

ANÀLISIS, DISSENY I CONSTRUCCIÓ D’UN ROBOT EDUCATIU

BASAT EN MICROCONTROLADOR AVR-ATMEGA

Memòria del Projecte Fi de Carrera

d'Enginyeria en Informàtica

realitzat per

Sergi Hernández Arroyuelo

i dirigit per

Joan Oliver Malagelada

Bellaterra, 18 de setembre de 2009

 ~ 1 ~

Escola Tècnica Superior d’Enginyeria

El sotasignat, Joan Oliver Malagelada

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota la
seva direcció per en

I per tal que consti firma la present.

Signat: ..

Bellaterra, 18 de setembre de 2009

 ~ 2 ~

ALQUIST: Ha estat un crim fabricar robots.
DOMIN: Com?

ALQUIST: Que ha estat un crim fabricar robots.
DOMIN: No, Alquist. No em penedeixo d’això ni tan sols avui.

ALQUIST: Ni tan sols avui?
DOMIN: Ni tan sols avui, l’últim dia de la civilització. Va ser una gran aventura.

KAREL CAPEK, a R.U.R. (Robots Universals Rossum)

 ~ 3 ~

Agraïments

Voldria donar les gràcies als meus pares per l’esforç d’haver-me donat una bona educació.

Al meu germà per aguantar-me durant el dia a dia i a la Mariona per recolzar-me contínuament, i

per la seva paciència durant les absències.

A Joan Oliver per guiar-me i ajudar-me durant l’elaboració del projecte, amb la seva disponibilitat

i oferiment constant.

I a tots aquells que, abans de mi, van trobar-se amb reptes semblants i no van dubtar a oferir els

seus coneixements lliurement.

 ~ 4 ~

ÍNDEX

1 Introducció .. 7

1.1 Objectius... 8

1.2 Planificació.. 9

2 Anàlisi de requeriments ... 11

2.1 Requeriments educatius ... 11

2.2 Requeriments tècnics ... 12

2.3 Requeriments físics... 13

3 Arquitectura del robot ... 14

3.1 Mòdul de locomoció i alimentació ... 15

3.2 Mòdul d’unitat de procés ... 16

3.3 Mòdul de sensors ... 17

4 Caracterització dels components .. 18

4.1 Motors .. 18

4.1.1 GM8 .. 19

4.1.2 Arquitectura i connexió .. 20

4.1.3 Driver .. 22

4.2 Torreta mòbil amb sonar .. 25

 ~ 5 ~

4.2.1 El servomotor ... 26

4.2.2 El sonar ... 29

4.3 Infrarojos .. 32

4.3.1 Hitec Distance Sensor ... 32

4.3.2 Funcionament ... 33

5 Funcionament global del sistema ... 34

5.1 El sistema operatiu del robot: FreeRTOS .. 34

5.1.1 Com funciona? .. 36

5.1.2 Implementació .. 38

5.1.3 Afegir un mòdul al sistema operatiu ... 43

6 Eines emprades ... 45

6.1 L’entorn per al desenvolupament .. 45

6.1.1 AVR Studio 4 ... 45

6.1.2 WinAVR ... 46

6.2 Programadors ... 46

6.2.1 PonyProg .. 46

6.2.2 ET-AVR JTAG ... 47

7 Anàlisis de costos i proposta de viabilitat ... 48

7.1 Cost unitari del robot .. 49

 ~ 6 ~

7.2 Proposta de viabilitat .. 50

8 Conclusions ... 53

8.1 Possibles Millores ... 54

9 Bibliografia .. 56

10 Annex .. 58

10.1 Especificacions hardware ... 58

10.1.1 Esquemàtics de la placa base actual ... 58

10.1.2 Solarbotics GM8.. 59

10.1.3 Devantech SRF02 .. 60

10.1.4 L293 .. 66

10.1.5 MAX232 .. 72

10.2 Guía de comandes dels drivers implementats .. 76

10.3 Instal·lació de les eines utilitzades .. 78

10.3.1 Instal·lació Avr Studio 4 i WinAVR ... 78

10.3.2 Instal·lació PonyProg... 79

10.3.3 Instal·lació ET-AVR JTAG ... 79

10.4 Costos de la placa d’expansió ... 81

10.5 Despeses d’enviament .. 82

 ~ 7 ~

1 INTRODUCCIÓ

Si el dramaturg Karel Capek aixequés el cap es trobaria que aquella paraula que va popularitzar a

la seva obra R.U.R (Robots Universals Rossum)1, s’ha estès a la vida contemporània fins a convertir-se

en un mot força quotidià. El que va imaginar el famós escriptor txec, un futur on els robots

substituirien els homes en les feines més perilloses i mecàniques, és cada cop més real, tot i que

difereixi sensiblement del plantejament catastròfic de l’obra.

La robòtica mòbil, tal i com l’entenem avui en dia, té els seus inicis a la dècada dels 60 i des

d’aleshores el seu creixement ha augmentat constantment per les seves aplicacions industrials i pel

interès que el seu objectiu suscita: realitzar tasques com les fan els essers humans. La possibilitat de

dur a terme feines que poden ser difícils per a l’home o fins i tot perilloses ha fet evolucionar

notablement aquesta ciència. Dins d’aquest camp, la navegació mòbil i autònoma ha tingut molt a

dir, per la possibilitat d’arribar a allà on no es pot arribar, d’aconseguir una precisió incapaç per part

de l’ésser humà i per la millora contínua de la intel·ligència dels robots. La implantació de sensors ha

estat essencial en aquest sentit, doncs atorguen al robot la informació fonamental per a entendre el

seu entorn, prendre decisions i actuar.

Si la robòtica mòbil és interessant pel que fa a aplicacions industrials, també ho és pel que fa a

aplicacions educatives, doncs conviu amb la majoria dels camps de l’enginyeria informàtica. És per

això que ens permet oferir a l’alumne un exercici atractiu i interessant, amb el qual pot aplicar els

coneixements en tècniques de programació i fonaments de computació, i observar les seves

conseqüències d’una forma molt experimental. De fet, l’aplicació de robots mòbils a pràctiques

educatives no és una idea nova. Al mercat és fàcil trobar ofertes de robots completament pensats

per aplicacions educatives a nivell principiant. No obstant, no és tan senzill trobar solucions que

1 L’obra de teatre R.U.R. descriu una societat deshumanitzada per la proliferació del maquinisme en la vida

quotidiana. Estrenada el 1921, és coneguda per contenir la primera aparició del terme “robot”.

 ~ 8 ~

permetin introduir a l’alumne en nivells més exigents. Em plantejo donar resposta a aquesta

necessitat i proporcionar una alternativa adaptada als requeriments propis, amb una informació

acurada referent tant a la implementació com als costos del projecte, que permeti portar-lo a terme

amb garanties d’èxit.

1.1 OBJECTIUS

L’objectiu principal del meu projecte és la construcció d’un robot educatiu adequat per a la

formació i aprenentatge tant en assignatures de hardware com de software, basat en el

microcontrolador Atmega 128 d’ATMEL. El robot haurà de ser intel·ligent i autònom, disposant d’una

sèrie de sensors que possibilitin un ventall prou ampli per a l’experimentació de futurs alumnes en

assembler i llenguatge C.

Per portar a terme aquesta idea global de la manera més òptima, cal tenir en compte l’elecció

d’una arquitectura adient per tal de proporcionar les funcionalitats proposades i establir una primera

idea d’aquestes funcionalitats amb la intenció de millorar-les a mesura que s’avança i els objectius

inicials van sent completats. Aquesta primera idea proposa, bàsicament, un robot capaç de detectar i

evitar obstacles. Cal dotar-lo de la informació necessària per establir un contacte amb l’exterior i

poder controlar certs paràmetres que seran interessants per possibilitar al màxim l’experimentació

dels alumnes. És necessari, per tant, realitzar la programació dels drivers de control que atorguen al

robot de l’autonomia i relació amb l’entorn abans esmentada, i la integració d’aquests en un sistema

operatiu que permeti gestionar-los eficientment.

El robot proposat servirà per establir les bases d’un projecte educatiu per a volums mitjans, en el

qual es tractarà de reduir costos i simplificar funcionalitats per tal de que sigui el més viable possible.

S’oferirà una descripció detallada dels costos.

 ~ 9 ~

Com a objectiu personal, cal que esmenti el fet d’aprofundir en el camp de la robòtica mòbil, així

com ampliar els meus coneixements pel que fa a la programació en llenguatge C i assembler,

concretament la programació de microcontroladors, i en la comprensió de l’arquitectura i

funcionament de l’Atmega 128.

1.2 PLANIFICACIÓ

La planificació del projecte ha estat portada a terme segons l’ordre que em vaig plantejar

inicialment i seguint l’orientació donada pel meu director. A la figura 1 es pot veure el

desenvolupament durant l’any acadèmic 2008-2009.

Figura 1

Vaig començar per fer un primer estudi dels components que havia de portar el robot. Va ser una

etapa d’anàlisi en la qual vaig anar documentant-me per acabar fent una tria. Després vaig estudiar

les alternatives que trobava al mercat, especialment el Boe-Bot de Parallax, i vaig començar a

estudiar el microcontrolador sobre el qual es basa el projecte: l’Atmega 128 d’Atmel. Aquest primer

estudi va comportar el primer mes de projecte. A continuació vaig realitzar el disseny de

 ~ 10 ~

l’arquitectura sobre la qual treballaria. Un cop rebuts els components i sensors necessaris, vaig poder

iniciar la construcció física del robot.

A mitjans de març de 2009, ja amb el robot construït, vaig iniciar la programació dels drivers.

Aquesta tasca em va portar fins a juny del 2009, moment en el qual em vaig plantejar allargar el

projecte fins al setembre per tal de poder integrar el sistema operatiu FreeRTOS. Durant l’estiu vaig

dedicar-me a compaginar la integració de FreeRTOS amb l’elaboració de la memòria, que ja havia

començat temps abans. Finalment, vaig implementar un algoritme de navegació autònoma de prova.

 ~ 11 ~

2 ANÀLISI DE REQUERIMENTS

Començaré per fer un anàlisi dels requeriments del projecte. Explicaré aquelles necessitats que

preveig abans de començar i que m’han de servir per definir com vull que sigui el robot. Diferenciaré

tres tipus de requeriments: educatius, tècnics i físics.

2.1 REQUERIMENTS EDUCATIUS

M’he plantejat l’elaboració d’aquest robot com un projecte de caire educatiu. És la seva raó de

ser i, per tant, hi ha certs aspectes a tenir molt en compte.

 Eina educativa: el robot, com a eina educativa, ha d’oferir quantes més possibilitats

d’aprenentatge millor i versatilitat per adaptar-se a pràctiques diferents. En aquest sentit

cal que em plantegi utilitzar una arquitectura que suporti llenguatges d’ús comú en

l’aprenentatge de les enginyeries d’informàtica i telecomunicacions, i evitar aquelles que

ofereixen moltes facilitats però només permeten experimentar amb un llenguatge propi,

de poc interès per aquell que ha d’aprendre uns fonaments, com és el cas dels robots de

Parallax. Per altra banda és important oferir una eina entenedora i lliure de conceptes

complexes pels quals l’alumne no ha de perdre temps, podent dedicar-se directament a

allò que li interessa.

 Extensibilitat: un projecte educatiu de caire tecnològic sempre ha d’estar obert a

extensions que el puguin fer millor. És molt positiu donar lloc a possibles ampliacions que

allarguin la vida del projecte com a eina educativa. De fet, la millora de la proposta que

presento podria ser entesa com la darrera funcionalitat educativa d’aquest projecte.

 ~ 12 ~

 Viabilitat econòmica: tot projecte requereix una viabilitat econòmica. Tractant-se d’un

projecte educatiu és convenient oferir un anàlisi de costos que permeti estudiar si és

viable o no. En el mercat de la robòtica, i amb les possibilitats globals que ofereix

Internet, és fàcil trobar diferències de preus per un producte similar i, de vegades, per al

mateix producte. Per tant, forma part del projecte tractar d’adequar-se a les necessitats

sense deixar de tenir en compte els costos del material, cercant sempre la solució més

econòmica possible.

2.2 REQUERIMENTS TÈCNICS

La meva proposta consisteix en un robot mòbil amb capacitat per evitar obstacles. Per aquest

propòsit cal que em plantegi tres requeriments.

 Locomoció: s’ha de dotar al robot d’un sistema de locomoció que li permeti moure’s,

amb la possibilitat de variar la velocitat i canviar de sentit i direcció.

 Percepció: per tal de que interactuï amb l’exterior necessitarà un sistema de percepció

format per diferents dispositius.

 Processament: la informació rebuda a de ser processada amb certa capacitat de càlcul

com per permetre la programació de comportaments intel·ligents. Dins d’aquest

requeriment s’inclou la implementació d’un sistema operatiu que permeti gestionar el

comportament del sistema.

 ~ 13 ~

2.3 REQUERIMENTS FÍSICS

Per últim, exposo dos requeriments físics que caldrà assolir de la manera més ideal possible:

 Mida reduïda: quan més compacte i lleuger sigui el robot, millor. Per tant, durant la tria

de components i en el plantejament de l’arquitectura, tindré en compte aquest tret per

intentar dissenyar un robot el més petit possible.

 Facilitat de reproducció: com a projecte amb possibilitats de ser replicat en un nombre

mitjà de còpies, facilitaré la seva construcció. En aquest sentit incidiré en una

arquitectura senzilla d’elaborar i amb facilitats per ser replicada.

 ~ 14 ~

3 ARQUITECTURA DEL ROBOT

L’arquitectura proposada parteix dels requeriments i de les característiques bàsiques del robot. A

la arquitectura del robot s’han d’encabir totes les parts pensades inicialment de tal manera que sigui

fàcil de construir i de reproduir. Alhora, convé un disseny suficientment modelable, que permeti

afegir noves propostes i ampliar el projecte inicial. Per això he decidit construir un xassís de fusta

compost bàsicament per tres làmines de diferents mides. He triat fusta de marqueteria de 4 mm,

molt fàcil de tallar. Una plantilla amb les mides exactes de les làmines ens permet construir diverses

còpies fàcilment amb materials barats com, per exemple, el PVC.

Com es pot observar a la figura 2, el disseny físic del robot queda dividit en tres grans mòduls, tal

i com em vaig plantejar originalment: mòdul de locomoció i alimentació, mòdul d’unitat de procés i

mòdul de sensors.

Figura 2

 ~ 15 ~

3.1 MÒDUL DE LOCOMOCIÓ I ALIMENTACIÓ

Aquest mòdul està compost per les parts de locomoció i alimentació. La seva col·locació en

l’esquelet del robot queda a la part més inferior.

La locomoció del robot està formada per dos motors de corrent continu de 5 V amb les

respectives rodes que permeten la propulsió del robot. Estan col·locats sobre un eix imaginari i

collats al xassís. Les possibilitats de rotació queden definides per les velocitats aplicades a cadascuna

de les rodes, així com el sentit. Podrem realitzar girs de radi ample si apliquem el mateix sentit però

diferent velocitat, i girs de radi petit si apliquem, per exemple, la mateixa velocitat però en sentit

contrari. El sistema de locomoció queda recolzat per una bola col·locada per davant de les rodes,

centrada, que permet estabilitzar el robot i definir la direcció.

L’alimentació està formada per un conjunt de quatre piles de 1,5 V, el que permet tenir un total

de 6 V. Cal, per tant, un regulador de tensió per que el microcontrolador funciona a 5 V. Les piles

queden allotjades a un portapiles collat al xassís, protegit de l’exterior, i a on s’ha deixat un espai

suficient per afegir una pila més mitjançant un mòdul acoblable.

 ~ 16 ~

3.2 MÒDUL D’UNITAT DE PROCÉS

El mòdul d’unitat de procés és l’encarregat de suportar el microcontrolador i permetre la seva

comunicació tant amb el mòdul de locomoció i alimentació, com amb el mòdul de sensor. Es troba

situat per sobre de la fusta que exerceix com a base principal del xassís i està format per la placa del

Atmega 128 i per una placa d’expansió de construcció pròpia que permet l’ús correcte del

microcontrolador. A la figura 3 observem l’esquemàtic de la versió final de la placa.

Figura 3

Podem diferenciar com disposa de la comunicació RS-232 mitjançant el circuit integrat MAX232.

Remarco també el regulador de tensió, el circuit integrat L293 per al control dels motors i l’ entrada

JTAG molt útil per la descàrrega del programa des del PC.

 ~ 17 ~

3.3 MÒDUL DE SENSORS

El mòdul de sensors és l’encarregat d’aconseguir informació de l’exterior i oferir-la al robot per a

que pugui treballar amb ella. Inicialment vaig plantejar aquest mòdul com un tercer pis en el que

quedarien distribuïts els diferents sensors. Però a la pràctica ha resultat molt més interessant

col·locar-los a la part davantera, a una alçada semblant a la del mòdul de control. Els sensor de que

disposa són: un sonar i dos infrarojos.

El sonar és el sensor que ha de donar informació al robot del que tingui davant, per això queda

enfocat cap a la part davantera. Queda ubicat en una petita torreta que consta d’un servomotor que

permet fer escombrades. El sonar va collat a una petita base col·locada sobre el servomotor.

Els infrarojos estan situats als laterals de la part davantera. Com que tenen un abast de detecció

molt més petit que el del sonar actuen únicament per evitar que el robot topi amb obstacles situats

als seus laterals.

 ~ 18 ~

4 CARACTERITZACIÓ DELS COMPONENTS

4.1 MOTORS

Una de les parts més importants pel que fa al funcionament efectiu del robot és la locomoció, la

qual possibilitarem gràcies a dos motors de corrent continu. De les possibles solucions alhora de triar

la manera de proporcionar la locomoció, em vaig plantejar dues alternatives: motors i servomotors.

Tot i que els darrers faciliten el seu control i acostumen a oferir un torsió més elevat, em vaig decidir

pels motors amb la intenció d’aconseguir un ventall de velocitats més ampli i evitar haver de

modificar els servos per a la rotació contínua, doncs en la majoria dels casos estan preparats per

rotar únicament 180°.

Un motor de corrent continu és una eina que transforma l’energia elèctrica en energia mecànica

amb moviment rotatori. El seu principi de funcionament consisteix, bàsicament, en fer passar un

corrent elèctric per un conductor que es troba dins de l’acció d’un camp magnètic, de tal manera que

dit conductor es mourà en sentit perpendicular a l’acció del camp magnètic.

Figura 4

 ~ 19 ~

4.1.1 GM8

El motor triat és el GM8 de Solarbotics, un petit motor que ofereix bones prestacions a un preu

molt econòmic. M’interessa la seva mida molt reduïda, així com el seu poc pes, que contribuirà a fer

el robot més lleuger i compacte. A més, el fet de que Solarbotics ofereix rodes i altres complements

que encaixen a la perfecció amb el motor, i que també es comercialitzen a preus baixos, em facilita la

feina alhora de configurar tot el mòdul de locomoció.

 Solarbotics GM8

 Voltatge: 5 V

Torsió: 3.096 kg-cm

 Velocitat: 70 rpm

 Pes: 37 grams

 Dimensions: 55x48x23 mm

 Fabricant: Solarbotics

 Preu: 3,73€

 ~ 20 ~

4.1.2 ARQUITECTURA I CONNEXIÓ

4.1.2.1 EL PONT H

Per poder controlar els dos motors de manera útil, podent establir la rotació en un sentit i en

un altre, és necessari l’ús d’un pont H. Un pont H és un circuit electrònic que ens permet controlar un

motor en ambdós sentits. Consisteix en fer servir quatre interruptors que, en funció de quins estiguin

oberts i quins tancats, farà girar el motor en un sentit o en un altre, parar-lo sobtadament o deixar-lo

frenar per pròpia inèrcia. Com podem veure a la figura 5, l’activació dels interruptors S1 i S4,

juntament amb la desactivació dels S2 i S3, generaria un moviment circular en un sentit invers al que

aconseguiríem amb la combinació oposada.

Figura 5

La taula de veritat d’un pont H queda definida de la següent manera:

S1 S2 S3 S4 Resultat

1 0 0 1 Gir en sentit d’avanç

0 1 1 0 Gir en sentit de retrocés

0 0 0 0 Detenció sota pròpia inèrcia

0 1 0 1 Detenció per fre

 ~ 21 ~

4.1.2.1 EL L293

A l’hora de construir el pont H podem fer-ho manualment o bé fent-nos servir d’un dels

circuits integrats que hi ha al mercat i que ens redueixen la tasca de construcció, facilitant-nos molt la

feina. En el nostre cas farem servir el circuit integrat L293, que ens permet controlar dos motors

mitjançant un pont H per cadascun d’ells. Així, amb un sol circuit integrat podem fer ús de tots dos

motors d’una manera molt senzilla.

Per explicar el funcionament d’aquest circuit cal aclarir que hi ha dues parts ben

diferenciades i que a la figura 6 queden delimitades per una línia vermella discontínua. Les dues parts

son simètriques i cadascuna governarà un motor de manera independent.

Figura 6

Si ens fixem en la part esquerra del xip, tenim les senyals 1A i 2A per indicar la direcció de gir

del motor. Quan 1A sigui 0 el motor girarà en un sentit, quan sigui 1 en el contrari. La patilla 2A ha de

rebre el senyal contrari a 1A, per això és col·loca un inversor a l’entrada, evitant que el circuit arribi a

fer curtcircuit. Les patilles blau fosc son les sortides cap als motors i aniran directament connectades

als borns de cada motor. Les patilles 1,2EN i 3,4EN són entrades d’habilitació del xip i simplement

faran funcionar el motor corresponent, de la manera descrita fins ara si estan a 1, i pararan el motor

 ~ 22 ~

en el cas d’estar a 0. Queden 6 patilles: 2 de Vcc i 4 de Gnd. Vcc1 és l’alimentació de l’electrònica i va

connectada als 5 V, mentre que Vcc2 és l’alimentació dels motors i, tot i que en el meu cas també és

de 5 V, en altres casos podria ser un voltatge superior. Les 4 patilles de Gnd aniran connectades entre

elles.

4.1.3 DRIVER

El control dels motors mitjançant software es fonamenta bàsicament en l’ús correcte del L293,

que és força senzill: només em caldrà activar en el moment adequat els bits de direcció per

aconseguir que el motor giri en un sentit o en un altre. Amb això tinc solucionat el control elemental

del motor, però no el de la seva velocitat. M’interessa poder establir la velocitat que prengui el robot

en determinades situacions, i per això faré servir la modulació per amplada de pols, més coneguda

com PWM (Pulse-Width Modulation). Aquesta tècnica consisteix en fer variar el cicle de treball d’una

senyal periòdica, mantenint la mateixa freqüència. Així podrem controlar la quantitat d’energia que

enviem i, per tant, la velocitat del motor.

 Atmega 128 ens ofereix una sèrie de registres que ens faciliten l’ús del PWM. Diferenciarem

bàsicament tres tipus de registre: TCNTx, ICRx, i OCRxA/B/.

TCNTx: és el comptador del timer, es va incrementant fins al valor límit (ICRx), moment en el qual

començarà a decréixer fins a 0, tornant a començar periòdicament.

ICRx: és un registre de comparació i serveix per establir en quin punt el comptador (TCNTx)

començarà a decréixer.

OCRxA/B/C: és un registre de comparació, que definirà el període PWM en els punts en els que

es creui amb el valor de TCNTx.

 ~ 23 ~

OCxA/B/C: no és un registre, sinó el pin de sortida en el qual s’obté el senyal PWM. És en aquest

pin en concret on haurem de connectar el senyal d’enable del motor. La freqüència de sortida

quedarà determinada per la següent fórmula:

On fclk_I/O és la freqüència del rellotge d’entrada i sortida, i N és el valor del prescalar. Aquests

valors són configurables i haurem de triar-los en funció de certs requisits.

Figura 7

 Com podem observar a la figura 7, TCNTx inicia una compta incremental fins arribar a ICRx,

moment en el qual començarà a decréixer. Durant aquest cicle es creuarà en dues ocasions amb el

valor constant de OCRxA/B/C.

 Quan TCNTx = OCRxA/B/C mentre el comptador estigui en pujada: la sortida

OCxA/B/C es posarà a 1.

 Quan TCNTx = OCRxA/B/C mentre el comptador estigui en baixada: la sortida

OCxA/B/C es posarà a 0.

 ~ 24 ~

D’aquesta manera definim el senyal PWM. Observem que si, per exemple, triem un valor de

OCRxA/B/C molt més alt, el cicle de treball serà molt més ample i, en el nostre cas, aconseguiríem

una velocitat superior. A la figura 8 podem veure com varia el voltatge final en funció del cicle de

treball mantenint la mateixa freqüència.

Figura 8

4.1.3.1 FUNCIONS DE CONTROL DEL MOTOR

void motorConfig(void);

La funció d’inicialització dels motors defineix com a sortides els pins que utilitzarem. Per cada

motor, un pin d’enable i dos per establir la direcció. El pin d’enable es posa a 1 per tal de que els

motors quedin preparats per funcionar.

void Stop(); void motorRStop(void); void motorLStop(void);

Les funcions d’aturada actuen posant a 0 els bits de direcció.

 ~ 25 ~

void Endavant(int velocitat); void motorEndavantR(int velocitat);

void motorEndavantL(int velocitat);

Les funcions de marxa endavant activen els bits de direcció de tal manera que els motors girin

endavant (A a 0 i B a 1). El paràmetre velocitat especifica la velocitat amb la que volem que girin els

motors i estarà comprès entre els valors 47 i 255. Serà el valor assignat al registre OCR1x.

void Enrera(int velocitat); void motorEnreraR(int velocitat);

void motorEnreraL(int velocitat);

Funcionen de la mateixa manera que les anteriors, però activant els bits de direcció de manera

inversa (A a 1 i B a 0).

4.2 TORRETA MÒBIL AMB SONAR

El ultrasò és una ona acústica amb una freqüència per sobre del límit perceptible per l’ésser

humà. El funcionament del sonar consisteix bàsicament en emetre una ràfega d’ultrasons que en

trobar-se amb algun objecte rebotarà i serà rebuda pel mateix sonar. El temps transcorregut entre

l’emissió i la recepció permetrà al dispositiu calcular-ne la distància. Em servirà per captar la

presència d’obstacles davant del robot i rebre informació respecte la distància a la qual es troba

l’obstacle. Serà per tant un element fonamental pel que fa a la capacitat de navegació del robot,

detectant la presència d’obstacles i evitant-los exitosament.

Per millorar la capacitat de percepció, el sonar funcionarà conjuntament amb un servomotor que

permetrà moure’l en un radi aproximat de 180 graus. Un servomotor és un dispositiu format per un

motor de corrent continu, una reducció i un circuit de control que permet que el motor s’aturi en un

punt desitjat, quedant bloquejat en aquella posició. En el meu cas, l’ús del servomotor esdevé molt

interessant per tal de donar al sonar capacitat per enfocar en diferents direccions o realitzar

 ~ 26 ~

escombrades, aturant-se per realitzar la medició. D’aquesta manera dotaré el robot d’una

“visibilitat” molt més amplia que la que tindria amb un sonar fix.

4.2.1 EL SERVOMOTOR

4.2.1.1 MINISERVO DY-S0206

El servomotor triat destaca per la seva mida reduïda i el seu poc pes, característiques molt

interessants pel que fa a la compactació del robot. Com està pensat per fer moure el sonar, la seva

mida reduïda em facilita encabir-lo al xassís evitant els problemes d’espai que em podria donar un

servomotor de mida més gran. El recorregut del servomotor és, com en la majoria dels casos, de 180

graus, tret que ja em resulta convenient tenint en compte que la meva intenció es fer-lo moure

sempre en un rang de 0 a 180 graus. Potser no ofereix la mateixa força de torsió que altres

servomotors, però en el meu cas no cal que sigui excessiva. També és interessant el seu preu, bastant

econòmic en comparació amb altres productes de característiques semblants.

 Miniservo DY-S0206

 Voltatge: 4.8 - 7,2 V

Força de torsió: 1,5 kg-cm

 Velocitat: 100 rpm

 Pes: 9 grams

 Dimensions: 23x12,5x30 mm

 Fabricant: Dong-Yang

 Preu: 8,45€

 ~ 27 ~

4.2.1.2 DRIVER DEL SERVOMOTOR

El control d’un servomotor ve plenament associat amb el concepte de PWM que ja he comentat

anteriorment per als motors. En aquest cas, en comptes de poder modificar la velocitat amb la que

gira un motor, el PWM em permet especificar al servomotor en quin punt vull que s’aturi.

La freqüència del senyal PWM del circuit intern d’un servo és de 50 Hz, o el que és el mateix de

1/50 = 20 mseg. Com podem apreciar a la figura 9, la durada del cicle de treball ha de ser d’1 mseg

per a que el servomotor es posicioni a l’esquerra, 1,5 mseg per a que es posicioni al centre i 2 mseg

per a que ho faci a la dreta.

Figura 9

Per tant, cal que trobi el valor que he de fer servir als registres de PWM (TCNTx, ICRx i

OCRxA/B/C) per que el funcionament sigui el correcte. Utilitzaré la funció:

 ~ 28 ~

Obtinc que per a 20 mseg el valor (tenint en compte que fem servir 8 de preescaler) del

OCRnA/B/C ha de ser aproximadament 20000. Aquest serà el valor de l’ICRx per tal d’establir la

freqüència del pols en 20 mseg. Calculo el valor de OCRxA/B/C per a 1 mseg, 2 mseg i 2,5 mseg i

obtinc els valors 2000, 3000 i 4000 respectivament. Així doncs, aquests valors seran els que hauré

d’associar a OCRxA/B/C quan vulgui posicionar el servomotor en un dels punts concrets.

4.2.1.3 FUNCIONS DE CONTROL DEL SERVOMOTOR

void servoInit(void);

Inicialitza el servomotor configurant el PWM segons els paràmetres calculats i posiciona el

servomotor cap al centre.

void moveServo(int graus, int dir);

Mourà el servomotor a la posició indicada. Aquesta posició quedarà definida pels paràmetres

graus i dir, on el primer definirà els graus de gir i el segon la direcció, 1 per anar a la dreta i 0 per anar

a l’esquerra.

void turn_left(void);

Posicionem el sonar a 0 graus, a l’esquerra. En aquest cas el valor de OCRxA/B/C és 2000.

void turn_right(void);

Posicionem el sonar a 180 graus, a la dreta. En aquest cas el valor de OCRxA/B/C és 4000.

void center(void);

Posicionem el sonar a 90 graus, al centre. En aquest cas el valor de OCRxA/B/C és 3000.

 ~ 29 ~

void escombrada(int num);

Funció que realitza escombrades des de 0° a 180° i de 180° a 0°. El paràmetre num especifica el

nombre d’escombrades que es faran. L’efecte d’avançament és fa mitjançant el increment iteratiu de

OCRxA/B/C amb un retard entre cada iteració, des de 2000 fins a 4000 i després el decrement des de

4000 fins a 2000.

4.2.2 EL SONAR

4.2.2.1 SRF02

El sonar triat es caracteritza principalment per tenir un mateix transductor per l’emissió i la

recepció dels ultrasons. Això el diferencia d’altres que disposen d’un transductor per l’emissió i un

altre per la recepció, i possibilita que la distància mínima a la que detecta una presència pugui ser

menor. Aquest tret és important, doncs aquest sonar ens permet detectar obstacles entre els 15 i els

600 cm. Disposa de dos modes de comunicació: sèrie i I2C. I2C es un bus de comunicacions dissenyat

per Phillips i consta únicament de dues línies: la de dades (SDA) i la de rellotge (SCL). Per al nostre

projecte és convenient l’ús del I2C, degut a que el mode sèrie necessita fer ús dels pins de

transmissió i recepció del Atmega 128, que necessitarem per a altres usos.

Devantech SRF02

Alimentació: 5 V

Mides: 24x20x17 mm

Pes: 4,6 gr

Fabricant: Devantech

Preu: 17,09 €

 ~ 30 ~

4.2.2.2 ARQUITECTURA I CONNEXIÓ

Per poder desenvolupar la comunicació cal afegir unes petites modificacions a nivell hardware.

Caldrà que afegeixi les línies SCL i SDA connectant-les a l’alimentació mitjançant una resistència de

pull-up de 4,7kΩ per cada línia. Les línees SCL i SDA tenen els seus propis pins a l’Atmega 128, i són el

PD0 i el PD1.

Figura 10

4.2.2.3 DRIVER DEL SONAR

Un cop establertes les connexions necessàries per a la comunicació I2C cal entendre com

establirem el diàleg entre microcontrolador i sensor. Cal que en aquest apartat comentem dos

conceptes claus: el Two-Wire Serial Interface i el protocol de comunicació I2C.

El Two-Wire és la interfície sèrie proporcionada per l’Atmega 128 per a comunicacions I2C.

Permet connectar 128 dispositius diferents utilitzant únicament les línies SCL i SDA. L’esquema de

funcionament és el de mestre-esclau, on el mestre és el microcontrolador i els esclaus són cadascun

dels 128 dispositius possibles. Hi ha dos conjunts d’especificacions: les de busos amb freqüències

 ~ 31 ~

inferiors a 100 kHz (com en el cas del SRF02 que és de 40 kHz) i les de busos amb freqüència fins a

400 kHz. Per configurar la freqüència del rellotge (SCL) faré servir els registres TWBR (rang del

rellotge) i TWPS (prescalar) i em guiaré per la següent fórmula, proporcionada pel fabricant:

Els altres registres que faré servir per la comunicació seran el TWCR i el TWDR. El primer és el

registre per al control d’operació del Two-Wire. L’utilitzaré per indicar el tipus d’operació que faré a

continuació i ho indicaré segons el valor indicat a les especificacions del SRF02, que es poden

consultar a l’annex (10.1.3). El registre TWDR, en mode de transmissió, contindrà el següent byte a

ser transmès. En mode de recepció, contindrà el darrer byte rebut. Per tant, serà el registre en el

qual escriurem i llegirem les dades.

4.2.2.4 FUNCIONS DE CONTROL DEL SONAR

char i2c_writebyte(char addr ,char reg,char value); unsigned char

i2c_readbyte(char addr,char reg);

Aquestes dues funció venen incloses a la llibreria d’I2C de Peter Fleury. La primera la faig servir

per escriure en el dispositiu la comanda a realitzar i la segona per llegir la resposta. En totes dues el

paràmetre addr especifica l’adreça del dispositiu amb el que ens volem comunicar, i el paràmetre reg

el registre al qual volem accedir.

unsigned int medicio(void);

Aquesta funció realitza una medició mitjançant la combinació de les funcions d’escriptura i

lectura abans comentades. Primer envia la comanda per obtenir una medició en centímetres i

després rep la resposta, retornant-la com a enter.

 ~ 32 ~

4.3 INFRAROJOS

Un sensor d’infraroig és un dispositiu electrònic amb capacitat per mesurar la radiació

electromagnètica infraroja en el seu camp de visió. És per això que mitjançant la radiació que emeten

tots els cossos podrem detectar la presencia d’un obstacle i augmentar la capacitat de percepció del

robot. Com que els infrarojos acostumen a tenir un camp de visió reduït, en el robot aniran destinats

a captar presències als laterals del robot, zona que queda fora de l’abast del sonar. El principi de

funcionament es basa en la combinació d’un emissor, un diode LED infraroig, i un receptor, el

fototransistor. Al mercat ens trobarem amb la possibilitat de comprar cada component per separat i

fabricar pel nostre compte la parella de comunicació, o bé sensors on la parella ja ve composta en un

petit sistema que inclou un circuit integrat.

4.3.1 HITEC DISTANCE SENSOR

El sensor d’infraroig triat s’ofereix amb la parella emissor/receptor ja composta, la qual cosa

simplifica bastant el seu ús. Es redueix simplement a la detecció d’objectes, sense donar informació

de la distància a la qual es troben. A la meva arquitectura facilita molt la col·locació dins del xassís,

doncs es tracta d’un sensor de mida força reduïda. La connexió és igual a la d’un servomotor, amb un

senyal que passarà de 1 a 0 quan es detecti una presència.

Hitec Distance Sensor

Alimentació: 5 V

Distància màxima de detecció: 15 cm

Mides: 12.9x25.4 mm

Fabricant: Hitec

Preu: 7,75 €

 ~ 33 ~

4.3.2 FUNCIONAMENT

Per la simplicitat del seu funcionament no és necessària l’elaboració de cap driver. Simplement

haurem de definir com a entrada el port al qual l’associem. Consultarem aquest port d’entrada

periòdicament, i segons el seu estat podrem determinar si hi ha alguna presència. Com en el meu cas

els infrarojos estan col·locats als laterals del robot, quan es detecti una presència corregiré la

trajectòria del robot per evitar la col·lisió i després tornaré a adreçar la direcció.

 ~ 34 ~

5 FUNCIONAMENT GLOBAL DEL SISTEMA

Un cop programats els drivers per controlar els diferents sensors i les altres parts del robot, és

necessari plantejar com englobar-ho tot en un mateix sistema. Cal tenir en compte que un

processador convencional es limitaria a executar codi de manera seqüencial, i que això resultaria

molt poc útil si la idea que pretenc és fer un robot consistent. Aquesta limitació és força important,

doncs no em permetria realitzar tasques en paral·lel quan en molts casos la concurrència esdevé

necessària. Per exemple, obtenir informació dels sensors alhora que funciona la locomoció o

comunicar amb el PC mentre s’executa alguna tasca. Per això em plantejo una nova perspectiva per

al control global del sistema: el Sistema Operatiu.

Un sistema operatiu és un software format per un elevat nombre de programes que

s’encarreguen d’administrar els recursos d’un sistema. De manera molt genèrica podríem dir que el

que tracta de fer és solucionar el problema de la concurrència que abans hem esmentat, permetent

l’execució de diferents tasques paral·lelament i de la manera més eficient possible. Actualment hi ha

un gran ventall de sistemes operatius i per això cal triar el més adequat per al projecte. M’interessa

un sistema operatiu senzill i “petit”, doncs tenim certes limitacions bastant obvies, i que a ser

possible ofereixi la possibilitat de suportar la nostra arquitectura. Amb aquests requisits en ment,

s’ofereix una alternativa que a més presenta un gran nombre d’avantatges: FreeRTOS.

5.1 EL SISTEMA OPERATIU DEL ROBOT: FREERTOS

FreeRTOS és un sistema operatiu en temps real, portable i de codi obert pensat per a sistemes

integrats. Quan diem que un sistema operatiu és en temps real estem parlant d’un tipus de

plataforma que garanteix l’execució de les tasques en un temps limitat. Per altra banda, la capacitat

de portabilitat permet que sigui capaç de ser mogut a altres arquitectures sense gaires problemes. Si

 ~ 35 ~

a més afegim la particularitat de tractar-se de software de codi lliure, ens trobem amb un sistema

operatiu pràcticament fet a mida amb múltiples avantatges que ens facilitaran la feina.

Destaco les següents característiques:

 FreeRTOS és un sistema operatiu pensat per ser simple, petit i fàcil d’utilitzar. El nucli del

kernel es troba contingut en tres únics fitxers i és amplament configurable per part del

programador. El codi està escrit majoritàriament en C, la qual cosa facilita la comprensió.

 El seu caràcter lliure ha permès que a més de poder fer ús d’aquesta eina sense

restriccions econòmiques, es trobin molts recursos a la xarxa. Hi ha una molt bona

documentació i el fet d’haver estat utilitzat i desenvolupat per múltiples usuaris ha

permès donar-li consistència, millorar-lo i crear una comunitat molt útil, on és fàcil trobar

solucions a problemes i on s’ofereixen recursos de manera lliure. La llibreria de I2C de

Peter Fleury seria un bon exemple.

 Com hem comentat abans, FreeRTOS suporta una gran varietat d’arquitectures. Entre

elles la família AVR-Atmel. Tot i no trobar-se una implementació especifica per al

Atmega128 és relativament senzill adaptar-lo a partir del Atmega323.

 FreeRTOS és un sistema operatiu molt senzill. Però disposa de molts recursos útils per a

la comunicació i sincronització de processos: cues, semàfors recursius i binaris, mútex...

 No té restriccions en quant al nombre de tasques que poden ser creades. Tampoc en

quan al nombre de prioritats que poden ser utilitzades, ni en l’assignació d’una prioritat a

diverses tasques.

 ~ 36 ~

5.1.1 COM FUNCIONA?

He parlat anteriorment del problema de la concurrència i de la necessitat que tenim d’executar

processos en paral·lel. A continuació explicaré tres conceptes fonamentals per entendre com

FreeRTOS realitza aquesta funció.

5.1.1.1 MULTITASKING

Un sistema operatiu multitasca és aquell que és capaç de gestionar els processos de tal manera

que produeixi la sensació de que s’executen concurrentment. Es tracta d’executar les tasques de

manera seqüencial però alterna de tal forma que sembli que s’executen alhora. Per tant la

concurrència no és real sinó aparent. Si observem la figura 11 podem entendre millor aquest

concepte. La gràfica superior mostra el resultat aparent: tres tasques en execució durant el mateix

interval de temps. A la segona gràfica podem veure com a la realitat el sistema operatiu proporciona

una franja de temps per procés que és va alternant, i que permet que les tasques comparteixin el

mateix processador produint la sensació d’execució concurrent.

Figura 11

 ~ 37 ~

5.1.1.2 SCHEDULING

L’scheduling o planificador és la part del kernel encarregada de decidir quina tasca farà ús del

processador en cada moment. Governa, per tant, la concurrència, decidint quina tasca queda

suspesa i quina s’executa. Ho fa mitjançant una política de planificació que és l’algoritme que

prendrà aquestes decisions. Normalment aquest algoritme s’encarrega d’assignar una franja de

temps d’execució durant la qual cada tasca pot restar en aquest estat, i respecta l’ordre d’arribada

dels processos mitjançant una cua de peticions. En el nostre cas a més de ser suspesa pel propi

kernel, una tasca pot ser suspesa per sí mateixa si, per exemple, necessita que algun recurs estigui

disponible o que succeeixi un esdeveniment, evitant consumir temps d’execució de manera

innecessària.

Cal esmentar que en tractar-se d’un sistema operatiu en temps real, l’algoritme del planificador

ofereix certes particularitats respecte a un sistema operatiu normal. Com hem dit anteriorment, que

un sistema operatiu sigui en temps real no vol dir altra cosa que ser capaç de respondre a

esdeveniments en un cert temps. El sistema operatiu ha de respectar aquests terminis de temps i ho

fa mitjançant valors de prioritat que el programador assignarà a cada tasca. El kernel de FreeRTOS

mesura aquests terminis de temps mitjançant una variable que actua com a comptador (tick counter)

i una interrupció del timer que salta cada cert període de temps, regulat pel rellotge del

microcontrolador. El tick counter serà incrementat cada cop que es generi una interrupció de tal

manera que permeti mesurar el temps amb la resolució de la freqüència adequada. Així una tasca

pot especificar el període de temps que romandrà suspesa fins que torni a despertar, o el temps

màxim d’espera quan estigui bloquejada. Per tant, en base al temps establert per les prioritats, la

política del planificador consistirà en que la tasca amb una prioritat més gran i disponible de ser

executada, faci ús del processador.

 ~ 38 ~

5.1.1.3 CONTEXT SWITCHING

Una tasca en execució fa servir els registres del microcontrolador i accedeix a les memòries RAM

i ROM com qualsevol programa. Aquest conjunt de recursos és el que entenem per context. En un

microcontrolador AVR està format per 32 registres de propòsit general, un registre d’estat, un

program counter i dues piles. Quan una tasca queda suspesa, altres tasques passen a estar en

execució podent modificar aquests registres. Per tant, una tasca no pot saber que els registres del

processador han estat modificats per que en cas de fer servir els valors modificats, el resultat seria

incorrecte. Per això és necessari salvar el context d’una tasca cada cop que aquesta entri en estat de

suspensió i recuperar-lo just abans de que passi a estar en execució, això es fa mitjançant una pila de

memòria on introduirem i extraurem les dades del context. El procés de salvar i restaurar el context

és el que anomenem context switching, i esdevé clau per mantenir la coherència en el funcionament

del sistema operatiu.

5.1.2 IMPLEMENTACIÓ

El sistema operatiu final ha quedat compost per dos mòduls que controlen el principals drivers

del robot, més un mòdul d’interfície que utilitzarem per comunicar-nos amb el PC. Els mòduls

corresponents als drivers són els de locomoció i el del sonar. Aquest últim controlarà tota la torreta,

és a dir: el moviment del servo i les captacions del sonar. En termes generals, podem dir que cada un

d’aquests dos mòduls està compost per quatre fitxers, dos fitxers de codi font (extensió .c) i dos

fitxers de llibreria (extensió .h). Una primera parella serà la composta pel fitxer on està implementat

el codi font del driver i la seva respectiva llibreria. La segona parella estarà composta pel codi font on

es duen a terme la crida a les possibles funcions del driver i la interacció amb el PC, amb la respectiva

llibreria. Apart caldran altres arxius de suport i llibreries que poden ser necessàries, per exemple, per

a la comunicació sèrie o per controlar el bus I2C. Des de el punt de vista del planificador del

FreeRTOS, cadascun d’aquests mòduls suposa una tasca a ser gestionada.

 ~ 39 ~

5.1.2.1 INICIALITZACIÓ DEL SISTEMA

La inicialització del sistema es troba al fitxer main.c. El primer que cal fer, abans de res, és iniciar i

configurar la comunicació amb el PC, per això cal crear una tasca per aquest propòsit. Posteriorment

es crea una cua para cada una de les tasques a gestionar. Com he dit anteriorment, es correspon una

tasca per mòdul i per tant cal crear dues cues: motors i sonar. Seguidament s’inicialitza el bus I2C

abans de que sigui utilitzat per alguna tasca. Un cop fet això, es crea cadascuna de les tasques i

finalment arranquem el planificador per a que les gestioni i puguin ser executades en paral·lel. Per

activar el planificador només cal que cridem la funció vTaskStartScheduler().

5.1.2.2 MÒDUL D’INTERFÍCIE

Per la seva diferència respecte als altres mòduls que composen el nostre sistema, vull fer menció

apart el mòdul d’interfície. L’objectiu d’aquest és rebre les comandes enviades des del terminal del

PC mitjançant el port sèrie, per després repartir la feina.

Per rebre les comandes, aquest mòdul acumula a la seva cua d’entrada els caràcters enviats pel

port sèrie. Es llegeix el primer caràcter enviat i si correspon a algun dels mòduls, s’envien els

caràcters restants a la cua del mòdul corresponent. Aquest farà una interpretació de la comanda i si

és correcta executarà la funció corresponent. En cas contrari mostrarà pel terminal el missatge

“E:BadSec”, indicant que la comanda enviada no és correcta.

En cas de que el primer caràcter rebut a la cua del mòdul d’interfície sigui “i”, la comanda serà

executada directament (si és correcta) sense haver de passar per altres mòduls.

 ~ 40 ~

5.1.2.3 TASQUES

Les tasques a FreeRTOS equivalen al que anomenem processos a qualsevol altres sistema

operatiu. Quan s’inicia el sistema operatiu es crea una tasca pròpia, anomenada idle task, que

s’executa sempre que no s’estigui executant cap altre tasca. Roman en espera de que s’executin

altres tasques i allibera la memòria d’aquelles que ja han estat eliminades. Aquesta tasca sempre

està en estat de poder ser executada i la seva prioritat sempre està per sota de la prioritat d’una altra

tasca. Per a les tasques creades per nosaltres cal que utilitzem la funció xTaskCreate() de l’API del

FreeRTOS, on especificarem la prioritat que li assignem, i una funció de recepció que sempre tindrà

una estructura semblant.

static portTASK_FUNCTION(pdTASK_CODE, pvParameters)

{

 (void) pvParameters;

 for(;;)

 {

 /*Crides a les diferents funcions del driver*/

 }

}

Aquesta funció es executada quan es crea la tasca i té com a objectiu rebre la petició i diferenciar

la funció a realitzar dintre de les possibilitats de la tasca. Si posem com a exemple el sonar, podem

diferenciar entre la funció que mou la torreta 90 graus a l’esquerra i fa una medició o la que genera

una escombrada de 180 graus d’abast. En funció de la codificació establerta la funció de recepció

executarà la funcionalitat concreta. Per veure la codificació que he establert per cada comanda,

podeu adreçar-vos a la guia de comandes de l’annex (10.2).

 ~ 41 ~

Els estats en els quals pot romandre una tasca són quatre, alguns dels quals ja he anat citant

anteriorment:

 En execució (Running): quan la tasca està en execució. És la tasca que fa ús del

processador.

 Preparada (Ready): quan està disponible per ser executada, però no ho fa perquè alguna

altra tasca d’ igual o més prioritat està en execució en aquell moment.

 Bloquejada (Bloqued): quan roman en espera d’un esdeveniment temporal o extern.

 Suspesa (Suspended): quan ha estat cridada la funció vTaskSuspend() de l’API de

FreeRTOS. No serà alliberada d’aquest estat fins que no sigui cridada la funció

VTaskResume().

Figura 12

 ~ 42 ~

5.1.2.4 COMUNICACIÓ ENTRE TASQUES

FreeRTOS ofereix diferents eines que permeten la comunicació segura i eficient entre les tasques

del nostre sistema. Diferenciem tres eines:

 Cues: són l’element més elemental de comunicació entre tasques. Permeten enviar

missatges entre tasques, i entre tasques i interrupcions. En la majoria dels casos es fan

servir de manera semblant a una buffer amb política FIFO.

 Semàfors: son una eina molt útil per a la compartició de recursos en un sistema operatiu.

Actuen donant pas o restringit l’ús d’un recurs per part d’un procés que el necessita per a

la seva execució. A FreeRTOS funcionen de manera semblant a com ho fan a la resta de

sistemes operatius i hi ha de dos tipus: binaris (orientats a la sincronització de tasques) i

comptadors (comptadors d’esdeveniments i de recursos disponibles).

 Mútex: semblant a un semàfor binari, inclou una propietat de prioritat que els fa idonis

per solucionar problemes d’exclusió mútua. Gestiona l’accés de les seccions crítiques a

recursos compartits.

 ~ 43 ~

5.1.3 AFEGIR UN MÒDUL AL SISTEMA OPERATIU

Suposem ara que volem afegir un nou mòdul al sistema operatiu implementat. Per fer això,

hauríem de seguir l’estructura que he comentat anteriorment:

 Inicialització del sistema: com a nova tasca, hauríem de inicialitzar-la dins del main

especificant el valor de prioritat i la seva respectiva cua.

Caldria, primer, definir la cua de la manera següent:

static xQueueHandle nova_cua;

Després cridaríem a la funció per crear-la:

nova_cua = xQueueCreate(16,sizeof(portCHAR)*8);

Finalment, cridaríem la tasca corresponent:

Nova_Tasca(tskIDLE_PRIORITY + 2,nova_cua);

 Mòdul d’interfície: caldria afegir la nova comanda al mòdul d’interfície per tal de que la

reconegués des del terminal. Per fer-ho afegiríem un nou estat dins del switch-case que

fem servir per diferenciar les noves comandes. Dins d’aquest estat, ens encarregaríem de

moure el contingut del buffer d’entrada, que contindria la comanda, a la cua de la nova

tasca, de la forma següent:

xQueueSend(nova_cua,&buffer_entrada[1],(portTickType) 100);

 Creació del mòdul: crearíem els fitxer de codi font i llibreries necessaris. Una primera

parella amb el codi font del driver i la seva llibreria. I una segona parella per gestionar la

identificació de la comanda i la creació de la nova tasca mitjançant la funció

xTaskCreate().

 ~ 44 ~

Crearíem la tasca tal i com s’indica a continuació:

xTaskCreate(Nova_Tasca, (const signed portCHAR * const) "Nom",

tascaSTACK_SIZE, NULL, uxPriority, (xTaskHandle *) NULL);

on la mida de la pila queda definida de la següent manera:

#define tascaSTACK_SIZE configMINIMAL_STACK_SIZE+48

Finalment definiríem la funció de recepció:

static portTASK_FUNCTION(Nova_Tasca, pvParameters)

{

 /* Just to stop compiler warnings. */

 (void) pvParameters;

 for(;;)

 {

 /*Crides a les diferents funcions del driver*/

 }

}

 ~ 45 ~

6 EINES EMPRADES

6.1 L’ENTORN PER AL DESENVOLUPAMENT

6.1.1 AVR STUDIO 4

AVR Studio 4 és un entorn de desenvolupament orientat a la programació de microcontroladors

de la família AVR. Es tracta d’una eina molt útil, d’accés gratuït, que permet simular el funcionament

de manera eficaç i que facilita la connexió amb el microcontrolador i la descàrrega del programa. A

continuació citaré les característiques més remarcables:

 Entre altres llenguatges, suporta C i assembler. Aquests dos llenguatges són els que

m’havia proposat en un principi des del punt de vista educatiu, doncs és fonamental el

seu aprenentatge en els primers cursos. Personalment m’inclinaré per l’ús de C com a

llenguatge per a la programació de drivers, doncs fer servir un llenguatge de baix nivell

com l’assembler podria complicar més el projecte.

 Permet la configuració manual de les memòries SRAM i EEPROM, a més de la memòria

flash, registres i entrades/sortides. Especificant el microcontrolador que estem fent

servir AVR Studio s’adequa a aquestes característiques i mostra els registres concrets del

nostre microcontrolador. La manipulació de registres durant la simulació és molt

interessant per poder observar el comportament del programa davant canvis forçats pel

programador i solucionar errors ràpidament.

 ~ 46 ~

 L’ús del debugger és molt interessant. Es pot fer servir simplement com a simulador

virtual, o bé simulant sobre el propi microcontrolador. En tots dos casos permet la

visualització de l’estat de registres i flags facilitant la comprensió, i l’ús il·limitat de

breakpoints.

6.1.2 WINAVR

WinAVR és un conjunt d’eines executables per a aplicacions Atmel AVR a plataformes Windows.

Inclou el compilador de GNU per a C i C++, anomenat avr-gcc; el depurador avr-gdb i el programador

avrdude. Serà, per tant, una eina fonamental que treballarà juntament amb el AVR Studio. Com tot el

software fet servir en el projecte, WinAVR es tracta d’una altra eina de software lliure i per tant el

seu accés és gratuït, està obert al desenvolupament de millores i noves versions, la qual cosa

garanteix consistència i suport molt accessible a la xarxa.

6.2 PROGRAMADORS

Un programador és un dispositiu electrònic que s’utilitza per descarregar el programa a la

memòria del microcontrolador. Durant l’elaboració del meu projecte n’he fet servir dos: el

programador sèrie PonyProg i el ET-AVR JTAG.

6.2.1 PONYPROG

PonyProg és un programador sèrie molt senzill però robust. El principal inconvenient que té és la

lentitud en la descàrrega del programa, la qual cosa comporta fer simulacions abans de fer la

descàrrega per evitar perdre temps. El seu ús és una mica tediós, enrederint el procés de proves

durant la programació dels dispositius. Com a avantatge, es tracta d’un programador molt més

econòmic que el JTAG.

 ~ 47 ~

6.2.2 ET-AVR JTAG

JTAG és una interfície física a nivell hardware i un protocol a nivell software que, avui en dia, es

troba en la majoria de microcontroladors. Podem entendre’l, per tant, com allò que connectem entre

el PC i el microcontrolador, sempre i quan aquest últim suporti aquesta interfície. Però també el

podem entendre com l’estàndard de comunicació que permet interactuar el PC i el microcontrolador.

El ET-AVR JTAG és un programador que utilitza aquesta tecnologia i que permet treballar

conjuntament amb l’entorn de desenvolupament del AVR Studio. Això ofereix la possibilitat de

visualitzar els registres del microcontrolador, una facilitat molt interessant que ja hem comentat

anteriorment. A més la descàrrega del programa és molt més ràpida, a diferència del PonyProg, i

redueix molt el temps de proves i de desenvolupament dels programes. També és molt més fàcil i

còmode la descàrrega del programa, degut a la seva integració amb l’AVR Studio, de tal manera que

ara només caldrà que polsem un botó per realitzar transferir les dades.

El seu preu és força més elevat, però per les característiques abans esmentades podríem dir que

es tracta del programador ideal per a un projecte sobre una aplicació AVR.

 ~ 48 ~

7 ANÀLISIS DE COSTOS I PROPOSTA DE VIABILITAT

Com he remarcat anteriorment, l’objectiu del meu projecte és educatiu i per tant cal donar a

conèixer un anàlisis dels costos que determinin la seva viabilitat. En els inicis del projecte, a l’hora de

cercar i triar cadascun dels components em trobava amb un ampli ventall de possibilitats. En molts

casos les diferències de preu eren força elevades i vaig decantar-me per aquells productes que

complien els requeriments proposats amb un preu més accessible. Internet és avui en dia una eina

que facilita molt aquesta tasca, doncs a més de proporcionar-nos un catàleg molt ample també ens

permet accedir a mercats, com l’americà, que ofereixen preus més reduïts que a Europa, per la

devaluació de la seva moneda. És per això que m’he decantat pels proveïdors estrangers, tot i que

presenten l’inconvenient propi dels enviaments a domicili: temps d’espera que acostuma a ser més

llarg del previst i despeses d’enviament.

Un cop avaluat el preu final del prototip, proporcionaré una avaluació de costos més real i

precisa, tenint en compte que el meu projecte s’ofereix com a proposta per a realitzar una petita

producció de robots. Analitzaré la viabilitat del projecte en funció d’aquesta producció, tenint en

compte aquells costos variables i fixos amb els quals m’he trobat durant l’elaboració del prototip i,

finalment, decidiré si és viable o no tenint en compte el cost final i les alternatives que trobi al

mercat. Podeu adreçar-vos a l’annex per consultar en detall els costos de fabricació de la placa base

(10.4) i les despeses d’enviament dels diferents proveïdors (10.5).

 ~ 49 ~

7.1 COST UNITARI DEL ROBOT

A continuació mostro la taula de costos dels components del robot per a una única unitat que

podem entendre com el prototip.

 Component Proveïdor Unitats €/unitat Total

M
ò

d
u

l d
e

se
n

so
rs

Servomotor DY-
S0206

Super

Robotica
(Espanya)

1 8,45 8,45

Devantech SRF02 RobotShop
(Canada)

1 17,09 17,09

Hitec Distance
Sensor

RobotShop
(Canada)

2 7,75 15,5

M
ò

d
u

l

d
’u

n
it

at
 d

e
p

ro
cé

s

Microcontrolador
Atmega128

Futurlec
(USA)

1 9,71 9,71

Mòdul Bluetooth
Bluemore 200

Eikon (Itàlia) 1 45 45

M
ò

d
u

l d
e

lo
co

m
o

ci
ó

 i
al

im
en

ta
ci

ó
 Motor de CC

Solarbotics GM8
RobotShop

(Canada)
2 3,73 7,46

Rodes Solarbotics
GM Series

RobotShop
(Canada)

1 4,22 4,22

Solarbotics GM
Bracket

RobotShop
(Canada)

2 0,87 1,74

Bola d’acer Tamiya
70144

Pololu (USA) 1 4,22 4,22

SFE Battery Holder RobotShop
(Canada)

1 1,37 1,37

Kit de dos plafons de PVC Super
Robotica

(Espanya)

1 9,05 9,05

 Components de la placa d’expansió + Fabricació 26,41

 SUBTOTAL 105,22

 Despeses d’enviament 64,17

 TOTAL 169,39

 ~ 50 ~

Aquests son els costos amb els que em vaig plantejar el projecte. El preu unitari del robot no és

excessivament elevat si tenim en compte el preu sense les despeses d’enviament. De moment

podem dir que a nivell unitari és viable, tot i que les despeses d’enviament comporten gairebé la

mateixa despesa que la suma de tots els components. Com a tot prototip és necessari assumir una

despesa més elevada del que s’espera durant el període d’elaboració del projecte. Un cop acceptat el

prototip com a vàlid, cal aprofundir en l’anàlisi final del projecte. Tractaré d’amortitzar les despeses

d’enviament i fer una avaluació molt més realista del projecte, tenint en compte la producció final

decidida.

7.2 PROPOSTA DE VIABILITAT

Analitzar els costos del projecte tenint en compte un nombre d’unitats de tirada no només em

permetrà observar fins a quin punt puc amortitzar les despeses d’enviament i, en conseqüència, tenir

més dades respecte de la pròpia viabilitat del projecte, sinó que a més em permetrà aprofitar les

ofertes que ofereixen la majoria de proveïdors per a compres d’unitats elevades i que ens ajudaran a

reduir el preu final per unitat. Finalment, ens oferirà el cost total del projecte en conjunt, i que al cap

i a la fi serà la quantitat que ens haurem de plantejar per tenir en compte si el projecte es pot dur a

terme o no.

Primer de tot cal que decideixi quants robots crec que són necessaris per al meu projecte. Tenint

en compte el context inicial, basat en la facultat d’enginyeries de la Universitat Autònoma de

Barcelona, la tirada adient seria entorn a les 25 unitats. Aquest nombre em permet aprofitar les

reduccions de costos abans comentades, que acostumen a efectuar-se per a 10 i 25 unitats (també

per a tirades més elevades, però que escapen de les nostres perspectives), sense fer una despesa

més gran que la estrictament necessària. Així doncs, proposo una tirada de 25 robots que permetrà

assolir de sobres les necessitats educatives i oferir un petit marge de error.

 ~ 51 ~

 Component Proveïdor Unitats €/unitat Total

M
ò

d
u

l d
e

se
n

so
rs

Servomotor DY-
S0206

Super

Robotica
(Espanya)

25 8,45 211,25

Devantech SRF02 RobotShop
(Canada)

25 14.81 370,25

Hitec Distance
Sensor

RobotShop
(Canada)

50 6,39 319,5

M
ò

d
u

l

d
’u

n
it

at
 d

e
p

ro
cé

s

Microcontrolador
Atmega128

Futurlec
(USA)

25 8,86 221,5

Mòdul Bluetooth
Bluemore 200

Eikon (Itàlia) 25 45 1125

M
ò

d
u

l d
e

lo
co

m
o

ci
ó

 i
al

im
en

ta
ci

ó
 Motor de CC

Solarbotics GM8
RobotShop

(Canada)
50 3,32 166

Rodes Solarbotics
GM Series

RobotShop
(Canada)

25 3,79 94,75

Solarbotics GM
Bracket

RobotShop
(Canada)

50 0,79 39,5

Bola d’acer Tamiya
70144

Pololu (USA) 25 3,97 99,25

SFE Battery Holder RobotShop
(Canada)

25 1,29 32,25

Kit de dos plafons de PVC Super
Robotica

(Espanya)

25 9,05 226,25

 Components de la placa d’expansió (x25) 490,25

 Construcció placa d’expansió 170

 SUBTOTAL 3565,75

 Preu per unitat sense despeses d’enviament 142,63

 Despeses d’enviament 62,84

 TOTAL 3628,59

 Preu final per unitat 145,14

 ~ 52 ~

Com podem observar, el preu final de cada unitat és de 145,14 €, quantitat lleugerament inferior

a la del cost del prototip. El cost total del projecte, s’eleva als 3628,59 €. Per establir una comparació

amb una solució alternativa, m’agradaria remarcar les diferències entre la meva proposta i

l’alternativa més semblant que podem trobar al mercat. El Boe-Bot de Parallax, que es ven com un

paquet on s’inclouen tots els elements necessaris per a la construcció d’un robot similar, té un preu

de 87,64 € per unitat (preu per a compres de més de 20 unitats), sense tenir en compte les despeses

d’enviament. Tindríem, per tant, un cost final aproximat de 2191 €. El cost final del projecte, per tant,

és molt més reduït si optem per l’opció de Parallax. Però el que vull remarcar és que aquesta opció

reduiria greument la capacitat educativa del projecte, doncs el llenguatge de programació que

utilitza Parallax, el PBASIC, és un llenguatge propi de Parallax i té molt poc interès per alumnes

d’estudis superiors. El que succeeix amb el Boe-Bot, passa també amb l’Scribbler o el SumoBot del

mateix fabricant. És podria dir que, en el context en el que ens trobem, els robots de Parallax no

tenen el valor degut com a eina educativa.

 ~ 53 ~

8 CONCLUSIONS

Un cop exposat el projecte des del plantejament inicial fins a la pròpia implementació, és

moment de que exposi les conclusions extretes i avaluï la proposta.

Des d’un punt de vista tècnic, l’alternativa que proposo gaudeix d’una unitat de procés

preparada per a grans volums de càlcul i amb capacitat per suportar un nombre elevat de sensors.

Això permet certa agilitat en el sistema i unes possibilitats de moviment i interacció amb el medi

força significatives. Per altra banda, i com ja he esmentat en altres capítols, la versatilitat del Atmega

128 permet que sigui programat en llenguatges de programació tan fonamentals com són C i

assembler. Per això puc dir que respecte a altres alternatives, la que presento ofereix una millor

qualitat de processament, un horitzó molt ampli per a millores i ampliacions, i una important

adaptabilitat educativa que no travaríem en cap altre cas. Els cost, tot i ser més elevat que la resta

d’alternatives trobades al mercat, no és excessivament superior. Més si tenim en compte els

avantatges abans esmentats i el grau de coneixement que arribem a tenir respecte a un autòmat que

ha estat construït per un mateix.

Respecte a la idea original que em vaig plantejar en quant a la funcionalitat del robot, penso que

ha estat aconseguida en diferents aspectes. S’ofereix un bon control sobre el microcontrolador, a

través del sistema operatiu, i es permet l’actuació i percepció dels sensors tal i com era necessari,

mitjançant una interfície i a través d’un terminal. En aquest sentit, han estat més difícil dominar o

entendre el control del sonar, per exemple, que no pas el del servomotor. Per altre banda també s’ha

aconseguit dotar de navegació autònoma al robot i d’alguna manera posar a prova els coneixements

adquirits, obtenint un resultat satisfactori.

 ~ 54 ~

Per la meva part, l’experimentació amb l’Atmega 128 i els diferents dispositius ha estat molt

profitosa, doncs m’ha permès aprendre aspectes molts concrets de la programació d’un

microcontrolador, arribant a entendre d’una manera més global els conceptes fonamentals i la

metodologia de treball necessària per dur a terme un projecte d’aquesta envergadura. Si la raó de

ser d’aquest projecte és la seva voluntat educativa, conclouré dient que la seva primera funció

docent, el meu projecte final de carrera, ha complert l’objectiu.

8.1 POSSIBLES MILLORES

Per molt que tot plantejament inicial tracti de ser el més perfecte possible, al final del projecte és

fàcil observar certes millores que es podrien aplicar.

A nivell tècnic hi ha moltes possibles millores. Pel que fa a la percepció del robot, seria molt

profitós augmentar la seva capacitat de detectar presències per la part frontal. Tot i comptar amb la

torreta del sonar, que permet aconseguir una navegació força intel·ligent, és fàcil observar que un

parell de sensors d’infrarojos col·locats per sota del sonar permetrien detectar obstacles baixos que

de vegades queden fora de l’abast de detecció del sonar. En la mateixa direcció, si volguéssim oferir

encara més possibilitats, podríem afegir un parell de infrarojos més a la part del darrera, per

controlar també la locomoció en aquesta direcció.

A nivell funcional es podria fer una ampliació força interessant que, tot i haver-la plantejat en un

principi, va quedar descartada per la dificultat de dur-la a terme en el temps previst del projecte.

Aquesta funcionalitat és la de col·locar un sistema seguidor de línies, a la part inferior del xassís, que

permetés al robot seguir una ruta marcada al terra. Aquest sistema consistiria, bàsicament, en

col·locar un conjunt de sensors de proximitat que fossin capaços d’orientar el robot quan hi hagués

algun canvi de direcció a la ruta. Amb aquesta funcionalitat dotaríem el robot d’una major versatilitat

i capacitat per adaptar-se a diferents problemes.

 ~ 55 ~

Cal dir que totes aquestes millores i ampliacions no repercutirien gaire en els costos del projecte i

que, per tant, la seva implementació no comportaria grans canvis en aquest sentit.

 ~ 56 ~

9 BIBLIOGRAFIA

Llibres:

1.- Gadre, Dhananjay V. Programming and customizing the AVR microcontroller. Nueva York:

McGraw-Hill, 2001. 339p. ISBN 0-07-134666-X

2.- Parab, J.S., & Shelake, V. G., & Kamat, R. K., & Naik, G. M., Exploring C for Microcontrollers.

Dordrecht: Springer, 2007. 157p. ISBN 978-1-4020-6066-3

Adreces electròniques:

3.- Atmel Corporation. ATMEGA128 (L) Summary.[En línia]. 2002. Atmel Corporation, 2002,

última revisió : 2009. [2008-2009]

http://www.atmel.com/atmel/acrobat/doc2467.pdf

4.- Peter Fleury. AVR-GCC Software [En línia]. 2006. Peter Fleury., 2008-2009, [2008-2009].

http://homepage.hispeed.ch/peterfleury/avr-software.html

5.- AVR Freacks. AVR. The nr.1 AVR Comunity [En línia]. 2004. AVR Freaks, 2004-2009, [2008-

2009]

http://www.avrfreaks.net/

 ~ 57 ~

6.- Richard Barry. FreeRTOS [En línea]. 2000-2007. Richard Barry., 2003-2007, [2006-2007].

http://www.freertos.org

7.- Nand Gupta, K., & Agrawal, P., & Agarwal, M. Motor driver L293D [En línia]. 2004. Mobilná

Robotika, 2008-2009, [2008-2009]

http://robotika.yweb.sk/skola/H-brigde/IC%20L293%20and%20Its%20avr%20%20interface%20v1.0.pdf

 ~ 58 ~

10 ANNEX

10.1 ESPECIFICACIONS HARDWARE

10.1.1 ESQUEMÀTICS DE LA PLACA BASE ACTUAL

 ~ 59 ~

10.1.2 SOLARBOTICS GM8

 Datasheet oficial de Solarbotics.

 ~ 60 ~

10.1.3 DEVANTECH SRF02

La informació exposada a continuació ha estat estreta de www.robot-electronics.co.uk.

I2C Communication

To use the SRF02 in I2C mode, make sure nothing is connected to the mode pin, it must be left

unconnected.

The I2C bus is available on popular controllers such as the OOPic, Stamp BS2p, PicAxe etc. as well as a

wide variety of micro-controllers. To the programmer the SRF02 behaves in the same way as the

ubiquitous 24xx series EEPROM's, except that the I2C address is different. The default shipped

address of the SRF02 is 0xE0. It can be changed by the user to any of 16 addresses E0, E2, E4, E6, E8,

EA, EC, EE, F0, F2, F4, F6, F8, FA, FC or FE, therefore up to 16 sonar's can be used.

Connections

The connections to the SRF02 are identical to the SRF08 and SRF10 rangers. The "Mode" pin should

be left unconnected, it has an internal pull-up resistor. The SCL and SDA lines should each have a

pull-up resistor to +5v somewhere on the I2C bus. You only need one pair of resistors, not a pair for

every module. They are normally located with the bus master rather than the slaves. The SRF02 is

always a slave - never a bus master. If you need them, I recommend 1.8k resistors. Some modules

such as the OOPic already have pull-up resistors and you do not need to add any more.

 ~ 61 ~

Registers

 The SRF02 appears as a set of 6 registers.

Location Read Write

0 Software Revision Command Register

1 Unused (reads 0x80) N/A

2 Range High Byte N/A

3 Range Low Byte N/A

4 Autotune Minimum - High Byte N/A

5 Autotune Minimum - Low Byte N/A

Only location 0 can be written to. Location 0 is the command register and is used to start a

ranging session. It cannot be read. Reading from location 0 returns the SRF02 software revision. The

ranging lasts up to 65mS, and the SRF02 will not respond to commands on the I2C bus whilst it is

ranging.

Locations, 2 and 3, are the 16bit unsigned result from the latest ranging - high byte first. The

meaning of this value depends on the command used, and is either the range in inches, or the range

in cm or the flight time in uS. A value of 0 indicates that no objects were detected. Do not initiate a

ranging faster than every 65mS to give the previous burst time to fade away.

Locations, 4 and 5, are the 16bit unsigned minimum range. This is the approximate closest range

the sonar can measure to. See the Autotune section below for full details.

http://www.robot-electronics.co.uk/htm/srf02techI2C.htm#Autotune

 ~ 62 ~

Commands

The are three commands to initiate a ranging (80 to 82), to return the result in inches, centimeters or

microseconds. Another set of three commands (86 to 88) do the same, but without transmitting the

burst. These are used where the burst has been transmitted by another sonar. It is up to you to

synchronize the commands to the two sonar's. There is a command (92) to transmit a burst without

doing the ranging and also a set of commands to change the I2C address.

Command
Action

Decimal Hex

80 0x50 Real Ranging Mode - Result in inches

81 0x51 Real Ranging Mode - Result in centimeters

82 0x52 Real Ranging Mode - Result in micro-seconds

86 0x56 Fake Ranging Mode - Result in inches

87 0x57 Fake Ranging Mode - Result in centimeters

88 0x58 Fake Ranging Mode - Result in micro-seconds

92 0x5C Transmit an 8 cycle 40khz burst - no ranging takes place

96 0x60 Force Autotune Restart - same as power-up. You can ignore this command.

160 0xA0 1st in sequence to change I2C address

165 0xA5 3rd in sequence to change I2C address

170 0xAA 2nd in sequence to change I2C address

 ~ 63 ~

Ranging

To initiate a ranging, write one of the above commands to the command register and wait the

required amount of time for completion and read the result. The echo buffer is cleared at the start of

each ranging. The ranging lasts up to 66mS, after this the range can be read from locations 2 and 3.

Checking for Completion of Ranging

You do not have to use a timer on your own controller to wait for ranging to finish. You can take

advantage of the fact that the SRF02 will not respond to any I2C activity whilst ranging. Therefore, if

you try to read from the SRF02 (we use the software revision number a location 0) then you will get

255 (0xFF) whilst ranging. This is because the I2C data line (SDA) is pulled high if nothing is driving it.

As soon as the ranging is complete the SRF02 will again respond to the I2C bus, so just keep reading

the register until its not 255 (0xFF) anymore. You can then read the sonar data. Your controller can

take advantage of this to perform other tasks while the SRF02 is ranging. The SRF02 will always be

ready 70mS after initiating the ranging.

LED

The red LED is used to flash out a code for the I2C address on power-up (see below). It also gives a

brief flash during the "ping" whilst ranging.

Changing the I2C Bus Address

To change the I2C address of the SRF02 you must have only one sonar on the bus. Write the 3

sequence commands in the correct order followed by the address. Example; to change the address of

a sonar currently at 0xE0 (the default shipped address) to 0xF2, write the following to address 0xE0;

(0xA0, 0xAA, 0xA5, 0xF2). These commands must be sent in the correct sequence to change the I2C

address, additionally, No other command may be issued in the middle of the sequence. The

sequence must be sent to the command register at location 0, which means 4 separate write

transactions on the I2C bus. When done, you should label the sonar with its address, however if you

do forget, just power it up without sending any commands. The SRF02 will flash its address out on

the LED. One long flash followed by a number of shorter flashes indicating its address. The flashing is

terminated immediately on sending a command the SRF02.

 ~ 64 ~

Address
Long Flash Short flashes

Decimal Hex

224 E0 1 0

226 E2 1 1

228 E4 1 2

230 E6 1 3

232 E8 1 4

234 EA 1 5

236 EC 1 6

238 EE 1 7

240 F0 1 8

242 F2 1 9

244 F4 1 10

246 F6 1 11

248 F8 1 12

250 FA 1 13

252 FC 1 14

254 FE 1 15

Take care not to set more than one sonar to the same address, there will be a bus collision and

very unpredictable results.

Note - there is only one module address stored in the SRF02. If you change it, the equivalent

Serial Mode address will also change:

 ~ 65 ~

0xE0, 0xE2, 0xE4, 0xE6, 0xE8, 0xEA, 0xEC, 0xEE, 0xF0, 0xF2, 0xF4, 0xF6, 0xF8, 0xFA, 0xFC, 0xFE I2C

addresses

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F

Equivalent Serial addresses

 AutoTune

The SRF02 does not require any user calibration. You power up and go right ahead and use the

SRF02.

Internally, there are tuning cycles happening automatically in the background. After the ultrasonic

burst has been transmitted, the transducer keeps on ringing for a period of time. It is this ringing

which limits the closest range the SRF02 can measure. This time period varies with temperature and

from transducer to transducer, but is normally the equivalent of 11 to 16cm (4" to 6"), a bit more if

the transducer is warm. The SRF02 is able to detect the transducer ring time and move its detection

threshold right up to it, giving the SRF02 the very best performance possible. On power up, the

detection threshold is set to 28cm (11"). The tuning algorithms quickly back this right up to the

transducer ring. This happens within 5-6 ranging cycles - less than half a second at full scan speed.

After this the tuning algorithms continue to monitor the transducer, backing the threshold up even

further when possible or easing it out a bit when necessary. The tuning algorithms work

automatically, in the background and with no impact on scan time.

The minimum range can be checked, if required by reading registers 4 and 5. This value is

returned in uS, cm or inches, the same as the range. It is also possible to make the SRF02 re-tune by

writing command 96 but you can ignore this command. It is used during our testing.

 ~ 66 ~

10.1.4 L293

Datasheet oficial de SGS-Thomson.

 ~ 67 ~

 ~ 68 ~

 ~ 69 ~

 ~ 70 ~

 ~ 71 ~

 ~ 72 ~

10.1.5 MAX232

Datasheet oficial de Texas Instruments.

 ~ 73 ~

 ~ 74 ~

 ~ 75 ~

 ~ 76 ~

10.2 GUÍA DE COMANDES DELS DRIVERS IMPLEMENTATS

Motors

Les comandes referents als drivers dels motors s’identifiquen pel caràcter inicial “m”.

Identificació Funció Selecció Velocitat

m f: endavant

b: enrera

s: parada

r: motor dreta

l: motor esquerra

x: tots dos motors

valor de velocitat,

nombre entre 47 i

255 (només per

funcions endavant i

enrera)

m s: parada r: motor dreta

l: motor esquerra

x: tots dos motors

Exemples:

mfx50: motors en marxa endavant, a velocitat 50.

msr: motor dret aturat.

 ~ 77 ~

Torreta amb sonar

Les comandes referents als drivers de la torreta s’identifiquen pel caràcter inicial “s”.

Identificació Funció Posició

s l: direcció esquerra, amb medició

del sonar

r: direcció dreta, amb medició del

sonar

Valor de posició, en

graus.

s c: posicionament al centre, amb

medició del sonar

b: escombrada de 180°

Exemples:

sl90: torreta posicionada 90 graus a l’esquerra, medició amb el sonar i retorn del resultat.

sc: torreta en posició central, medició amb el sonar i retorn del resultat.

 ~ 78 ~

10.3 INSTAL·LACIÓ DE LES EINES UTILITZADES

10.3.1 INSTAL·LACIÓ AVR STUDIO 4 I WINAVR

Descàrrega dels arxius necessaris

Primer de tot cal descarregar els arxius necessaris en un directori local. Els trobarem a la l’adreça

http://atmel.com/avrstudio/, i descarregarem la versió més recent.

Per descarregar WinAVR ens adreçarem a la següent direcció

http://winavr.sourceforge.net/download.html.

Instal·lació Avr Studio 4

Executem el fitxer AvrStudio417Setup.exe i seguim els passos. És una instal·lació molt senzilla on

triarem el directori de destí. Un cop feta aquesta instal·lació podem procedir a instal·lar el WinAVR,

per tal de que reconegui el compilador de C de GNU.

Instal·lació WinAVR

Executem el fitxer WinAVR-20090313-install.exe. La instal·lació també és molt senzilla i només

cal que ens preocupem de que totes les caselles que es veuen a la finestra de la figura inferior,

estiguin marcades.

http://atmel.com/avrstudio/
http://winavr.sourceforge.net/download.html

 ~ 79 ~

10.3.2 INSTAL·LACIÓ PONYPROG

Per instal·lar el software necessari pel programador PonyProg, cal que descarreguem, primer

de tot, el fitxer m’instal·lació més recent que trovarem a l’adreça web

http://www.lancos.com/ppwin95.htm. Executem el fitxer anomenat Setup.exe i ens limitem a seguir

les instruccions.

10.3.3 INSTAL·LACIÓ ET-AVR JTAG

 Primer descarregarem l’arxiu .zip corresponent al ET-AVR JTAG USB que trobarem a la pàgina

http://www.etteam.com/download.html. Descomprimirem el fitxer en un directori local. Després

connectem el cable usb al PC. Quan sigui reconegut ens apareixerà un missatge informant que s’ha

trobat un nou dispositiu.

http://www.lancos.com/ppwin95.htm
http://www.etteam.com/download.html

 ~ 80 ~

 Posteriorment ens apareixerà una finestra que demanarà la instal·lació del software

necessari per al dispositiu reconegut. En aquest punt especificarem nosaltres mateixos la ruta a on es

troben els fitxer descomprimits anteriorment.

 ~ 81 ~

10.4 COSTOS DE LA PLACA D’EXPANSIÓ

El preu total mostrat és per una sola placa i per tant, aquests costos seran per cada unitat. Cal

que afegim el preu de la fabricació de les plaques. En el meu cas plantejo la fabricació de 25 plaques,

que és la tirada de robots plantejada. Això suposa un cost de 170 €, aproximadament uns 7 € per

cada placa.

Component Unitats €/unitat Total

L293D 1 2,56 2,56

Led 2 0,10 0,20

Led baix consum 10 0,24 2,4

Capacitat 22 uF 1 0,081 0,081

Capacitat 1 uF 7 0,049 0,343

Bloc terminal 2 pos 1 0,48 0,48

Connector alimentació 1 1,57 1,57

Connector alimentació 1 1,36 1,36

LM2940 1 1,19 1,19

MAX232CPE 1 1,19 1,19

Electret 1 0,41 0,41

BC547C 1 0,0238 0,0238

Diode 1 0,03 0,03

Sòcol 20 pins 2 0,073 0,146

Capacitat 100nF 2 0,022 0,044

Resistència 4,7Kohm 5 0,02 0,1

Resistència 100Kohm 1 0,02 0,02

Interruptor 1 1,37 1,37

 ~ 82 ~

Connector doble f 20 pins 3 2,44 4,88

Connector IDC JTAG 1 0,14 0,14

Connector cable pla 10 pins 1 0,134 0,134

Cable pla 20 cm 2 0,40 0,80

Connector AR cable pla 10
pins

1 0,96 0,12

Jumper 1 0,02 0,02

TOTAL 19,61

10.5 DESPESES D’ENVIAMENT

Superrobòtica

Les despeses d’enviament pel distribuïdor Superrobotica són de 7 € més IVA si la compra és

inferior a 150 €. Per a compres superiors a aquesta xifra, les despeses d’enviament són de franc.

Futurlec

L’empresa Futurlec ofereix diferents taxes en funció de la despesa de la comanda.

 Comandes de fins a 29 $, despeses d’enviament de 4 $.

 Comandes de 30 a 49 $, despeses d’enviament de 6 $.

 Comandes de 50 a 99 $, despeses d’enviament de 9 $.

 Comandes de més de 100 $, despeses d’enviament de 14 $.

 ~ 83 ~

Robotshop

L’empresa canadenca ofereix diferents possibilitats.

Per UPS:

 Expedited: entrega de 2 a 7 dies, a 64,85 $, és la que he tingut en compte en

l’elaboració de l’anàlisi de costos.

 Express:: entrega de 1 a 4 dies, a 73,36 $.

Per Canada Post:

 Small Packets – Air: entrega abans de 2 setmanes, amb comanda assegurada si és

inferior a 100$. El cost és de 15,96 $.

 Parcel Surface: entrega abans de 1 a 3 mesos, amb comanda assegurada si és inferior

a 1000$. El cost és de 31,95 $.

 Xpresspost international: entrega abans de 12 dies, amb comanda assegurada si és

inferior a 1000$. El cost és de 58,61 $.

Pololu

Pololu ofereix tres possibilitats d’entrega:

 USPS First Class Mail International, a 9,95 $, que és la opció triada durant l’elaboració de

l’anàlisi de costos.

 USPS Priority Mail International, a 31,95 $.

 USPS Express Mail International, a 32,95 $.

 ~ 84 ~

 ~ 85 ~

RESUM

Aquest projecte presenta el disseny, construcció i programació d’un robot autònom, com a base

per una proposta educativa. Per aconseguir aquest objectiu s’ha dotat el robot d’una unitat de

procés, un sistema de locomoció i un seguit de sensors que proporcionaran a la unitat informació

respecte l’entorn. Per gestionar totes aquestes funcionalitats, s’ha fet servir un sistema operatiu en

temps real capaç de gestionar amb efectivitat les tasques que puguin ser executades pel robot.

Finalment, s’ha exposat una detallada descripció dels costos per una producció de volum mig i de

caire merament educatiu.

RESUMEN

Este proyecto presenta el diseño, construcción i programación de un robot autónomo, como

base de una propuesta educativa. Para conseguir este fin se ha dotado al robot de una unidad de

proceso, un sistema de locomoción y una serie de sensores que proporcionan a dicha unidad

información sobre el entorno. Para gestionar toda esta funcionalidad, se ha utilizado un sistema

operativo en tiempo real capaz de gestionar con efectividad las tareas que puedan ser ejecutadas por

el robot. Finalmente, se ha expuesto una detallada descripción de los costes para una producción de

volumen medio y de voluntad meramente educativa.

ABSTRACT

This project presents the design, development and implementation of an autonomous robot for

an educational purpose. In order to achieve this goal, the robot has been embedded with a

processing unit, a motion system and a set of sensors that provides information of the environment.

To control all these functions, it has been used a real time operating system capable of accurately

handling all the tasks that can be executed by the robot. Finally, it has been shown out a detailed

description of the costs for a medium production of our educational purpose.

