

Sistema de navegació geogràfica de tipus Google Earth
per a entorns dinàmics

Memòria del Projecte Fi de Carrera
d'Enginyeria en Informàtica
realitzat per
Sergi Villanueva Canals
i dirigit per
Lluís Ribas Xirgo

Bellaterra, 18 de Setembre de 2009

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 2

Escola Tècnica Superior d’Enginyeria

El sotasignat, Lluís Ribas Xirgo

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA :

Que el treball a què correspon aquesta memòria ha estat realitzat sota la

seva direcció per en Sergi Villanueva Canals.

I per tal que consti firma la present.

Signat: ..

Bellaterra, 18 de Setembre de 2009

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 3

Índex

Capítol 1. Introducció ... 5

1.1. Context del problema ... 5

1.2. Objectius .. 7

1.3. Planificació .. 10

1.4. Avaluació de costos ... 11

1.5. Organització de la memòria ... 11

Capítol 2. Estat de l'art i de les tecnologies 12

2.1. Google Earth i Internet .. 12

2.2. El llenguatge KML ... 13

2.3. El navegador Google Earth i KML ... 14
2.3.1. Mostrar una imatge en el navegador ... 14
2.3.2. Estructura client-servidor .. 15
2.3.3. Dinamisme .. 16
2.3.4. Comunicació bi-direccional .. 16
2.3.5. Scripting i KML .. 17
2.3.6. Capturar les imatges ... 19
2.3.7. Esquema analític ... 20

Capítol 3. Plataforma de navegació visual 21

3.1. El Client ... 21
3.1.1. Network Link ... 22

3.2. El Servidor ... 26
3.2.1. El servidor web .. 26
3.2.2. La càmera ... 27
3.2.3. Del vídeo a les imatges .. 29
3.2.4. La base de dades .. 33
3.2.5. L’script ... 36
3.2.6. Diagrama d’objectes ... 40

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 4

Capítol 4. Implementacions avaluades 41

4.1. Implementació directa .. 42

4.2. Implementació amb base de dades sobre memòria 45

Capítol 5. Conclusions .. 50

5.1. Motivacions i objectius ... 50

5.2. Resultats ... 51

5.3. Línies de continuació .. 52
5.3.1. Diferències d’imatges .. 52
5.3.2. Regions d’imatges .. 53
5.3.3. Procés Matlab .. 54

Referències... 55

Apèndix 1. Codi Procés Matlab 58

Apèndix 2. Codi Script PHP ... 62

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 5

Capítol 1.

Introducció

1.1. Context del problema

Avui en dia, la possibilitat de navegació visual en entorns dinàmics com ara plantes de

producció està esdevenint una opció molt interessant per tal de dur a terme un

monitoratge d’una situació des d’un ordinador i actuar en conseqüència sense necessitat

de ser-hi present. Si considerem entorns canviants, on hi ha un alt grau de dinamisme, la

supervisió i control d’aquests sistemes esdevé una necessitat. Sovint, aquesta navegació

convé que sigui remota degut a la pròpia naturalesa de l’entorn. La navegació visual que

es pot dur a terme utilitzant els computadors actuals pot millorar la capacitat de

supervisió degut a l’àmplia informació que ofereixen i la rapidesa en la seva

visualització. El problema que se’ns presenta en aquest projecte implica l’estudi de la

construcció d’un sistema que permeti a l’usuari navegar en un escenari de forma virtual.

Necessitem, a més, que aquesta navegació per l’escenari sigui el suficientment ràpida,

precisa i còmode, és a dir, que l’usuari pugui visualitzar l’entorn amb detall i dintre d’uns

marges de temps preestablerts des de que la càmera obté la imatge de l’escena fins que

l’usuari la visualitza i hi navega des de l’ordinador.

Per tal de dur a terme aquest projecte, existeixen tecnologies de base que permeten la

navegació en entorns reals, o virtuals, com ara eines basades en GPS. També hi ha la

possibilitat de fer servir la tecnologia OpenGL, que permet desenvolupar aplicacions de

gràfics en 3D i crear el nostre propi navegador. Tot i així, en aquest projecte volem crear

una aplicació base sobre la que treballi el navegador geogràfic Google Earth per tal de

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 6

veure quin pot arribar a ser el rendiment d’utilitzar aplicacions que interactuin entre elles

en el cas de Google Earth. Sabem que el fet d’utilitzar aplicacions que interactuin amb

Google Earth afegirà una sobrecàrrega enfront de les altres alternatives, que ofereixen

una solució directa. D’altra banda, la nostre solució serà més fàcil de desenvolupar i el

manteniment posterior serà més senzill.

Per tant, el que pretenem en aquest projecte és estudiar la viabilitat d’utilitzar Google

Earth per a la navegació per entorns dinàmics captats per una camera. Aquest navegador

és capaç de traduir codi escrit en el llenguatge de marques KML que representa dades

geogràfiques, cercar les imatges emmagatzemades en una base de dades geogràfica i

situar-ho tot en un entorn visual on l’usuari hi pot navegar. Així, el llenguatge KML

descriu punts geogràfics i els ubica sobre una quadrícula al món real. De la mateixa

forma que un navegador convencional llegeix codi en llenguatge HTML i el tradueix a

pàgines web, un navegador visual interpreta codi en llenguatge KML i el representa sobre

el mapa del món real. Per la seva banda, una base de dades geogràfica no és més que una

base de dades que permet guardar, indexar, consultar i manipular informació geogràfica.

Per al nostre cas, en aquesta base de dades geogràfica es desaran imatges captades per

una càmera.

El principal inconvenient que es pot trobar utilitzant aquest sistema de visualització és

que ha sigut creat per tal de que funcioni en entorns estàtics. De fet, l’eina Google Earth

és un navegador visual de KML, el qual llença consultes a una base de dades geogràfica

que conté les imatges del món fotografiades des d’un satèl·lit. Aquestes imatges són

guardades cada cert temps, és a dir, s’actualitzen, però amb una freqüència baixa ja que,

òbviament, no és necessari obtenir imatges de forma constant si aquestes no sofreixen

canvis de rellevància per al context en qüestió. En el nostre context això no és cert, ja que

precisament l’entorn que volem visualitzar canvia constantment. A més, volem que

aquests canvis puguin ser explorats des del navegador.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 7

1.2. Objectius

En el nostre context, i seguint amb l’exemple d’una planta de producció, l’entorn a

visualitzar canvia constantment. Així, el grau de dinamisme, o la freqüència

d’actualització de les imatges de l’entorn pel qual l’usuari navega, ha de ser força elevat.

La situació ideal es donaria amb una visualització de 25 frames per segon, que és la

màxima freqüència que l’ull humà pot processar. Els requisits que es presenten davant la

navegació per una planta de producció fan que l’usuari hagi de veure en el navegador

visual unes imatges molt recents en el temps.

Un altre exemple que il·lustraria una situació on necessitem un seguiment en temps real

seria una zona d’activitats logístiques on es gestionen fluxos de transport, tant

administrativament com físicament. Aquí el nivell de dinamisme podria ser molt elevat, i

es podria necessitar una exploració acurada per tal d’evitar embussos, distribuir

càrregues, etcètera.. En aquest escenari sembla important arribar a tenir una visualització

de 25 frames per segon. De fet, una freqüència menor, tal com 10 frames per segon,

podria resultar també vàlida ja que l’usuari que està realitzant la navegació per l’escena

podria actuar a temps en cas de percebre una situació que requereixi alguna acció per la

seva part.

Per tant, podríem definir l’objectiu principal com l’avaluació d’un sistema que hagués de

mostrar les imatges captades per una càmera que està filmant un entorn canviant sobre

l’aplicació Google Earth. Es tractaria d’estudiar com es podria aprofitar aquesta aplicació

i analitzar el rendiment que obtenim utilitzant-la per a navegar per un entorn dinàmic.

S’hauria d’avaluar si és possible arribar a visualitzar l’entorn a una freqüència de 25

frames per segon.

Això implicaria construir una aplicació d’avaluació per obtenir el rendiment que ofereix

Google Earth per al nostre projecte. Així, definim un seguit de subobjectius per a dur a

terme aquesta tasca que serien els següents:

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 8

• Decidir l’arquitectura del sistema o l’aplicació base sobre la que treballarà

Google Earth.

• Construir una plataforma d’avaluació d’acord amb l’arquitectura dissenyada.

• Realitzar una o vàries implementacions d’aquest sistema.

• Avaluar el rendiment de les diferents implementacions.

• Decidir la viabilitat d’aquest tipus de sistema un cop conegut el rendiment.

Per tal de complir aquest objectiu, s’utilitzarà un sistema on hi intervenen 3 elements

principals:

• Una càmera que gravarà l’escenari que necessitem explorar.

• Una base de dades geogràfica que emmagatzemarà les imatges captades per la

càmera.

• El navegador Google Earth per a visualitzar dades geogràfiques definides en

format KML.

Una càmera estarà constantment filmant l’escenari, sent aquesta gravació

emmagatzemada en forma d’imatges residents un una base de dades geogràfica.

Per últim, l’usuari podrà utilitzar Google Earth, que interactuarà amb la base de dades

geogràfica que conté les imatges captades per la càmera.

Així, podem fer-nos una idea de quin serà el flux de processos que seguirà la nostre

aplicació:

• Situar la càmera en el lloc adient i amb el correcte enfocament.

• Gravar la seqüència d’imatges captades per la càmera.

• Guardar les imatges en la base de dades geogràfica GIS.

• Assignar a les imatges coordenades món.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 9

• Crear l’aplicació que muntarà codi KML amb accés a la base de dades GIS.

• Navegació per les imatges en el navegador visual de Google Earth.

Això ens duu a realitzar tot un seguit de tasques per tal de complir amb aquests

subobjectius:

• Anàlisi i comprensió del problema plantejat i els fets que el motiven (15 hores)

• Llegir documentació KML (15 hores)

• Llegir documentació PostGIS (15 hores)

• Llegir documentació entorn Google Earth (10 hores)

• Instal·lació de software PostreSQL + PostGIS i Google Earth (1 hora)

• Instal·lació d’una càmera (1 hora)

• Anàlisi i disseny del sistema per traduir el vídeo de la càmera en imatges (15

hores)

• Creació del sistema per traduir el vídeo de la càmera en imatges (10 hores)

• Anàlisi i disseny de la base de dades GIS (5 hores)

• Creació de la base de dades GIS (5 hores)

• Anàlisi i disseny de la aplicació que muntarà el codi KML (40 hores)

• Creació de la aplicació que muntarà el codi KML (30 hores)

• Proves (50 hores)

• Refinament (60 hores)

• Reunions amb el director de projecte (20 hores)

• Documentació del treball realitzat (100 hores)

• Elaboració final de la memòria del projecte (20 hores)

La suma d’hores total necessàries a priori per tal de executar totes aquestes tasques

estaria al voltant de les 412. Hi ha un marge de fins 38 hores fins a les 450 que seria el

màxim de temps disponible per al projecte.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 10

1.3. Planificació

Figura 1.1

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 11

1.4. Avaluació de costos

El cost econòmic principal d’aquest projecte residiria en les màquines client i servidor

que es necessiten per avaluar el projecte que volem desenvolupar. A més, necessitem

disposar d’una camera per a enregistrar l’escenari que volem visualitzar. Pel que fa al

software que es farà servir durant aquest projecte, es pretén que aquest estigui sempre

sota la llicència de programari lliure i, per tant, no suposaria cap cost econòmic.

1.5. Organització de la memòria

Seguint a aquesta introducció, en el capítol 2 es repassarà quin és l’estat de l’art i les

tecnologies disponibles relacionades amb el problema proposat, estudiant a fons la

tecnologia Google Earth i les possibilitats que ofereix per al nostre projecte.

Seguidament, en el capítol 3, s’explicarà de forma detallada el desenvolupament del

sistema proposat com a aplicació base sobre la qual avaluar les prestacions de Google

Earth en el nostre entorn dinàmic. En el capítol 4 es mostraran els resultats obtinguts amb

el sistema proposat, comentant varis casos d’estudi i avaluant-ne resultats. El capítol 5

contindrà les conclusions, amb un resum dels resultats més significatius així com línies

possibles de continuació.

Per a finalitzar el document, trobarem les referències bibliogràfiques que s’han fet servir

al llarg del desenvolupament d’aquest projecte i, finalment, els apèndixs.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 12

Capítol 2.

Estat de l'art i

de les tecnologies

2.1. Google Earth i Internet

En el capítol 1, hem descrit quina serà l’arquitectura del sistema que resoldrà el problema

plantejat, indicant quins són els elements que hi prendran part. Ara, més concretament,

podem diferenciar entre els elements que tracten i proporcionen la informació final i

aquells elements que treballaran amb aquesta informació generada. Per tant, estem davant

d'un escenari d'aplicació client-servidor, on el nostre servidor proporciona informació i el

nostre client la interpreta i treballa amb ella. Més concretament, el client estarà format per

un usuari que navegarà a través del navegador Google Earth que interpretarà la

informació generada pel sistema que actuarà com a servidor.

Client Servidor

Figura 2.1

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 13

Cal remarcar que la tecnologia que utilitzem per a la navegació, Google Earth, està sent

cada cop més utilitzada arreu d’Internet per a desenvolupar tot tipus d’aplicacions de

sistemes cartogràfics o SIG (Sistemes d’Informació Geogràfica). És important que el

nostre projecte estigui ben definit dins el context d’Internet i Google Earth per tal

d’assegurar la compatibilitat amb altres projectes que puguin estar relacionats. Així,

necessitem que els fitxers resultants del nostre projecte puguin ser sempre interpretats per

un navegador geogràfic estàndard, com ara Google Earth.

De fet, l’èxit dels nous Sistemes d’Informació Geogràfica i les aplicacions que estan

sorgint al voltant d’ells és degut, en gran part, a l’aparició de Google Earth. Si

aconseguim que la aplicació que desenvolupem en aquest projecte sigui totalment

interoperable amb aquestes aplicacions mitjançant Internet, podríem definir

comunicacions entre elles que aportin noves funcionalitats i projectes més complexos.

D’aquesta forma, es pretén que el resultat del sistema que definim en aquest projecte

sigui interpretable a través d’aplicacions que utilitzen Internet i Gogle Earth, amb la

avantatge de que aquest sistema garanteix a l’usuari un caràcter estàndard en les dades

que s’utilitzen.

2.2. El llenguatge KML

Com hem comentat anteriorment, el llenguatge en el que es basarà el nostre projecte és

l’anomenat KML (Keyhole Markup Language). Tal i com el seu nom indica, KML és un

llenguatge de marques que està basat en XML (eXtensible Markup Language) i que

representa dades geogràfiques en tres dimensions. El llenguatge va ser creat per la

empresa Keyhole Inc, que va ser adquirida per Google l’any 2004. El navegador Google

Earth va ser la primera aplicació capaç d’interpretar i editar arxius KML.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 14

Un llenguatge de marques combina dades i etiquetes que defineixen aquests dades. Tal i

com hem comentat, KML està basat en XML, un llenguatge de marques que permet

definir la gramàtica de llenguatges específics, és a dir, per a diferents necessitats per tal

d’afavorir l’intercanvi d’informació estructurada entre diferents plataformes. KML,

particularment, defineix una gramàtica i un format de fitxer XML per a la modelització i

l’emmagatzematge d’elements geogràfics per tal de poder visualitzar-los en un navegador

capaç d’interpretar fitxers KML, com ara Google Earth.

Un document KML serà vàlid si el seu contingut respecta les regles definides en el

Document Type Definition (DTD) definit per al llenguatge KML. Per tant, els elements

que formen el document hauran de seguir unes regles per tal de que aquest sigui vàlid i

ben format. Aquests elements s’organitzen jeràrquicament, de forma que en cada

document sempre hi ha un sol element arrel, que en el cas del llenguatge KML és

l’element <kml>. A partir d’aquest element es defineixen els subelements lògics en forma

d’arbre que construeixen el document KML que serà interpretat pel navegador, seguint

sempre l’estructura definida en el DTD.

2.3. El navegador Google Earth i KML

2.3.1. Mostrar una imatge en el navegador

L'eina principal per a l'usuari en el nostre sistema serà el navegador Google Earth.

Aquesta és la interfície per a l'usuari d'un sistema que realitza una tasca semblant a la que

estem tractant: representar imatges del món captades per satèl·lit sobre la superfície de la

Terra i mostrar-ho a través del seu navegador. D'aquesta forma, el producte final generat

per la nostre aplicació ha de ser entès per un navegador de l'estil Google Earth, és a dir,

ha de ser un document que compleixi amb l'estàndard definit en el llenguatge KML. Amb

això ja hem definit globalment quin ha de ser el resultat que ofereixi la solució al nostre

problema de visualització. Des del punt de vista de l'usuari, aquest monitoratge l'ha de

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 15

poder dur a terme obrint la aplicació Google Earth i fent que aquesta llegeixi el document

KML que hem generat.

Per tant, una primera tecnologia a estudiar des de l'inici del desenvolupament d'aquest

projecte és el llenguatge KML. Així, cal estudiar-ne la documentació que es pot trobar al

web de Google Earth i veure quines possibilitats ofereix per a la resolució del nostre

problema, pel que fa a la representació d'imatges proporcionades per nosaltres sobre el

navegador. Una solució que se'ns ofereix és la possibilitat d'incorporar una capa amb una

imatge donada pel programador sobre el món utilitzant el sistema de referència de

coordenades (longitud, latitud i, opcionalment, altitud). Per tant, podem construir un

document KML que carregui una imatge, la situï en una capa i la mostri sobre la

superfície allà on li indiquem. Ara sabem que és possible fer que el navegador mostri

unes imatges diferents de les que mostra per defecte, unes imatges que nosaltres

proporcionem en el moment que vulguem.

2.3.2. Estructura client-servidor

Fins ara, hem tractat un escenari amb informació de caràcter local, és a dir, un navegador

que obre un document KML que tenim en el nostre ordinador. Aquest, però, no és

exactament el que ens trobem en el nostre context. Al treballar amb un sistema client-

servidor, el client ha de ser només responsable de navegar sense preocupar-se de generar

el codi que li permet dur a terme aquesta navegació. Per tant, cal esbrinar si la tecnologia

KML proporciona algun mecanisme per tal de que l'usuari final pugui treballar amb

informació generada pel servidor. Una possible solució seria que el client obrís un

document KML que simplement s’encarregués de comunicar-se amb el servidor i que

aquest li proporcionés el codi que ha d’interpretar Google Earth. Veurem més endavant

com això és possible amb l’ajut de llenguatges d’scripting, com ara PHP o Phyton.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 16

2.3.3. Dinamisme

El fet de que el navegador mostri la imatge que nosaltres proporcionem des del servidor

és un requisit indispensable per a la nostre aplicació. No obstant, si no podem recarregar

constantment aquestes imatges sobre el navegador d'alguna manera, de poc ens servirà

emprar aquest navegador per al nostre context. Així, la pregunta que cal fer-nos és si és

possible que el navegador accepti constantment documents KML en un espai curt de

temps i quin és exactament aquest temps.

En la documentació que ofereix Google, veiem que existeix la possibilitat de refresc

d’una imatge definit amb un nombre real, que equival als segons que transcorren entre

refresc i refresc. Per tant, sembla viable obtenir un refresc constant en les imatges que el

navegador mostra. Recordem que aquest fet és molt important per al nostre projecte ja

que l’entorn que volem explorar des del navegador Google Earth té un alt nivell de

dinamisme.

2.3.4. Comunicació bi-direccional

Per últim, ens queda un requeriment que la tecnologia KML ha de complir per tal de que

es puguin satisfer les necessitats del nostre sistema. Fins ara la comunicació ha estat

unidireccional, és a dir, la informació ha anat de la nostre aplicació cap al navegador de

Google Earth, on ha estat interpretada. No obstant, necessitem que el navegador també

enviï informació cap a la nostre aplicació: les coordenades del visor. Així, el navegador

enviarà a la aplicació quines coordenades està veient l'usuari a la pantalla cada cop que

vulgui actualitzar el contingut del que s'està mostrant. El sistema haurà de ser capaç de

proporcionar una nova imatge tenint en compte aquestes coordenades. Concretament,

s’haurà de generar un nou document KML que contingui una capa amb la nova imatge

que l’usuari ha de visualitzar en el navegador, tenint en compte les coordenades del visor

actuals. Podem veure un esquema d’aquesta situació a continuació, en la figura 2.2.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 17

Necessitem, doncs, que la tecnologia KML, juntament amb el navegador de Google

Earth, permetin aquest bi-direccionalitat de la informació. Consultant la documentació

que Google ofereix sobre KML, veiem que hi ha una manera d'aconseguir-ho. Es tracta

d'utilitzar el que Google anomena View-Based Refresh Queries, és a dir, un sistema de

refresc en el que el propi navegador proporciona les coordenades de la regió que l'usuari

està veient en un moment donat. Amb aquesta tecnologia podrem enviar constantment les

coordenades del visor a la nostre aplicació, que les interpretarà i generarà noves imatges

per a les coordenades en qüestió. D’aquesta manera, aconseguim que l’esquema de dalt

sigui cíclic i at eternum, és a dir, el client envia constantment les coordenades al servidor,

que sempre romandrà a l’espera d’aquestes per generar nou codi.

2.3.5. Scripting i KML

Fins aquí, veiem que la utilització de Google Earth sembla factible per al nostre projecte.

Podem generar una comunicació bi-direccional entre un client Google-Earth i un servidor

que enviarà codi cap al client. Així, al client necessitem un codi KML que es pugui obrir

amb el navegador de Google Earth i que incorpori un sistema de refresc per tal

Client Servidor

KML

Coordenades

Figura 2.2

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 18

d’actualitzar-se constantment. Tal i com hem comentat anteriorment, descobrim gràcies a

la documentació de KML publicada per Google, que hi ha una forma de fer que el codi

del client apunti a un document situat en un altre màquina, que en el nostre cas serà el

servidor. Aquest document pot ser codi KML o un script escrit en qualsevol llenguatge

d’scripting. Gràcies a aquest script, el servidor serà capaç de proveir el nou codi per al

client. Aquest link cap a un altre document s’anomena Network Link en KML, i té

associat, entre d’altres propietats, un interval de refresc que serà el que ens permetrà

executar l’script del servidor constantment per tal d’obtenir noves imatges. Podem veure

un esquema global del sistema a la figura 2.3.

Així, si combinem el Network Link amb una tecnologia d’scripting, podem generar codi

dinàmicament, que és el que ens interessa en el nostre projecte. Per tant, sabem que el

client disposarà d’un Network Link que apuntarà a un script al servidor que generarà el

nou codi, tal i com veiem a la figura anterior. Aquest script rebrà unes dades i generarà el

codi en conseqüència. D’entrada sembla lògic pensar que l’script rebrà les coordenades

del visor del client i generarà la d’alguna manera la nova imatge. De fet, la sortida de

l’script hauria de ser un document KML ben format que contingui la nova imatge per a

les coordenades que ha rebut.

Google Earth Nou KML

Script KML (Network Link)

Figura 2.3

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 19

És important que el nostre servidor proporcioni sempre documents KML estrictament ben

formats. Primerament, és possible que el navegador deixi de funcionar si no sap

interpretar el codi KML que està rebent i, més important encara, volem que el nostre

projecte sigui totalment vàlid dins la ontologia que abans hem comentat. Si tenim

l’objectiu de fer possible la interactuació amb altres projectes que treballin amb SIG’s,

necessitem que els documents KML que generem siguin sempre vàlids.

2.3.6. Capturar les imatges

Ens falta descriure com aconseguirem les imatges de l’entorn que volem explorar.

Necessitarem un càmera que obtingui el vídeo que està enregistrant i l’emmagatzemi

d’alguna manera en una base de dades. De fet, el que emmagatzemarem seran les imatges

que formin aquest vídeo, ja que amb el que treballarem finalment seran imatges, que és el

que pot carregar un document KML. Per tant, hi haurà un procés que s’encarregarà de

convertir el vídeo que s’està enregistrant en tot moment en imatges que es guardaran en

una base de dades. Llavors, l’script que generi el nou codi haurà de comunicar-se amb

aquesta base de dades i recuperar les imatges que siguin necessàries.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 20

2.3.7. Esquema analític

Per concloure aquest capítol, podem veure en la figura 2.4 quines seran les diferents parts

que intervenen en el nostre projecte i quina és la informació que es transferirà entre elles

per tal d’obtenir un monitoratge constant d’un entorn dinàmic enregistrat per una càmera

utilitzant Google Earth.

Servidor Client

Nou KML

Coordenades Base de
dades

Script

Imatges Càmera

Network Link

Figura 2.4

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 21

Capítol 3.

Plataforma de

navegació visual

En el capítol anterior s’han descrit les tecnologies que farem servir per a desenvolupar el

nostre projecte i hem descrit les diferents parts que hi participaran. Hem definit el flux

d’informació entre cada element així com la funcionalitat d’aquests. En aquest capítol

aprofundirem en cada un d’aquests elements, descrivint com els hem desenvolupat, i

entrant en els detalls d’implementació, amb les possibles modificacions de la idea inicial i

els problemes que ens hem trobat durant el camí. Així, l’objectiu del capítol és detallar

com es construeix la plataforma sobre la que farem les proves d’avaluació per veure fins

a quin punt és viable el nostre projecte.

3.1. El Client

Ja hem comentat anteriorment que el client necessitarà obrir un link cap al servidor per tal

de comunicar-s’hi. Es tracta d’un codi KML que contindrà un element Network Link que

farà referència a un script situat al servidor. Per tant, el client només necessitarà dues

coses per tal de fer anar l’aplicació final del nostre projecte. Per una part, necessitarà tenir

instal·lat l’aplicació Google Earth. Per a la realització d’aquest projecte, hem fet servir la

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 22

versió 4.2, però no hi hauria d’haver cap problema en utilitzar la versió més recent de

Google Earth ja que el codi KML amb el que treballem seria sempre vàlid. D’altra banda,

el client també necessitarà un fitxer que contingui l’enllaç cap al servidor. Aquest enllaç

el detallem en el següent punt.

3.1.1. Network Link

Un element essencial en el client, tal i com hem comentat, seria el fitxer KML que conté

el vincle cap al servidor. En aquest codi KML trobarem, un element Network Link que

apunta al servidor, tal i com veiem a continuació:

<NetworkLink>
 <name>Monitoratge d’entorn dinàmic</name>
 <visibility>0</visibility>
 <open>0</open>
 <description> Crida al servidor cada 2 segons. </description>
 <refreshVisibility>0</refreshVisibility>
 <flyToView>1</flyToView>
 <link>
 <href>http://localhost/test.php</href>
 <refreshMode>onInterval</refreshMode>
 <refreshInterval>2</refreshInterval>
 <viewRefreshMode>onStop</viewRefreshMode>
 <viewRefreshTime>2</viewRefreshTime>
 <viewBoundScale>1.25</viewBoundScale>
 <viewFormat>

<![CDATA[BBOX=[bboxWest],[bboxSouth],[bboxEast],[bboxNorth]&
CAMERA=[lookatLon],[lookatLat],[lookatRange],[lookatTilt],[l
ookatHeading]]>>

 </viewFormat>

 </link>
</NetworkLink>

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 23

Veiem com l’element <NetworkLink> té varis subelements que el defineixen, sent el més

interessant l’element <link>. A continuació descrivim tots aquests elements, alguns d’ells

específics de Network Link:

• name: nom que identifica l’element per a l’usuari i que apareix com una etiqueta

en el navegador Google Earth.

• visibility: valor lògic que indica si l’element serà visible o no en el navegador.

• open: valor lògic que indica si el document apareixerà tancat o obert en el panell

de control del navegador quan s carrega per primer cop.

• description: text que apareixerà dins un globus d’informació al navegador.

• refreshVisibility: element específic de Network Link; valor lògic que indica si cal

refrescar la visibilitat d’un ítem cada cop que el Network Link es torna a carregar.

Així, si deixem aquesta propietat a 1, en el cas de que l’usuari desactivi la

visibilitat de la imatge que estem recarregant, quan aquesta es torni a carregar, la

visibilitat tornarà a activar-se.

• flyToView: element específic de Network Link; valor lògic que indica si, a l’obrir

el fitxer a on apuntem, el navegador hi navegarà cap a les coordenades on estigui

establert, en cas de tenir-ne de definides.

• link: en el nostre aquest element especifica la localització d’un arxiu extern, que

bé pot ser directament un arxiu KML o un script que com a resultat retorni codi

KML.

Potser l’element més interessant és <link>, que té els següents subelements:

• href: indica la URL del fitxer a carregar, que bé pot ser una direcció HTTP o un

fitxer local. En el nostre cas, com que el pare de l’element <link> és un element

<NetworkLink>, href fa referència a un fitxer KML (o un script que retorni codi

KML).

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 24

• refreshMode: aquesta propietat especifica un mode de refresc per al link que

carreguem. Hi ha 3 tipus de refresc:

o onChange: refrescar quan el fitxer és carregat i quan els paràmetres del

link canviïn.

o onExpire: refrescar només quan ha passat el temps d’expiració.

o onInterval: refrescar cada n segons, sent n especificat en l’element

<refreshInterval>. Aquest és el mode de refresc que en interessa en el

nostre projecte, ja que volem que el contingut de link es recarregui

constantment.

• refreshInterval: serà la quantitat de segons que esperem per a refrescar el Network

Link.. Segons la documentació proporcionada per Google, aquest valor és un real.

Sembla, doncs, factible que puguem ajustar la freqüència de refresc al valor que

vulguem.

• viewRefreshMode: especifica com es refresca el link quan la càmera canvia, és a

dir, quan l’usuari es mou per l’escenari a través del navegador. Hi ha 4 opcions

diferents per a aquest mode de refresc:

o never: ignorar canvis en la càmera. D’aquesta manera, el refresc només es

donaria a terme segons l’especificat en l’element <refreshMode>.

o onStop: refrescar el fitxer n segons després de que el moviment finalitzi,

on n està especificat en l’element <viewRefreshTime>.

o onRequest: refrescar el fitxer només quan l’usuari així ho desitgi, fent

servir el navegador per seleccionar la opció de refresc immediat.

o onRegion: refrescar el fitxer quan la regió esdevé activa, és a dir, quan la

càmera està enfocant les coordenades de la regió sobre la que treballa el

link. En el nostre cas sembla que aquesta és la opció adient, ja que només

volem actualitzar el link, que resultarà en una imatge, quan aquesta és

visible per al client des del navegador.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 25

• viewRefreshTime: si a l’element <viewRefreshMode> hem indicat la opció

onStop, aquí indiquem els segons que transcorren des de que la càmera s’atura

fins al refresc de la vista.

• viewBoundScale: indica si cal fer un escalat de la imatge que mostrem per

pantalla. El valor que indiquem és el factor d’escalat de la imatge; així, un valor

inferior a 1 fa la imatge més petita mentre que un valor més gran que 1 faria la

imatge més gran. En el nostre cas, un factor 1 fa que la imatge ocupi tota la

pantalla. Es decideix aplicar un escalat de 1.25 per tal de que la imatge vagi més

enllà dels límits de la pantalla degut a un petit problema experimentat al moure la

càmera. Si no fem la imatge una mica més gran que la pantalla, al moure la vista

d’usuari es pot arribar a veure, durant un instant, el que hi ha més enllà de la

imatge, és a dir, els mapes que proporciona Google Earth. Aplicar un escalat de

1.25 és suficient per evitar aquest efecte negatiu.

• viewFormat: especifica el format de la cadena alfanumèrica que contindrà la

consulta que s’afegirà al link indicat en l’element <href>. D’aquesta manera,

aconseguim d’una forma ben senzilla que l’script rebi les coordenades del visor

del navegador. Enviem la variable composta BBOX que conté les coordenades

nord, sud, est i oest de la regió que està veient la càmera del navegador fent ús del

protocol HTTP. També enviem la variable CÀMERA amb el valor lookatRange

que indica la alçada en metres a la que es troba la vista actual. Veurem més

endavant com l’script necessita aquesta variable per a escollir la nova imatge que

mostrarem. Així, la URL final que carrega el Network Link serà:

http://SERVIDOR/NOM_SCRIPT?BBOX=[bboxWest,bboxSouth,bboxEast,bboxNorth]

&CAMERA=[lookatRange]

on w,s,e,n són les coordenades oest, sud, est i nord respectivament del visor del

navegador en un moment donat.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 26

3.2. El Servidor

Ja hem comentat que, pel que fa al client, l’únic fitxer que necessàriament disposarà per

al funcionament del nostre projecte serà el fitxer KML amb el Network Link que apunta

al nostre servidor. El fitxer que conté l’script que generarà codi KML que serà retornat al

client, residirà en el servidor. Aquest script serà finalment codificat en el llenguatge

d’scripting PHP. Per tal de que el client pugui comunicar-s’hi, també serà necessari

instal·lar un servidor web que rebi peticions HTTP i enviï el codi KML. A més, en el

servidor trobarem també la càmera que enregistra l’escenari així com la base de dades on

hi guarda la informació que genera.

3.2.1. El servidor web

Per tal de que el servidor pugui rebre peticions HTTP procedents del client, a través de la

xarxa, necessitem configurar un servidor web instal·lat en la màquina servidor. Volem un

servidor web fiable i senzill ja que només es rebrà un tipus de petició i, segons els

requeriments d’aquest projecte, no haurem de manegar moltes peticions al mateix temps,

tot i que contínuament estarem treballant amb el client degut a la naturalesa de la

aplicació.

Així, instal·lem en el servidor un paquet de programari lliure anomenat XAMPP, que

conté un servidor web Apache força simple, així com les eines necessàries per a utilitzar

el llenguatge d’scripting PHP, necessari també per al correcte funcionament del servidor

del nostre projecte. La seva simplicitat, així com el fet que es distribueixi sota llicència

pública general, són les raons principals per a la seva elecció.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 27

3.2.2. La càmera

Per adquirir les imatges de l’entorn a explorar utilitzem una webcam que enregistrarà una

escena de forma ininterrompuda. La webcam utilitzada durant el desenvolupament

d’aquests projecte és una Philips SPC220NC com la que veiem en la figura 3.1 que

enregistra vídeo amb resolucions que van des de 160x120 píxels fins a 1280x960 píxels

amb espai de colors RGB utilitzant 24 bits, el que significa que s’utilitzen 256 bits per a

definir cada component de l’espai RGB, és a dir, disposem de 256*256*256 = 16,7

milions de colors diferents.

Pel que fa a la resolució, s’haurà d’escollir quina és la més adient per al nostre projecte.

Cal arribar, doncs, a un compromís adient entre la quantitat d’informació que transferim

i la qualitat de la imatge final. Òbviament, com més resolució tinguin les imatges del

vídeo, més informació caldrà transferir entre servidor i client i, per tant, la velocitat de

l’aplicació es veurà reduïda.

Figura 3.1

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 28

Per tant, cal decidir si estem disposats a perdre velocitat per tal de guanyar qualitat en les

imatges. La nostre aplicació requereix, sobretot, rapidesa en l’execució, ja que volem

explorar un escenari dinàmic i volem fer-ho el més ràpid i fluid possible; per tant, sembla

lògic pensar que el més adient és perdre qualitat en la imatge per tal d’accelerar la

transferència d’informació i, per tant, la velocitat d’execució de la aplicació final. Per

tant, escollirem inicialment una resolució baixa: 320x240 píxels.

La càmera pot capturar vídeo a una velocitat de fins a 30 fotogrames per segon. Es

decideix, però, que amb 25 fotogrames per segon és suficient per a navegar per un entorn

dinàmic com el que suposem en aquest projecte. De fet, si aconseguim que el client

visualitzi l’entorn a una freqüència de 24 frames per segon, ja haurem aconseguit el

màxim que l’ull humà pot percebre i, per tant, el màxim de fluïdesa en la visualització

que es pot obtenir.

D’altra banda, cal remarcar que el nombre de frames que obtenim per segon es traduirà, a

fi de comptes, amb el nombre d’imatges que guardem a la base de dades cada segon. Ens

hauríem de preguntar quines són les necessitats que requereix l’entorn que estem

explorant pel que fa a la freqüència de mostreig del vídeo. En el cas que hem explicat en

el primer capítol, l’escenari d’una planta de producció, no sembla excessivament

rellevant el nombre d’imatges per segon que enregistrem i podem concloure que amb 25

frames per segon hi ha més que suficient. Però en altres escenaris, on hi hagi un nivell de

dinamisme molt alt, podria ser interessant augmentar aquesta freqüència de mostreig

independentment de si el client podrà percebre o no els canvis mentre explora l’escenari

amb el navegador. D’aquesta manera, tindríem enregistrat tot el que succeeix en

l’escenari a la base de dades per futures consultes externes a la nostre aplicació.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 29

Imatges

Procés
intermedi

Base de dades

Vídeo Webcam

Figura 3.2

3.2.3. Del vídeo a les imatges

Ja hem comentat en l’anterior capítol que el vídeo enregistrat per la webcam havia de ser

traduït a imatges per tal de poder mostrar l’escena en el navegador Google Earth.

Aquestes imatges hauran de residir en una base de dades per tal de ser emmagatzemades.

Per tant, necessitem un procés intermedi entre la webcam i la base de dades. Aquest

procés serà l’encarregat de passar el vídeo inicial a imatges. Podem veure un esquema de

la situació en la figura 3.2.

Anem a descriure quina serà exactament la tasca que durà a terme el procés intermedi

entre la webcam i la base de dades. En un primer moment es decideix que la única tasca

d’aquest procés sigui la de convertir el vídeo en imatges i emmagatzemar-les en la base

de dades sense modificar de cap forma la imatge, tal i com hem comentat fins ara. No

obstant, això comportaria una limitació per al client. El navegador de Google Earth

permet fer zoom mentre el client explora les imatges, donant la sensació d’alçada, és a

dir, les imatges estan captades a diferents resolucions segons l’alçada a la que es trobi el

client. Aquesta alçada es pot modificar fàcilment des del navegador, amb el propi ratolí.

Així, l’usuari del navegador té la sensació de poder fer zoom en les zones d’interès, per

tal d’obtenir una imatge més detallada. Per aconseguir aquest efecte amb les nostres

imatges, es decideix que la nostre aplicació també permeti que l’usuari pugui utilitzar el

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 30

zoom del navegador per tal d’obtenir imatges més o menys detallades. Això vol dir que

tindrem imatges amb més resolució que d’altres.

Inicialment, es fixen 2 nivells de detall en les imatges, és a dir, l’usuari veurà la imatge

completa en el navegador i, quan decideixi obtenir més detall en la imatge, és a dir,

disminueixi l’alçada des del navegador, la imatge que es mostrarà tindrà més resolució en

la zona ampliada. Per tant, caldrà definir una alçada llindar que separi els 2 nivells de

resolució.

Per a donar la sensació de diferent alçada en les imatges, caldrà les imatges de menys

alçada tinguin més nivell de detall que les imatges superiors. Per a les imatges de més

alçada utilitzarem les imatges resultants directament del vídeo; aquestes seran dividides

en quatre quadrants de mateixa mida cada un per tal d’obtenir les imatges de segon nivell

d’alçada. D’aquesta manera, quan l’usuari baixi per sota l’alçada llindar, la imatge que

veurà en el navegador no serà la imatge completa si no un dels 4 quadrants de la imatge,

depenent de les coordenades on estigui situada la regió del visor del navegador.

Amb això aconseguim que l’usuari pugui fer zoom en una de les regions de la imatge.

Tanmateix, d’aquesta manera no aconseguim que l’usuari experimenti una millora en la

imatge ampliada, és a dir, en un dels quadrants de la imatge completa. Per tal

d’aconseguir-ho, necessitem que la imatge completa (primer nivell) tingui menys nivell

de detall que les imatges corresponents als quatre quadrants (segon nivell). Es decideix,

doncs, que caldria reduir la resolució de les imatges del primer nivell per tal de que les

del segon nivell tinguin més qualitat.

Per tant, l’efecte d’aconseguir imatges més detallades quan l’usuari disminueix l’alçada

del navegador l’aconseguim dividint la imatge original en 4 parts i fent que aquestes parts

siguin imatges amb més qualitat de detall que la imatge completa. Ja hem indicat que la

resolució de les imatges del vídeo es de 320x240. Això vol dir que cada quadrant de la

imatge serà de 160x120 píxels.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 31

El que podem fer és, un cop hem retallat la imatge per obtenir els quadrants, reduir la

imatge original també a 160x120 píxels. Amb això aconseguim imatges de mateixa mida

però diferent qualitat, ja que a les imatges de segon nivell utilitzem els mateixos píxels

per a representar una regió més petita de l’escenari. Podem veure el procés en la figura

3.3.

En un primer moment es decideix emprar l’entorn Matlab per a la creació d’aquest procés

que ha de dur a terme aquestes tasques, degut a la simplicitat del llenguatge. Així,

desenvolupem una petita aplicació que segueix el següent algorisme:

mentre (video)
 adquirir_frame;
 dividir_quadrants;
 disminuir_resolució_imatges_nivell_1;
 introduir_informació_a_BD;
fi_mentre

Per tant, l’aplicació desenvolupada en Matlab haurà de ser capaç d’obtenir constantment

el vídeo que la webcam està capturant. Per cada fotograma que s’obtingui, s’hauran de

crear 5 imatges. Una serà la imatge completa, de la qual s’haurà de reduir la resolució per

tal de baixar-ne la qualitat. Les altres quatre imatges corresponen als quatre quadrants de

la imatge amb la resolució original.

Podem trobar el codi complet del procés Matlab al final d’aquest document, a l’apartat

dedicat als annexos.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 32

Imatge original reduida
(160x120)

Imatges dels quadrants
(160x120)

Figura 3.3

Imatge original (320x240)

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 33

Arribats a aquest punt, cal decidir quin format tindran les 5 imatges per frame que es

creen. En un primer moment, es decideix que les imatges es gravin en format JPEG

(Joint Photographic Experts Group). Aquest format segueix un algorisme de compressió

que fa disminuir força la grandària de la imatge i, òbviament, la qualitat de la mateixa. No

obstant, aquest fet requereix que, a l’obrir la imatge, s’hagin de fer càlculs per aplicar

l’algorisme de descompressió de la imatge. Així doncs, aquest format faria que la

transferència de les imatges entre client i servidor fos ràpid, però requeriria un treball

constant en el client per tal d’obrir-les.

Una alternativa la tenim en el format BMP (BitMapP); aquest format no comprimeix la

imatge, obtenint uns fitxer força més grans que amb el format JPEG però amb molta més

qualitat. L’avantatge, més enllà de la qualitat de la imatge, és que aquests fitxers són

extremadament ràpids d’obrir i, per tant, el client no haurà de dur a terme càlculs

intermedis cada cop que obri les imatges, fet molt important en el nostre projecte.

Així, la decisió d’escollir un o altre format per a les imatges amb les que treballem no és

trivial. La grandària d’un fitxer amb una imatge JPEG pot arribat a ser fins 10 o 20

vegades més petit que la d’una imatge BMP sense que l’ull humà noti en excés la pèrdua

de qualitat en la imatge. Tot i així, volem que el client no hagi de dur a terme càlculs

abans d’obrir la imatge amb el navegador, ja que això podria disminuir molt la velocitat

d’execució en el client. Així, es pren la decisió de treballar amb imatges en format BMP.

3.2.4. La base de dades

Ja sabem en quin format ha de guardar les imatges el procés Matlab. El següent pas que

ha de realitzar és la introducció de la informació referent a cada frame en la base de dades

que resideix en el servidor. Recordem que aquest procés també es troba en el propi

servidor. Per tant, ens hem de connectar a una base de dades local i introduir-hi

informació constantment.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 34

Bàsicament, necessitem que la base de dades guardi, per a cada imatge, la direcció física

del fitxer que conté la imatge i les coordenades nord, sud, est i oest que cobreix la imatge.

La direcció física de la imatge haurà de ser accessible per a l’aplicació Apache, és a dir,

el directori on estiguin les imatges haurà de ser configurat al servidor web per tal de que

aquests fitxers amb imatges siguin accessibles des del client. Aquest fet és molt important

ja que si hagués cap problema, el servidor web no podria oferir les imatges al client i això

comportaria un error durant l’execució de Google Earth en la màquina des d’on es vol

navegar per l’entorn que estem enregistrant.

Cal remarcar que, en aquest context, entenem una imatge com qualsevol fitxer resultant

del procés Matlab que hem descrit anteriorment. És a dir, tant imatges completes com

quadrants de cada frame. Per tant, una tercera dada que hauria de quedar reflectida en la

base de dades és el nivell de detall de la imatge que, tal i com hem comentat, pot ser de

primer nivell o segon nivell si es tracta d’un dels quatre quadrants en els que dividim la

imatge original d’un frame donat. Crearem, doncs, dues taules en la base de dades. La

primera taula, anomenada IMG_1, contindrà les dades de les imatges completes de cada

frame mentre que la segona taula, que anomenem IMG_4, contindrà les dades de les

imatges corresponents a cada un dels quatre quadrants de la imatge original.

Per últim, assignarem un identificador únic a cada imatge com a clau primària. D’aquesta

manera, una tupla de cada una de les taules de la base de dades vindrà definida pels

següents camps, tots obligatoris:

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 35

Taula IMG_1

Nom Columna Tipus Columna Descripció

IMG_Id (Clau primària) Integer Identificador únic

IMG_Path Text Direcció física del fitxer

IMG_North Real Double Precision Coordenada nord de la imatge

IMG_South Real Double Precision Coordenada sud de la imatge

IMG_West Real Double Precision Coordenada oest de la imatge

IMG_East Real Double Precision Coordenada est de la imatge

Taula IMG_4

Nom Columna Tipus Columna Descripció

IMG_Id (Clau primària) Integer Identificador únic

IMG_Path Text Direcció física del fitxer

IMG_North Real Double Precision Coordenada nord de la imatge

IMG_South Real Double Precision Coordenada sud de la imatge

IMG_West Real Double Precision Coordenada oest de la imatge

IMG_East Real Double Precision Coordenada est de la imatge

IMG_Region (Clau primària) Small Integer Quadrant de la imatge

També cal remarcar que es crearan índexs sobre les columnes més utilitzades, que serien

IMG_Path, IMG_North, IMG_South, IMG_West i IMG_East ja que son aquestes

columnes les que es necessiten per crear el KML que serà enviat al client.

Un cop hem analitzat i dissenyat la base de dades del nostre projecte, cal escollir un

gestor de base de dades per tal de crear-la físicament. Per la seva naturalesa de software

lliure, es decideix implementar la base de dades en PostrgeSQL, un sistema de gestió de

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 36

bases de dades objecte-relacional que es distribueix sota la llicència BSD (Berkeley

Sofware Distribution), corresponent a una família de les llicències de programari lliure.

La versió de PostgreSQL utilitzada és la 8.3.5 amb la eina PostgreSQL pgAdmin III, en la

versió 1.8.4, que permet la interactuació amb la base de dades mitjançant una interfície

d’usuari visual, còmode i molt intuïtiva. Sobre aquesta versió de PostgreSQL es va

instal·lar el mòdul PostGIS, en la seva versió 1.3.5. Aquest mòdul, desenvolupat sota la

filosofia de codi obert, permet a les bases de dades creades en PostgreSQL la possibilitat

de fer servir objectes geogràfics en una base dades objecte-relacional, com és el cas.

PostGIS, a més, afegeix suport per a l’ús d’eines especials per aquests tipus de dades

geogràfiques.

Creant la base de dades sobre una instal·lació PostgreSQL amb suport per a dades

geomètriques, podrem fer servir funcions pròpies dels sistemes SIG com ara el càlcul de

distàncies entre punts o, fins i tot, crear codi KML de forma directa amb una consulta

SQL. Cal remarcar, però, que en aquest projecte no fem servir aquestes funcions però sí

veiem molt interessant deixar la base de dades preparada per a suportar-les per futures

ampliacions en els requeriments del projecte.

3.2.5. L’script

En aquest apartat analitzem l’script que generarà codi KML que serà retornat al client.

Tal i com em comentat anteriorment, aquest script és desenvolupat en el llenguatge

d’scripting PHP. El codi complet de l’script el podem trobar al final d’aquest document, a

l’apartat dedicar als annexos.

Hi ha 2 fets necessaris per tal de que un script proporcioni correctament codi KML a

través d’una xarxa, com és el cas del nostre projecte. Quan es fa una crida des del client,

és a dir, des del navegador Google Earth, cap al servidor, aquest ha de retornar una

resposta HTTP de codi 200, que correspon a una resposta estàndard de petició HTTP

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 37

satisfactòria; el camp Content-Type d’aquesta resposta ha de ser de tipus

application/vnd.google-earth.kml+xml, ja que aquest és el MIME type associat a un arxiu

KML. El segon requisit necessari per al bon funcionament entre client Google Earth i el

servidor és que el codi KML proporcionat estigui ben format, tal i com hem comentat en

el capítol anterior.

Podem desglossar el codi en 3 parts diferenciades. La primera part de l’script s’encarrega

de fer la connexió amb la base de dades amb la que l’script necessitarà interactuar.

Aquesta base de dades la descriurem més endavant però ara cal saber que residirà en el

propi servidor on està l’script. En cas que no es pugui establir aquesta connexió, l’script

no continuarà i això derivarà en un error en el navegador Google Earth del client.

La següent part de l’script s’encarrega d’adquirir les variables que ha rebut via HTTP i

guardar-les en variables. De fet, el que es fa és discriminar les 4 coordenades que rebem

en una única variable composta anomenada BBOX creant 4 noves variables a l’script

anomenades $west, $south, $east i $north. Seguidament, recupera el valor de l’altre

variable que ha rebut via HTTP, CÀMERA, que conté el valor de l’alçada en metres de la

vista del navegador i el guarda dins la variable $lookatRange.

La tercera i ultima part de l’script és la que duu a terme la consulta a la base de dades per

tal d’obtenir la imatge que encaixa en les coordenades que ha rebut. Ja hem comentat

anteriorment, que la base de dades conté dues taules. La taula IMG_1 conté les imatges

de nivell 1, mentre que la taula IMG_4 conté les imatges de nivell 2, és a dir, les imatges

corresponents als quatre quadrants de la imatge original. En aquest moment és on l’alçada

llindar que diferenciava entre un nivell i l’altre entra en joc. Es decideix que aquesta

alçada sigui de 150 metres. Per tant, quan la variable $lookatRange sigui major que 150,

efectuarem la consulta sobre la taula IMG_1. En altre cas, la consulta es realitzarà sobre

la taula IMG_4. La consulta, en ambdós casos, retorna un path a una imatge, que serà la

nova imatge que es veurà en el navegador del client.

Finalment, es retorna el codi KML que mostra la imatge. Primerament, és important

remarcar la presència de les capçaleres en el fitxer que l’script retorna. Aquestes

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 38

capçaleres indiquen al navegador Google Earth que el que enviem és un fitxer KML.

L’script retorna el codi KML que veiem a continuació:

<GroundOverlay>
 <name>
 Monitoratge d’entorn dinàmic
 </name>
 <description>
 Planta de producció
 </description>
 <Icon>
 <href> %s </href>
 </Icon>
 <LatLonBox>
 <north>%.14f</north>
 <south>%.14f</south>
 <east>%.14f</east>
 <west>%.14f</west>
 <maxAltitude>1000</maxAltitude>
 </LatLonBox>
</GroundOverlay>

GroundOverlay és l’element que dibuixa una imatge sobre el terreny en el navegador

Google Earth. Conté dos elements que defineixen aquesta imatge:

• Icon: és l’element que indica la ubicació física de la imatge, especificada en el

subelement <href>. En el nostre cas, el contingut de l’element <href> serà una

URL semblant a la que hem indicat en l’apartat anterior, quan descrivíem el codi

del fitxer que té el client amb el Network Link. En aquest cas, necessitem que

aquesta URL faci referència a una imatge ubicada en el servidor, com podem

veure a continuació:

http://SERVIDOR/NOM_FITXER_IMATGE

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 39

El valor que troben en l’script, %s, indica que serà una cadena que es calcularà en

temps d’execució. L’script farà la consulta a la base de dades i omplirà la URL

completa per a la imatge en qüestió.

• LatLonBox: especifica les coordenades on s’ubicarà la imatge dins el navegador

Google Earth, que seran les mateixes que l’script ha rebut des del navegador.

Aquest element té quatre subelements corresponents a les 4 coordenades

geogràfiques i un cinquè element anomenat <maxAltitude> que indica la

altitud màxima en metres a la que es podrà desplaçar l’usuari. Es decideix limitar-

ho a 1000 per tal de que l’usuari no arribi a veure la curvatura de la terra que

mostra Google Earth quan s’arriba a certa altura en el visor del navegador.

Al final de l’script, alliberem la connexió amb la base de dades tot tancant la connexió

establerta des de l’script.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 40

Network Link

CLIENT

 SERVIDOR

Matlab
Imatges

Procés
intermedi

Webcam Vídeo

PostGRES

PHP

Script

Apache

Coordenades

Nou KML

Figura 3.4

3.2.6. Diagrama d’objectes

Ja hem descrit tots els components del nostre projecte, com interactuen entre ells i quins

són els fluxos d’informació que transcorren durant la execució de la aplicació. A la figura

3.4 podem veure un diagrama complet del nostre projecte, amb aquests components i la

comunicació entre ells:

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 41

Capítol 4.

Implementacions

avaluades

En aquest capítol repassarem les implementacions que s’han desenvolupat de la

plataforma que hem descrit detalladament en el capítol anterior. La primera

implementació consisteix en connectar directament els elements que hem comentat

anteriorment, en una sola maquina. És a dir, tindrem un ordinador que actuarà com a

client i com a servidor. Instal·larem, doncs, tots els elements que intervenen en el nostre

sistema:

• Navegador Google Earth

• Entorn PHP i script

• Servidor web

• Base de dades PostgreSQL

• Matlab

• Webcam

Aquests elements es connectaran entre sí tal i com hem indicat anteriorment i s’avaluaran

els resultats que s’hi obtenen pel que fa a la visualització des del navegador Google

Earth. Veurem aquest procés en el punt 4.1.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 42

Per tal d’intentar accelerar la visualització final en el navegador Google Earth, es va

desenvolupar una segona implementació de l’arquitectura que es diferencia de l’anterior

en el funcionament de la base de dades geogràfica. En aquesta segona versió, vam decidir

ubicar la base de dades en memòria principal en comptes de memòria secundària per tal

d’accelerar la transferència de les imatges. En el punt 4.2 expliquem per què es va decidir

implementar aquesta millora i s’analitzen els resultats finals.

4.1. Implementació directa

Aquesta va ser la primera implementació que es va desenvolupar de l’arquitectura

descrita durant el capítol 3. Es van connectar directament els diferents components en una

mateixa màquina que va actuar tant de client com de servidor. El flux de processos seria

el següent: la càmera capta les imatges d’un escenari, el procés Matlab converteix el

vídeo de la càmera a imatges i les guarda a la base de dades. Mentre això succeeix, obrim

un navegador Google Earth i hi carreguem el Network Link que es comunica amb l’script

PHP, enviant les dades de les coordenades i alçada de la camera del visor via HTTP.

Aquest script rep les dades, fa la consulta a la base de dades i recupera el camí a la imatge

que s’hauria de mostrar en el navegador del client. Llavors, crea el codi KML per a

mostrar aquesta imatge i la envia a l’aplicació Google Earth fent servir el protocol HTTP.

El primer problema que ens vam trobar va ser amb la propietat de refresc del Network

Link del client. Aquesta propietat indica la freqüència amb la que el Network Link es

recarregarà, és a dir, cada quan enviem la petició HTTP al servidor i, conseqüentment,

cada quan es recarregarà la imatge en el navegador del client.

Ja hem explicat anteriorment que aquesta propietat s’indica en l’element anomenat

<refreshInterval>, que és un subelement de <link>. Havíem dit que aquesta propietat

admet un valor real, segons la documentació publicada per Google. Al realitzar les proves

d’avaluació d’aquesta primera implementació descobrim que un refresc de 0,1 segons

dona els mateixos resultats que un de 1 segon. Això voldria dir que la exploració d’un

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 43

escenari utilitzant aquesta tecnologia estaria limitada a un frame per segon. Per tant,

semblaria poc aconsellable desenvolupar una aplicació per a entorns on es requerís una

visualització a temps real on l’usuari hagués de realitzar un monitoratge de l’escenari

amb rapidesa i fluïdesa en les imatges.

Després de realitzar vàries proves amb KML, provant varis sistemes de refresc, es

descobreix una possibilitat d’augmentar la freqüència de refresc a valors per sota del

segon. Es tracta d’enllaçar dos elements <NetworkLink> situats en dos fitxers KML

diferents. De fet, només es tracta d’afegir un fitxer KML al nostre sistema. Aquest nou

fitxer contindria un Network Link que apuntaria al mateix fitxer KML del client al que

fins ara ens hem referit, tot seguint l’esquema que tenim a la figura 4.1.

D’aquesta manera, el client només haurà d’obrir el fitxer anomenat Network Link 1, que

apuntarà al fitxer Network Link 2. Aquest serà el fitxer que apuntarà a l’script situat en el

servidor. Així, el procés no ha canviat per a l’usuari, que només s’ha de preocupar d’obrir

un fitxer, com fins ara havíem plantejat. És, doncs, important remarcar que per al client,

la solució escollida per a resoldre el problema del refresc del Network Link és totalment

transparent.

Cal remarcar que a la documentació de Google Earth no s’ofereix aquesta possibilitat

d’obtenir taxes de refresc inferiors a 1 segon. És possible que, degut a la naturalesa de

Google Earth, no s’hagi pensat en aquesta possibilitat. Recordem que Google Earth no

està concebut per a entorns dinàmics, si no per a navegacions sobre entorns que no

canvien constantment.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 44

La taxa de refresc del segon Network Link la hem de fixar a un valor alt, ja que és el

primer Network Link el que definirà la taxa de refresc amb la que es recarregaran les

imatges en el navegador. De fet, l’efecte de fixar una taxa de refresc inferior a 1 en tots

dos elements és força negatiu atès a les proves que hem fet, ja que es produeix un efecte

de parpelleig molt elevat que fa impossible navegar per l’escenari de forma còmode.

Deixem el refresc del segon element Network Link a 10 segons i variem el del primer

Network Link per tal de veure quins resultats s’aconsegueixen. En realitat, el que estem

fent és cridar l’script cada 10 segons i, a més, també el criden amb la freqüència que

indiquem en el primer Network Link. Això no comporta cap efecte negatiu visual notable

per a l’usuari.

KML (Network Link 2)

KML (Network Link 1)

Script

CLIENT

 SERVIDOR

Figura 4.1

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 45

Si provem de fixar la taxa del primer Network Link a 1 segon, obtenim una visualització

força fluida pel que fa als canvis entre frames, tot i que es nota un petit interval entre dos

frames consecutius en el que no es veu cap imatge. La velocitat és realment bona, ja que

veiem les imatges gairebé a temps real. De fet, no ho veiem a temps real totalment per les

prestacions de la càmera. Creiem que amb una camera de millors prestacions

aconseguiríem una navegació en temps real.

No obstant, una freqüència d’un frame per segon sembla força baixa. Fixem una taxa de 2

frames per segon en el primer Network Link i veiem que continua existint un interval

entre dos frames consecutius en els que no es veu cap imatge. Això provoca un efecte de

parpelleig força molest que fa poc còmode la navegació amb Google Earth. Òbviament, a

mesura que augmentem la freqüència de refresc, aquest efecte de parpelleig s’acusa més.

Les proves amb una taxes de refresc de 10 frames per segon, és a dir, 0.1 segons

d’interval de refresc donen uns resultats força negatius degut al efecte comentat.

Podríem dir que les primeres proves no donen uns resultats massa satisfactoris per a taxes

de refresc superiors a 0.5 segons. Això podria ser degut a que les imatges no estan

preparades a temps des del servidor quan són demanades per Google Earth.

4.2. Implementació amb base de dades sobre memòria

Degut als resultats de la primera implementació, que van semblar força millorables, es va

decidir realitzar una segona implementació de l’aplicació amb l’objectiu de disminuir el

temps de visualització entre dos frames consecutius en el navegador de Google Earth.

Primerament s’havia d’analitzar quin podia ser el coll d’ampolla del sistema, l’element

que provocava que les imatges no arribessin al visor del client en el temps esperat.

Es va pensar que possiblement el problema radicava en la transferència de les dades, sent

les imatges la part a tenir més en compte ja que representen gairebé la totalitat de les

dades que transferim. En aquest aspecte, hi hauria dues formes de millorar la rapidesa de

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 46

la transferència de les imatges. Hi ha dos trams on les imatges són transferides al llarg del

sistema que hem dissenyat. El primer tram el trobem localment al servidor; estem

treballant sobre una base de dades que guarda dades sobre imatges emmagatzemades en

el propi servidor on resideix la base de dades. Quan l’script fa la consulta a la base de

dades, es recupera un path que apunta a una imatge guardada en memòria secundària i es

transfereix al client mitjançant la xarxa. Precisament aquest seria el segon tram on es

transfereix la imatge, del servidor al client. Aquí la velocitat de transferència depèn del

medi per on es transporta, de la congestió de la xarxa i altres elements físics que poden

ser independents del nostre sistema.

Una forma de millorar la rapidesa amb la que la imatge és transferida seria ubicant la

imatge en memòria principal en comptes de fer-ho en el disc. Això faria que la imatge

estigués preparada per ser enviada al client força més aviat que quan la imatge s’ha

d’anar a buscar a memòria secundària i podria derivar en una visualització més ràpida en

el navegador. Es decideix, doncs, emmagatzemar les imatges directament en memòria

principal sense passar per disc.

Per a dur a terme aquesta tasca es necessita una aplicació en el servidor que permeti al

sistema operatiu treballar sobre memòria principal com si es tractés d’un disc. Es

decideix utilitzar l’eina VirtualDrive Pro, en la seva versió 11.0, per tal de dur aquesta

tasca degut a la seva simplicitat. Amb aquesta eina, aconseguim que el sistema operatiu

assigni una nova unitat a una porció de la memòria principal per utilitzar-la com si fos

una unitat d’emmagatzematge. Així doncs, només cal modificar el procés Matlab per tal

de que guardi les imatges sobre aquesta unitat. Caldrà, també, indicar aquest canvi en el

camp IMG_Path de les imatges noves a la base de dades. També caldrà indicar a

l’Apache un nou directori on hi hauran els documents que pot servir a l’exterior, que serà

la nova unitat creada i que s’indica en el fitxer de configuració httpd.conf.

Tanmateix, amb aquesta implementació ens apareix un nou problema a tenir en compte.

Ara les imatges amb les que treballa el nostre projecte resideixen en la memòria principal

del servidor. Això implica un alt grau d’ús de la memòria principal, és a dir, hi

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 47

necessitem molt espai. Fins ara guardàvem les imatges a disc i no teníem en compte la

capacitat del mateix. Només necessitaríem moure els fitxers que contenen les imatges

per problemes de capacitat a llarg termini i és un fet que no hem considerat de rellevància

en aquest projecte. No obstant, si treballem en memòria principal sí necessitarem algun

mecanisme per a moure les imatges de memòria a disc a curt termini ja que el cost

econòmic que suposaria tenir una memòria principal amb molta capacitat podria ser molt

alt. De fet, tampoc necessitem que les imatges resideixin en memòria un cop ja han sigut

mostrades al client. Només caldria conservar aquestes imatges per possibles consultes

posteriors, és a dir, constituirien un històric d’imatges. Aquest conjunt d’imatges haurien,

doncs, de ser guardades a disc.

Així, es decideix dissenyar un mecanisme que permeti moure les imatges de memòria

principal a disc cada cert temps per tal de no ocupar la totalitat de l’espai en memòria i

disposar d’un històric d’imatges. Es pensen dues possibilitats per a dur a terme aquesta

tasca. A continuació descrivim aquestes dues possibilitats, com s’haurien d’implementar i

quines serien les avantatges i els inconvenients que presentarien.

La primera solució constaria d’un procés que s’executaria cada cert temps i que

realitzaria el traspàs físic dels fitxers de les imatges de memòria principal cap a memòria

secundària. També hi hauria un segon element que efectuaria el canvi en la base de

dades, és a dir, actualitzaria el camp IMG_Path de les taules IMG_1 i IMG_4 que conté

la imatge del camí físic on resideix la imatge. Aquests dos processos anirien sincronitzats

de forma que un cop s’ha acabat el traspàs físic de les imatges es procediria a fer els

canvis a la base de dades. Com que el nom del fitxer de la imatge conté el seu

identificador a la base de dades, és a dir, el valor del camp IMG_Id, no hi hauria

problema en saber quin registre de la base de dades correspon a un fitxer donat.

Per tal de decidir quines imatges seran traspassades i quines no, es fixarà a priori un valor

que correspondrà al nombre d’imatges que es mouran cada cop que aquests processos es

disparin. Aquest valor dependrà de la capacitat que tingui la memòria principal del

servidor, i serà directament proporcional a aquesta capacitat, és a dir, a més capacitat més

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 48

imatges s’hauran de moure cada cop ja que hi caben més. De fet, a més capacitat menys

necessitat hi ha de fer el traspàs físic i, per tant, aquests processos es dispararan amb

menys freqüència i, per tant, hi hauran més imatges a moure.

La segona solució consistiria en guardar les imatges al disc en el moment en que també

són guardades en memòria. Així, cada cop que el procés Matlab que hem descrit en

capítols anteriors guardi una imatge en memòria, caldrà que també guardi el mateix fitxer

a disc. D’aquesta manera, només caldrà un procés que esborri les imatges de memòria i

no faci cap traspàs físic de fitxers. També caldrà el procés que actualitzi la base de dades

per tal de canviar el camp IMG_Path de les taules IMG_1 i IMG_4 tal i com hem explicat

en l’anterior cas.

Aquestes dues solucions estan basades en dues tècniques d’escriptura i sincronització

entre memòria caché i memòria principal que en el nostre cas apliquem en la

sincronització entre memòria principal i secundària. La primera la podríem comparar amb

la tècnica anomenada write-through, que implica actualitzar els canvis en memòria

principal en el moment en que es graven en memòria caché. La segona opció seria

comparable a la tècnica write-back, que no actualitza les dades en memòria principal en

el mateix moment en que es fa la escriptura en memòria caché si no que marca les dades

no sincronitzades en memòria principal com a pendents i les actualitza a posteriori. En el

nostre cas, no caldria fer aquesta diferenciació ja que les imatges pendents de ser

traspassades no existeixen en memòria secundària.

Per a les proves que s’han realitzat per aquesta segona implementació no s’ha vist

necessari realitzar els processos d’històrics, tot i que era necessari analitzar i dissenyar

algun mecanisme per fer-ho, veient que és viable utilitzar la memòria principal per a

guardar-hi les imatges sense tenir problemes d’espai a curt termini. Creem, doncs, una

unitat d’emmagatzematge dins la memòria RAM amb l’ajuda de la eina VirtualDrivePro

de 300 Mb, ja que es disposa d’una memòria principal de 2 Gb. A més, modifiquem el

procés Matlab per a que treballi en aquesta unitat i li indiquem a l’Apache el nou

directori, que serà directament la nova unitat.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 49

Tal i com hem fet per avaluar la primera implementació, s’han provat diferents valors per

a la taxa de refresc del primer Network Link. Així, per a una taxa de refresc d’1 segon,

s’obté una navegació una mica més fluïda que en la primera implementació,

experimentant positivament el fet de que es necessita més temps per a que les imatges

estiguin llestes per ser enviades al client.

Provant una freqüència de 10 frames per segon, en la primera implementació obteníem

uns resultats no gaire bons degut a l’efecte de parpelleig. En aquesta segona

implementació, aconseguim uns resultats força similars. Provant freqüències més altes,

ens trobem que és impossible navegar per l’escena ja que aquest efecte de parpelleig és

massa acusat.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 50

Capítol 5.

Conclusions
En aquest capítol revisarem quins eren els objectius i les tasques que volíem dur a terme

en aquest projecte. Presentarem els resultats obtinguts i es discutirà si s’han assolit els

objectius que s’havien proposat inicialment. Finalment, veurem quines són les possibles

línies de continuació que es podrien seguir a partit de les conclusions extretes amb el

projecte.

5.1. Motivacions i objectius

Un cop hem finalitzat el projecte, revisarem els objectius i les tasques que s’han dut a

terme al llarg del desenvolupament del mateix. Recordem que l’objectiu principal era

avaluar quin era el rendiment que ofereix Google Earth com a navegador geogràfic en

entorns dinàmics. Per a complir aquest objectiu, necessitàvem desenvolupar una aplicació

de base que es comuniqués amb la aplicació Google Earth per tal d’oferir un monitoratge

d’un escenari gravat per una camera. Volíem que aquest monitoratge resultés el més

senzill i fluid possible i decidir si és possible arribar a una freqüència de visualització de

25 frames per segon, és a dir, el màxim que pot processar l’ull humà.

Ara, podem afirmar que és totalment viable realitzar una aplicació que permeti a un

usuari visualitzar un entorn dinàmic mitjançant Google Earth. Hem desenvolupat dues

implementacions diferents d’una aplicació base sobre la que hem avaluat el rendiment de

Google Earth per al nostre problema. Hem vist que aquesta tecnologia permet treballar

amb entorns dinàmics, a diferència del que ofereix normalment als usuaris. Avui dia,

molts usuaris a Internet utilitzen Google Earth per a explorar el món, amb unes imatges

emmagatzemades en els servidors de Google que són actualitzades cada cert temps, que

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 51

poden ser mesos o anys. Tanmateix, hem demostrat que és possible fer servir aquesta

tecnologia per a entorns on es requereixen actualitzacions constants.

No obstant, també hem vist que el rendiment de Google Earth a l’hora d’obtenir taxes de

refresc d’imatges en el navegador per sota dels 10 frames per segon és molt pobre degut

als constants canvis i efectes de parpelleig. És possible que aplicant tècniques que

apuntem en el següent punt, en les línies de continuació, s’aconsegueixin millors resultats

i s’elimini, en part, aquest efecte de parpelleig. No obstant, creiem que serà difícil

aconseguir unes taxes de refresc molt altes en una aplicació pensada per entorns que no

canvien. A mes, ja vam dir en el primer capítol, que el fet d’escollir Google Earth com a

tecnologia sobre la qual desenvolupar el nostre projecte implicaria un overhead al tractar-

se d’un model d’aplicacions que interactuen amb aplicacions. En el nostre cas, hem

desenvolupat una aplicació base sobre la que treballava l’aplicació Google Earth.

5.2. Resultats

Tenint en compte els resultats que hem aconseguit, podríem dir que seria possible

utilitzar la tecnologia Google Earth per a entorns dinàmics on la exploració de l’entorn no

requereixi d’una visualització amb una alta taxa de refresc de les imatges.

Avaluant Google Earth i la segona implementació aplicació base que hem desenvolupat,

que és la que dona millors resultats, arribem a una visualització de 10 frames per segon

amb un efecte de parpelleig que és força elevat i fa impossible que l’usuari pugui dur a

terme un monitoratge de forma fluida i còmode. Si treballem amb 5 frames per segon,

aconseguim reduir força aquest efecte negatiu. Així, podem concloure que per a entorns

on no es requereixi una taxa de refresc superior a 5 frames per segon, Google Earth és

una tecnologia totalment vàlida per a la qual desenvolupar aplicacions del tipus que hem

tractat en aquest projecte.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 52

Es possible que aplicant algunes tècniques per accelerar la transferència de les imatges, i

que discutirem en el punt 5.3, s’aconsegueixi reduir l’efecte de parpelleig en el

navegador. No obstant, pensem que aquest efecte hi serà sempre present ja que Google

Earth necessita recarregar cada cop un codi KML i, per tant, necessita un temps per tal

d’interpretar el codi que rep i mostrar els resultats en el visor. Tal i com hem comentat al

llarg del projecte, creiem que Google Earth ha estat pensat per altres tipus d’entorns i no

per a dur a terme un monitoratge on es requereix una actualització constant, tal com 10

frames per segon.

5.3. Línies de continuació

Un cop hem acabat el projecte, se’ns plantegen vàries maneres d’aconseguir millors

resultats en la visualització d’entorns dinàmics amb Google Earth. Hi hauria vàries

tècniques que podríem aplicar sobre la aplicació de base que hem desenvolupat al llarg

d’aquest projecte i que creiem que ajudarien a obtenir millors resultats. A continuació

enumerem i expliquem aquestes tècniques que podrien ser aplicades en futures línies de

continuació.

5.3.1. Diferències d’imatges

Ja hem comentat varis cops en aquest projecte que els entorns que volem explorar amb

Google Earth tenen un alt nivell de dinamisme, és a dir, varien constantment en el temps.

No obstant, és clar que entre dos frames consecutius del vídeo que estem enregistrant, els

canvis seran mínims. Al llarg d’aquest projecte hem plantejat els exemples d’una planta

de producció o d’una zona d’activitats logístiques; en ambdós casos, dos frames

consecutius del vídeo que capta la camera variaran únicament en la posició d’algun robot

o d’algun cotxe o operari. No obstant, la resta de la imatge serà molt possiblement

idèntica a l’anterior. Aquest fet, que s’aprofita en tècniques de compressió de vídeo,

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 53

podria utilitzar-se també en el nostre projecte per tal d’obtenir millors resultats en la

aplicació final.

Per aprofitar aquest fet, caldria modificar la filosofia amb la que hem treballat a l’hora de

treballar amb les imatges que capta la camera. D’alguna manera, hauríem de deixar de

treballar amb imatges pròpiament dites per passar a treballar amb diferències d’imatges,

és a dir, en un instant i no tenim una imatge si no la variació que hi ha hagut en l’instant i

respecte l’instant i – 1. Com que ja hem raonat que aquesta variació seria mínima,

tindríem molta menys informació per a descriure l’instant i. Òbviament, treballar amb

menys informació comportaria més velocitat en la aplicació final, menys requeriments de

capacitat de memòria i, en definitiva, una visualització més fluida ja que entre el servidor

i el client transferiríem molta menys quantitat d’informació.

5.3.2. Regions d’imatges

Una tècnica que podríem aplicar, i que va lligada amb l’anterior punt, seria treballar amb

regions de les imatges. Es tractaria de dividir les imatges de forma quadricular, per

exemple. Cada quadrícula seria una regió de la imatge. Així, en comptes de transferir

cada cop una imatge sencera entre el servidor i el client, transferiríem una o vàries

regions de la imatge: aquelles que haguessin sofert una variació respecte l’anterior frame.

Hauríem, doncs, de comunicar d’alguna forma a l’aplicació Google Earth quines són les

regions que necessiten actualitzar-se, tot transferint-li aquestes regions en un o varis

fitxers jpg. Creiem que aquesta tècnica seria molt interessant de ser aplicada en el nostre

context. Caldria un estudi previ de l’escenari a desenvolupar per tal de decidir en quantes

regions s’hauria de dividir un frame del vídeo per aconseguir els millors resultats en la

visualització final amb Google Earth.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 54

5.3.3. Procés Matlab

Una fet creiem que pot disminuir el rendiment del nostre projecte és el procés Matlab que

hem descrit en el capítol 3. Aquest procés s’encarregava de convertir el vídeo que capta

la camera a imatges i emmagatzemar-les en la base de dades de la forma que hem

detallat. Sabem, però, que Matlab és un entorn de programació molt versàtil per a

treballar amb imatges però que no presenta una velocitat de processament molt alta,

sobretot comparat amb llenguatges de programació de més baix nivell com pot ser C.

Creiem que podríem aconseguir més velocitat de processament si en comptes de fer ser

l’entorn Matlab creéssim una petita aplicació codificada en llenguatge C, per exemple,

que fes la mateixa tasca. Aquesta aplicació estaria sempre executant-se en el servidor, tal

i com fa el procés Matlab. S’hauria d’avaluar fins a quin punt aquest canvi afectaria als

resultats finals de visualització en el navegador, però estem segurs que el processament i

emmagatzematge d’imatges en el servidor es faria d’una forma més eficient i més ràpida.

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 55

Referències

1. Introducció al KML a Google

http://code.google.com/intl/ca/apis/kml/documentation/

Última data consulta: 13/03/2009

2. Documentació KML a Google

http://code.google.com/intl/ca/apis/kml/documentation/kmlreference.html

Última data consulta: 26/08/2009

2. Documentació de la toolbox Image Acquisition per a Matlab

http://www.mathworks.com/matlabcentral/fileexchange/22792

Última data consulta: 15/04/2009

3. Introducció al processament d’imatges amb Matlab

http://www.cogs.susx.ac.uk/users/davidy/compvis/matlab_demos/intro_demo.html

Última data consulta: 15/04/2009

4. Documentació distribució Apache XAMPP

http://www.apachefriends.org/en/xampp.html

Última data consulta: 07/06/2009

5. Generación simple de KML con PHP y PostGIS

http://neogeografia.wordpress.com/2007/08/12/generacion-simple-de-kml-con-php-y-

postgis

Última data consulta: 16/02/2009

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 56

6. Generación de salidas dinámicas simples en KML

http://pcsig2007.wikispaces.com/Generaci%C3%B3n+de+salidas+din%C3%A1micas+si

mples+en+KML+a+partir+de+Consultas+Espaciales+creadas+con+SFQL

Última data consulta: 20/02/2009

7. The KML Screen Overlay Maker Utility

http://freegeographytools.com/2007/the-kml-screen-overlay-maker-utility

Última data consulta: 23/01/2009

8. Documentació de PostgreSQL v8.3

http://www.postgresql.org/docs/8.3/static/index.html

Última data consulta: 15/06/2009

9. Aplicacions dinàmiques a Google Earth amb Network Links

http://geochalkboard.wordpress.com/2007/09/04/dynamic-google-earth-applications-

with-network-links/

Última data consulta: 07/03/2009

10. Google Earth Network Link

http://www.gearthblog.com/blog/archives/2007/04/the_google_earth_net.html

Última data consulta: 01/03/2009

11. Grups Google de suport per desenvolupadors de codi KML

http://groups.google.es/group/kml-support

Última data consulta: 26/05/2009

12. Documentació llenguatge PHP

http://www.php.net/

Última data consulta: 18/06/2009

http://www.php.net/

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 57

13. Tutorial codi KML per Mano Marks i Brian Hamlin

http://www.youtube.com/watch?v=QzS_shIzfcM

Última data consulta: 23/03/2009

14. “Using Google Earth to Access and Display Emissions Data”

David Mintz (U.S. Environmental Protection Agency)

(Maig 2007)

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 58

Apèndix 1.

Codi Procés Matlab

% Precisió de 14 decimals per als nombres Reals
format long g;
north= 0.00066986242119;
south=-0.00066986242119;
east= 0.00077883890155;
west= -0.00077883890155;

% Servidor de base de dades
host = 'localhost';

% Usuari i contrasenya de la base de dades
user = 'postgres';
password = '1107Aa25';

% Nom de la base de dades
dbName = 'PostgreSQL30';

% Creacio de la connexio
dbConn = database(dbName, user , password)%, jdbcDriver,
jdbcString);

%%%%%%%%%%%%%%%
% Taula IMG_1 %
%%%%%%%%%%%%%%%

sql='select "IMG_Id" from "IMG_1"';
curs = exec(dbConn, sql);
curs = fetch(curs);

%Si no hi ha elements, el proper Id es 1, si no, el proper
es el maxim+1

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 59

if curs.Data{1} == 'No Data'
 maxId_1 = 1;
else
 maxId_1 = max(curs.Data{1:end}) + 1;
end

%%%%%%%%%%%%%%%
% Taula IMG_4 %
%%%%%%%%%%%%%%%

sql='select "IMG_Id" from "IMG_4"';
curs = exec(dbConn, sql);
curs = fetch(curs);

%Si no hi ha elements, el proper Id es 1, si no, el proper
es el maxim+1
if curs.Data{1} == 'No Data'
 maxId_4 = 1;
else
 maxId_4 = max(curs.Data{1:end}) + 1;
end

% Creacio de l'objecte que recull el video. Fixem
resolucio.
vid = videoinput('winvideo',1, 'RGB24_320x240');
set(vid,'TriggerRepeat',Inf);
vid.FrameGrabInterval = 1;

% Comencem a adquirir frames
start(vid)

% Perdrem el primer frame per agafar mides
frame = getdata(vid,1);
[h,w,c]=size(frame);

%El directori es la unitat K: (Memoria Primaria)
directory = ['K:\\'];

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 60

while(1)

 fileName = ['a-' num2str(maxId_1) '.bmp']

 fileName1 = ['a11-' num2str(maxId_4) '.bmp'];
 fileName2 = ['a12-' num2str(maxId_4) '.bmp'];
 fileName3 = ['a13-' num2str(maxId_4) '.bmp'];
 fileName4 = ['a14-' num2str(maxId_4) '.bmp'];

 %Seguent frame
 frame = getdata(vid,1);

 %Disminuim resolucio i guardem
 frameTemp = IMRESIZE(frame,0.5,'nearest');
 imwrite(uint8(frameTemp), [directory fileName], 'bmp');

 %Retallem imatge i guardem

imwrite(frame(1:h/2,1:w/2,:),[directory fileName1],
'bmp');
imwrite(frame(1:h/2,w/2+1:end,:),[directory fileName2],
'bmp');
imwrite(frame(h/2+1:end,1:w/2,:),[directory fileName3],
'bmp');
imwrite(frame(h/2+1:end,w/2+1:end,:),[directory
fileName4], 'bmp');

 %Insercions a la base de dades
 sql= ['insert into "IMG_1" values (' num2str(maxId_1)
 ', ''' fileName ''', ' num2str(north) ','
 num2str(south) ',' num2str(west) ',' num2str(east)
 ')'];
 curs = exec(dbConn, sql);

 sql= ['insert into "IMG_4" values (' num2str(maxId_4)
 ', ''' fileName1 ''', ' num2str(north) ',' num2str(0)
 ',' num2str(west) ',' num2str(0) ',' num2str(1) ')'];
 curs = exec(dbConn, sql);

 sql= ['insert into "IMG_4" values (' num2str(maxId_4)
 ', ''' fileName2 ''', ' num2str(north) ',' num2str(0)
 ',' num2str(0) ',' num2str(east) ',' num2str(2) ')'];
 curs = exec(dbConn, sql);

 sql= ['insert into "IMG_4" values (' num2str(maxId_4)
 ', ''' fileName3 ''', ' num2str(0) ',' num2str(south)
 ',' num2str(west) ',' num2str(0) ',' num2str(3) ')'];

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 61

 curs = exec(dbConn, sql);

 sql= ['insert into "IMG_4" values (' num2str(maxId_4)
 ', ''' fileName4 ''', ' num2str(0) ',' num2str(south)
 ',' num2str(0) ',' num2str(east) ',' num2str(4) ')'];
 curs = exec(dbConn, sql);

 %Seguents valors per als identificadors
 maxId_1 = maxId_1+1;
 maxId_4 = maxId_4+1;

end

%Aturem video
stop(vid)

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 62

Apèndix 2.

Codi Script PHP

<?
require("config.php");

/* Connexio amb la base de dades */

$conn = pg_connect("host=localhost
 port=5432
 dbname=postgis
 user=postgres
 password=aA9623B");

if (!$conn): ?>
 <H1>Failed connecting to postgres database</H1> <?
 exit;
endif;

/* Recuperem les variables que ens ha enviat el
navegador vía HTTP */

$bbox = split('[,]', $_GET['BBOX']);
$camera = split('[,]', $_GET['CAMERA']);

$west = (float) $bbox[0];
$south = (float) $bbox[1];
$east = (float) $bbox[2];
$north = (float) $bbox[3];

$center_lng = (($east - $west) / 2) + $west;
$center_lat = (($north - $south) / 2) + $south;

$lookatRange = (float) $camera[2];

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 63

/* Si estem a més de 150 metres d'alçada
veurem una imatge de la taula IMG_1 */

if ($lookatRange>150)
{

 /* Consulta a la base de dades */
 $sql = 'SELECT * FROM "IMG_1" WHERE "IMG_Id" = (SELECT
 MAX("IMG_Id") FROM "IMG_1")';

 $qu = pg_exec ($conn, $sql);
 $data = pg_fetch_object($qu);

 /* Obtenim cami de la imatge i coordenades */
 $path1 = "http://localhost/" . $data->IMG_Path;
 $north1 = $data->IMG_North;
 $south1 = $data->IMG_South;
 $west1 = $data->IMG_West;
 $east1 = $data->IMG_East;

 /* Escrivim KML */
 Header('Content-Type: application/vnd.google-
 earth.kml+xml\n');

 printf('<?xml version="1.0" encoding="UTF-8"?><kml
 xmlns="http://www.opengis.net/kml/2.2"><Folder>');

 printf('
 <GroundOverlay>
 <name>Monitoratge d’un d’entorn dinàmic </name>

 <Icon>
 <href>%s</href>
 </Icon>

 <LatLonBox>
 <north>%.14f</north>
 <south>%.14f</south>
 <east>%.14f</east>
 <west>%.14f</west>
 </LatLonBox>

 </GroundOverlay></Folder></kml>
 ',$path1, $north1, $south1, $east1, $west1);

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 64

}

/* Si no,
veurem quatre imatges de la taula IMG_4 */

else
{
 /* Consulta a la base de dades */
 $sql = 'SELECT * FROM "IMG_4" WHERE "IMG_Id" = (SELECT
 MAX("IMG_Id") FROM "IMG_4")';

 $qu = pg_exec ($conn, $sql);

 /* Obtenim cami de la imatge i coordenades */
 $data = pg_fetch_object($qu);
 $path1 = "http://localhost/" . $data->IMG_Path;
 $north1 = $data->IMG_North;
 $south1 = $data->IMG_South;
 $west1 = $data->IMG_West;
 $east1 = $data->IMG_East;

 /* Obtenim cami de la imatge i coordenades */
 $data = pg_fetch_object($qu);
 $path2 = "http://localhost/" . $data->IMG_Path;
 $north2 = $data->IMG_North;
 $south2 = $data->IMG_South;
 $west2 = $data->IMG_West;
 $east2 = $data->IMG_East;

 /* Obtenim cami de la imatge i coordenades */
 $data = pg_fetch_object($qu);
 $path3 = "http://localhost/" . $data->IMG_Path;
 $north3 = $data->IMG_North;
 $south3 = $data->IMG_South;
 $west3 = $data->IMG_West;
 $east3 = $data->IMG_East;

 /* Obtenim cami de la imatge i coordenades */
 $data = pg_fetch_object($qu);
 $path4 = "http://localhost/" . $data->IMG_Path;
 $north4 = $data->IMG_North;
 $south4 = $data->IMG_South;
 $west4 = $data->IMG_West;
 $east4 = $data->IMG_East;

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 65

 Header('Content-Type: application/vnd.google-
 earth.kml+xml\n');

 printf('<?xml version="1.0" encoding="UTF-8"?><kml
 xmlns="http://www.opengis.net/kml/2.2"><Folder>');

 printf('
 <GroundOverlay>
 <name>Monitoratge d’un d’entorn dinàmic </name>
 <Icon>
 <href>%s</href>
 </Icon>
 <LatLonBox>
 <north>%.14f</north>
 <south>%.14f</south>
 <east>%.14f</east>
 <west>%.14f</west>
 </LatLonBox>
 </GroundOverlay>

 <GroundOverlay>
 <name>Monitoratge d’un d’entorn dinàmic 2</name>
 <Icon>
 <href>%s</href>
 </Icon>
 <LatLonBox>
 <north>%.14f</north>
 <south>%.14f</south>
 <east>%.14f</east>
 <west>%.14f</west>
 </LatLonBox>

 </GroundOverlay>
 <GroundOverlay>
 <name>Monitoratge d’un d’entorn dinàmic 3</name>
 <Icon>
 <href>%s</href>
 </Icon>
 <LatLonBox>
 <north>%.14f</north>
 <south>%.14f</south>
 <east>%.14f</east>
 <west>%.14f</west>
 </LatLonBox>
 </GroundOverlay>

Sistema de navegació geogràfica de tipus Google Earth per a entorns dinàmics 66

 <GroundOverlay>
 <name>Monitoratge d’un d’entorn dinàmic 4</name>
 <Icon>
 <href>%s</href>
 </Icon>
 <LatLonBox>
 <north>%.14f</north>
 <south>%.14f</south>
 <east>%.14f</east>
 <west>%.14f</west>
 </LatLonBox>
 </GroundOverlay>
 </Folder></kml>
 ',$path1, $north1, $south1, $east1, $west1,
 $path2, $north2, $south2, $east2, $west2,
 $path3, $north3, $south3, $east3, $west3,
 $path4, $north4, $south4, $east4, $west4);

}

/* Tanquem connexio amb base de dades */
pg_free_result($qu);
pg_close($conn);

?>

