Autonoma
de Barcelona

o escola
Universitat y y .
d’enginyeria

2022: EINA GRAFICA PER LA CREACIO D’AUTOMATS PER A LA
REPRESENTACIO DEL LLENGUATGE NATURAL

Memoria del Projecte Fi de Carrera
d'Enginyeria en Informatica
realitzat per

J. Oriol Aguadé Estivill

i dirigit per

Marc Ortega Gil

Bellaterra, 21 de Juny de 2010

Agraiments
Volia agrair a Marc Ortega les ganes i I'esfor¢ que ha utilitzat en ajudar-me a portar a

terme el desenvolupament d’aquest projecte. Ha estat un excel-lent tutor i m’ha
permes aprendre molt d’ ell.

[ndex

(0T o 1 o] I U 1 4 oY [¥ oLl o RSP Pag.
1.1 OBJECLIUS evvieeeeiiiee ettt ettt ettt e e e ettt e e e ee e e e e e e aabe e e e eeteaeeeeenabaeeseeesasreaeanns Pag.
1.2 Organitzacid de 1a MeMOIIacecccviiieeiiiee ettt e e e Pag.
Capitol 2. DescripCio del ProJECLE ...cccueieeeiiee ettt Pag.
2.1 FONAMENTS TEOMICS .eiiiiiiiieeeeiiieeeeeeciee e e e eette e e et e e e et be e e e ebae e e e eareeeeeenanneeas Pag.
2. 1.2 SEN oottt ettt et ettt ettt e et e et ee e neees Pag.

2. 1.3 EStat de art eueeeeeeeeeeeeeee e e Pag.

2.1.4 Representacid dels automats en format de “caixes” Pag.

2.1.5 Sintaxi propia del SFNcccviiiiiiieeeece e Pag.

2.2 DISSENY euteeeeetiieeeeititeeeeeetteeeeeettteeeeeeetraeeeeettaeeeeeastaeeeeeatbeeeesabaeaeeeeeaasraeaeaanns Pag.
2.2.1QUE ES el JFCTSWINE? ooeiiiiiiiieiie ettt Pag.

2.3 PlanifiCactilceiieciieei e Pag.
(07T o 1 o] I PRSP Pag.
3. 1 Representacié de I'escenari de diSSenycccoecvveeeeiicieeeeviieee e Pag.
3.1.1 Extensid de la classe JComponentccccceecvveeeeecieeeeeccieee e Pag.

I A o] =Yl WYY ol <Y o - U Pag.

3.1.3 Efecte FIICKEING ..veeeeiieeeeeeee et Pag.

3.1.4 QUE €5 PINTAY oiceiiiecciiee e s et a e e e e Pag.
3.1.5CoNtrol d’@VENTSoeiieeiieeieeeeee e Pag.

3.1.6 Buscar elements per I'eScenacccceeeveeeeeeiieccciiiiieeeee e Pag.

3.1.7 Moure elements per '€SCeNaccccceeeeeeeeecciviiieeeeeeee e, Pag.

318 RESELE uuviiieeiieiee ettt ettt et e e e e e be e e e a e e e e earrae e e nnreaes Pag.

3.1.9 Solucié a la limitacié de la mida de I'escenaccccceecvvveeeennnnen.n. Pag.

3.1.9.1 Barra de desplacamentccccovvreeeeeeeeeeeccccrnieeen, Pag.

3.1.9.2 ZOOM ettt et e Pag.

3.2 TFANSICIONS weeiiiiiieeeeiiitie e ettt e ettt e e e ettt e e e e abebee e e abeee e e aareeeeeensreeseeeeansreeas Pag.
3.2.1 Qué conté la classe CaiXa.java?ccccceeeeccieeeeeeciieeeeeeciree e Pag.

3.2.2 TiPUS tranSICIONSeeieeciieeeieiirieeeeeeeititeeeeecteee e eecare e e e are e e e eearaaeeeas Pag.

3.2.3 Gestid de 1es transiCioNnsccccveeeeeeiiiieeeeciieee e Pag.

3.2.4 Construir [es TranSiCioNScceeeeecevieeeeiiiiiieee e esre e e eseeaee e Pag.

3.2.5 Analisis de les accions que es duen a terme amb les transicions Pag.

I I 1) 7 | £ UPU PSRRI Pag.
3.3.1 Queé conté la classe Aresta.java?ccccccccieeeiiciieeeecciiee e, Pag.

3.3.2 Gestio de 1es transiCioNnsccccveeeeeiiiiieeeeciieee e Pag.

3.3.3 Construir els EStatsccoccvvveeiiiiieie e Pag.

I I B Y=Y (ol o L SR Pag.

3.3.5 Analisis de les accions que es duen a terme amb els estats Pag.

R0 - 1Y 1Y, = o T PSS Pag.
3.4.1 Métode estatic Mainccceeveeiiiiie e Pag.

3.4.2 Constructor de la classe Mainccccceeeeeiecciiiiiieeeeee e, Pag.

3.4.3 BOrderLayOuUlcceeeeeciiiieeeciiee ettt et e e e eraaee e Pag.

3.4.4 MenUs i 1a seva eSti0 ...ccceeeecuvieieeieiieee et Pag.

3.4.5 PESTANYES .uvieeeiciiieeeeeeitieeeeeeteeeeeeeeteeeeeeettbeeeeestaeeeeseabaeaeeetaeeaaanns Pag.

NP

oo NOUL B D WwWww

12
11
12
13
16
16
17
17
18
18
19
20
21
21
21
22
22
24
26
26
27
27
28
28
31
31
31
31
32
33

3.4.6 Tancament de I'aplicacilcccoecieeeeieciiiiiecceeee e, Pag.
3.4.7 Diagrama de ClasSesccouceecciiriiiieeiee e Pag.
3.5 Barra d @INES ..oceeeeiee ettt et e ate e e e e e aaaeas Pag.
3.5.1 Control de €S aCCiONScccvviieeieeeee et Pag.
3.6 BaITa MENU ..eeveiieiiee ettt e et ee e e e ete e e e e et e e e e e bae e e e eareeree e e nraeas Pag.
3.7 MENU EMEIEENT ...vviiieieieeecieee e ettt ee ettt e e e e te e e e e etteeeeeeabeeeaeesreeeaeeeennneeas Pag.
3.7.1 Crear el menlt €mMergentcccoeeeeeeiieeeeeciieee e e Pag.
3.7.2 MenU per |es tranSiCioNScceeceecieeeeeeeiiiieeeeecieeeeeeeree e e ecrreee e Pag.
3.7.3 MeNU Pels @STatSccccviiiiiiiiiee ettt e e Pag.
3.8 Creador de TranSICIONSccccveeeeiiiiieeeeeciee e e erre e e e e sre e e s e sree e s e e aaeeeeeeanares Pag.
3.8.1 Crear una Nova transiCiocccccveeeeeeiiiiiee e ee e Pag.
3.8.2 Construint el panell d'informacioccccceeevcieiieeicciee e, Pag.
3.8.3 Creant la finestra emergentccccecvveeiieiciiee e, Pag.
3.8.4 Actualitzar [a transiCilccccceeeeiieiie i Pag.
3.9 Llegir fitxer en Format AUtOMAtcccceeeiiiiiiie e Pag.
3.9.2 Crear escena a partir fitxer en FAcoooooieiiiiciiie e Pag.
3.9.3 Classe AutomatsPerFitXercccccveeeiiiciieee e Pag.
3.9.4 LIegir CapGaleracceeeecieiieeciiieeee e Pag.
3.9.5 LIEGIr tOKENS .eeeieiiciiiee ettt e Pag.
3.9.6 LIegir €S @Statseeeeeciiieieeiiieeee et e Pag.
3.9.7 Cas0S ESPECIAIS ..cccveieeeiiiee et Pag.
3.10 Guardar fitxer en Format Automat (FA)oooeciiieiiiieeeecree e Pag.
3.10.1 REQUISITS .uvvieieeiiiieeeeiieeeeeecteree e eeieee e e eetre e e e ee e a e e e e s naeeeeeenraeaaenean Pag.
3.10.2 Implementacio del procés de guardat del fitxer FA Pag.
3.10.2.1 Recopilacid dels toKensccceeeeeecieeeeeciieeeeeeciieeeen, Pag.
3.10.2.2 Definicid d’eStatsccoveeeeeiiiieeeeeeiieeee e Pag.
3.10.3 Procés de guardat del fitxer de posicions (PT)ccccceeereeeeeennnenn. Pag.
3.11 Llegir autOmat PErER ..o e Pag.
3.11.2 IMPIEMENTACIO ...uveieeeeiieeee ettt ettt Pag.
3.11.2.ATraduCCil coeeeeeieeeecieee ettt Pag.
3.11.1.2 CONSLIUCCIO .eeeevieeeeieeeeeeiee et eeee e e e e e e Pag.
3.12 Guardar automats COM ERccuviiiiiiiee e Pag.
3.12.1 Requisits per poder guardar 'automatcccceeeeveeeeccieeeeeennnen, Pag.
3.12.2 IMPIEMENLACIO ...vvviiiciiiee et Pag.
3.12.3 Fase de creacid de I'expressid regularccccoeeeveeevciieeecnennenn. Pag.
3.12.4 SIMPIIfiCACIO ooovveee e s Pag.
3.12.5 SUDSLITUCIO .uvveeeiiiiee et Pag.
3.12.5.1 Creacid de bUCIEScccccvreeeiiiiieeeeeceeee e Pag.
3.12.5.2 Tractament de connectorscccccceeeeeeiieeeeeecciveeeeens Pag.
3.12.6 Eliminacié d’elements Redundantsccccoceveeeeeciieeeeccineeeenn. Pag.
3.12.7 DeSCOAIfICACIO ..ueveiriiieeiieee ettt Pag.
3.13 Opcions COMPIEMENTATIES ..uveeeeeeee ittt e e e e e e e e e e e e rarrraeeeeeeees Pag.
3.13.1 Desfer I'tltim canvi realitzat.cccocovieiiiiiiieieece e, Pag.
3.13.2 TransiCioNs COMPOSTESuuvururrruiiiiiiieirieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenens Pag.
3.13.2.1 Crear transicions COMpPOStESccceeeeeeeeeeeeeeeeeeeeeeeeees Pag.

3.13.2.2 Tractament dels estats al fusionar dos transicions
simples en una transicié compostaccccceeeeeeiiieeenn, Pag.
3.13.2.3 Separar transicions compostacceeeeeeeeeiiriiieeeennes Pag.

3.13.2.4 Modificacions en la finestra de Propietats de

1@ LraNSICIO .uvvvieeiieeecee e Pag.
3.13.2.5 Permetre transicions heterogeniescccccecevveeennene. Pag.

3.13.3 Guardar autdomat com iMatgeccccccvceeeevviiieee e e, Pag.

36
37
38
39
42
44
44
46
46
47
47
48
50
51
53
54
54
55
55
56
59
61
62
62
62
62
67
68
69
69
70
76
76
76
76
78
79
79
79
80
81
82
82
83
84

85
86

87
88
88

3.13.4 Escollir colors dels elements de I'escenacccceeeeeeecnrriveennnnnn. Pag.

3.13.5 Afegir etiquetes als estatsccccvveeeeeeeiei e, Pag.
3.13.6 Manual d’USUAIT ...cccveeieeiiieececiee ettt e Pag.
3.13.7 Conversio @ APPIET ...oceveeeeeeeee e Pag.
(07T o 1 o] I AT U U UU U UURROPURPTRNt Pag.
4.1 Destide 'apliCaciOcueeeeeuieiee et e e e Pag.
4.2 EdIiCIO d’aULOMALS ..evviiieiiiee ettt ee e e eetee e e etrr e e e eeaaraeaeeaeeans Pag.
4.3 Generacio d’aUutOMatScccccieeeiiiiiee ettt e ar s Pag.
4.4 MUtIplataformaooo i e Pag.
4.5 Analisis de reSUltatscoccveeieiiciiie e e Pag.
4.5.1 Importacid i exportacié d’ Expressions Regularsccccceeeeunneenn. Pag.
4.5.2 Obrir i guardar documents en FAcccooeeiiiiieei e, Pag.
4.5.3 Creant un automat des de Zeroccccceeeecveeeeeciveeeecieee e Pag.
4.6 POSSIDIES MIlIOIES ..vviiieiiieeecee et e ae e e Pag.
F N T\ YoYU F | I MU T U - o R Pag.

89
91
92
92

95
95
96
98
99
99
99
101
104
106

107

2] o] [ToT={ &= 1 i - IO TR Pag. 113

Capitol 1
Introduccio

Aquest PFC es centra en la generacio d’una eina grafica multiplataforma de creacid i
edicié de gramatiques electroniques per representar el Llenguatge Natural com un
transductor.

Per computar el significat del LN primer s’ha de representar per poder-lo analitzar. Una
representacio ampliament estesa és convertir la seva estructura en un automat per a
continuacio ser processat amb programes d’analisis d’automats. El projecte tracta I’
implementacidé d’una eina per la tasca de representacio d’aquests automats.

1.1 Objectius

Com s’ha introduit s’ha d’'implementar un eina capac de representar i crear la definicio
d’ automats que representen el LN també coneguts com gramatiques electroniques.

L’eina a desenvolupar ha de ser una interficie grafica multiplataforma capag¢ de crear i
modificar transductors. S’han de poder representar automats finits afegint, canviant
de posicid i esborrant estats i transicions. Els estats i transicions utilitzaran I'estructura
determinada per la sintaxi propia del Spanish FraneNEt Project.

L’eina ha de ser capac¢ de guardar i obrir els automats creats per l'usuari. El format a
utilitzar per guardar sera el Format Automat. Per aconseguir una eina més polivalent
es permetra I’ importacid i exportacidé d’automats a partir d’Expressions Regulars.

L" eina va dirigida a un public amb coneixements basics d’informatica per tant és una
prioritat crear una interficie comode i intuitiva per I"'usuari. S’organitzara el contingut
amb una estructura senzilla perque I'usuari no tingui cap problema alhora de treballar
amb ella. Tot i aixi s’incloura un manual d’usuari perqué l'usuari tregui tot el
rendiment possible al programa. Aquesta eina va destinada a linglistes per tant
s’'utilitzara la representacié en el format de “caixes” per representar els automats
d’'una forma més visual que l'estandard. Un cop finalitzat el projecte I'eina sera
utilitzada en el marc del projecte de recerca Spanish FrameNet Project.

L'objectiu principal de I'eina és la creacid i edicié d’automats perdo també és premia I’
implementacié d’opcions variades que proporcionin a I'eina funcionalitats utils per
["'usuari.

1.2 Organitzacio de l1a memoria

La memoria esta organitzada de tal manera que el proxim capitol tracta els temes
referents a la descripcid del projecte. Aquest apartat esta dividit en fonaments teorics,
disseny i planificacio.

El seglient capitol fa referéncia a I’ implementacié de l'eina. El tractament de I
implementacid inicialment es centra en la representacio de I'escena i els elements que
s’hi representen. L'escena és el marc de treball de la nostra eina un cop coneguda es
passa a explicar les aplicacions que la complementen i que proporcionen les eines
necessaries per treballar. Aquest analisis s’ enfoca des del marc més general del
programa a cada component especific que engloba I'aplicacié.

L’ultim capitol son les conclusions del projecte on s’analitzara el treball realitzat, la
funcionalitat del programa final i les seves aplicacions, el desti de I'aplicacid i les
possibles millores.

Capitol 2
Descripcio del projecte

2.1 Fonaments teorics

Per entendre I'objectiu del projecte s’ha de saber que una gramatica electronica és un
transductor (un automat finit que quan reconeix una cadena d’entrada determinada
pot retornar una sortida). Les gramatiques electroniques permet el reconeixement
d’estructures sintactiques i marcar-les o manipular-les una vegada reconegudes
mitjancant la funcié de sortida del transductor.

Partint que una frase en Llenguatge Natural (LN) té una estructura determinada i les
seves paraules tenen un significat el qual només és complet quan es relaciona amb la
resta de paraules de la frase, fem una distincid entre els elements de la frase que
poden ser fixes o opcionals.

Per exemple, la frase “estar al carrer” té:
e Elements fixes: estar/al/carrer

* Elements opcionals: elements interns com adverbis. Estar sempre al carrer

L’avantatge de tractar el Llenguatge Natural és que podem representar la frase com
una Expressié Regular i, per tant, també com un automat finit.

Com s’ha introduit abans, per reconeixer o representar aquestes estructures s’utilitzen
els transductors. Mitjangant una combinacié d’estats i transicions és possible
representar els elements fixes i opcionals de la frase que s’esta tractant a més de
poder associar una sortida de manera que si una cadena d’entrada arriba a estat final,
rebrem la sortida que haviem associat al recorregut dels estats pels que ha passat.

2.1.2 SEN

Aquest projecte vol crear una aplicacié que sera utilitzada en el marc del projecte de
recerca Spanish FrameNet Project (SFN)*.

SFN és un projecte que es desenvolupa a la Universitat Autobnoma de Barcelona
cooperant amb IInternational Computer Science Institute’ (Berkeley, CA) en
cooperacié amb el FrameNet Project?.

Aquest projecte té com a finalitat la creacié d’una base d’informacié léxica on-line
basada en la teoria de marcs conceptuals (frame semantics) de Fillmore (Fillmore
1976, 1977, 1992).

La idea basica dels marcs conceptuals és que no es pot entendre el significat d’'una sola
paraula sense tenir accés a tot el coneixement essencial que es relaciona amb aquesta
paraula. Per exemple, no es pot entendre la paraula “vendre” sense coneixer el
context que inclou la situacio que es déna ,entre altres aspectes, amb el venedor, el
comprador, la mercaderia, els diners, la relacié entre el venedor i el producte, etc.

Les paraules han de tenir un marc amb un coneixement semantic associat segons el
concepte a que es refereix. La definicid de marc conceptual consisteix en que una
estructura coherent de conceptes relacionats de tal manera que, sense coneixement
de tots ells, un no pot entendre el significat complet d’un concepte en concret.

SFN té un conjunt finit de tags per definir les paraules en la seva base d’informacio
lexica. Coneixent aquests tags els implementarem en la nostra aplicacié perque la
creacié de transicions per part dels usuaris sigui lo més rapida i comode possible
oferint-los les diferents opcions disponibles.

2.1.3 Estat de I'art

Hi ha publicacions i eines que treballen sobre automats aplicats a la representacio del
Llenguatge Natural un d’ells per exemple és el de M. Ortega amb “Teoria de
Autématas aplicada a la Linglistica Informatica”. Facultat de Ciencies. Seccio
d'Enginyeria Informatica, Universitat Autonoma de Barcelona, 1997.

L http://gemini.uab.es/SFN
2 http://www.icsi.berkeley.edu/
3 http://framenet.icsi.berkeley.edu/

CAPITOL 1. INTRODUCCIO

L’eina que crearem tracta de renovar i millorar aguestes eines, per tal proporcionar
una aplicaci6 amb una interficie grafica a l'ordre del dia que estigui organitzada
adequadament permetent treballar amb ella comodament.

La nostra aplicacio incorpora els diferents tags d’informacio léxica i altres novetats per
tal de proporcionar una eina per lingtistes el més complerta possible.

2.1.4 Representacio dels automats en format de “caixes”

Els automats que la nostra aplicacié utilitzen una representacido més visual que té unes
caracteristiques determinades. Les transicions sén uns elements formats per una caixa
gue contenen I’ informacié del token que produeix la transicié entre estats absoluts.
Els estats absoluts no es veuen representats a simple vista en I'edicid perd s’han
d’analitzar per guardar i obrir els automats. Els estats del nostre automat estan
representats per arestes que uneixen les diferents transicions.

A continuacié es mostra un exemple d’automat representat segons aquest format per
observar exactament quins elements s’han de representar.

<haber . VOE: INF\1> _/"{ELI_ "E’J} "T_!':_ﬂ‘_{_g_ﬂ\”

<haber, V96 GER\1> f\
{<haber . V46 3

<haber . Va6 : IPIME : VAR-1 : VAR-2\1>[

1 <haber . V86 : IPIND: VBR-131>[i-

<estar . V77 PE:ms\4=] su [»{m]
5 2

<haber . V36 : IFUTU: VAR-141> [}~

B{haher.@ﬁ:lmm:mn—l:m—i\lﬂ}
{<haber.Vi6: SPRES; VAR-1: VAR-2\1> |+

<haber . V96 : SPIMA: VAR-1:VAR-2\1>[:

[shaber ¥96 : SPIMB: VAR-1: VAR—2" 1> [

1) El triangle horitzontal representa I'estat inicial

2) El quadrat negre que es troba dins del quadrat blanc representa I'estat final
3) Les arestes son els estats

4) Les capses son les transicions.

5) Observem que algunes transicions estan formades per dos rectangles contigus.
En el primer rectangle s’hi especifica |’ informacid lexica que defineix cada
paraula. En el segon rectangle s’hi guarda la sortida del transductor.

-5

2.1.5 Sintaxi propia del SFN

Cada paraula inclosa en el corpus del Spanish FrameNet Project esta definida per una
sintaxis determinada :

amaria,amar.V1:ICOND:1s:3s

Lr'u:rp'mlng]i::.‘i code

-.»-separation mark
morphological code
» Separation mark

morphological code

» Separation mark

i b lexical category

" saparation mark

i L. canonical form

L.wSeparation mark

—=gutomatically generated lexical form

Aquesta es pot simplificar en:
<forma . categoria : informacié_morfologica>[sortida]

Com hem mencionat el tags de categoria i d’informacié morfologica sén finits i estan
definits en la pagina web de SFN (http://gemini.uab.es:9080/SFNsite/taggers-
chunkers)

Fent un analisis de requeriments a I’hora de definir les paraules observem que quan
volem definir un token o paraules no és necessari especificar la informacié de tots els
seus camps. Per guardar correctament I'automat es demanara a l'usuari al crear una
transicié que especifiqui com a minim la categoria gramatical.

CAPITOL 1. INTRODUCCIO

2.2 Disseny

El punt fort de I'aplicacio és la creacié de I’ interficie grafica multiplataforma i amb
possibilitat de que aquesta sigui web.

Una opcid seria fer una aplicacié flash ja que és multiplataforma i la I’ implementacié
de I’ interficie grafica seria senzilla de crear.

Una altra opcid per crear una aplicacié multiplataforma seria implementar-la en Java.
Java ens proporciona dos potents llibreries per GUI's: Swing i AWT. Un avantatge
d’escollir aquest llenguatge de programacié és la gran quantitat de documentacié i
exemples disponibles en llibres i Internet que facilitaran la recerca d’informacio de
com fer I’ implementacio.

L’ APl de Java proporciona una gran quantitat de classes que seran molt utils per
facilitar-nos la nostra feina com a programadors.

A I'hora d’implementar la interficie grafica, es necessiten finestres, quadres de dialeg,
botons, llistes desplegables, menus i altres elements que estem acostumats a trobar
en les aplicacions que utilitzem i que es troben en les llibreries Swing i AWT.

Aquestes dos llibreries contenen totes les classes necessaries pel desenvolupament
d’Interficies grafiques per l'usuari. Les interficies grafiques implementades amb
aquestes llibreries tenen una aparenca i es comporten de forma semblant en totes les
plataformes en les que s’executa.

La seva estructura basica gira en torn a “components i contenidors”. Els contenidors
contenen components i son components a la mateixa vegada, de manera que el
tractament amb els diferents elements és bastant semblant.

Els primers components grafics en Java pel desenvolupament de GUIs es trobaven en
la llibreria Abstract Window Toolkit (AWT). Aquesta llibreria és adequada per a
interficies senzilles.

Al cap d’un temps ha aparegut la llibreria Swing que és més robusta, versatil i flexible i
utilitza components de la llibreria AWT per complementar-se. Aquesta ultima llibreria
és la que utilitzarem per fer I’ implementacié de la nostra eina.

2.2.1 Que és el JFCi Swing?

L’abreviatura de JFC correspon a Java Foundation Classes. JFC es un entorn grafic per
construir interficies grafiques per usuaris multi plataforma basades en Java.

JFC es composa d’Abstract Windows Toolkit (AWT), Swing i Java 2D que ens
proporcionen les eines adequades per construir una interficie d’usuari consistent per
programes Java, tant si es executat sobre una plataforma Windows, Mac OS X o Linux.

AWT és I’API va ser la primera APl d’interficies que es va crear, va ser fortament
criticada per ser poc més que un mascara sobre les capacitats grafiques natives de la
plataforma amfitrio.

En AWT els components amb els quals I'usuari interactua amb d’interficie grafica o
widgets depenen de les capacitats del widgets de la plataforma nativa.

Més endavant es va crear una APl de grafics alternatius anomenada Internet
Foundation Classes que va ser desenvolupada per Netscape. Sun va barrejar la IFC
amb altres tecnologies sota el nom de “Swing”. Els elements de I’API de Swing
comencen amb “javax.swing”, i afegeixen la capacitat per un look&feel que permet als
programes Swing mantenir la base del codi independent de la plataforma pero pot
imitar I'aparenca de I'aplicacié nativa.

L’API de Swing es presenta en el JDK 1.2 i en la JFC 1.1 i pot ser descarregada
gratuitament des de la pagina web de Sun®.

2.3 Planificacio

Al principi, tasques simples porten més temps del necessari perque a part de les
tasques que puguin sorgir en tot moment s’esta fent una recerca d’informacié sobre
I’API de Java i altres manuals sobre la programacio de GUIs en Java.

S’han previst els punts negres del projecte: L’ implementacid de I’ interficie grafica és
preveu que sera lenta degut a I'actual desconeixement i dels possibles problemes que
puguin sortir. Per no malgastar temps s’anira fent una recerca d’informacio que ajudi
en |’ implementacio de la seglient tasca paral-lelament a I’ implementacié de la tasca
en curs.

* http://java.sun.com/javase/downloads/index.jsp

CAPITOL 1. INTRODUCCIO

Tasques a implementar:

e Recerca sobre manuals de Java sobre la programacié de GUI's i crear entorn
basic

O Durada: una setmana

e Afegir un objecte en forma de rectangle que es pugui moure per la pantalla
arrossegant-lo amb el ratoli

0 Durada: unasetmana
e Crear les classes Transicio (caixa) i estat (aresta) versio inicial
0 Durada:undia
* Afegir a un lateral dos botons que permetin afegir estats i transicions.
0 Durada: unasetmana
* Implementar opcid perque les linies dels estats puguin ser linies rectes o corbes
0 Durada: tres dies
e Als anteriors botons els hi assignem una icona
0 Durada:undia
e Controlar posicions valides en el desplacament dels rectangles
0 Durada: dos dies
e Crear els diferents tipus de transicions: estandard, inicial, final i connector.
0 Durada: una setmana
* Creacio dels menus basics
0 Durada: tres dies
* Control basic d’events
0 Durada: tres dies
e Crear menu amb informacid léxica per crear transicions

0 Durada: quatre dies

Afegir estats entre transicions i eliminar-los.
0 Durada: tres dies

Actualitzar posicid d’estats segons moviment de les transicions
0 Durada: tres dies

Crear finestra per modificar informacid léxica transicions.
0 Durada: quatre dies

Implementar I'opcidé de guardar el transductor en format automat
0 Durada: unasetmana

Implementar I'opcid de llegir un transductor en format automat
0 Durada: unasetmana

Implementar 'opcid de llegir un transductor en format d’ER
0 Durada: una setmana

Implementar I'opcidé de guardar el transductor en format d’ER.
0 Durada: unasetmana

Test i correccié d’errors
0 Durada: deu dies.

Convertir I'aplicacio en applet de Java
0 Durada: una setmana

Afegir noves funcionalitats a I’eina

0 Durada: Temps restant

Capitol 3
Implementacio

3.1 Representacio de I'escenari de disseny

Per comencar tractarem el modul encarregat de la representacio i edicié de I'escena.
Aquest modul esta compost per les classes ZonaDibuix.java, Aresta.java i Caixa.java.

Una interficie grafica es basa en una finestra que conté varis elements amb els quals
podem interaccionar. Java ens proporciona la classe JFrame, una classe contenidor que
necessita un gestor de Layout que s’encarregui de I'organitzacio dels elements que
conté. Aquest gestor pot canviar la posicié dels components de la nostra aplicacié pero
no permet dibuixar directament sobre ella per tant s’ha d’afegir un component sobre
el qual dibuixar. El component que utilitzarem per aquesta finalitat és de la classe
JComponent, que a continuacido veurem que és una classe molt potent i que ens
proporciona molta llibertat per representar els diferents elements.

ZonaDibuix.java és la classe que s’encarrega de la representacié dels elements en
I'escena i de la gestio dels events que es produeixen en ella. Per una banda aquesta
classe és una extensid de la classe JComponent, que ens facilita en gran mesura la
labor de representar per pantalla els estats i transicions d’'una forma agradable i
comode. Per altra banda aquesta classe implementa les interficies Mouselistener i
MouseMotionlListener per donar cobertura al control i gestié d’events del ratoli perque
I"'usuari pugui treballar i editar el contingut amb gran comoditat.

3.1.1 Extensio de la classe JComponent:

Com s’acaba d’introduir per poder dibuixar en una interficie grafica s’ha de crear una
classe que hereta de la classe Canvas (la traduccio al castella és “lienzo”) o JComponent
i entre altres coses s’ha de definir el meétodes paint i update (en el cas de la classe
Canvas). Aguests métodes reben un objecte de la classe Graphics sobre el qual es
dibuixa I'escena que es vol mostrar i a continuacid es mostra per pantalla. Perqué el
nostre programa sigui més potent, aquest objecte és convertit a un objecte
Graphics2D. Aquesta classe és una extensio de la classe Graphics per tant té tots els
metodes d’aquesta classe i d’altres que ens permeten canviar la forma en que
dibuixem.

-11 -

CAPITOL 3. IMPLEMENTACIO

Per entendre la representacié dels elements s’ha de coneixer la classe Graphics. La
classe en questio és el sistema basic de totes les operacions grafiques, és una classe
abstracta que té I'objectiu de conformar el context grafic (encapsular I’ informacié
necessaria que es vol mostrar per pantalla) i proporcionar els métodes necessaries per
dibuixar per pantalla. Per dibuixar es necessita una context grafic valid que el rebem
com un objecte de la classe Graphics. El problema es que al ser una classe abstracta,
aquesta no es pot instanciar directament i per tant li hem de passar el context grafic al
programa a través dels métodes paint() o update() o amb el métode getGraphics() de
la classe Component.

3.1.2 Pintar I'escena:

Els metodes paint(Graphics g) i update(Graphics g) son els metodes que podem
definir en la nostra classe i juntament amb el metode repaint() sén els que
s’encarreguen de pintar I'escena.

El métode repaint() es crida en codi quan es necessita que un component es repinti,
aquestes sol-licituds s"Tanomenen App-triggered Painting Operation i és el programador
qui decideix repintar. Si és un component normal (JTable, JButton, JLabel, etc) no és
necessari fer la crida ja que si es produeix algun canvi sobre algun d’aquests
components automaticament ja es repinten. A diferencia dels métodes paint i update
que no poden ser cridats en codi, si podem cridar el métode repaint(). Per aquesta
propietat és de vital importancia donat que permet repintar I'escena quan el
programador vol mostrar canvis permeten definir el tractament desitjat de I'escena.
De tal manera, quan canviem |’ informacié d’un element del Canvas, cridarem aquest
metode perque ens cridi al métode paint i ens la dibuixi amb els canvis actualitzats. El
meétode repaint() Unicament avisa a la maquina virtual de Java que aquell component
necessita ser repintat. El meétode en si mateix no borra ni dibuixa res, és la maquina
virtual que posa la peticio a la cua d’events de pantalla juntament amb els events de
teclat i ratoli. Quan la maquina virtual decideix repintar el component , el que fa és
cridar al seu metode update(Graphics g) . L implementacié per defecte d’aquest
meétode borra I'escena actual repintant-la amb el color de fons definit (Background) i
crida al métode paint per pintar de nou I'escena.

El métode paint(Graphics g) és el responsable de dibuixar les imatges. Normalment és
el sistema operatiu que el crida per dibuixar la pantalla com a resposta a una System-
triggered Painting Operation, una operacié on el sistema operatiu decideix que el
component o una part d’ ell ha de ser repintat per algun motiu, els motius més tipics
son: el component es fa visible per primer cop, el component és redimensionat o que

-12 -

CAPITOL 3. IMPLEMENTACIO

el component ha estat tapat per una altra finestra i ara el component torna a estar a la
vista.

3.1.3 Efecte Flickering:

En un primer moment la classe ZonaDibuix.java va ser implementada com una
extensio de la classe Canvas que és molt utilitzada en diferents manuals i programes
per programar aquest tipus d’entorns. Un cop ja teniem implementat el dibuix d’un
rectangle en I'escena i el podiem moure, ens vam trobar amb I'efecte anomenat
flickering o parpelleig que es dona al esborrar-se i tornar-se a pintar I'escena des de
zero amb massa refresc. Aquest efecte és molt molest donat que al moure un element
de I'escena tota I'escena pampallugueja produint que treballar amb I'aplicacié fos
inviable. Una llarga exposicid a aquest efecte produiria mal de cap i d’ulls al usuari.

En un primer moment es va resoldre parcialment el problema utilitzant la crida del
meétode repaint(int x, int y, int w, int h) enlloc de repaint() on x, y, w i h defineixen la
zona que volem repintar. L “Unic que vam aconseguir amb aquesta solucio va ser que el
pampallugueges només a la zona de la pantalla que repintavem, encara que si
arrossegavem un elements al llarg de la pantalla de manera molt rapida, a vegades la
zona de redibuix era insuficient i quedaven parts del element per la pantalla que no
s'esborraven fins que tornaves a passar un altre element a prop seu.

Aquest problema es va solucionar totalment d’una manera molt més eficient utilitzant
la tecnica del Doble Buffer. Aquesta técnica requereix per una banda definint el
meétode update(Graphics g) de manera que controlem que no esborri la pantalla, sin
gue directament cridi al metode paint(Graphics g). Per altra banda s’han d’omplir tots
els pixels del component dibuixant les noves dades sobre les antigues. Per aconseguir
que el metode paint(Graphics g) implementi la técnica del Doble Buffer hem d’utilitzar
dos buffers. Un d’ells conté els pixels en pantalla i I'altre és un objecte Bufferedimage.
El que es fa és dibuixar sobre un dels buffers (el Bufferedimage) evitant dibuixar sobre
la pantalla. Quan ja hem dibuixat tots els elements sobre el Bufferedimage,
I’enganxem directament sobre el component. Al no esborrar el component i dibuixar la
imatge a sobre directament eliminem |’efecte flickering.

-13 -

CAPITOL 3. IMPLEMENTACIO

Per si queda algun dubte en el seglient codi es pot observar la manera correcta de
definir els elements per representar I'escena.

Public class NouCanvas extends Canvas

{
Public void paint (Graphics g) {
Bufferedimage imatge = (Bufferedlmage) createlmage(width, height);
(1)
imatge.draw(....); (2)
g.drawlmage(imatge,0,0,this); (3)
}
Public void tractamentElements(){
//quan ens interessa actualitzar el component
repaint(); (4)
}
Public void update(Graphics g) { paint (g); } (5)
}

1) Creem una imatge de la mateixa mida que I'escena

2) Dibuixem sobre I’ imatge.

3) Enganxem la imatge sobre el component

4) Es crida al metode repaint() perque faci un update de I'escena

5) Escrida directament el metode paint evitant que s’esborri I'escena.

En els JComponents, la tecnica del Doble Buffer la tenim implementada per defecte i
només I’hem d’activar de la seglient manera: unJComponent.setDobleBuffered(true);

Aquest va ser un dels motius pels quals la classe ZonaDibuix.java va passar a ser una
extensié de JComponent enlloc de Canvas. Amb aquest canvi no ens hem de preocupar
de definir el metode update ni d’utilitzar un objecte Bufferedimage on dibuixar
I’escena per evitar |'efecte flickering.

L'altre motiu que ens va fer decidir migrar a JComponent va ser perqué la classe
Canvas ve de la llibreria AWT mentre que la classe JComponent pertany a la llibreria
Swing, per tant la classe Canvas com alguns d’altres components del package
java.awt.* sén components antics (de Java 1.0) basats en una estructura més simple
(Light Weight) que Swing i no funcionen igual. Aquest fet provocava que es produissin
glitches i la zona de disseny es mostres per sobre de la barra de menu tapant la
visibilitat dels seus items.

-14 -

CAPITOL 3. IMPLEMENTACIO

Com que la classe Canvas i JComponent tenen un comportament tant semblant la
migracio va ser molt senzilla i només es va tenir que canviar la classe de la que es
deriva. Per millorar el rendiment s’ha esborrat codi innecessari com la redefinicié del
metode update i I’ implementaciéo manual del Doble Buffer.

3.1.4 Que es pinta?

Cada escena disposa d’un objecte de classe Format classe que té com a Unica finalitat
guardar els colors de tots els elements que es poden dibuixar.

Primer de tot es pinta el fons per netejar I'escena i a continuacié es pinten la resta
d’elements segons la profunditat que els volem donar. Els seglients elements que
pientem son les transicions que les tenim guardades en una llista (/listaCaixes). Per
cada transicidé a part de dibuixar la seva figura, se |li dibuixa a sobre |’ informacio léxica
que ha de tenir cada un dels seus camps. Per saber on ha d’anar el text s’aprofiten les
coordenades de la transicio i una variable de desplagament propia de cada transicio
gue marca on esta el separador en cada cas.

Amb motiu d’ optimitzar els recursos en la mesura del possible es va decidir que enlloc
de que cada estat pintés el seu rectangle que marca l'origen i el desti de les arestes
siguin les transicions qui controlin si tenen algun estat que arriba o surt de la transicio
amb un comptador. En cas que els comptador siguin més grans que zero, es pintara un
rectangle a I'extrem de la transicié corresponent.

Per ultim es pinten les arestes. S’ha tingut en compte I'ordre de dibuix dels elements
per resoldre un conflicte de comoditat en casos en que es treballi sobre un automat
que té molts estats i transicions que es creuen. Pot ser molt complicat veure |'origen i
desti de les arestes si hi ha transicions que les tapen pel cami. Per aquest motiu s’ha
decidit que els estats tenen més prioritat que les transicions i per tant es dibuixen en
ultima instancia per resoldre la superposicid d’elements. Abans de sortir es pinta una
bora al voltant de I'escena per motius d’estética.

-15 -

CAPITOL 3. IMPLEMENTACIO

3.1.5 Control d’events:

Cada vegada que l'usuari tecleja un caracter o fa clic en un boté del ratoli, es produeix
un event. Perqué la nostra classe faci un correcte tractament els events,s’ha
d’implementar |' interficie apropiada i ser registrada com un “oient d’event” de la “font
d’event” corresponent.

Cada event esta representat per un objecte que ofereix informacié sobre l'event i
identifica la font. La font dels events normalment sdn components, pero altres tipus
d’objectes també poden ser fonts d’events. Cada font d’events pot tenir varis oients
registrats i a I'inversa, un Unic oient pot registrar-se en varies fonts d’events.

Els components Swing poden generar moltes classes d’event per tant primer de tot
s’ha d’escollir quines events son els que ens interessa detectar i quin tipus d’oient hem
d’implementar:

Per una banda necessitem I'oient MouseListener per tractar els events que sorgeixen
cada vegada que l'usuari fa clic amb el ratoli sobre un component. L'utilitzarem per
seleccionar els element de I’escena.

Per altra banda també necessitem |'oient MouseMotionListener, per tractar els events
que sorgeixen quan l'usuari mou el cursor. L'utilitzarem per moure un element per
pantalla seguint el recorregut del ratoli.

Per utilitzar aquests oients la classe ZonaDibuix.java els ha d” implementi en la definicid
de la classe. A continuacid els elements que volem controlar els hem de registrar al
oient. En aquest cas és tota I'area de I'escena que volem que sigui escoltada per tant
en el constructor de la classe li assignem els oients utilitzant els metodes
addMouseMotionlListener (this) i addMouselListener(this).

Per ultim hem d’implementar els métodes de I’ interficie de I'oient:

public void mousePressed(MouseEvent e) i public void mouseReleased(MouseEvent
e) pel Mouselistener i public void mouseDragged(MouseEvent e) pel
MouseMotionListener.

D’ara en endavant al parlar de la gestio dels events referents a les transicions i estats
es fara en tres contexts: ratoli premut, ratoli arrossegat i ratoli alliberat i estarem fent
referéncia al codi implementat en cadascun dels tres metodes que acabem de
mencionar.

-16 -

CAPITOL 3. IMPLEMENTACIO

3.1.6 Buscar elements per I’escena:

Per optimitzar la cerca de transicions i estats d’una manera centralitzada, assegurar-
nos una bona assignacié de les variables globals i eliminar codi duplicat s’ha creat un
metode que es crida cada vegada que es vol comprovar si en unes coordenades es
troba algun component.

Aquest metode s’anomena buscarComponent(int x, int y) i retorna un boolea que
tindra valor True en cas que s’hagi trobat un element en aquella posicio.

El cos d’aquest metode és el seglient:

Primer s’entra en un bucle que recorre la llista de transicions de final a inici (en cas de
transicid superposades la del final de la llista és la superior i té prioritat al ser
seleccionada) fins que trobem una caixa que té les coordenades del MouseEvent. Si
ens trobem amb una caixa que té les coordenades es faran les seglients accions:

e Assignem a valor True a element_trobat que és la variable de retorn. Aquesta
assignacié ens fa saltar una condicido de parada del bucle per no continuar
recorrent la llista.

* Assignem el valor True a la variable global caixa_seleccionat. Aquesta variable
un cop fora del metode se li comprovara el seu valor per saber quin tipus
d’element s’ha seleccionat.

* Assignem el valor de la posicié de I'element en la llista a la variable global
index_llista.

En cas que s’hagi recorregut la llista de transicions sense resultat, es fa el mateix
procés sobre llista d’estats (llistaArestes) per comprovar si s’ha fet clic sobre el
rectangle de menu de l'estat. En cas de trobar un estat es produeixen les mateixes
accions excepte que el valor de caixa_seleccionat és False.

3.1.7 Moure elements per I'escena:

A continuacio parlarem en deteniment del desplacament dels estats i transicions per la
pantalla pero aquest apartat esta dedicat al metode compartit pels dos elements que
realment sera I'encarregat generar el seu moviment. El métode del que estem parlant
és updatePosicio(MouseEvent e) i es cridat pel gestor d’events del ratoli.

La manera de funcionar d’aguest métode és la segient: si es té una transicid
seleccionada s’actualitzen les seves coordenades sumant-li el desplagament
determinat per les coordenades del MouseEvent. La variable global “index_llista”
instanciada en el moment de seleccionar la transicid, determina quina és la transicié a
tractar evitant haver de fer una cerca en cada refresc .

-17 -

CAPITOL 3. IMPLEMENTACIO

La nova posicio de la transicio es validada amb el metode checkPosicio() que corregeix
les seves coordenades si una transicié surti del limit superior o lateral esquerra,
eliminant aixi el risc de que surti de la zona de disseny i no es pugui recuperar.

A continuacié en el cas que hi hagi estats que depenguin de la transicid que s’esta
desplacant, aquests actualitzaran el seu inici i/o fi (segons el tipus de relacid que
mantinguin amb la transicid) , el seu control i menu.

Per altra banda si el que es té seleccionat és un estat, el desplagament del MouseEvent
és sumat a les coordenades del rectangle de control de I'aresta que és el responsable
de la seva curvatura . Es comprova que sigui una posicio valida (no surti limits) i
s’actualitza el menu de I'estat perque estigui sobre la linea.

Abans de sortir del metode es produeix una crida al metode repaint() que
s’encarregara d’ensenyar per pantalla els canvis produits.

3.1.8 Reset:

S’ha implementat un métode per fer un reset de I'escena el qual borra tots els estats i
transicions de les seves llistes i retorna la mida de I’area de I’escena al seu valor inicial.

3.1.9 Solucio a la limitacio de la mida de I’escena:

Es van valorar les necessitats de |'usuari final i es va observar que I'escena hauria de
ser de mida dinamica per tal de permetre representar tant automats petits com
automats d’'una mida considerable amb una gran quantitat d’estats i transicions.

El problema és que la mida de I'escena que és finita, per tant si es vol treballar amb
moltes transicions la mida de les caixes ha de ser petita perque hi capiguen totes pero
en conseqiéncia el text que contenen sera il-legible. Per altra banda si la mida de les
caixes és gran I'automat no cap per pantalla.

Com que la comoditat de l'usuari final és una prioritat s’han implementat dos
solucions: una barra de desplagcament i un zoom.

-18 -

CAPITOL 3. IMPLEMENTACIO

3.1.9.1 Barra de desplacament:

La classe Escena.java ha estat implementada per crear i inicialitzar les estructures
necessaries per treballar després amb un objecte ZonaDibuix.

Java ens proporciona la classe JScrollPane per afegir una barra de desplacament a la
nostra GUI.

Un objecte JScrollPane proporciona una vista desplacable sobre un component lleuger
a través de barres de desplacament per mostrar un component que no cab a la
pantalla degut a la seva mida. Aquest component s’encarrega de crear les barres de
desplacament quan sén necessaries i repinta I’escena quan 'usuari fa Us de la barres.

La inicialitzacio de la variable contenidor és la seglient:
e Creem un objecte JPanel anomenat panellDibuix i el fem visible.
* Creem un objecte ZonaDibuix passant-li com a parametre el JPanel anterior per
guardar la referéncia.
¢ panellDibuix se li afegeix I'objecte ZonaDibuix.
e Creem l'objecte contenidor JScrollPane i li passem per parametre panellDibuix.
També fem les inicialitzacions de mida i flags necessaris.

En la seglient imatge es mostra el resultat de I’ inicialitzacid on s’observen les classes
gue son contenidores i les que sén contingudes. També podem observar que des de
ZonaDibuix tenim una referéncia al objecte JPanel necessaria per cridar els metodes
que faran possible I'actualitzacié de la barra de desplagament.

15crollPane

IPanel

N

ZonaDibuix

Un cop feta la inicialitzacid la resta d’operacions es produeixen en la classe ZonaDibuix
cada vegada que fem zoom o movem una transicié. Quan es mou una transicid de lloc
es crida el metode checkPosicioRectangle() per comprovar que no es una posicid
incorrecta(negativa), també comprova si la nova posicié esta més enlla de I'area de

-19 -

CAPITOL 3. IMPLEMENTACIO

I’escena actual, si es surt per la part dreta i/ o inferior, augmentem l'area perqué
s’inclogui la transicio i es criden els metodes panellDibuix.setPreferredSize(area) i
panellDibuix.revalidate() en aquest ordre. Aquests métodes s’encarreguen d’avisar al
seu contenidor JScrollPane que comprovi la nova area i que en cas que sigui necessari
faci apareixer o actualitzar la barra de desplagament.

3.1.9.2 Zoom:

El zoom s’ha implementat per suplir la necessitat de treballar [|'escena amb
perspectiva. La barra de desplacament ens permet tenir en |'escena automats de
qualsevol mida. La combinacié amb el zoom permet treballar des del punt de vista
més comode per l'usuari.

Per implementar el zoom <’utilitza una variable global a la classe ZonaDibuix
anomenada factorEscala.

El paint s’ha modificat de tal manera que es dibuixa el fons i a continuacié s’escala
I’escena amb 1/factorEscala per representar la resta d’elements.

Aixi doncs, a partir d’aquest moment cada vegada que es treballi sobre unes
coordenades de I’escena aquestes son multiplicades pel factorEscala. Per exemple per
comprovar si les coordenades on s’ha fet clic al ratoli pertanyen a una transicio és faria
la seglient comparacio:

If(Transicio.contains(x*factorEscala, y*factorEscala)) { OPERACIONS}

Per recrear les accions d’apropar i allunyar el zoom s’han afegit dos botons al a barra
d’eines. Aquests botons criden els metodes zoomlIn() i zoomOut() que multiplicar
factorEscala per una constant, modifiquen I'area de I'escena i criden els metodes
panellDibuix.setPreferredSize(area) i panellDibuix.revalidate() per avisar al JScrollPane
gue la mida de I'area de dibuix ha variat.

=20 -

CAPITOL 3. IMPLEMENTACIO

3.2 Transicions

Per representar les transicions s’ha creat la classe Caixa.java especificament per

guardar tota la informacid rellevant de les transicions. Tot el seu tractament es porta a

terme en la classe ZonaDibuix

3.2.1 Que conté la classe Caixa.java?

Cada transicio té associada un identificador de tipus enter. Aquest se li assigna
un valor en el constructor utilitzant el metode static getNewldperTransicio() de
la classe estatica GeneradorDelDs.java. Aquest metode ens retorna un valor
d’ID diferent per cada crida.

Dos cadenes de caracters on es guardara la informacié léxica i la sortida del
transductor.

Un objecte GeneralPath el qual utilitzem per mostrar per pantalla la transicid.
S’actualitzaran les seves coordenades per fer un desplacament de la transicio
per la pantalla.

Un enter que identifica de quin tipus és la transicié (1=Normal, 2= Inicial, 3=
final i 4 = connector).

Tenim dos variables nAresteslniciTransicio i nArestesFiTransicio que sén
comptadors de la quantitat d’arestes que tenim al inici i al final de la transicid.

Els métodes d’aquest classe son Unicament pel tractament d’aquestes dades per

instanciar o demanar un valor, i per traslladar I'objecte . En el constructor de la classe

s’inicialitzen tots els camps.

3.2.2 Tipus transicions:

Tenim quatre tipus de transicions:

1.

2.

3.

La transicid inicial és representada amb un triangle. Determina on comenca
I’estat inicial de 'automat. Només n’hi pot haver una d’aquest tipus.

La transicié final és representa amb un quadrat dins un quadrat més gran.
Determina els estats finals de I'automat.

La transicié normal és representada per figura resultant de dos rectangles que
contenen informacié dins seu i dos triangle als extrems. En el primer dels
rectangles s’hi conté I’ informacio lexica de la transicid i en el segon rectangle la

-21 -

CAPITOL 3. IMPLEMENTACIO

sortida del transductor. També ens podem trobar amb el cas que no tenim
sortida del transductor i la transicid només té un rectangle.

4. La transicid connector és representada per un quadrat amb dos segments a les
seves diagonals. Aquest tipus de transicié no conté informacio lexica. S'utilitza
per poder simplificar representacions d’automat i representar e-transicions.

.' m] Crear VPRED:INF | SV =

3.2.3 Gestio de les transicions:

La gestid de les transicions es desenvolupa integrament en la classe ZonaDibuix. En
aquest classe tenim una LinkedList parametritzada a tipus Caixa. En aquesta llista
tindrem totes les transicions que s’estan representant en I'escena. S’ha utilitzat la
classe LinkedList per aprofitar els métodes de gestié de dades que afegeixen i treuen
dades de la llista d’'una manera molt simple i eficient. S’"ha parametritzat per eliminar
les operacions de cast del tipus de dades cada vegada que es treballa amb aquesta
llista.

Encara que tinguem quatre tipus diferents de transicions, la classe és la mateixa I’Gnic
que varia és la forma que s’ha de dibuixar en cada cas. Per la resta el codi s’ha
implementat de tal manera que el tractament de les transicions es fa a partir de la
rectangle que les envolta. Aixi s’utilitza el mateix codi tant per moure les transicions
com per afegir-li estats o qualsevol altre accid.

3.2.4 Construir les Transicions:

Un dels requisits del projecte és representar els estats i transicions de la manera que
marca I'estandard abans mencionat. Recordem que aquesta representacid consisteix
en una aresta pels estats i per les transicions s’utilitza la representacié que s’acaba de
mencionar.

Per representar una transicié de tipus normal es podria haver utilitzat dos rectangles i
triangles contigus, perd aquesta representacido hauria suposat que per realitzar la

-22 -

CAPITOL 3. IMPLEMENTACIO

translacido s’hagués de fer per cada un dels objectes, igual que al comprovar si s’ha
picat sobre la transicié s’hauria de comprovar sobre I'area que formen les tres figures.

Per reduir operacions s’ha optat per utilitzar un sol objecte GeneralPath . Aquesta
classe hereta de la classe Shape i ens permet representar figures definint la seqiiéncia
de tragos utilitzant els métodes moveTo(x,y) i lineTo(x,y).

Per representar les transicions primer fem un moveTo(x,y) a la coordenada de la zona
de disseny on volem que estigui la cantonada superior esquerra de la transicio. A partir
d’aqui se li dona la forma desitjada com si fos un joc infantil d’'unié de punts. S'utilitza
el métode lineTo(x,y) per recdrrer el cami minim que passa pels punts caracteristics de
la transicio.

Per saber els punts caracteristics s’utilitzen dos variables instanciades en el constructor
distanciaSeparador i llargadaCostat. La variable distanciaSeparador és 'amplada que
ocupa el text de I’ informacid lexica que va en el primer rectangle de la transicio
marcant-nos on acaba el primer rectangle. La variable /largadaCostat ve definida per la
distanciaSeparador més la llargada de la informacié de sortida del transductor.
L’'amplada que ocupen els 2 textos marca la referencia on acaba el segon rectangle.

Amb I’ informacié d’aquestes dos variables i un valor constant per la posicié de la
punta ja es suficient per crear la transicio.

distanciaSeparador

15
15

llargadaCostat

Per introduccié d’informacié lexica dins la figura s’encarrega el metode paint de
ZonaDibuix amb el meétode drawString(String,x,y). La coordenada y té el mateix valor
per les dos cadenes de text determinat pel valor de centerY() de |'objecte. Per les
coordenades x, utilitzarem el valor de la coordenada X de |'objecte i per dibuixar
segona cadena de text dins el segon rectangle se li suma el desplagament
corresponent al valor de la variable distanciaSeparador.

Per les transicions de tipus inicial, final i connector també s’utilitza un objecte de la
classe GeneralPath pero els hi donarem una forma diferent per cada cas. L'Unica
diferencia important respecte les transicions de tipus normal és que aquests no
contenen informaciod en el seu interior i s’ha de tenir present en el métode paint() per
no produir un error.

-23 -

CAPITOL 3. IMPLEMENTACIO

3.2.5 Analisis de les accions que es duen a terme amb les transicions:

Per explicar el tractament resultant de la gestié d’events que tenen a veure amb les
transicions parlarem en tres contexts introduits anteriorment: ratoli premut, ratoli
arrossegat, ratoli alliberat.

3.2.5.1 Accié afegir transicio:

Ratoli premut:
Aquesta acciéd només té repercussié en aquest context per tant al arrossega el ratoli i

al alliberar-lo, no es produira cap altra accio.

S’afegeix la transicid en el punt de I'escena on s’ha fet clic. Per donar servei a aquesta
accio es fa una crida al metode afegirTransicio(MouseEvent e). Aquest métode era
massa complex i es va crear la classe CreadorTransicions.java perqué s’encarregués
de les operacions de creacio i actualitzacié del contingut de les transicions. S'utilitza el
meétode novaTransicio(escena, x,y) d’aquesta classe que s’encarrega de crear i
mostrar per pantalla una finestra emergent que ajuda a l'usuari a especificar els
camps de la transicio.

Les coordenades x i y determinen la posicid on es col-locara la transicid. Els seus valors
venen determinats per les coordenades del MouseEvent a través dels métodes
e.getX() i e.getY(). El parametre escena és el propi objecte ZonaDibuix per configurar
la finestra emergent i es mostri en tot moment davant de I'escena fins que s’acabi
d’afegir la transicié o es cancelli 'operacio.

El valor retorn esperat del métode novaTransicio(escena,x,y) és un objecte de la classe
caixa inicialitzat segons la configuracié escollida per I'usuari. En cas de que es produeixi
algun problema en la creacié de la transicié perque I’ informacié no és correcta o es
cancel-li I'operacio el retorn és NULL.

Per tant si tenim no tenim NULL afegim la Caixa a la llista de transicions i repintem
I’escena perqué es mostri la nova transicio.

L" informacio sobre la classe CreadorTransicions.java i els seu contingut se’n tracta
exhaustivament en un futur apartat de la memoria. La rad d’aquest aplacament és per
organitzar millor el contingut de la memoria i no perdre el fil actual sobre les accions
gue es duen a terme amb les transicions.

-24 -

CAPITOL 3. IMPLEMENTACIO

Accié eliminar transicio:

Ratoli premut:
Si I'opcid de esborrar elements esta activa i s’ha fet clic sobre una transicid, es fa una

crida al métode borrarElement(MouseEvent e) que s’encarregara d’eliminar-la.

Al eliminar una transicié també s’ha d’eliminar tots els estats que tenen el seu origen
i/o desti.

A part dels estats que tenen el seu origen i desti sobre una mateixa transicio, la resta
d’estats relacionen dos transicions. El problema recau que s’ha de buscar cada un dels
estats que tenen relacié en algun dels seus extrems amb la transicio que es vol
eliminar i s’ha d’avisar a la transicié de l'altre extrem perqué decrementin el seu
comptador d’estats.

Accié moure transicio:

Ratoli premut:
En aquest cas es fa una crida al métode iniciarDesp(MouseEvent e).

En el métode iniciarDesp(MouseEvent e) es produeixen una série d’operacions per
inicialitzar la informacié necessaria que s’haura d’actualitzar durant el desplacament.

El primer que es fa es comprovar si s’ha seleccionat un element o si s’ha fet clic sobret
el buit. Es crida al métode buscarComponent(x,y) i el seu retorn es guarda en la
variable booleana element_seleccionat .

En cas que s’hagi trobat algun element en aquelles coordenades el valor
element_seleccionat sera True. Quan ens trobem en aquest cas es passa a comprovar
si s’ha fet clic sobre un estat o una transicié. Si és una transicid el valor de la variable
global caixa_seleccionat, que ha estat instanciat dins el metode buscarComponent(x,y)
té valor True.

Si realment s’ha fet clic sobre una transicié la seva posicio dins la llistaCaixes és el valor
de la variable global index_llista.

A continuacioé fem les seglients operacions:

o, ,n

e S’assigna el valor a les variables “x” i “y” a partir de les coordenades de la
transicié menys les del MouseEvent. En aquestes variables es guarda el valor
de referéncia de les coordenades. Es a dir on s’ha produit I’Gltim desplagament.

* Es busca quins estats tenen relacié amb la transicié que s’esta traslladant:

0 S’Assigna el valor de la ID de la transicié a una variable local id_caixa.

-25.

CAPITOL 3. IMPLEMENTACIO

0 Es recorre la llista d’estats comprovant si valor de id_caixa és igual al
valor de id_inici i/o id_fi. En cas positiu, segons el tipus de relacié de
I’estat amb la transicio es guarda la seva posicio en la llista dins una de
les segiients llistes: ArestesModificarlnici , ArestesModificarFi o
ArestesModificarlnicilFi.
e Escrida el metode updatePosicio(MouseEvent e).

Ratoli arrossegat i ratoli alliberat:

Si ens trobem en el cas que estem movent una transicid simplement fem una crida al
meétode updatePosicio(MouseEvent e).

3.3 Estats

Els estats en la nostra aplicacio es representen en forma d’arestes. Per representar els
estats s’ha creat la classe Aresta.java especificament per guardar tota la informacio
rellevant dels estats. Tot el seu tractament es porta a terme en la classe ZonaDibuix.

3.3.1 Que conté la classe Aresta.java?

e Un objecte QuadCurve2D.Double que sera la representacio de la nostra aresta .

e Quatre objectes Rectangle anomenats inici, fi, control i menu.

¢ Dos variables enteres per guardar els identificadors de les transicions origen i
desti.

¢ Una variable booleana per determinar si es vol mantenir la curvatura.

* La mida dels rectangles que utilitzem per senyalitzar I’ inici, fi i menu de I'estat
esta definida per dos constants.

¢ Una cadena de caracters que s’utilitza com etiqueta. Per defecte la cadena és
buida pero a través del menu de I'estat se li canvia el valor.

226 -

CAPITOL 3. IMPLEMENTACIO

3.3.2 Gestio de les transicions:

La gestid de les transicions es desenvolupa integrament en la classe ZonaDibuix. En
aquest classe tenim una LinkedList parametritzada a tipus Aresta on es guarden totes
les arestes que s’estan representant en l'escena. Al igual que en el cas de les
transicions s’ha utilitzat la classe LinkedList per aprofitar els metodes de gestié de
dades. S’ha parametritzat per eliminar les operacions de cast del tipus de dades cada
vegada que es treballa amb aquesta llista.

3.3.3 Construir els Estats:

Tothom que ha treballat alguna vegada amb programes de creacid de d’automats o
diagrames d’estats s’ha trobat que a vegades és util que les linees que uneixen els
elements es puguin corbar. Per aquest motiu s’ha escollit que les arestes que
representen els estats siguin objectes QuadCurve2D.Double enlloc de Line2D per poder
aconseguir corbar els estats. També és necessari corbar els estats pels casos en que
comencen i acaben en la mateixa transicié (loop).

Per pantalla les arestes es visualitzen de la seglient manera:

La classe QuadCurve2D permet construir un segment corbat basat en equacions
matematiques. La corba generada també rep el nom de corba quadratica de Bézier.
Aquesta corba es basa en I'idea de d’establir dos punts que defineixen els extrems del
segment, i un tercer punt anomenat punt de control que s’encarrega de determinar el
grau de la curvatura.

El constructor de la classe QuadCurve2D.Double ha d’instanciar les coordenades dels
punts d’inici, fi i control. Un cop té aquestes tres coordenades la forma de |'aresta pren
la seglient formula:

Aresta(t)=(1 —t)2 < inici+ 2+t = (1 —t) + control +tZ «fi
Notem que per t= 0 es compleix que Aresta(t=0) = inici i quan t=1, Aresta(t=1) = fi, que

son els extrems.

-27 -

CAPITOL 3. IMPLEMENTACIO

inici

Al mostrar els estats per pantalla només pintem I'objecte QuadCurve2D.Double i el
rectangle de menu situat al punt mig de l'aresta. Aquest rectangle sera el punt
d’interaccid de I'estat, que ens permet corbar I'estat arrossegant-lo per la pantalla. El
menu també ens permet accedir a les seves caracteristiques fent clic amb el boto dret
del ratoli.

Per corbar un estat tot i que es fa arrossegant el rectangle menu, el desplagament que
realitzem amb el ratoli es suma sobre les coordenades del punt de control de I'aresta.
A continuacio es fa una cridar al metode checkPosicioControl() que ens corregeix les
coordenades en cas que es surti del limits. Un cop les noves coordenades de control
estan validades, s’actualitza I'aresta perque adopti la nova curvatura i s’actualitza la
posicié de menu perque torni a estar al mig de I'aresta.

3.3.4 Restriccions:

e Un estat no pot tenir com a desti la transicid inicial.
e Un estat no pot tenir com a origen la transicio final.

Les transicions de tipus inicial i final tenen com a Unic proposit marcar els extrems de
I'automat. Si es vol fer una de les anteriors connexions s’hauria d’iniciar/finalitzar I
insercio de I'estat a una transicido connector que estigui connectada amb l'estat en
qlestio. Semanticament és equivalent.

3.3.5 Analisis de les accions que es duen a terme amb els estats:

Per explicar el tractament resultant de la gestié d’events que tenen a veure amb els
estats parlarem en tres contexts introduits anteriorment: ratoli premut, ratoli
arrossegat, ratoli alliberat.

Acci6 afegir estat:

Ratoli premut:
Primer de tot es fa una cerca sobre I'escena amb el métode buscarComponent(x, y) per

comprovar si s’ha fet clic sobre una transicid. En cas afirmatiu i en cas de no ser la

-28 -

CAPITOL 3. IMPLEMENTACIO

transicid final, cridem el métode novaArestalnici() de la transicid per augmentar el seu
comptador d’estats que neixen en aquella transicid. Guardem la referencia d’aquesta
transicio en una variable global auxiliar per utilitzar el seu valor en cas que I'aresta no
sigui valida perque és repetida (té el mateix origen i desti) o no es selecciona una
transicié de desti, decrementar el comptador d’estats que neixen de la transicid.
S’afegeix una nou objecte Aresta a la Ilista Arestes. Aquest nou objecte guarda la ID de
la transicio origen i inicialitza els camps d’inici, control i fi de 'objecte QuadCurve2D. L’
inici de la transicié ve definit per la coordenada més gran de la transicid. El fi fins que
no acabem d’afegir I'estat les seves coordenades son les que apunta el ratoli.

Ratoli arrossegat:
Es fa una crida al métode updateEstat(MouseEvent e) el qual actualitza la coordenada

de fi de I'aresta. Per poder observar en temps real I'aresta que estem construint.

Ratoli alliberat:
Per posar punt i final a I’ inserci6 d'un nou estat es crida el metode

finalitzarinsertarEstat(MouseEvent e) quan s’allibera el boté del ratoli.

Agquest metode comprova si en el moment que s’ha deixat de fer clic el ratoli és troba
sobre una transicié que no sigui la inicial. En cas negatiu s’elimina I'estat de la llista i es
decrementa el comptador d’estats que neixen de la transicié origen per desfer
I'operaciod d’insercio.

En altre cas es guarda la ID de la transicio desti . S’"ha de comprovar si les transicions
d’origen i desti sén les mateixes ja que en aquell cas es corba I'aresta per sobre la
transicié. També es comprova que sigui un estat no repetit (en cas de que en la llista
d’estats ja tinguem un altre estat que té el mateix origen i desti es procedeix a eliminar
I'aresta i decrementar els comptadors d’estats de les transicions afectades). Per
finalitzar s’actualitzen les coordenades de fi de I'aresta aixi com el seu control i menu.

-29 .

CAPITOL 3. IMPLEMENTACIO

Accio eliminar estat:

Ratoli premut:
Si 'opcid de esborrar elements esta activa i s’ha fet clic sobre un estat, es procedeix a
eliminar-lo. A part d’eliminar I'estat en qgliestié s’ha de recorre la llista de transicions

fins trobar-nos amb la/les transicions que tenen la mateixa ID que nosaltres tenim
guardada en els caps id_inici i id_fi . Quan trobem aquestes transicions les avisem que
han d’actualitzar el seu comptador d’arestes que arriben/surten de la transicio.

Accié moure estat:

Quan tenim I'opcié moure element seleccionada de la barra d’eines, si seleccionem el
rectangle definit pel menu de I'estat i I'arrosseguem, el que realment es fa es moure la
coordenada de control de I'objecte QuadCurve2D és a dir de I'aresta. Amb aquesta
accid el que s’aconsegueix és modificar la curvatura de I'estat.

Per moure el control s’encarrega el meétode updatePosicio(MouseEvent e). Les
operacions a realitzar son les mateixes que s’aplicaven per moure una transicié al igual
gue també es fa una comprovacio de posicidé per assegurar-nos que és sigui valida.
També s’actualitza quan és necessari la barra de desplagament. L’Unic diferencia
respecte al tractament de les transicions és que s’ha d’anar actualitzant la posicié del
menu de I'aresta per observar el resultat.

El desplacament en si de I'aresta es produeix indirectament al moure una transicié
amb qui té relacid. Pels estats que se’ls ha de mantenir la curvatura no se’ls actualitza
les coordenades de control I'aresta evitant que es converteixi en una recta.

-30 -

CAPITOL 3. IMPLEMENTACIO

3.4 Classe Main

La classe Main.java és la classe principal de l'aplicacié. En ella es produeixen
operacions molt importants com és el llangament del programa o la gestié dels
diferents events d’accio llencats pels menus. En aquesta classe també implementem la
caracteristica de preguntar a l'usuari si es vol guardar el treball abans de tancar
I"aplicacid aixi com multiples pestanyes per diferents escenes per poder treballar amb
la millor comoditat. Tot aix0 sense mencionar que aquesta és la classe arrel del
programa la qual conté tots els components que es visualitzen per pantalla.

3.4.1 Metode estatic main:
Tota aplicacid necessita que existeixi aquest metode per poder executar un programa.

Aquest metode és realment simplement, tot el que fa és crear un objecte tipus
Main.java el qual dins el seu constructor creara un objecte tipus JFrame que és la
finestra que ens apareix a la pantalla i sobre la qual treballem.

3.4.2 Constructor de la classe Main:
Com s’acaba de mencionar, és aqui on es crea |'objecte JFrame que sera la cara del

nostre programa. En el constructor instanciem tots els seus parametres: li definim el
nom de I'aplicacid, li definim un Layout tipus BorderlLayout, definim la seva operacié
de tancament, li afegim la barra de mend amb el metode set)MenuBar, la barra
d’eines, la zona de disseny i el label de notificacions. A continuacié es crida el métode
pack() que fa que la finestra prengui la mida més petita possible que permet veure tots
els components. Per acabar fem que la finestra sigui visible amb el meétode
setVisible(true).

3.4.3 BorderLayout:
La portabilitat de Java a diferents plataformes i diferents sistemes operatius necessita

flexibilitat a I’"hora de situar els Components (Buttons, Labels, Canvas, etc.) en un
Contenidor (JFrame, JPanel, etc.)..

La classe JFrame és una classe tipus Container que s’encarrega de contenir els
diferents elements del programa. S’anomena components als elements que estan
continguts dins un container.

Un Layout Manager és un objecte que controla com els Components es situen en un
Contenidor.

-31 -

CAPITOL 3. IMPLEMENTACIO

Existeixen varis Layout Managers pero per la nostra aplicacio hem escollit el
BorderLayout. La peculiaritat d’aquest LayoutManager és que divideix el container en
cinc zones: North,South, East,West i Center.

"Morh”

"=outh”

S’ha escollit aquest LayoutManager entre les diferents opcions perqué és la que ens
posicionava millor els elements per oferir una aparenca agradable. S’ha situat una
barra d’eines a un lateral (WEST), un Label de notificacions a la part inferior (SOUTH) i
el centre esta reservat pel component que ens mostrara la zona de disseny (CENTER).

Un altre avantatge d’utilitzar BorderLayout és que la barra d’eines que és un
component JToolBar el qual se’l pot arrossegar i col-locar-lo a una altra posicid lliure.
L'avantatge de col-locar la barra de mend amb el metode de la classe JFrame
setJMenuBar(menu) enlloc d’utilitzar el LayoutManager i assignar-li la posicié de North
és que d’aquesta manera aquesta posicio queda lliure. Per tant la barra d’eines es pot
situar als dos costats i a la part superior, justament els llocs més comuns on
s’acostumen a situar aquest tipus d’elements en les aplicacions, oferint la possibilitat
de personalitzar I'aplicacié a gust de I'usuari que I'utilitzi situant la barra d’eines en la
posicio que li és més comode.

Per afegir un component a la nostra finestra primer s’ha hagut d’especificar el tipus de
Layout Manager. La resta és una tasca ben senzilla, tan sols s’ha d’especificar
localitzacio en el segon parametre del métode add(Component, arg).

3.4.4 Menus i la seva gestio:

La barra de menus que ens permet accedir a una gran varietat d’opcions d’'una manera
organitzada. Aquest component és fonamental en qualsevol aplicacid perquée els
usuaris estan acostumats a la seva presencia i estan familiaritzats amb la seva
organitzacid. En la barra de menus trobem les opcions més comuns de programes de
disseny.

-32-

CAPITOL 3. IMPLEMENTACIO

Tenim una altra barra de mend o barra d’eines a un lateral que s’encarrega de
proporcionar les utilitats basiques per dissenyar un automat amb totes les comoditats
gue han estat possibles d’ implementar.

Els menus estan compostos per objectes de les classes JButton o JMenultem aquests
elements al ser pressionats llencen un event ActionEvent que ha de ser capturat per
una classe que implementa |’ interficie Actionlistener. La propia classe Main és
I’encarregada d’implementar aquesta interficie i atendre les peticions dels menus.

En un futur apartat de la memoria es tracta més exhaustivament el tema de la creacid
d’aquests mendus i la seva gestio.

3.4.5 Pestanves:

En un moment determinat del desenvolupament de I'aplicacié es va tenir que decidir
gue fer quan s’estava editant un automat i es volia obrir un document per crear un nou
automat.

La primera idea que es va considerar va ser que cada vegada que s’obris una finestra
nova crear un nou objecte de tipus Main. Encara que aquesta idea era ben valida
alhora d’implementar es va decidir per una altre cami.

L’opcid que s’ha escollit ha estat una que inclou I’ utilitzacié d’una barra de pestanyes,
on cada pestanya té la seva escena. S’ha escollit aquesta opcid perque per una banda
evitem crear masses components repetits com el menu , la barra d’eines o tota la
classe Main. El que realment I’ interessa a |'usuari quan vol obrir un nou document és
tenir una nova superficie sobre la qual dissenyar, en el nostre cas, un nou component
ZonaDibuix, i aix0 és el que s’ha proposat. L'altre rad és per motius d’organitzacio,
'usuari té tota I’ informacié controlada enlloc del caos que suposa tenir varies
aplicacions obertes.

La barra de pestanyes és un objecte de la classe JTabbedPane que com haviem
mencionat inicialment és el component que esta situat al centre del BorderLayout.
Aix0 significa que és el Component responsable d’ ensenyar-nos per pantalla sobre
guina escena estem treballant.

Un objecte de la classe JTabbedPane és un contenidor com el JFrame o el JScrollPane
amb la peculiaritat que ens organitza el seu contingut per pestanyes. A més a més, és
el propi objecte qui autonomament tracta els canvis de pestanya realitzats amb el
ratoli, mostrant en cada cas el contingut de la pestanya seleccionada.

-33-

CAPITOL 3. IMPLEMENTACIO

L’ objecte JTabbedPane que utilitzem és una variable global a la classe, afegida al
JFrame en el constructor. S’ha de decidir la politica del Layout de les pestanyes que no
caben a la pantalla. Per determinar-ho s’utilitza el métode setTabLayoutPolicy(int). La
resposta que hem considerat més agradable per estetica ha estat
SCROLL_TAB_LAYOUT que com el seu nom indica apareixeran dos botons de
desplagament per navegar entre les pestanyes.

Per afegir una nova pestanya al JTabbedPane fem el segilient procés:

e Definim un String que té 'estructura “Archivo “+un enter que fa d’identificador
i que ens ve proporcionat per la nostra classe GeneradorDelDs.

e Creem un nou objecte de tipus Escena.

* La classe Main disposa d’una variable global que és una LinkedList
parametritzada per objectes de classe ZonaDibuix. En aquesta llista afegim
I’objecte ZonaDibuix que conté I'Escena que acabem de crear.

e A continuaci6 afegim una nova pestanya amb el metode
addTab(nom,icona,JComponent). El primer parametre és el nom que
identificara aquella pestanya. Si volem es podria posar una icona posant-la en
el segon parametre, i en el tercer parametre que ens demanen un
JComponent, li passem el JScrollPane que forma part de la classe Escena. Quan
un usuari faci clic en aquesta pestanya el JTabbedPane fara visible aquest
component, per tant amb el metode addTab crea el vincle entre les diferents
pestanyes i els JScrollPanes que contenen les zones de disseny.

* A continuacio procedim a editar la pestanya en si. L'objectiu es afegir un boté
en forma de creu a cada pestanya que al ser pressionat ens elimini la pestanya.
Per editar la pestanya utilitzem el metode
setTabComponentAt(int,Component). Pel primer parametre |li passem una
variable que utilitzem com comptador de les escenes (o pestanyes) que tenim
disponibles. El segon component és un objecte del a classe PestanyaTab.java
gue és una classe derivada de la classe JPanel. A continuacié s’explica com es
construeix i el que fa es afegir la creu per tancar la pestanya.

e Utilitzem el metode setSelectedComponent(Component) on li passem per
parametre el component de I'Ultima pestanya per aconseguir que la pestanya
seleccionada sigui la nova que acabem de crear.

e Utilitzem una variable entera anomenada selectedTab per saber sobre quina
escena de totes les que estan disponibles s’han d’habilitar les opcions que es
seleccionin en els menus.

Per tancar una pestanya s’ha de seleccionar el boté en forma de creu que li hem afegit.
Aquest botd el fem de color transparent dient que la seva area no ha de ser omplerta,
li creem una bora encara que no la fem visible, i I'assighem a un oient d’events de

-34 -

CAPITOL 3. IMPLEMENTACIO

ratoli i a un oient d’events d’accié. Definim el metode paintComponent(Graphics g) el
qual es crida cada vegada que s’ha de pintar el botd i que determinem que el que s’ha
de pintar és una creu amb dos linees que entravessen el boté diagonalment.

Abans de continuar és important saber que el constructor de la classe PestanyaTab té
dos parametres, ja hem dit que un és una String pel nom. L'altre és 'objecte de la
classe Main perqué necessitem guardar la seva referéncia per després poder-lo avisar
guan es tanqui la pestanya. Tot el JPanel es assignat a un oient d’events de ratoli que
hem implementat nosaltres anomenat tablistener i que sera comu per totes les
pestanyes.

tabListener és una classe derivada de la classe MouseAdapter. Java ens proporciona
ajudes per definir els métodes de les interficies Listener. Una de les seves ajudes sén
els classes Adapter, que existeixen per cada una de les interficies Listener que tenen
més d’'un metode. El seu nom correspon al nom de I’ interficie perd substituint
“Listener” per “Adapter”. Les classes Adapter deriven d’ Object i sén classes
predefinides que contenen definicions buides per tots els metodes de I’ interficie. Per
crear un objecte que respongui a un determinat event, enlloc de crear una classe que
implementi | ’interficie Listener, és suficient creant una classe que derivi de la classe
Adapter corresponent i definir només els meétodes que ens interessen. En el nostre cas
tabListener li hem definit que faci les seglients accions pels seglients events de ratoli:

e Quan passem per sobre del botd en forma de creu (event mouseEntered) fem
que el botd habiliti 'opcidé de pintar la seva bora. D’aquesta manera subtil
farem saber a l'usuari que esta sobre el botd que tancara la pestanya.

¢ Quan deixem d’estar sobre del botd (event mouseExited), deshabilitem el
pintat de la bora del bota.

e Quan ens trobem que s’ha fet clic a sobre (event mousePressed), comprovem
gue l'origen no és el botd per tant vol dir que s’ha fet clic sobre un altre part de
la pestanya. Utilitzem la referéncia al Main que haviem guardat al constructor
per cridar el metode actualitzarTab(nom). Aquest métode el que fa és buscar
en quina posicio de la llista hi ha un component que li coincideix el nom (el qual
degut a I’ intervencid en el seu moment del GeneradorDelDs és unic). Amb el
metode setSelectedComponent(int) avisem al JTabbedPane que ara volem
veure el component que es troba en la posicié que acabem de trobar.

Per acabar amb el tema de les pestanyes només que quan es captura un ActionEvent
significa que el que es vol fer es tancar la pestanya per tant es crida al metode
eliminarTab(nom) de la classe Main. En aquest metode esborrem tant la pestanya del
JTabbedPane i I'objecte ZonaDibuix de la llista d’escenes. En el cas que només queda
una pestanya i es prem el botd per tancar-la el que fem és resetejar |'objecte
ZonaDibuix que ho borra tot enlloc fer I’eliminacié per no crear un conflicte d’aplicacio.

35 -

CAPITOL 3. IMPLEMENTACIO

3.4.6 Tancament de I'aplicacio:

L'opcid per defecte d’'un JFrame és tancar 'aplicacié quan es tanca la finestra, pero si
ens posem en la pell d’un usuari que utilitza la nostra aplicacid, li seria de gran utilitat
que li proporcionéssim el recurs una finestra preguntant-li si vol guardar els canvis
realitzats abans de tancar I'aplicacié. Es més seria lamentable pensar en la possibilitat
de la quantitat de feina perduda per fer clic involuntariament sobre el botd de
tancament d’una pestanya.

S’ha afegit com a mesura de seguretat una finestra emergent que avisa que s’esta
tancat una pestanya i pregunta si vol guardar els canvis, no vol guardar o si vol
cancel-lar I'operacié i aquella pestanya no es tancara. Aquesta mesura de seguretat
esta implementada en el metode eliminarTab() per fer la consulta abans d’eliminar
alguna cosa important.

Perd que passa si enlloc de tancar una pestanya es tanca directament tota la finestra
per la creu superior? També s’ha controlat aquest cas. Primer de tot s’ha definir I'accié
per defecte de tancament de la finestra perqué sigui no fer res
(DO_NOTHING _ON_CLOSE) i que sigui un WindowAdapter qui gestioni les peticions de
tancament de la finestra. Per aquest motiu la classe Main és una classe derivada de
WindowAdapter. En la classe Main capturarem els events de tancament de finestra i
davant d’ells es crida al metode eliminarTab() per cada pestanya. Si s’han eliminat
totes les pestanyes es tanca I'aplicacid.

; N

")

:Desea quardar los cambios efectuados en Archivo 2 7

Guardar No Guardar Cancelar

L

La gracia d’aquesta mesura de seguretat és la finestra flotant per tant procedim a
explicar com s’ha implementat. L’'objectiu és demanar a l'usuari la seva confirmacio
per realitzar I’ accio.

Java ens proporciona la classe JOptionPane que es de gran utilitat per construir
finestres destinades a donar cobertura per consultes habituals. JOptionPane té dos
modalitats de finestra, les d’avis i les de confirmacid que és la que utilitzem. La
modalitat de confirmacié ens proporciona una finestra que la podem omplir amb un
objecte com un JPanel. El que mostrara per escena és el panell que li passem més els
uns botons per acceptar o cancel-lar I'operacié a la seva part inferior.

-36 -

CAPITOL 3. IMPLEMENTACIO

Com que en aquest cas no surt a compte crear una panell perquée contingui Unicament
un missatge d’advertencia, la finestra emergent la crearem d’una manera més
compacta utilitzant el metode OptionPane.showOptionDialog(). Aquest métode ens
ajuda a crear la finestra a través d’uns parametres configurable evitant haver de crear
un panell .

Els parametres que li hem de passar son:

e parentComponent: A partir d’aquest component es determina quina és la
finestra que fa de pare del JOptionPane. D’aquesta manera la finestra de
validacié es mostra davant la nostra finestra principal i no permetra continuar
treballant fins que s’escull una opcid.

* Message: Passem una String amb el missatge a mostrar. Nosaltres preguntem
"éDesea guardar los cambios efectuados en "+nom+" ?" on nom és el nom de
la pestanya per evitar confusions.

e Title: Se li passa una cadena de caracters que determina el titol de la finestra

e optionType: Demana un enter que indica quina opcié volem que tingui la
finestra. Els valors possibles son les constants definides en JOptionPane:
DEFAULT_OPTION, YES_NO_OPTION, OK_CANCEL_OPTION i la que hem escollit
nosaltres YES_NO_CANCEL_OPTION.

* messageType: Demana un enter que indica quin tipus de missatge estem
ensenyant

e |con: una icona per mostrar. Si posem NULL es mostra |’ icona determinada pel
messageType.

e Options: Se li passa una array d’objectes que determina les possibles opcions.
Si se li passa null es posen els botons per defecte. Nosaltres li passem
{"Guardar", "No Guardar", "Cancelar"}

¢ initValue: Determina la seleccié per defecte. Ha de ser un dels objectes que li
hem passat en el parametre options o null.

La crida a JOptionPane.showOptionDialog() retorna un enter que representa la opcid
gue ha seleccionat 'usuari. La primera de les opcions de I'array és 0. Si es tanca la
finestra amb la creu de el metode retorna -1.

El que fem és fer un Switch d’aquest retorn. Si el valor és -1 o 3 (Cancelar) no fem res.
Si el valor es 0 (Guardar) guardem |'automat i anem al seglient case que és el del valor
1 (No guardar) que tanca la pestanya i selecciona la pestanya anterior a la que ha estat
tancada perque sigui la nova pestanya seleccionada.

-37 -

CAPITOL 3. IMPLEMENTACIO

3.4.7 Diagrama de classes
Diagrama de classes de I’aplicacié general:

(Wmdov.fshd apte r) (ActanStener)

PestanyesTab

' PopupListener |-€ — -
— — —

-

BorderLayout - -
MouseAdapter | | actionListener | 1

(B otoTancarTa b)

(JScroIIabIePane)
1
ActionListener (JButton)

Zona

N de

disseny
JToolBar

BarraEines

BarraMenu

(AutomatsAFitx er) (AutomatsPerFitxe r)

=

=

(EntradaTS_Save) (EntmdaDefinicio)

EntradaTs

Diagrama de classes de la Zona de disseny:

JComponent (MnuseListen er) (MuuseMutinn Listener)

Caixes
(CreadurTransiciuns)<— . T
1

GeneralPath

. ' GeneradorlDs

Rectangle

I
QuadCurve2D

ZonaDibuix

i

-38-

CAPITOL 3. IMPLEMENTACIO

3.5 Barra d’eines

Per implementar la barra d’eines s’ha utilitzat la classe JToolBar. Un R
objecte d’aquesta classe es pot veure com un contenidor que espera que
'omplim amb diferents items, majoritariament objectes de la classe | .——
JButton . Els avantatges d’aquesta classe davant d’altres metodes per

implementar barres d’eines és que la col-locacié dels diferents items és 'i:f_“-t-'
gestionada automatica pel gestor de Layout propi del propi objecte. Al —
afegir diferents items a una barra d’eines aquests es col-loquen un al i

costat de I'altre d’esquerra a dreta s si la barra d’eines és horitzontal o

un a sota de l'altre si la barra en el cas que sigui vertical. i

Un objecte d’aquesta classe es afegit dins un contenidor com el que “};@

tenim implementat que utilitza el layout BorderLayout i té un

component al centre(ZonaDibuix) ens proporciona un grau més de [}Cj
flexibilitat i dinamisme donat que ens permet moure la barra d’eines per

la pantalla. En un primer moment la col-loquem a I'esquerra de la

pantalla pero si l'usuari que esta fent servir el programa decideix que en un moment
donat li aniria millor que estigues col-locada a la part superior de la pantalla, o per
simple comoditat perque esta acostumat a treballar amb programes amb aquesta
organitzacid, tant sols ha d’arrossegar la barra d’eines cap aquella posicié. També es
pot col-locar la barra d’eines a la part dreta o inferior de la pantalla o inclus la utilitzar
com a menu flotant si I'arrosseguem fora de la finestra .

Com abans s’ha introduit els items que s’afegeixen dins I'objecte JToolBar son tants
components JButton com eines volem tenir en el mend.

A l'usuari final li agrada treballar amb programes que tenen una interficie atractiva i
per tant s’ha dissenyat icones pels botons per aconseguir un millor acabat i impressié
que si s’hagués implementat amb botons omplerts per text. Les icones son de mida
reduida perque I'aplicacid no ocupi més espai del necessari. S’"han creat amb I'editor
d’imatges paint basant-nos en un disseny minimalista. La icona assignada a cada item
mostra una imatge representativa del que I'accid que porta a terme. Pero per si algun
usuari té dubtes, passant el ratoli per sobre seu apareix un missatge informatiu sobre
I'accidé que representa i quan es selecciona una eina s’actualitza el Label principal de
notificacions informant-nos breument de com s’utilitza.

També és important mencionar que I'aplicacié s’ha implementat de tal manera que
només tenim una Unica barra d’eines per totes les escenes (en cas que tinguem varies
pestanyes). A més a més quan ens movem entre escenes es manté |'opcid que es tenia
seleccionada.

-39.-

CAPITOL 3. IMPLEMENTACIO

3.5.1 Control de les accions:

Quan es prem un botd es produeix un event d’accid o ActionEvent, perque el nostre
programa capturi aquests events quan es produeixen s’ha d’associar el boté a un oient
d’aquets tipus d’events. Aquest oient en Java s’anomena ActionListener i els events
son tractats en el métode actionPerformed (ActionEvent e).

Quan s’esta construint la barra d’eines abans d’afegir els botons al contenidor
JToolBar, sel’s ha d’assignar | ActionListener.

Per tractar els ActionEvent’s que és produeixen quan es prem un botd hi ha dos
alternatives. Una alternativa és assignar un ActionListener diferent per cada o assignar
tots els botons a una mateix ActionListener (opcié implementada). D’aquesta manera
cada vegada que es selecciona una opcié del menu I'event és capturat pel mateix
ActionListener facilitant-nos la lectura i organitzacié del codi.

Per disposar d’un oient ActionListener hem de crear una classe que implementi
ActionListener, i definir el meétode actionPerformed (ActionEvent e) . En el nostre
programa aquesta classe és la classe Main.java que tractara els events d’accié produits
tant per la barra d’eines com per la barra de mendu.

Quan ens trobem editant I'escena s’ha de tenir un control sobre quina accié s’esta
portant a terme quan ens trobem que s’ha fet clic amb el ratoli, ja que tots els botons
son capturats pel mateix métode de la mateixa classe.

Quan un event d’accié és capturat primer comprovem que l'origen de I'event és un
boté (JButton) per diferenciar de la barra de mend que sén items de menu
(JMenultem).

Amb el metode getSource() del objecte ActionEvent s’aconsegueix el botd que ha estat
pressionat. En un primer moment es guardava com a variables globals a la classe cada
boté i simplement es feia una comparacié. Perd no vam tardar en veure que el nombre
de botons creixia considerablement i es va buscar una manera de no tenir que guardar
tantes dades.

Una altra manera era guardar totes les Strings que formaven el nom de les eines i
cridar el métode getLabel() per fer una comparacié entre Strings enlloc de entre
JButtons. Tot i aixi cada vegada en el pitjor dels casos s’havia de fer tantes
comparacions com botons. A part per raons d’estetica es va suprimir el camp del Label
perque per pantalla només es veiés la icona.

La solucié que es va trobar per no haver de guardar tants botons ni fer tantes
comparacions va resultar ser ben esnzilla. En la classe Main.java definim les seglients
constants:

- 40 -

CAPITOL 3. IMPLEMENTACIO

static final char RES = 0;

static final char AFEGIR_ESTAT = 1;
static final char AFEGIR_TRANSICIO = 2;
static final char MOURE_TRANSICIO = 3;
static final char ZOOMIN = 4;

static final char ZOOMOUT = 5;

static final char ELIMINAR = 6;

static final char DESFERCANVI = 7;

Quan es crea cada boté s’instanciara el seu camp nom amb el métode setName(String)
passant-li com String un dels anteriors caracters com si fos un identificador. Quan un
botd sigui premut el seu ActionEvent és capturat pel ActionListener. Amb el metode
getSource() tenim I'instancia del boté i per tant podem accedir al seu camp nom amb
getName(). Utilitzem el primer caracter del nom per entrar-lo com a parametre d’un
Switch on cada Case sera una de les anteriors constats i aixi saber quina accié 'usuari
vol portar a terme sense tenir que recérrer a multiples comparacions.

Un factor rellevant és que el nom de les constants es bastant clarificador cosa que ens
facilita la feina de lectura del programa.

Segons en quina Case del Switch s’entra es crida un meétode o un altre de la classe
ZonaDibuix de I'escena actual de la pantalla. També s’actualitza I’ informacié del Label
de notificacions per interactuar amb l'usuari i que ell pugui validar que ha fet clic sobre
I'opcid que ell desitjava.

Per les opcions RES, AFEGIR_ESTAT, AFEGIR_TRANSICIO, MOURE_TRANSICIO |
ELIMINAR, els metodes que les tracten simplement assignen el valor de la constant a la
variable global opcid de la classe ZonaDibuix que també utilitza un Switch cada vegada
gue es produeix un event de ratoli per decidir quina accio fer segons I'opcié que esta
habilitada.

La resta d’opcions sdn més elaborades i explicades individualment en un altre apartat
de la memoria.

~41 -

CAPITOL 3. IMPLEMENTACIO

3.6 Barra menu

La barra de menus és la manera més comu que utilitzen la majoria d’aplicacions per
distribuir les seves caracteristiques en menus desplegables.

La majoria de funcionalitats es criden a través de la barra de menu perque sigui facil de
treballar amb el nostre programa i l'usuari tingui I’ informacié organitzada de la
manera que esta més acostumat a treballar.

La creacio de la barra de menu és molt semblant a la creacié de la barra d’eines. Per la
seva implementacio es necessaria I’ utilitzacié d’un objecte de classe JMenuBar.

Aquesta és I'herencia de la jerarquia dels menus relacionats amb les classes:

JComponent

| | | |
| JHenuBar | |]PDpupHenu | |JAb5tractEuttnn | | Jseparator |

[I |
JHenu || | JCheckboxMenuItem | [JRadioButtonMenuItem

Podem observar que els elements del menu (incloent els menus) sén simplement
botons. La diferencia que tenen respecte un JButton és que quan s’activa un menu ,
automaticament apareix un popup menu que ensenya els elements del menu.

Tornant a l'objecte JMenuBar, és interessant saber que aquest objecte és un
contenidor igual que quan utilitzavem el JToolBar per la barra d’eines. En aquest cas
enlloc d’afegir-li botons, 'omplirem amb objectes JMenu ,per crear els diferents
mendus.

-42 -

CAPITOL 3. IMPLEMENTACIO

Cada un d’aquests objectes JMenu se I'omple amb objectes JMenu per construir un
sub-menu dins el mend. Els objectes JMenultem representen cada opcié que es
mostrar al mend. Quan el programa esta en execucid i es sel-lecciona és produeix un
ActioEvent.

mmh|mmm Ayuda

Nuevo
B Abrir Chrl-O
iL Guardar en formato automata Cul-G

Importar desde ER
Exportar
Sortir Exportar como imagen

-

Exportar como ER

En aquesta captura s’il-lustra el que s’acaba de dir, Inicio, Edicidn, Ayuda i Exportar sén
objectes JMenu. Els tres primers sén afegits al JMenuBar com a menus principals
mentre que el menu Exportar és un sub-menu. La resta d’elements son JMenultem i
estan continguts dins un objecte JMenu.

Cada item de menu se’l construeix passant-li una String pel nom. Aquesta String que i
passem al constructor es guarda en el seu camp Label, i és el text que es veu en
I"aplicacio al obrir el menu per aquell item.

Opcionalment a alguns items se’ls hi ha afegit una icona com la de guardar o obrir un
fitxer. Altres items se’ls ha definit un accelerador, és a dir definir una combinacié de
tecles equivalent a premer I’ item del menu.

Per definir I'accelerador de tecles <utilitza el metode de [litem
setAccelerator(KeyStroke key). El KeyStroke podia ser una Unica tecla, pero s’ha
considerat que quan una persona esta treballant si tenim moltes lletres assignades el
risc de prémer una tecla involuntariament amb conseqliéncies imprevisibles és massa
elevat. La millor opcié és definir dos tecles, una d’elles actua com una mascara
especificada com un ActionEvent constant. En la nostra eina per utilitzar els
acceleradors haurem de prémer la tecla corresponent alhora que la tecla Ctrl que és la
mascara.

Les combinacions de tecles definides son les seglients:

e Ctrl + N per crear una nou document.

e Ctrl+ O per obrir un fitxer en format automat.

e Ctrl + G per guardar un fitxer en format automat.
e Ctrl + F per canviar el format.

e Ctrl + Z per desfer ultim canvi.

-43 -

CAPITOL 3. IMPLEMENTACIO

Per la resta els items del menu se’ls tracta igual que els botons de la barra d’eines,
també se’ls ha d’assignar a I’ActionListener de I'objecte Main. També utilitzen el
mateix algorisme per evitar guardar tantes dades i fer una gran quantitat de
compracions cada vegada que el ActionListener captura un event. Se’ls defineix una
constant com a nom i quan I’ActionListener captura un ActionEvent, comprova si és un
JMenultem i procedeix a fer Us d’un Switch utilitzant un altre cop com a parametre el
primer caracter del seu nom per saber quina resposta a |’event ha de realitzar.

3.7 Menu emergent

Per accedir a les propietats individuals de cada estat i transicido s’ha decidit que la
manera més comode és a través d'un menu emergent. El botd esquerra del ratoli
s’utilitza per editar I'escena agregant, movent i esborrant elements. El boté dret del
ratoli s’utilitzara per obrir un menu emergent si es fa clic sobre un estat o transicid.

APREDp
ADY

Propiedades Transicion
Separar Subtransiciones

3.7.1 Crear el menu emergent:

Els menus emergents son gestionats per un objecte de la classe Popuplistener.java que
és una extensio de la classe MouseAdapter i implementa la interficies ActionListener.

Cada escena ha de tenir el seu propi gestor de menus emergents per tant en la classe
Escena.java a cada objecte de tipus ZonaDibuix que creem se li assigna com a oient
d’events del mouse una nou PopuplListener.

La classe Popuplistener.java és derivada de la classe MouseAdapter perqué com que
només ens interessa tenir control sobre I'event de fer clic sobre un element de la zona
de dibuix. Es a dir ens interessa el métode mousePressed(MouseEvent e) de I'interficie
Mouselistener i definint la classe com una derivada de la classe MouseAdapter tenim
I'avantatge que no estem obligats a implementar tots els metodes de |’ interficie
Mouselistener. Al seu constructor li passa com a parametre I'objecte de la classe
ZonaDibuix per guardar la referéncia sobre la qual treballara

- 44 -

CAPITOL 3. IMPLEMENTACIO

Aleshores cada vegada que es detecta un MouseEvent es comprova si el botdé amb el
que s’ha produit la seleccio és el dret. També utilitzant la referéncia que tenim sobre
I’objecte ZonaDibuix per comprovar si en les seves coordenades de I'event tenim algun
element.

En cas que es compleixin les dos condicions es crida al metode
mostrarPopupCorresponent(MouseEvent) que segons si I'element seleccionat és un
estat o una transicié mostrara un menu o un altre. El menu resultant fa Us del metode
show(Component,x,y) al qual li passem com a parametre les coordenades on volem
gue apareix-hi.

S’han implementat dos metodes meétodes MenuTransicio(boolean composta) i
MenuEstat() encarregats de crear els menus que es mostren quan es fa clic sobre un
estat o una transicio. Més endavant hem afegit una opcié complementaria per crear
transicions compostes, el parametre del primer métode determina si n’és el cas per
afegir una opcid més al menu.

Per crear els menus emergents s’utilitza un objecte de la classe JPopupMenu. Aquesta
classe té el mateix comportament que la classe JMenu, és un contenidor i 'omplim
amb tants items com ens interessa. La diferéncia recau en que la classe JPopupMenu
es mostra com menu flotant en les coordenades que li assighnem enlloc de tenir una
posicio fixa.

Per poder controlar quan es produeix una seleccié sobre un item del mend, necessitem
un oient d’ActionEvents és a dir necessitem una classe que implementa d’interficie
ActionlListener. Per tenir tot el codi del tractament dels menus emergents junt la classe
Popuplistener.java hem fet que també implementi |’ interficie ActionListener. Per
cadascun dels items dels menus se’ls assigna com oient la propia classe.

Aleshores cada vegada que un event d’accid és capturat per la classe el tractament és
el mateix que feiem per la barra d’eines o la barra de menu. S'utilitza un switch del
primer caracter del camp Name de I'item que ha estat seleccionat per escollir I'accio a
fer.

Algunes de les accions que es porten a terme requereixen canviar el contingut dels
menus. Per exemple quan seleccionem l'opcié “Habilitar mantenir la curvatura” del
menu d’un estat, a part de fer el tractament sobre I'estat per modificar-li el valor de la
variable booleana que determina si la curvatura és mante, ens interessa canviar el
contingut de I'item. Es a dir cridem una funcié perqué actualitzi I’ informacié del label
perque la proxima vegada que apareix-hi el menu emergent l'usuari vegi 'opcié de
“Deshabilitar mantenir la curvatura”.

_45 -

- 46 -

CAPITOL 3. IMPLEMENTACIO

CAPITOL 3. IMPLEMENTACIO

3.7.2 Menu per les transicions:

L’ opcido “Propiedades Transicion” quan és seleccionada fa una crida al el métode
actualitzarTransicio(Caixa) de la classe CreadorTransicions.java.

Basicament el que fa és mostrar una finestra emergent on s’observa I’ informacid
actual de la transicié i dona la possibilitat de canviar-la.

L'altra opcid que apareix al mend només si és una transici6 composta és “Separar
Subtransiciones”. En aquest cas la transicié és reduida a varies transicions simples
situades en posicions contiglies. Per cada nova transicié es creen nous estats perque
disposi de les mateixes connexions que la transicio original.

3.7.3 Menu pels estats:

En el menu dels estats trobem |'opcid “Habilitar mantener curvatura” o “Deshabilitar
mantener curvatura” . El seu nom depenent del valor de la variable booleana
corbatDesactivat de I'objecte de la classe Aresta. Aquesta variable determina si al
moure una transicio les arestes que en depenen son rectes o mantenen la curvatura.
Cada vegada que es selecciona I'opcié del menu el seu valor és negat.

L'altra opcié del menu es “Cambiar etiqueta”. Aquesta opcid permet canviar el valor de
I'etiqueta d’aquell estat. Utilitzem el metode showlnputDialog(label, text per defecte)
de la classe JOptionPane. Aquesta classe ja I’hem utilitzat en la classe Main per mostrar
de forma eficient una finestra emergent. En aquest cas, el metode mostra per pantalla
una finestra amb un quadre de text que conté I'actual valor de I'etiqueta.

[Entrada l&w

- Etiqueta:
lestat 1] | P estat 1

Aceptar Cancelar

L

Un cop introduit el nou valor de l'etiqueta si es selecciona el boté de confirmacié
s’actualitza el valor de l'etiqueta de l'estat en questid pel text que s’ha acabat
d’introduir.

- 47 -

CAPITOL 3. IMPLEMENTACIO

3.8 Creador de Transicions:

En el nostre programa utilitzem finestres emergents com a forma d’interactuar amb
I"'usuari perque faci la seva seleccio de les diferents opcions que li ensenyem.

En un primer moment vam utilitzar una finestra emergent com a mesura de seguretat
davant del tancament de finestres en la classe Main.java. Aquella finestra era molt
simple i simplement era configurada per parametres. En aquest apartat parlarem de
finestres emergents amb un contingut més complex.

A continuacio parlarem de les diferents classes i metodes que creen finestres
emergents, comencant per la classe CreadorTransicions.java.

En una transicid I'usuari ha d’especificar el valor dels camps que la conformen. Per
cada transicié s’ha d’especificar I’ informacié de la forma canodnica, la categoria léxica,
I’ informacié morfologica i la sortida del transductor. Aquesta classe s’encarrega
principalment de crear una transicid per primer cop i també s’encarregara de mostrar i
actualitzar la seva informacié.

3.8.1 Crear una nova transicio:

Una transicié a part de ser del tipus estandard és a dir la tipica caixa que conté I
informacid lexica, també pot ser connector, final o inicial. Els dos ultims tipus de
transicions actuen com estats inicials i finals, és a dir marquen on comenca i acaba
I"automat per tant només podem tenir una transicio inicial i final. Totes les arestes que
tenen com a desti la transicio de tipus final sén els estats finals.

Per donar cobertura a I’ insercié de les transicions el que volem aconseguir és una
finestra on es mostrin totes les opcions disponibles per construir la transicié i a peu de
la finestra dos botons un per acceptar i I'altre per cancel-lar I'operacio.

Per crear aquesta finestra farem us de la classe JOptionPane. En aquest cas la finestra
emergent és complexa per tant hem de crear nosaltres un panell perqué es mostri
juntament amb els botons d’acceptar i cancel-lar que afegeix el JOptionPane a la part
inferior.

- 48 -

CAPITOL 3. IMPLEMENTACIO

3.8.2 Construint el panell d’'informacio:

L'usuari escull el tipus de transicio, i en cas de que sigui una transicio de tipus normal,
també ha de escollir entre les diferents opcions d’inicialitzacié dels camps.

Un objecte de la classe JPanel és un contenidor de proposit general per components
lleugers. El JPanel que estem construint contindra dos panells. En un dels panells
mostrara les opcions perqué 'usuari esculli quin tipus de transicié vol afegir. En 'altre
panell es mostraran les diferents opcions d’informacio léxica que li podem assignar a la
transicio.

Com que una transicido pot ser només d’un sol tipus les opcions entre les que pot
escollir sdn excloents per tant la millor manera d’implementar-ho ha estat amb un
panell que conté quatre botons de la classe JRadioButton. Aquests botons han d’estar
continguts dins d’un mateix objecte ButtonGrup que s’encarregara de desactivar
I'anterior opcid habilitada cada vegada que l'usuari seleccioni I'opcié d’'un altre
JRadioButton del mateix grup de botons.

La classe ZonaDibuix té un variable booleana anomenat noTenimlnici i noTenimFinal
gue ens diu si tenim una transicio inicial o final. En cas de tenir-ne no s’afegeix el
JRadioButton que dona I'opcid a crear una transicié d’aquell tipus per tant I'usuari no
podra escollir-la.

Quan tenim seleccionat I'opcié d’una transicié de tipus connector, inicial o final, no
volem que es mostri I’ informacio léxica per tant implementem l'interficie ItemListener
perque escolti els ItemEvent’s que generen els JRadioButtons. Quan I'opcid no sigui
tipus estandard farem que el panell de seleccié d’informacié no sigui visible.
L'avantatge d’aquesta implementacié és que no es perd |’ informacié que es defineix
en el panell de seleccié d’informacid per tant si I'usuari defineix una transicio i per
error selecciona el JRadioButton “inicial”, si torna a seleccionar el botd “Estandard” no
haura perdut les dades introduides anteriorment.

- 49 -

CAPITOL 3. IMPLEMENTACIO

En la seglient imatge es mostra tot I'organitzacio del JPanel:

i]
Introduzca los datos Iﬁ

Tipo transicion: ® Estandard (' Inicial < Final

Forma candnica: |Crear

Categoria léxica: | VPRED |v|
Opciones Informacion morfologica: | MPE |v|
Afiadir Informacion H Borrar ‘ ANF |

I3
pane Sortida transudcor: |V

| Aceptar || Cancelar |

El rectangle més exterior de color lila és el panell general que se |i passa per parametre
al JOptionPane. S'utilitza el BorderLayout com a manager de Layout. Dins el panell
general tenim els dos panells marcats en color taronja. En el panell superior s’escull
I'opcid i quan aquesta és diferent a la primera opcid el panell inferior se li treu la
propietat de visible.

L'anterior imatge ens serveix de guia per comentar els elements del segon panell o
panell de seleccid d’informacié.

El LayoutManager del panell de seleccié d’informacié s’anomena GridLayout. Aquest
manager se li passa en el seu constructor el nombre d’elements que es vol contenir per
files i columnes en el panell. Els elements per defecte s’afegeixen d’esquerra a dreta i
de dalt a baix pero la politica d’insercid es pot canviar facilment. En I'anterior imatge
podem observar que la posicié (4,1) s’ha afegit un panell amb dos botons per tenir en
una mateixa ubicacié dos elements i aixi obtenir una millor organitzacié del contingut
permetent que a la seva dreta es pugui situar el quadre de text sobre el qual treballen
sense gue aixo provoqui una desorganitzacid de la resta del contingut.

Com es pot observar a l'esquerra situem tots els Labels amb informacidé que guiaran a
I'usuari sobre quins camps esta seleccionant I’ informacio.

Pel cas de I’ informacid sobre la forma canonica i la sortida del transductor, s’afegeix
un JTextField perque 'usuari entri I’ informacio per teclat.

En el cas de I’ informacid sobre la categoria gramatical com que el numero d’opcions
possibles és finit s’ha decidit utilitzar un objecte de tipus JComboBox amb les diferents
opcions disponibles. Un JComboBox no és altra cosa que una llista desplegable.

-50 -

CAPITOL 3. IMPLEMENTACIO

Aquesta llista esta inicialitzada amb diferents valors segons quines opcions se li puguin
assignar a cada camp.

L'avantatge d'utilitzar els objectes de la classe JComboBox i JTextField és que accedir al seu
contingut és realment senzill. En un cas hem de fer
JComboBox.getSelectedltem().toString() i en I'altre cas hem de fer

JTextField.getText().

En quant a I’ informacié morfologica el nUmero d’opcions possibles també es finit pero
a diferéncia de la categoria gramatical, se li ha de poder assignar tantes com I'usuari
cregui convenient.

Per fer possible afegir-li informacié sense saber la seva llargada a priori utilitzem per
una banda un JComboBox on es mostren a l'usuari totes les opcions disponibles. Per
altra banda tenim un JTextField on s’anira afegint I" informacié de manera progressiva.
Per controlar que l'usuari no introdueixi informacié incorrecta s’ha deshabilitat I'opcid
d’'omplir el quadre de text per teclat. L'Unica manera d’introduir informacio
morfologica és a través dels dos botons situats a la seva esquerra que els seus events
son tractats per la propia classe que implementa també I'interficie ActionlListener. El
botd “Afadir informacion” afegeix “:”+|" informacidé que conté I'item seleccionat del
JComboBox a I'String del quadre de text. LUnica restriccid que s’ha de complir al crear
I’ informacid morfologica és que no es repeteixi informacidé per tant es treu del
JComboBox I'item que conté I’ informacié que s’acaba d’afegir. El botd “Borrar” fa un
reset de I’ informacéd morfologica i al JComboBox li torna a afegir totes les opcions

possibles.

3.8.3 Creant la finestra emergent:

Un cop hem creat el panell que desitgem mostrar per pantalla només falta posar els
botons d’acceptar o cancel-lar 'operacié. Com ja haviem introduit podem utilitzar la
classe JOptionPane i aixi evitem haver de crear els botons i implementar I’ interficie
ActionlListener per gestionar la seva seleccid. Utilitzant el metode
JOptionPane.showConfirmDialog() creem aquesta finestra que d’'una manera senzilla i
eficac en unes poques linees de codi. Per crear-la hem de donar valor als parametres
del metode que son els seglients:

. parentComponent: determina el component sobre el qual es mostrara la
finestra emergent. No es pot continuar amb el parentComponent fins que es
tanca la finestra. En el nostre cas el parentComponent és |'objecte ZonaDibuix
gue vol crear la transicid. D’aquesta manera s’evita poder obrir varies finestres
de creacid de transicid.

251 -

CAPITOL 3. IMPLEMENTACIO

. Message: aquest és I'objecte que mostrara la finestra emergent, en el nostre
cas ensenyarem el JPanel.

. Title: Ha de ser una cadena de caracters que determinara el titol de la
finestra.

e optionType: Demana un enter que indica quina opcid volem que tingui la
finestra. Els valors possibles son: :YES_NO_OPTION, YES_NO_CANCEL_OPTION,
or OK_CANCEL_OPTION . Nosaltres hem triat OK_CANCEL_OPTION.

* messageType: Demana un enter que indica quin tipus de missatge estem

ensenyant. Aquest tipus determina quina icona es veura. Les diferents opcions
son: ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,
PLAIN_MESSAGE i la que nosaltres hem escollit PLAIN_MESSAGE.

La crida d’aquest métode retorna un enter que representa I'opcid que s’ha seleccionat.
Nosaltres comprovem que s’hagi seleccionat I'opcié de confirmacié. Si el valor de
retorn es correspon amb el valor de JOptionPane.OK_OPTION vol dir que l'usuari ha
omplert tots els camps referents al contingut de la transicié i ha confirmat la seva
creacié premut el boté d’OK.

En cas de que s’hagi cancel-lat I'operacio el que retornem és null. En altre cas retornem
un objecte de tipus Caixa del tipus corresponent en les coordenades on s’havia fet clic
amb el ratoli. Si el tipus caixa és normal al constructor |li hem de passar I’ informacio
gue contenen els diferents camps del panell.

3.8.4 Actualitzar la transicio:

Aquest metode s’encarregara d’oferir a I'usuari la possibilitat de canviar el contingut
d’una transicio de tipus estandard un com esta afegida a I'escena. D’aquesta manera si
I"'usuari en un moment donat vol canviar I’ informacié d’una transicié no es veu obligat
a eliminar-la per tornar-la a afegir amb el contingut canviat. Encara que en un primer
moment no se li pugui donar gaire importancia a aquest metode és molt util per casos
amb transicions que tenen molts estats perque al eliminar la transicid també
s’eliminaven tots ells.

Amb el meétode actualitzarTransicio(Caixa), mostrarem el mateix panell de
I'informacio lexica de la mateixa manera que ho haviem fet en la creacid de les
transicions perd amb dos petits detalls diferents. L'Unic que es permet canviar és el
contingut de la transicid, no el tipus per tant no es mostrara el panell de seleccié del
tipus. L'altra diferéncia es que s’inicialitzen els camps perque mostrin I'informacio que
en aquell moment conté la transicid.

Per fer aquesta inicialitzacid primer de tot s’ha de separar I'informacié que s’havia
comprimit en un Unica cadena de caracters en els seus 3 camps utilitzant el metode

-52-

CAPITOL 3. IMPLEMENTACIO

lastindexOf(“.”) que retorna -1 en cas que no tinguem informacio sobre la forma
canonica. En altre cas I'informacidé és la sub-cadena de caracters entre la posicidé O i
I'index. La resta de caracters contenen I’ informacid sobre la categoria gramatical i
I'informacido morfologica que els separa el primer caracter “:” en cas d’existir. Per fer-
ho en aquest cas utilitzem el metode indexOf(“:”) que ens retorna la posicid on es

troba el separador o -1 en cas de no trobar-ho.

Un cop ja tenim aquesta informacid ja podem instanciar els JTextFields referents a la
forma canonica, I’ informacié morfologica i la sortida del transductor (la caixa la guarda
en una variable a part).

Pels JComboBox tractem dos casos diferents: pel cas de la categoria inicialitzem el
JComboBox amb totes les opcions possibles. A continuacié busquem quina de les
opcions es correspon amb la que conté la transicid per seleccionar aquella opcié.

El JCombobox de I' informacid morfologica se linicialitza amb totes les opcions
possibles per a continuaciod eliminar les opcions que ja es troben en el JTextField. Com
haviem fet anteriorment per extreure I'informacié d’una Unica cadena de caracters
utilitzem el meétode lastindexOf(“:”) recursivament. Per cada opcié busquem amb quin
item del JComboBox es correspon i s’elimina.

Un cop ja tenim el panell que volem mostrar configurat el mostrem cridant el métode
JOptionPane.showConfirmDialog (...). Si el retorn del JOptionPane és correspon a
I'opcid d’OK, s’actualitzara I'objecte Caixa amb la nova informacié.

S’ha de tenir en compte que a part d’assignar la nova informacio6 a les variables que la
guarden. La nova informacié pot tenir una mida diferent que I’ anterior i per tant s’ha
de recalcular el valor dels separadors perquée l'informacid es mostri centrada dins la
transicid. Per fer aixo cridem el metode actualitzarTamanySeparadors() de I'objecte
Caixa que s’encarrega de definir els valors dels nous separador segons la llargada de la
nova informacid de la mateixa manera que ho haviem fet quan construirem la transicid
per primer cop.

El fet de que la mida de la transicid hagi variat afecta a la posicid dels estats de la
transicio els quals ara no estaran situats als laterals de la transicié. Per col-locar-los al
seu lloc utilitzem de la classe ZonaDibuix.java el metode
actualitzarExtremsEstat(IDtransicio,xIniciTransicio,xFiTransicio,yCentreTransicio).
Aquest métode busca els estats que tenen en algun extrem la transicid i actualitza les
coordenades del extrem a la seva nova posicio.

.53 -

CAPITOL 3. IMPLEMENTACIO

3.9 Llegir fitxer en Format Automat

La nostra aplicacio ha de ser capac¢ de guardar la feina feta aixi com recuperar-la per
continuar treballant. El format que s’utilitza per emmagatzemar I’ informacio és el
format automat (FA).

3.9.1 Format automat:

44 (*1)
%<VPRED\3>%<ADV>%<PALABRA\4>[S]%<PALABRA\5>% (*2)
:02-1 (*3)

t122334 -1 (*4)

t34 -1 (*5)

t -1(*6)

£ (*7)

(*1) el primer nombre especifica el # de tokens i el segon el # d’estats

(*2) El separador de tokens és el simbol ‘%’ que marca el inici i el final de cada token.
Els token representa I’ informacio lexica dels diferents transicid que es poden utilitzar
per crear |'escena. Cada token té una id implicita segons I'ordre d’aparicié: id =
0,1,2,3. Si una transicié té associada informacié de sortida del transductor, aquesta
apareixera entre claudators com podem observar en el token id=2.

A continuacié de la capgalera i dels diferents tokens ens trobem la definicio dels estats:

Cada sentencia es la definicié d’un estat comengant per I'estat 1. La fi de sentencia o fi
de definicid de I'estat ve especificada per I'element “-1’.

L’estructura de la definicié d’estat és la seglient:

Primer tenim un caracter que determina si l'estat és final (‘t’) o no (). L’ informacid
seglient fins el fi de sentencia s’ha de tractar per parelles. Cada parella d’enters
especifica “amb quin token” anem a “# estat”.

(*3) estat 1 (estat inicial) el token id = 0 porta al estat 2

(*4) estat 2 el token amb id= 1 porta a estat 2. El token amb id = 2 porta a I'estat 3. El
token amb id = 3 porta a esat 4

(*5) estat3

(*6) estat 4

- 54 -

CAPITOL 3. IMPLEMENTACIO

(*7) el caracter ‘f’ determina el final de la definicié de I'automat

- 55 -

CAPITOL 3. IMPLEMENTACIO

3.9.2 Crear escena a partir fitxer en FA:

Per obrir un nou document a partir d’'un fitxer en FA automat s’ha de seleccionat
I'opcid “Abrir” del menud “Inicio”. Quan la classe Main.java captura aquest event crea
una nova pestanya (una nova escena on treballar), crea un objecte de la classe
AutomatsPerFitxer.java i afegeix l'automat a [I'escena amb el metode
llegirAutomatDeFitxer(). Aquest metode retorna un boolea amb valor false si s’ha
produit algun problema al llegir el fitxer, en aquest cas s’elimina la nova pestanya.

3.9.3 Classe AutomatsPerFitxer:

S’ha creat una classe especificament encarregada de definir els elements d’una escena
a partir de I'informacio d’un fitxer en FA. En el constructor de la classe s’ha de passar
per parametre |'escena (objecte ZonaDibuix) sobre la que es representara el nou
automat.

Per escollir el fitxer s’utilitza un objecte de la classe JFileChooser. Aquesta classe ens
crea facilment un selector de fitxers en una finestra emergent. Els selectors de fitxers
s’utilitzen normalment per presentar una llista de fitxers que poden ser “oberts” per
I'aplicacid i per introduir la ruta i el nom d’un fitxer a guardar.

La classe JFileChooser ni obre ni guarda fitxers, Unicament ens presenta una GUI per
escollir un fitxer i ens permet navegar per les diferents carpetes del nostre PC. Podem
definir-li el mode seleccid si volem que només obri fitxers, com és el nostre cas, o si
volem que també obri carpetes.

(2] Abrir SS)

Buscar en: ‘ﬁ Documents ‘V‘
[} aERS.txt O

docx D autmatd.txt |:

t [auto3.txt O

t [y automatd.pt O

t [} automat1.txt O

t D automat2.transductor.txt |:

1] | [| I

Mombre de archive: |automati.td |

Archivos de tipo: |Iodo.r. los archives | = |

Abrir || Cancelar |

-56 -

CAPITOL 3. IMPLEMENTACIO

Per crear la finestra emergent utilitzem el metode showOpenDialog(Object)Jen que té
les mateixes propietats que els metodes showXXXXDialog(Object) de la classe
JOptionPane ja comentats.

Aquest metode ens retorna un valor enter segons si s’ha seleccionat un fitxer
(JFileChooser.APPROVE_OPTION) o no. En cas afirmatiu el fitxer I'obtenim amb el
meétode getSelectedFile(). Un cop ja disposem de la ruta al fitxer utilitzem un objecte
de la classe FileInputStream(File) per anar llegint el fitxer caracter a caracter.

La lectura la dividirem en tres etapes: llegir la capgalera, llegir els diferents tokens i
llegir els estats. Si ens trobem amb algun error en alguna etapa s’atura la lectura i
avisem a la classe Main que elimini la nova pestanya perque l'automat no es pot
representar.

3.9.4 Llegir capcalera:
Hem de llegir dos enters per instanciar el nombre de tokens que hem de llegir i el

nombre d’estats. Hem de comprovar que aquests nombres son diferent de zero.

3.9.5 Llegir tokens:
Cada token que llegim el guardem com una transicid on el seu valor de ID li assignen la

posicié segons |'ordre de lectura. Com que no s’eliminen transicions I'ID de cada
transicid es correspon en la posicio en la llista de transicions. Aquest detall ens sera de
gran utilitat al llegir els estats perquée ens evitara haver de buscar la transicié que es
correspon amb una determinada ID.

Al llegir els tokens s’ha de tenir en compte que aquests venen delimitats pel simbol
‘%’. També sabem que la seva informacio lexica ve definida dins els simbols ‘<" i > i
gue opcionalment pot tenir definida la sortida del transductor entre ‘[“i ‘]’.

El fitxer no determina la posicid de les transicions per tant utilitzarem la variable
booleana seleccionat de cada transicid per saber si una transicio ja se li ha assignat una
posicio o no. El valor sera true si en cas que encara no se li hagi assignat.

Un cop llegits tots els tokens afegim a la llista de transicions la transicio inicial i final, i
guardem en una variable global el valor de la ID d’aquesta. D’aquesta manera quan un
estat sigui final ja sabrem la posicié de la transicio final.

_57 -

CAPITOL 3. IMPLEMENTACIO

La posicido de les transicions se li assignara dinamicament al construir I'automat
exceptuant la transicid inicial que se li assigna la seva posicié al ser creada. Quan hem
d’afegir un estat entre dos transicions comprovem la transicié desti, si el valor de la
seva variable seleccionat és true vol dir que encara no ha estat situada i se li assigna la
posicio a la dreta de la transicid origen. Si ja hi ha alguna transicié en aquella posicio se
la situa sota seu.

Si un usuari estava treballant amb un automat i el guarda, la posicid de les seves
transicions sera diferent al ser obert de nou el fitxer. Per solucionar aquest problema al
guardar l'automat també es guardara en el mateix directori un arxiu amb extensid
“.pt” que contindra les Posicions de les Transicions. Per tant un cop s’han llegit tots els
tokens es comprova si en el directori on esta el fitxer es troba el fitxer amb el mateix
nom pero amb |'extensié mencionada. Si existeix es llegeix i s’assigna a cada transicié
la seva posicio.

El fitxer “.pt” té la seglient estructura:

3 (*1)

0 44 33 (*2)
1250 33

2 200 99

10 10 (*3)
400 260 (*4)

(*1) El primer element determina el nombre de transicions del fitxer

(*2) El primer valor correspon la posicié de la transicié segons I'ordre d’aparicié del fitxer, els
seglients dos valors enters determinen les coordenades.

(*3) i (*4) Coordenades transicié inicial i final

3.9.6 Llegir els estats:

Un estat del fitxer en FA a I’'hora de representar-lo hem de fer una traduccioé per saber
on els trobem en la nostra representacio per anem a representar I'automat determinat
pel fitxer:

44
%<VPRED\3>%<ADV>%<PALABRA\4>%<PALABRA\5>%
:02-1
t122334-1
t34-1

t-1

f

CAPITOL 3. IMPLEMENTACIO

La seva representacio en un AFD és la seglient:

La conversio a la nostra representacio és la seglent:

estat1 estat 2
YWPRED\3 ADY

PALABRALL

estat

PALABRAIS estat 4

Les transicions se’ls connecten per I'esquerra amb un estat (aresta) que representa
I’estat d’es d’ on arriba el token. A la seva dreta trobem en I'estat resultant d’haver-
nos trobat el token que simbolitza la transicio.

Per tenir una referéencia al llegir del nostre fitxer en FA els estats correspondran al
node que apareix a la banda dreta de les transicions o a una transicié de tipus
connector.

Un cop entes el concepte procedim amb aquest apartat que forma el nucli de la
construccio de l'automat. Es basa en un bucle que finalitza quan després d’una
definicié d’estat ens trobem amb el caracter -1’ o si és ‘f’ que vol dir que s’ha arribat al
final de fitxer.

S’utilitza una variable entera anomenada estatActual la qual en cada iteracié del bucle
s'incrementa en 1. Cada iteracio del bucle equival a analitzar una definicié d’estat. Per
tant la variable estatActual esta instanciada en tot moment amb el valor de I'estat que
s’esta processant. S’utilitza per saber quina és la transicido origen dels estats que
s’hagin d’afegir. D’ara endavant els estats del fitxer els anomenarem estats absoluts
per diferenciar dels estats que afegim a les transicions.

Per guardar la relacié entre estats absoluts i transicions que representen aquests
estats s’ha creat una variable local anomenada taulaDeSimbols. Aquesta variable és
una llista d’elements entradaTS. Aquests elements contenen la segiient informacio:
estat que representen, ID de la transicié que representa I’estat i una variable booleana
que ens diu si la transicio és de tipus connector o no. La taula de simbols és
inicialitzada amb I’entrada estat = 1, transicio = ID transicio inicial, esConector =false.

.59 -

CAPITOL 3. IMPLEMENTACIO

Accions a portar a terme:

1: En cada iteracio primerament es recorre tota la definicié de I'estat i es guarda en
una llista els diferents valors que s’han llegit. En les posicions parelles de la llista es
troba I’ ID de la transicid i en les posicions parelles I'identificador a I'estat que s’ha
d’afegir I'aresta. Aquesta llista I'anomenarem llistaDefinicio.

2: Es recorre la llista llistaDefinicid buscant si hi ha un bucle sobre aquell estat. Perque
hi hagi un bucle s’ha de buscar si en alguna posicio parella de la llista el seu valor es
correspon amb el valor de I'estatActual.

En el cas que es tingui un bucle aquell estat ha d’estar representat per una transicié
tipus connector. Si no n’és el cas s’ha de crear un nou estat tipus connector per poder
reproduir el bucle. De la taula de simbols s’ha de canviar la transicidé que representava
aquell estat per la ID de la nova transicié. S’ha d’actualitzar totes les arestes que
apuntaven a la transicié que anteriorment representava aquell estat perque apuntin a
la nova transicid i s’"ha d’afegir una transicié entre elles dos.

3. Es busca a la taula de simbols quina és la transicido que representa I'estat actual i
gue sera l'origen de les arestes que s’afegeixin.

4: Es recorre la llista llistaDefinicid per treballar amb el parell de valors que ens
determinen I'estat seglient i la transicio per arribar a aquell estat.

A continuacié es busca en la taula de simbols la transicio que representa l'estat
seglient. Si no es troba en la taula de simbols s’afegeix una nova entrada amb aquest
parell de valors i s’afegeix una aresta entre la transicid origen i la transicié que defineix
el nou estat.

Si es troba en la taula de simbols es comprova si la transicié és tipus connector o no.
En cas afirmatiu s’afegeix una aresta entre la transicid origen i la transicio de la
llistaDefinicio i una aresta entre aquesta ultima transicié i el connector.

En cas que l'estat sigui representat per una transicié normal s’ha de comprovar si la
transicidé que actualment representa I'estat i la que es vol utilitzar per accedir aquell
estat sén la mateixa. Si no ho sén s’ha de crear un connector perqué totes les
transicions que vulguin estar en a aquell estat connectin amb ella.

6: Si I'estat actual és un estat final s’afegeix una aresta entre la transicid origen i la
transicié final.
Un cop ja s’ha processat tots els estats afegim la llista de transicions i llista d’estats a

I'objecte ZonaDibuix que representa I'escena creada. D’aquesta manera es mostra el
contingut del fitxer per pantalla.

- 60 -

CAPITOL 3. IMPLEMENTACIO

3.9.7 Casos especials:

E-transicions: Per definir que des d’un estat absolut es pot anar a un altre estat absolut
sense cap transicid, el valor que s’utilitza com a token és el -2. Quan l'algorisme es
troba amb aquest cas afegeix una aresta entre l'estat origen i la transicid que
representa I'estat desti. En cas que no existeixi I'Gltima transicio es crea un connector.

Utilitzar un mateix token per accedir a diferents estats:

estar V7 7:PP:ms\4

estar V77 PP:msi\4

cLnz2

Els tokens els guardem en transicions. Un cop s’ha utilitzat una transicié per accedir a
un estat absolut totes les arestes que apunten a ella apunten a un mateix estat
absolut. En el cas de la imatge ens trobem que es vol utilitzar la mateixa informacio
lexica d’una transicio transicid pero per accedir a un estat absolut diferent. Quan ens
trobem amb aquesta situacié es clona la transicié que conté aquell token i s’afegeix a
la taula de simbols el nou estat absolut i la ID de la nova transicié clonada. Per
comprovar si ens trobem en aquest cas s’utilitza el métode Checkduplicat.(estat,
transicio, TS).

També s’ha de controlar que podem estar davant d’un cas de duplicat encara que no
s’accedeixi a un nou estat sind a un estat existent.

-61 -

CAPITOL 3. IMPLEMENTACIO

Si analitzem la seglient definicié d’estat:

:0212-2223-1
:1333-23-1
t-1

f

haherVoa:FUTUNVAR-1Y

estarV77.PP:ms\4

estarV7T.PP:msi4

PALABRALG

ADW\G

En aquest automat podem observar una E-transicié entre l'estat 2 i 3 (els dos
connectors).

També ens trobem en un cas de duplicat amb la transicié <estar.v77:PP:ms\4>

Per resoldre aquestes situacions es fa Us del métode checkduplicat(estat,transicid,TS)
durant I'analisi de les connexions. Aquest métode a part de buscar una coincidéncia
amb les transicions de la taula de simbols, busca si la transicid original té una aresta
amb un connector. En aquest cas a no ser que els estats absoluts coincideixin vol dir
gue ens trobem davant un cas de duplicitat.

Bucles: Ens podem trobar dos casos diferents:
Cas 1:

:02-1

t1223 -1

t-1

f

La seva ER seria equivalent a <tO>(<t1><t1>*+<t2>) i es representa de la seglient
manera:

- 62 -

CAPITOL 3. IMPLEMENTACIO

VPRED\3 ADV

PALABRAM

Cas 2:

:02-1

t1324 -1

t13

t-1

f

La seva ER equivalen es correspon amb: <t0>(<t1>*+<t2>) i es representa de la seglient
manera:

ADY
VPRED\3 O

FALAERAM

Per saber de quin cas es tracta a I’hora de comprovar si és un bucle comprovar si la
transicié d’origen i final és la mateixa. Si és la mateixa o equivalent en cas que sigui un
duplicat, vol dir que ens trobem davant d’un cas 2. En aquest cas no s’ha de crear la
transicié connector que creavem en |'apartat 2. En cas de trobar-nos un bucle de cas 1
s’ha d’afegir una aresta entre la transicié origen (connector) i la nova transicié i la seva
inversa per tancar el bucle.

3.10 Guardar fitxer en Format Automat (FA)

Tot el que es representa a I'escena s’ha de poder guardar per poder continuar des del
mateix punt en un altre moment. Per guardar les dades utilitzem un fitxer en FA i el
seu associat .pt per guardar I'automat que s’esta editant.

Aquest procés s’encarrega la classe AutomatsAFitxer.java. Aquesta classe esta
dedicada a recollir I’ informacié de I'escena per guardar-la en I'estructura definida dels
fitxers en FA.

-63 -

CAPITOL 3. IMPLEMENTACIO

Per escollir el directori on guardar fitxer i el seu nom s’utilitza un objecte de la classe
JFileChooser. Aquesta vegada s’invoca el métode showSaveDialog(Object) per
mostrar la finestra emergent. Aquest metode en retorna si s’ha escollit guardar o
cancel-lar I'operacio. En cas que s’hagi guardat ens proporciona la ruta on guardar el
fitxer.

3.10.1 Requisits:

Abans de fer qualsevol operacid s’ha de comprovar que l'autdomat té definit una
transicid inicial. L'automat que guardarem esta composat pel conjunt d’estats i
transicions els quals sén accessibles des de |’estat inicial. En cas que I'escena no disposi
de la transicid inicial és mostra per pantalla una notificacio d’error amb
JOptionPane.showMessageDialog(..) definint-li per parametre que és un missatge
d’error (JOptionPane.ERROR_MESSAGE).

3.10.2 Implementacié del procés de guardat del fitxer FA:

El fitxer en FA té dos apartats importants: la llista de tokens i la definicié d’estats.

3.10.2.1 Recopilacio dels tokens:
Per una banda es crea la llista de tokens que disposa I'automat. Recorrem totes les

transicions de tipus estandard i guardem en una llista la seva informacio lexica. En cas
gue sigui una transici6 complexa i tingui més d'una informacié és concatenen
<infol><info2><info3>[SortidaTransductor]. Com que els tokens seran separats pel
simbol ‘%’ quan es carregui aquest fitxer ja s’encarregara de construir correctament la
transicié complexa.

S’ha de realitzar primer aquest procés perque quan estiguem definint els estats el que
s’especifica és la posicié del token en la llista.

3.10.2.2 Definicid d’estats:
Per definir els estats per una banda necessitem una taula de simbols que és una llista

d’objectes EntradaTS_Save. Cada entrada de la taula de simbols representa un estat
absolut del nostre automat. Els objectes EntradaTS_Save guarden I’ informacio
referent a I'estat que representen, la transicié que els representa, si sén un connector i
si I'estat es final.

- 64 -

CAPITOL 3. IMPLEMENTACIO

En la taula de simbols tindrem emmagatzemats els diferents estats absoluts de
I'automat i la transiciéd que el representa. La informacié referent a quin token s’ha
d’especificar per anar a un altre estat la guardem en TaulaDefinicid. TaulaDefinicié és
una llista d’objectes EntradaDefinicid. En aquests objectes guardarem |’estat origen,
I'estat desti i la transici6 que produeix aquest canvi d’estat i el token d’aquella
transicio.

......

metode guardarEstats(estatActual, transicioRepresentaEstatActual). Aquest metode
recursiu analitza la transicié definida pel segon parametre de la funcid, busca els seus
seglients i va creant els estats de la taula de simbols i les entrades de la TaulaDefinicid
a mesura que va analitzant.

Per guardar correctament la definicioé d’estats s’"ha de preveure quines connexions ens
podem trobar en I'automat i interpretar-les correctament. Per cada iteracio el primer
parametre del métode ens determina quin estat absolut s’esta tractant, el segon
parametre és l'identificador de la transicid que representa aquell estat. Els estats
absoluts sén una transicié de tipus connector o una transicié estandard. L'interpretacio
de que és per nosaltres un estat absolut sobre el nostre automat es correspon amb el
significat d’arribar a un estat amb un token determinat.

A continuacid s’especifiquen els diferents casos possibles amb el seu tractament

corresponent:
Cas base:

transicid 2 estat 2
estat 1

transicia 3 estat 3

transicid 4 estat 4

Taula de simbols :

Estat ID estat inicial EsConnector

1 Transicio inicial false

(estat 1, ID estat inicial, no és connector)

Pel cas base busquem els seglients de la transicid transicioRepresentaEstatActual. Per
cadascun d’aquestes si la seva ID no esta en la taula de simbols vol dir que ens trobem
amb un nou estat absolut i per tant I'afegim a la TS i a la taula de Definicid. Es fa una
crida recursiva del metode guardarEstats() amb cadascun dels seglients.

65 -

Taula de simbols :

CAPITOL 3. IMPLEMENTACIO

Estat ID estat inicial EsConnector
1 Transicid inicial False

2 Transicid 2 False

3 Transicid 3 False

4 Transiciod True

Taula de Definicio:

Estat origen Estat desti Id Transicio
1 2 Transicio 2

1 3 Transicié 3

1 4 -2

Pel tractament del cas d’una E-transicié entre estats absoluts, és a dir anar d’un estat

absolut a un connector (que no té token) s’utilitza la constant -2.

Cas actualitzar la taula de simbols:

ectat 2

transicid 2

transicié 7

transicid 5 estat 2

transicia 8

estat 5

estat 6

Quan analitzem una transicid si aquesta no és un connector i ens trobem davant del

cas que la transicié6 només té una transicid seglient i aquesta és un connector s’ha

d’actualitzar la taula de simbols perqué el verdader estat absolut esta en la transicio

connector.

Taula de simbols :

Estat ID estat inicial EsConnector
2 TFransicié2 transicio 5 True
5 Transicio 7 False
6 Transicio 8 False

- 66 -

CAPITOL 3. IMPLEMENTACIO

Taula de Definicio:

Estat origen Estat desti Id Transicio
1 2 Transici6 2
2 5 Transicié 7
2 8 Transicié 8

Cas loop sobre estat absolut:

estat 6

transicid 9

transicid 8

El cas de tenir un bucle unitari o loop sobre un estat absolut pot ser representat de dos
maneres diferents. Pel cas d’un bucle sobre una mateixa transici6 no hi ha cap
problema en reconeixer-ho. Per identificar el cas d’un bucle amb una altra transicié
per cada un dels segilients de la transicié que s’esta analitzant s’ha comprovar si
aquella transicio només té un seglient i si aquest coincideix amb la transicié actual. En
aquest casos

Taula de simbols :

Estat ID estat inicial EsConnector

6 Transicio 8 False

Taula de Definicio:

Estat origen Estat desti Id Transicio
6 6 Transicio 8
6 6 Transicio 9
Cas parada:
estat b estat 7
transicid 7 transicid 10 O

transicid 2 nsicic 5 astat 2

transicid 8

- 67 -

CAPITOL 3. IMPLEMENTACIO

El moment que parem de cridar recursivament el métode a part del cas dels loops és
quan ja s’han analitzat les transicions. Per exemple si estem analitzant la transicio 8
ens trobem que el seu seglient és la transicid 10, pero aquesta ja ha estat avaluada i
esta en la TS per tant simplement s’afegeix al a taula de Definicid una nova transicio.

Per altra banda quan analitzem la transicié 10 veiem que el seu seglient és la transicid
2 perd encara que ha estat analitzat aquest no esta en la TS. Per tant l'altra
comprovacio per saber si un estat ha estat analitzat o no és buscar en la taula de
Definicions si hi ha alguna transicié entre estats absoluts que utilitzi aquella transicio.

Si el segilient d’una transici6 és la transicié final vol dir que aquell estat absolut és final.
Els elements entradaTS_Save tenen un parametre boolea anomenat EsFinal que es
posa true en aquesta situacio.

Taula de simbols :

Estat ID estat inicial EsConnector
2 Transicié 5 False
5 Transicio 7 False
6 Transicid 8 False
7 Transicié 10 False

Taula de Definicio:

Estat origen Estat desti Id Transicio
1 2 Transicio 2
2 5 Transicié 7
2 6 Transicié 8
5 7 Transicié 10
6 7 Transicié 10
7 2 Transicio 2

Un cop ja s’ha analitzat tot I'automat recorrem la taula de Definicions assignant el seu
valor corresponent al camp token segons I” informacio lexica de la transicio.

A continuacio es guarda en un fitxer el nombre de tokens i el nombre d’estats (el
nombre d’elements de la TS). A continuacié es guarden els diferents tokens separats
pel simbol ‘%’ i a continuacié es guarden els estats.

Per cada estat primer es busca en la TS i es mira si és final (‘t’) o no (). La resta
d’informacio necessaria es troba en la taula de Definicid. S’han de buscar les entrades
gue tenen com estat origen I'estat que s’esta guardant per escriure al fitxer el token i

-68 -

CAPITOL 3. IMPLEMENTACIO

I’estat desti. S’escriu el simbol de fi de definicié d’estat (-1). Quan ja s’han guardat tots
els estats s’escriu el simbol de fi de definicié de I'automat (‘f’).

3.10.3 Procés de guardat del fitxer de posicions (PT):

Al obrir un fitxer se’ls assigna dinamicament la posicié a cada transicid pero aixo pot no
ser sempre Util per I'usuari final. L'usuari vol que quan carregui un fitxer les transicions
estiguin en la mateixa posicid que on les havia col-locat ell. Com que en el fitxer en FA
no hi ha lloc per guardar aquesta informacid al guardar en FA també es crea un fitxer

{

amb el mateix nom perd amb extensid “.pt”. En aquest fitxer conté el nombre de

tokens, i a cada fila hi ha tres enters corresponents a la posicié d’aparicié del token, i
les seves coordenades x i y. A continuacio hi ha 2 coordenades més corresponents a la
transicié inicial i la transicid final.

Exemple fitxer de posicions:

4

090120 //token O té coordenades (90,120)
1181120

2272120

3181190

30 120 //coordenades transicio inicial

615 120 // coordenades transicio final

- 69 -

CAPITOL 3. IMPLEMENTACIO

3.11 Llegir automat per ER

La nostre aplicacid ha de ser capag carregar unes dades amb les que treballar. Ja
carrega arxius en FA pero l'usuari a qui va destinada aquesta aplicacid li interessa
també que es representi un automat a partir de la seva Expressio Regular.

Un exemple d’expressio regular que ha de poder llegir seria el seglient:
<t1><t2>(<t3><t4>*<t5>+<t6>(<t7>+<t8><t9>)) *(<t6>+<E>)
La sintaxis de les ER ve definida pels seglients patrons:

e |'operacido AND entre dos elements s’escriuen un a continuacio de I'altre.

e |'operacidé OR s’ha d’escriure les diferents opcions entre paréentesis i separades
per l'operador ‘+'.

¢ Definir que un element pot repetir 0 o més vegades s’utilitza “*’.

e Definir que un element pot estar o no estar. Fer una operacié OR amb I'element
<E>

La nostre aplicacié representa I'anterior ER de la seglient manera:

Resposta a les diferents operacions:

e Quan ens trobem I'operacio AND s’afegeix una aresta entre els dos elements

e Quan ens trobem l'operacié OR s’afegeixen arestes entre |'anterior element i el
primer element de cada una de les diferents opcions.

e Quan ens trobem I'operador de repeticid ‘*':

-70 -

CAPITOL 3. IMPLEMENTACIO

0 Sies sobre un element afegim una aresta sobre I'element i els anteriors
de I'’element se’ls connecta amb per mitja d’arestes amb els seglients de
I'element.

0 Si és un conjunt o element compost es creen dos transicions tipus
connector per delimitar l'inici i fi del conjunt. Per una banda es
connecten entre ells. Per 'altra els elements de dins el conjunt els
primers es relacionen amb el connector que marca l'inici i els ultims
elements amb el connector que marca el final. L'element anterior al
conjunt es connecta amb el connector inicial i els elements seglents al
conjunt es connectaran amb el connector final.

e Quan ens trobem un conjunt on una opcié és <E> (que representa una E-
transicid) els elements anteriors al conjunt es connecten amb els elements
seglients del conjunt.

3.11.1 Implementacio:
La classe encarregada de la carrega del automat a partir d’un fitxer que conté una ER

és la classe automatsPerER.java. Aquesta classe té implementats tots els meétodes i
procediments necessaris per llegir el fitxer, interpretar-lo i crear 'automat.

Les expressions estan guardades en fitxers amb extensid “.txt” o “.er”. Aquest fitxer és
a seleccionat de la mateixa manera que s’ha explicat amb un objecte de la classe
JFileChooser.

Sobre aquest fitxer se aplicara un analisis sequiencial amb un parell d’etapes
significatives:

Primer farem una fase de lectura de I'expressio regular i de traduccio.

3.11.1.1Traduccié:
Abans de comencar la lectura creem una llista de transicions i afegim com a primer

element i amb ID = 0 la transicio inicial. Procedim a Llegir tota I'expressio regular i per
cada element que trobem guardarem la seva informacié léxica en una transicié. En una
String auxiliar anem guardant I'ER que llegim del fitxer perd per evitar tenir que fer una
recerca cada vegada que es vol buscar una transicié utilitzem el mateix metode que
quan vam llegir automats per fitxer. On abans hi havia un element entre els simbols ‘<’

{

i >

7

i opcionalment podia tenir informacié sobre la sortida del transductor, ho
canviarem per ‘<’ #posicié nova transicid >’. Si el seu contingut era E li assigharem el
valor 0 per fer un tractament especial quan ens trobem aquests elements. Un cop s’ha
acabat la lectura afegirem a la llista de transicions la transicié final. El resultat final de
la lectura sera cadena de caracters anomenada definicioER formada pel contingut de la
cadena de caracters que s’ha acabat de llegir entre parentesis i se li concatena “<”+ 1D
transicié final+”>"

-71 -

CAPITOL 3. IMPLEMENTACIO

D’aquesta manera la seglient ER quedaria traduida de la seglient maenra:
<t1><t2>(<t3><t4>*<t5>+<t6>(<t7>+<t8><t9>))* (<t6>+<E>)
(<1><2>(<3><4>*<5>+<6>(<7>+<8><9>)) *(<10>+<0>))<11>

3.11.1.2 Construccio:
La segona fase és la de construccid i s’analitza el contingut de la cadena de caracters

definicioER amb el métode recursiu crearAutomat(informacio, anteriors). El primer
parametre és una cadena de caracters amb I’ informacid a processar. Anteriors és una
llista d’enters que conté les ID de les transicions anteriors a |'element que s’ha
d’analitzar. En un primer moment el metode es crida amb
crearAutomat(definicioER,[0]). D’aquesta manera connectem |’expressid regular amb
la transicid inicial. Aquest metode retorna una cadena de caracters que consisteix en
el resultat d’aplicar el metode sobre el contingut del primer parametre.

Aquest metode recursiu a mesura que va analitzant crea un arbre . En la seglient
imatge veiem l'arbre resultant de I’'analisi de I'anterior ER. Els elements d’un mateix
nivell se’ls ha separat amb una fletxa mostrant la direccié de I’analisi el qual creix en
profunditat abans d’analitzar el seglient element del mateix nivell.

c1>-|—) 2>] 0 > ()

¥
<10 <0>
<

&> ™ ()

<3 [<> [l s

=T <g» [<o

-72 -

CAPITOL 3. IMPLEMENTACIO

L’algorisme que implementa el métode és el segiient:

crearAutomat(String definicio,int [] IDanteriros)

{

String Element = Llegim primer element
String definicioSeguent = continuacio informacio

1. Si éselementsimple
a. Afegim estats entre els elements de la llista IDanteriors i
I'identificador d’Element
b. ultimsElements = [idntificador d’Element];
c. Comprobar si el seglient simbol de definicioSeguent == ‘*
i. Si ho és afegir a la llista transicionsLoop la l'identificador
d’Element
ii. Treure simbol ‘*" de definicioSeguent
iii. ultimsElements = ultimsElements:: IDanteriors
d. Si definicioSeguent !=“"
i. String infoRetorn = crearAutomat(definicioSeguent,
ultimsElements).

e. Return Element+infoRetorn
2. Siés element compost
a. String[] SubElements = buscarElements(Element)
b. Comprobar si el seglient simbol de definicioSeguent ==
i. Crear connector inici i fi
ii. Afegir estat entre inici i fi en les dos direccions
iii. Afegim estats entre els elements de la llista IDanteriors i
I'identificador d’inici
iv. IDanteriros = [identificador d’inici]
v. Cada element de llista SubElements concatenar pel final
“<”+ID fi+”>"” d’aquesta manera quan s’analitzin connectaran
amb fi.
vi. EsBucle =true;
c. Analitzar SubElements
i. Sialgun SubElement == “<0>”
1. Borrar subElement
2. Crear connector inici i fi
3. Afegir aresta entre inici i fi

-73 -

CAPITOL 3. IMPLEMENTACIO

4. Afegir estats entre els elements de la llista IDanteriors
i connector inici

5. IDanteriors = [identificador d’inici]

6. Cada element de llista SubElements concatenar pel
final “<”+ID fi+”">" d’aquesta manera quan s’analitzin
connectaran amb fi

ii. subElement = crearAutomat (SubElement, IDanteriors)
d. SidefinicioSeguent ="
i. Sielconjunt és bucle
1. ultimsElements = [id fi]
ii. Sino Per cada SubElement

1. ultimsSubElements =
buscarUltimsElements(SubElements)

2. ultimsElements = ultimsElements::ultimsSubElements

3. infoRetorn = Element

iii. Si mantenirAntenirAnteriors == true
1. UltimsElements = ultimsElements::IDanteriors
iv. String infoRetorn = crearAutomat(definicioSeguent
e. Siel conjunt és un bucle
i. Return “<”+ID fi+”>"+ infoRetorn
f. Sind

i. Return Element+ infoRetorn

}

Un cop ja hem analitzat tota I'ER regular en la variable global transicionsLoop tenim les
ID’s de les transicions que poden repetir-se 0 o més vegades (‘*’). Es recorre aquesta
llista de final a principi afegint una estat loop sobre la transicio i es comprova que els
anteriors d’aquell estat estiguin connectats amb els seglients d’aquell estat. Si falta
algun estat s’afegeix.

A continuacié es comenten alguns punts importants de l'algorisme i s’explica els
metodes desconeguts:

0. Llegir el primer element ens retorna un element simple o un element compost,
segons quin és I'element de més a I'esquerra de la definicid.

Per exemple el primer element de :
(<1><2>(<3><4>*<5>+<6>(<7>+<8><9>))*(<10>+<0>))<11>

Es: <1><2>(<3><4>*<5>+<6>(<7>+<8><9>))*(<10>+<0>)

- 74 -

CAPITOL 3. IMPLEMENTACIO

1b. En el cas d’'un element simple I'anterior del seu segiient és ell mateix, pel cas
que el segient simbol sigui ‘*’ (1.c) els anteriors del seu segiient sén ell mateix i els
seus anteriors.

le. En un cas simple sempre no es modifica la seva informacié per tant retornem
aquell element concatenat amb el resultat d’aplicar I'algorisme sobre la cadena que ve
a continuacio d’aquell element.

2a. El métode buscarElements(String) aplicat sobre un element compost retorna una
llista amb cada subElement.

2b. Si és un bucle sobre un conjunt per exemple en la ER (<a>++<c>)*

La primera opcio seria representar-ho d’aquesta manera:

Per simplificar I'automat s’ha creat també el connector fi i s’Tha concatenat a cada
subElement (2.b.v.) per obtenir un resultat més optim

-75 -

CAPITOL 3. IMPLEMENTACIO

2.c. quan ens trobem un SubElement “<0>” recordem que vol dir que ens trobem
davant d’una E-transicid per tant des de la transicié actual s’ha de poder accedir a cada
una de les diferents opcions o a cap d’elles. Per aquest motiu s’utilitzen dos transicions
de tipus connector per crear un “pont” per simular el salt unidireccional.

ADV

....(<RADV>+<E>).. >

2.c.ii. Es crea I'arbre de cada subElement i s’actualitza el seu valor pel resultat que
retorna la seva construccid. Que el metode crearAutomat tingui com a retorn una
cadena de caracters és per actualitzar en aquest moment cada SubElement després de
la seva construccié. Aquesta accid la portem a terme per resoldre facilment els casos
en que un subElement és un conjunt amb repeticié de 0 o més vegades (‘*’). Quan es
crida el meétode crearAutomat sobre un d’aquest subElements el resultat de la crida és
una cadena de caracters de l'estil “<id>” on id és el valor de lidentificador del
connector final d’aquell conjunt (2.e.i). En la resta de casos el retorn es correspon amb
el SubElement analitzat i no afecta a la resta d’analisis (2.f.i).

Aquest detall ens simplifica I'arbre que es construia en profunditat d’aquesta manera.

Per I'arbre analitzat anteriorment:

-76 -

CAPITOL 3. IMPLEMENTACIO

Queda simplificat d’aguesta manera:

N

. <11>

/

Y
A
.
'
A
i
W

<1

¥

<10> <0>

Un cop s’ha creat el conjunt actual s’han de buscar els ultims elements del conjunt per
continuar analitzant el seglient element. Si no s’apliqués I'actualitzacié de I'arbre al
conjunt “*’ que tenim a continuacio de la transicid <2> es passaria per parametre com
els elements anteriors de I'estat 10 les transicions [9,7,5,2] sense tenir en compte que
algun d’aquests pogués ser un bucle. Fent aquesta actualitzacidé les transicions
anteriors a <10> es correspon Unicament a la transicié connector final del conjunt
<12> simplificant-nos significativament I'automat.

2.d.ii.1: el metode buscarUltimsElements(SubElement) si el subElement analitzat és
un element simple ens retorna el seu identificador, per altra banda si és un element
compost es crida recursivament fins trobar els extrems. Aquest metode també té en
compte els conjunts amb E-transicions buscant els ultims elements de |'element
anterior.

Si tenim de I'element compost:
(<a0><b0>+(<al>+<b1>+<cl>)+<a2><b2>(<a3><b3>+<c3><d3>+<E>))
El resultat d’aplicar buscarUltimsElements() és:

[#id <b3>, #id <d3>, #id <b2>, #id<c1>,#id <b1>,#id <al>,#id <b0>]

-77 -

CAPITOL 3. IMPLEMENTACIO

3.12 Guardar automats com ER

De les diferents opcions de guardar i llegir automats aquesta és la que es va decidir
gue tenia menys valor perque ja hi ha altres programes que tradueixen de format
automat a ER. Tot i aixi com que la planificacié del projecte va ser 'adequada s’ha
disposat de temps just per poder realitzar I’ implementacié del guardat d’automats
lineals en forma d’ER.

3.12.1 Requisits per poder guardar I'automat:

......

de I"'automat accessibles des de la transicio inicial.

En cas que no hi hagi la transicid inicial es mostra per pantalla una notificacié del error.

3.12.2 Implementacio:

La classe encarregada de guardar del automat com ER en un fitxer és la classe
automatsAER.java. Aquesta classe té implementats tots els métodes i procediments
necessaris per llegir el fitxer, interpretar-lo i crear I'automat.

La ER s’aconsegueix amb cinc fases: creacio I'ER , simplificacid, substitucio, eliminacid
d’elements redundants i descodificacid.

3.12.3 Fase de creacio de I'’expressio regular:

Per crear I'ER inicialment es recorre recursivament I'automat en profunditat guardant
les transicions que es troben en I'exploracié de I'automat. S’ha implementat el metode
crearER(id, anteriors). Aquest metode retorna una cadena de caracters que és I'ER. El
primer parametre és l'identificador del a transicidé que avalua. El segon parametre sén
les transicions que ja ha visitat per detectar recursivitats i no caure en un bucle infinit.

Aquest meétode busca els estats dels quals la transicio origen té la mateixa id que la
transicid que s’esta analitzant (primer parametre) i es guarda les ID’s de les transicions
desti en una llista.

-78 -

CAPITOL 3. IMPLEMENTACIO

En cas que la transicid actual sigui una transicié estandard o una transicié de tipus
connector la cadena de caracters que retornem li afegeim “<”+id+">".

A continuacié per cada element de la llista en cas que no hagi estat ja analitzat es fa
una crida recursiva a aquest metode, el seu retorn es concatenara amb la cadena de
caracters del retorn. Si es té més d’un element en la llista el seu retorn es guarda entre
paréntesis i separat per 'operador suma.

Si ens trobem un element que ja ha estat analitzat ens trobem davant d’un bucle. En
aquest cas guardem l'identificador de l'inici del loop amb un asterisc (“<?”+id+”>") per
diferenciar del cas base. D’aquesta manera tenim el loop acotat i amb la referencia
amb l'identificador d’ on comenga.

Si I'element que ens trobem és la transicié final s’afegeix el token “<E>"que s’utlitzara
pel tractament dels casos de transicions opcionals.

Per exemple el seglient automat que equival I'ER:

<t1><t2>(<t3><t4>*<t5>+<t6>(<t7>+<t8><t9>))*(<t10>+<E>)

L’ER resultant d’aplicar aquesta primera fase és la segiient:

ER1:
<1><2><12>(<3>(<4><4>*<5><13>((<10>+<E>))+<5><13>((<10>+<E>)))+<6>(<7><13>((
<10>+<E>))+<8><9><13>((<10>+<E>)))+<13>((<10>+<E>)))

Pel cas de (<DET><NPROP><VPRED>)(<DET><NPROP><VPRED>)*<N> :

DET NPROP VPRED M O

-79 -

CAPITOL 3. IMPLEMENTACIO

L’ER resultant d’aplicar aquesta primera fase és la segiient:
ER2: <1><2><3>(<4>+<*1>)

3.12.4 Simplificacié:
El procés de simplificacio correspon a treure el maxim factor comu possible de I'ER.

Aquest procés es porta a terme amb el métode simplificar(String) el qual va recorrent
I’'ER i quan es troba un conjunt crida el metode PosarComu(llista SubElements).

El métode PosarComu calcula els ultims elements de cada subElement. Els
subElements que tenen la mateixa terminacio els torna a posar en comu sense el seu
ultim element el qual queda aillat. Aquest metode també simplifica si tenim una
repeticié i una E-transicié en un mateix conjunt. Als elements aillats se’ls aplica el
metode simplificar sobre ells per simplificar tota I'ER d’una forma recursiva.

El metode simplificar simplifica els elements en ordre d’aparicid. Elements que en un
primer moment no poden ser posats en comu al ser simplificats si que ho poden ser.
Per aguest motiu I'ER inicial és simplificada tantes vegades com és necessari fins que el
resultat de dos iteracions és identic.

Exemple d’aplicacio del metode posarComu(llista subElements):

Amb els subelements:
[<3>(<4><4>*+<E>)<5><13>(<10>+<E>), <6>(<7>+<8><9>)<13>(<10>+<E>)]

El resultat de posar-ho en comu és:

(<3>(<4><4>*+<E>)<5>+<6>(<7>+<8><9>))<13>(<10>+<E>)

Exemple d’aplicacio del metode simplificar(String):

ER1:
<1><2><12>(<3>(<4><4>%<5><13>((<10>+<E>))+<5><13>((<10>+<E>)))+<6>(<7><13>((
<10>+<E>))+<8><9><13>((<10>+<E>)))+<13>((<10>+<E>)))

Primera iteracio:

<1><2><12>(<3>(<4><4>*+<E>)<5><13>(<10>+<E>)<E>+<6>(<7>+<8><9>)<13>(<10>+

<E>)<E>)

Segona iteracio:

-80 -

CAPITOL 3. IMPLEMENTACIO

<1><2><12>(<3>(<4><4>*+<E>)<5>+<6>(<7>+<8><9>))<13>(<10>+<E>)<E>

3.12.5 Substitucio:

La fase de substitucié s’encarrega de substituir els connectors per bucles i d’eliminar
els elements redundants.

La fase de substitucié consta de dos parts: creacid de bucles, tractament de
connectors

3.12.5.1 Creacio de bucles:

Inicialment al crear I'ER inicial quan ens trobavem un bucle afegiem a la ER I'element
<*id> per fer el seu tractament en aquest apartat. Per diferenciar una transicié normal
d’un bucle utilitzem el simbol ‘*’, el valor de id correspon al identificador de la transicio
des d’ on comenga el bucle. Es recorre la cadena de caracters buscant aquests
elements i copiem la subcadena de caracters corresponent entre I'element <*id> i <id>
aquest ultim inclos. Aquesta subcadena conté tots els elements que es repeteixen dins
el bucle. Li afegim els simbols “(“+subcadena+”)*” per guardar la repeticio del conjunt.

S’ha de tenir en compte que els element <*id> poden formar part d’un conjunt. En
aquests casos la subcadena és limitada per I'inici del conjunt on esta inclos <*id>.

Exemple de creacio de bucles:

ER2: <1><2><3>(<4><E>+<*1>)

<*1> marca un bucle des de la transicid <1> fins ella.
El resultat d’aplicar la substitucié equival a:

<1><2><3>(<1><2><3>)*(<4><E>)

3.12.5.2 Tractament de connectors:

Al crear inicialment I'ER regular quan s’analitzava un connector aquest es guardava per
dos motius. Per una banda s’han de guardar per la part de creacid de bucles per
resoldre els casos que una transicid crea un bucle connectant-se amb un connector.

-81 -

CAPITOL 3. IMPLEMENTACIO

L'altre motiu perque els guardem és per crear la repeticié de conjunts. La repeticié de
conjunts ve determinada per dos connectors connectats entre ells amb transicions que
va d’un a laltre.

La manera de representar (<t1>+<t2>)* és:

El resultat de crear I'ER i simplificar-la és: <4>(<1>+<2>)<5>

Les transicions <4> i <5> sén els connectors que delimiten el conjunt que es repeteix.
El métode actualitzarConnectors(String) busca els connectors que representen
aquesta estructura. Quan els troba seleccionen ER que hi ha entre ells dos i els hi
afegeix el simbol de repeticio (‘*’)

Resultat d’aplicar actualitzarConnectors(String): (<1>+<2>)*

Al convertir aquell conjunt en una repeticio si un dels subElements és la E-transicié
(<E>) és redundant. Es fa una crida al métode treureERedundant(String) que
s’encarrega de retornar la cadena sense aquell subElement en cas de contenir-lo.

El resultat del tractament de ER1 és:

<1><2>(<3>(<4><4>*+<E>)<5>+<6>(<7>+<8><9>))*<14>(<10>+<E>)<15>

3.12.6 Eliminacio d’elements Redundants:

Fins aquest punt al crear I'ER al trobar-nos amb una repeticié I’ informacio a priori que
sabiem era que es repetia 1 o0 més vegades. Aquestes altures de la simplificacié I'ER ja
és compacte i és simplifiquen els conjunts que representen la repeticié d’'un element
cap o més vegades:

El metode buscarElementsSimplificar(Cadena) busca la seglient subcadena dins la
cadena de caracters:(<X><X>*+<E>). Les subcadenes trobades les redueix a la seva
minima expressid: <X>*

El resultat del tractament de ER1 és:

-82-

CAPITOL 3. IMPLEMENTACIO

<1><2>(<3><4>*<5>4<6>(<7>+<8><9>)) *<14>(<10>+<E>)<15>

3.12.7 Descodificacio:

Aquesta fase rep I'ER ja construida i simplificada per retornar-la traduida per les
transicions que representa. Per cada element que parseja <id> busca la transicié que té
associada aquella id. En cas que sigui un connector la seva utilitat era per guardar la
referencia per possibles bucles. L'informacié que aporta és nul-la per tant no es
substitueix per una cadena buida.

Quan la transicio en qliestié és de tipus estandard I'element se’l substitueix per la seva
informacio lexica. El cas de les E-transicid és invariant.

El resultat d’aplicar aquesta fase a la seglient ER corresponent a

ER2: <1><2><3>(<1><2><3>)*<4>

Correspon a: <DET><NPROP><VPRED>(<DET><NPROP><VPRED>)*<N>

-83 -

CAPITOL 3. IMPLEMENTACIO

3.13 Opcions complementaries:

Una bona aplicacid es caracteritza per portar a terme correctament |'objectiu pel qual
ha estat implementada. La nostra aplicaci6 permet crear i editar gramatiques
electroniques aixi com guardar I’ informacid i carregar-la . Els objectius del projecte ja
estan assolits perdo s’han implementat unes quantes funcionalitats complementaries
amb la finalitat de proporcionar a I'usuari final una eina més complerta.

S’ha analitzat les possibles optimitzacions que es podien implementar i el temps
disponible per fer la seleccid de les opcions que s’han afegit a I'aplicacid.

3.13.1 Desfer I'ultim canvi realitzat.

L'usuari que treballa amb I’aplicacié pot realitzar una accié amb un resultat que no és
el desitjat. S’ha considerat de gran utilitat oferir a I'usuari la possibilitat de desfer
I’dltim canvi realitzat. Aquesta aplicacid per fer moltes operacions aixi com afegir i
esborrar estats i transicions, modificar la seva informacié léxica o etiqueta, canviar de
posicio, etc.

Realment el que s’ha considerat primordial ha estat I'aspecte sobre el tema de poder
tornar endarrere en el cas que l'usuari elimini un element per equivocacié. El pitjor
escenari seria el cas d’eliminar per equivocacid una transicié la qual té connectades
varis estats, 'usuari a part d’afegir de nou la transicié hauria de recordar-se de tots els
estats que la connectaven amb altres transicions amb la conseqliéncia de
possiblement oblidar-se algun. Per aquest motiu I'opcio de desfer I'Ultim canvi només
tracta el context d’insercié i eliminacié d’elements i desfer I'Gltim canvi que s’ha
desfet.

S’ha implementat la classe Desfer.java per encarregar-se d’emmagatzemar
I'informacid necessaria i encarregar-se de fer els canvis sobre I'escena. Al constructor
d’aquesta classe se li passa per parametre la referéncia a I'objecte ZonaDibuix (escena)
sobre el qual treballara.

Aquesta classe utilitza una variable entera anomenada “opcid¢” que s’utilitzara per
determinar quina és I'opcid que s’haura de portar a terme en el cas que I'usuari vulgui
desfer I'Gltim canvi. Aquesta variable pot prendre cinc valors diferents:

0 = no fer cap accid.
1 = Afegir transicio i estats.

-84 -

CAPITOL 3. IMPLEMENTACIO

2 = Afegir estats.
3 = Eliminar transicié i estats.
4 = Eliminar estats.
Per guardar I’ informacid necessaria la classe té les seglients variables internes: un

objecte Caixa on es guarda l'Ultima transicido eliminada. Una llista d’Arestes on es
guarden els estats eliminats en l'Ultima accid, s’utilitza una llista perque el cas
d’eliminar una transicidé que té varis estats s’han de guardar tots. També tenim una
variable entera que ens diu el nombre d’arestes que s’han afegit (NNousEstats). Com
gue els elements s’afegeixen al final de la llista només hem de saber el nombre
d’estats que s’ha afegit per eliminar tots aquells elements.

La classe conté un unic métode que s’encarrega d’escollir quina accié portar a terme
segons el valor de la variable interna “opcio”.

Pel cas “Afegir transicid i estats” afegeix la transicid i estats que tenim guardats en les
variables internes de la classe a les seves respectives llistes de I'objecte zonaDibuix.
Canviem el valor d’opcié per 3 i NNousEstats se li assigna el valor d’estats que s’han
afegit.

La resta de casos tenen un tractament semblant amb el proposit d’afegir o eliminar
I’4ltim estat eliminat o d’eliminar la transicié. En el cas d’eliminar la transicié només
s’ha d’eliminar I'dltim element de la llista de transicions (abans s’ha de copiar en la
variable interna de la classe per poder tornar endarrere).

Cada objecte ZonaDibuix té una variable interna que és un objecte de la classe
Desfer.java. Cada vegada que s’afegeix o s’elimina un element de I'escena es modifica
el valor de la variable “opcid”. En el cas d’eliminar un estat o una transicié aquests es
guarden en |'objecte Desfer per tenir-lo preparat per desfer I’Gltima accié en qualsevol.

S’ha afegit aquesta opcid a la barra de menu perque l'usuari la trobi facilment. Quan
I'item és seleccionat es crida el metode desferCanvi() de I'escena que esta
seleccionada el qual s’encarrega d’avisar a I'objecte DesferCanvi.

Transicions compostes

Fins aquest moment les transicions que permetiem representar eren simples doncs
estaven definides per una Unica informacid léxica. Per anar d’un estat a un altre ens
podiem trobar amb varies transicions que representaven la mateixa paraula o
expressio pero que tenien una informacio lexica diferent per suplir tots els casos
possibles. L'objectiu de les transicions compostes es ajuntar totes aquestes transicions
amb contingut especific en una transicid més general. Les transicions compostes sén
una manera de simplificar 'automat que s’esta editant. Per ser més precisos una

-85 -

CAPITOL 3. IMPLEMENTACIO

transicié composta és una transicié que dins seu conté varies informacions léxiques
resultants de fusionar el contingut de dos o més transicions en una mateixa transicio.
D’aquesta manera se’ns redueix enormement el nombre d’estats doncs al fusionar les
transicions la transicio composta resultant té |’ interseccid dels seus estats. Dos estats
es simplificaran si els dos tenen com origen la seva respectiva transicido pero el seu
desti apunta a una mateixa transicio, i a I'inversa.

)
N

N

=)

p3.ADV
p3.ADV_ABREY

E=D

=]

3.13.2.1 Crear transicions compostes:
Primer de tot s’"han hagut de fer canvis en la classe Caixa.java on hem hagut de canviar

la cadena de caracters que contenia I’ informacio léxica, per una llista de cadenes de
caracters per poder emmagatzemar totes les informacions que pugui tenir la transicid.

També hem creat el métode CheckAndAddSubtransicio (Caixa transicioSimple).
Aquest méetode de la classe rep per parametre I'objecte tipus Caixa amb el qual es vol
comprovar si es correcte permetre la fusié entre les dos transicions i retorna un boolea
amb el valor true en cas positiu.

Perque una fusid entre dos transicions sigui valida s’han de complir una série de
condicions: primer es comprova I’ informacié del camp forma canonica on en cas que
les dos transicions tinguin un valor definit aguest ha de coincidir. En cas que només un
de les dos transicions estigui instanciada se li assigna aquest valor I’altra transicio.

L'altre transicié que s’ha de duu a terme es comprovar que la sortida dels transductors
és estricament igual. En aquest cas o les dos transicions no tenen el camp definit o sind
aquest ha de coincidir.

- 86 -

CAPITOL 3. IMPLEMENTACIO

Aquest metode també s’encarrega d’afegir I’ informacié de la transicié passada per
parametre a la transicié des d’ on es produeix la crida del méetode, en el cas que sigui
valid fer la fusid.

Per poder fusionar transicions s’ha afegit un nou item a la barra d’eines per portar a
terme aquesta operacid. Aquest item treballa com la resta d’elements de la barra
d’eines. Quan es seleccionat li assigna un nou valor a la variable “opcié” de I'objecte
ZonaDibuix de I'escena actual.

Amb aquesta nova opcid quan es faci clic en I'escena buscara si en aquella posicid si
troba una transicio, en cas afirmatiu s’assigna el valor true al camp “seleccionat” de la
transicid perque aquesta es vegi d’un color diferent i I'usuari observi facilment la seva
seleccid.

També es guarda la posicio de la transicié dins la seva llista en la variable index_juntar
quan es selecciona el primer element i en la variable index_llista quan es fa la segona
seleccid.

En cas que s’hagi fet clic sobre el mateix element o les dos transicions no sén de tipus
“normal” el que fem es desseleccionar-les. En altre cas cridem el metode
CheckAndAddSubtransicio(Caixa) des de I'Ultima transicio seleccionada. Si el resultat
és true eliminem [laltra transicio i desseleccionem I'element. En cas contrari
simplement desseleccionem les dos transicions.

3.13.2.2 Tractament dels estats al fusionar dos transicions simples en
una transicié composta:
Quan es va decidir que fer amb els estats que tenien relacié amb alguna de les

transicions involucrades en la fusidé es va arribar a dos solucions. Una solucié era no
permetre la fusié entre dos transicions a no ser que com a minim una dels dos no
tingués cap estat. L'altre solucié era permetre fusions de transicions que tenen varis
estats.

Per raons de programacid hauria estat molt més facil d’'implementar la primera opcid,
pero es va pensar cara l'usuari final i es va decidir la segona opcié. La rad d’aquesta
decisio va ser per millorar la comoditat de treball de I'usuari. D’aquesta manera podra
fusionar transicions tan bon punt sdn acabades de crear com si s’ha estat treballant
amb elles (i poden tenir varis estats que en depenen) i ara s’ha donat compte que les
vol ajuntar.

Per implementar aixd s’ha implementat el métode canviarEstatsdeTransicio (oldID,
newlD, xIniciTransicio, xFiTransicio, y). Igual que anteriorment haviem ajuntat tota

-87 -

CAPITOL 3. IMPLEMENTACIO

I'informacid en una mateixa transicid, en aquest cas totes les transicions de la primera
transicié seleccionada (“Old”)se li afegeixen a la segona transicié (“new”). Els estats
que compartien entre elles dos sén eliminats aixi com els estats que si es canvia algun
dels extrems es converteix en un estat repetit.

Per fer aquestes operacions recorrem amb un bucle la llista llistaArestes de final a
principi per no tenir problemes d’indexacio al eliminar estats per alguna de les raons
anteriors. Per cada estat mirem si algun dels extrems té la ID de la transicid “old”. En
cas de coincidencia es comprova que l'altre extrem de la transicid no sigui de la
transicio “new”. També comprovem amb el métode checkArestaRepetida(IDinici, IDfi)
si actualitzem I'extrem que li tocaria si estariem creant una aresta repetida. Aquest
metode recorre tota la llista llistaArestes buscant la coincidéncia amb una aresta que
tingui les mateixes transicions per extrems. En cas de passar les dos comprovacions el
valor de la ID d’inici o de fi (segons I'extrem involucrat) se I'assigna el valor de la ID
“new”. Amb els parametres xIniciTransicio, xFiTransicio i y situem |'extrem al seu lloc, i
a continuacio actualitzem les posicions del rectangle de control i menu de I'estat.

En cas de no passar alguna de les comprovacions es procedeix a eliminar |'estat de la
llista perd abans amb els meétodes borrarArestalnici(aresta.getiDInici()) i
borrarArestalnici(aresta.getIDInici()) ja utilitzats en I’eliminacié d’estats i transicions,
es decrementa el comptador d’estats dels extrems de la transicié que es troba a I'altre
extrem de I'estat que s’esta a punt d’esborrar.

En cas que l'aresta no tingui en els extrems la transicié “old” es mira si té la transicid
“new” en aquest cas actualitzem la posicié d’inici i fi de la transicid per situar
correctament els extrems de I'estat ja que ara la transicio és més llarga.

3.13.2.3 Separar transicions composta:

Al decidir que es dona a l'usuari I'opcido de ajuntar transicions en una amb més
informacié, també es va decidir que seria interessant permetre fer I'operacié
complementaria. L'opcid de separar transicions s’accedeix fent clic amb el botd dret
sobre una transicié. Amb aquesta accid apareix el menud emergent que vam explicar al
qual li hem afegit la nova opcié.

Quan el oient d’Events de la classe Popuplistener.java captura I'event llencat per la
seleccio d’aquesta opcid, fa les segilients operacions: primer guarda la caixa
seleccionada en una variable local i comprova si la llista d’'informacid té més d’un
element. Si n’és el cas es recorre la llista creant un objecte de tipus Caixa per cada
informacidé de la llista menys el primer que s’aprofita la transicié existent. Perqué no es
superposin totes les noves transicions guardem les coordenades x i y de la transicid

-88 -

CAPITOL 3. IMPLEMENTACIO

original i per cada transicid nova li assighnem aquelles coordenades sumades a una
constant. Aquestes transicions que s’acaben de crear les afegim a la llista on estan la
resta de transicions .

Un cop ja hem creat les noves transicions es creen nous estats per proporcionar a cada
nova transicié la mateixa connectivitat que tenien quan estaven agrupades. Coneixem
el nimero de noves transicions, ja que correspon al nombre d’elements que tenia la
llista d’informacio de la transici6 menys 1 (NnousEstats). El métode que crea aquests
nous estats és el segiient: AfegirArestesSeparar(ID, NnousEstats) on ID és el valor de
I'identificador de la transicié inicial.

Aquest metode recérrer la llista d’Estats buscant transicions que en algun dels extrems
es trobi la transicié amb la que estem treballant. Per cada estat que trobem recorrem
un bucle de 0 a N-1 iteracions on N és el nimero de nous estats (segons el valor del
segon parametre de la funcid). En cada iteracio seleccionem la transicidé que tenim en
la posicié que concorda amb el valor de la iteracié comencgant pel final de la llista de
transicions. Aquestes transicions corresponen a les transicions que haviem creat noves
i les hi assignem a [I'extrem del nou estat en el qual I'estat original s’hi trobava la
transicid inicial. En tots els casos hem d’incrementar els comptadors d’estats de les
transicions que es troben als extrems dels nous estats.

Per evitar fer una iteracid innecessaria en I’ insercid d’estats recordem que de la
transicié original haviem buidat la llista d’informacio i li haviem deixat Unicament un
element. Com que la transicié ha canviat de mida s’ha de situar els seus estats al nou
centre de la transicio. Per fer aquesta operacidé utilitzem de la classe ZonaDibuix el
metode
actualitzarExtremsEstat(IDtransicio,xIniciTransicio,xFiTransicio,yCentreTransicio).
Aquest métode busca els estats que tenen en algun extrem la transicid i actualitza les
coordenades del extrem a la seva nova posicio.

3.13.2.4 Modificacions en la finestra de Propietats de la transicio:

En els casos que la llista d’informacié de la transicié només té un element no hi ha cap
canvi respecte el que ja s’ha escrit, la cadena de caracters que s’analitza per omplir els
camps de la finestra emergent és I'Unic element de la llista.

El dilema era com mostrar els diferents elements d’una transicié composta en el panell
d’actualitzacio. En un darrer moment es va decidir que la manera més optima era
preguntant a I'usuari amb una finestra emergent quin element vol modificar.

-89 -

CAPITOL 3. IMPLEMENTACIO

Per mostrar la finestra emergent una vegada fem Us de la classe JOptionPane i en
aquest cas el panell que mostrem simplement conté un Label i un JComboBox amb N
items on N és la mida de la llista d’informacid.

Un cop feta la seleccio del JComboBox s’utilitza el valor de l'index de I'opcid
seleccionada per determinar quina element de la llista d’informacié de la transicio és el
gue es separa per omplir els camps de la finestra emergent que mostrem.

En cas de que l'usuari realitzi canvis tenim present que la forma i la sortida del
transductor son comunes per totes els elements de la transicio per tant si es
produeixen canvis també se’ls assigna el nou valor d’aquests camps a la resta
d’elements.

3.13.2.5 Permetre transicions heterogenies:

Nosaltres hem posat la restriccio que si dos transicions no tenen la mateixa forma
canonica i la mateixa sortida de transductor no es poden fusionar. S’ha escollit
aquesta restriccié perqué quan es fusionen dos transicions és perquée sén la mateixa
paraula (mateixa forma canonica) pero la resta d’informacié és diferent i es vol
simplificar I'automat.

Tot i aixi s’Tha implementat I'opci6 de permetre transicions heterogenies (forma
canonica diferent) perqueé sigui I'usuari final qui tingui el criteri de fusionar transicions
coherentment.

Una variable booleana determina el grau si fem una fusid estricte és a dir que no
permet transicions heterogenies o no. En cas que es permeti és salta la part de codi
referent a la comprovacio de la compatibilitat del a forma canonica.

S’ha afegit un nou item a la barra de menu anomenat “Transiciones heterogeneas:
Des/Activado”. Cada vegada que es selecciona és nega el valor de la variable booleana
que determina el tipus de fusio.

En cas que estigui aquesta opcid activada, si canviem el camp forma canonica d’un
element d’una transicié complexa la forma canonica de la resta d’elements de la
transicié no son actualitzats.

3.13.3 Guardar automat com imatge

- 90 -

CAPITOL 3. IMPLEMENTACIO

L'usuari pot voler guardar I'automat que ha dissenyat en un format visual per poder-lo
afegir en presentacions o informes. Per aquest motiu s’ha implementat I'opcié que
permet a l'usuari guardar I'automat com una imatge.

A l'usuari se li mostrara la finestra emergent perqué determini el nom del fitxer i la
ubicacié on el vol guardar. A continuacié se li mostrara una altra finestra perque esculli
en quin format vol guardar I’ imatge. L'usuari podra escollir entre els formats de
codificacio d’imatges més comuns: bmp, gif, jpg, jpeg i png.

S’ha afegit el métode guardarlmatge(fitxer , format) a la classe ZonaDibuix. Aquest
metode s’encarrega de guardar la representacié de I'escena en el fitxer que havia
determinat 'usuari en el format seleccionat.

El procés es ben senzill, es crea una variable local de tipus Bufferedimage :

Bufferedimage imatge = new Bufferedimage(width,height,
Bufferedimage.TYPE_INT_RGB);

El width i el height venen determinats per I'area de I'escena, el tercer parametre indica
com volem que sigui la imatge, en el nostre cas utilitzem 8 bits en RGB.

Aquest objecte es converteix en un Graphic2D
Graphics2D g = (Graphics2D)imatge.getGraphics();

Sobre el qual es representa I'escena recreant la mateixa estructura i procediment
implementats en el métode paint. Es a dir representem lI'escena perd no sobre
I’objecte Graphics que utilitzem per mostrar per pantalla sind sobre el que hem creat.

Per ultim guardem la imatge en el fitxer utilitzant el métode d’escriptura de la classe
ImatgelO : ImagelO.write(g, format, fitxer);

3.13.4 Escollir colors dels elements de I'’escena:

S’ha decidit oferir a I'usuari la possibilitat de canviar el colors dels elements de I'escena
com el fons, el color dels estats i transicions, el text, etc. Perqué puguin personalitzar
els seus automats de la manera que més els agradi.

S’ha creat una classe anomenada Format.java que conté com a variables internes

diferents colors pels diferents elements de I'escena. S’ha afegit un objecte d’aquesta
classe com a variable interna de la classe ZonaDibuix.java.

-91 -

CAPITOL 3. IMPLEMENTACIO

En el metode paint abans de dibuixar cada element es busca el color que el representa
de I'objecte Format. D’aquesta manera cada escena que tenim oberta en pestanyes
diferents té els seus propis colors.

L’avantatge d’haver centralitzat tots els colors en una classe és la comoditat per fer
modificacions. Per canviar un color d’'una escena només hem de modificar el valor de
les variables internes de I'objecte Format de I'escena.

Hem implementat la classe CanviarColors.java que s’encarregara de mostrar les
diferents opcions de canvi de colors i aplicar els canvis. Se li passa al constructor
I’objecte ZonaDibuix sobre el qual treballara.

Aquesta classe s’encarrega de mostrar un panell amb tants botons com diferents
elements de I'escena que se’ls pot canviar el color. El color de fons de cada boté és el
color que té assignat aquell element.

,
CAMBIAR COLORES DE LOS ELEMENT... [Sed)

@ FONDO
FONDO TRANSICION
INFORMACION TRANSICION

L’API de Java proporciona gran quantitat de classes interessants amb metodes molt
utils. En aquesta situacié disposem de la classe JColorChooser que ens ofereix un
magnific panell de seleccio de colors.

Muestras HSB | RGB

- N
Escoge color . : ™ M

Muestras HSB | RGB

OO
LI 1] |

[Muestras | HSB | RGB

Vista previa C
j i Rojo [oE
a - W Texo de sjemplo Texto de ejemplo i i 0 255_|j
W= — = =
Texto de ejemplo Texto de ejemplo Verde | 0
e 1emne 0 85 170 255
C L
0 85 170 2554‘2‘

-92.-

CAPITOL 3. IMPLEMENTACIO

El tractament amb aquesta classe és molt intuitiu. Només s’ha de controlar que I'opcid
seleccionada sigui la d’Acceptar i en aquell cas el metode getColor() retorna el color
seleccionat per I'usuari. L’Unic que hem d’implementar nosaltres és un control de quin
boté ha seleccionat I'usuari i assignar el color desitjat a la variable corresponent de la
classe Format.

L’avantatge d’haver passat per parametre I'objecte ZonaDibuix al constructor és que
després de canviar cada color actualitzem I'escena actual d’aquesta manera es van
visualitzant els canvis a mesura que es van fent enlloc d’haver d’esperar fins haver
acabat.

El panell que proporciona la classe JColorChooser és molt complert. S’ha trobat
innecessari i poc estetic la part inferior del panell referent a vista previa perquée quan
seleccioni un color 'usuari ja observara els canvis. També s’ha considerat redundant la
tercera pestanya (RGB) perque I"'usuari no es posara a escollir el color de les transicions
segons el seu valor RGB sind que escollira millor un color dels altres dos panells. El
panell de vista previa i la pestanya RGB s’han eliminat perque es vol oferir a I'usuari un
panell de seleccidé de colors util, senzill i comode. Si donés el cas que 'usuari volgués
seleccionar uns colors RGB determinats tampoc és indispensable la pestanya 3 perque
pot introduir els valors en la pestanya HSB.

La classe JColorChooser és molt interessant i molt flexible perqué aixi com podem

treure-li algun panell si no ens interessa també permet afegir-ne d’altres creats per
nosaltres.

3.13.5 Afegir etiquetes als estats:

Les transicions es diferencien entre elles perqué cada una se |li defineix una informacié
lexica determinada. Per altra banda els estats son tots iguals i només se’ls reconeix per
la connexid entre transicions que realitzen. S’ha afegit I'opcié d’assignar una etiqueta a
cada estat.

La funcionalitat d’aquestes etiquetes és simplement perqué 'usuari s’orienti mentre
esta treballant. Amb les etiquetes pot guardar informacié que I’ajudi a I’hora de crear
I’automat com una mena de recordatoris o notes.

Fent clic amb el botd dret sobre el menud de I'estat s’ha afegit una nova opcié al seu
menu per instanciar i modificar el valor de I'etiqueta.

-903 -

CAPITOL 3. IMPLEMENTACIO

3.13.6 Manual d’'usuari

S’ha afegit a I'aplicaci6 un manual d’usuari per resoldre els possibles dubtes de
funcionament de I'aplicacid que puguin tenir els usuaris.

Després de varies idees s’ha decidit que la manera més elegant i rapida de crear un
element que contingui aquesta informacié seria a través d’'un document html. Els
documents web sén facils de crear amb molta flexibilitat en quan a I'organitzacio del
contingut.

Un cop creat el document html s’han valorat diferents maneres de mostrar-lo al usuari.
Per utilitzar altres elements de I'ordinador Java ens proporciona la classe Runtime.
Aquest métode depén de la plataforma sobre la que treballa el programa i els
navegadors que |'usuari té instal-lats. S’ha decidit fer una implementacio diferent per
assegurar-nos que cap usuari no es quedi sense poder accedir al manual d’usuari.

S’ha utilitzat la classe JEditorPane que és un editor de text capa¢ d’editar varis tipus de
contingut. Aquest component utilitza I’ implementacié d’un objecte EditorKit per
treballar correctament amb diferents tipus de contingut. Els diferents tipus de
contingut que coneixen per defecte sén text pla, documents en format rtf i html.

Amb JEditorPane combinat amb EditorKit amb poques linees de codi tenim I'aplicacié
preparada per mostrar per pantalla un panell amb el nostre document html.

El JEditorPane per defecte permet editar el document que obre pero en aquest cas no
ens interessa per tant en deshabilitem I'opcié.

Per carregar el document html s’utlitza el métode setPage(String url). El manual
d’usuari és relativament breu pero tot i aixi ocupa més d’una pagina. L'editor no
proporciona una barra de desplacament per tant no es veu per pantalla tot el
contingut del document a no ser que posem |'objecte JEditorPane dins un JScrollPane
el qual s’encarrega d’afegir i gestionar les barres de desplacament.

3.13.7 Conversio a Applet

Un dels objectius secundaris del projecte demanava I'opcié de convertir I'aplicacio en
un applet de Java perqué es pogués afegir a un document web. Com que el nostre codi
estava molt ben organitzat fer aquesta implementacié ha estat realment senzilla
utilitzant una classe que fa d’interficie.

-94 -

CAPITOL 3. IMPLEMENTACIO

Per crear un applet de Java s’ha de crear una classe que sigui derivada de la classe
Applet. Aquesta classe ha tenir com a minim el métode init(). Aquest metode realitza
una crida al constructor de la classe Main per obrir el programa en un frame.

Aquesta és la part referent a la codificacid. S’"ha d’exportar el nostre projecte com un
arxiu JAR. Per afegir I’ Applet a una pagina web s’ha d’afegir el seglient tag al body del
document html.

<APPLET

CODEBASE ="."

CODE ="GeneradorApplet.class"
ARCHIVE = "applet24.jar"

NAME ="Generador Gramaticas electronicas"
WIDTH =400
HEIGHT =300
HSPACE =0
VSPACE =0
ALIGN = middle
>
</APPLET>

Els diferents atributs del tag <APPLET> tenen el segiient significat:

* CodeBase: Determina la direccié des d’ on es pot descarregar la classe de Java
que va a carregar |'applet, la URL de la classe. Si no s’especifica és I’ ubicacié
actual de la pagina web.

* Code: Fa referencia a la classe de I'arxiu JAR que és derivada de la classe Applet
i que té el métode init(). La direccié és relativa al CodeBase.

e Archive: Esla llista de classes separades per comes que han de ser carregades a
la caché per l'usuari local abans de poder executar-se.

* Name: Estableix un nom unic per I" Applet

* Width i height: determinen la mida en pixels de I'amplada i Ialtura.

e HSpace i WSpace: estableix els marges laterals, superiors i inferiors en pixels.

e Align: Determina I'alineacié respecte els altres elements.

Quan la pagina web es carregada, s’executa I’ Applet i apareix la nostra aplicacié com
una finestra emergent. El problema de I’ Applet és que si es tanca el navegador
I’Applet es tanca brutament sense donar la possibilitat de guardar els canvis. Per
aquest motiu 'usuari ha d’anar en compte si treballa via navegador web i es recomana
descarregar I'aplicacid.

-95.

- 06 -

CAPITOL 3. IMPLEMENTACIO

Capitol 4
Conclusions

El resultat final d’aquest projecte és una eina grafica multiplataforma de creacié i
edicié de gramatiques electroniques per representar el Lienguatge Natural.

L’eina fusiona comoditat i utilitat amb la perspectiva de satisfer a tots els usuaris. L’
interficie grafica esta organitzada amb I'estructura més optima perque I'usuari es trobi
comode treballant-hi. S’han implementat les millors opcions possibles per
proporcionar a l'usuari fluidesa i comoditat a I’hora de crear automats. També s’han
assolit els objectius d’emmagatzemament dels automats creats en Format Automat
(FA) i Expressié Regular (ER) aixi com la carrega de documents en aquest format.

4.1 Desti de I'aplicacio:

Es una eina destinada a ser utilitzada per linglistes per tant se li ha donat especial
importancia a crear una interficie grafica de facil Us per gent amb pocs coneixements
informatics.

Es una eina transparent per l'usuari ja que el programa en tot moment els guia en les
diferents tasques de generacid de l'automat. S’ha utilitzat una variant de Ia
representacio estandard d’automats per un format de representacid més visual on les
transicions son “caixes” que contenen informacid léxica. Els linglistes estan més
familiaritzats amb aquesta representacido perque |’ informacié és plasmada d’una
manera més grafica i no han de tenir gaires coneixements sobre |'estructura dels
d’automats per representar les gramatiques electroniques.

Aquesta aplicacio sera utilitzada en el marc del projecte de recerca Spanish FrameNet
Project en la generacié i edicié de diferents transductors per representar diferents
estructures del Llenguatge Natural.

També sera utilitzada en els laboratoris de Linglistica informatica del departament de
Filologia Espanyola de la UAB amb el mateix proposit.

- 108 -

CAPITOL 4. CONCLUSIONS

4.2 Edicio d’automats:

Per una banda l'usuari disposa de les eines necessaries per crear i modificar automats.
S’ha afegit a la barra d’eines les principals opcions que |'usuari necessitara alhora de
treballar com icones representatives de la seva funcionalitat per oferir una aparenga
més elegant. En cas de dubte sobre |’ utilitat de cada eina mantenint el cursor sobre
apareix una breu descripcid. L'usuari en qualsevol moment pot recérrer al manual
d’usuari que porta incorporat I'aplicacio on trobara la resposta a qualsevol dubte sobre
I utilitzacid i les capacitats de I'aplicacio.

Les opcions de la barra d’eines proporcionen un gran potencial a 'aplicacié perqué
estan orientades a I'edicié de gramatiques electroniques. Quan s’afegeix una transicio
I"'usuari no ha preocupar-se de respectar I'estructura que han de tenir les diferents
paraules del corpus. L'eina proporciona a l'usuari un panell on escollir I’ informacié
lexica de cada camp de forma excloent per eliminar errors de sintaxi. Com que els
camps que especifiquen una paraula son finits 'usuari només ha d’escollir I'opcié que
desitja d’una llista desplegable eliminant errors d’ortografia. Amb aquest procés tan
guiat l'usuari ja no perdra el temps depurant problemes que tenia amb els seus
automats per errors de sintaxi o ortografics produits en la seva especificacid. S’ha
tingut en compte que 'usuari en un moment determinat pot voler canviar I" informacié
lexica d’una paraula. Per evitar obligar-lo a eliminar la transicio i afegir una nova amb
el contingut actualitzat comportant possibles problemes d’omissid d’estats que
canviarien l'automat per culpa del comu oblit, es proporciona a |'usuari I'opcid
d’accedir a un panell amb tota I’ informacid léxica estructurada en els seus diferents
camps perque la pugui modificar comodament sobre la mateixa transicid.

La figura de l'estat en aquests automats és tant simple com una aresta entre
transicions. S’han afegit petits rectangles als seus extrems per oferir una millor
visualitzacié de I'automat. També se’ls ha proporcionat un rectangle situat al centre
del segment per poder seleccionar millor I'estat. Aquest rectangle és de gran utilitat
entre altres coses per modificar la curvatura de I'estat ja que permet seleccionar-lo
facilment enlloc de perdre temps intentant seleccionar una linea que té menys
superficie. Aquest rectangle central també s’utilitza per mostrar el menud d’aquell estat
guan es seleccionat amb el botd dret del ratoli. S’ha estudiat les necessitats de I'usuari
per oferir-li funcionalitats innovadores. Per una banda li oferim la possibilitat de
guardar la curvatura de 'estat. D’aquesta manera als estats que se’ls vol donar forma
de parabola per no passar per sobre d’altres elements s’estalvien la feina repetitiva de
tornar a corbar-los cada vegada que 'usuari mou alguna de les transicions dels seus
extrems. Activant aquesta opcié al moure una d’aquestes transicions la curvatura de
I'estat es manté al desplacament. L’'altra opcid que oferim a l'usuari és afegir una

- 06 -

CAPITOL 4. CONCLUSIONS

etiqueta als estats com a recordatori. De manera que I'ajudi a situar-se o recordar
parts d’'un automat durant I'edicid.

La zona de disseny creix dinamicament a mesura que 'usuari va expandint I'automat
per suportar automats tant grans com l'usuari desitgi. Per ampliar I'area l'usuari
simplement ha de moure un element fora de I'escena i I'aplicacié expandeix els seus
limits per incloure-la. D’aquesta manera la zona de disseny té la mida amb la que
I"'usuari esta treballant en tot moment evitant haver de tenir molta més zona de la
necessaria, fet que pot alentir I'aplicacid sobre ordinadors poc potents. Quan
I"automat té una mida que cap en la finestra apareixen dos barres de desplagament
per seleccionar la zona on volem treballar. L'usuari disposa d’'un zoom en la barra
d’eines per veure l'automat amb perspectiva. L'usuari pot allunyar-se tant com
necessiti per poder veure |’ imatge global de I'automat o aproximar-se i veure
clarament I’ informacio lexica de cada transicio.

En tot moment la perspectiva que s’ha tingut durant I’ implementaciéo ha estat
enfocada a l'usuari final. D’aquesta manera a part de crear una aplicacio amb una
funcionalitat determinada hem aconseguit que 'usuari treballi comodament amb ella.
Una de les millores que li hem afegit al programa és I'opcié de desfer I'dltim canvi
referent a I’ insercié o eliminacié d’'un element de I'escena. Aquesta opcié salvara a
I"'usuari de situacions on inconscientment esborri un element. En una primera instancia
pot semblar una opcid poc important pero les coses canvien quan l'usuari elimina per
error una transicio i no recorda com estava connectada.

També s’ha proporcionat a l'usuari I'opcié de simplificar el seu automat amb la fusio
de transicions. Dos transicions ja siguin simples o compostes es poden fusionar en una
sola transicid composta. Aixdo comporta I’ unificacid de les dos transicions en una sola
caixa i posar en comu els seus estats. D’aquesta manera transicions que representaven
diferents especificitats d’'una mateixa paraula i que per tant tenien les mateixes
connexions duplicades per suplir cada cas és fusionen en una sola transicio eliminant
tots els estats redundants. Perqué [I'aplicaci6 fos més complerta també se li
proporciona a l'usuari 'opcié de descompondre transicions complexes en simples i
permetre transicions compostes heterogenies.

Les transicions compostes homogenies tenen la mateixa forma canonica i la mateixa
sortida del transductor. Hem deixat a judici de l"'usuari I'opcidé de fusionar transicions
amb diferent corma canodnica (transicions compostes heterogenies) per si es troba en
una situacions que li seria util d’utilitzar.

-97 -

CAPITOL 4. CONCLUSIONS

L'eina es totalment personalitzable fins al extrem que l'usuari disposa de l'opcid
d’escollir el color de cada element de I'escena. Cada usuari treballara amb els colors
gue més comode es senti i els podra anar canviant per diferents automats.

Per ualtim s’ha volgut proporcionar a l'usuari seguretat. S’ha implementat com a
mesura de seguretat la confirmacio del tancament d’'una pestanya o de tota I'aplicacié.
Quan un usuari tanca una pestanya per assegurar-nos que no ha estat un accident i
evitar la péerdua de treball que suposaria, se li mostra una finestra emergent on pot
escollir entre guardar els canvis, continuar amb el tancament o cancel-lar I'operacio.
Pel cas que es tanqui tota I'aplicacié a I'usuari se li demanara la confirmacié de tots els
documents oberts.

4.3 Generacio d’automats:

S’ha donat molta importancia a I'edicio dels automats perqué l'usuari es sentis
comode amb I'aplicacié pero també s’ha aconseguit un programa potent. Capac¢ de
tenir oberts més d’un automat alhora i tenir-los organitzats per pestanyes.

Es essencial que el treball realitzat per I'usuari pugui ser guardat per reprendre’l en un
altre moment o que pugui obrir automats creats per altres usuaris. S’ha treballat com a
base amb el FA per emmagatzemar |’ informacié essencial de I'automat i per
recuperar-la. Aquest format no guarda la posicié dels diferents elements per tant per
cada document se |i ha creat un document de posicions (PT) encarregat
d’emmagatzemar la posicio de les diferents transicions.

Els usuaris que utilitzen aquesta aplicacié poden estar acostumats a treballar amb ER
per tant I"'usuari té I'opcid d’importar automats a partir d’ER o exportar-los en aquest
format.

Per complementar les diferents opcions d’emmagatzemament de I’ informacid I'usuari
pot guardar tot I'automat com una imatge en un dels segiients formats: "bmp",

pr.]gll.

mnins nn

"gif","jpg","jpeg",

-98 -

CAPITOL 4. CONCLUSIONS

4.4 Multiplataforma:

Un objectiu era crear una eina plataforma perqué un major public pogués utilitzar-la.

L'aplicacio ha estat implementada amb Java perqué pugui ser executada sobre
gualsevol plataforma que tingui instal-lat Java Platform SE 6 o superior (ha
d’incorporar la llibreria Swing).

Java platform SE 6 es pot descarregar i instal-lar gratuitament des de la pagina web de
Java (http://java.sun.com/javase/downloads/index.jsp). En cas que el SO que utilitza
I"'usuari no estigui disponible en aquesta web com és el cas de Mac OS s’ha de buscar la
versid equivalent a Java SE 6 en aquest cas Mac OS X 10.4.7 release 4 i descarregar-la
des de la web del fabricant:
http://www.apple.com/downloads/macosx/apple/application_updates/javaformacosx
105update4d.html

S’han donat problemes per instal-lar aquesta actualitzacid per tant es recomana
instal-lar SnowlLeopard a partir de la versio 10.6.

Com que el programa ha estat implementat amb Java ha estat senzill crear una
interficie i convertir-lo en Applet de Java per poder ser afegit en qualsevol document
web.

4.5 Analisis de resultats:

A continuacié és mostraran una série d’automats resultants de carregar diferents
fitxers i els fitxers resultants de guardar altres automats.

4.5.1 Importacio i exportacio d’ Expressions Regulars:

ER1: (<paraulal>+<paraula2>)(<paraula3>+<paraula4>)

paraulal paraulal O

paraulaz paraulad

-99.

ER2: <t1>((<t2>+<t3>)*+(<t4>[S]+<E>))<t5>

11

ER3: (<t1>((<t2>*+<t3>)+<t4>[s1])+<t5>)<t6>

t1

t2

15

ER4: <t1>(<t2><t3>+<t4>)*<t5>*(<t6><t7>+<E>)

t3

t2

t3

4

t4

51

1]

CAPITOL 4. CONCLUSIONS

5 m]

-100 -

CAPITOL 4. CONCLUSIONS

ER 5: <t1><t2>(<t3><t4>*<t5>+<t6>(<t7>+<t8><t9>))*(<t10>+<E>)

S’ha comprovat que un cop carregat cada arxiu si s’exporta com ER concorden amb
I'ER original. A excepcid del cas de ER3 on I'ER exportada és la seva versid
simplificada: (<t1>(<t2>*+<t3>+<t4>[s1])+<t5>)<t6>.

4.5.2 Obrir i guardar documents en FA:

Automat 1:

44
%<VPRED\3>%<ADV>%<PALABRA\4>%<PALABRA\5>%
:02-1

t122334-1

t34-1

t-1

f

-101 -

YPRED\3

Automat 2:

16 10

ADY

CAPITOL 4. CONCLUSIONS

PALABRAL

PALABRALS

%<haber.V96:IFUTU:VAR-1\1>%<estar.V77:PP:ms\4>%<ADV\5>%<VAR-

3.V:GER\7>[VAR-3,4-2

,1-3& COMP_CONT,VAR-1,VAR-
2|28{T}|3&{T}|5&{1.1}| 6&{1.2}]%<PALABRA\6>%<haber.V96:

IPRES:VAR-1\1>%<haber.V96:ICOND:VAR-1:VAR-2\1>%<haber.V96:SPRES:VAR-1:VAR-

2\1>%<

haber.V96:SPIMA:VAR-1:VAR-2\1>%<haber.V96:SPIMB:VAR-1:VAR-

2\1>%<haber.V96:IPIND:

VAR-1\1>%<haber.V96:IPIMP:VAR-1:VAR-

2\1>%<haber.V96:INF\1>%<haber.V96:GER\1>%<CL

\2>%<CLI\3>%

:025262728292102112123133-1

:14-1
:14145-1
:2631047-1
:18159-1
:310-1
:31047-1
:2631047-1
:18-1

t-1

-102 -

CAPITOL 4. CONCLUSIONS

/

.I LN "ﬁll
|'II

e

.__\

fl,-"ll \\ /j/

\! %W\q IVGERT |w\q 142138 COMP_CONT VAR 1.VAR- 2128{T)/38{T)158{1.1), a&uzD.— - @
\

S
\ (e
\l
f r
s '.a
]/ :

1\\ |/
1 ,-"
1 f

| Kl D 7 e P)

\ I \‘\
|II /, . "

Igual que en el cas anterior s’ha comprovat que els autdomats es guardin i es carreguin
en la mateixa posicio.

Abans de guardar 'automat 2 es va reorganitzar les transicions per aconseguir una
aparenca més esteética.

o (]
M
;

\ [
|] vonemoaa i [
| |

/
[t vonsmiprin unm 2a

|
= &P

A diferencia de quan guardavem les ER en aquest cas el programa recalcula els estats
absoluts i és tipic que la definicid d’estats no coincideixi amb I’arxiu original.

L'automat 2 guardat a fitxer queda de la seglient manera:

16 10

%<haber.V96:IFUTU:VAR-1\1>%<estar.V77:PP:ms\4>%<ADV\5>%<VAR-
3.V:GER\7>[VAR-3,4-2,1-3& COMP_CONT,VAR-1,VAR-

-103 -

CAPITOL 4. CONCLUSIONS

2|2&{T}|3&{T}|5&{1.1}| 6&{1.2}]%<PALABRA\6>%<haber.V96:IPRES:VAR-
1\1>%<haber.V96:ICOND:VAR-1:VAR-2\1>%<haber.V96:SPRES:VAR-1:VAR-
2\1>%<haber.V96:SPIMA:VAR-1:VAR-2\1>%<haber.V96:SPIMB:VAR-1:VAR-
2\1>%<haber.V96:IPIND:VAR-1\1>%<haber.V96:IPIMP:VAR-1:VAR-
2\1>%<haber.V96:INF\1>%<haber.V96:GER\1>%<CLI\2>%<CLI\3>%

:025262728292102112127137-1
:13-1
:243546-1
:35-1

t-1
:3546-1
:13148-1
:191510-1
:243546-1
:19-1

f

El seu fitxer de posicions té el seglient contingut:

16
017080
1527 140
2773140
3 855 307
4 548 340
5153139
6 139 196
7152 249
8139313
9136 367
10 166 423
11 139 468
12 141 565
13 109 623
14 474 600
15557 533
7594
1484 307

S’ha comprovat que es carregui I'automat i que les transicions estiguin en la mateixa
posicid que se’ls havia assignat al guardar I'automat.

-104 -

CAPITOL 4. CONCLUSIONS

4.5.3 Creant un automat des de zero:

S’ha creat el segiient automat

Si exportem com ER obtenim:

<el.DET>(<N><ADV>(<N><ADV>)*+<NPROP>)

S’ha guardat en FA:

47

%<el.DET >%<N>%<ADV>%<NPROP>%
:02-1

:1337-1

:24-1

:15-26-1

:26-1

t-1
t-1
f

Observem que l'autdomat que ha guardat és la seva versid simplificada. Carregant
aquest document tenim el seglient automat:

el.DET N ADV O

.MFROP

- 105 -

CAPITOL 4. CONCLUSIONS

Aquesta és una petita part d’un extens conjunt de proves que s’ha realitzat per
controlar tots els casos possibles a I’hora de guardar i carregar els automats.

- 106 -

CAPITOL 4. CONCLUSIONS

4.6 Possibles millores:

Durant el transcurs del projecte s’han anat incorporant noves idees per millorar el
programa pero que al final no s’ha disposat de temps suficient per portar-les a terme.
Les ampliacions que es volien realitzar eren les seglients:

e Fer una seleccio de varis estats i transicions per poder-los copiar i enganxar.

¢ Moure els elements per teclat i eliminar transicions amb el botd suprimir un cop
seleccionades.

e Traduir I'aplicacié a varis idiomes.

e Afegir un camp de recerca que seleccioni transicions que contenen una determinada
informacié lexica.

e Llegir varis automats d’'un mateix fitxer

e Executar I'automat com a test. Permetre que |'usuari introdueixi un text d’entrada i
observar el recorregut pels diferents estats de I'automat.

-107 -

CAPITOL 4. CONCLUSIONS

-108 -

Annex

- 108 -

- 108 -

Annex
Manual d’usuari

S’ha afegit a I’aplicacié un manual d’usuari perqué tots els usuaris puguin consultar-lo

per aprofitar totes les opcions de I'eina.

Elements de I'aplicacio:

En la part central de I'aplicacio es troba la
zona de disseny on es representen els
automats. Per expandir I'area l'usuari ha de
moure una transicié fora dels seus limits
lateral dret o inferior.

La barra de menu esta situada a la part
superior de I'aplicacié i la barra d’eines esta
col-locada verticalment a I'esquerra tot i que
es pot canviar de posicié arrossegant-la.

Sota la barra de menu es troben diferents

IS =

| £ Creador de gramaticas electrénicas- =NECN X
Inicio Edicidn Ayuda
(Archivo 1 X r Archivo 2 X [Archivo 3 X
1T
My
S
il
u
Selecciona transicidn o estado para borrarlo

%

pestanyes per cadascun dels diferents documents oberts.

A la part inferior van apareixent notificacions per guiar a l'usuari en les diferents

tasques que porta a terme.

[TI+| 1 Barra d’eines:

Les eines que treballen amb estats o transicions per seleccionar-los

—— s’ha de fer clic amb el boté esquerra del ratoli.

J 3 1. Afegir transicié: Selecciona la posicié de la zona de disseny on

afegir la transicié. A continuacid s’obrira una finestra

4 emergent per especificar d’informacio lexica de la transicio.

2. Afegir un estat: Seleccionar la transicié origen. Sense deixar de

5 prémer el ratoli situar el cursor sobre la transicié desti.

Alliberar el ratoli en aquella posicid per afegir 'estat.

elements de I'escena. Un cop seleccionats s’arrosseguen fins la

-

U

i

% s 3. Aquesta opcid permet canviar de posicio els diferents
nim

seva nova localitzacié. Per canviar la curvatura d’un estat s’ha d’arrossegar el
seu rectangle de menu (el rectangle que es troba en la seva posicio central).

4. i 5. Realitzen un zoom sobre I'escena. item 4 per aproximar-se i item 5 per
allunyant-se.

6. Eliminar element: Seleccionar un estat o transicio per eliminar-lo.

7. Fusionar transicions: Seleccionar dos transicions compatibles per convertir-les
en una Unica transicié. Util per simplificar 'autdmat. Dos transicions sén
compatibles si tenen la mateixa forma canonica i la mateixa sortida de

transductor.

Inicio | Edicion Ayuda

Barra de menu Nuevo Ctrl-N
B Abrir Ctrl-O
i Guardar en formato automata Ctl-C

Opcions del menu “Inicio”: Importar desde ER

¢ Nuevo: Crear un nou Exportar ¥ Exportar como ER

document en blanc. Salir Exportar como imagen

Abrir: Carrega I'automat d’un fitxer en Format Automat (.aut).
Guardar en formato autémata: Guarda I'automat de I'escena sobre la que s’esta
treballant en un fitxer en FA.
Importar desde ER: Carrega en un nou document l'autdmat que representa
I’expressid regular del document seleccionat. Els documents que s’importen han de
tenir extensid “.txt” o “.er”. En aquell document només pot haver una ER
correctament escrita. En altre cas es carregara erroniament.
Exportar:

0 Exportar com ER: Guarda I'ER que representa I'automat de I'escena.

0 Exportar como imagen: Guarda I'escena com una imatge. Es pot escollir

- We e

entre els segiients formats: "bmp", "gif","jpg","jpeg" i"png".
Sortir: Sortir de I'aplicacid.

ANNEX. MANUAL D’USUARI

Opcions del ment “Edicién”: Edicion | Ayuda

e Deshacer: Desfa l'Ultim canvi si esta | Deshacer Ctrl-Z

relacionat amb I insercié o eliminaci¢ | Fermato Ctrl-F

Transiciones heterogeneas: Desactivado

d’un estat o transicio.

e Formato: Mostra un menu emergent on es poden canviar els colors dels diferents
elements de I'escena.

* Transiciones heterogeneas: Per defecte dos transicions es poden fusionar només si
tenen la mateixa sortida de transductor i el camp forma canonica de les seves
informacions lexiques es correspon. Si s’activa aquesta opcid es permet que dos
transicions amb forma canonica diferent es puguin fusionar.

Ayuda

Opcions del menu “Ayuda”:
Aquest menu és Unicament informatiu.

Manual del usuario
Acerca de nosotros

L’opcié manual d’usuari mostra en una finestra emergent aquest manual d’usuari.

Creacio de transicions:

il .
Introduzca los datos ﬁ

Tipo transicidn: ® Estandard O Inicial O Final ' Conector

Forma candnica: |jugar

Categoria léxica: | VPRED -
Opciones Informacion morfologica: | 1S -
Anadir Informacion Borrar Ap

Salida transductor: S‘-d

Aceptar Cancelar

Aquesta finestra apareix a continuacio d’haver seleccionat la posicié de I'escena on
afegir la transicié. En la part superior es selecciona el tipus de transicié. En cas de ser
una transicié estandard es mostren les opcions necessaries per completar |’ informacid
lexica de la transicid.

-111 -

Menus individuals dels elements:

Per accedir als menus individuals de les transicions i dels estats s’ha de fer clic amb el

botd dret del ratoli sobre seu.

Menu de les transicions:

e Separar Substransiciones: En cas de
seleccionar una transici6 composta
s’observa aquesta opcid6 que permet
descompondre-la en transicions simples.

e Propiedades Transicion: Podem canviar

jugarvPRED:1p

=4

jugar¥FRED

Propiedades Transicion
Separar Subtransiciones

I” informacid léxica de la transicié. En cas d’una transicié composta es preguntara

sobre quin subelement es vol actualitzar I’ informacié. En cas que |'opcid

“Transicions heterogeneas” estigui desactivat si es modifica el camp forma

canonica de la transicié es modifica per tots els elements de la transicido composta.

'.

Medificar Transicidn

Selecciona Subtransicion: | Subtransicion 1

Aceptar H Cancelar ‘

L = 3 E 3

estat 2

Deshabilitar mantener curvatura
Menu dels estats: Cambiar etiqueta

¢ Habilitar mantener curvatura:

Quan es mouen les transicions la posicio dels estats que depenen d’ells

s’actualitzen formant una linea recta entre la transicio origen i desti. En cas de tenir

habilitada aquesta opcié al moure les transicions es conserva la curvatura de

I’estat. Per tant en cas de tenir estats que volem que tinguin forma de parabola,

evitem haver de canviar la curvatura dels estats cada vegada que movem una de

les transicio dels seus extrems.

e Cambiar etiqueta: Canvia el valor de I'etiqueta de I'estat. Per defecte esta buit.

Bibliografia

Charles J. Fillmore, “Frame semantics and the nature of language”. In Annals of the
New York Academy of Sciences: Conference on the Origin and Development of
Language and Speech, Volume 280: 20-32, 1976

Charles J. Fillmore, “The need for a frame semantics in linguistics”. In Karlgren, Hans
(Ed.): Statistical Methods in Linguistics 12: 5-29, 1977.

Charles J. Fillmore and B. T. S. Atkins (), “Towards a frame-based lexicon: The
semantics of RISK and its neighbors”. In Lehrer, A and E. Kittay (Eds.) Frames, Fields,
and Contrast: New Essays in Semantics and Lexical Organization. Hillsdale: Lawrence
Erlbaum Associates, 75-102, 1992.

J. E. Hopcroft, J. D. Ullman, “Introduction to Automata Theory, Languages and
Computation”, Addison-Wesley, Reading, Mass., 1979.

M. Mohri, “Finite-state transducers in language and speech processing”,
Computational Linguistics, vol. 23(2) , pag. 269-311, 1997.

M. Ortega, “Teoria de Autdmatas aplicada a la Lingiistica Informatica”. Facultat de
Ciéncies. Seccio d'Enginyeria Informatica, Universitat Autonoma de Barcelona, 1997.

M. Silberztein, “Finite State Language Processing with INTEX”, en Pre-Conference
Tutorial. COLING-ACL-98, Université de Montreal. Montréal, Québec, Canada.
http://www.ladl.jussieu.fr/INTEX/Tutorial.htm, 1998.

Noelia Méndez i José Luis Garcia, “Programacién con Swing”, Departamento de
Informatica i Autonomia, Universidad de Salamanca, 2005.

W. Brauer, “On Minimizing Finite Automata”, Bulletin of the European Association for
Theoretical Computer Science, EATCS, vol. 32, pag. 113-116, 1988.

Webgrafia:

http://java.sun.com/docs/books/tutorial/uiswing/

http://www.programacion.com/articulo/graficos con java 2d 111/10

http://www.javahispano.org/

Firmat: J. Oriol Aguadé Estivill
Bellaterra, 21 de Juny de 2010

Resum
Aquest projecte tracta la implementacié d’una eina grafica multiplataforma de creacié i

edicié de gramatiques electroniques per representar el Llenguatge Natural. Es una eina
per linglistes i projectes com Spanish FrameNet Project amb la quan poden
representar facilment transductors en un format més visual, les transicions es
representen en forma de “caixes”, i guardar els resultats. S’"han implementat varies
opcions per crear una eina comode i personalitzable per I'usuari amb funcionalitats
enfocades a les seves necessitats com importar/exportar automats des d’una Expressio
Regular. Es tracta I’ implementacié de tots els components que s’han necessitat per
crear la GUI aixi com la seva funcionalitat.

Resumen

Este proyecto trata la implementacion de una herramienta grafica multiplataforma de
creacion y edicidn de gramaticas electrdnicas para representar el Lenguaje Natural. Es
una herramienta para linglistas y proyectos como Spanish FrameNet Project con la
cual puedan representar facilmente transductores en un formato visual, las
transiciones se representan en forma de “cajas”, y guardar el resultado. Se han
implementado varias opciones para crear una herramienta comoda y personalizable
para el wusuario con funcionalidades destinadas a sus necesidades como
importar/exportar autdématas desde una Expresién Regular. Se trata de la
implementacion de todos los componentes que han sido necesarios para la GUI asi
como su funcionalidad.

Abstract

This project is implementing a multi-platform graphical tool for creating and
editing electronic grammars to represent the natural language. Linguists and
projects such as Spanish FrameNet Project could use this tool to easily
represent transducers in a visual format, where transitions are represented with
a “box” shape, and save the results. Several options have been implemented to
create a comfortable and customizable tool for the user with functionality for his
needs as import/export from a Regular Expression. This is the implementation
of all components that have been necessary for the GUI and functionally.

