

2022: EINA GRÀFICA PER LA CREACIÓ D’AUTÒMATS PER A LA

REPRESENTACIÓ DEL LLENGUATGE NATURAL

Memòria del Projecte Fi de Carrera

d'Enginyeria en Informàtica

realitzat per

J. Oriol Aguadé Estivill

i dirigit per

Marc Ortega Gil

Bellaterra, 21 de Juny de 2010

Agraïments
Volia agrair a Marc Ortega les ganes i l’esforç que ha utilitzat en ajudar-me a portar a

terme el desenvolupament d’aquest projecte. Ha estat un excel·lent tutor i m’ha

permès aprendre molt d’ ell.

Índex

Capítol 1 . Introducció ... Pàg. 1
1.1 Objectius ... Pàg. 1
1.2 Organització de la memòria .. Pàg. 2

Capítol 2. Descripció del projecte .. Pàg. 3
2.1 Fonaments teòrics ... Pàg. 3
 2.1.2 SFN ... Pàg. 4
 2.1.3 Estat de l’art ... Pàg. 4
 2.1.4 Representació dels autòmats en format de “caixes” Pàg. 5
 2.1.5 Sintaxi pròpia del SFN .. Pàg. 6
2.2 Disseny .. Pàg. 7
 2.2.1 Què és el JFC i Swing? .. Pàg. 8
2.3 Planificació .. Pàg. 8

Capítol 3 .. Pàg. 11
3. 1 Representació de l’escenari de disseny ... Pàg. 12

3.1.1 Extensió de la classe JComponent ... Pàg. 11
3.1.2 Pintar l’escena ... Pàg. 12
3.1.3 Efecte Flickering .. Pàg. 13
3.1.4 Que es pinta? .. Pàg. 16
3.1.5 Control d’events .. Pàg. 16
3.1.6 Buscar elements per l’escena .. Pàg. 17
3.1.7 Moure elements per l’escena .. Pàg. 17
3.1.8 Reset .. Pàg. 18
3.1.9 Solució a la limitació de la mida de l’escena Pàg. 18

3.1.9.1 Barra de desplaçament .. Pàg. 19
3.1.9.2 Zoom .. Pàg. 20

3.2 Transicions .. Pàg. 21
3.2.1 Què conté la classe Caixa.java? .. Pàg. 21
3.2.2 Tipus transicions ... Pàg. 21
3.2.3 Gestió de les transicions ... Pàg. 22
3.2.4 Construir les Transicions ... Pàg. 22
3.2.5 Anàlisis de les accions que es duen a terme amb les transicions Pàg. 24

3.3 Estats .. Pàg. 26
3.3.1 Què conté la classe Aresta.java? .. Pàg. 26
3.3.2 Gestió de les transicions ... Pàg. 27
3.3.3 Construir els Estats ... Pàg. 27
3.3.4 Restriccions .. Pàg. 28
3.3.5 Anàlisis de les accions que es duen a terme amb els estats Pàg. 28

3.4 Classe Main .. Pàg. 31
3.4.1 Mètode estàtic main .. Pàg. 31
3.4.2 Constructor de la classe Main .. Pàg. 31
3.4.3 BorderLayout .. Pàg. 31
3.4.4 Menús i la seva gestió .. Pàg. 32
3.4.5 Pestanyes .. Pàg. 33

3.4.6 Tancament de l’aplicació .. Pàg. 36
3.4.7 Diagrama de classes .. Pàg. 37

3.5 Barra d’eines ... Pàg. 38
3.5.1 Control de les accions ... Pàg. 39

3.6 Barra menú ... Pàg. 42
3.7 Menú emergent .. Pàg. 44

3.7.1 Crear el menú emergent ... Pàg. 44
3.7.2 Menú per les transicions ... Pàg. 46
3.7.3 Menú pels estats ... Pàg. 46

3.8 Creador de Transicions .. Pàg. 47
3.8.1 Crear una nova transició ... Pàg. 47
3.8.2 Construint el panell d’informació ... Pàg. 48
3.8.3 Creant la finestra emergent .. Pàg. 50
3.8.4 Actualitzar la transició ... Pàg. 51

3.9 Llegir fitxer en Format Autòmat .. Pàg. 53
3.9.2 Crear escena a partir fitxer en FA ... Pàg. 54
3.9.3 Classe AutomatsPerFitxer ... Pàg. 54
3.9.4 Llegir capçalera ... Pàg. 55
3.9.5 Llegir tokens .. Pàg. 55
3.9.6 Llegir els estats .. Pàg. 56
3.9.7 Casos especials .. Pàg. 59

3.10 Guardar fitxer en Format Autòmat (FA) .. Pàg. 61
3.10.1 Requisits .. Pàg. 62
3.10.2 Implementació del procés de guardat del fitxer FA Pàg. 62

3.10.2.1 Recopilació dels tokens ... Pàg. 62
3.10.2.2 Definició d’estats ... Pàg. 62

3.10.3 Procés de guardat del fitxer de posicions (PT) Pàg. 67
3.11 Llegir autòmat per ER .. Pàg. 68

3.11.1 Implementació .. Pàg. 69
3.11.1.1Traducció ... Pàg. 69
3.11.1.2 Construcció ... Pàg. 70

3.12 Guardar autòmats com ER ... Pàg. 76
3.12.1 Requisits per poder guardar l’autòmat Pàg. 76
3.12.2 Implementació .. Pàg. 76
3.12.3 Fase de creació de l’expressió regular Pàg. 76
3.12.4 Simplificació .. Pàg. 78
3.12.5 Substitució .. Pàg. 79

3.12.5.1 Creació de bucles ... Pàg. 79
3.12.5.2 Tractament de connectors .. Pàg. 79

3.12.6 Eliminació d’elements Redundants ... Pàg. 80
3.12.7 Descodificació ... Pàg. 81

3.13 Opcions complementaries ... Pàg. 82
3.13.1 Desfer l’últim canvi realitzat. .. Pàg. 82
3.13.2 Transicions compostes .. Pàg. 83

3.13.2.1 Crear transicions compostes Pàg. 84
3.13.2.2 Tractament dels estats al fusionar dos transicions

simples en una transició composta Pàg. 85
3.13.2.3 Separar transicions composta Pàg. 86
3.13.2.4 Modificacions en la finestra de Propietats de

la transició .. Pàg. 87
3.13.2.5 Permetre transicions heterogènies Pàg. 88

3.13.3 Guardar autòmat com imatge .. Pàg. 88

3.13.4 Escollir colors dels elements de l’escena Pàg. 89
3.13.5 Afegir etiquetes als estats ... Pàg. 91
3.13.6 Manual d’usuari .. Pàg. 92
3.13.7 Conversió a Applet ... Pàg. 92

Capítol 4 ... Pàg. 95
4.1 Destí de l’aplicació ... Pàg. 95
4.2 Edició d’autòmats .. Pàg. 96
4.3 Generació d’autòmats ... Pàg. 98
4.4 Multiplataforma .. Pàg. 99
4.5 Anàlisis de resultats ... Pàg. 99

4.5.1 Importació i exportació d’ Expressions Regulars Pàg. 99
4.5.2 Obrir i guardar documents en FA ... Pàg. 101
4.5.3 Creant un autòmat des de zero .. Pàg. 104

4.6 Possibles millores ... Pàg. 106

Annex Manual d’usuari .. Pàg. 107

Bibliografia .. Pàg. 113

- 1 -

Capítol 1

Introducció

Aquest PFC es centra en la generació d’una eina gràfica multiplataforma de creació i

edició de gramàtiques electròniques per representar el Llenguatge Natural com un

transductor.

Per computar el significat del LN primer s’ha de representar per poder-lo analitzar. Una

representació àmpliament estesa és convertir la seva estructura en un autòmat per a

continuació ser processat amb programes d’anàlisis d’autòmats. El projecte tracta l’

implementació d’una eina per la tasca de representació d’aquests autòmats.

1.1 Objectius

Com s’ha introduït s’ha d’implementar un eina capaç de representar i crear la definició

d’ autòmats que representen el LN també coneguts com gramàtiques electròniques.

L’eina a desenvolupar ha de ser una interfície gràfica multiplataforma capaç de crear i

modificar transductors. S’han de poder representar autòmats finits afegint, canviant

de posició i esborrant estats i transicions. Els estats i transicions utilitzaran l’estructura

determinada per la sintaxi pròpia del Spanish FraneNEt Project.

L’eina ha de ser capaç de guardar i obrir els autòmats creats per l’usuari. El format a

utilitzar per guardar serà el Format Autòmat. Per aconseguir una eina més polivalent

es permetrà l’ importació i exportació d’autòmats a partir d’Expressions Regulars.

L’ eina va dirigida a un públic amb coneixements bàsics d’informàtica per tant és una

prioritat crear una interfície còmode i intuïtiva per l’usuari. S’organitzarà el contingut

amb una estructura senzilla perquè l’usuari no tingui cap problema alhora de treballar

amb ella. Tot i així s’inclourà un manual d’usuari perquè l’usuari tregui tot el

rendiment possible al programa. Aquesta eina va destinada a lingüistes per tant

s’utilitzarà la representació en el format de “caixes” per representar els autòmats

d’una forma més visual que l’estàndard. Un cop finalitzat el projecte l’eina serà

utilitzada en el marc del projecte de recerca Spanish FrameNet Project.

L’objectiu principal de l’eina és la creació i edició d’autòmats però també és premia l’

implementació d’opcions variades que proporcionin a l’eina funcionalitats útils per

l’usuari.

1.2 Organització de la memòria

La memòria està organitzada de tal manera que el pròxim capítol tracta els temes

referents a la descripció del projecte. Aquest apartat està dividit en fonaments teòrics,

disseny i planificació.

El següent capítol fa referència a l’ implementació de l’eina. El tractament de l’

implementació inicialment es centra en la representació de l’escena i els elements que

s’hi representen. L’escena és el marc de treball de la nostra eina un cop coneguda es

passa a explicar les aplicacions que la complementen i que proporcionen les eines

necessàries per treballar. Aquest anàlisis s’ enfoca des del marc més general del

programa a cada component específic que engloba l’aplicació.

L’últim capítol són les conclusions del projecte on s’analitzarà el treball realitzat, la

funcionalitat del programa final i les seves aplicacions, el destí de l’aplicació i les

possibles millores.

- 3 -

Capítol 2

Descripció del projecte

2.1 Fonaments teòrics

Per entendre l’objectiu del projecte s’ha de saber que una gramàtica electrònica és un

transductor (un autòmat finit que quan reconeix una cadena d’entrada determinada

pot retornar una sortida). Les gramàtiques electròniques permet el reconeixement

d’estructures sintàctiques i marcar-les o manipular-les una vegada reconegudes

mitjançant la funció de sortida del transductor.

Partint que una frase en Llenguatge Natural (LN) té una estructura determinada i les

seves paraules tenen un significat el qual només és complet quan es relaciona amb la

resta de paraules de la frase, fem una distinció entre els elements de la frase que

poden ser fixes o opcionals.

Per exemple, la frase “estar al carrer” té:

• Elements fixes: estar/al/carrer

• Elements opcionals: elements interns com adverbis. Estar sempre al carrer

L’avantatge de tractar el Llenguatge Natural és que podem representar la frase com

una Expressió Regular i, per tant, també com un autòmat finit.

Com s’ha introduït abans, per reconèixer o representar aquestes estructures s’utilitzen

els transductors. Mitjançant una combinació d’estats i transicions és possible

representar els elements fixes i opcionals de la frase que s’està tractant a més de

poder associar una sortida de manera que si una cadena d’entrada arriba a estat final,

rebrem la sortida que havíem associat al recorregut dels estats pels que ha passat.

2.1.2 SFN

Aquest projecte vol crear una aplicació que serà utilitzada en el marc del projecte de

recerca Spanish FrameNet Project (SFN)1.

SFN és un projecte que es desenvolupa a la Universitat Autònoma de Barcelona

cooperant amb l’International Computer Science Institute2 (Berkeley, CA) en

cooperació amb el FrameNet Project3.

Aquest projecte té com a finalitat la creació d’una base d’informació lèxica on-line

basada en la teoria de marcs conceptuals (frame semantics) de Fillmore (Fillmore

1976, 1977, 1992).

La idea bàsica dels marcs conceptuals és que no es pot entendre el significat d’una sola

paraula sense tenir accés a tot el coneixement essencial que es relaciona amb aquesta

paraula. Per exemple, no es pot entendre la paraula “vendre” sense conèixer el

context que inclou la situació que es dóna ,entre altres aspectes, amb el venedor, el

comprador, la mercaderia, els diners, la relació entre el venedor i el producte, etc.

Les paraules han de tenir un marc amb un coneixement semàntic associat segons el

concepte a que es refereix. La definició de marc conceptual consisteix en que una

estructura coherent de conceptes relacionats de tal manera que, sense coneixement

de tots ells, un no pot entendre el significat complet d’un concepte en concret.

SFN té un conjunt finit de tags per definir les paraules en la seva base d’informació

lèxica. Coneixent aquests tags els implementarem en la nostra aplicació perquè la

creació de transicions per part dels usuaris sigui lo més ràpida i còmode possible

oferint-los les diferents opcions disponibles.

2.1.3 Estat de l’art

Hi ha publicacions i eines que treballen sobre autòmats aplicats a la representació del

Llenguatge Natural un d’ells per exemple és el de M. Ortega amb “Teoría de

Autómatas aplicada a la Lingüística Informática”. Facultat de Ciències. Secció

d'Enginyeria Informàtica, Universitat Autònoma de Barcelona, 1997.

1 http://gemini.uab.es/SFN
2 http://www.icsi.berkeley.edu/
3 http://framenet.icsi.berkeley.edu/

CAPÍTOL 1. INTRODUCCIÓ

- 5 -

L’eina que crearem tracta de renovar i millorar aquestes eines, per tal proporcionar

una aplicació amb una interfície gràfica a l’ordre del dia que estigui organitzada

adequadament permetent treballar amb ella còmodament.

La nostra aplicació incorpora els diferents tags d’informació lèxica i altres novetats per

tal de proporcionar una eina per lingüistes el més complerta possible.

2.1.4 Representació dels autòmats en format de “caixes”

Els autòmats que la nostra aplicació utilitzen una representació més visual que té unes

característiques determinades. Les transicions són uns elements formats per una caixa

que contenen l’ informació del token que produeix la transició entre estats absoluts.

Els estats absoluts no es veuen representats a simple vista en l’edició però s’han

d’analitzar per guardar i obrir els autòmats. Els estats del nostre autòmat estan

representats per arestes que uneixen les diferents transicions.

A continuació es mostra un exemple d’autòmat representat segons aquest format per

observar exactament quins elements s’han de representar.

1) El triangle horitzontal representa l’estat inicial

2) El quadrat negre que es troba dins del quadrat blanc representa l’estat final

3) Les arestes són els estats

4) Les capses són les transicions.

5) Observem que algunes transicions estan formades per dos rectangles contigus.

En el primer rectangle s’hi especifica l’ informació lèxica que defineix cada

paraula. En el segon rectangle s’hi guarda la sortida del transductor.

2.1.5 Sintaxi pròpia del SFN

Cada paraula inclosa en el corpus del Spanish FrameNet Project està definida per una

sintaxis determinada :

Aquesta es pot simplificar en:

<forma . categoria : informació_morfològica>[sortida]

Com hem mencionat el tags de categoria i d’informació morfològica són finits i estan

definits en la pàgina web de SFN (http://gemini.uab.es:9080/SFNsite/taggers-

chunkers)

Fent un anàlisis de requeriments a l’hora de definir les paraules observem que quan

volem definir un token o paraules no és necessari especificar la informació de tots els

seus camps. Per guardar correctament l’autòmat es demanarà a l’usuari al crear una

transició que especifiqui com a mínim la categoria gramatical.

CAPÍTOL 1. INTRODUCCIÓ

- 7 -

2.2 Disseny

El punt fort de l’aplicació és la creació de l’ interfície gràfica multiplataforma i amb

possibilitat de que aquesta sigui web.

Una opció seria fer una aplicació flash ja que és multiplataforma i la l’ implementació

de l’ interfície gràfica seria senzilla de crear.

Una altra opció per crear una aplicació multiplataforma seria implementar-la en Java.

Java ens proporciona dos potents llibreries per GUI’s: Swing i AWT. Un avantatge

d’escollir aquest llenguatge de programació és la gran quantitat de documentació i

exemples disponibles en llibres i Internet que facilitaran la recerca d’informació de

com fer l’ implementació.

L’ API de Java proporciona una gran quantitat de classes que seran molt útils per

facilitar-nos la nostra feina com a programadors.

A l’hora d’implementar la interfície gràfica, es necessiten finestres, quadres de diàleg,

botons, llistes desplegables, menús i altres elements que estem acostumats a trobar

en les aplicacions que utilitzem i que es troben en les llibreries Swing i AWT.

Aquestes dos llibreries contenen totes les classes necessàries pel desenvolupament

d’Interfícies gràfiques per l’usuari. Les interfícies gràfiques implementades amb

aquestes llibreries tenen una aparença i es comporten de forma semblant en totes les

plataformes en les que s’executa.

La seva estructura bàsica gira en torn a “components i contenidors”. Els contenidors

contenen components i son components a la mateixa vegada, de manera que el

tractament amb els diferents elements és bastant semblant.

Els primers components gràfics en Java pel desenvolupament de GUIs es trobaven en

la llibreria Abstract Window Toolkit (AWT). Aquesta llibreria és adequada per a

interfícies senzilles.

Al cap d’un temps ha aparegut la llibreria Swing que és més robusta, versàtil i flexible i

utilitza components de la llibreria AWT per complementar-se. Aquesta última llibreria

és la que utilitzarem per fer l’ implementació de la nostra eina.

2.2.1 Què és el JFC i Swing?

L’abreviatura de JFC correspon a Java Foundation Classes. JFC es un entorn gràfic per

construir interfícies gràfiques per usuaris multi plataforma basades en Java.

JFC es composa d’Abstract Windows Toolkit (AWT), Swing i Java 2D que ens

proporcionen les eines adequades per construir una interfície d’usuari consistent per

programes Java, tant si es executat sobre una plataforma Windows, Mac OS X o Linux.

AWT és l’API va ser la primera API d’interfícies que es va crear, va ser fortament

criticada per ser poc més que un mascara sobre les capacitats gràfiques natives de la

plataforma amfitrió.

En AWT els components amb els quals l’usuari interactua amb d’interfície gràfica o

widgets depenen de les capacitats del widgets de la plataforma nativa.

Més endavant es va crear una API de gràfics alternatius anomenada Internet

Foundation Classes que va ser desenvolupada per Netscape. Sun va barrejar la IFC

amb altres tecnologies sota el nom de “Swing”. Els elements de l’API de Swing

comencen amb “javax.swing”, i afegeixen la capacitat per un look&feel que permet als

programes Swing mantenir la base del codi independent de la plataforma però pot

imitar l’aparença de l’aplicació nativa.

L’API de Swing es presenta en el JDK 1.2 i en la JFC 1.1 i pot ser descarregada

gratuïtament des de la pàgina web de Sun4.

2.3 Planificació

Al principi, tasques simples porten més temps del necessari perquè a part de les

tasques que puguin sorgir en tot moment s’està fent una recerca d’informació sobre

l’API de Java i altres manuals sobre la programació de GUIs en Java.

S’han previst els punts negres del projecte: L’ implementació de l’ interfície gràfica és

preveu que serà lenta degut a l’actual desconeixement i dels possibles problemes que

puguin sortir. Per no malgastar temps s’anirà fent una recerca d’informació que ajudi

en l’ implementació de la següent tasca paral·lelament a l’ implementació de la tasca

en curs.

4 http://java.sun.com/javase/downloads/index.jsp

CAPÍTOL 1. INTRODUCCIÓ

- 9 -

Tasques a implementar:

• Recerca sobre manuals de Java sobre la programació de GUI’s i crear entorn

bàsic

o Durada: una setmana

• Afegir un objecte en forma de rectangle que es pugui moure per la pantalla

arrossegant-lo amb el ratolí

o Durada: una setmana

• Crear les classes Transició (caixa) i estat (aresta) versió inicial

o Durada: un dia

• Afegir a un lateral dos botons que permetin afegir estats i transicions.

o Durada: una setmana

• Implementar opció perquè les línies dels estats puguin ser línies rectes o corbes

o Durada: tres dies

• Als anteriors botons els hi assignem una icona

o Durada: un dia

• Controlar posicions vàlides en el desplaçament dels rectangles

o Durada: dos dies

• Crear els diferents tipus de transicions: estàndard, inicial, final i connector.

o Durada: una setmana

• Creació dels menús bàsics

o Durada: tres dies

• Control bàsic d’events

o Durada: tres dies

• Crear menú amb informació lèxica per crear transicions

o Durada: quatre dies

• Afegir estats entre transicions i eliminar-los.

o Durada: tres dies

• Actualitzar posició d’estats segons moviment de les transicions

o Durada: tres dies

• Crear finestra per modificar informació lèxica transicions.

o Durada: quatre dies

• Implementar l’opció de guardar el transductor en format autòmat

o Durada: una setmana

• Implementar l’opció de llegir un transductor en format autòmat

o Durada: una setmana

• Implementar l’opció de llegir un transductor en format d’ER

o Durada: una setmana

• Implementar l’opció de guardar el transductor en format d’ER.

o Durada: una setmana

• Test i correcció d’errors

o Durada: deu dies.

• Convertir l’aplicació en applet de Java

o Durada: una setmana

• Afegir noves funcionalitats a l’eina

o Durada: Temps restant

- 11 -

Capítol 3

Implementació

3. 1 Representació de l’escenari de disseny

Per començar tractarem el mòdul encarregat de la representació i edició de l’escena.

Aquest mòdul està compost per les classes ZonaDibuix.java, Aresta.java i Caixa.java.

Una interfície gràfica es basa en una finestra que conté varis elements amb els quals

podem interaccionar. Java ens proporciona la classe JFrame, una classe contenidor que

necessita un gestor de Layout que s’encarregui de l’organització dels elements que

conté. Aquest gestor pot canviar la posició dels components de la nostra aplicació però

no permet dibuixar directament sobre ella per tant s’ha d’afegir un component sobre

el qual dibuixar. El component que utilitzarem per aquesta finalitat és de la classe

JComponent, que a continuació veurem que és una classe molt potent i que ens

proporciona molta llibertat per representar els diferents elements.

 ZonaDibuix.java és la classe que s’encarrega de la representació dels elements en

l’escena i de la gestió dels events que es produeixen en ella. Per una banda aquesta

classe és una extensió de la classe JComponent, que ens facilita en gran mesura la

labor de representar per pantalla els estats i transicions d’una forma agradable i

còmode. Per altra banda aquesta classe implementa les interfícies MouseListener i

MouseMotionListener per donar cobertura al control i gestió d’events del ratolí perquè

l’usuari pugui treballar i editar el contingut amb gran comoditat.

3.1.1 Extensió de la classe JComponent:

Com s’acaba d’introduir per poder dibuixar en una interfície gràfica s’ha de crear una

classe que hereta de la classe Canvas (la traducció al castellà és “lienzo”) o JComponent

i entre altres coses s’ha de definir el mètodes paint i update (en el cas de la classe

Canvas). Aquests mètodes reben un objecte de la classe Graphics sobre el qual es

dibuixa l’escena que es vol mostrar i a continuació es mostra per pantalla. Perquè el

nostre programa sigui més potent, aquest objecte és convertit a un objecte

Graphics2D. Aquesta classe és una extensió de la classe Graphics per tant té tots els

mètodes d’aquesta classe i d’altres que ens permeten canviar la forma en que

dibuixem.

CAPÍTOL 3. IMPLEMENTACIÓ

- 12 -

Per entendre la representació dels elements s’ha de conèixer la classe Graphics. La

classe en qüestió és el sistema bàsic de totes les operacions gràfiques, és una classe

abstracta que té l’objectiu de conformar el context gràfic (encapsular l’ informació

necessària que es vol mostrar per pantalla) i proporcionar els mètodes necessàries per

dibuixar per pantalla. Per dibuixar es necessita una context gràfic vàlid que el rebem

com un objecte de la classe Graphics. El problema es que al ser una classe abstracta,

aquesta no es pot instanciar directament i per tant li hem de passar el context gràfic al

programa a través dels mètodes paint() o update() o amb el mètode getGraphics() de

la classe Component.

3.1.2 Pintar l’escena:

Els mètodes paint(Graphics g) i update(Graphics g) són els mètodes que podem

definir en la nostra classe i juntament amb el mètode repaint() són els que

s’encarreguen de pintar l’escena.

El mètode repaint() es crida en codi quan es necessita que un component es repinti,

aquestes sol·licituds s’anomenen App-triggered Painting Operation i és el programador

qui decideix repintar. Si és un component normal (JTable, JButton, JLabel, etc) no és

necessari fer la crida ja que si es produeix algun canvi sobre algun d’aquests

components automàticament ja es repinten. A diferencia dels mètodes paint i update

que no poden ser cridats en codi, si podem cridar el mètode repaint(). Per aquesta

propietat és de vital importància donat que permet repintar l’escena quan el

programador vol mostrar canvis permeten definir el tractament desitjat de l’escena.

De tal manera, quan canviem l’ informació d’un element del Canvas, cridarem aquest

mètode perquè ens cridi al mètode paint i ens la dibuixi amb els canvis actualitzats. El

mètode repaint() únicament avisa a la màquina virtual de Java que aquell component

necessita ser repintat. El mètode en sí mateix no borra ni dibuixa res, és la màquina

virtual que posa la petició a la cua d’events de pantalla juntament amb els events de

teclat i ratolí. Quan la màquina virtual decideix repintar el component , el que fa és

cridar al seu mètode update(Graphics g) . L’ implementació per defecte d’aquest

mètode borra l’escena actual repintant-la amb el color de fons definit (Background) i

crida al mètode paint per pintar de nou l’escena.

El mètode paint(Graphics g) és el responsable de dibuixar les imatges. Normalment és

el sistema operatiu que el crida per dibuixar la pantalla com a resposta a una System-

triggered Painting Operation, una operació on el sistema operatiu decideix que el

component o una part d’ ell ha de ser repintat per algun motiu, els motius més típics

són: el component es fa visible per primer cop, el component és redimensionat o que

CAPÍTOL 3. IMPLEMENTACIÓ

- 13 -

el component ha estat tapat per una altra finestra i ara el component torna a estar a la

vista.

3.1.3 Efecte Flickering:

En un primer moment la classe ZonaDibuix.java va ser implementada com una

extensió de la classe Canvas que és molt utilitzada en diferents manuals i programes

per programar aquest tipus d’entorns. Un cop ja teníem implementat el dibuix d’un

rectangle en l’escena i el podíem moure, ens vam trobar amb l’efecte anomenat

flickering o parpelleig que es dona al esborrar-se i tornar-se a pintar l’escena des de

zero amb massa refresc. Aquest efecte és molt molest donat que al moure un element

de l’escena tota l’escena pampallugueja produint que treballar amb l’aplicació fos

inviable. Una llarga exposició a aquest efecte produiria mal de cap i d’ulls al usuari.

En un primer moment es va resoldre parcialment el problema utilitzant la crida del

mètode repaint(int x, int y, int w, int h) enlloc de repaint() on x, y, w i h defineixen la

zona que volem repintar. L ’únic que vam aconseguir amb aquesta solució va ser que el

pampallugueges només a la zona de la pantalla que repintàvem, encara que si

arrossegàvem un elements al llarg de la pantalla de manera molt ràpida, a vegades la

zona de redibuix era insuficient i quedaven parts del element per la pantalla que no

s'esborraven fins que tornaves a passar un altre element a prop seu.

Aquest problema es va solucionar totalment d’una manera molt més eficient utilitzant

la tècnica del Doble Buffer. Aquesta tècnica requereix per una banda definint el

mètode update(Graphics g) de manera que controlem que no esborri la pantalla, sinó

que directament cridi al mètode paint(Graphics g). Per altra banda s’han d’omplir tots

els píxels del component dibuixant les noves dades sobre les antigues. Per aconseguir

que el mètode paint(Graphics g) implementi la tècnica del Doble Buffer hem d’utilitzar

dos buffers. Un d’ells conté els píxels en pantalla i l’altre és un objecte BufferedImage.

El que es fa és dibuixar sobre un dels buffers (el BufferedImage) evitant dibuixar sobre

la pantalla. Quan ja hem dibuixat tots els elements sobre el BufferedImage,

l’enganxem directament sobre el component. Al no esborrar el component i dibuixar la

imatge a sobre directament eliminem l’efecte flickering.

CAPÍTOL 3. IMPLEMENTACIÓ

- 14 -

Per si queda algun dubte en el següent codi es pot observar la manera correcta de

definir els elements per representar l’escena.

Public class NouCanvas extends Canvas
{

Public void paint (Graphics g) {

BufferedImage imatge = (BufferedImage) createImage(width, height);
(1)

imatge.draw(....); (2)
g.drawImage(imatge,0,0,this); (3)

}

Public void tractamentElements(){

....
//quan ens interessa actualitzar el component

repaint(); (4)
}
Public void update(Graphics g) { paint (g); } (5)

}

1) Creem una imatge de la mateixa mida que l’escena
2) Dibuixem sobre l’ imatge.
3) Enganxem la imatge sobre el component
4) Es crida al mètode repaint() perquè faci un update de l’escena
5) Es crida directament el mètode paint evitant que s’esborri l’escena.

En els JComponents, la tècnica del Doble Buffer la tenim implementada per defecte i

només l’hem d’activar de la següent manera: unJComponent.setDobleBuffered(true);

Aquest va ser un dels motius pels quals la classe ZonaDibuix.java va passar a ser una

extensió de JComponent enlloc de Canvas. Amb aquest canvi no ens hem de preocupar

de definir el mètode update ni d’utilitzar un objecte BufferedImage on dibuixar

l’escena per evitar l’efecte flickering.

L’altre motiu que ens va fer decidir migrar a JComponent va ser perquè la classe

Canvas ve de la llibreria AWT mentre que la classe JComponent pertany a la llibreria

Swing, per tant la classe Canvas com alguns d’altres components del package

java.awt.* són components antics (de Java 1.0) basats en una estructura més simple

(Light Weight) que Swing i no funcionen igual. Aquest fet provocava que es produïssin

glitches i la zona de disseny es mostres per sobre de la barra de menú tapant la

visibilitat dels seus ítems.

CAPÍTOL 3. IMPLEMENTACIÓ

- 15 -

Com que la classe Canvas i JComponent tenen un comportament tant semblant la

migració va ser molt senzilla i només es va tenir que canviar la classe de la que es

deriva. Per millorar el rendiment s’ha esborrat codi innecessari com la redefinició del

mètode update i l’ implementació manual del Doble Buffer.

3.1.4 Que es pinta?

Cada escena disposa d’un objecte de classe Format classe que té com a única finalitat

guardar els colors de tots els elements que es poden dibuixar.

Primer de tot es pinta el fons per netejar l’escena i a continuació es pinten la resta

d’elements segons la profunditat que els volem donar. Els següents elements que

pientem són les transicions que les tenim guardades en una llista (llistaCaixes). Per

cada transició a part de dibuixar la seva figura, se li dibuixa a sobre l’ informació lèxica

que ha de tenir cada un dels seus camps. Per saber on ha d’anar el text s’aprofiten les

coordenades de la transició i una variable de desplaçament pròpia de cada transició

que marca on està el separador en cada cas.

Amb motiu d’ optimitzar els recursos en la mesura del possible es va decidir que enlloc

de que cada estat pintés el seu rectangle que marca l’origen i el destí de les arestes

siguin les transicions qui controlin si tenen algun estat que arriba o surt de la transició

amb un comptador. En cas que els comptador siguin més grans que zero, es pintarà un

rectangle a l’extrem de la transició corresponent.

 Per últim es pinten les arestes. S’ha tingut en compte l’ordre de dibuix dels elements

per resoldre un conflicte de comoditat en casos en que es treballi sobre un autòmat

que té molts estats i transicions que es creuen. Pot ser molt complicat veure l’origen i

destí de les arestes si hi ha transicions que les tapen pel camí. Per aquest motiu s’ha

decidit que els estats tenen més prioritat que les transicions i per tant es dibuixen en

última instancia per resoldre la superposició d’elements. Abans de sortir es pinta una

bora al voltant de l’escena per motius d’estètica.

CAPÍTOL 3. IMPLEMENTACIÓ

- 16 -

3.1.5 Control d’events:

Cada vegada que l’usuari tecleja un caràcter o fa clic en un botó del ratolí, es produeix

un event. Perquè la nostra classe faci un correcte tractament els events,s’ha

d’implementar l' interfície apropiada i ser registrada com un “oient d’event” de la “font

d’event” corresponent.

Cada event està representat per un objecte que ofereix informació sobre l’event i

identifica la font. La font dels events normalment són components, però altres tipus

d’objectes també poden ser fonts d’events. Cada font d’events pot tenir varis oients

registrats i a l’inversa, un únic oient pot registrar-se en varies fonts d’events.

Els components Swing poden generar moltes classes d’event per tant primer de tot

s’ha d’escollir quines events són els que ens interessa detectar i quin tipus d’oient hem

d’implementar:

Per una banda necessitem l’oient MouseListener per tractar els events que sorgeixen

cada vegada que l’usuari fa clic amb el ratolí sobre un component. L’utilitzarem per

seleccionar els element de l’escena.

Per altra banda també necessitem l’oient MouseMotionListener, per tractar els events

que sorgeixen quan l’usuari mou el cursor. L’utilitzarem per moure un element per

pantalla seguint el recorregut del ratolí.

Per utilitzar aquests oients la classe ZonaDibuix.java els ha d’ implementi en la definició
de la classe. A continuació els elements que volem controlar els hem de registrar al
oient. En aquest cas és tota l’àrea de l’escena que volem que sigui escoltada per tant
en el constructor de la classe li assignem els oients utilitzant els mètodes :
addMouseMotionListener (this) i addMouseListener(this).

Per últim hem d’implementar els mètodes de l’ interfície de l’oient:
public void mousePressed(MouseEvent e) i public void mouseReleased(MouseEvent

e) pel MouseListener i public void mouseDragged(MouseEvent e) pel
MouseMotionListener.

D’ara en endavant al parlar de la gestió dels events referents a les transicions i estats

es farà en tres contexts: ratolí premut, ratolí arrossegat i ratolí alliberat i estarem fent

referència al codi implementat en cadascun dels tres mètodes que acabem de

mencionar.

CAPÍTOL 3. IMPLEMENTACIÓ

- 17 -

3.1.6 Buscar elements per l’escena:

Per optimitzar la cerca de transicions i estats d’una manera centralitzada, assegurar-
nos una bona assignació de les variables globals i eliminar codi duplicat s’ha creat un
mètode que es crida cada vegada que es vol comprovar si en unes coordenades es
troba algun component.

Aquest mètode s’anomena buscarComponent(int x, int y) i retorna un booleà que
tindrà valor True en cas que s’hagi trobat un element en aquella posició.

El cos d’aquest mètode és el següent:
Primer s’entra en un bucle que recorre la llista de transicions de final a inici (en cas de
transició superposades la del final de la llista és la superior i té prioritat al ser
seleccionada) fins que trobem una caixa que té les coordenades del MouseEvent. Si
ens trobem amb una caixa que té les coordenades es faran les següents accions:

• Assignem a valor True a element_trobat que és la variable de retorn. Aquesta
assignació ens fa saltar una condició de parada del bucle per no continuar
recorrent la llista.

• Assignem el valor True a la variable global caixa_seleccionat. Aquesta variable
un cop fora del mètode se li comprovarà el seu valor per saber quin tipus
d’element s’ha seleccionat.

• Assignem el valor de la posició de l’element en la llista a la variable global
index_llista.

En cas que s’hagi recorregut la llista de transicions sense resultat, es fa el mateix
procés sobre llista d’estats (llistaArestes) per comprovar si s’ha fet clic sobre el
rectangle de menú de l’estat. En cas de trobar un estat es produeixen les mateixes
accions excepte que el valor de caixa_seleccionat és False.

3.1.7 Moure elements per l’escena:

A continuació parlarem en deteniment del desplaçament dels estats i transicions per la

pantalla però aquest apartat està dedicat al mètode compartit pels dos elements que

realment serà l’encarregat generar el seu moviment. El mètode del que estem parlant

és updatePosicio(MouseEvent e) i es cridat pel gestor d’events del ratolí.

La manera de funcionar d’aquest mètode és la següent: si es té una transició

seleccionada s’actualitzen les seves coordenades sumant-li el desplaçament

determinat per les coordenades del MouseEvent. La variable global “index_llista”

instanciada en el moment de seleccionar la transició, determina quina és la transició a

tractar evitant haver de fer una cerca en cada refresc .

CAPÍTOL 3. IMPLEMENTACIÓ

- 18 -

La nova posició de la transició es validada amb el mètode checkPosicio() que corregeix

les seves coordenades si una transició surti del límit superior o lateral esquerra,

eliminant així el risc de que surti de la zona de disseny i no es pugui recuperar.

A continuació en el cas que hi hagi estats que depenguin de la transició que s’està

desplaçant, aquests actualitzaran el seu inici i/o fi (segons el tipus de relació que

mantinguin amb la transició) , el seu control i menú.

Per altra banda si el que es té seleccionat és un estat, el desplaçament del MouseEvent

és sumat a les coordenades del rectangle de control de l’aresta que és el responsable

de la seva curvatura . Es comprova que sigui una posició vàlida (no surti límits) i

s’actualitza el menú de l’estat perquè estigui sobre la línea.

Abans de sortir del mètode es produeix una crida al mètode repaint() que

s’encarregarà d’ensenyar per pantalla els canvis produïts.

3.1.8 Reset:

S’ha implementat un mètode per fer un reset de l’escena el qual borra tots els estats i
transicions de les seves llistes i retorna la mida de l’àrea de l’escena al seu valor inicial.

3.1.9 Solució a la limitació de la mida de l’escena:

Es van valorar les necessitats de l’usuari final i es va observar que l’escena hauria de
ser de mida dinàmica per tal de permetre representar tant autòmats petits com
autòmats d’una mida considerable amb una gran quantitat d’estats i transicions.

El problema és que la mida de l’escena que és finita, per tant si es vol treballar amb
moltes transicions la mida de les caixes ha de ser petita perquè hi càpiguen totes però
en conseqüència el text que contenen serà il·legible. Per altra banda si la mida de les
caixes és gran l’autòmat no cap per pantalla.

Com que la comoditat de l’usuari final és una prioritat s’han implementat dos
solucions: una barra de desplaçament i un zoom.

CAPÍTOL 3. IMPLEMENTACIÓ

- 19 -

3.1.9.1 Barra de desplaçament:

La classe Escena.java ha estat implementada per crear i inicialitzar les estructures
necessàries per treballar després amb un objecte ZonaDibuix.

Java ens proporciona la classe JScrollPane per afegir una barra de desplaçament a la
nostra GUI.

Un objecte JScrollPane proporciona una vista desplaçable sobre un component lleuger
a través de barres de desplaçament per mostrar un component que no cab a la
pantalla degut a la seva mida. Aquest component s’encarrega de crear les barres de
desplaçament quan són necessàries i repinta l’escena quan l’usuari fa ús de la barres.

La inicialització de la variable contenidor és la següent:

• Creem un objecte JPanel anomenat panellDibuix i el fem visible.

• Creem un objecte ZonaDibuix passant-li com a paràmetre el JPanel anterior per
guardar la referència.

• panellDibuix se li afegeix l’objecte ZonaDibuix.

• Creem l’objecte contenidor JScrollPane i li passem per paràmetre panellDibuix.
També fem les inicialitzacions de mida i flags necessaris.

En la següent imatge es mostra el resultat de l’ inicialització on s’observen les classes
que són contenidores i les que són contingudes. També podem observar que des de
ZonaDibuix tenim una referència al objecte JPanel necessària per cridar els mètodes
que faran possible l’actualització de la barra de desplaçament.

Un cop feta la inicialització la resta d’operacions es produeixen en la classe ZonaDibuix
cada vegada que fem zoom o movem una transició. Quan es mou una transició de lloc
es crida el mètode checkPosicioRectangle() per comprovar que no es una posició
incorrecta(negativa), també comprova si la nova posició està més enllà de l’àrea de

CAPÍTOL 3. IMPLEMENTACIÓ

- 20 -

l’escena actual, si es surt per la part dreta i/ o inferior, augmentem l’àrea perquè
s’inclogui la transició i es criden els mètodes panellDibuix.setPreferredSize(area) i
panellDibuix.revalidate() en aquest ordre. Aquests mètodes s’encarreguen d’avisar al
seu contenidor JScrollPane que comprovi la nova àrea i que en cas que sigui necessari
faci aparèixer o actualitzar la barra de desplaçament.

3.1.9.2 Zoom:

El zoom s’ha implementat per suplir la necessitat de treballar l’escena amb
perspectiva. La barra de desplaçament ens permet tenir en l’escena autòmats de
qualsevol mida. La combinació amb el zoom permet treballar des del punt de vista
més còmode per l’usuari.

Per implementar el zoom s’utilitza una variable global a la classe ZonaDibuix
anomenada factorEscala.
El paint s’ha modificat de tal manera que es dibuixa el fons i a continuació s’escala
l’escena amb 1/factorEscala per representar la resta d’elements.

Així doncs, a partir d’aquest moment cada vegada que es treballi sobre unes
coordenades de l’escena aquestes són multiplicades pel factorEscala. Per exemple per
comprovar si les coordenades on s’ha fet clic al ratolí pertanyen a una transició és faria
la següent comparació:
If(Transicio.contains(x*factorEscala, y*factorEscala)) { OPERACIONS}

Per recrear les accions d’apropar i allunyar el zoom s’han afegit dos botons al a barra
d’eines. Aquests botons criden els mètodes zoomIn() i zoomOut() que multiplicar
factorEscala per una constant, modifiquen l’àrea de l’escena i criden els mètodes
panellDibuix.setPreferredSize(area) i panellDibuix.revalidate() per avisar al JScrollPane
que la mida de l’àrea de dibuix ha variat.

CAPÍTOL 3. IMPLEMENTACIÓ

- 21 -

3.2 Transicions

Per representar les transicions s’ha creat la classe Caixa.java específicament per

guardar tota la informació rellevant de les transicions. Tot el seu tractament es porta a

terme en la classe ZonaDibuix

3.2.1 Què conté la classe Caixa.java?

• Cada transició té associada un identificador de tipus enter. Aquest se li assigna

un valor en el constructor utilitzant el mètode static getNewIdperTransicio() de

la classe estàtica GeneradorDeIDs.java. Aquest mètode ens retorna un valor

d’ID diferent per cada crida.

• Dos cadenes de caràcters on es guardarà la informació lèxica i la sortida del

transductor.

• Un objecte GeneralPath el qual utilitzem per mostrar per pantalla la transició.

S’actualitzaran les seves coordenades per fer un desplaçament de la transició

per la pantalla.

• Un enter que identifica de quin tipus és la transició (1=Normal, 2= Inicial, 3=

final i 4 = connector).

• Tenim dos variables nArestesIniciTransicio i nArestesFiTransicio que són

comptadors de la quantitat d’arestes que tenim al inici i al final de la transició.

Els mètodes d’aquest classe són únicament pel tractament d’aquestes dades per

instanciar o demanar un valor, i per traslladar l’objecte . En el constructor de la classe

s’inicialitzen tots els camps.

3.2.2 Tipus transicions:

Tenim quatre tipus de transicions:

1. La transició inicial és representada amb un triangle. Determina on comença

l’estat inicial de l’autòmat. Només n’hi pot haver una d’aquest tipus.

2. La transició final és representa amb un quadrat dins un quadrat més gran.

Determina els estats finals de l’autòmat.

3. La transició normal és representada per figura resultant de dos rectangles que

contenen informació dins seu i dos triangle als extrems. En el primer dels

rectangles s’hi conté l’ informació lèxica de la transició i en el segon rectangle la

CAPÍTOL 3. IMPLEMENTACIÓ

- 22 -

sortida del transductor. També ens podem trobar amb el cas que no tenim

sortida del transductor i la transició només té un rectangle.

4. La transició connector és representada per un quadrat amb dos segments a les

seves diagonals. Aquest tipus de transició no conté informació lèxica. S’utilitza

per poder simplificar representacions d’autòmat i representar e-transicions.

3.2.3 Gestió de les transicions:

La gestió de les transicions es desenvolupa integrament en la classe ZonaDibuix. En

aquest classe tenim una LinkedList parametritzada a tipus Caixa. En aquesta llista

tindrem totes les transicions que s’estan representant en l’escena. S’ha utilitzat la

classe LinkedList per aprofitar els mètodes de gestió de dades que afegeixen i treuen

dades de la llista d’una manera molt simple i eficient. S’ha parametritzat per eliminar

les operacions de cast del tipus de dades cada vegada que es treballa amb aquesta

llista.

Encara que tinguem quatre tipus diferents de transicions, la classe és la mateixa l’únic

que varia és la forma que s’ha de dibuixar en cada cas. Per la resta el codi s’ha

implementat de tal manera que el tractament de les transicions es fa a partir de la

rectangle que les envolta. Així s’utilitza el mateix codi tant per moure les transicions

com per afegir-li estats o qualsevol altre acció.

3.2.4 Construir les Transicions:

Un dels requisits del projecte és representar els estats i transicions de la manera que

marca l’estàndard abans mencionat. Recordem que aquesta representació consisteix

en una aresta pels estats i per les transicions s’utilitza la representació que s’acaba de

mencionar.

Per representar una transició de tipus normal es podria haver utilitzat dos rectangles i

triangles contigus, però aquesta representació hauria suposat que per realitzar la

CAPÍTOL 3. IMPLEMENTACIÓ

- 23 -

translació s’hagués de fer per cada un dels objectes, igual que al comprovar si s’ha

picat sobre la transició s’hauria de comprovar sobre l’àrea que formen les tres figures.

Per reduir operacions s’ha optat per utilitzar un sol objecte GeneralPath . Aquesta

classe hereta de la classe Shape i ens permet representar figures definint la seqüència

de traços utilitzant els mètodes moveTo(x,y) i lineTo(x,y).

Per representar les transicions primer fem un moveTo(x,y) a la coordenada de la zona

de disseny on volem que estigui la cantonada superior esquerra de la transició. A partir

d’aquí se li dona la forma desitjada com si fos un joc infantil d’unió de punts. S’utilitza

el mètode lineTo(x,y) per recórrer el camí mínim que passa pels punts característics de

la transició.

Per saber els punts característics s’utilitzen dos variables instanciades en el constructor

distanciaSeparador i llargadaCostat. La variable distanciaSeparador és l’amplada que

ocupa el text de l’ informació lèxica que va en el primer rectangle de la transició

marcant-nos on acaba el primer rectangle. La variable llargadaCostat ve definida per la

distanciaSeparador més la llargada de la informació de sortida del transductor.

L’amplada que ocupen els 2 textos marca la referència on acaba el segon rectangle.

Amb l’ informació d’aquestes dos variables i un valor constant per la posició de la

punta ja es suficient per crear la transició.

Per introducció d’informació lèxica dins la figura s’encarrega el mètode paint de

ZonaDibuix amb el mètode drawString(String,x,y). La coordenada y té el mateix valor

per les dos cadenes de text determinat pel valor de centerY() de l’objecte. Per les

coordenades x, utilitzarem el valor de la coordenada X de l’objecte i per dibuixar

segona cadena de text dins el segon rectangle se li suma el desplaçament

corresponent al valor de la variable distanciaSeparador.

Per les transicions de tipus inicial, final i connector també s’utilitza un objecte de la

classe GeneralPath però els hi donarem una forma diferent per cada cas. L’única

diferència important respecte les transicions de tipus normal és que aquests no

contenen informació en el seu interior i s’ha de tenir present en el mètode paint() per

no produir un error.

CAPÍTOL 3. IMPLEMENTACIÓ

- 24 -

3.2.5 Anàlisis de les accions que es duen a terme amb les transicions:

Per explicar el tractament resultant de la gestió d’events que tenen a veure amb les

transicions parlarem en tres contexts introduïts anteriorment: ratolí premut, ratolí

arrossegat, ratolí alliberat.

3.2.5.1 Acció afegir transició:

Ratolí premut:

Aquesta acció només té repercussió en aquest context per tant al arrossega el ratolí i

al alliberar-lo, no es produirà cap altra acció.

S’afegeix la transició en el punt de l’escena on s’ha fet clic. Per donar servei a aquesta

acció es fa una crida al mètode afegirTransicio(MouseEvent e). Aquest mètode era

massa complex i es va crear la classe CreadorTransicions.java perquè s’encarregués

de les operacions de creació i actualització del contingut de les transicions. S’utilitza el

mètode novaTransicio(escena, x,y) d’aquesta classe que s’encarrega de crear i

mostrar per pantalla una finestra emergent que ajuda a l’usuari a especificar els

camps de la transició.

Les coordenades x i y determinen la posició on es col·locarà la transició. Els seus valors

venen determinats per les coordenades del MouseEvent a través dels mètodes

e.getX() i e.getY(). El paràmetre escena és el propi objecte ZonaDibuix per configurar

la finestra emergent i es mostri en tot moment davant de l’escena fins que s’acabi

d’afegir la transició o es cancel·li l’operació.

El valor retorn esperat del mètode novaTransicio(escena,x,y) és un objecte de la classe

caixa inicialitzat segons la configuració escollida per l’usuari. En cas de que es produeixi

algun problema en la creació de la transició perquè l’ informació no és correcta o es

cancel·li l’operació el retorn és NULL.

Per tant si tenim no tenim NULL afegim la Caixa a la llista de transicions i repintem

l’escena perquè es mostri la nova transició.

L’ informació sobre la classe CreadorTransicions.java i els seu contingut se’n tracta

exhaustivament en un futur apartat de la memòria. La raó d’aquest aplaçament és per

organitzar millor el contingut de la memòria i no perdre el fil actual sobre les accions

que es duen a terme amb les transicions.

CAPÍTOL 3. IMPLEMENTACIÓ

- 25 -

Acció eliminar transició:

Ratolí premut:

Si l’opció de esborrar elements està activa i s’ha fet clic sobre una transició, es fa una

crida al mètode borrarElement(MouseEvent e) que s’encarregarà d’eliminar-la.

Al eliminar una transició també s’ha d’eliminar tots els estats que tenen el seu origen

i/o destí.

A part dels estats que tenen el seu origen i destí sobre una mateixa transició, la resta

d’estats relacionen dos transicions. El problema recau que s’ha de buscar cada un dels

estats que tenen relació en algun dels seus extrems amb la transició que es vol

eliminar i s’ha d’avisar a la transició de l’altre extrem perquè decrementin el seu

comptador d’estats.

Acció moure transició:

Ratolí premut:

En aquest cas es fa una crida al mètode iniciarDesp(MouseEvent e).

En el mètode iniciarDesp(MouseEvent e) es produeixen una sèrie d’operacions per

inicialitzar la informació necessària que s’haurà d’actualitzar durant el desplaçament.

El primer que es fa es comprovar si s’ha seleccionat un element o si s’ha fet clic sobret

el buit. Es crida al mètode buscarComponent(x,y) i el seu retorn es guarda en la

variable booleana element_seleccionat .

En cas que s’hagi trobat algun element en aquelles coordenades el valor

element_seleccionat serà True. Quan ens trobem en aquest cas es passa a comprovar

si s’ha fet clic sobre un estat o una transició. Si és una transició el valor de la variable

global caixa_seleccionat, que ha estat instanciat dins el mètode buscarComponent(x,y)

té valor True.

Si realment s’ha fet clic sobre una transició la seva posició dins la llistaCaixes és el valor

de la variable global index_llista.

A continuació fem les següents operacions:

• S’assigna el valor a les variables “x” i “y” a partir de les coordenades de la

transició menys les del MouseEvent. En aquestes variables es guarda el valor

de referència de les coordenades. És a dir on s’ha produït l’últim desplaçament.

• Es busca quins estats tenen relació amb la transició que s’està traslladant:

o S’Assigna el valor de la ID de la transició a una variable local id_caixa.

CAPÍTOL 3. IMPLEMENTACIÓ

- 26 -

o Es recorre la llista d’estats comprovant si valor de id_caixa és igual al

valor de id_inici i/o id_fi. En cas positiu, segons el tipus de relació de

l’estat amb la transició es guarda la seva posició en la llista dins una de

les següents llistes: ArestesModificarInici , ArestesModificarFi o

ArestesModificarIniciIFi.

• Es crida el mètode updatePosicio(MouseEvent e).

Ratolí arrossegat i ratolí alliberat:

Si ens trobem en el cas que estem movent una transició simplement fem una crida al

mètode updatePosicio(MouseEvent e).

3.3 Estats

Els estats en la nostra aplicació es representen en forma d’arestes. Per representar els

estats s’ha creat la classe Aresta.java específicament per guardar tota la informació

rellevant dels estats. Tot el seu tractament es porta a terme en la classe ZonaDibuix.

 3.3.1 Què conté la classe Aresta.java?

• Un objecte QuadCurve2D.Double que serà la representació de la nostra aresta .

• Quatre objectes Rectangle anomenats inici, fi, control i menú.

• Dos variables enteres per guardar els identificadors de les transicions origen i

destí.

• Una variable booleana per determinar si es vol mantenir la curvatura.

• La mida dels rectangles que utilitzem per senyalitzar l’ inici, fi i menú de l’estat

està definida per dos constants.

• Una cadena de caràcters que s’utilitza com etiqueta. Per defecte la cadena és

buida però a través del menú de l’estat se li canvia el valor.

CAPÍTOL 3. IMPLEMENTACIÓ

- 27 -

3.3.2 Gestió de les transicions:

La gestió de les transicions es desenvolupa integrament en la classe ZonaDibuix. En

aquest classe tenim una LinkedList parametritzada a tipus Aresta on es guarden totes

les arestes que s’estan representant en l’escena. Al igual que en el cas de les

transicions s’ha utilitzat la classe LinkedList per aprofitar els mètodes de gestió de

dades. S’ha parametritzat per eliminar les operacions de cast del tipus de dades cada

vegada que es treballa amb aquesta llista.

3.3.3 Construir els Estats:

Tothom que ha treballat alguna vegada amb programes de creació de d’autòmats o

diagrames d’estats s’ha trobat que a vegades és útil que les línees que uneixen els

elements es puguin corbar. Per aquest motiu s’ha escollit que les arestes que

representen els estats siguin objectes QuadCurve2D.Double enlloc de Line2D per poder

aconseguir corbar els estats. També és necessari corbar els estats pels casos en que

comencen i acaben en la mateixa transició (loop).

Per pantalla les arestes es visualitzen de la següent manera:

La classe QuadCurve2D permet construir un segment corbat basat en equacions

matemàtiques. La corba generada també rep el nom de corba quadràtica de Bézier.

Aquesta corba es basa en l’idea de d’establir dos punts que defineixen els extrems del

segment, i un tercer punt anomenat punt de control que s’encarrega de determinar el

grau de la curvatura.

El constructor de la classe QuadCurve2D.Double ha d’instanciar les coordenades dels

punts d’inici, fi i control. Un cop té aquestes tres coordenades la forma de l’aresta pren

la següent formula:

Notem que per t= 0 es compleix que Aresta(t=0) = inici i quan t=1, Aresta(t=1) = fi, que

són els extrems.

CAPÍTOL 3. IMPLEMENTACIÓ

- 28 -

Al mostrar els estats per pantalla només pintem l’objecte QuadCurve2D.Double i el

rectangle de menú situat al punt mig de l’aresta. Aquest rectangle serà el punt

d’interacció de l’estat, que ens permet corbar l’estat arrossegant-lo per la pantalla. El

menú també ens permet accedir a les seves característiques fent clic amb el botó dret

del ratolí.

Per corbar un estat tot i que es fa arrossegant el rectangle menú, el desplaçament que

realitzem amb el ratolí es suma sobre les coordenades del punt de control de l’aresta.

A continuació es fa una cridar al mètode checkPosicioControl() que ens corregeix les

coordenades en cas que es surti del límits. Un cop les noves coordenades de control

estan validades, s’actualitza l’aresta perquè adopti la nova curvatura i s’actualitza la

posició de menú perquè torni a estar al mig de l’aresta.

3.3.4 Restriccions:

• Un estat no pot tenir com a destí la transició inicial.

• Un estat no pot tenir com a origen la transició final.

Les transicions de tipus inicial i final tenen com a únic propòsit marcar els extrems de

l’autòmat. Si es vol fer una de les anteriors connexions s’hauria d’iniciar/finalitzar l’

inserció de l’estat a una transició connector que estigui connectada amb l’estat en

qüestió. Semànticament és equivalent.

3.3.5 Anàlisis de les accions que es duen a terme amb els estats:

Per explicar el tractament resultant de la gestió d’events que tenen a veure amb els

estats parlarem en tres contexts introduïts anteriorment: ratolí premut, ratolí

arrossegat, ratolí alliberat.

Acció afegir estat:

Ratolí premut:

Primer de tot es fa una cerca sobre l’escena amb el mètode buscarComponent(x, y) per

comprovar si s’ha fet clic sobre una transició. En cas afirmatiu i en cas de no ser la

CAPÍTOL 3. IMPLEMENTACIÓ

- 29 -

transició final, cridem el mètode novaArestaInici() de la transició per augmentar el seu

comptador d’estats que neixen en aquella transició. Guardem la referencia d’aquesta

transició en una variable global auxiliar per utilitzar el seu valor en cas que l’aresta no

sigui vàlida perquè és repetida (té el mateix origen i destí) o no es selecciona una

transició de destí, decrementar el comptador d’estats que neixen de la transició.

S’afegeix una nou objecte Aresta a la llista Arestes. Aquest nou objecte guarda la ID de

la transició origen i inicialitza els camps d’inici, control i fi de l’objecte QuadCurve2D. L’

inici de la transició ve definit per la coordenada més gran de la transició. El fi fins que

no acabem d’afegir l’estat les seves coordenades són les que apunta el ratolí.

Ratolí arrossegat:

Es fa una crida al mètode updateEstat(MouseEvent e) el qual actualitza la coordenada

de fi de l’aresta. Per poder observar en temps real l’aresta que estem construint.

Ratolí alliberat:

Per posar punt i final a l’ inserció d’un nou estat es crida el mètode

finalitzarInsertarEstat(MouseEvent e) quan s’allibera el botó del ratolí.

Aquest mètode comprova si en el moment que s’ha deixat de fer clic el ratolí és troba

sobre una transició que no sigui la inicial. En cas negatiu s’elimina l’estat de la llista i es

decrementa el comptador d’estats que neixen de la transició origen per desfer

l’operació d’inserció.

En altre cas es guarda la ID de la transició destí . S’ha de comprovar si les transicions

d’origen i destí són les mateixes ja que en aquell cas es corba l’aresta per sobre la

transició. També es comprova que sigui un estat no repetit (en cas de que en la llista

d’estats ja tinguem un altre estat que té el mateix origen i destí es procedeix a eliminar

l’aresta i decrementar els comptadors d’estats de les transicions afectades). Per

finalitzar s’actualitzen les coordenades de fi de l’aresta així com el seu control i menú.

CAPÍTOL 3. IMPLEMENTACIÓ

- 30 -

Acció eliminar estat:

Ratolí premut:

Si l’opció de esborrar elements està activa i s’ha fet clic sobre un estat, es procedeix a

eliminar-lo. A part d’eliminar l’estat en qüestió s’ha de recorre la llista de transicions

fins trobar-nos amb la/les transicions que tenen la mateixa ID que nosaltres tenim

guardada en els caps id_inici i id_fi . Quan trobem aquestes transicions les avisem que

han d’actualitzar el seu comptador d’arestes que arriben/surten de la transició.

Acció moure estat:

Quan tenim l’opció moure element seleccionada de la barra d’eines, si seleccionem el

rectangle definit pel menú de l’estat i l’arrosseguem, el que realment es fa es moure la

coordenada de control de l’objecte QuadCurve2D és a dir de l’aresta. Amb aquesta

acció el que s’aconsegueix és modificar la curvatura de l’estat.

Per moure el control s’encarrega el mètode updatePosicio(MouseEvent e). Les

operacions a realitzar són les mateixes que s’aplicaven per moure una transició al igual

que també es fa una comprovació de posició per assegurar-nos que és sigui vàlida.

També s’actualitza quan és necessari la barra de desplaçament. L’únic diferència

respecte al tractament de les transicions és que s’ha d’anar actualitzant la posició del

menú de l’aresta per observar el resultat.

El desplaçament en si de l’aresta es produeix indirectament al moure una transició

amb qui té relació. Pels estats que se’ls ha de mantenir la curvatura no se’ls actualitza

les coordenades de control l’aresta evitant que es converteixi en una recta.

CAPÍTOL 3. IMPLEMENTACIÓ

- 31 -

3.4 Classe Main

La classe Main.java és la classe principal de l’aplicació. En ella es produeixen

operacions molt importants com és el llançament del programa o la gestió dels

diferents events d’acció llençats pels menús. En aquesta classe també implementem la

característica de preguntar a l’usuari si es vol guardar el treball abans de tancar

l’aplicació així com múltiples pestanyes per diferents escenes per poder treballar amb

la millor comoditat. Tot això sense mencionar que aquesta és la classe arrel del

programa la qual conté tots els components que es visualitzen per pantalla.

3.4.1 Mètode estàtic main:

Tota aplicació necessita que existeixi aquest mètode per poder executar un programa.

Aquest mètode és realment simplement, tot el que fa és crear un objecte tipus

Main.java el qual dins el seu constructor crearà un objecte tipus JFrame que és la

finestra que ens apareix a la pantalla i sobre la qual treballem.

3.4.2 Constructor de la classe Main:

Com s’acaba de mencionar, és aquí on es crea l’objecte JFrame que serà la cara del

nostre programa. En el constructor instanciem tots els seus paràmetres: li definim el

nom de l’aplicació, li definim un Layout tipus BorderLayout, definim la seva operació

de tancament, li afegim la barra de menú amb el mètode setJMenuBar, la barra

d’eines, la zona de disseny i el label de notificacions. A continuació es crida el mètode

pack() que fa que la finestra prengui la mida més petita possible que permet veure tots

els components. Per acabar fem que la finestra sigui visible amb el mètode

setVisible(true).

3.4.3 BorderLayout:

La portabilitat de Java a diferents plataformes i diferents sistemes operatius necessita

flexibilitat a l’hora de situar els Components (Buttons, Labels, Canvas, etc.) en un

Contenidor (JFrame, JPanel, etc.)..

La classe JFrame és una classe tipus Container que s’encarrega de contenir els

diferents elements del programa. S’anomena components als elements que estan

continguts dins un container.

Un Layout Manager és un objecte que controla com els Components es situen en un

Contenidor.

CAPÍTOL 3. IMPLEMENTACIÓ

- 32 -

Existeixen varis Layout Managers però per la nostra aplicació hem escollit el

BorderLayout. La peculiaritat d’aquest LayoutManager és que divideix el container en

cinc zones: North,South, East,West i Center.

S’ha escollit aquest LayoutManager entre les diferents opcions perquè és la que ens

posicionava millor els elements per oferir una aparença agradable. S’ha situat una

barra d’eines a un lateral (WEST), un Label de notificacions a la part inferior (SOUTH) i

el centre està reservat pel component que ens mostrarà la zona de disseny (CENTER).

Un altre avantatge d’utilitzar BorderLayout és que la barra d’eines que és un

component JToolBar el qual se’l pot arrossegar i col·locar-lo a una altra posició lliure.

L’avantatge de col·locar la barra de menú amb el mètode de la classe JFrame

setJMenuBar(menú) enlloc d’utilitzar el LayoutManager i assignar-li la posició de North

és que d’aquesta manera aquesta posició queda lliure. Per tant la barra d’eines es pot

situar als dos costats i a la part superior, justament els llocs més comuns on

s’acostumen a situar aquest tipus d’elements en les aplicacions, oferint la possibilitat

de personalitzar l’aplicació a gust de l’usuari que l’utilitzi situant la barra d’eines en la

posició que li és més còmode.

Per afegir un component a la nostra finestra primer s’ha hagut d’especificar el tipus de

Layout Manager. La resta és una tasca ben senzilla, tan sols s’ha d’especificar

localització en el segon paràmetre del mètode add(Component, arg).

3.4.4 Menús i la seva gestió:

La barra de menús que ens permet accedir a una gran varietat d’opcions d’una manera

organitzada. Aquest component és fonamental en qualsevol aplicació perquè els

usuaris estan acostumats a la seva presencia i estan familiaritzats amb la seva

organització. En la barra de menús trobem les opcions més comuns de programes de

disseny.

CAPÍTOL 3. IMPLEMENTACIÓ

- 33 -

Tenim una altra barra de menú o barra d’eines a un lateral que s’encarrega de

proporcionar les utilitats bàsiques per dissenyar un autòmat amb totes les comoditats

que han estat possibles d’ implementar.

Els menús estan compostos per objectes de les classes JButton o JMenuItem aquests

elements al ser pressionats llencen un event ActionEvent que ha de ser capturat per

una classe que implementa l’ interfície ActionListener. La pròpia classe Main és

l’encarregada d’implementar aquesta interfície i atendre les peticions dels menús.

En un futur apartat de la memòria es tracta més exhaustivament el tema de la creació

d’aquests menús i la seva gestió.

3.4.5 Pestanyes:

En un moment determinat del desenvolupament de l’aplicació es va tenir que decidir

que fer quan s’estava editant un autòmat i es volia obrir un document per crear un nou

autòmat.

La primera idea que es va considerar va ser que cada vegada que s’obrís una finestra

nova crear un nou objecte de tipus Main. Encara que aquesta idea era ben vàlida

alhora d’implementar es va decidir per una altre camí.

L’opció que s’ha escollit ha estat una que inclou l’ utilització d’una barra de pestanyes,

on cada pestanya té la seva escena. S’ha escollit aquesta opció perquè per una banda

evitem crear masses components repetits com el menú , la barra d’eines o tota la

classe Main. El que realment l’ interessa a l’usuari quan vol obrir un nou document és

tenir una nova superfície sobre la qual dissenyar, en el nostre cas, un nou component

ZonaDibuix, i això és el que s’ha proposat. L’altre raó és per motius d’organització,

l’usuari té tota l’ informació controlada enlloc del caos que suposa tenir varies

aplicacions obertes.

La barra de pestanyes és un objecte de la classe JTabbedPane que com havíem

mencionat inicialment és el component que està situat al centre del BorderLayout.

Això significa que és el Component responsable d’ ensenyar-nos per pantalla sobre

quina escena estem treballant.

Un objecte de la classe JTabbedPane és un contenidor com el JFrame o el JScrollPane

amb la peculiaritat que ens organitza el seu contingut per pestanyes. A més a més, és

el propi objecte qui autònomament tracta els canvis de pestanya realitzats amb el

ratolí, mostrant en cada cas el contingut de la pestanya seleccionada.

CAPÍTOL 3. IMPLEMENTACIÓ

- 34 -

L’ objecte JTabbedPane que utilitzem és una variable global a la classe, afegida al

JFrame en el constructor. S’ha de decidir la política del Layout de les pestanyes que no

caben a la pantalla. Per determinar-ho s’utilitza el mètode setTabLayoutPolicy(int). La

resposta que hem considerat més agradable per estètica ha estat

SCROLL_TAB_LAYOUT que com el seu nom indica apareixeran dos botons de

desplaçament per navegar entre les pestanyes.

Per afegir una nova pestanya al JTabbedPane fem el següent procés:

• Definim un String que té l’estructura “Archivo ”+un enter que fa d’identificador

i que ens ve proporcionat per la nostra classe GeneradorDeIDs.

• Creem un nou objecte de tipus Escena.

• La classe Main disposa d’una variable global que és una LinkedList

parametritzada per objectes de classe ZonaDibuix. En aquesta llista afegim

l’objecte ZonaDibuix que conté l’Escena que acabem de crear.

• A continuació afegim una nova pestanya amb el mètode

addTab(nom,icona,JComponent). El primer paràmetre és el nom que

identificarà aquella pestanya. Si volem es podria posar una icona posant-la en

el segon paràmetre, i en el tercer paràmetre que ens demanen un

JComponent, li passem el JScrollPane que forma part de la classe Escena. Quan

un usuari faci clic en aquesta pestanya el JTabbedPane farà visible aquest

component, per tant amb el mètode addTab crea el vincle entre les diferents

pestanyes i els JScrollPanes que contenen les zones de disseny.

• A continuació procedim a editar la pestanya en si. L’objectiu es afegir un botó

en forma de creu a cada pestanya que al ser pressionat ens elimini la pestanya.

Per editar la pestanya utilitzem el mètode

setTabComponentAt(int,Component). Pel primer paràmetre li passem una

variable que utilitzem com comptador de les escenes (o pestanyes) que tenim

disponibles. El segon component és un objecte del a classe PestanyaTab.java

que és una classe derivada de la classe JPanel. A continuació s’explica com es

construeix i el que fa es afegir la creu per tancar la pestanya.

• Utilitzem el mètode setSelectedComponent(Component) on li passem per

paràmetre el component de l’última pestanya per aconseguir que la pestanya

seleccionada sigui la nova que acabem de crear.

• Utilitzem una variable entera anomenada selectedTab per saber sobre quina

escena de totes les que estan disponibles s’han d’habilitar les opcions que es

seleccionin en els menús.

Per tancar una pestanya s’ha de seleccionar el botó en forma de creu que li hem afegit.

Aquest botó el fem de color transparent dient que la seva àrea no ha de ser omplerta,

li creem una bora encara que no la fem visible, i l’assignem a un oient d’events de

CAPÍTOL 3. IMPLEMENTACIÓ

- 35 -

ratolí i a un oient d’events d’acció. Definim el mètode paintComponent(Graphics g) el

qual es crida cada vegada que s’ha de pintar el botó i que determinem que el que s’ha

de pintar és una creu amb dos línees que entravessen el botó diagonalment.

Abans de continuar és important saber que el constructor de la classe PestanyaTab té

dos paràmetres, ja hem dit que un és una String pel nom. L’altre és l’objecte de la

classe Main perquè necessitem guardar la seva referència per després poder-lo avisar

quan es tanqui la pestanya. Tot el JPanel es assignat a un oient d’events de ratolí que

hem implementat nosaltres anomenat tabListener i que serà comú per totes les

pestanyes.

 tabListener és una classe derivada de la classe MouseAdapter. Java ens proporciona

ajudes per definir els mètodes de les interfícies Listener. Una de les seves ajudes són

els classes Adapter, que existeixen per cada una de les interfícies Listener que tenen

més d’un mètode. El seu nom correspon al nom de l’ interfície però substituint

“Listener” per “Adapter”. Les classes Adapter deriven d’ Object i són classes

predefinides que contenen definicions buides per tots els mètodes de l’ interfície. Per

crear un objecte que respongui a un determinat event, enlloc de crear una classe que

implementi l ’interfície Listener, és suficient creant una classe que derivi de la classe

Adapter corresponent i definir només els mètodes que ens interessen. En el nostre cas

tabListener li hem definit que faci les següents accions pels següents events de ratolí:

• Quan passem per sobre del botó en formà de creu (event mouseEntered) fem

que el botó habiliti l’opció de pintar la seva bora. D’aquesta manera subtil

farem saber a l’usuari que està sobre el botó que tancarà la pestanya.

• Quan deixem d’estar sobre del botó (event mouseExited), deshabilitem el

pintat de la bora del botó.

• Quan ens trobem que s’ha fet clic a sobre (event mousePressed), comprovem

que l’origen no és el botó per tant vol dir que s’ha fet clic sobre un altre part de

la pestanya. Utilitzem la referència al Main que havíem guardat al constructor

per cridar el mètode actualitzarTab(nom). Aquest mètode el que fa és buscar

en quina posició de la llista hi ha un component que li coincideix el nom (el qual

degut a l’ intervenció en el seu moment del GeneradorDeIDs és únic). Amb el

mètode setSelectedComponent(int) avisem al JTabbedPane que ara volem

veure el component que es troba en la posició que acabem de trobar.

Per acabar amb el tema de les pestanyes només que quan es captura un ActionEvent

significa que el que es vol fer es tancar la pestanya per tant es crida al mètode

eliminarTab(nom) de la classe Main. En aquest mètode esborrem tant la pestanya del

JTabbedPane i l’objecte ZonaDibuix de la llista d’escenes. En el cas que només queda

una pestanya i es prem el botó per tancar-la el que fem és resetejar l’objecte

ZonaDibuix que ho borra tot enlloc fer l’eliminació per no crear un conflicte d’aplicació.

CAPÍTOL 3. IMPLEMENTACIÓ

- 36 -

3.4.6 Tancament de l’aplicació:

L’opció per defecte d’un JFrame és tancar l’aplicació quan es tanca la finestra, però si

ens posem en la pell d’un usuari que utilitza la nostra aplicació, li seria de gran utilitat

que li proporcionéssim el recurs una finestra preguntant-li si vol guardar els canvis

realitzats abans de tancar l’aplicació. És més seria lamentable pensar en la possibilitat

de la quantitat de feina perduda per fer clic involuntàriament sobre el botó de

tancament d’una pestanya.

S’ha afegit com a mesura de seguretat una finestra emergent que avisa que s’està

tancat una pestanya i pregunta si vol guardar els canvis, no vol guardar o si vol

cancel·lar l’operació i aquella pestanya no es tancarà. Aquesta mesura de seguretat

està implementada en el mètode eliminarTab() per fer la consulta abans d’eliminar

alguna cosa important.

Però que passa si enlloc de tancar una pestanya es tanca directament tota la finestra

per la creu superior? També s’ha controlat aquest cas. Primer de tot s’ha definir l’acció

per defecte de tancament de la finestra perquè sigui no fer res

(DO_NOTHING_ON_CLOSE) i que sigui un WindowAdapter qui gestioni les peticions de

tancament de la finestra. Per aquest motiu la classe Main és una classe derivada de

WindowAdapter. En la classe Main capturarem els events de tancament de finestra i

davant d’ells es crida al mètode eliminarTab() per cada pestanya. Si s’han eliminat

totes les pestanyes es tanca l’aplicació.

La gràcia d’aquesta mesura de seguretat és la finestra flotant per tant procedim a

explicar com s’ha implementat. L’objectiu és demanar a l’usuari la seva confirmació

per realitzar l’ acció.

Java ens proporciona la classe JOptionPane que es de gran utilitat per construir

finestres destinades a donar cobertura per consultes habituals. JOptionPane té dos

modalitats de finestra, les d’avís i les de confirmació que és la que utilitzem. La

modalitat de confirmació ens proporciona una finestra que la podem omplir amb un

objecte com un JPanel. El que mostrarà per escena és el panell que li passem més els

uns botons per acceptar o cancel·lar l’operació a la seva part inferior.

CAPÍTOL 3. IMPLEMENTACIÓ

- 37 -

Com que en aquest cas no surt a compte crear una panell perquè contingui únicament

un missatge d’advertència, la finestra emergent la crearem d’una manera més

compacta utilitzant el mètode OptionPane.showOptionDialog(). Aquest mètode ens

ajuda a crear la finestra a través d’uns paràmetres configurable evitant haver de crear

un panell .

 Els paràmetres que li hem de passar són:

• parentComponent: A partir d’aquest component es determina quina és la

finestra que fa de pare del JOptionPane. D’aquesta manera la finestra de

validació es mostra davant la nostra finestra principal i no permetrà continuar

treballant fins que s’escull una opció.

• Message: Passem una String amb el missatge a mostrar. Nosaltres preguntem

"¿Desea guardar los cambios efectuados en "+nom+" ?" on nom és el nom de

la pestanya per evitar confusions.

• Title: Se li passa una cadena de caràcters que determina el títol de la finestra

• optionType: Demana un enter que indica quina opció volem que tingui la

finestra. Els valors possibles són les constants definides en JOptionPane:

DEFAULT_OPTION, YES_NO_OPTION, OK_CANCEL_OPTION i la que hem escollit

nosaltres YES_NO_CANCEL_OPTION.

• messageType: Demana un enter que indica quin tipus de missatge estem

ensenyant

• Icon: una icona per mostrar. Si posem NULL es mostra l’ icona determinada pel

messageType.

• Options: Se li passa una array d’objectes que determina les possibles opcions.

Si se li passa null es posen els botons per defecte. Nosaltres li passem

{"Guardar", "No Guardar", "Cancelar"}

• initValue: Determina la selecció per defecte. Ha de ser un dels objectes que li

hem passat en el paràmetre options o null.

La crida a JOptionPane.showOptionDialog() retorna un enter que representa la opció

que ha seleccionat l’usuari. La primera de les opcions de l’array és 0. Si es tanca la

finestra amb la creu de el mètode retorna -1.

El que fem és fer un Switch d’aquest retorn. Si el valor és -1 o 3 (Cancelar) no fem res.

Si el valor es 0 (Guardar) guardem l’autòmat i anem al següent case que és el del valor

1 (No guardar) que tanca la pestanya i selecciona la pestanya anterior a la que ha estat

tancada perquè sigui la nova pestanya seleccionada.

CAPÍTOL 3. IMPLEMENTACIÓ

- 38 -

3.4.7 Diagrama de classes

Diagrama de classes de l’aplicació general:

Diagrama de classes de la Zona de disseny:

CAPÍTOL 3. IMPLEMENTACIÓ

- 39 -

3.5 Barra d’eines

Per implementar la barra d’eines s’ha utilitzat la classe JToolBar. Un

objecte d’aquesta classe es pot veure com un contenidor que espera que

l’omplim amb diferents ítems, majoritàriament objectes de la classe

JButton . Els avantatges d’aquesta classe davant d’altres mètodes per

implementar barres d’eines és que la col·locació dels diferents ítems és

gestionada automàtica pel gestor de Layout propi del propi objecte. Al

afegir diferents ítems a una barra d’eines aquests es col·loquen un al

costat de l’altre d’esquerra a dreta s si la barra d’eines és horitzontal o

un a sota de l’altre si la barra en el cas que sigui vertical.

Un objecte d’aquesta classe es afegit dins un contenidor com el que

tenim implementat que utilitza el layout BorderLayout i té un

component al centre(ZonaDibuix) ens proporciona un grau més de

flexibilitat i dinamisme donat que ens permet moure la barra d’eines per

la pantalla. En un primer moment la col·loquem a l’esquerra de la

pantalla però si l’usuari que està fent servir el programa decideix que en un moment

donat li aniria millor que estigues col·locada a la part superior de la pantalla, o per

simple comoditat perquè està acostumat a treballar amb programes amb aquesta

organització, tant sols ha d’arrossegar la barra d’eines cap aquella posició. També es

pot col·locar la barra d’eines a la part dreta o inferior de la pantalla o inclús la utilitzar

com a menú flotant si l’arrosseguem fora de la finestra .

Com abans s’ha introduït els ítems que s’afegeixen dins l’objecte JToolBar són tants

components JButton com eines volem tenir en el menú.

A l’usuari final li agrada treballar amb programes que tenen una interfície atractiva i

per tant s’ha dissenyat icones pels botons per aconseguir un millor acabat i impressió

que si s’hagués implementat amb botons omplerts per text. Les icones són de mida

reduïda perquè l’aplicació no ocupi més espai del necessari. S’han creat amb l’editor

d’imatges paint basant-nos en un disseny minimalista. La icona assignada a cada ítem

mostra una imatge representativa del que l’acció que porta a terme. Però per si algun

usuari té dubtes, passant el ratolí per sobre seu apareix un missatge informatiu sobre

l’acció que representa i quan es selecciona una eina s’actualitza el Label principal de

notificacions informant-nos breument de com s’utilitza.

També és important mencionar que l’aplicació s’ha implementat de tal manera que

només tenim una única barra d’eines per totes les escenes (en cas que tinguem varies

pestanyes). A més a més quan ens movem entre escenes es manté l’opció que es tenia

seleccionada.

CAPÍTOL 3. IMPLEMENTACIÓ

- 40 -

3.5.1 Control de les accions:

Quan es prem un botó es produeix un event d’acció o ActionEvent, perquè el nostre

programa capturi aquests events quan es produeixen s’ha d’associar el botó a un oient

d’aquets tipus d’events. Aquest oient en Java s’anomena ActionListener i els events

són tractats en el mètode actionPerformed (ActionEvent e).

Quan s’està construint la barra d’eines abans d’afegir els botons al contenidor

JToolBar, sel’s ha d’assignar l’ ActionListener.

Per tractar els ActionEvent’s que és produeixen quan es prem un botó hi ha dos

alternatives. Una alternativa és assignar un ActionListener diferent per cada o assignar

tots els botons a una mateix ActionListener (opció implementada). D’aquesta manera

cada vegada que es selecciona una opció del menú l’event és capturat pel mateix

ActionListener facilitant-nos la lectura i organització del codi.

Per disposar d’un oient ActionListener hem de crear una classe que implementi

ActionListener, i definir el mètode actionPerformed (ActionEvent e) . En el nostre

programa aquesta classe és la classe Main.java que tractarà els events d’acció produïts

tant per la barra d’eines com per la barra de menú.

Quan ens trobem editant l’escena s’ha de tenir un control sobre quina acció s’està

portant a terme quan ens trobem que s’ha fet clic amb el ratolí, ja que tots els botons

són capturats pel mateix mètode de la mateixa classe.

Quan un event d’acció és capturat primer comprovem que l’origen de l’event és un

botó (JButton) per diferenciar de la barra de menú que són ítems de menú

(JMenuItem).

Amb el mètode getSource() del objecte ActionEvent s’aconsegueix el botó que ha estat

pressionat. En un primer moment es guardava com a variables globals a la classe cada

botó i simplement es feia una comparació. Però no vam tardar en veure que el nombre

de botons creixia considerablement i es va buscar una manera de no tenir que guardar

tantes dades.

Una altra manera era guardar totes les Strings que formaven el nom de les eines i

cridar el mètode getLabel() per fer una comparació entre Strings enlloc de entre

JButtons. Tot i així cada vegada en el pitjor dels casos s’havia de fer tantes

comparacions com botons. A part per raons d’estètica es va suprimir el camp del Label

perquè per pantalla només es veiés la icona.

La solució que es va trobar per no haver de guardar tants botons ni fer tantes

comparacions va resultar ser ben esnzilla. En la classe Main.java definim les següents

constants:

CAPÍTOL 3. IMPLEMENTACIÓ

- 41 -

 static final char RES = 0;
 static final char AFEGIR_ESTAT = 1;
 static final char AFEGIR_TRANSICIO = 2;
 static final char MOURE_TRANSICIO = 3;
 static final char ZOOMIN = 4;
 static final char ZOOMOUT = 5;
 static final char ELIMINAR = 6;
 static final char DESFERCANVI = 7;

Quan es crea cada botó s’instanciarà el seu camp nom amb el mètode setName(String)
passant-li com String un dels anteriors caràcters com si fos un identificador. Quan un
botó sigui premut el seu ActionEvent és capturat pel ActionListener. Amb el mètode
getSource() tenim l’instancia del botó i per tant podem accedir al seu camp nom amb
getName(). Utilitzem el primer caràcter del nom per entrar-lo com a paràmetre d’un
Switch on cada Case serà una de les anteriors constats i així saber quina acció l’usuari
vol portar a terme sense tenir que recórrer a múltiples comparacions.

Un factor rellevant és que el nom de les constants es bastant clarificador cosa que ens
facilita la feina de lectura del programa.

Segons en quina Case del Switch s’entra es crida un mètode o un altre de la classe
ZonaDibuix de l’escena actual de la pantalla. També s’actualitza l’ informació del Label
de notificacions per interactuar amb l’usuari i que ell pugui validar que ha fet clic sobre
l’opció que ell desitjava.

 Per les opcions RES, AFEGIR_ESTAT, AFEGIR_TRANSICIO, MOURE_TRANSICIO I
ELIMINAR, els mètodes que les tracten simplement assignen el valor de la constant a la
variable global opció de la classe ZonaDibuix que també utilitza un Switch cada vegada
que es produeix un event de ratolí per decidir quina acció fer segons l’opció que està
habilitada.
La resta d’opcions són més elaborades i explicades individualment en un altre apartat
de la memòria.

CAPÍTOL 3. IMPLEMENTACIÓ

- 42 -

3.6 Barra menú

La barra de menús és la manera més comú que utilitzen la majoria d’aplicacions per

distribuir les seves característiques en menús desplegables.

La majoria de funcionalitats es criden a través de la barra de menú perquè sigui fàcil de

treballar amb el nostre programa i l’usuari tingui l’ informació organitzada de la

manera que està més acostumat a treballar.

La creació de la barra de menú és molt semblant a la creació de la barra d’eines. Per la

seva implementació es necessària l’ utilització d’un objecte de classe JMenuBar.

Aquesta és l’herència de la jerarquia dels menús relacionats amb les classes:

Podem observar que els elements del menú (incloent els menús) són simplement

botons. La diferència que tenen respecte un JButton és que quan s’activa un menú ,

automàticament apareix un popup menú que ensenya els elements del menú.

Tornant a l’objecte JMenuBar, és interessant saber que aquest objecte és un

contenidor igual que quan utilitzàvem el JToolBar per la barra d’eines. En aquest cas

enlloc d’afegir-li botons, l’omplirem amb objectes JMenu ,per crear els diferents

menús.

CAPÍTOL 3. IMPLEMENTACIÓ

- 43 -

Cada un d’aquests objectes JMenu se l’omple amb objectes JMenu per construir un

sub-menú dins el menú. Els objectes JMenuItem representen cada opció que es

mostrar al menú. Quan el programa està en execució i es sel·lecciona és produeix un

ActioEvent.

En aquesta captura s’il·lustra el que s’acaba de dir, Inicio, Edición, Ayuda i Exportar són

objectes JMenu. Els tres primers són afegits al JMenuBar com a menus principals

mentre que el menú Exportar és un sub-menú. La resta d’elements són JMenuItem i

estan continguts dins un objecte JMenu.

Cada ítem de menú se’l construeix passant-li una String pel nom. Aquesta String que li

passem al constructor es guarda en el seu camp Label, i és el text que es veu en

l’aplicació al obrir el menú per aquell ítem.

Opcionalment a alguns ítems se’ls hi ha afegit una icona com la de guardar o obrir un

fitxer. Altres ítems se’ls ha definit un accelerador, és a dir definir una combinació de

tecles equivalent a premer l’ ítem del menú.

Per definir l’accelerador de tecles s’utilitza el mètode de l’ítem

setAccelerator(KeyStroke key). El KeyStroke podia ser una única tecla, però s’ha

considerat que quan una persona està treballant si tenim moltes lletres assignades el

risc de prémer una tecla involuntàriament amb conseqüències imprevisibles és massa

elevat. La millor opció és definir dos tecles, una d’elles actua com una màscara

especificada com un ActionEvent constant. En la nostra eina per utilitzar els

acceleradors haurem de prémer la tecla corresponent alhora que la tecla Ctrl que és la

màscara.

Les combinacions de tecles definides són les següents:

• Ctrl + N per crear una nou document.

• Ctrl + O per obrir un fitxer en format autòmat.

• Ctrl + G per guardar un fitxer en format autòmat.

• Ctrl + F per canviar el format.

• Ctrl + Z per desfer últim canvi.

CAPÍTOL 3. IMPLEMENTACIÓ

- 44 -

Per la resta els ítems del menú se’ls tracta igual que els botons de la barra d’eines,

també se’ls ha d’assignar a l’ActionListener de l’objecte Main. També utilitzen el

mateix algorisme per evitar guardar tantes dades i fer una gran quantitat de

compracions cada vegada que el ActionListener captura un event. Se’ls defineix una

constant com a nom i quan l’ActionListener captura un ActionEvent, comprova si és un

JMenuItem i procedeix a fer ús d’un Switch utilitzant un altre cop com a paràmetre el

primer caràcter del seu nom per saber quina resposta a l’event ha de realitzar.

3.7 Menú emergent

Per accedir a les propietats individuals de cada estat i transició s’ha decidit que la

manera més còmode és a través d’un menú emergent. El botó esquerra del ratolí

s’utilitza per editar l’escena agregant, movent i esborrant elements. El botó dret del

ratolí s’utilitzarà per obrir un menú emergent si es fa clic sobre un estat o transició.

3.7.1 Crear el menú emergent:

Els menús emergents són gestionats per un objecte de la classe PopupListener.java que

és una extensió de la classe MouseAdapter i implementa la interfícies ActionListener.

Cada escena ha de tenir el seu propi gestor de menús emergents per tant en la classe

Escena.java a cada objecte de tipus ZonaDibuix que creem se li assigna com a oient

d’events del mouse una nou PopupListener.

La classe PopupListener.java és derivada de la classe MouseAdapter perquè com que

només ens interessa tenir control sobre l’event de fer clic sobre un element de la zona

de dibuix. És a dir ens interessa el mètode mousePressed(MouseEvent e) de l’interfície

MouseListener i definint la classe com una derivada de la classe MouseAdapter tenim

l’avantatge que no estem obligats a implementar tots els mètodes de l’ interfície

MouseListener. Al seu constructor li passa com a paràmetre l’objecte de la classe

ZonaDibuix per guardar la referència sobre la qual treballarà

CAPÍTOL 3. IMPLEMENTACIÓ

- 45 -

Aleshores cada vegada que es detecta un MouseEvent es comprova si el botó amb el

que s’ha produït la selecció és el dret. També utilitzant la referència que tenim sobre

l’objecte ZonaDibuix per comprovar si en les seves coordenades de l’event tenim algun

element.

En cas que es compleixin les dos condicions es crida al mètode

mostrarPopupCorresponent(MouseEvent) que segons si l’element seleccionat és un

estat o una transició mostrarà un menú o un altre. El menú resultant fa ús del mètode

show(Component,x,y) al qual li passem com a paràmetre les coordenades on volem

que apareix-hi.

S’han implementat dos mètodes mètodes MenuTransicio(boolean composta) i

MenuEstat() encarregats de crear els menús que es mostren quan es fa clic sobre un

estat o una transició. Més endavant hem afegit una opció complementaria per crear

transicions compostes, el paràmetre del primer mètode determina si n’és el cas per

afegir una opció més al menú.

Per crear els menús emergents s’utilitza un objecte de la classe JPopupMenu. Aquesta

classe té el mateix comportament que la classe JMenu, és un contenidor i l’omplim

amb tants ítems com ens interessa. La diferència recau en que la classe JPopupMenu

es mostra com menú flotant en les coordenades que li assignem enlloc de tenir una

posició fixa.

Per poder controlar quan es produeix una selecció sobre un ítem del menú, necessitem

un oient d’ActionEvents és a dir necessitem una classe que implementa d’interfície

ActionListener. Per tenir tot el codi del tractament dels menús emergents junt la classe

PopupListener.java hem fet que també implementi l’ interfície ActionListener. Per

cadascun dels ítems dels menús se’ls assigna com oient la pròpia classe.

Aleshores cada vegada que un event d’acció és capturat per la classe el tractament és

el mateix que fèiem per la barra d’eines o la barra de menú. S’utilitza un switch del

primer caràcter del camp Name de l’ítem que ha estat seleccionat per escollir l’acció a

fer.

Algunes de les accions que es porten a terme requereixen canviar el contingut dels

menús. Per exemple quan seleccionem l’opció “Habilitar mantenir la curvatura” del

menú d’un estat, a part de fer el tractament sobre l’estat per modificar-li el valor de la

variable booleana que determina si la curvatura és mante, ens interessa canviar el

contingut de l’ítem. És a dir cridem una funció perquè actualitzi l’ informació del label

perquè la pròxima vegada que apareix-hi el menú emergent l’usuari vegi l’opció de

“Deshabilitar mantenir la curvatura”.

CAPÍTOL 3. IMPLEMENTACIÓ

- 46 -

CAPÍTOL 3. IMPLEMENTACIÓ

- 47 -

3.7.2 Menú per les transicions:

L’ opció “Propiedades Transición” quan és seleccionada fa una crida al el mètode

actualitzarTransicio(Caixa) de la classe CreadorTransicions.java.

Bàsicament el que fa és mostrar una finestra emergent on s’observa l’ informació

actual de la transició i dona la possibilitat de canviar-la.

L’altra opció que apareix al menú només si és una transició composta és “Separar

Subtransiciones”. En aquest cas la transició és reduïda a varies transicions simples

situades en posicions contigües. Per cada nova transició es creen nous estats perquè

disposi de les mateixes connexions que la transició original.

3.7.3 Menú pels estats:

En el menú dels estats trobem l’opció “Habilitar mantener curvatura” o “Deshabilitar

mantener curvatura” . El seu nom depenent del valor de la variable booleana

corbatDesactivat de l’objecte de la classe Aresta. Aquesta variable determina si al

moure una transició les arestes que en depenen són rectes o mantenen la curvatura.

Cada vegada que es selecciona l’opció del menú el seu valor és negat.

L’altra opció del menú es “Cambiar etiqueta”. Aquesta opció permet canviar el valor de

l’etiqueta d’aquell estat. Utilitzem el mètode showInputDialog(label, text per defecte)

de la classe JOptionPane. Aquesta classe ja l’hem utilitzat en la classe Main per mostrar

de forma eficient una finestra emergent. En aquest cas, el mètode mostra per pantalla

una finestra amb un quadre de text que conté l’actual valor de l’etiqueta.

Un cop introduït el nou valor de l’etiqueta si es selecciona el botó de confirmació

s’actualitza el valor de l’etiqueta de l’estat en qüestió pel text que s’ha acabat

d’introduir.

CAPÍTOL 3. IMPLEMENTACIÓ

- 48 -

3.8 Creador de Transicions:

En el nostre programa utilitzem finestres emergents com a forma d’interactuar amb

l’usuari perquè faci la seva selecció de les diferents opcions que li ensenyem.

En un primer moment vam utilitzar una finestra emergent com a mesura de seguretat

davant del tancament de finestres en la classe Main.java. Aquella finestra era molt

simple i simplement era configurada per paràmetres. En aquest apartat parlarem de

finestres emergents amb un contingut més complex.

A continuació parlarem de les diferents classes i mètodes que creen finestres

emergents, començant per la classe CreadorTransicions.java.

En una transició l’usuari ha d’especificar el valor dels camps que la conformen. Per

cada transició s’ha d’especificar l’ informació de la forma canònica, la categoria lèxica,

l’ informació morfològica i la sortida del transductor. Aquesta classe s’encarrega

principalment de crear una transició per primer cop i també s’encarregarà de mostrar i

actualitzar la seva informació.

3.8.1 Crear una nova transició:

Una transició a part de ser del tipus estàndard és a dir la típica caixa que conté l’

informació lèxica, també pot ser connector, final o inicial. Els dos últims tipus de

transicions actuen com estats inicials i finals, és a dir marquen on comença i acaba

l’autòmat per tant només podem tenir una transició inicial i final. Totes les arestes que

tenen com a destí la transició de tipus final són els estats finals.

Per donar cobertura a l’ inserció de les transicions el que volem aconseguir és una

finestra on es mostrin totes les opcions disponibles per construir la transició i a peu de

la finestra dos botons un per acceptar i l’altre per cancel·lar l’operació.

Per crear aquesta finestra farem ús de la classe JOptionPane. En aquest cas la finestra

emergent és complexa per tant hem de crear nosaltres un panell perquè es mostri

juntament amb els botons d’acceptar i cancel·lar que afegeix el JOptionPane a la part

inferior.

CAPÍTOL 3. IMPLEMENTACIÓ

- 49 -

3.8.2 Construint el panell d’informació:

L’usuari escull el tipus de transició, i en cas de que sigui una transició de tipus normal,

també ha de escollir entre les diferents opcions d’inicialització dels camps.

Un objecte de la classe JPanel és un contenidor de propòsit general per components

lleugers. El JPanel que estem construint contindrà dos panells. En un dels panells

mostrarà les opcions perquè l’usuari esculli quin tipus de transició vol afegir. En l’altre

panell es mostraran les diferents opcions d’informació lèxica que li podem assignar a la

transició.

 Com que una transició pot ser només d’un sol tipus les opcions entre les que pot

escollir són excloents per tant la millor manera d’implementar-ho ha estat amb un

panell que conté quatre botons de la classe JRadioButton. Aquests botons han d’estar

continguts dins d’un mateix objecte ButtonGrup que s’encarregarà de desactivar

l’anterior opció habilitada cada vegada que l’usuari seleccioni l’opció d’un altre

JRadioButton del mateix grup de botons.

La classe ZonaDibuix té un variable booleana anomenat noTenimInici i noTenimFinal

que ens diu si tenim una transició inicial o final. En cas de tenir-ne no s’afegeix el

JRadioButton que dona l’opció a crear una transició d’aquell tipus per tant l’usuari no

podrà escollir-la.

Quan tenim seleccionat l’opció d’una transició de tipus connector, inicial o final, no

volem que es mostri l’ informació lèxica per tant implementem l’interfície ItemListener

perquè escolti els ItemEvent’s que generen els JRadioButtons. Quan l’opció no sigui

tipus estàndard farem que el panell de selecció d’informació no sigui visible.

L’avantatge d’aquesta implementació és que no es perd l’ informació que es defineix

en el panell de selecció d’informació per tant si l’usuari defineix una transició i per

error selecciona el JRadioButton “inicial”, si torna a seleccionar el botó “Estándard” no

haurà perdut les dades introduïdes anteriorment.

CAPÍTOL 3. IMPLEMENTACIÓ

- 50 -

En la següent imatge es mostra tot l’organització del JPanel:

El rectangle més exterior de color lila és el panell general que se li passa per paràmetre

al JOptionPane. S’utilitza el BorderLayout com a manager de Layout. Dins el panell

general tenim els dos panells marcats en color taronja. En el panell superior s’escull

l’opció i quan aquesta és diferent a la primera opció el panell inferior se li treu la

propietat de visible.

L’anterior imatge ens serveix de guia per comentar els elements del segon panell o

panell de selecció d’informació.

El LayoutManager del panell de selecció d’informació s’anomena GridLayout. Aquest

manager se li passa en el seu constructor el nombre d’elements que es vol contenir per

files i columnes en el panell. Els elements per defecte s’afegeixen d’esquerra a dreta i

de dalt a baix però la política d’inserció es pot canviar fàcilment. En l’anterior imatge

podem observar que la posició (4,1) s’ha afegit un panell amb dos botons per tenir en

una mateixa ubicació dos elements i així obtenir una millor organització del contingut

permetent que a la seva dreta es pugui situar el quadre de text sobre el qual treballen

sense que això provoqui una desorganització de la resta del contingut.

Com es pot observar a l’esquerra situem tots els Labels amb informació que guiaran a

l’usuari sobre quins camps està seleccionant l’ informació.

Pel cas de l’ informació sobre la forma canònica i la sortida del transductor, s’afegeix

un JTextField perquè l’usuari entri l’ informació per teclat.

En el cas de l’ informació sobre la categoria gramatical com que el número d’opcions

possibles és finit s’ha decidit utilitzar un objecte de tipus JComboBox amb les diferents

opcions disponibles. Un JComboBox no és altra cosa que una llista desplegable.

CAPÍTOL 3. IMPLEMENTACIÓ

- 51 -

Aquesta llista està inicialitzada amb diferents valors segons quines opcions se li puguin

assignar a cada camp.

L’avantatge d’utilitzar els objectes de la classe JComboBox i JTextField és que accedir al seu
contingut és realment senzill. En un cas hem de fer
JComboBox.getSelectedItem().toString() i en l’altre cas hem de fer
JTextField.getText().

En quant a l’ informació morfològica el número d’opcions possibles també es finit però

a diferència de la categoria gramatical, se li ha de poder assignar tantes com l’usuari

cregui convenient.

Per fer possible afegir-li informació sense saber la seva llargada a priori utilitzem per

una banda un JComboBox on es mostren a l’usuari totes les opcions disponibles. Per

altra banda tenim un JTextField on s’anirà afegint l’ informació de manera progressiva.

Per controlar que l’usuari no introdueixi informació incorrecta s’ha deshabilitat l’opció

d’omplir el quadre de text per teclat. L’única manera d’introduir informació

morfològica és a través dels dos botons situats a la seva esquerra que els seus events

són tractats per la pròpia classe que implementa també l’interfície ActionListener. El

botó “Añadir información” afegeix “:”+l’ informació que conté l’ítem seleccionat del

JComboBox a l’String del quadre de text. L’única restricció que s’ha de complir al crear

l’ informació morfològica és que no es repeteixi informació per tant es treu del

JComboBox l’ítem que conté l’ informació que s’acaba d’afegir. El botó “Borrar” fa un

reset de l’ informacó morfològica i al JComboBox li torna a afegir totes les opcions

possibles.

3.8.3 Creant la finestra emergent:

Un cop hem creat el panell que desitgem mostrar per pantalla només falta posar els

botons d’acceptar o cancel·lar l’operació. Com ja havíem introduït podem utilitzar la

classe JOptionPane i així evitem haver de crear els botons i implementar l’ interfície

ActionListener per gestionar la seva selecció. Utilitzant el mètode

JOptionPane.showConfirmDialog() creem aquesta finestra que d’una manera senzilla i

eficaç en unes poques línees de codi. Per crear-la hem de donar valor als paràmetres

del mètode que són els següents:

• parentComponent: determina el component sobre el qual es mostrarà la
finestra emergent. No es pot continuar amb el parentComponent fins que es
tanca la finestra. En el nostre cas el parentComponent és l’objecte ZonaDibuix
que vol crear la transició. D’aquesta manera s’evita poder obrir varies finestres
de creació de transició.

CAPÍTOL 3. IMPLEMENTACIÓ

- 52 -

• Message: aquest és l’objecte que mostrarà la finestra emergent, en el nostre
cas ensenyarem el JPanel.

• Title: Ha de ser una cadena de caràcters que determinarà el títol de la
finestra.

• optionType: Demana un enter que indica quina opció volem que tingui la
finestra. Els valors possibles són: :YES_NO_OPTION, YES_NO_CANCEL_OPTION,
or OK_CANCEL_OPTION . Nosaltres hem triat OK_CANCEL_OPTION.

• messageType: Demana un enter que indica quin tipus de missatge estem

ensenyant. Aquest tipus determina quina icona es veurà. Les diferents opcions

són: ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,

PLAIN_MESSAGE i la que nosaltres hem escollit PLAIN_MESSAGE.

La crida d’aquest mètode retorna un enter que representa l’opció que s’ha seleccionat.
Nosaltres comprovem que s’hagi seleccionat l’opció de confirmació. Si el valor de
retorn es correspon amb el valor de JOptionPane.OK_OPTION vol dir que l’usuari ha
omplert tots els camps referents al contingut de la transició i ha confirmat la seva
creació premut el botó d’OK.

En cas de que s’hagi cancel·lat l’operació el que retornem és null. En altre cas retornem
un objecte de tipus Caixa del tipus corresponent en les coordenades on s’havia fet clic
amb el ratolí. Si el tipus caixa és normal al constructor li hem de passar l’ informació
que contenen els diferents camps del panell.

3.8.4 Actualitzar la transició:

Aquest mètode s’encarregarà d’oferir a l’usuari la possibilitat de canviar el contingut

d’una transició de tipus estàndard un com està afegida a l’escena. D’aquesta manera si

l’usuari en un moment donat vol canviar l’ informació d’una transició no es veu obligat

a eliminar-la per tornar-la a afegir amb el contingut canviat. Encara que en un primer

moment no se li pugui donar gaire importància a aquest mètode és molt útil per casos

amb transicions que tenen molts estats perquè al eliminar la transició també

s’eliminaven tots ells.

Amb el mètode actualitzarTransicio(Caixa), mostrarem el mateix panell de

l’informació lèxica de la mateixa manera que ho havíem fet en la creació de les

transicions però amb dos petits detalls diferents. L’únic que es permet canviar és el

contingut de la transició, no el tipus per tant no es mostrarà el panell de selecció del

tipus. L’altra diferència es que s’inicialitzen els camps perquè mostrin l’informació que

en aquell moment conté la transició.

Per fer aquesta inicialització primer de tot s’ha de separar l’informació que s’havia

comprimit en un única cadena de caràcters en els seus 3 camps utilitzant el mètode

CAPÍTOL 3. IMPLEMENTACIÓ

- 53 -

lastIndexOf(“.”) que retorna -1 en cas que no tinguem informació sobre la forma

canònica. En altre cas l’informació és la sub-cadena de caràcters entre la posició 0 i

l’índex. La resta de caràcters contenen l’ informació sobre la categoria gramatical i

l’informació morfològica que els separa el primer caràcter “:” en cas d’existir. Per fer-

ho en aquest cas utilitzem el mètode indexOf(“:”) que ens retorna la posició on es

troba el separador o -1 en cas de no trobar-ho.

Un cop ja tenim aquesta informació ja podem instanciar els JTextFields referents a la

forma canònica, l’ informació morfològica i la sortida del transductor (la caixa la guarda

en una variable a part).

Pels JComboBox tractem dos casos diferents: pel cas de la categoria inicialitzem el

JComboBox amb totes les opcions possibles. A continuació busquem quina de les

opcions es correspon amb la que conté la transició per seleccionar aquella opció.

El JCombobox de l’ informació morfològica se l’inicialitza amb totes les opcions

possibles per a continuació eliminar les opcions que ja es troben en el JTextField. Com

havíem fet anteriorment per extreure l’informació d’una única cadena de caràcters

utilitzem el mètode lastIndexOf(“:”) recursivament. Per cada opció busquem amb quin

ítem del JComboBox es correspon i s’elimina.

Un cop ja tenim el panell que volem mostrar configurat el mostrem cridant el mètode

JOptionPane.showConfirmDialog (...). Si el retorn del JOptionPane és correspon a

l’opció d’OK, s’actualitzarà l’objecte Caixa amb la nova informació.

S’ha de tenir en compte que a part d’assignar la nova informació a les variables que la

guarden. La nova informació pot tenir una mida diferent que l’ anterior i per tant s’ha

de recalcular el valor dels separadors perquè l’informació es mostri centrada dins la

transició. Per fer això cridem el mètode actualitzarTamanySeparadors() de l’objecte

Caixa que s’encarrega de definir els valors dels nous separador segons la llargada de la

nova informació de la mateixa manera que ho havíem fet quan construirem la transició

per primer cop.

El fet de que la mida de la transició hagi variat afecta a la posició dels estats de la

transició els quals ara no estaran situats als laterals de la transició. Per col·locar-los al

seu lloc utilitzem de la classe ZonaDibuix.java el mètode

actualitzarExtremsEstat(IDtransicio,xIniciTransicio,xFiTransicio,yCentreTransicio).

Aquest mètode busca els estats que tenen en algun extrem la transició i actualitza les

coordenades del extrem a la seva nova posició.

CAPÍTOL 3. IMPLEMENTACIÓ

- 54 -

3.9 Llegir fitxer en Format Autòmat

La nostra aplicació ha de ser capaç de guardar la feina feta així com recuperar-la per

continuar treballant. El format que s’utilitza per emmagatzemar l’ informació és el

format autòmat (FA).

3.9.1 Format autòmat:

4 4 (*1)
 %<VPRED\3>%<ADV>%<PALABRA\4>[S]%<PALABRA\5>% (*2)
: 0 2 -1 (*3)
t 1 2 2 3 3 4 -1 (*4)
t 3 4 -1 (*5)
t -1 (*6)
f (*7)

(*1) el primer nombre especifica el # de tokens i el segon el # d’estats

(*2) El separador de tokens és el símbol ‘%’ que marca el inici i el final de cada token.
Els token representa l’ informació lèxica dels diferents transició que es poden utilitzar
per crear l’escena. Cada token té una id implícita segons l’ordre d’aparició: id =
0,1,2,3. Si una transició té associada informació de sortida del transductor, aquesta
apareixerà entre claudàtors com podem observar en el token id=2.

A continuació de la capçalera i dels diferents tokens ens trobem la definició dels estats:

Cada sentencia es la definició d’un estat començant per l’estat 1. La fi de sentencia o fi
de definició de l’estat ve especificada per l’element ‘-1’.

L’estructura de la definició d’estat és la següent:

Primer tenim un caràcter que determina si l’estat és final (‘t’) o no (‘:’). L’ informació
següent fins el fi de sentencia s’ha de tractar per parelles. Cada parella d’enters
especifica “amb quin token” anem a “# estat”.

(*3) estat 1 (estat inicial) el token id = 0 porta al estat 2

(*4) estat 2 el token amb id= 1 porta a estat 2. El token amb id = 2 porta a l’estat 3. El
token amb id = 3 porta a esat 4

(*5) estat 3

(*6) estat 4

CAPÍTOL 3. IMPLEMENTACIÓ

- 55 -

(*7) el caràcter ‘f’ determina el final de la definició de l’autòmat

CAPÍTOL 3. IMPLEMENTACIÓ

- 56 -

3.9.2 Crear escena a partir fitxer en FA:

Per obrir un nou document a partir d’un fitxer en FA autòmat s’ha de seleccionat

l’opció “Abrir” del menú “Inicio”. Quan la classe Main.java captura aquest event crea

una nova pestanya (una nova escena on treballar), crea un objecte de la classe

AutomatsPerFitxer.java i afegeix l’autòmat a l’escena amb el mètode

llegirAutomatDeFitxer(). Aquest mètode retorna un booleà amb valor false si s’ha

produït algun problema al llegir el fitxer, en aquest cas s’elimina la nova pestanya.

3.9.3 Classe AutomatsPerFitxer:

S’ha creat una classe específicament encarregada de definir els elements d’una escena

a partir de l’informació d’un fitxer en FA. En el constructor de la classe s’ha de passar

per paràmetre l’escena (objecte ZonaDibuix) sobre la que es representarà el nou

autòmat.

Per escollir el fitxer s’utilitza un objecte de la classe JFileChooser. Aquesta classe ens

crea fàcilment un selector de fitxers en una finestra emergent. Els selectors de fitxers

s’utilitzen normalment per presentar una llista de fitxers que poden ser “oberts” per

l’aplicació i per introduir la ruta i el nom d’un fitxer a guardar.

La classe JFileChooser ni obre ni guarda fitxers, únicament ens presenta una GUI per

escollir un fitxer i ens permet navegar per les diferents carpetes del nostre PC. Podem

definir-li el mode selecció si volem que només obri fitxers, com és el nostre cas, o si

volem que també obri carpetes.

CAPÍTOL 3. IMPLEMENTACIÓ

- 57 -

Per crear la finestra emergent utilitzem el mètode showOpenDialog(Object)en que té

les mateixes propietats que els mètodes showXXXXDialog(Object) de la classe

JOptionPane ja comentats.

Aquest mètode ens retorna un valor enter segons si s’ha seleccionat un fitxer

(JFileChooser.APPROVE_OPTION) o no. En cas afirmatiu el fitxer l’obtenim amb el

mètode getSelectedFile(). Un cop ja disposem de la ruta al fitxer utilitzem un objecte

de la classe FileInputStream(File) per anar llegint el fitxer caràcter a caràcter.

La lectura la dividirem en tres etapes: llegir la capçalera, llegir els diferents tokens i

llegir els estats. Si ens trobem amb algun error en alguna etapa s’atura la lectura i

avisem a la classe Main que elimini la nova pestanya perquè l’autòmat no es pot

representar.

3.9.4 Llegir capçalera:

Hem de llegir dos enters per instanciar el nombre de tokens que hem de llegir i el

nombre d’estats. Hem de comprovar que aquests nombres són diferent de zero.

3.9.5 Llegir tokens:

Cada token que llegim el guardem com una transició on el seu valor de ID li assignen la

posició segons l’ordre de lectura. Com que no s’eliminen transicions l’ID de cada

transició es correspon en la posició en la llista de transicions. Aquest detall ens serà de

gran utilitat al llegir els estats perquè ens evitarà haver de buscar la transició que es

correspon amb una determinada ID.

Al llegir els tokens s’ha de tenir en compte que aquests venen delimitats pel símbol

‘%’. També sabem que la seva informació lèxica ve definida dins els simbols ‘<’ i ‘>’ i

que opcionalment pot tenir definida la sortida del transductor entre ‘[‘ i ‘]’.

El fitxer no determina la posició de les transicions per tant utilitzarem la variable

booleana seleccionat de cada transició per saber si una transició ja se li ha assignat una

posició o no. El valor serà true si en cas que encara no se li hagi assignat.

Un cop llegits tots els tokens afegim a la llista de transicions la transició inicial i final, i

guardem en una variable global el valor de la ID d’aquesta. D’aquesta manera quan un

estat sigui final ja sabrem la posició de la transició final.

CAPÍTOL 3. IMPLEMENTACIÓ

- 58 -

La posició de les transicions se li assignarà dinàmicament al construir l’autòmat

exceptuant la transició inicial que se li assigna la seva posició al ser creada. Quan hem

d’afegir un estat entre dos transicions comprovem la transició destí, si el valor de la

seva variable seleccionat és true vol dir que encara no ha estat situada i se li assigna la

posició a la dreta de la transició origen. Si ja hi ha alguna transició en aquella posició se

la situa sota seu.

Si un usuari estava treballant amb un autòmat i el guarda, la posició de les seves

transicions serà diferent al ser obert de nou el fitxer. Per solucionar aquest problema al

guardar l’autòmat també es guardarà en el mateix directori un arxiu amb extensió

“.pt” que contindrà les Posicions de les Transicions. Per tant un cop s’han llegit tots els

tokens es comprova si en el directori on esta el fitxer es troba el fitxer amb el mateix

nom però amb l’extensió mencionada. Si existeix es llegeix i s’assigna a cada transició

la seva posició.

El fitxer “.pt” té la següent estructura:

3 (*1)
0 44 33 (*2)
1 250 33
2 200 99
10 10 (*3)
400 260 (*4)

(*1) El primer element determina el nombre de transicions del fitxer
(*2) El primer valor correspon la posició de la transició segons l’ordre d’aparició del fitxer, els
següents dos valors enters determinen les coordenades.
(*3) i (*4) Coordenades transició inicial i final

3.9.6 Llegir els estats:

Un estat del fitxer en FA a l’hora de representar-lo hem de fer una traducció per saber

on els trobem en la nostra representació per anem a representar l’autòmat determinat

pel fitxer:

4 4
%<VPRED\3>%<ADV>%<PALABRA\4>%<PALABRA\5>%
: 0 2 -1
t 1 2 2 3 3 4 -1
t 3 4 -1
t -1
f

CAPÍTOL 3. IMPLEMENTACIÓ

- 59 -

La seva representació en un AFD és la següent:

La conversió a la nostra representació és la següent:

Les transicions se’ls connecten per l’esquerra amb un estat (aresta) que representa
l’estat d’es d’ on arriba el token. A la seva dreta trobem en l’estat resultant d’haver-
nos trobat el token que simbolitza la transició.

Per tenir una referència al llegir del nostre fitxer en FA els estats correspondran al
node que apareix a la banda dreta de les transicions o a una transició de tipus
connector.

Un cop entès el concepte procedim amb aquest apartat que forma el nucli de la
construcció de l’autòmat. Es basa en un bucle que finalitza quan després d’una
definició d’estat ens trobem amb el caràcter ‘-1’ o si és ‘f’ que vol dir que s’ha arribat al
final de fitxer.

S’utilitza una variable entera anomenada estatActual la qual en cada iteració del bucle

s’incrementa en 1. Cada iteració del bucle equival a analitzar una definició d’estat. Per

tant la variable estatActual està instanciada en tot moment amb el valor de l’estat que

s’està processant. S’utilitza per saber quina és la transició origen dels estats que

s’hagin d’afegir. D’ara endavant els estats del fitxer els anomenarem estats absoluts

per diferenciar dels estats que afegim a les transicions.

Per guardar la relació entre estats absoluts i transicions que representen aquests
estats s’ha creat una variable local anomenada taulaDeSimbols. Aquesta variable és
una llista d’elements entradaTS. Aquests elements contenen la següent informació:
estat que representen, ID de la transició que representa l’estat i una variable booleana
que ens diu si la transició és de tipus connector o no. La taula de símbols és
inicialitzada amb l’entrada estat = 1, transicio = ID transicio inicial, esConector =false.

CAPÍTOL 3. IMPLEMENTACIÓ

- 60 -

Accions a portar a terme:
1: En cada iteració primerament es recorre tota la definició de l’estat i es guarda en
una llista els diferents valors que s’han llegit. En les posicions parelles de la llista es
troba l’ ID de la transició i en les posicions parelles l’identificador a l’estat que s’ha
d’afegir l’aresta. Aquesta llista l’anomenarem llistaDefinicio.

2: Es recorre la llista llistaDefinició buscant si hi ha un bucle sobre aquell estat. Perquè
hi hagi un bucle s’ha de buscar si en alguna posició parella de la llista el seu valor es
correspon amb el valor de l’estatActual.

En el cas que es tingui un bucle aquell estat ha d’estar representat per una transició
tipus connector. Si no n’és el cas s’ha de crear un nou estat tipus connector per poder
reproduir el bucle. De la taula de símbols s’ha de canviar la transició que representava
aquell estat per la ID de la nova transició. S’ha d’actualitzar totes les arestes que
apuntaven a la transició que anteriorment representava aquell estat perquè apuntin a
la nova transició i s’ha d’afegir una transició entre elles dos.

3: Es busca a la taula de símbols quina és la transició que representa l’estat actual i
que serà l’origen de les arestes que s’afegeixin.

4: Es recorre la llista llistaDefinició per treballar amb el parell de valors que ens
determinen l’estat següent i la transició per arribar a aquell estat.

A continuació es busca en la taula de símbols la transició que representa l’estat
següent. Si no es troba en la taula de símbols s’afegeix una nova entrada amb aquest
parell de valors i s’afegeix una aresta entre la transició origen i la transició que defineix
el nou estat.

Si es troba en la taula de símbols es comprova si la transició és tipus connector o no.
En cas afirmatiu s’afegeix una aresta entre la transició origen i la transició de la
llistaDefinicio i una aresta entre aquesta última transició i el connector.

En cas que l’estat sigui representat per una transició normal s’ha de comprovar si la
transició que actualment representa l’estat i la que es vol utilitzar per accedir aquell
estat són la mateixa. Si no ho són s’ha de crear un connector perquè totes les
transicions que vulguin estar en a aquell estat connectin amb ella.

6: Si l’estat actual és un estat final s’afegeix una aresta entre la transició origen i la
transició final.

Un cop ja s’ha processat tots els estats afegim la llista de transicions i llista d’estats a
l’objecte ZonaDibuix que representa l’escena creada. D’aquesta manera es mostra el
contingut del fitxer per pantalla.

CAPÍTOL 3. IMPLEMENTACIÓ

- 61 -

3.9.7 Casos especials:

E-transicions: Per definir que des d’un estat absolut es pot anar a un altre estat absolut
sense cap transició, el valor que s’utilitza com a token és el -2. Quan l’algorisme es
troba amb aquest cas afegeix una aresta entre l’estat origen i la transició que
representa l’estat destí. En cas que no existeixi l’última transició es crea un connector.

Utilitzar un mateix token per accedir a diferents estats:

Els tokens els guardem en transicions. Un cop s’ha utilitzat una transició per accedir a
un estat absolut totes les arestes que apunten a ella apunten a un mateix estat
absolut. En el cas de la imatge ens trobem que es vol utilitzar la mateixa informació
lèxica d’una transició transició però per accedir a un estat absolut diferent. Quan ens
trobem amb aquesta situació es clona la transició que conté aquell token i s’afegeix a
la taula de símbols el nou estat absolut i la ID de la nova transició clonada. Per
comprovar si ens trobem en aquest cas s’utilitza el mètode Checkduplicat.(estat,

transicio, TS).

També s’ha de controlar que podem estar davant d’un cas de duplicat encara que no
s’accedeixi a un nou estat sinó a un estat existent.

CAPÍTOL 3. IMPLEMENTACIÓ

- 62 -

Si analitzem la següent definició d’estat:

: 0 2 1 2 -2 2 2 3 -1
: 1 3 3 3 -2 3 -1
t -1
f

En aquest autòmat podem observar una E-transició entre l’estat 2 i 3 (els dos
connectors).
També ens trobem en un cas de duplicat amb la transició <estar.v77:PP:ms\4>
Per resoldre aquestes situacions es fa ús del mètode checkduplicat(estat,transició,TS)
durant l’anàlisi de les connexions. Aquest mètode a part de buscar una coincidència
amb les transicions de la taula de símbols, busca si la transició original té una aresta
amb un connector. En aquest cas a no ser que els estats absoluts coincideixin vol dir
que ens trobem davant un cas de duplicitat.

Bucles: Ens podem trobar dos casos diferents:
Cas 1:
: 0 2 -1
t 1 2 2 3 -1
t -1
f

La seva ER seria equivalent a <t0>(<t1><t1>*+<t2>) i es representa de la següent
manera:

CAPÍTOL 3. IMPLEMENTACIÓ

- 63 -

Cas 2 :
: 0 2 -1
t 1 3 2 4 -1
t 1 3
t -1
f
La seva ER equivalen es correspon amb: <t0>(<t1>*+<t2>) i es representa de la següent
manera:

Per saber de quin cas es tracta a l’hora de comprovar si és un bucle comprovar si la
transició d’origen i final és la mateixa. Si és la mateixa o equivalent en cas que sigui un
duplicat, vol dir que ens trobem davant d’un cas 2. En aquest cas no s’ha de crear la
transició connector que creàvem en l’apartat 2. En cas de trobar-nos un bucle de cas 1
s’ha d’afegir una aresta entre la transició origen (connector) i la nova transició i la seva
inversa per tancar el bucle.

3.10 Guardar fitxer en Format Autòmat (FA)

Tot el que es representa a l’escena s’ha de poder guardar per poder continuar des del

mateix punt en un altre moment. Per guardar les dades utilitzem un fitxer en FA i el

seu associat .pt per guardar l’autòmat que s’està editant.

Aquest procés s’encarrega la classe AutomatsAFitxer.java. Aquesta classe està

dedicada a recollir l’ informació de l’escena per guardar-la en l’estructura definida dels

fitxers en FA.

CAPÍTOL 3. IMPLEMENTACIÓ

- 64 -

Per escollir el directori on guardar fitxer i el seu nom s’utilitza un objecte de la classe

JFileChooser. Aquesta vegada s’invoca el mètode showSaveDialog(Object) per

mostrar la finestra emergent. Aquest mètode en retorna si s’ha escollit guardar o

cancel·lar l’operació. En cas que s’hagi guardat ens proporciona la ruta on guardar el

fitxer.

3.10.1 Requisits:

Abans de fer qualsevol operació s’ha de comprovar que l’autòmat té definit una

transició inicial. L’autòmat que guardarem està composat pel conjunt d’estats i

transicions els quals són accessibles des de l’estat inicial. En cas que l’escena no disposi

de la transició inicial és mostra per pantalla una notificació d’error amb

JOptionPane.showMessageDialog(..) definint-li per paràmetre que és un missatge

d’error (JOptionPane.ERROR_MESSAGE).

3.10.2 Implementació del procés de guardat del fitxer FA:

El fitxer en FA té dos apartats importants: la llista de tokens i la definició d’estats.

3.10.2.1 Recopilació dels tokens:

Per una banda es crea la llista de tokens que disposa l’autòmat. Recorrem totes les

transicions de tipus estàndard i guardem en una llista la seva informació lèxica. En cas

que sigui una transició complexa i tingui més d’una informació és concatenen

<info1><info2><info3>[SortidaTransductor]. Com que els tokens seran separats pel

símbol ‘%’ quan es carregui aquest fitxer ja s’encarregarà de construir correctament la

transició complexa.

S’ha de realitzar primer aquest procés perquè quan estiguem definint els estats el que

s’especifica és la posició del token en la llista.

3.10.2.2 Definició d’estats:

Per definir els estats per una banda necessitem una taula de símbols que és una llista

d’objectes EntradaTS_Save. Cada entrada de la taula de símbols representa un estat

absolut del nostre autòmat. Els objectes EntradaTS_Save guarden l’ informació

referent a l’estat que representen, la transició que els representa, si són un connector i

si l’estat es final.

CAPÍTOL 3. IMPLEMENTACIÓ

- 65 -

En la taula de símbols tindrem emmagatzemats els diferents estats absoluts de

l’autòmat i la transició que el representa. La informació referent a quin token s’ha

d’especificar per anar a un altre estat la guardem en TaulaDefinició. TaulaDefinició és

una llista d’objectes EntradaDefinició. En aquests objectes guardarem l’estat origen,

l’estat destí i la transició que produeix aquest canvi d’estat i el token d’aquella

transició.

Inicialment afegim a la taula de símbols la transició inicial. A continuació es crida el

mètode guardarEstats(estatActual, transicioRepresentaEstatActual). Aquest mètode

recursiu analitza la transició definida pel segon paràmetre de la funció, busca els seus

següents i va creant els estats de la taula de símbols i les entrades de la TaulaDefinició

a mesura que va analitzant.

Per guardar correctament la definició d’estats s’ha de preveure quines connexions ens

podem trobar en l’autòmat i interpretar-les correctament. Per cada iteració el primer

paràmetre del mètode ens determina quin estat absolut s’està tractant, el segon

paràmetre és l’identificador de la transició que representa aquell estat. Els estats

absoluts són una transició de tipus connector o una transició estàndard. L’interpretació

de que és per nosaltres un estat absolut sobre el nostre autòmat es correspon amb el

significat d’arribar a un estat amb un token determinat.

A continuació s’especifiquen els diferents casos possibles amb el seu tractament

corresponent:

Cas base:

Taula de símbols :

Estat ID estat inicial EsConnector

1 Transició inicial false

(estat 1, ID estat inicial, no és connector)

Pel cas base busquem els següents de la transició transicioRepresentaEstatActual. Per

cadascun d’aquestes si la seva ID no està en la taula de símbols vol dir que ens trobem

amb un nou estat absolut i per tant l’afegim a la TS i a la taula de Definició. Es fa una

crida recursiva del mètode guardarEstats() amb cadascun dels següents.

CAPÍTOL 3. IMPLEMENTACIÓ

- 66 -

Taula de símbols :

Estat ID estat inicial EsConnector

1 Transició inicial False

2 Transició 2 False

3 Transició 3 False

4 Transició4 True

Taula de Definició:

Estat origen Estat destí Id Transició

1 2 Transició 2

1 3 Transició 3

1 4 -2

Pel tractament del cas d’una E-transició entre estats absoluts, és a dir anar d’un estat

absolut a un connector (que no té token) s’utilitza la constant -2.

Cas actualitzar la taula de símbols:

Quan analitzem una transició si aquesta no és un connector i ens trobem davant del

cas que la transició només té una transició següent i aquesta és un connector s’ha

d’actualitzar la taula de símbols perquè el verdader estat absolut està en la transició

connector.

Taula de símbols :

Estat ID estat inicial EsConnector

2 Transició 2 transició 5 True

5 Transició 7 False

6 Transició 8 False

CAPÍTOL 3. IMPLEMENTACIÓ

- 67 -

Taula de Definició:

Estat origen Estat destí Id Transició

1 2 Transició 2

2 5 Transició 7

2 8 Transició 8

Cas loop sobre estat absolut:

El cas de tenir un bucle unitari o loop sobre un estat absolut pot ser representat de dos

maneres diferents. Pel cas d’un bucle sobre una mateixa transició no hi ha cap

problema en reconèixer-ho. Per identificar el cas d’un bucle amb una altra transició

per cada un dels següents de la transició que s’està analitzant s’ha comprovar si

aquella transició només té un següent i si aquest coincideix amb la transició actual. En

aquest casos

Taula de símbols :

Estat ID estat inicial EsConnector

6 Transició 8 False

Taula de Definició:

Estat origen Estat destí Id Transició

6 6 Transició 8

6 6 Transició 9

Cas parada:

CAPÍTOL 3. IMPLEMENTACIÓ

- 68 -

El moment que parem de cridar recursivament el mètode a part del cas dels loops és

quan ja s’han analitzat les transicions. Per exemple si estem analitzant la transició 8

ens trobem que el seu següent és la transició 10, però aquesta ja ha estat avaluada i

està en la TS per tant simplement s’afegeix al a taula de Definició una nova transició.

Per altra banda quan analitzem la transició 10 veiem que el seu següent és la transició

2 però encara que ha estat analitzat aquest no està en la TS. Per tant l’altra

comprovació per saber si un estat ha estat analitzat o no és buscar en la taula de

Definicions si hi ha alguna transició entre estats absoluts que utilitzi aquella transició.

Si el següent d’una transició és la transició final vol dir que aquell estat absolut és final.

Els elements entradaTS_Save tenen un paràmetre booleà anomenat EsFinal que es

posa true en aquesta situació.

Taula de símbols :

Estat ID estat inicial EsConnector

2 Transició 5 False

5 Transició 7 False

6 Transició 8 False

7 Transició 10 False

Taula de Definició:

Estat origen Estat destí Id Transició

1 2 Transició 2

2 5 Transició 7

2 6 Transició 8

5 7 Transició 10

6 7 Transició 10

7 2 Transició 2

Un cop ja s’ha analitzat tot l’autòmat recorrem la taula de Definicions assignant el seu

valor corresponent al camp token segons l’ informació lèxica de la transició.

A continuació es guarda en un fitxer el nombre de tokens i el nombre d’estats (el

nombre d’elements de la TS). A continuació es guarden els diferents tokens separats

pel símbol ‘%’ i a continuació es guarden els estats.

Per cada estat primer es busca en la TS i es mira si és final (‘t’) o no (‘:’). La resta

d’informació necessària es troba en la taula de Definició. S’han de buscar les entrades

que tenen com estat origen l’estat que s’està guardant per escriure al fitxer el token i

CAPÍTOL 3. IMPLEMENTACIÓ

- 69 -

l’estat destí. S’escriu el símbol de fi de definició d’estat (-1). Quan ja s’han guardat tots

els estats s’escriu el símbol de fi de definició de l’autòmat (‘f’).

3.10.3 Procés de guardat del fitxer de posicions (PT):

Al obrir un fitxer se’ls assigna dinàmicament la posició a cada transició però això pot no

ser sempre útil per l’usuari final. L’usuari vol que quan carregui un fitxer les transicions

estiguin en la mateixa posició que on les havia col·locat ell. Com que en el fitxer en FA

no hi ha lloc per guardar aquesta informació al guardar en FA també es crea un fitxer

amb el mateix nom però amb extensió “.pt”. En aquest fitxer conté el nombre de

tokens, i a cada fila hi ha tres enters corresponents a la posició d’aparició del token, i

les seves coordenades x i y. A continuació hi ha 2 coordenades més corresponents a la

transició inicial i la transició final.

Exemple fitxer de posicions:
4
0 90 120 //token 0 té coordenades (90,120)
1 181 120
2 272 120
3 181 190
30 120 //coordenades transició inicial
615 120 // coordenades transició final

CAPÍTOL 3. IMPLEMENTACIÓ

- 70 -

3.11 Llegir autòmat per ER

La nostre aplicació ha de ser capaç carregar unes dades amb les que treballar. Ja

carrega arxius en FA però l’usuari a qui va destinada aquesta aplicació li interessa

també que es representi un autòmat a partir de la seva Expressió Regular.

Un exemple d’expressió regular que ha de poder llegir seria el següent:

<t1><t2>(<t3><t4>*<t5>+<t6>(<t7>+<t8><t9>))*(<t6>+<E>)

La sintaxis de les ER ve definida pels següents patrons:

• L’operació AND entre dos elements s’escriuen un a continuació de l’altre.

• L’operació OR s’ha d’escriure les diferents opcions entre parèntesis i separades

per l’operador ‘+’.

• Definir que un element pot repetir 0 o més vegades s’utilitza ‘*’.

• Definir que un element pot estar o no estar. Fer una operació OR amb l’element

<E>

La nostre aplicació representa l’anterior ER de la següent manera:

Resposta a les diferents operacions:

• Quan ens trobem l’operació AND s’afegeix una aresta entre els dos elements

• Quan ens trobem l’operació OR s’afegeixen arestes entre l’anterior element i el

primer element de cada una de les diferents opcions.

• Quan ens trobem l’operador de repetició ‘*’:

CAPÍTOL 3. IMPLEMENTACIÓ

- 71 -

o Si es sobre un element afegim una aresta sobre l’element i els anteriors

de l’element se’ls connecta amb per mitjà d’arestes amb els següents de

l’element.

o Si és un conjunt o element compost es creen dos transicions tipus

connector per delimitar l’inici i fi del conjunt. Per una banda es

connecten entre ells. Per l’altra els elements de dins el conjunt els

primers es relacionen amb el connector que marca l’inici i els últims

elements amb el connector que marca el final. L’element anterior al

conjunt es connecta amb el connector inicial i els elements següents al

conjunt es connectaran amb el connector final.

• Quan ens trobem un conjunt on una opció és <E> (que representa una E-

transició) els elements anteriors al conjunt es connecten amb els elements

següents del conjunt.

3.11.1 Implementació:

La classe encarregada de la càrrega del autòmat a partir d’un fitxer que conté una ER

és la classe automatsPerER.java. Aquesta classe té implementats tots els mètodes i

procediments necessaris per llegir el fitxer, interpretar-lo i crear l’autòmat.

Les expressions estan guardades en fitxers amb extensió “.txt” o “.er”. Aquest fitxer és

a seleccionat de la mateixa manera que s’ha explicat amb un objecte de la classe

JFileChooser.

Sobre aquest fitxer se aplicarà un anàlisis seqüencial amb un parell d’etapes

significatives:

Primer farem una fase de lectura de l’expressió regular i de traducció.

3.11.1.1Traducció:

Abans de començar la lectura creem una llista de transicions i afegim com a primer

element i amb ID = 0 la transició inicial. Procedim a Llegir tota l’expressió regular i per

cada element que trobem guardarem la seva informació lèxica en una transició. En una

String auxiliar anem guardant l’ER que llegim del fitxer però per evitar tenir que fer una

recerca cada vegada que es vol buscar una transició utilitzem el mateix mètode que

quan vam llegir autòmats per fitxer. On abans hi havia un element entre els símbols ‘<’

i ‘>’ i opcionalment podia tenir informació sobre la sortida del transductor, ho

canviarem per ‘<’ #posició nova transició ‘>’. Si el seu contingut era E li assignarem el

valor 0 per fer un tractament especial quan ens trobem aquests elements. Un cop s’ha

acabat la lectura afegirem a la llista de transicions la transició final. El resultat final de

la lectura serà cadena de caràcters anomenada definicioER formada pel contingut de la

cadena de caràcters que s’ha acabat de llegir entre parèntesis i se li concatena “<”+ ID

transició final+”>”

CAPÍTOL 3. IMPLEMENTACIÓ

- 72 -

D’aquesta manera la següent ER quedaria traduïda de la següent maenra:

<t1><t2>(<t3><t4>*<t5>+<t6>(<t7>+<t8><t9>))*(<t6>+<E>)

(<1><2>(<3><4>*<5>+<6>(<7>+<8><9>))*(<10>+<0>))<11>

3.11.1.2 Construcció:

La segona fase és la de construcció i s’analitza el contingut de la cadena de caràcters

definicioER amb el mètode recursiu crearAutomat(informació, anteriors). El primer

paràmetre és una cadena de caràcters amb l’ informació a processar. Anteriors és una

llista d’enters que conté les ID de les transicions anteriors a l’element que s’ha

d’analitzar. En un primer moment el mètode es crida amb

crearAutomat(definicioER,[0]). D’aquesta manera connectem l’expressió regular amb

la transició inicial. Aquest mètode retorna una cadena de caràcters que consisteix en

el resultat d’aplicar el mètode sobre el contingut del primer paràmetre.

Aquest mètode recursiu a mesura que va analitzant crea un arbre . En la següent

imatge veiem l’arbre resultant de l’anàlisi de l’anterior ER. Els elements d’un mateix

nivell se’ls ha separat amb una fletxa mostrant la direcció de l’anàlisi el qual creix en

profunditat abans d’analitzar el següent element del mateix nivell.

CAPÍTOL 3. IMPLEMENTACIÓ

- 73 -

L’algorisme que implementa el mètode és el següent:

crearAutomat(String definicio,int [] IDanteriros)

{

0. String Element = Llegim primer element

String definicioSeguent = continuació informació

1. Si és element simple

a. Afegim estats entre els elements de la llista IDanteriors i

l’identificador d’Element

b. ultimsElements = [idntificador d’Element];

c. Comprobar si el següent simbol de definicioSeguent == ‘*’

i. Si ho és afegir a la llista transicionsLoop la l’identificador

d’Element

ii. Treure simbol ‘*’ de definicioSeguent

iii. ultimsElements = ultimsElements:: IDanteriors

d. Si definicioSeguent != “”

i. String infoRetorn = crearAutomat(definicioSeguent,

ultimsElements).

e. Return Element+infoRetorn

2. Si és element compost

a. String[] SubElements = buscarElements(Element)

b. Comprobar si el següent simbol de definicioSeguent == ‘*’

i. Crear connector inici i fi

ii. Afegir estat entre inici i fi en les dos direccions

iii. Afegim estats entre els elements de la llista IDanteriors i

l’identificador d’inici

iv. IDanteriros = [identificador d’inici]

v. Cada element de llista SubElements concatenar pel final

“<”+ID fi+”>” d’aquesta manera quan s’analitzin connectaran

amb fi.

vi. EsBucle = true;

c. Analitzar SubElements

i. Si algun SubElement == “<0>”

1. Borrar subElement

2. Crear connector inici i fi

3. Afegir aresta entre inici i fi

CAPÍTOL 3. IMPLEMENTACIÓ

- 74 -

4. Afegir estats entre els elements de la llista IDanteriors

i connector inici

5. IDanteriors = [identificador d’inici]

6. Cada element de llista SubElements concatenar pel

final “<”+ID fi+”>” d’aquesta manera quan s’analitzin

connectaran amb fi

ii. subElement = crearAutomat (SubElement, IDanteriors)

d. Si definicioSeguent != “”

i. Si el conjunt és bucle

1. ultimsElements = [id fi]

ii. Sino Per cada SubElement

1. ultimsSubElements =

buscarUltimsElements(SubElements)

2. ultimsElements = ultimsElements::ultimsSubElements

3. infoRetorn = Element

iii. Si mantenirAntenirAnteriors == true

1. UltimsElements = ultimsElements::IDanteriors

iv. String infoRetorn = crearAutomat(definicioSeguent

e. Si el conjunt és un bucle

i. Return “<”+ID fi+”>”+ infoRetorn

f. Sinó

i. Return Element+ infoRetorn

}

Un cop ja hem analitzat tota l’ER regular en la variable global transicionsLoop tenim les

ID’s de les transicions que poden repetir-se 0 o més vegades (‘*’). Es recorre aquesta

llista de final a principi afegint una estat loop sobre la transició i es comprova que els

anteriors d’aquell estat estiguin connectats amb els següents d’aquell estat. Si falta

algun estat s’afegeix.

A continuació es comenten alguns punts importants de l’algorisme i s’explica els

mètodes desconeguts:

0. Llegir el primer element ens retorna un element simple o un element compost,

segons quin és l’element de més a l’esquerra de la definició.

Per exemple el primer element de :

(<1><2>(<3><4>*<5>+<6>(<7>+<8><9>))*(<10>+<0>))<11>

És: <1><2>(<3><4>*<5>+<6>(<7>+<8><9>))*(<10>+<0>)

CAPÍTOL 3. IMPLEMENTACIÓ

- 75 -

1b. En el cas d’un element simple l’anterior del seu següent és ell mateix, pel cas

que el següent símbol sigui ‘*’ (1.c) els anteriors del seu següent són ell mateix i els

seus anteriors.

1e. En un cas simple sempre no es modifica la seva informació per tant retornem

aquell element concatenat amb el resultat d’aplicar l’algorisme sobre la cadena que ve

a continuació d’aquell element.

2a. El mètode buscarElements(String) aplicat sobre un element compost retorna una

llista amb cada subElement.

2b. Si és un bucle sobre un conjunt per exemple en la ER (<a>++<c>)*

La primera opció seria representar-ho d’aquesta manera:

Per simplificar l’autòmat s’ha creat també el connector fi i s’ha concatenat a cada

subElement (2.b.v.) per obtenir un resultat més òptim

CAPÍTOL 3. IMPLEMENTACIÓ

- 76 -

2.c. quan ens trobem un SubElement “<0>” recordem que vol dir que ens trobem

davant d’una E-transició per tant des de la transició actual s’ha de poder accedir a cada

una de les diferents opcions o a cap d’elles. Per aquest motiu s’utilitzen dos transicions

de tipus connector per crear un “pont” per simular el salt unidireccional.

....(<ADV>+<E>).. �

2.c.ii. Es crea l’arbre de cada subElement i s’actualitza el seu valor pel resultat que

retorna la seva construcció. Que el mètode crearAutomat tingui com a retorn una

cadena de caràcters és per actualitzar en aquest moment cada SubElement després de

la seva construcció. Aquesta acció la portem a terme per resoldre fàcilment els casos

en que un subElement és un conjunt amb repetició de 0 o més vegades (‘*’). Quan es

crida el mètode crearAutomat sobre un d’aquest subElements el resultat de la crida és

una cadena de caràcters de l’estil “<id>” on id és el valor de l’identificador del

connector final d’aquell conjunt (2.e.i). En la resta de casos el retorn es correspon amb

el SubElement analitzat i no afecta a la resta d’anàlisis (2.f.i).

Aquest detall ens simplifica l’arbre que es construïa en profunditat d’aquesta manera.

Per l’arbre analitzat anteriorment:

CAPÍTOL 3. IMPLEMENTACIÓ

- 77 -

Queda simplificat d’aquesta manera:

Un cop s’ha creat el conjunt actual s’han de buscar els últims elements del conjunt per

continuar analitzant el següent element. Si no s’apliqués l’actualització de l’arbre al

conjunt ‘*’ que tenim a continuació de la transició <2> es passaria per paràmetre com

els elements anteriors de l’estat 10 les transicions [9,7,5,2] sense tenir en compte que

algun d’aquests pogués ser un bucle. Fent aquesta actualització les transicions

anteriors a <10> es correspon únicament a la transició connector final del conjunt

<12> simplificant-nos significativament l’autòmat.

2.d.ii.1: el mètode buscarUltimsElements(SubElement) si el subElement analitzat és

un element simple ens retorna el seu identificador, per altra banda si és un element

compost es crida recursivament fins trobar els extrems. Aquest mètode també té en

compte els conjunts amb E-transicions buscant els ultims elements de l’element

anterior.

Si tenim de l’element compost:

(<a0><b0>+(<a1>+<b1>+<c1>)+<a2><b2>(<a3><b3>+<c3><d3>+<E>))

El resultat d’aplicar buscarUltimsElements() és:

[#id <b3>, #id <d3>, #id <b2>, #id<c1>,#id <b1>,#id <a1>,#id <b0>]

CAPÍTOL 3. IMPLEMENTACIÓ

- 78 -

3.12 Guardar autòmats com ER

De les diferents opcions de guardar i llegir autòmats aquesta és la que es va decidir

que tenia menys valor perquè ja hi ha altres programes que tradueixen de format

autòmat a ER. Tot i així com que la planificació del projecte va ser l’adequada s’ha

disposat de temps just per poder realitzar l’ implementació del guardat d’autòmats

lineals en forma d’ER.

3.12.1 Requisits per poder guardar l’autòmat:

S’ha de tenir com una transició inicial perquè només es guarda les transicions i estats

de l’autòmat accessibles des de la transició inicial.

En cas que no hi hagi la transició inicial es mostra per pantalla una notificació del error.

3.12.2 Implementació:

La classe encarregada de guardar del autòmat com ER en un fitxer és la classe

automatsAER.java. Aquesta classe té implementats tots els mètodes i procediments

necessaris per llegir el fitxer, interpretar-lo i crear l’autòmat.

La ER s’aconsegueix amb cinc fases: creació l’ER , simplificació, substitució, eliminació

d’elements redundants i descodificació.

3.12.3 Fase de creació de l’expressió regular:

Per crear l’ER inicialment es recorre recursivament l’autòmat en profunditat guardant

les transicions que es troben en l’exploració de l’autòmat. S’ha implementat el mètode

crearER(id, anteriors). Aquest mètode retorna una cadena de caràcters que és l’ER. El

primer paràmetre és l’identificador del a transició que avalua. El segon paràmetre són

les transicions que ja ha visitat per detectar recursivitats i no caure en un bucle infinit.

Aquest mètode busca els estats dels quals la transició origen té la mateixa id que la

transició que s’està analitzant (primer paràmetre) i es guarda les ID’s de les transicions

destí en una llista.

CAPÍTOL 3. IMPLEMENTACIÓ

- 79 -

En cas que la transició actual sigui una transició estàndard o una transició de tipus

connector la cadena de caràcters que retornem li afegeim “<”+id+”>”.

A continuació per cada element de la llista en cas que no hagi estat ja analitzat es fa

una crida recursiva a aquest mètode, el seu retorn es concatenarà amb la cadena de

caràcters del retorn. Si es té més d’un element en la llista el seu retorn es guarda entre

parèntesis i separat per l’operador suma.

Si ens trobem un element que ja ha estat analitzat ens trobem davant d’un bucle. En

aquest cas guardem l’identificador de l’inici del loop amb un asterisc (“<?”+id+”>”) per

diferenciar del cas base. D’aquesta manera tenim el loop acotat i amb la referència

amb l’identificador d’ on comença.

Si l’element que ens trobem és la transició final s’afegeix el token “<E>”que s’utlitzarà

pel tractament dels casos de transicions opcionals.

Per exemple el següent autòmat que equival l’ER:

<t1><t2>(<t3><t4>*<t5>+<t6>(<t7>+<t8><t9>))*(<t10>+<E>)

L’ER resultant d’aplicar aquesta primera fase és la següent:

ER1:

<1><2><12>(<3>(<4><4>*<5><13>((<10>+<E>))+<5><13>((<10>+<E>)))+<6>(<7><13>((

<10>+<E>))+<8><9><13>((<10>+<E>)))+<13>((<10>+<E>)))

Pel cas de (<DET><NPROP><VPRED>)(<DET><NPROP><VPRED>)*<N> :

CAPÍTOL 3. IMPLEMENTACIÓ

- 80 -

L’ER resultant d’aplicar aquesta primera fase és la següent:

ER2: <1><2><3>(<4>+<*1>)

3.12.4 Simplificació:

El procés de simplificació correspon a treure el màxim factor comú possible de l’ER.

Aquest procés es porta a terme amb el mètode simplificar(String) el qual va recorrent

l’ER i quan es troba un conjunt crida el mètode PosarComu(llista SubElements).

El mètode PosarComu calcula els últims elements de cada subElement. Els

subElements que tenen la mateixa terminació els torna a posar en comú sense el seu

últim element el qual queda aïllat. Aquest mètode també simplifica si tenim una

repetició i una E-transició en un mateix conjunt. Als elements aïllats se’ls aplica el

mètode simplificar sobre ells per simplificar tota l’ER d’una forma recursiva.

El mètode simplificar simplifica els elements en ordre d’aparició. Elements que en un

primer moment no poden ser posats en comú al ser simplificats si que ho poden ser.

Per aquest motiu l’ER inicial és simplificada tantes vegades com és necessari fins que el

resultat de dos iteracions és identic.

Exemple d’aplicació del mètode posarComu(llista subElements):

Amb els subelements:
 [<3>(<4><4>*+<E>)<5><13>(<10>+<E>), <6>(<7>+<8><9>)<13>(<10>+<E>)]

El resultat de posar-ho en comú és:

(<3>(<4><4>*+<E>)<5>+<6>(<7>+<8><9>))<13>(<10>+<E>)

Exemple d’aplicació del mètode simplificar(String):

ER1:

<1><2><12>(<3>(<4><4>*<5><13>((<10>+<E>))+<5><13>((<10>+<E>)))+<6>(<7><13>((

<10>+<E>))+<8><9><13>((<10>+<E>)))+<13>((<10>+<E>)))

Primera iteració:

<1><2><12>(<3>(<4><4>*+<E>)<5><13>(<10>+<E>)<E>+<6>(<7>+<8><9>)<13>(<10>+

<E>)<E>)

Segona iteració:

CAPÍTOL 3. IMPLEMENTACIÓ

- 81 -

<1><2><12>(<3>(<4><4>*+<E>)<5>+<6>(<7>+<8><9>))<13>(<10>+<E>)<E>

3.12.5 Substitució:

La fase de substitució s’encarrega de substituir els connectors per bucles i d’eliminar

els elements redundants.

La fase de substitució consta de dos parts: creació de bucles, tractament de

connectors

3.12.5.1 Creació de bucles:

Inicialment al crear l’ER inicial quan ens trobàvem un bucle afegíem a la ER l’element

<*id> per fer el seu tractament en aquest apartat. Per diferenciar una transició normal

d’un bucle utilitzem el símbol ‘*’, el valor de id correspon al identificador de la transició

des d’ on comença el bucle. Es recorre la cadena de caràcters buscant aquests

elements i copiem la subcadena de caràcters corresponent entre l’element <*id> i <id>

aquest últim inclòs. Aquesta subcadena conté tots els elements que es repeteixen dins

el bucle. Li afegim els símbols “(“+subcadena+”)*” per guardar la repetició del conjunt.

S’ha de tenir en compte que els element <*id> poden formar part d’un conjunt. En

aquests casos la subcadena és limitada per l’inici del conjunt on està inclòs <*id>.

Exemple de creació de bucles:

ER2: <1><2><3>(<4><E>+<*1>)

<*1> marca un bucle des de la transició <1> fins ella.

El resultat d’aplicar la substitució equival a:

<1><2><3>(<1><2><3>)*(<4><E>)

3.12.5.2 Tractament de connectors:

Al crear inicialment l’ER regular quan s’analitzava un connector aquest es guardava per

dos motius. Per una banda s’han de guardar per la part de creació de bucles per

resoldre els casos que una transició crea un bucle connectant-se amb un connector.

CAPÍTOL 3. IMPLEMENTACIÓ

- 82 -

L’altre motiu perquè els guardem és per crear la repetició de conjunts. La repetició de

conjunts ve determinada per dos connectors connectats entre ells amb transicions que

va d’un a l’altre.

La manera de representar (<t1>+<t2>)* és:

El resultat de crear l’ER i simplificar-la és: <4>(<1>+<2>)<5>

Les transicions <4> i <5> són els connectors que delimiten el conjunt que es repeteix.

El mètode actualitzarConnectors(String) busca els connectors que representen

aquesta estructura. Quan els troba seleccionen ER que hi ha entre ells dos i els hi

afegeix el símbol de repetició (‘*’)

Resultat d’aplicar actualitzarConnectors(String): (<1>+<2>)*

 Al convertir aquell conjunt en una repetició si un dels subElements és la E-transició

(<E>) és redundant. Es fa una crida al mètode treureERedundant(String) que

s’encarrega de retornar la cadena sense aquell subElement en cas de contenir-lo.

El resultat del tractament de ER1 és:

<1><2>(<3>(<4><4>*+<E>)<5>+<6>(<7>+<8><9>))*<14>(<10>+<E>)<15>

3.12.6 Eliminació d’elements Redundants:

Fins aquest punt al crear l’ER al trobar-nos amb una repetició l’ informació a priori que

sabíem era que es repetia 1 o més vegades. Aquestes altures de la simplificació l’ER ja

és compacte i és simplifiquen els conjunts que representen la repetició d’un element

cap o més vegades:

El mètode buscarElementsSimplificar(Cadena) busca la següent subcadena dins la

cadena de caràcters:(<X><X>*+<E>). Les subcadenes trobades les redueix a la seva

mínima expressió: <X>*

El resultat del tractament de ER1 és:

CAPÍTOL 3. IMPLEMENTACIÓ

- 83 -

<1><2>(<3><4>*<5>+<6>(<7>+<8><9>))*<14>(<10>+<E>)<15>

3.12.7 Descodificació:

Aquesta fase rep l’ER ja construïda i simplificada per retornar-la traduïda per les

transicions que representa. Per cada element que parseja <id> busca la transició que té

associada aquella id. En cas que sigui un connector la seva utilitat era per guardar la

referència per possibles bucles. L’informació que aporta és nul·la per tant no es

substitueix per una cadena buida.

Quan la transició en qüestió és de tipus estàndard l’element se’l substitueix per la seva

informació lèxica. El cas de les E-transició és invariant.

El resultat d’aplicar aquesta fase a la següent ER corresponent a

 ER2: <1><2><3>(<1><2><3>)*<4>

Correspon a: <DET><NPROP><VPRED>(<DET><NPROP><VPRED>)*<N>

CAPÍTOL 3. IMPLEMENTACIÓ

- 84 -

3.13 Opcions complementaries:

Una bona aplicació es caracteritza per portar a terme correctament l’objectiu pel qual

ha estat implementada. La nostra aplicació permet crear i editar gramàtiques

electròniques així com guardar l’ informació i carregar-la . Els objectius del projecte ja

estan assolits però s’han implementat unes quantes funcionalitats complementaries

amb la finalitat de proporcionar a l’usuari final una eina més complerta.

S’ha analitzat les possibles optimitzacions que es podien implementar i el temps

disponible per fer la selecció de les opcions que s’han afegit a l’aplicació.

3.13.1 Desfer l’últim canvi realitzat.

L’usuari que treballa amb l’aplicació pot realitzar una acció amb un resultat que no és

el desitjat. S’ha considerat de gran utilitat oferir a l’usuari la possibilitat de desfer

l’últim canvi realitzat. Aquesta aplicació per fer moltes operacions així com afegir i

esborrar estats i transicions, modificar la seva informació lèxica o etiqueta, canviar de

posició, etc.

Realment el que s’ha considerat primordial ha estat l’aspecte sobre el tema de poder

tornar endarrere en el cas que l’usuari elimini un element per equivocació. El pitjor

escenari seria el cas d’eliminar per equivocació una transició la qual té connectades

varis estats, l’usuari a part d’afegir de nou la transició hauria de recordar-se de tots els

estats que la connectaven amb altres transicions amb la conseqüència de

possiblement oblidar-se algun. Per aquest motiu l’opció de desfer l’últim canvi només

tracta el context d’inserció i eliminació d’elements i desfer l’últim canvi que s’ha

desfet.

S’ha implementat la classe Desfer.java per encarregar-se d’emmagatzemar

l’informació necessària i encarregar-se de fer els canvis sobre l’escena. Al constructor

d’aquesta classe se li passa per paràmetre la referència a l’objecte ZonaDibuix (escena)

sobre el qual treballarà.

Aquesta classe utilitza una variable entera anomenada “opció” que s’utilitzarà per

determinar quina és l’opció que s’haurà de portar a terme en el cas que l’usuari vulgui

desfer l’últim canvi. Aquesta variable pot prendre cinc valors diferents:

0 = no fer cap acció.
1 = Afegir transició i estats.

CAPÍTOL 3. IMPLEMENTACIÓ

- 85 -

2 = Afegir estats.
3 = Eliminar transició i estats.
4 = Eliminar estats.

Per guardar l’ informació necessària la classe té les següents variables internes: un

objecte Caixa on es guarda l’última transició eliminada. Una llista d’Arestes on es

guarden els estats eliminats en l’última acció, s’utilitza una llista perquè el cas

d’eliminar una transició que té varis estats s’han de guardar tots. També tenim una

variable entera que ens diu el nombre d’arestes que s’han afegit (NNousEstats). Com

que els elements s’afegeixen al final de la llista només hem de saber el nombre

d’estats que s’ha afegit per eliminar tots aquells elements.

La classe conté un únic mètode que s’encarrega d’escollir quina acció portar a terme

segons el valor de la variable interna “opcio”.

Pel cas “Afegir transició i estats” afegeix la transició i estats que tenim guardats en les

variables internes de la classe a les seves respectives llistes de l’objecte zonaDibuix.

Canviem el valor d’opció per 3 i NNousEstats se li assigna el valor d’estats que s’han

afegit.

La resta de casos tenen un tractament semblant amb el propòsit d’afegir o eliminar

l’últim estat eliminat o d’eliminar la transició. En el cas d’eliminar la transició només

s’ha d’eliminar l’últim element de la llista de transicions (abans s’ha de copiar en la

variable interna de la classe per poder tornar endarrere).

Cada objecte ZonaDibuix té una variable interna que és un objecte de la classe

Desfer.java. Cada vegada que s’afegeix o s’elimina un element de l’escena es modifica

el valor de la variable “opció”. En el cas d’eliminar un estat o una transició aquests es

guarden en l’objecte Desfer per tenir-lo preparat per desfer l’última acció en qualsevol.

S’ha afegit aquesta opció a la barra de menú perquè l’usuari la trobi fàcilment. Quan

l’ítem és seleccionat es crida el mètode desferCanvi() de l’escena que està

seleccionada el qual s’encarrega d’avisar a l’objecte DesferCanvi.

Transicions compostes

Fins aquest moment les transicions que permetíem representar eren simples doncs

estaven definides per una única informació lèxica. Per anar d’un estat a un altre ens

podíem trobar amb varies transicions que representaven la mateixa paraula o

expressió però que tenien una informació lèxica diferent per suplir tots els casos

possibles. L’objectiu de les transicions compostes es ajuntar totes aquestes transicions

amb contingut específic en una transició més general. Les transicions compostes són

una manera de simplificar l’autòmat que s’està editant. Per ser més precisos una

CAPÍTOL 3. IMPLEMENTACIÓ

- 86 -

transició composta és una transició que dins seu conté varies informacions lèxiques

resultants de fusionar el contingut de dos o més transicions en una mateixa transició.

D’aquesta manera se’ns redueix enormement el nombre d’estats doncs al fusionar les

transicions la transició composta resultant té l’ intersecció dels seus estats. Dos estats

es simplificaran si els dos tenen com origen la seva respectiva transició però el seu

destí apunta a una mateixa transició, i a l’inversa.

3.13.2.1 Crear transicions compostes:

Primer de tot s’han hagut de fer canvis en la classe Caixa.java on hem hagut de canviar

la cadena de caràcters que contenia l’ informació lèxica, per una llista de cadenes de

caràcters per poder emmagatzemar totes les informacions que pugui tenir la transició.

També hem creat el mètode CheckAndAddSubtransicio (Caixa transicioSimple).

Aquest mètode de la classe rep per paràmetre l’objecte tipus Caixa amb el qual es vol

comprovar si es correcte permetre la fusió entre les dos transicions i retorna un booleà

amb el valor true en cas positiu.

Perquè una fusió entre dos transicions sigui vàlida s’han de complir una sèrie de

condicions: primer es comprova l’ informació del camp forma canònica on en cas que

les dos transicions tinguin un valor definit aquest ha de coincidir. En cas que només un

de les dos transicions estigui instanciada se li assigna aquest valor l’altra transició.

L’altre transició que s’ha de duu a terme es comprovar que la sortida dels transductors

és estricament igual. En aquest cas o les dos transicions no tenen el camp definit o sinó

aquest ha de coincidir.

CAPÍTOL 3. IMPLEMENTACIÓ

- 87 -

Aquest mètode també s’encarrega d’afegir l’ informació de la transició passada per

paràmetre a la transició des d’ on es produeix la crida del mètode, en el cas que sigui

vàlid fer la fusió.

Per poder fusionar transicions s’ha afegit un nou ítem a la barra d’eines per portar a

terme aquesta operació. Aquest ítem treballa com la resta d’elements de la barra

d’eines. Quan es seleccionat li assigna un nou valor a la variable “opció” de l’objecte

ZonaDibuix de l’escena actual.

Amb aquesta nova opció quan es faci clic en l’escena buscarà si en aquella posició si

troba una transició, en cas afirmatiu s’assigna el valor true al camp “seleccionat” de la

transició perquè aquesta es vegi d’un color diferent i l’usuari observi fàcilment la seva

selecció.

També es guarda la posició de la transició dins la seva llista en la variable index_juntar

quan es selecciona el primer element i en la variable index_llista quan es fa la segona

selecció.

En cas que s’hagi fet clic sobre el mateix element o les dos transicions no són de tipus

“normal” el que fem es desseleccionar-les. En altre cas cridem el mètode

CheckAndAddSubtransicio(Caixa) des de l’última transició seleccionada. Si el resultat

és true eliminem l’altra transició i desseleccionem l’element. En cas contrari

simplement desseleccionem les dos transicions.

3.13.2.2 Tractament dels estats al fusionar dos transicions simples en

una transició composta:

Quan es va decidir que fer amb els estats que tenien relació amb alguna de les

transicions involucrades en la fusió es va arribar a dos solucions. Una solució era no

permetre la fusió entre dos transicions a no ser que com a mínim una dels dos no

tingués cap estat. L’altre solució era permetre fusions de transicions que tenen varis

estats.

Per raons de programació hauria estat molt més fàcil d’implementar la primera opció,

però es va pensar cara l’usuari final i es va decidir la segona opció. La raó d’aquesta

decisió va ser per millorar la comoditat de treball de l’usuari. D’aquesta manera podrà

fusionar transicions tan bon punt són acabades de crear com si s’ha estat treballant

amb elles (i poden tenir varis estats que en depenen) i ara s’ha donat compte que les

vol ajuntar.

Per implementar això s’ha implementat el mètode canviarEstatsdeTransicio (oldID,

newID, xIniciTransicio, xFiTransicio, y). Igual que anteriorment havíem ajuntat tota

CAPÍTOL 3. IMPLEMENTACIÓ

- 88 -

l’informació en una mateixa transició, en aquest cas totes les transicions de la primera

transició seleccionada (“Old”)se li afegeixen a la segona transició (“new”). Els estats

que compartien entre elles dos són eliminats així com els estats que si es canvia algun

dels extrems es converteix en un estat repetit.

Per fer aquestes operacions recorrem amb un bucle la llista llistaArestes de final a

principi per no tenir problemes d’indexació al eliminar estats per alguna de les raons

anteriors. Per cada estat mirem si algun dels extrems té la ID de la transició “old”. En

cas de coincidència es comprova que l’altre extrem de la transició no sigui de la

transició “new”. També comprovem amb el mètode checkArestaRepetida(IDinici, IDfi)

si actualitzem l’extrem que li tocaria si estaríem creant una aresta repetida. Aquest

mètode recorre tota la llista llistaArestes buscant la coincidència amb una aresta que

tingui les mateixes transicions per extrems. En cas de passar les dos comprovacions el

valor de la ID d’inici o de fi (segons l’extrem involucrat) se l’assigna el valor de la ID

“new”. Amb els paràmetres xIniciTransicio, xFiTransicio i y situem l’extrem al seu lloc, i

a continuació actualitzem les posicions del rectangle de control i menú de l’estat.

En cas de no passar alguna de les comprovacions es procedeix a eliminar l’estat de la

llista però abans amb els mètodes borrarArestaInici(aresta.getIDInici()) i

borrarArestaInici(aresta.getIDInici()) ja utilitzats en l’eliminació d’estats i transicions,

es decrementa el comptador d’estats dels extrems de la transició que es troba a l’altre

extrem de l’estat que s’està a punt d’esborrar.

En cas que l’aresta no tingui en els extrems la transició “old” es mira si té la transició

“new” en aquest cas actualitzem la posició d’inici i fi de la transició per situar

correctament els extrems de l’estat ja que ara la transició és més llarga.

3.13.2.3 Separar transicions composta:

Al decidir que es dona a l’usuari l’opció de ajuntar transicions en una amb més

informació, també es va decidir que seria interessant permetre fer l’operació

complementaria. L’opció de separar transicions s’accedeix fent clic amb el botó dret

sobre una transició. Amb aquesta acció apareix el menú emergent que vam explicar al

qual li hem afegit la nova opció.

Quan el oient d’Events de la classe PopupListener.java captura l’event llençat per la

selecció d’aquesta opció, fa les següents operacions: primer guarda la caixa

seleccionada en una variable local i comprova si la llista d’informació té més d’un

element. Si n’és el cas es recorre la llista creant un objecte de tipus Caixa per cada

informació de la llista menys el primer que s’aprofita la transició existent. Perquè no es

superposin totes les noves transicions guardem les coordenades x i y de la transició

CAPÍTOL 3. IMPLEMENTACIÓ

- 89 -

original i per cada transició nova li assignem aquelles coordenades sumades a una

constant. Aquestes transicions que s’acaben de crear les afegim a la llista on estan la

resta de transicions .

Un cop ja hem creat les noves transicions es creen nous estats per proporcionar a cada

nova transició la mateixa connectivitat que tenien quan estaven agrupades. Coneixem

el número de noves transicions, ja que correspon al nombre d’elements que tenia la

llista d’informació de la transició menys 1 (NnousEstats). El mètode que crea aquests

nous estats és el següent: AfegirArestesSeparar(ID, NnousEstats) on ID és el valor de

l’identificador de la transició inicial.

Aquest mètode recórrer la llista d’Estats buscant transicions que en algun dels extrems

es trobi la transició amb la que estem treballant. Per cada estat que trobem recorrem

un bucle de 0 a N-1 iteracions on N és el número de nous estats (segons el valor del

segon paràmetre de la funció). En cada iteració seleccionem la transició que tenim en

la posició que concorda amb el valor de la iteració començant pel final de la llista de

transicions. Aquestes transicions corresponen a les transicions que havíem creat noves

i les hi assignem a l’extrem del nou estat en el qual l’estat original s’hi trobava la

transició inicial. En tots els casos hem d’incrementar els comptadors d’estats de les

transicions que es troben als extrems dels nous estats.

Per evitar fer una iteració innecessària en l’ inserció d’estats recordem que de la

transició original havíem buidat la llista d’informació i li havíem deixat únicament un

element. Com que la transició ha canviat de mida s’ha de situar els seus estats al nou

centre de la transició. Per fer aquesta operació utilitzem de la classe ZonaDibuix el

mètode

actualitzarExtremsEstat(IDtransicio,xIniciTransicio,xFiTransicio,yCentreTransicio).

Aquest mètode busca els estats que tenen en algun extrem la transició i actualitza les

coordenades del extrem a la seva nova posició.

3.13.2.4 Modificacions en la finestra de Propietats de la transició:

En els casos que la llista d’informació de la transició només té un element no hi ha cap

canvi respecte el que ja s’ha escrit, la cadena de caràcters que s’analitza per omplir els

camps de la finestra emergent és l’únic element de la llista.

El dilema era com mostrar els diferents elements d’una transició composta en el panell

d’actualització. En un darrer moment es va decidir que la manera més òptima era

preguntant a l’usuari amb una finestra emergent quin element vol modificar.

CAPÍTOL 3. IMPLEMENTACIÓ

- 90 -

Per mostrar la finestra emergent una vegada fem ús de la classe JOptionPane i en

aquest cas el panell que mostrem simplement conté un Label i un JComboBox amb N

ítems on N és la mida de la llista d’informació.

Un cop feta la selecció del JComboBox s’utilitza el valor de l’índex de l’opció

seleccionada per determinar quina element de la llista d’informació de la transició és el

que es separa per omplir els camps de la finestra emergent que mostrem.

En cas de que l’usuari realitzi canvis tenim present que la forma i la sortida del

transductor són comunes per totes els elements de la transició per tant si es

produeixen canvis també se’ls assigna el nou valor d’aquests camps a la resta

d’elements.

3.13.2.5 Permetre transicions heterogènies:

Nosaltres hem posat la restricció que si dos transicions no tenen la mateixa forma

canònica i la mateixa sortida de transductor no es poden fusionar. S’ha escollit

aquesta restricció perquè quan es fusionen dos transicions és perquè són la mateixa

paraula (mateixa forma canònica) però la resta d’informació és diferent i es vol

simplificar l’autòmat.

Tot i així s’ha implementat l’opció de permetre transicions heterogènies (forma

canònica diferent) perquè sigui l’usuari final qui tingui el criteri de fusionar transicions

coherentment.

Una variable booleana determina el grau si fem una fusió estricte és a dir que no

permet transicions heterogènies o no. En cas que es permeti és salta la part de codi

referent a la comprovació de la compatibilitat del a forma canònica.

S’ha afegit un nou ítem a la barra de menú anomenat “Transiciones heterogeneas:

Des/Activado”. Cada vegada que es selecciona és nega el valor de la variable booleana

que determina el tipus de fusió.

En cas que estigui aquesta opció activada, si canviem el camp forma canònica d’un

element d’una transició complexa la forma canònica de la resta d’elements de la

transició no són actualitzats.

3.13.3 Guardar autòmat com imatge

CAPÍTOL 3. IMPLEMENTACIÓ

- 91 -

L’usuari pot voler guardar l’autòmat que ha dissenyat en un format visual per poder-lo

afegir en presentacions o informes. Per aquest motiu s’ha implementat l’opció que

permet a l’usuari guardar l’autòmat com una imatge.

A l’usuari se li mostrarà la finestra emergent perquè determini el nom del fitxer i la

ubicació on el vol guardar. A continuació se li mostrarà una altra finestra perquè esculli

en quin format vol guardar l’ imatge. L’usuari podrà escollir entre els formats de

codificació d’imatges més comuns: bmp, gif, jpg, jpeg i png.

S’ha afegit el mètode guardarImatge(fitxer , format) a la classe ZonaDibuix. Aquest

mètode s’encarrega de guardar la representació de l’escena en el fitxer que havia

determinat l’usuari en el format seleccionat.

El procés es ben senzill, es crea una variable local de tipus BufferedImage :

BufferedImage imatge = new BufferedImage(width,height,

 BufferedImage.TYPE_INT_RGB);

El width i el height venen determinats per l’àrea de l’escena, el tercer paràmetre indica

com volem que sigui la imatge, en el nostre cas utilitzem 8 bits en RGB.

Aquest objecte es converteix en un Graphic2D

Graphics2D g = (Graphics2D)imatge.getGraphics();

Sobre el qual es representa l’escena recreant la mateixa estructura i procediment

implementats en el mètode paint. Es a dir representem l’escena però no sobre

l’objecte Graphics que utilitzem per mostrar per pantalla sinó sobre el que hem creat.

Per últim guardem la imatge en el fitxer utilitzant el mètode d’escriptura de la classe
ImatgeIO : ImageIO.write(g, format, fitxer);

3.13.4 Escollir colors dels elements de l’escena:

S’ha decidit oferir a l’usuari la possibilitat de canviar el colors dels elements de l’escena
com el fons, el color dels estats i transicions, el text, etc. Perquè puguin personalitzar
els seus autòmats de la manera que més els agradi.

S’ha creat una classe anomenada Format.java que conté com a variables internes
diferents colors pels diferents elements de l’escena. S’ha afegit un objecte d’aquesta
classe com a variable interna de la classe ZonaDibuix.java.

CAPÍTOL 3. IMPLEMENTACIÓ

- 92 -

En el mètode paint abans de dibuixar cada element es busca el color que el representa
de l’objecte Format. D’aquesta manera cada escena que tenim oberta en pestanyes
diferents té els seus propis colors.

L’avantatge d’haver centralitzat tots els colors en una classe és la comoditat per fer
modificacions. Per canviar un color d’una escena només hem de modificar el valor de
les variables internes de l’objecte Format de l’escena.

Hem implementat la classe CanviarColors.java que s’encarregarà de mostrar les
diferents opcions de canvi de colors i aplicar els canvis. Se li passa al constructor
l’objecte ZonaDibuix sobre el qual treballarà.
Aquesta classe s’encarrega de mostrar un panell amb tants botons com diferents
elements de l’escena que se’ls pot canviar el color. El color de fons de cada botó és el
color que té assignat aquell element.

L’API de Java proporciona gran quantitat de classes interessants amb mètodes molt
útils. En aquesta situació disposem de la classe JColorChooser que ens ofereix un
magnífic panell de selecció de colors.

CAPÍTOL 3. IMPLEMENTACIÓ

- 93 -

El tractament amb aquesta classe és molt intuïtiu. Només s’ha de controlar que l’opció
seleccionada sigui la d’Acceptar i en aquell cas el mètode getColor() retorna el color
seleccionat per l’usuari. L’únic que hem d’implementar nosaltres és un control de quin
botó ha seleccionat l’usuari i assignar el color desitjat a la variable corresponent de la
classe Format.

L’avantatge d’haver passat per paràmetre l’objecte ZonaDibuix al constructor és que
després de canviar cada color actualitzem l’escena actual d’aquesta manera es van
visualitzant els canvis a mesura que es van fent enlloc d’haver d’esperar fins haver
acabat.

El panell que proporciona la classe JColorChooser és molt complert. S’ha trobat
innecessari i poc estètic la part inferior del panell referent a vista prèvia perquè quan
seleccioni un color l’usuari ja observarà els canvis. També s’ha considerat redundant la
tercera pestanya (RGB) perquè l’usuari no es posarà a escollir el color de les transicions
segons el seu valor RGB sinó que escollirà millor un color dels altres dos panells. El
panell de vista prèvia i la pestanya RGB s’han eliminat perquè es vol oferir a l’usuari un
panell de selecció de colors útil, senzill i còmode. Si donés el cas que l’usuari volgués
seleccionar uns colors RGB determinats tampoc és indispensable la pestanya 3 perquè
pot introduir els valors en la pestanya HSB.

La classe JColorChooser és molt interessant i molt flexible perquè així com podem
treure-li algun panell si no ens interessa també permet afegir-ne d’altres creats per
nosaltres.

3.13.5 Afegir etiquetes als estats:

Les transicions es diferencien entre elles perquè cada una se li defineix una informació
lèxica determinada. Per altra banda els estats són tots iguals i només se’ls reconeix per
la connexió entre transicions que realitzen. S’ha afegit l’opció d’assignar una etiqueta a
cada estat.

La funcionalitat d’aquestes etiquetes és simplement perquè l’usuari s’orienti mentre

està treballant. Amb les etiquetes pot guardar informació que l’ajudi a l’hora de crear

l’autòmat com una mena de recordatoris o notes.

Fent clic amb el botó dret sobre el menú de l’estat s’ha afegit una nova opció al seu

menú per instanciar i modificar el valor de l’etiqueta.

CAPÍTOL 3. IMPLEMENTACIÓ

- 94 -

3.13.6 Manual d’usuari

S’ha afegit a l’aplicació un manual d’usuari per resoldre els possibles dubtes de

funcionament de l’aplicació que puguin tenir els usuaris.

Després de varies idees s’ha decidit que la manera més elegant i ràpida de crear un

element que contingui aquesta informació seria a través d’un document html. Els

documents web són fàcils de crear amb molta flexibilitat en quan a l’organització del

contingut.

Un cop creat el document html s’han valorat diferents maneres de mostrar-lo al usuari.

Per utilitzar altres elements de l’ordinador Java ens proporciona la classe Runtime.

Aquest mètode depèn de la plataforma sobre la que treballa el programa i els

navegadors que l’usuari té instal·lats. S’ha decidit fer una implementació diferent per

assegurar-nos que cap usuari no es quedi sense poder accedir al manual d’usuari.

S’ha utilitzat la classe JEditorPane que és un editor de text capaç d’editar varis tipus de

contingut. Aquest component utilitza l’ implementació d’un objecte EditorKit per

treballar correctament amb diferents tipus de contingut. Els diferents tipus de

contingut que coneixen per defecte són text pla, documents en format rtf i html.

Amb JEditorPane combinat amb EditorKit amb poques línees de codi tenim l’aplicació

preparada per mostrar per pantalla un panell amb el nostre document html.

El JEditorPane per defecte permet editar el document que obre però en aquest cas no

ens interessa per tant en deshabilitem l’opció.

Per carregar el document html s’utlitza el mètode setPage(String url). El manual

d’usuari és relativament breu però tot i així ocupa més d’una pàgina. L’editor no

proporciona una barra de desplaçament per tant no es veu per pantalla tot el

contingut del document a no ser que posem l’objecte JEditorPane dins un JScrollPane

el qual s’encarrega d’afegir i gestionar les barres de desplaçament.

3.13.7 Conversió a Applet

Un dels objectius secundaris del projecte demanava l’opció de convertir l’aplicació en
un applet de Java perquè es pogués afegir a un document web. Com que el nostre codi
estava molt ben organitzat fer aquesta implementació ha estat realment senzilla
utilitzant una classe que fa d’interfície.

CAPÍTOL 3. IMPLEMENTACIÓ

- 95 -

Per crear un applet de Java s’ha de crear una classe que sigui derivada de la classe
Applet. Aquesta classe ha tenir com a mínim el mètode init(). Aquest mètode realitza
una crida al constructor de la classe Main per obrir el programa en un frame.

Aquesta és la part referent a la codificació. S’ha d’exportar el nostre projecte com un
arxiu JAR. Per afegir l’ Applet a una pàgina web s’ha d’afegir el següent tag al body del
document html.

<APPLET
 CODEBASE = "."
 CODE = "GeneradorApplet.class"
 ARCHIVE = "applet24.jar"
 NAME = "Generador Gramaticas electronicas"
 WIDTH = 400
 HEIGHT = 300
 HSPACE = 0
 VSPACE = 0
 ALIGN = middle
>
</APPLET>

Els diferents atributs del tag <APPLET> tenen el següent significat:

• CodeBase: Determina la direcció des d’ on es pot descarregar la classe de Java
que va a carregar l’applet, la URL de la classe. Si no s’especifica és l’ ubicació
actual de la pàgina web.

• Code: Fa referència a la classe de l’arxiu JAR que és derivada de la classe Applet
i que té el mètode init(). La direcció és relativa al CodeBase.

• Archive: És la llista de classes separades per comes que han de ser carregades a
la caché per l’usuari local abans de poder executar-se.

• Name: Estableix un nom únic per l’ Applet

• Width i height: determinen la mida en píxels de l’amplada i l’altura.

• HSpace i WSpace: estableix els marges laterals, superiors i inferiors en píxels.

• Align: Determina l’alineació respecte els altres elements.

Quan la pàgina web es carregada, s’executa l’ Applet i apareix la nostra aplicació com
una finestra emergent. El problema de l’ Applet és que si es tanca el navegador
l’Applet es tanca brutament sense donar la possibilitat de guardar els canvis. Per
aquest motiu l’usuari ha d’anar en compte si treballa via navegador web i es recomana
descarregar l’aplicació.

CAPÍTOL 3. IMPLEMENTACIÓ

- 96 -

- 108 -

Capítol 4

Conclusions

El resultat final d’aquest projecte és una eina gràfica multiplataforma de creació i

edició de gramàtiques electròniques per representar el Llenguatge Natural.

L’eina fusiona comoditat i utilitat amb la perspectiva de satisfer a tots els usuaris. L’

interfície gràfica està organitzada amb l’estructura més òptima perquè l’usuari es trobi

còmode treballant-hi. S’han implementat les millors opcions possibles per

proporcionar a l’usuari fluïdesa i comoditat a l’hora de crear autòmats. També s’han

assolit els objectius d’emmagatzemament dels autòmats creats en Format Autòmat

(FA) i Expressió Regular (ER) així com la carrega de documents en aquest format.

4.1 Destí de l’aplicació:

És una eina destinada a ser utilitzada per lingüistes per tant se li ha donat especial

importància a crear una interfície gràfica de fàcil ús per gent amb pocs coneixements

informàtics.

És una eina transparent per l’usuari ja que el programa en tot moment els guia en les

diferents tasques de generació de l’autòmat. S’ha utilitzat una variant de la

representació estàndard d’autòmats per un format de representació més visual on les

transicions són “caixes” que contenen informació lèxica. Els lingüistes estan més

familiaritzats amb aquesta representació perquè l’ informació és plasmada d’una

manera més gràfica i no han de tenir gaires coneixements sobre l’estructura dels

d’autòmats per representar les gramàtiques electròniques.

Aquesta aplicació serà utilitzada en el marc del projecte de recerca Spanish FrameNet

Project en la generació i edició de diferents transductors per representar diferents

estructures del Llenguatge Natural.

També serà utilitzada en els laboratoris de Lingüística informàtica del departament de

Filologia Espanyola de la UAB amb el mateix propòsit.

CAPÍTOL 4. CONCLUSIONS

- 96 -

4.2 Edició d’autòmats:

Per una banda l’usuari disposa de les eines necessàries per crear i modificar autòmats.

S’ha afegit a la barra d’eines les principals opcions que l’usuari necessitarà alhora de

treballar com icones representatives de la seva funcionalitat per oferir una aparença

més elegant. En cas de dubte sobre l’ utilitat de cada eina mantenint el cursor sobre

apareix una breu descripció. L’usuari en qualsevol moment pot recórrer al manual

d’usuari que porta incorporat l’aplicació on trobarà la resposta a qualsevol dubte sobre

l’ utilització i les capacitats de l’aplicació.

Les opcions de la barra d’eines proporcionen un gran potencial a l’aplicació perquè

estan orientades a l’edició de gramàtiques electròniques. Quan s’afegeix una transició

l’usuari no ha preocupar-se de respectar l’estructura que han de tenir les diferents

paraules del corpus. L’eina proporciona a l’usuari un panell on escollir l’ informació

lèxica de cada camp de forma excloent per eliminar errors de sintaxi. Com que els

camps que especifiquen una paraula són finits l’usuari només ha d’escollir l’opció que

desitja d’una llista desplegable eliminant errors d’ortografia. Amb aquest procés tan

guiat l’usuari ja no perdrà el temps depurant problemes que tenia amb els seus

autòmats per errors de sintaxi o ortogràfics produïts en la seva especificació. S’ha

tingut en compte que l’usuari en un moment determinat pot voler canviar l’ informació

lèxica d’una paraula. Per evitar obligar-lo a eliminar la transició i afegir una nova amb

el contingut actualitzat comportant possibles problemes d’omissió d’estats que

canviarien l’autòmat per culpa del comú oblit, es proporciona a l’usuari l’opció

d’accedir a un panell amb tota l’ informació lèxica estructurada en els seus diferents

camps perquè la pugui modificar còmodament sobre la mateixa transició.

La figura de l’estat en aquests autòmats és tant simple com una aresta entre

transicions. S’han afegit petits rectangles als seus extrems per oferir una millor

visualització de l’autòmat. També se’ls ha proporcionat un rectangle situat al centre

del segment per poder seleccionar millor l’estat. Aquest rectangle és de gran utilitat

entre altres coses per modificar la curvatura de l’estat ja que permet seleccionar-lo

fàcilment enlloc de perdre temps intentant seleccionar una línea que té menys

superfície. Aquest rectangle central també s’utilitza per mostrar el menú d’aquell estat

quan es seleccionat amb el botó dret del ratolí. S’ha estudiat les necessitats de l’usuari

per oferir-li funcionalitats innovadores. Per una banda li oferim la possibilitat de

guardar la curvatura de l’estat. D’aquesta manera als estats que se’ls vol donar forma

de paràbola per no passar per sobre d’altres elements s’estalvien la feina repetitiva de

tornar a corbar-los cada vegada que l’usuari mou alguna de les transicions dels seus

extrems. Activant aquesta opció al moure una d’aquestes transicions la curvatura de

l’estat es manté al desplaçament. L’altra opció que oferim a l’usuari és afegir una

CAPÍTOL 4. CONCLUSIONS

- 97 -

etiqueta als estats com a recordatori. De manera que l’ajudi a situar-se o recordar

parts d’un autòmat durant l’edició.

La zona de disseny creix dinàmicament a mesura que l’usuari va expandint l’autòmat

per suportar autòmats tant grans com l’usuari desitgi. Per ampliar l’àrea l’usuari

simplement ha de moure un element fora de l’escena i l’aplicació expandeix els seus

límits per incloure-la. D’aquesta manera la zona de disseny té la mida amb la que

l’usuari està treballant en tot moment evitant haver de tenir molta més zona de la

necessària, fet que pot alentir l’aplicació sobre ordinadors poc potents. Quan

l’autòmat té una mida que cap en la finestra apareixen dos barres de desplaçament

per seleccionar la zona on volem treballar. L’usuari disposa d’un zoom en la barra

d’eines per veure l’autòmat amb perspectiva. L’usuari pot allunyar-se tant com

necessiti per poder veure l’ imatge global de l’autòmat o aproximar-se i veure

clarament l’ informació lèxica de cada transició.

En tot moment la perspectiva que s’ha tingut durant l’ implementació ha estat

enfocada a l’usuari final. D’aquesta manera a part de crear una aplicació amb una

funcionalitat determinada hem aconseguit que l’usuari treballi còmodament amb ella.

Una de les millores que li hem afegit al programa és l’opció de desfer l’últim canvi

referent a l’ inserció o eliminació d’un element de l’escena. Aquesta opció salvarà a

l’usuari de situacions on inconscientment esborri un element. En una primera instància

pot semblar una opció poc important però les coses canvien quan l’usuari elimina per

error una transició i no recorda com estava connectada.

També s’ha proporcionat a l’usuari l’opció de simplificar el seu autòmat amb la fusió

de transicions. Dos transicions ja siguin simples o compostes es poden fusionar en una

sola transició composta. Això comporta l’ unificació de les dos transicions en una sola

caixa i posar en comú els seus estats. D’aquesta manera transicions que representaven

diferents especificitats d’una mateixa paraula i que per tant tenien les mateixes

connexions duplicades per suplir cada cas és fusionen en una sola transició eliminant

tots els estats redundants. Perquè l’aplicació fos més complerta també se li

proporciona a l’usuari l’opció de descompondre transicions complexes en simples i

permetre transicions compostes heterogènies.

Les transicions compostes homogènies tenen la mateixa forma canònica i la mateixa

sortida del transductor. Hem deixat a judici de l’usuari l’opció de fusionar transicions

amb diferent corma canònica (transicions compostes heterogènies) per si es troba en

una situacions que li seria útil d’utilitzar.

CAPÍTOL 4. CONCLUSIONS

- 98 -

L’eina es totalment personalitzable fins al extrem que l’usuari disposa de l’opció

d’escollir el color de cada element de l’escena. Cada usuari treballarà amb els colors

que més còmode es senti i els podrà anar canviant per diferents autòmats.

Per últim s’ha volgut proporcionar a l’usuari seguretat. S’ha implementat com a

mesura de seguretat la confirmació del tancament d’una pestanya o de tota l’aplicació.

Quan un usuari tanca una pestanya per assegurar-nos que no ha estat un accident i

evitar la pèrdua de treball que suposaria, se li mostra una finestra emergent on pot

escollir entre guardar els canvis, continuar amb el tancament o cancel·lar l’operació.

Pel cas que es tanqui tota l’aplicació a l’usuari se li demanarà la confirmació de tots els

documents oberts.

4.3 Generació d’autòmats:

S’ha donat molta importància a l’edició dels autòmats perquè l’usuari es sentis

còmode amb l’aplicació però també s’ha aconseguit un programa potent. Capaç de

tenir oberts més d’un autòmat alhora i tenir-los organitzats per pestanyes.

És essencial que el treball realitzat per l’usuari pugui ser guardat per reprendre’l en un

altre moment o que pugui obrir autòmats creats per altres usuaris. S’ha treballat com a

base amb el FA per emmagatzemar l’ informació essencial de l’autòmat i per

recuperar-la. Aquest format no guarda la posició dels diferents elements per tant per

cada document se li ha creat un document de posicions (PT) encarregat

d’emmagatzemar la posició de les diferents transicions.

Els usuaris que utilitzen aquesta aplicació poden estar acostumats a treballar amb ER

per tant l’usuari té l’opció d’importar autòmats a partir d’ER o exportar-los en aquest

format.

Per complementar les diferents opcions d’emmagatzemament de l’ informació l’usuari

pot guardar tot l’autòmat com una imatge en un dels següents formats: "bmp",

"gif","jpg","jpeg","png".

CAPÍTOL 4. CONCLUSIONS

- 99 -

4.4 Multiplataforma:

Un objectiu era crear una eina plataforma perquè un major públic pogués utilitzar-la.

L’aplicació ha estat implementada amb Java perquè pugui ser executada sobre

qualsevol plataforma que tingui instal·lat Java Platform SE 6 o superior (ha

d’incorporar la llibreria Swing).

 Java platform SE 6 es pot descarregar i instal·lar gratuïtament des de la pàgina web de

Java (http://java.sun.com/javase/downloads/index.jsp). En cas que el SO que utilitza

l’usuari no estigui disponible en aquesta web com és el cas de Mac OS s’ha de buscar la

versió equivalent a Java SE 6 en aquest cas Mac OS X 10.4.7 release 4 i descarregar-la

des de la web del fabricant:

http://www.apple.com/downloads/macosx/apple/application_updates/javaformacosx

105update4.html

S’han donat problemes per instal·lar aquesta actualització per tant es recomana

instal·lar SnowLeopard a partir de la versió 10.6.

Com que el programa ha estat implementat amb Java ha estat senzill crear una

interfície i convertir-lo en Applet de Java per poder ser afegit en qualsevol document

web.

4.5 Anàlisis de resultats:

A continuació és mostraran una sèrie d’autòmats resultants de carregar diferents

fitxers i els fitxers resultants de guardar altres autòmats.

4.5.1 Importació i exportació d’ Expressions Regulars:

ER1: (<paraula1>+<paraula2>)(<paraula3>+<paraula4>)

CAPÍTOL 4. CONCLUSIONS

- 100 -

ER2: <t1>((<t2>+<t3>)*+(<t4>[S]+<E>))<t5>

ER3: (<t1>((<t2>*+<t3>)+<t4>[s1])+<t5>)<t6>

ER4: <t1>(<t2><t3>+<t4>)*<t5>*(<t6><t7>+<E>)

CAPÍTOL 4. CONCLUSIONS

- 101 -

ER 5: <t1><t2>(<t3><t4>*<t5>+<t6>(<t7>+<t8><t9>))*(<t10>+<E>)

S’ha comprovat que un cop carregat cada arxiu si s’exporta com ER concorden amb

l’ER original. A excepció del cas de ER3 on l’ER exportada és la seva versió

simplificada: (<t1>(<t2>*+<t3>+<t4>[s1])+<t5>)<t6>.

4.5.2 Obrir i guardar documents en FA:

Autòmat 1:

4 4
%<VPRED\3>%<ADV>%<PALABRA\4>%<PALABRA\5>%
: 0 2 -1
t 1 2 2 3 3 4 -1
t 3 4 -1
t -1
f

CAPÍTOL 4. CONCLUSIONS

- 102 -

Autòmat 2:

16 10
%<haber.V96:IFUTU:VAR-1\1>%<estar.V77:PP:ms\4>%<ADV\5>%<VAR-
3.V:GER\7>[VAR-3,4-2
,1-3&_COMP_CONT,VAR-1,VAR-
2|2&{T}|3&{T}|5&{1.1}|6&{1.2}]%<PALABRA\6>%<haber.V96:
IPRES:VAR-1\1>%<haber.V96:ICOND:VAR-1:VAR-2\1>%<haber.V96:SPRES:VAR-1:VAR-
2\1>%<
haber.V96:SPIMA:VAR-1:VAR-2\1>%<haber.V96:SPIMB:VAR-1:VAR-
2\1>%<haber.V96:IPIND:
VAR-1\1>%<haber.V96:IPIMP:VAR-1:VAR-
2\1>%<haber.V96:INF\1>%<haber.V96:GER\1>%<CL
I\2>%<CLI\3>%
: 0 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 3 13 3 -1
: 1 4 -1
: 1 4 14 5 -1
: 2 6 3 10 4 7 -1
: 1 8 15 9 -1
: 3 10 -1
: 3 10 4 7 -1
: 2 6 3 10 4 7 -1
: 1 8 -1
t -1
f

CAPÍTOL 4. CONCLUSIONS

- 103 -

Igual que en el cas anterior s’ha comprovat que els autòmats es guardin i es carreguin

en la mateixa posició.

Abans de guardar l’autòmat 2 es va reorganitzar les transicions per aconseguir una

aparença més estètica.

A diferència de quan guardàvem les ER en aquest cas el programa recalcula els estats

absoluts i és típic que la definició d’estats no coincideixi amb l’arxiu original.

L’autòmat 2 guardat a fitxer queda de la següent manera:

16 10

%<haber.V96:IFUTU:VAR-1\1>%<estar.V77:PP:ms\4>%<ADV\5>%<VAR-

3.V:GER\7>[VAR-3,4-2,1-3&_COMP_CONT,VAR-1,VAR-

CAPÍTOL 4. CONCLUSIONS

- 104 -

2|2&{T}|3&{T}|5&{1.1}|6&{1.2}]%<PALABRA\6>%<haber.V96:IPRES:VAR-

1\1>%<haber.V96:ICOND:VAR-1:VAR-2\1>%<haber.V96:SPRES:VAR-1:VAR-

2\1>%<haber.V96:SPIMA:VAR-1:VAR-2\1>%<haber.V96:SPIMB:VAR-1:VAR-

2\1>%<haber.V96:IPIND:VAR-1\1>%<haber.V96:IPIMP:VAR-1:VAR-

2\1>%<haber.V96:INF\1>%<haber.V96:GER\1>%<CLI\2>%<CLI\3>%

: 0 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 7 13 7 -1
: 1 3 -1
: 2 4 3 5 4 6 -1
: 3 5 -1
t -1
: 3 5 4 6 -1
: 1 3 14 8 -1
: 1 9 15 10 -1
: 2 4 3 5 4 6 -1
: 1 9 -1
f

El seu fitxer de posicions té el següent contingut:

16
0 170 80
1 527 140
2 773 140
3 855 307
4 548 340
5 153 139
6 139 196
7 152 249
8 139 313
9 136 367
10 166 423
11 139 468
12 141 565
13 109 623
14 474 600
15 557 533
75 94
1484 307

S’ha comprovat que es carregui l’autòmat i que les transicions estiguin en la mateixa

posició que se’ls havia assignat al guardar l’autòmat.

CAPÍTOL 4. CONCLUSIONS

- 105 -

4.5.3 Creant un autòmat des de zero:

S’ha creat el següent autòmat

Si exportem com ER obtenim:

<el.DET>(<N><ADV>(<N><ADV>)*+<NPROP>)

S’ha guardat en FA:

4 7
%<el.DET >%<N>%<ADV>%<NPROP>%
: 0 2 -1
: 1 3 3 7 -1
: 2 4 -1
: 1 5 -2 6 -1
: 2 6 -1
t -1
t -1
f

Observem que l’autòmat que ha guardat és la seva versió simplificada. Carregant

aquest document tenim el següent autòmat:

CAPÍTOL 4. CONCLUSIONS

- 106 -

Aquesta és una petita part d’un extens conjunt de proves que s’ha realitzat per

controlar tots els casos possibles a l’hora de guardar i carregar els autòmats.

CAPÍTOL 4. CONCLUSIONS

- 107 -

4.6 Possibles millores:

Durant el transcurs del projecte s’han anat incorporant noves idees per millorar el

programa però que al final no s’ha disposat de temps suficient per portar-les a terme.

Les ampliacions que es volien realitzar eren les següents:

• Fer una selecció de varis estats i transicions per poder-los copiar i enganxar.

• Moure els elements per teclat i eliminar transicions amb el botó suprimir un cop
seleccionades.

• Traduir l’aplicació a varis idiomes.

• Afegir un camp de recerca que seleccioni transicions que contenen una determinada
informació lèxica.

• Llegir varis autòmats d’un mateix fitxer

• Executar l’autòmat com a test. Permetre que l’usuari introdueixi un text d’entrada i
observar el recorregut pels diferents estats de l’autòmat.

CAPÍTOL 4. CONCLUSIONS

- 108 -

- 108 -

Annex

- 108 -

Annex

Manual d’usuari

S’ha afegit a l’aplicació un manual d’usuari perquè tots els usuaris puguin consultar-lo

per aprofitar totes les opcions de l’eina.

Elements de l’aplicació:

En la part central de l’aplicació es troba la

zona de disseny on es representen els

autòmats. Per expandir l’àrea l’usuari ha de

moure una transició fora dels seus límits

lateral dret o inferior.

La barra de menú està situada a la part

superior de l’aplicació i la barra d’eines està

col·locada verticalment a l’esquerra tot i que

es pot canviar de posició arrossegant-la.

Sota la barra de menú es troben diferents

pestanyes per cadascun dels diferents documents oberts.

A la part inferior van apareixent notificacions per guiar a l’usuari en les diferents

tasques que porta a terme.

Barra d’eines:

Les eines que treballen amb estats o transicions per seleccionar-los

s’ha de fer clic amb el botó esquerra del ratolí.

1. Afegir transició: Selecciona la posició de la zona de disseny on

afegir la transició. A continuació s’obrirà una finestra

emergent per especificar d’informació lèxica de la transició.

2. Afegir un estat: Seleccionar la transició origen. Sense deixar de

prémer el ratolí situar el cursor sobre la transició destí.

Alliberar el ratolí en aquella posició per afegir l’estat.

3. Aquesta opció permet canviar de posició els diferents

elements de l’escena. Un cop seleccionats s’arrosseguen fins la

seva nova localització. Per canviar la curvatura d’un estat s’ha d’arrossegar el

seu rectangle de menú (el rectangle que es troba en la seva posició central).

4. i 5 . Realitzen un zoom sobre l’escena. Ítem 4 per aproximar-se i ítem 5 per

allunyant-se.

6. Eliminar element: Seleccionar un estat o transició per eliminar-lo.

7. Fusionar transicions: Seleccionar dos transicions compatibles per convertir-les

en una única transició. Útil per simplificar l’autòmat. Dos transicions són

compatibles si tenen la mateixa forma canònica i la mateixa sortida de

transductor.

Barra de menú

Opcions del menú “Inicio”:

• Nuevo: Crear un nou

 document en blanc.

• Abrir: Carrega l’autòmat d’un fitxer en Format Autòmat (.aut).

• Guardar en formato autómata: Guarda l’autòmat de l’escena sobre la que s’està

treballant en un fitxer en FA.

• Importar desde ER: Carrega en un nou document l’autòmat que representa

l’expressió regular del document seleccionat. Els documents que s’importen han de

tenir extensió “.txt” o “.er”. En aquell document només pot haver una ER

correctament escrita. En altre cas es carregarà erròniament.

• Exportar:

o Exportar com ER: Guarda l’ER que representa l’autòmat de l’escena.

o Exportar como imagen: Guarda l’escena com una imatge. Es pot escollir

entre els següents formats: "bmp", "gif","jpg","jpeg" i"png".

• Sortir: Sortir de l’aplicació.

ANNEX. MANUAL D’USUARI

- 111 -

Opcions del menú “Edición”:

• Deshacer: Desfà l’últim canvi si està

relacionat amb l’ inserció o eliminació

d’un estat o transició.

• Formato: Mostra un menú emergent on es poden canviar els colors dels diferents

elements de l’escena.

• Transiciones heterogeneas: Per defecte dos transicions es poden fusionar només si

tenen la mateixa sortida de transductor i el camp forma canònica de les seves

informacions lèxiques es correspon. Si s’activa aquesta opció es permet que dos

transicions amb forma canònica diferent es puguin fusionar.

Opcions del menú “Ayuda”:

Aquest menú és únicament informatiu.

L’opció manual d’usuari mostra en una finestra emergent aquest manual d’usuari.

Creació de transicions:

Aquesta finestra apareix a continuació d’haver seleccionat la posició de l’escena on

afegir la transició. En la part superior es selecciona el tipus de transició. En cas de ser

una transició estàndard es mostren les opcions necessàries per completar l’ informació

lèxica de la transició.

Menús individuals dels elements:

Per accedir als menús individuals de les transicions i dels estats s’ha de fer clic amb el

botó dret del ratolí sobre seu.

Menú de les transicions:

• Separar Substransiciones: En cas de

seleccionar una transició composta

s’observa aquesta opció que permet

descompondre-la en transicions simples.

• Propiedades Transición: Podem canviar

 l’ informació lèxica de la transició. En cas d’una transició composta es preguntarà

sobre quin subelement es vol actualitzar l’ informació. En cas que l’opció

“Transicions heterogeneas” estigui desactivat si es modifica el camp forma

canònica de la transició es modifica per tots els elements de la transició composta.

Menú dels estats:

• Habilitar mantener curvatura:

 Quan es mouen les transicions la posició dels estats que depenen d’ells

s’actualitzen formant una línea recta entre la transició origen i destí. En cas de tenir

habilitada aquesta opció al moure les transicions es conserva la curvatura de

l’estat. Per tant en cas de tenir estats que volem que tinguin forma de paràbola,

evitem haver de canviar la curvatura dels estats cada vegada que movem una de

les transició dels seus extrems.

• Cambiar etiqueta: Canvia el valor de l’etiqueta de l’estat. Per defecte està buit.

Bibliografia

Charles J. Fillmore, “Frame semantics and the nature of language”. In Annals of the

New York Academy of Sciences: Conference on the Origin and Development of

Language and Speech, Volume 280: 20-32, 1976

Charles J. Fillmore, “The need for a frame semantics in linguistics”. In Karlgren, Hans

(Ed.): Statistical Methods in Linguistics 12: 5-29, 1977.

Charles J. Fillmore and B. T. S. Atkins (), “Towards a frame-based lexicon: The

semantics of RISK and its neighbors”. In Lehrer, A and E. Kittay (Eds.) Frames, Fields,

and Contrast: New Essays in Semantics and Lexical Organization. Hillsdale: Lawrence

Erlbaum Associates, 75-102, 1992.

J. E. Hopcroft, J. D. Ullman, “Introduction to Automata Theory, Languages and

Computation”, Addison-Wesley, Reading, Mass., 1979.

M. Mohri, “Finite-state transducers in language and speech processing”,

Computational Linguistics, vol. 23(2) , pág. 269-311, 1997.

M. Ortega, “Teoría de Autómatas aplicada a la Lingüística Informática”. Facultat de

Ciències. Secció d'Enginyeria Informàtica, Universitat Autònoma de Barcelona, 1997.

M. Silberztein, “Finite State Language Processing with INTEX”, en Pre-Conference

Tutorial. COLING-ACL-98, Université de Montreal. Montréal, Québec, Canada.

http://www.ladl.jussieu.fr/INTEX/Tutorial.htm, 1998.

Noelia Méndez i José Luis García, “Programación con Swing”, Departamento de

Informática i Autonomía, Universidad de Salamanca, 2005.

W. Brauer, “On Minimizing Finite Automata”, Bulletin of the European Association for

Theoretical Computer Science, EATCS, vol. 32 , pág. 113-116, 1988.

Webgrafia:

http://java.sun.com/docs/books/tutorial/uiswing/

http://www.programacion.com/articulo/graficos_con_java_2d_111/10

http://www.javahispano.org/

Firmat: J. Oriol Aguadé Estivill
Bellaterra, 21 de Juny de 2010

Resum
Aquest projecte tracta la implementació d’una eina gràfica multiplataforma de creació i

edició de gramàtiques electròniques per representar el Llenguatge Natural. És una eina

per lingüistes i projectes com Spanish FrameNet Project amb la quan poden

representar fàcilment transductors en un format més visual, les transicions es

representen en forma de “caixes”, i guardar els resultats. S’han implementat varies

opcions per crear una eina còmode i personalitzable per l’usuari amb funcionalitats

enfocades a les seves necessitats com importar/exportar autòmats des d’una Expressió

Regular. Es tracta l’ implementació de tots els components que s’han necessitat per

crear la GUI així com la seva funcionalitat.

Resumen

Este proyecto trata la implementación de una herramienta gráfica multiplataforma de

creación y edición de gramáticas electrónicas para representar el Lenguaje Natural. Es

una herramienta para lingüistas y proyectos como Spanish FrameNet Project con la

cual puedan representar fácilmente transductores en un formato visual, las

transiciones se representan en forma de “cajas”, y guardar el resultado. Se han

implementado varias opciones para crear una herramienta cómoda y personalizable

para el usuario con funcionalidades destinadas a sus necesidades como

importar/exportar autómatas desde una Expresión Regular. Se trata de la

implementación de todos los componentes que han sido necesarios para la GUI así

como su funcionalidad.

Abstract

This project is implementing a multi-platform graphical tool for creating and
editing electronic grammars to represent the natural language. Linguists and
projects such as Spanish FrameNet Project could use this tool to easily
represent transducers in a visual format, where transitions are represented with
a “box” shape, and save the results. Several options have been implemented to
create a comfortable and customizable tool for the user with functionality for his
needs as import/export from a Regular Expression. This is the implementation
of all components that have been necessary for the GUI and functionally.

