix0 podria ser degut a que les imatges no estan

preparades a temps des del servidor quan sén demanades per Google Earth.

4.2. Implementacio amb base de dades sobre memoria

Degut als resultats de la primera implementacio, que van semblar for¢ca millorables, es va
decidir realitzar una segona implementacio de 1’aplicacié amb 1’objectiu de disminuir el
temps de visualitzacid entre dos frames consecutius en el navegador de Google Earth.
Primerament s’havia d’analitzar quin podia ser el coll d’ampolla del sistema, 1’element

que provocava que les imatges no arribessin al visor del client en el temps esperat.

Es va pensar que possiblement el problema radicava en la transferéncia de les dades, sent
les imatges la part a tenir més en compte ja que representen gairebé la totalitat de les

dades que transferim. En aquest aspecte, hi hauria dues formes de millorar la rapidesa de

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 46

la transferencia de les imatges. Hi ha dos trams on les imatges son transferides al llarg del
sistema que hem dissenyat. El primer tram el trobem localment al servidor; estem
treballant sobre una base de dades que guarda dades sobre imatges emmagatzemades en
el propi servidor on resideix la base de dades. Quan I’script fa la consulta a la base de
dades, es recupera un path que apunta a una imatge guardada en memoria secundaria i es
transfereix al client mitjancant la xarxa. Precisament aquest seria el segon tram on es
transfereix la imatge, del servidor al client. Aqui la velocitat de transferéncia depen del
medi per on es transporta, de la congestié de la xarxa 1 altres elements fisics que poden

ser independents del nostre sistema.

Una forma de millorar la rapidesa amb la que la imatge és transferida seria ubicant la
imatge en memoria principal en comptes de fer-ho en el disc. Aixd faria que la imatge
estigués preparada per ser enviada al client forca més aviat que quan la imatge s’ha
d’anar a buscar a memoria secundaria i podria derivar en una visualitzacié més rapida en
el navegador. Es decideix, doncs, emmagatzemar les imatges directament en memoria

principal sense passar per disc.

Per a dur a terme aquesta tasca es necessita una aplicacio en el servidor que permeti al
sistema operatiu treballar sobre memoria principal com si es tractés d’un disc. Es
decideix utilitzar I’eina VirtualDrive Pro, en la seva versi6 11.0, per tal de dur aquesta
tasca degut a la seva simplicitat. Amb aquesta eina, aconseguim que el sistema operatiu
assigni una nova unitat a una porcioé de la memoria principal per utilitzar-la com si fos
una unitat d’emmagatzematge. Aixi doncs, només cal modificar el procés Matlab per tal
de que guardi les imatges sobre aquesta unitat. Caldra, també¢, indicar aquest canvi en el
camp IMG Path de les imatges noves a la base de dades. També caldra indicar a
I’ Apache un nou directori on hi hauran els documents que pot servir a I’exterior, que sera

la nova unitat creada i que s’indica en el fitxer de configuracié httpd.conf.

Tanmateix, amb aquesta implementacié ens apareix un nou problema a tenir en compte.
Ara les imatges amb les que treballa el nostre projecte resideixen en la memoria principal

del servidor. Aix0 implica un alt grau d’Gs de la memoria principal, és a dir, hi

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 47

necessitem molt espai. Fins ara guardavem les imatges a disc 1 no teniem en compte la
capacitat del mateix. Només necessitariem moure els fitxers que contenen les imatges
per problemes de capacitat a llarg termini i és un fet que no hem considerat de rellevancia
en aquest projecte. No obstant, si treballem en memoria principal si necessitarem algun
mecanisme per a moure les imatges de memoria a disc a curt termini ja que el cost
economic que suposaria tenir una memoria principal amb molta capacitat podria ser molt
alt. De fet, tampoc necessitem que les imatges resideixin en memoria un cop ja han sigut
mostrades al client. Només caldria conservar aquestes imatges per possibles consultes
posteriors, €s a dir, constituirien un historic d’imatges. Aquest conjunt d’imatges haurien,

doncs, de ser guardades a disc.

Aixi, es decideix dissenyar un mecanisme que permeti moure les imatges de memoria
principal a disc cada cert temps per tal de no ocupar la totalitat de I’espai en memoria 1
disposar d’un historic d’imatges. Es pensen dues possibilitats per a dur a terme aquesta
tasca. A continuacid descrivim aquestes dues possibilitats, com s’haurien d’implementar i

quines serien les avantatges i els inconvenients que presentarien.

La primera soluci6 constaria d’un procés que s’executaria cada cert temps 1 que
realitzaria el traspas fisic dels fitxers de les imatges de memoria principal cap a memoria
secundaria. També hi hauria un segon element que efectuaria el canvi en la base de
dades, ¢€s a dir, actualitzaria el camp IMG_Path de les taules IMG 1 1 IMG 4 que conté
la imatge del cami fisic on resideix la imatge. Aquests dos processos anirien sincronitzats
de forma que un cop s’ha acabat el traspas fisic de les imatges es procediria a fer els
canvis a la base de dades. Com que el nom del fitxer de la imatge conté el seu
identificador a la base de dades, és a dir, el valor del camp IMG Id, no hi hauria

problema en saber quin registre de la base de dades correspon a un fitxer donat.

Per tal de decidir quines imatges seran traspassades 1 quines no, es fixara a priori un valor
que correspondra al nombre d’imatges que es mouran cada cop que aquests processos es
disparin. Aquest valor dependra de la capacitat que tingui la memoria principal del

servidor, 1 sera directament proporcional a aquesta capacitat, és a dir, a més capacitat més

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 48

imatges s’hauran de moure cada cop ja que hi caben més. De fet, a més capacitat menys
necessitat hi ha de fer el traspas fisic i, per tant, aquests processos es dispararan amb

menys freqliéncia i, per tant, hi hauran més imatges a moure.

La segona soluci6 consistiria en guardar les imatges al disc en el moment en que també
son guardades en memoria. Aixi, cada cop que el procés Matlab que hem descrit en
capitols anteriors guardi una imatge en memoria, caldra que també guardi el mateix fitxer
a disc. D’aquesta manera, només caldra un procés que esborri les imatges de memoria i
no faci cap traspas fisic de fitxers. També caldra el procés que actualitzi la base de dades
per tal de canviar el camp IMG_Path de les taules IMG 11 IMG 4 tal i com hem explicat

en ’anterior cas.

Aquestes dues solucions estan basades en dues técniques d’escriptura 1 sincronitzacio
entre memoria caché 1 memoria principal que en el nostre cas apliquem en la
sincronitzacid entre memoria principal 1 secundaria. La primera la podriem comparar amb
la técnica anomenada write-through, que implica actualitzar els canvis en memoria
principal en el moment en que es graven en memoria caché. La segona opcio seria
comparable a la tecnica write-back, que no actualitza les dades en memoria principal en
el mateix moment en que es fa la escriptura en memoria caché si no que marca les dades
no sincronitzades en memoria principal com a pendents i les actualitza a posteriori. En el
nostre cas, no caldria fer aquesta diferenciacid ja que les imatges pendents de ser

traspassades no existeixen en memoria secundaria.

Per a les proves que s’han realitzat per aquesta segona implementacidé no s’ha vist
necessari realitzar els processos d’historics, tot 1 que era necessari analitzar 1 dissenyar
algun mecanisme per fer-ho, veient que és viable utilitzar la memoria principal per a
guardar-hi les imatges sense tenir problemes d’espai a curt termini. Creem, doncs, una
unitat d’emmagatzematge dins la memoria RAM amb 1’ajuda de la eina VirtualDrivePro
de 300 Mb, ja que es disposa d’una memoria principal de 2 Gb. A més, modifiquem el
procés Matlab per a que treballi en aquesta unitat i 1i indiquem a 1’Apache el nou

directori, que sera directament la nova unitat.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 49

Tal 1 com hem fet per avaluar la primera implementacio, s’han provat diferents valors per
a la taxa de refresc del primer Network Link. Aixi, per a una taxa de refresc d’1 segon,
s’obt¢ una navegacid una mica més fluida que en la primera implementacio,
experimentant positivament el fet de que es necessita més temps per a que les imatges

estiguin llestes per ser enviades al client.

Provant una freqiiencia de 10 frames per segon, en la primera implementacié obteniem
uns resultats no gaire bons degut a l’efecte de parpelleig. En aquesta segona
implementacio, aconseguim uns resultats for¢ca similars. Provant freqliencies més altes,
ens trobem que €s impossible navegar per I’escena ja que aquest efecte de parpelleig €s

massa acusat.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 50

Capitol 5.

Conclusions

En aquest capitol revisarem quins eren els objectius i les tasques que voliem dur a terme
en aquest projecte. Presentarem els resultats obtinguts i es discutira si s’han assolit els
objectius que s’havien proposat inicialment. Finalment, veurem quines son les possibles
linies de continuacié que es podrien seguir a partit de les conclusions extretes amb el

projecte.

5.1. Motivacions i objectius

Un cop hem finalitzat el projecte, revisarem els objectius 1 les tasques que s’han dut a
terme al llarg del desenvolupament del mateix. Recordem que 1’objectiu principal era
avaluar quin era el rendiment que ofereix Google Earth com a navegador geografic en
entorns dinamics. Per a complir aquest objectiu, necessitavem desenvolupar una aplicacid
de base que es comuniqués amb la aplicacié Google Earth per tal d’oferir un monitoratge
d’un escenari gravat per una camera. Voliem que aquest monitoratge resultés el més
senzill 1 fluid possible i decidir si és possible arribar a una freqiiéncia de visualitzacid de

25 frames per segon, ¢s a dir, el maxim que pot processar 1’ull huma.

Ara, podem afirmar que ¢€s totalment viable realitzar una aplicacié que permeti a un
usuari visualitzar un entorn dinamic mitjancant Google Earth. Hem desenvolupat dues
implementacions diferents d’una aplicacio base sobre la que hem avaluat el rendiment de
Google Earth per al nostre problema. Hem vist que aquesta tecnologia permet treballar
amb entorns dinamics, a diferéncia del que ofereix normalment als usuaris. Avui dia,
molts usuaris a Internet utilitzen Google Earth per a explorar el mén, amb unes imatges

emmagatzemades en els servidors de Google que son actualitzades cada cert temps, que

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 51

poden ser mesos o anys. Tanmateix, hem demostrat que €s possible fer servir aquesta

tecnologia per a entorns on es requereixen actualitzacions constants.

No obstant, també hem vist que el rendiment de Google Earth a ’hora d’obtenir taxes de
refresc d’imatges en el navegador per sota dels 10 frames per segon ¢és molt pobre degut
als constants canvis i efectes de parpelleig. Es possible que aplicant técniques que
apuntem en el segiient punt, en les linies de continuacio, s’aconsegueixin millors resultats
i s’elimini, en part, aquest efecte de parpelleig. No obstant, creiem que sera dificil
aconseguir unes taxes de refresc molt altes en una aplicacié pensada per entorns que no
canvien. A mes, ja vam dir en el primer capitol, que el fet d’escollir Google Earth com a
tecnologia sobre la qual desenvolupar el nostre projecte implicaria un overhead al tractar-
se d’un model d’aplicacions que interactuen amb aplicacions. En el nostre cas, hem

desenvolupat una aplicaci6 base sobre la que treballava I’aplicacido Google Earth.

5.2. Resultats

Tenint en compte els resultats que hem aconseguit, podriem dir que seria possible
utilitzar la tecnologia Google Earth per a entorns dinamics on la exploraci6 de I’entorn no

requereixi d’una visualitzacié amb una alta taxa de refresc de les imatges.

Avaluant Google Earth i la segona implementaci6 aplicacié base que hem desenvolupat,
que ¢s la que dona millors resultats, arribem a una visualitzaci6 de 10 frames per segon
amb un efecte de parpelleig que ¢és forca elevat 1 fa impossible que 1’usuari pugui dur a
terme un monitoratge de forma fluida i comode. Si treballem amb 5 frames per segon,
aconseguim reduir for¢a aquest efecte negatiu. Aixi, podem concloure que per a entorns
on no es requereixi una taxa de refresc superior a 5 frames per segon, Google Earth és
una tecnologia totalment valida per a la qual desenvolupar aplicacions del tipus que hem

tractat en aquest projecte.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 52

Es possible que aplicant algunes técniques per accelerar la transferéncia de les imatges, i
que discutirem en el punt 5.3, s’aconsegueixi reduir 1’efecte de parpelleig en el
navegador. No obstant, pensem que aquest efecte hi sera sempre present ja que Google
Earth necessita recarregar cada cop un codi KML i, per tant, necessita un temps per tal
d’interpretar el codi que rep 1 mostrar els resultats en el visor. Tal i com hem comentat al
llarg del projecte, creiem que Google Earth ha estat pensat per altres tipus d’entorns i no
per a dur a terme un monitoratge on es requereix una actualitzaci6 constant, tal com 10

frames per segon.

5.3. Linies de continuacio

Un cop hem acabat el projecte, se’ns plantegen varies maneres d’aconseguir millors
resultats en la visualitzacid d’entorns dinamics amb Google Earth. Hi hauria varies
técniques que podriem aplicar sobre la aplicacio de base que hem desenvolupat al llarg
d’aquest projecte 1 que creiem que ajudarien a obtenir millors resultats. A continuacid
enumerem 1 expliquem aquestes técniques que podrien ser aplicades en futures linies de

continuacio.

5.3.1. Diferencies d’imatges

Ja hem comentat varis cops en aquest projecte que els entorns que volem explorar amb
Google Earth tenen un alt nivell de dinamisme, €s a dir, varien constantment en el temps.
No obstant, €s clar que entre dos frames consecutius del video que estem enregistrant, els
canvis seran minims. Al llarg d’aquest projecte hem plantejat els exemples d’una planta
de produccid6 o d’una zona d’activitats logistiques; en ambdos casos, dos frames
consecutius del video que capta la camera variaran unicament en la posici6 d’algun robot
o d’algun cotxe o operari. No obstant, la resta de la imatge sera molt possiblement

ideéntica a I’anterior. Aquest fet, que s’aprofita en técniques de compressio de video,

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 53

podria utilitzar-se també en el nostre projecte per tal d’obtenir millors resultats en la

aplicacio final.

Per aprofitar aquest fet, caldria modificar la filosofia amb la que hem treballat a I’hora de
treballar amb les imatges que capta la camera. D’alguna manera, hauriem de deixar de
treballar amb imatges propiament dites per passar a treballar amb diferéncies d’imatges,
¢s a dir, en un instant i no tenim una imatge si no la variaci6é que hi ha hagut en I’instant i
respecte ’instant i — 1. Com que ja hem raonat que aquesta variacié seria minima,
tindriem molta menys informacié per a descriure I’instant i. Obviament, treballar amb
menys informacié comportaria més velocitat en la aplicaci6 final, menys requeriments de
capacitat de memoria i, en definitiva, una visualitzaci6 més fluida ja que entre el servidor

i el client transfeririem molta menys quantitat d’informacio.

5.3.2. Regions d’imatges

Una técnica que podriem aplicar, 1 que va lligada amb ’anterior punt, seria treballar amb
regions de les imatges. Es tractaria de dividir les imatges de forma quadricular, per
exemple. Cada quadricula seria una regi6é de la imatge. Aixi, en comptes de transferir
cada cop una imatge sencera entre el servidor i el client, transfeririem una o varies

regions de la imatge: aquelles que haguessin sofert una variacié respecte I’anterior frame.

Hauriem, doncs, de comunicar d’alguna forma a I’aplicacié Google Earth quines son les
regions que necessiten actualitzar-se, tot transferint-li aquestes regions en un o varis
fitxers jpg. Creiem que aquesta técnica seria molt interessant de ser aplicada en el nostre
context. Caldria un estudi previ de I’escenari a desenvolupar per tal de decidir en quantes
regions s’hauria de dividir un frame del video per aconseguir els millors resultats en la

visualitzaci6 final amb Google Earth.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 54

5.3.3. Procés Matlab

Una fet creiem que pot disminuir el rendiment del nostre projecte és el procés Matlab que
hem descrit en el capitol 3. Aquest procés s’encarregava de convertir el video que capta
la camera a imatges i emmagatzemar-les en la base de dades de la forma que hem
detallat. Sabem, pero, que Matlab és un entorn de programacié molt versatil per a
treballar amb imatges perd que no presenta una velocitat de processament molt alta,
sobretot comparat amb llenguatges de programaciéo de més baix nivell com pot ser C.
Creiem que podriem aconseguir més velocitat de processament si en comptes de fer ser
I’entorn Matlab creéssim una petita aplicacid codificada en llenguatge C, per exemple,
que fes la mateixa tasca. Aquesta aplicacio estaria sempre executant-se en el servidor, tal
i com fa el procés Matlab. S hauria d’avaluar fins a quin punt aquest canvi afectaria als
resultats finals de visualitzacio en el navegador, perd estem segurs que el processament i

emmagatzematge d’imatges en el servidor es faria d’una forma més eficient 1 més rapida.

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 55

Referencies

1. Introduccié al KML a Google
http://code.google.com/intl/ca/apis/kml/documentation/

Ultima data consulta: 13/03/2009

2. Documentacio KML a Google
http://code.google.com/intl/ca/apis/kml/documentation/kmlreference.html

Ultima data consulta: 26/08/2009

2. Documentaci6 de la toolbox /mage Acquisition per a Matlab
http://www.mathworks.com/matlabcentral/fileexchange/22792

Ultima data consulta: 15/04/2009

3. Introduccid al processament d’imatges amb Matlab
http://www.cogs.susx.ac.uk/users/davidy/compvis/matlab_demos/intro_demo.html

Ultima data consulta: 15/04/2009

4. Documentaci6 distribucié Apache XAMPP
http://www.apachefriends.org/en/xampp.html
Ultima data consulta: 07/06/2009

5. Generacion simple de KML con PHP y PostGIS
http://neogeografia.wordpress.com/2007/08/12/generacion-simple-de-kml-con-php-y-
postgis

Ultima data consulta: 16/02/2009

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 56

6. Generacion de salidas dindmicas simples en KML
http://pcsig2007.wikispaces.com/Generaci%C3%B3n+de+salidas+din%C3%A Imicas+si
mplest+entKML+a+partir+de+Consultas+Espaciales+creadas+con+SFQL

Ultima data consulta: 20/02/2009

7. The KML Screen Overlay Maker Utility
http://freegeographytools.com/2007/the-kml-screen-overlay-maker-utility
Ultima data consulta: 23/01/2009

8. Documentacio de PostgreSQL v8.3
http://www.postgresql.org/docs/8.3/static/index.html
Ultima data consulta: 15/06/2009

9. Aplicacions dinamiques a Google Earth amb Network Links
http://geochalkboard.wordpress.com/2007/09/04/dynamic-google-earth-applications-
with-network-links/

Ultima data consulta: 07/03/2009

10. Google Earth Network Link
http://www.gearthblog.com/blog/archives/2007/04/the_google earth net.html
Ultima data consulta: 01/03/2009

11. Grups Google de suport per desenvolupadors de codi KML
http://groups.google.es/group/kml-support
Ultima data consulta: 26/05/2009

12. Documentacio6 llenguatge PHP
http://www.php.net/
Ultima data consulta: 18/06/2009

http://www.php.net/

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics

57

13. Tutorial codi KML per Mano Marks 1 Brian Hamlin
http://www.youtube.com/watch?v=QzS_shlzfcM
Ultima data consulta: 23/03/2009

14. “Using Google Earth to Access and Display Emissions Data”
David Mintz (U.S. Environmental Protection Agency)
(Maig 2007)

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 58

Apendix 1.

Codi Procés Matlab

% Precisidé de 14 decimals per als nombres Reals
format long g;

north= 0.00066986242119;
south=-0.00066986242119;

east= 0.00077883890155;

west= -0.00077883890155;

% Servidor de base de dades
host = 'localhost';

% Usuari i contrasenya de la base de dades
user = 'postgres';
password = '1107Aa25';

% Nom de la base de dades
dbName = 'PostgreSQL30';

% Creacio de la connexio
dbConn = database (dbName, user , password)%, JjdbcDriver,
jdbcString) ;

55555 5%%5%%%%%
% Taula IMG_1 %
%5555 5%%5%5%%%%

sql="'select "IMG Id" from "IMG 1"';
curs = exec (dbConn, sqgl);
curs fetch (curs) ;

%Si no hi ha elements, el proper Id es 1, si no, el proper
es el maxim+l

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics

59

if curs.Data{l} == 'No Data'

maxId 1 = 1;
else

maxId 1 = max(curs.Data{l:end}) + 1;
end

sql="'select "IMG Id" from "IMG 4"';
curs = exec (dbConn, sqgl);
curs fetch (curs) ;

%Si no hi ha elements, el proper Id es 1,
es el maxim+l

if curs.Data{l} == 'No Data'

maxId 4 = 1;
else

maxId 4 = max(curs.Data{l:end}) + 1;
end

si no, el proper

% Creacio de l'objecte que recull el video. Fixem

resolucio.

vid = videoinput ('winvideo',
set (vid, 'TriggerRepeat', Inf);
vid.FrameGrabInterval = 1;

% Comencem a adquirir frames
start (vid)

% Perdrem el primer frame per agafar mides

frame = getdata(vid,1l);
[h,w,c]=size (frame);

1, '"RGB24 320x240");

$El directori es la unitat K: (Memoria Primaria)

directory = ['K:\\'];

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 60
while (1)
fileName = ['a-' numZ2str (maxId 1) '.bmp']
fileNamel = ['all-' num2str (maxId 4) '.bmp'];
fileName2 = ['al2-' num2str (maxId 4) '.bmp'];
fileName3 = ['al3-' num2str (maxId 4) '.bmp'];
fileNamed4 = ['ald4-' num2str (maxId 4) '.bmp'];
%Seguent frame
frame = getdata(vid,1l);
%Disminuim resolucio i guardem
frameTemp = IMRESIZE (frame, (0.5, "'nearest');
imwrite (uint8 (frameTemp), [directory fileName], 'bmp');
%Retallem imatge i guardem
imwrite (frame(l:h/2,1:w/2,:), [directory fileNamel],
'"bmp ') ;
imwrite (frame(l:h/2,w/2+1:end, :), [directory fileName2],
‘bmp ') ;
imwrite (frame (h/2+1:end,1:w/2,:), [directory fileName3],
‘omp ') ;

imwrite (frame (h/2+1:end,w/2+1:end, :), [directory
fileName4], 'bmp'):;

$Insercions a la base de dades

sql= ['insert into "IMG 1" values (' numZ2str (maxId 1)
', "' fileName ''', ' num2str (north) ','
num2str (south) ',' num2str(west) ',' num2str(east)
")
curs = exec (dbConn, sqgl);
sgql= ['insert into "IMG 4" values (' numZ2str (maxId 4)
', """ fileNamel 'Y, " num2str(north) ',' num2str (0)
', " num2str(west) ',' num2str(0) ',' num2str(l) ')']l;
curs = exec (dbConn, sqgl);
sql= ['insert into "IMG 4" values (' numZstr (maxId 4)
', "'t fileName2 '"'', ' num2str(north) ',' num2str (0)
', ' num2str(0) ',' num2str(east) ',' num2str(2) ')']l;
curs = exec (dbConn, sqgl);
'"insert into "IMG 4" values (' numZstr (maxId 4)

sgl= [
', '"'"'" fileName3

', ' num2str (west)

'vr,o ' num2str(0) ',
', ' num2str(0) ',' num2str(3)

num2str (south)

")

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 61

curs = exec (dbConn, sqgl);

sgql= ['insert into "IMG 4" values (' num2str (maxId 4)
', """ fileNamed ''', ' num2str(0) ',' num2str (south)
', " num2str(0) ',' num2str(east) ',' numl2str(4) ')']l;

curs = exec (dbConn, sqgl);

%Seguents valors per als identificadors
maxId 1 = maxId 1+1;
maxId 4 maxId 4+1;

end

$Aturem video
stop (vid)

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 62

Apendix 2.

Codi Script PHP

<?
require ("config.php") ;

/* Connexio amb la base de dades */

$conn = pg connect ("host=localhost
port=5432
dbname=postgis
user=postgres
password=aA9623B") ;

if (!Sconn): ?>
<Hl1>Failed connecting to postgres database</H1l> <?
exit;

endif;

/* Recuperem les variables que ens ha enviat el
navegador via HTTP */

Sbbox = split('[,]1"', $_GET['BBOX']);
Scamera = split('[,]', S GET['CAMERA']);

Swest = (float) S$bbox[0];
Ssouth = (float) S$bbox[1l]:
Seast = (float) S$bbox[2];
Snorth = (float) S$bbox[3]:
$center lng = ((S$east - Swest) / 2) + Swest;

$center lat ((Snorth - S$Ssouth) / 2) + S$south;

SlookatRange = (float) Scameral2];

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 63

/* Si estem a més de 150 metres d'algada
veurem una imatge de la taula IMG_1 */

if ($lookatRange>150)
{

/* Consulta a la base de dades */
$Sql = 'SELECT * FROM "IMG 1" WHERE "IMG_Id" = (SELECT

MAX ("IMG Id") FROM "IMG 1")';

$qu = pg_exec (Sconn, $sql);
$data = pg fetch object ($qu);

/* Obtenim cami de la imatge i coordenades */
$pathl = "http://localhost/" . $data->IMG Path;
$northl = $Sdata->IMG North;

$southl = Sdata->IMG South;

swestl = Sdata->IMG West;

Seastl = Sdata->IMG East;

/* Escrivim KML */
Header ('Content-Type: application/vnd.google-
earth.kml+xml\n"');

printf ('<?xml version="1.0" encoding="UTF-8"7?><kml
xmlns="http://www.opengis.net/kml/2.2"><Folder>");

printf ('
<GroundOverlay>
<name>Monitoratge d’un d’entorn dinamic </name>

<Icon>
<href>%s</href>
</Icon>

<LatLonBox>
<north>%.14f</north>
<south>%.14f</south>
<east>%.l4f</east>
<west>%.14f</west>

</LatLonBox>

</GroundOverlay></Folder></kml>
',Spathl, S$northl, S$southl, S$Seastl, S$Swestl);

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics 64
}
/* Si no,
veurem quatre imatges de la taula IMG 4 */
else
{
/* Consulta a la base de dades */
$Sql = 'SELECT * FROM "IMG 4" WHERE " IMG_Id" = (SELECT

MAX ("IMG Id") FROM "IMG 4")';

$qu = pg _exec ($conn, $sqgl);

/* Obtenim cami de la imatge i

sdata = pg fetch object ($qu);
$pathl = "http://localhost/"
$northl = $Sdata->IMG North;
$southl = $data->IMG South;
Swestl = Sdata->IMG West;
Seastl $data->IMG East;

/* Obtenim cami de la imatge i

$data = pg fetch object ($qu);
$path2 = "http://localhost/"
$north2 = Sdata->IMG North;
$Ssouth? $data->IMG South;
Swest2 = Sdata->IMG West;
Seast?2 $data->IMG East;

/* Obtenim cami de la imatge i

$data = pg fetch object (Squ);
$path3 = "http://localhost/"
$north3 = $Sdata->IMG North;
$south3 = $data->IMG South;
Swest3 = Sdata->IMG West;
Seast3 = Sdata->IMG East;

/* Obtenim cami de la imatge i

$data = pg fetch object (Squ);
Spath4 = "http://localhost/"
$northd4 = Sdata->IMG North;
$southd $data->IMG_ South;
Swestd = Sdata->IMG West;
Seast4 $data->IMG East;

coordenades */

$data->IMG Path;

coordenades */

$data->IMG Path;

coordenades */

$data->IMG Path;

coordenades */

$data->IMG Path;

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics

65

Header ('Content-Type:
earth.kml+xml\n') ;

application/vnd.google-

printf ('<?xml version="1.0" encoding="UTF-8"7?><kml
xmlns="http://www.opengis.net/kml/2.2"><Folder>");

printf ('
<GroundOverlay>
<name>Monitoratge d’un
<Icon>
<href>%$s</href>
</Icon>
<LatLonBox>
<north>%.14f</north>
<south>%.14f</south>
<east>%.l4f</east>
<west>%.l14f</west>
</LatLonBox>
</GroundOverlay>

<GroundOverlay>
<name>Monitoratge d’un
<Icon>
<href>%$s</href>
</Icon>
<LatLonBox>
<north>%.14f</north>
<south>%.14f</south>
<east>%.l4f</east>
<west>%.14f</west>
</LatLonBox>

</GroundOverlay>
<GroundOverlay>
<name>Monitoratge d’un
<Icon>
<href>%$s</href>
</Icon>
<LatLonBox>
<north>%.14f</north>
<south>%.14f</south>
<east>%.l4f</east>
<west>%.1l4f</west>
</LatLonBox>
</GroundOverlay>

d’ entorn dinamic </name>

d’entorn dinamic 2</name>

d’entorn dinamic 3</name>

Sistema de navegacid geografica de tipus Google Earth per a entorns dinamics

66

<GroundOverlay>
<name>Monitoratge d’un d’entorn dinamic 4</name>
<Icon>
<href>%s</href>
</Icon>
<LatLonBox>
<north>%.14f</north>
<south>%.14f</south>
<east>%.14f</east>
<west>%.l4f</west>
</LatLonBox>
</GroundOverlay>
</Folder></kml>
, Spathl, S$northl, S$southl, Seastl, S$westl,
Spath2, Snorth2, $south2, Seast2, S$west2,
Spath3, S$north3, S$south3, S$east3, Swest3,
Spath4, S$north4, S$southd4, S$Seast4d, Swestd);

}

/* Tanquem connexio amb base de dades */
pg_free result ($qu);
pg close ($conn);

>

