
DESENVOLUPAMENT EN NETWORK SIMULATOR 2.
PROTOCOL DE MIGRACIÓ PER SIMULAR AGENTS

MÒBILS

Memòria del projecte de final de carrera corresponent

als estudis d’Enginyeria en Informàtica presentat per

Cristian Stefan Tanas i dirigit per Rubén Serrano

Núñez.

Bellaterra, Juny de 2010

El firmant, Rubén Serrano Núñez, professor del Departa-

ment d’Enginyeria de la Informació i de les Comunicacions

de la Universitat Autònoma de Barcelona

CERTIFICA:

Que la present memòria ha sigut realitzada sota la seva di-

recció per Cristian Stefan Tanas

Bellaterra, Juny de 2010

Firmat: Rubén Serrano Núñez

ii

A la persona que, per sempre, ha marcat la meva vida.

iii

iv

Agraïments

Thomas Jefferson escrivia en la Declaració d’Independència que un dels drets

fonamentals de les persones és “the pursuit of happiness”. Però per què perseguir

la felicitat i no ser feliços? Perquè l’important no és la destinació final sinó el camí

que hem seguit. Cada pas que donem en la vida determina el següent, i totes les

persones que he conegut, totes les experiències que he viscut han deixat la seva

particular marca en la meva personalitat. Per això, vull agrair a totes aquelles

persones que d’alguna forma o altra han influenciat la meva vida.

En primer lloc vull agrair el suport i recolzament del meu director de projecte,

Rubén Serrano. La seva constant ajuda i supervisió han fet possible que avui

estigui escrivint aquestes línies.

També vull agrair als meus pares pel seu suport i consells que m’han donat, i

els vull agrair tots els esforços i sacrificis que han fet per a que jo pugui disfrutar

de la millor vida possible. Als meus avis, per compartir amb mi tota la seva

experiència, per cuidar-me i per haver influenciat tant en la meva evolució com

a persona. Gràcies a la meva avia per les nits mirant les estrelles! A la Eli, que

sempre ha estat al meu costat i qui ha revolucionat la meva vida. Gràcies per la

paciència i comprensió per tants dies dedicats exclusivament a aquest projecte!

I no per últim, David, Victor, Dani, Ivan, Marcos, Carlos, Leo, Tomás, Jesús,

Julien, Bàrbara, Alba, Maija, Júdit, Elisa agrair-vos tants moments bons i no tan

bons que hem viscut junts. Tots vosaltres heu estat presents en una nova etapa de

la meva vida i mai us oblidaré!

Us demano disculpes si m’he oblidat de mencionar algú, seran coses de l’edat.

v

vi

Índex

1 Introducció 1
1.1 Motivació . 2

1.2 Objectius . 3

1.3 Estructura de la memòria . 3

2 Els agents mòbils i el Network Simulator 2 5
2.1 Agents mòbils . 5

2.2 Especificacions i estàndards . 7

2.3 Network Simulator 2 . 9

2.4 Agents mòbils en NS2 . 12

2.5 Conclusions . 12

3 Anàlisi de Requeriments 13
3.1 Descripció global . 13

3.2 Requisits Funcionals . 15

3.2.1 Interfícies del sistema 15

3.2.2 Interfícies d’usuari . 16

3.3 Requisits No Funcionals . 16

3.3.1 Interfícies Software . 16

3.3.2 Interfícies Hardware . 16

3.4 Estudi de viabilitat . 17

3.4.1 Viabilitat Tècnica . 17

3.4.2 Viabilitat Operativa . 17

3.4.3 Viabilitat Econòmica . 18

vii

3.4.4 Viabilitat Legal . 18

3.5 Planificació temporal . 19

3.6 Conclusions . 19

4 Disseny 21
4.1 Disseny global . 21

4.2 Plataforma . 22

4.2.1 Comunicació externa . 23

4.2.2 Gestió dels agents . 24

4.3 Agents i comportaments . 25

4.3.1 Electronic Triage Tag Mobile Agent 25

4.4 Control d’errors . 28

4.5 Conclusions . 29

5 Implementació i prova 31
5.1 Implementació . 31

5.1.1 RESTTP_PlatformAgent 32

5.1.2 MobileAgent . 35

5.1.3 Paquets . 36

5.1.4 Temporitzadors . 36

5.2 Prova . 38

5.2.1 Escenari amb dues plataformes 39

5.2.2 Escenari amb moviment de nodes 40

5.2.3 Escenari situació d’emergència 42

5.3 Conclusions . 44

6 Conclusions 47
6.1 Objectius acomplerts . 47

6.2 Planificació temporal final . 48

6.3 Treball futur . 49

6.4 Valoració personal . 51

Bibliografia 53

viii

A Guia per incorporar el framework d’agents en el NS2 57
A.1 Decidir l’estructura de directoris 57

A.2 Declarar nous tipus de paquets 58

A.3 Generació de traces . 58

A.4 Llibreries Tcl . 61

A.5 Makefile . 62

A.6 Exemple . 62

B Proves de funcionament 65
B.1 Escenari 1 . 65

B.2 Escenari 2 . 66

ix

x

Índex de figures

2.1 Message Transport Protocol . 8

2.2 Main Migration Protocol . 9

2.3 Arquitectura del NS2 . 10

2.4 Dualitat C++ - oTCL . 11

3.1 REST Transport Protocol . 14

3.2 Diagrama de flux del RESTTP 15

3.3 Planificació temporal inicial . 20

4.1 Jerarquia de classes pel model 23

4.2 Fase de descobriment de plataformes 27

4.3 Fase d’anunciació de TTR . 27

4.4 Diagrama de classes . 29

5.1 Diagrama de classes . 33

5.2 Diagrama de classes de la plataforma 34

5.3 Diagrama de classes dels paquets 37

5.4 Diagrama de classes dels temporitzadors 38

5.5 Escenari 1 . 39

5.6 Temps en realitzar una migració completa 40

5.7 Escenari 2 . 41

5.8 Delimitació de la zona d’impacte en zona d’incident (3), zona de

tractament (2) i zona de sortida (1) 43

5.9 Escenari 3 . 44

5.10 Temps de simulació . 45

xi

6.1 Planificació temporal final . 50

xii

Índex de taules

4.1 Capçalera dels missatges ACL 24

4.2 Capçalera dels missatges HTTP 24

4.3 Taula de decisió del ETTMA . 26

4.4 Capçalera dels missatges MTP_HELLO 28

5.1 Assignació de TTRs . 41

xiii

Capítol 1

Introducció

Els agents mòbils són entitats software que disposen de l’habilitat d’aturar i re-

prendre la seva execució en diferents llocs de la xarxa per dur a terme una series

de tasques. Avui en dia, el desplegament dels agents mòbils és limitat, però noves

aplicacions s’estan obrint pas constantment. Aquesta tecnologia ofereix solucions

prometedores a problemes com la pèrdua de connexió entre nodes o grans endar-

reriments en la connexió. La capacitat dels agents mòbils de residir i migrar entre

diferents nodes de una xarxa els fa especialment interessants, perquè ens permet

optimitzar els recursos de la xarxa i evitar congestionar-la.

Per exemple, Vieira-Marques et al. [VMRC+06] proposen un esquema per

recopilar i integrar dades mèdiques d’un pacient, distribuïdes en varis hospitals,

utilitzant els agents mòbils. Martí et al. [MR+08] proposen un esquema pel triatge

de víctimes en situacions d’emergència basat en els agents mòbils. L’informació

de les víctimes s’encapsula en un agent mòbil i es enviada al centre d’operaci-

ons per una ràpida i eficient distribució dels recursos mèdics. Aquest sistema es

coneix com MAETTS (Mobile Agent Electronic Triage Tag System). Algunes de

les característiques més importants d’aquests tipus d’entorns son la connectivitat

intermitent, latència variable, patrons ambigus de moviment dels nodes. En con-

seqüència un agent pot residir en un node durant un llarg període de temps, mentre

que la finestra de connexió pot ser molt petita.

Tot aquest ampli ventall d’aplicacions han de demostar la seva viabilitat, la

1

2 CAPÍTOL 1. INTRODUCCIÓ

possiblitat de ser implantats en el món real. La falta d’un sistema de proves per

poder demostrar la viabilitat d’una aplicació o simular el seu funcionament ens

obliga a passar per una etapa de desenvolupament, de construcció de l’aplicació

final. Això dona lloc a una gran varietat d’aplicacions que després poden resultar

no útils, amb la conseqüent pèrdua de temps.

Hi ha multitud de simuladors de xarxa disponibles en el mercat, un dels quals

és el NS2. És el simulador més utilitzat en l’àmbit acadèmic i permet simular la

gran majoria de protocols i tipologies de xarxa existents avui en dia. És tracta d’un

projecte de codi lliure i per tant, els usuaris poden aportar el seu coneixement pel

desenvolupament de nous protocols i nous sistemes.

En aquest projecte pretenem afegir els agents mòbils al NS2 per poder fer

simulacions i no haver de construir l’aplicació final.

1.1 Motivació

Una de les qüestions a la que s’enfrenten els agents mòbils és demostrar la seva

viabilitat en sistemes reals. Necessitem demostradors o simuladors que ens aju-

din a predir quin serà l’impacte de l’implantació d’un aplicació basada en agents

mòbils, que no es produiran situacions de col·lapse o exhauriment dels recursos

disponibles.

Demostrar la viabilitat de les aplicacions basades en agents mòbils en entorns

heterogenis i complexos, com ara les xarxes MANET o les DTN, ens pot portar

a molts entrebancs degut a la complexitat que suposa. El cost en temps o diners

per construir sistemes de test (test-bed) o sistemes reals per dur a terme un anàlisi

de rendiment en molts cassos pot resultar inviable. I més si tenim en consideració

diferents aplicacions amb diferents paràmetres de configuració i diferents indica-

dors de rendiment. Es per això que necessitem construir un model de simulació

del comportament general dels agents mòbils i estudiar-lo com un substitut del

sistema real.

1.2. OBJECTIUS 3

1.2 Objectius

L’objectiu base d’aquest projecte és construir un framework per la simulació del

comportament general dels agents mòbils ampliant l’actual simulador de xarxa

NS2. Per fer això, en primer lloc hem de fer un estudi de la tecnologia d’agents

mòbils i el simulador de xarxa NS2. Hem de coneixer quins són els protocols

de migració d’agents mòbils, com funciona el NS2 i com es pot afegir un nou

protocol al simulador.

L’element principal dels agents mòbils és la seva capacitat per desplaçar-se

entre els diferents nodes d’una xarxa. Per tant, en segon lloc hem de desenvolupar

- o millor dit implementar - un protocol de migració per agents mòbils i afergir-lo

al NS2.

L’objectiu que finalment ens interessa assolir es poder analitzar quin és el fun-

cionament dels agents mòbils en una xarxa donada. Per fer això hem de dissenyar

i desenvolupar un framework que ens permeti simular el seu comportament. Hem

de poder veure si l’agent té la capacitat d’adaptar-se a una determinada topologia

de xarxa i dur a terme amb èxit les seves tasques.

Finalment, per veure el funcionament del model implementat i tenir una prova

de la seva correcta implementació, hem de simular el comportament d’un tipus

d’agent concret en els escenaris definits, fent servir el protocol de transferència

implementat al NS2.

1.3 Estructura de la memòria

En els següents paràgrafs donarem una visió general sobre el contingut dels capí-

tols i apèndixs que composen aquesta memòria.

El capítol 2 presenta una breu introducció a l’estat de l’art d’aquest projec-

te. En primer lloc, farem una petita introducció a la tecnologia d’agents mòbils

i presentarem les seves característiques més importants. Després farem una in-

troducció al marc de desenvolupament d’aquest projecte: el simulador de xarxa

NS2.

4 CAPÍTOL 1. INTRODUCCIÓ

El capítol 3 exposa un estudi del projecte. Analitzarem els requisits funcionals

i no funcionals, presentarem un breu estudi de viabilitat i finalment veurem la

planificació temporal inicial.

El capítol 4 mostra la proposta de disseny que compleix amb els requisits i

objectius del projecte. Partirem d’una visió general del sistema per anar centrant

l’atenció en els elements principals.

El capítol 5 explica quina ha estat l’implementació del disseny presentat en el

capítol anterior. En primer lloc, presentarem els detalls d’implementació de cada

un dels elements principals del disseny, i després explicarem les diverses proves

que s’han realitzat per comprovar el correcte funcionament de l’implementació.

Presentarem diferents escenaris de simulació.

El capítol 6 serà un resum de les conclusions obtingudes a partir dels objectius

presentats anteriorment, i exposarà algunes possibles línies de treball futures.

Finalment, l’apèndix A contindrà els detalls tècnics derivats de l’integració

en el NS2 del sistema desenvolupat, i l’apèndix B contindrà dos exemples dels

resultats obtinguts en les simulacions.

Capítol 2

Els agents mòbils i el Network
Simulator 2

En aquest capítol descriurem el context en el qual es troba aquest projecte per tal

de comprendre millor el seu desenvolupament. Explicarem en primer lloc que són

els agents mòbils, aspectes relacionats amb el funcionament d’aquests i finalment

explicarem el marc de desenvolupament d’aquest projecte: el simulador de xarxa

Network Simulator 2.

2.1 Agents mòbils

S’entén per agent un component software autònom, que actua en nom d’algú,

s’executa en entorns controlats anomenats plataformes, és capaç d’interactuar amb

el seu entorn, percebre canvis i l’estat d’aquests, i reaccionar davant d’aquests.

Si aquest agent té la capacitat de desplaçar-se, aleshores s’ha de parlar d’agents

mòbils. Aquesta tecnologia va donar els seus primers passos amb la publicació

de l’artícle de Jim White [WMA96] el 1996. La definició exacta, però varia d’un

autor a l’altre, tot i que hi ha certes característiques que són comunes per tots els

autors:

• Persistència: el codi que s’executa en cada moment és decidit pel propi

5

6 CAPÍTOL 2. ELS AGENTS MÒBILS I EL NETWORK SIMULATOR 2

agent en funció de l’objectiu concret que tingui. L’agent presenta un com-

portament dirigit a complir l’objectiu.

• Autonomia: l’agent és capaç de prendre decisions sobre les seves accions

o estat sense la intervenció directa d’una persona.

• Habilitat social: els agents són capaços d’interactuar amb altres agents per

tal d’assolir els seus objectius.

• Reactivitat: els agents perceben l’entorn o context en el que es troben re-

accionant en conseqüència als canvis que es produeixen.

• Mobilitat: l’agent és capaç de suspendre la seva execució, moure’s entre

diferents plataformes i reprendre la seva execució.

Com hem esmentat anteriorment, una de les propietats dels agents mòbils és

la mobilitat. Això s’aconsegueix parant l’execució de l’agent en la plataforma

origen, copiant el codi font juntament amb l’estat d’execució d’aquest en la pla-

taforma destí i reprenent l’execució del codi de l’agent, tot comprovant que sigui

correcte. Una vegada fet això es destrueix la còpia que ha quedat en la plataforma

origen. Tots aquests passos es coneixen sota el nom de migració. Els passos pre-

sentats aquí es el que s’anomena també migració inter-plataforma. També podem

distingir entre:

• Migració forta: en aquest tipus de migració es copien tant el codi i les

dades com l’estat de l’agent, facilitant la implementació al programador,

ja que s’assegura que el codi se seguirà executant des de la línia de codi

següent a la ordre de migració en arribar a la plataforma destí.

• Migració dèbil: en aquest tipus de migració només es còpia la part de

codi i dades de l’agent, provocant que el codi s’executi des de l’inici un

cop s’hagi realitzat la migració. Per tant, el programador s’ha d’encarregar

d’emmagatzemar variables de control específiques per saber en quin punt

del codi es troba l’execució de l’agent.

2.2. ESPECIFICACIONS I ESTÀNDARDS 7

També s’ha parlat de plataformes. Aquestes, també anomenades agències són

els entorns d’execució dels agents que els proporcionen tot un conjunt de serveis

com ara comunicació o mobilitat.

2.2 Especificacions i estàndards

La FIPA (Foundation for Intelligent Physical Agents) és un comitè de l’IEEE que

des del 2005 promou la tecnologia basada en agents y la utilització dels seus

estàndards per la interoperabilitat amb d’altres tecnologies.

Hi ha molts estàndards definits per la FIPA per al desenvolupament d’agents i

els seus sistemes, tal i com es pot veure a [FIPASpec]. Una plataforma basada en

els estàndards FIPA inclou, entre d’altres:

• Agents: les entitats software que actuen en nom d’algú.

• Agent Management Service (AMS): és un servei que s’encarrega de regis-

trar i mantenir el control de tots els agents que hi ha a la plataforma. Es pot

veure com un servei de pàgines blanques de la plataforma.

• Directory Facilitator (DF): és un servei que s’encarrega de registrar tots

els serveis oferts pels agents d’una plataforma. Es pot veure com un servei

de pàgines grogues i és opcional (pot ser-hi o no).

La comunicació entre els agents es duu a terme mitjançant missatges ACL,

també definits per FIPA, que estandarditza què han de contenir i com han de

ser. Aquests missatges es transmetran mitjançant el MTS (Message Transport

Service), un servei que proporciona la plataforma per l’intercanvi de missatges

entre els agents. Si els agents es troben en plataformes diferents s’utilitza també

el MTP (Message Transport Protocol), que encapsula els missatges ACL en un

protocol de la capa d’aplicació. Dit amb altres paraules, afegeix un sobre indicant

la informació de transport (figura 2.1).

Des del grup de recerca SeNDA del dEIC (Departament d’Enginyeria de la

Informació i de les Comunicacions) de la UAB (Universitat Autònoma de Barce-

lona) es va iniciar un projecte per a la creació d’estàndards de mobilitat seguint les

8 CAPÍTOL 2. ELS AGENTS MÒBILS I EL NETWORK SIMULATOR 2

Figura 2.1: Message Transport Protocol

especificacions FIPA que va finalitzar amb la proposta de l’IPMA (Inter-Platform

Mobility Architecture). Aquesta proposta defineix una nova arquitectura per a la

migració d’agents que pretén crear un framework de migració flexible capaç de

suportar qualsevol conjunt de protocols de migració escollits lliurement per cada

agent.

El procés de migració es divideix en 5 passos contingut dintre del MMP (Main

Migration Protocol) (figura 2.2): Pre-Transfer, Transfer, Post-Transfer, Agent

Registration i Agent Power Up. En els primers dos passos s’utilitzen un con-

junt obert de protocols especificats en el primer missatge mentres que els últims

dos utilitzen protocols prefixats.

El MMP s’encarrega d’iniciar i gestionar el protocol de migració així com tota

la resta de protocols seguint l’estàndard IEEE-FIPA Request Interaction Protocol.

El primer missatge conté, entre d’altres elements, el conjunt de protocols a utilit-

zar en els tres primers passos, així com altres requisits de l’agent.

Les fases Pre-Transfer, Transfer, Post-Transfer tenen com a funcionalitat

transferir el codi, dades i/o estat de l’agent i altres operacions opcionals a dur a

terme abans i després de la transferència. Aquesta funcionalitat es pot implemen-

tar per diferents protocols seleccionats en temps d’execució per part de l’agent.

Les fases Agent Registration, Agent Power Up tenen com a funcionalitat

registrar i re-emprendre l’execució de l’agent en la plataforma destí. Quan l’agent

es registra en la plataforma destí, s’elimina immediatament la còpia que hi ha a la

plataforma origen.

2.3. NETWORK SIMULATOR 2 9

Figura 2.2: Main Migration Protocol
Font: [FIPA-IPMA]

En aquest projecte es pretén implementar un protocol inclòs en la fase de

Transfer i afegir-lo dins del simulador de xarxa NS2.

2.3 Network Simulator 2

El Network Simulator 2 és possiblement el simulador de xarxa més utilitzat din-

tre del món acadèmic. El seu desenvolupament va començar en el Information

Science Institute de la University of Southern California i avui en dia forma part

del projecte VINT, una col·laboració entre investigadors de la UC Berkeley, LBL,

USC/ISI i Xerox PARC.

És un simulador orientat a objectes escrit en C++ amb un intèrpret oTCL com

a interfície d’entrada i és un simulador orientat a esdeveniments discrets. TCL o

Tool Command Language és un llenguatge de scripting desenvolupat en els anys

80 per John Ousterhout treballant en la UC Berkeley i oTCL no és més que una

extensió del TCL orientat a objectes. L’ús de dos paradigmes de programació es

justifica per dues característiques importants que ha de proporcionar el simula-

dor. Per una banda, la simulació detallada de protocols necessita un llenguatge

de programació que sigui capaç de manipular de manera eficient bytes i paquets,

implementar algoritmes que funcionin sobre grans volums de dades, i velocitat en

10 CAPÍTOL 2. ELS AGENTS MÒBILS I EL NETWORK SIMULATOR 2

Figura 2.3: Arquitectura del NS2
Font: [MUN]

quant a temps d’execució. Per altra banda, l’anàlisi de xarxes, molts cops implica

haver de canviar paràmetres de configuració o avaluar multitud d’escenaris on és

important el temps d’iteració (canviar el model i executar de nou). El llenguatge

C++ cobreix la primera necessitat, sent un llenguatge adequat per la implemen-

tació de protocols, mentre que oTCL cobreix la necessitat de canviar fàcilment

la configuració d’una simulació. A la figura 2.3 es pot veure una vista bastant

simplificada de l’arquitectura del NS2.

L’entrada de l’aplicació és un script en oTCL que especifica el que l’usuari vol

simular. És l’únic input que l’usuari necessita proporcionar al simulador, sent la

resta d’accions processament intern del NS2. Al finalitzar la simulació, els resul-

tats es guarden en un fitxer d’extensió .nam i en un fitxer d’extensió .tr, que conté

una completa descripció de la simulació, on cada línia descriu els paquets envi-

ats, rebuts, encolats, extrets de la cola, etc. Malgrat que els arxius amb extensió .tr

presenten la informació d’una forma llegible per l’usuari, es fa molt incòmode lle-

gir, analitzar alguns d’aquests arxius o tenir una imatge clara de què és el que està

passant en la simulació per la gran quantitat de dades. Es per aquest motiu que la

visualització dels resultats de la simulació es realitza mitjançant un mòdul extern

al NS2 anomenat NAM (Network AniMator) que és una interfície que mostra de

manera gràfica els resultats obtinguts.

Com hem dit, la dualitat C++ i oTCL és una de les principals característiques

2.3. NETWORK SIMULATOR 2 11

Figura 2.4: Dualitat C++ - oTCL
Font: [FV09]

del NS2. El simulador soporta una jerarquia de classes en C++ (també coneguda

com jerarquia compilada) i una altra jerarquia de classes similar en oTCL (també

coneguda com jerarquia interpretada). Des de la perspectiva de l’usuari, hi ha una

correspondència un-a-un entre una classe en la jerarquia interpretada i una classe

en la jerarquia compilada (figura 2.4).

Les principals classes responsables de mantenir aquest vincle entre C++ i

oTCL són les següents:

• Classe Tcl: encapsula l’actual instància de l’intèrpret oTCL i proporciona

mètodes per accedir i comunicar-se amb l’intèrpret. Proporciona mètodes

per invocar procediments oTCL mitjançant l’intèrpret, rebre o enviar resul-

tats a l’intèrpret, guardar i buscar objectes, etc.

• Classe TclObject: és la classe base per la majoria de les classes que podem

trobar tant en la jerarquia compilada com en la jerarquia interpretada. Qual-

sevol objecte en la classe TclObject es creat per l’usuari des de l’intèrpret

i acte seguit es crea un objecte ombra en la jerarquia compilada. La classe

TclClass és la que ens proporciona aquesta correspondència.

• Classe TclClass: és una classe compilada virtual pura i proporciona dues

funcions: construir la jerarquia interpretada per reflectir la jerarquia compi-

lada i proporcionar mètodes per instànciar nous objectes TclObject.

12 CAPÍTOL 2. ELS AGENTS MÒBILS I EL NETWORK SIMULATOR 2

2.4 Agents mòbils en NS2

Network Simulator 2 és un simulador molt comú, accessible de manera pública i

que soporta la simulació de una gran varietat de protocols existents. Ens propor-

ciona una molt bona infraestructura per afegir nous protocols i també ens ofereix

la possibilitat d’estudiar l’interacció de protocols a gran escala en un entorn com-

pletament controlat. L’abstracció fonamental que l’arquitectura software del NS2

ens proporciona és la composició programable, es a dir, la configuració de la si-

mulació es veu més com un programa que una configuració estàtica.

NS2 també té cert inconvenients. És un sistema gran en el qual la curva d’a-

prenentatge té una pendent molt pronunciada. La dualitat C++ - oTCL utilitzada

a l’hora de implementar el NS2 es converteix, molts cops, en una barrera per als

desenvolupadors. Però, degut a que els investigadors cada vegada prenen més

consciència d’aquest fet, juntament amb una varietat d’eines, com ara, tutorials,

manuals i llistes d’usuaris estan millorant aquesta situació.

El relació als agents mòbils, el NS2 ens proporciona una estructura per capes,

seguint el model TCP/IP, i implementa tots els protocols necessaris. D’aquesta

forma, simplement afegint una capa en aquesta estructura podem simular fàcil-

ment el comportament dels agents mòbils. A més a més, el llenguatge de progra-

mació C++ és força conegut i el llenguatge oTCL és un llenguatge molt descriptiu

i de fàcil utilització.

2.5 Conclusions

En aquest capítol hem vist que un agent mòbil era una entitat software indepen-

dent capaç de desplaçar-se entre varies plataformes. Hem vist també quines eren

les seves propietats més interessants i els tipus de migració. Així mateix, hem

vist com els agents utilitzen Message Transport Protocols dintre de l’arquitectu-

ra IPMA per migrar. Finalment, hem vist les característiques més importants del

Network Simulator 2, i com la seva estructura i protocols ja implementats ens

seran de gran ajuda per tal d’implementar el nostre sistema.

Capítol 3

Anàlisi de Requeriments

En aquest capítol veurem un anàlisi dels requisits necessaris pel nostre projecte,

realitzat seguint les especificacions IEEE indicades al document STD 830-1998

[IEEE-SRS]. Anirem veient tant requisits funcionals com no funcionals a través

dels diferents apartats, així com també un estudi de viabilitat. Finalment, presen-

tarem la planificació temporal prevista per les diferents etapes del projecte.

3.1 Descripció global

Volem un sistema que ens permeti simular la migració d’agents mòbils dins del

NS2. Els agents han de poder saltar entre diverses plataformes d’acord amb el

seu comportament. El sistema ens ha de permetre crear agents i simular el seu

comportament en un escenari ben definit. Per fer això necessitarem definir tres

elements: agent, plataforma i un protocol per la migració dels agents.

El protocol que utilitzarem és el RESTTP (REST Transfer Protocol), que com

el seu nom indica, combina la tecnologia REST (Representational State Transfer)

[FT02] amb missatges ACL. REST és un conjunt coordinat de restriccions arqui-

tecturals basat en el protocol HTTP. Aquest protocol és el més adequat en el nostre

cas per què és un protocol pensat per agents que són totalment independents de

la seva plataforma origen ja que sempre transporten tots els seus recursos (codi,

dades i estat). També ens permet aprofitar la eficiència en el transport de dades

13

14 CAPÍTOL 3. ANÀLISI DE REQUERIMENTS

Figura 3.1: REST Transport Protocol

que ens proporciona el protocol HTTP.

El procés de migració de l’agent està compost per dues parts, una part en la

qual s’intercanvien missatges ACL per establir varis paràmetres per la migració i

una altra part on s’utilitzen peticions HTTP per tal de transferir els components de

l’agent. Els recursos (codi, dades i estat) són enviats per un servidor HTTP sota

noms únics i aleatoris només vàlids durant la transacció, per tal d’evitar l’inter-

venció d’elements externs.

El protocol comença enviant un missatge ACL amb els identificadors únics

assignats a cada recurs i l’adreça del servidor HTTP on es troben (figura 3.1).

Quan la plataforma destí rep aquest missatge demana, segons les necessitats, el

codi, les dades i l’estat de l’agent utilitzant varies peticions HTTP (una per cada

recurs).

Finalment, una vegada finalitzada la transferència, la plataforma destí envia un

missatge ACL per informar de l’èxit de la transferència o bé un missatge d’error en

cas contrari. En rebre aquest missatge, la plataforma origen elimina els recursos

del servidor HTTP.

En la figura 3.2 podem veure un exemple de la seqüència de missatges ACL i

3.2. REQUISITS FUNCIONALS 15

Figura 3.2: Diagrama de flux del RESTTP
Font: [CEM08]

HTTP que es dona en una migració típica.

3.2 Requisits Funcionals

A continuació veurem un recull dels requisits funcionals que el nostre model haurà

de complir en quant a interfícies del sistema i d’usuari.

3.2.1 Interfícies del sistema

El sistema haurà de complir amb els estàndards FIPA per la migració d’agents en-

tre sistemes compatibles: comunicació mitjançant missatges ACL, utilitzar proto-

cols estandarditzats a FIPA, etc. Així mateix haurà de seguir l’arquitectura IPMA

descrita en [FIPA-IPMA]. També ens de poder permetre migrar agents tant en

xarxes cablejades com en xarxes sense fills, simular el comportament de l’agent

en aquests entorns i controlar possibles errors en la migració (si la transferència

16 CAPÍTOL 3. ANÀLISI DE REQUERIMENTS

d’algun recurs falla hem d’anular el procés). Com hem dit, el sistema s’haurà

d’integrar en el entorn de desenvolupament del NS2 i per tant, els llenguatges de

programació seran C++ i oTCL. Haurem de seguir les normes d’estil i els estàn-

dards de desenvolupament imposats pel NS2.

3.2.2 Interfícies d’usuari

L’interacció amb l’usuari es realitzarà mitjançant un script escrit en llenguatge

oTCL. En aquest script s’hauran d’especificar tots els paràmetres de la simulació:

topologia de la xarxa que es pretén simular, moviments específics dels nodes,

plataformes, nombre d’agents, tamany i plataforma a la que pertanyen, instant de

temps en el que començarà la migració, i altres paràmetres de configuració.

3.3 Requisits No Funcionals

A continuació veurem el software i hardware necessari per la realització d’aquest

projecte.

3.3.1 Interfícies Software

Com que el sistema s’haurà d’afegir al NS2, necessitarem un Sistema Operatiu

que tingui instalat un compilador del llenguatge C++ i el propi NS2. Tot i que

està pensat per la seva utilització en plataformes GNU/Linux, es poden trobar

emuladors de l’entorn per plataformes Windows.

3.3.2 Interfícies Hardware

Com que el NS2 no especifica cap restricció en quant al hardware, el programa

podrà ser executat en qualsevol màquina que compleixi els requisits software in-

dicats en la secció anterior.

3.4. ESTUDI DE VIABILITAT 17

3.4 Estudi de viabilitat

En aquest apartat farem un estudi de viabilitat en quatre camps: tècnic, operatiu,

econòmic i legal i veurem els pros i contres del nostre sistema.

3.4.1 Viabilitat Tècnica

En aquest projecte es treballarà dintre de l’entorn de desenvolupament del NS2.

Per tant, es desenvoluparà amb els llenguatges de programació C++ i oTCL. Men-

tre que el coneixement del llenguatge de programació C++ s’ha adquirit al llarg

de la carrera, serà necessari un treball previ de documentació i formació en relació

al llenguatge oTCL i les eines i entorn de desenvolupament del NS2. Per aquest

projecte amb un equip de prestacions estàndard actuals ja en tindríem prou, ja que

s’ha comprovat que els temps de processament són acceptables. El que conside-

rem com a estàndard actual és un PC amb un processador AMD Turion 64 Single

Core a 1.6Ghz i 1Gbyte de memòria RAM. Tot i així hi ha la possibilitat de treba-

llar amb màquines més potents en el cas que es necessiti més potència de càlcul,

ja que se’ns posa a disposició un laboratori d’ordinadors amb processadors Core

2 Duo a 3GHz i amb tot el programari i eines necessàries per al desenvolupament

del projecte. En quant a la memòria que ha de tenir el maquinari, el NS2 no im-

posa cap requisit específic, però en la simulació de grans escenaris es important

tenir una memòria el més gran possible. També s’ha comprovat que amb 1Gbyte

de memòria RAM les prestacions del simulador són acceptables.

3.4.2 Viabilitat Operativa

Com ja hem esmentat anteriorment, es tracta d’afegir al NS2 un protocol amb

una funcionalitat ben definida: la migració d’agents mòbils entre dos nodes. La

implementació i integració dintre de l’entorn de desenvolupament del NS2 és efec-

tivament viable ja que NS2 contempla la possibilitat d’afegir protocols de la capa

d’aplicació, i de fet ja n’incorpora d’altres com el FTP o el HTTP. A més a més

ja s’han realitzat proves utilitzant el protocol FTP i s’ha analitzat el seu codi i

el que es pretén desenvolupar serà molt similar. Tot i així, la part de simulació

18 CAPÍTOL 3. ANÀLISI DE REQUERIMENTS

és una part que suposarà un cost computacional més elevat ja que la complexi-

tat dels escenaris en els que s’haurà de comprovar el funcionament del protocol

pot ser considerable. Però, com hem comentat en l’apartat anterior, es disposa de

un laboratori d’ordinadors on es podran realitzar totes les proves necessàries per

comprovar el correcte funcionament del protocol.

3.4.3 Viabilitat Econòmica

Tot el programari que s’utilitzarà per la realització del projecte és programari lliu-

re. Tots els mòduls del NS2 estan sota llicència GPL i per tant, es poden utilitzar

i modificar de forma gratuïta. No cal destinar pressupost per la compra de ma-

quinaria nova ja que es podran utilitzar els recursos esmentats en la part de via-

bilitat tècnica i totes les proves es poden dur a terme amb els recursos hardware i

software que hi ha disponibles, no suposant cap cost addicional en el projecte.

3.4.4 Viabilitat Legal

Com s’ha comentat en l’apartat anterior, l’entorn de desenvolupament del NS2

està sota llicència GPL. Això implica que s’ha de respectar l’autoria del codi i

s’han d’especificar les modificacions respecte a l’original i també s’impedeix la

venta del software. Totes les restriccions d’aquesta llicència no ens afecten, ja que

l’objectiu no és comercialitzar el producte sinó poder avaluar viabilitat i rendiment

de diferents projectes que treballen en entorns on s’utilitzen els agents mòbils, des

d’un punt de vista acadèmic. A més, l’objectiu principal d’aquest projecte és la

simulació de la migració dels agents, amb lo qual no ens haurem de preocupar de

les dades que els agents puguin transportar i que poden estar protegides per lleis

com per exemple la Llei Orgànica de Protecció de Dades de Caràcter Personal

(LOPD).

Per tant, podem afirmar que és viable realitzar aquest projecte des de tots els

punts de vista considerats.

3.5. PLANIFICACIÓ TEMPORAL 19

3.5 Planificació temporal

El projecte s’ha dividit en 4 etapes. En una primera etapa de formació es preveu

l’estudi de l’entorn i eines de desenvolupament que s’hauran d’utilitzar per la

realització del projecte, així com l’estudi del protocol de migració dels agents

mòbils. Un cop acabada aquesta fase ja es tindran els coneixements necessaris

per realitzar l’anàlisi de requeriments que ens permetrà fer el disseny i codificació

del protocol de migració en NS2. Posteriorment, s’iniciarà la fase de simulació i

finalment la redacció de la memòria.

S’estima una dedicació temporal de 4 hores diàries durant un semestre més

una part prèvia de formació i documentació sobre l’entorn i les eines de desenvo-

lupament. Sense tenir en compte la fase de formació, es preveu una dedicació en

hores de:

20h Anàlisi + 20h Disseny + 144h Implementació + 16h Simulació + 80h

Memòria + 20h Presentació = 300 hores

En la figura 3.3 es pot veure el diagrama de Gantt corresponent a la planificació

inicial del projecte.

Tot i així, la planificació temporal resultant ha estat diferent a la inicial degut

a les dificultats derivades del desenvolupament en l’entorn NS2. En el capítol 6.2

veurem com aquestes dificultats han afectat a la etapa de desenvolupament i quina

ha estat la planificació temporal final.

3.6 Conclusions

En aquest capítol hem vist quins són els requisits, tant funcionals com no funcio-

nals, que ha de complir el nostre sistema. Hem vist també una breu descripció

del protocol RESTTP que ens permetrà fer una primera descripció de com serà la

fase de disseny. Hem vist també que el projecte és viable des dels punts de vista

tècnic, operatiu, econòmic i legal. Finalment, hem vist la planificació inicial del

projecte. Estimem 300 hores per dur a terme aquest projecte.

20 CAPÍTOL 3. ANÀLISI DE REQUERIMENTS

Figura 3.3: Planificació temporal inicial

Capítol 4

Disseny

En aquest capítol començarem definint l’esquema general del sistema que hem

vist en el capítol d’anàlisi, i com s’integrarà dintre del NS2. Veurem com inte-

grem el protocol RESTTP dintre del nostre sistema i dissenyem la plataforma i

els agents, i també veurem tots el detalls tècnics derivats de l’utilització del siste-

ma: com interacciona la plataforma amb els agents i la tolerància a fallades.

4.1 Disseny global

Tenim dos elements principals en el nostre disseny: l’agent i la plataforma. La

plataforma serà responsable de crear l’agent i proporcionar tots els serveis que

aquest necessiti, com ara migrar a un altre node, processar els agents que arriben,

eliminar, etc. També utilitzarà el protocol RESTTP per la migració dels agents.

NS2 permet afegir nous protocols en diferents nivells d’abstracció seguint el

model TCP/IP. En aquest cas podem afegir el protocol de migració en la capa

d’aplicació o bé en la capa de transport. Per facilitar la posterior implementació

i per què la plataforma ha de proporcionar un servei de transport dels recursos

de l’agent hem decidit afegir el protocol de migració en la capa de transport. En

NS2, els extrems finals d’una connexió punt a punt es defineixen com Agents.

Utilitzarem aquesta notació durant la resta de la memòria per diferenciar-los dels

agents mòbils com entitats software.

21

22 CAPÍTOL 4. DISSENY

En el nostre cas, ens interessen més els passos del protocol de migració que

les dades que s’han d’intercanviar els Agents per què el que volem és simular, i

per tant podem assumir varies simplificacions:

1. Representarem la mida del codi, dades i estat d’execució de l’agent com

paràmetres d’aquest, i assumirem que són coneguts. D’altra banda, la mida

dels diferents recursos de l’agent no és constant, i per tant, podrem modifi-

car els paràmetres definits per reflectir aquest fet.

2. No considerem la plataforma com una aplicació a sobre d’un Agent de la

capa de transport sinó que la plataforma implementarà uns serveis mínims

necessaris per la comunicació amb altres plataformes. En conseqüència,

haurem d’implementar l’interfície Agent proporcionada en NS2.

3. Els agents mòbils es poden implementar de forma totalment independent al

model TCP/IP. No tenim perquè afegir-los en una capa en concret d’aquest

model.

En la figura 4.1 podem veure la jerarquia de classes escollida per imple-

mentar el nostre model. La classe que representa la plataforma (que en diem

RESTTP_PlatformAgent) deriva de la classe Agent i per tant, el seu nom en la

jerarquia de classes oTCL és Agent/RESTTP_PlatformAgent. En canvi, la classe

que representa els agents mòbils (que en diem MobileAgent) no estarà accessible

directament en la jerarquia.

4.2 Plataforma

La plataforma és la part central del nostre disseny i es pot dividir de manera lògi-

ca en dues parts: una part externa que s’encarregaria de gestionar la comunicació

amb altres plataformes i la transferència dels agents i una part interna que s’en-

carregaria de gestionar als agents mòbils.

4.2. PLATAFORMA 23

Figura 4.1: Jerarquia de classes pel model

4.2.1 Comunicació externa

Com hem vist en el capítol anterior, el protocol de migració necessita l’intercanvi

de dos tipus de missatges: missatges ACL i peticions/respostes HTTP. En primer

lloc haurem de definir quins són els camps necessaris per les seves capçaleres.

En la taula 4.1 podem veure els camps continguts en la capçalera dels missatges

ACL.

En primera instància vam pensar un esquema on s’utilitzi un temporitzador

per tal d’enviar les peticions HTTP cada cert interval i buscar un model que ens

caracteritzi els temps d’enviament i processament, però ens hem adonat que aquest

plantejament no era correcte ja que en NS2, una característica dels enllaços és el

delay, donat per les pròpies característiques de l’enllaç. Aquest delay fa que es

produeixi un retard en l’enviament dels paquets per l’enllaç, i per tant no ens

cal un temporitzador. A més a més, el temps de processament de les peticions, al

tractar-se simplement d’una simulació el podem considerar despreciable. D’acord

amb això, hem implementat un esquema que utilitza números de seqüència per

l’enviament dels missatges HTTP. En la taula 4.2 podem veure la descripció dels

24 CAPÍTOL 4. DISSENY

Camp Descripció
com_type Ens indica quin tipus d’acte comunicatiu s’està portant a

terme entre dues plataformes (p.e. TRANSFER, INFORM,
FAILURE, etc.)

info Estructura amb dos camps: type i id. Ens indica el tipus
d’agent a transferir i el seu identificador únic.

cid Identificador únic assignat al codi de l’agent d’acord amb
les especificacions del protocol RESTTP.

did Identificador únic assignat a l’estat de l’agent d’acord amb
les especificacions del protocol RESTTP.

sid Identificador únic assignat a les dades de l’agent d’acord
amb les especificacions del protocol RESTTP.

Taula 4.1: Capçalera dels missatges ACL

Camp Descripció
req Un descriptor que ens indica si es tracta d’una petició HTTP

(1) o la resposta a una petició (0).
rcode Si es tracta d’una resposta, necessitem saber si la petició

s’ha processat correctament (rcode = 200) o si s’ha produït
un error (rcode = codi de l’error).

rid Identificador únic del recurs demanat.
seq Número de seqüència del paquet HTTP.

Taula 4.2: Capçalera dels missatges HTTP

camps continguts en la capçalera HTTP.

4.2.2 Gestió dels agents

Per la gestió dels agents, per una banda hem de saber quins agents resideixen en

la plataforma. La resposta ens la proporcionarà un registre dels agents mòbils

disponibles, que podem veure com el servei de pàgines blanques. Aquest registre

s’actualitzarà amb la creació d’un nou agent o amb la migració d’un agent ja

existent.

Per altra banda, hem de saber quan un agent vol migrar. En aquest cas, serà

la pròpia plataforma qui interrogarà als agents per saber si aquests volen migrar

4.3. AGENTS I COMPORTAMENTS 25

o volen realitzar alguna altra operació. D’aquesta forma, serà la plataforma qui

assumirà el rol principal i controlarà tot el procés de migració. Els agents con-

testaran basant-se en el seu comportament i en base a certs paràmetres que els

proporcionarà la plataforma. Hem decidit fer-ho d’aquesta manera per què sim-

plifiquem l’inserció del nostre model en la jerarquia de classes del NS2. Així, els

agents mòbils es poden implementar de forma totalment independent, sent acces-

sibles només des de la plataforma.

4.3 Agents i comportaments

Una de les característiques més interessants i que considerem la més important

per la simulació de la migració dels agents, és el comportament de l’agent. Quina

és la reacció de l’agent davant de certs estímuls. El comportament de l’agent base

serà simple i consistirà en migrar sempre. Aquest comportament ens servirà per

provar el funcionament bàsic del sistema.

4.3.1 Electronic Triage Tag Mobile Agent

Per tenir una prova de concepte i per demostrar que el nostre sistema realment

funciona, hem decidit simular el comportament d’un agent mòbil per aplicacions

mèdiques en entorns MANET1, el Triage Tag mòbil (ETTMA) [MR+08]. Els

Triage Tag són una eina que els serveis mèdics utilitzen en escenaris de catàstro-

fes per distribuir de manera efectiva els recursos limitats i proporcionar l’ajuda

immediata a les víctimes que ho necessitin.

Hem decidit utilitzar aquest agent concret ja que és un agent que ha estat

desenvolupat també dintre del grup SeNDA, ja que ens és més familiar i té un

comportament molt ben definit, suficientment complex per proporcionar-nos una

bona prova de concepte.

El comportament d’aquests agent mòbil es basa principalment en el TTR (Time

1MANET, Mobile Ad-hoc NETwork és una xarxa ad hoc de nodes que estan (o poden estar)
en moviment, connectats per enllaços sense fils, la unió dels quals forma una topologia arbitraria
que es configura a si mateixa

26 CAPÍTOL 4. DISSENY

Columna Descripció
Destinació Adreça de la plataforma destí
Port Port de la plataforma destí
TTR TTR de la plataforma
Veí Flag que ens indica si la plataforma està disponible en en-

trega directa o no

Taula 4.3: Taula de decisió del ETTMA

To Return) de les plataformes. El TTR representa el temps que li resta a la pla-

taforma per arribar a la base de control. En un escenari d’emergència podem

considerar les ambulàncies i els metges com plataformes i l’hospital de campanya

com la base de control. Per tant, l’agent migrarà a una altra plataforma només si

el TTR de la plataforma destí és menor. En cas contrari, l’agent no realitzarà cap

acció.

Podem distingir dues parts en el comportament d’aquest agent: una part en la

que el agent ha de prendre una decisió en base al TTR de les plataformes i una

altra part de descobriment de les plataformes que estan al seu abast. Per la primera

part utilitzarem una taula en la que guardarem informació sobre les plataformes

que estan a l’abast amb el seu TTR. En la taula 4.3 podem veure el contingut

d’aquesta taula.

Per la part de descobriment de plataformes hem definit el següent protocol:

1. Fase d’anunciació d’existència
Cada X temps la plataforma A enviarà en BROADCAST i amb TTL = 1 el

seu TTR. Només les plataformes que estiguin en entrega directa rebran el

paquet. Aquestes al seu torn enviaran a la plataforma A el contingut de les

seves taules de decisió. La plataforma A envia per UNICAST el seu TTR

a totes les plataformes conegudes que no estan en entrega directa. En la

figura 4.2 podem veure de forma gràfica aquests passos.

2. Fase d’anunciació de TTR
Cada vegada que es canvia el TTR, la plataforma A envia per UNICAST a

totes les plataformes de la seva taula de decisió el nou TTR (figura 4.3).

4.3. AGENTS I COMPORTAMENTS 27

Figura 4.2: Fase de descobriment de plataformes

Figura 4.3: Fase d’anunciació de TTR

28 CAPÍTOL 4. DISSENY

Camp Descripció
type_of Indica si es tracta d’un enviament en BROADCAST, un en-

viament en UNICAST o bé es tracta d’una resposta a un
missatge d’anunciació d’existència.

ttr En la fase d’anunciació d’existència, la plataforma origen
emplena aquest camp amb el valor del seu TTR.

dtable Contingut de la taula de decisió retornat en resposta a l’a-
nunciament BROADCAST.

Taula 4.4: Capçalera dels missatges MTP_HELLO

3. Fase d’eliminació d’entrada de la taula
Les plataformes que reben els missatges UNICAST han de respondre amb

un ACK. Si una plataforma no rep un ACK d’alguna de les plataformes,

l’esborrarà de la seva taula. Si s’intenta enviar un agent però el destí no és

accessible també s’esborrarà la plataforma de la taula.

En aquest protocol ens apareixen nous tipus de missatges que les platafor-

mes han d’intercanviar: missatges d’actualització de les taules de decisió (tant

BROADCAST com UNICAST) i missatges de confirmació (ACK). En conse-

qüència, hem de crear dos tipus de paquets més i especificar la informació con-

tinguda en les seves capçaleres. Els missatges d’actualització els anomenarem

MTP_HELLO i podem veure els camps de la capçalera en la taula 4.4. En el cas

dels ACKs no necessitem afegir cap informació en la capçalera ja que en aquest

cas no hi ha una transferència d’informació. Amb el camp genèric que identifica

el tipus de paquet ja en tenim suficient.

En la figura 4.4 podem veure el diagrama de classes bàsic dels elements que

hem vist fins al moment. En el capítol d’implementació veurem aquest diagrama

amb més detalls.

4.4 Control d’errors

Com hem vist en l’anterior capítol, un dels requisits del nostre sistema era la

tolerància a fallades. Es a dir, el que no podem permetre és que la transferència

4.5. CONCLUSIONS 29

Figura 4.4: Diagrama de classes

d’algun dels recursos de l’agent falli. Per tant, hem dissenyat un sistema molt

simple en el qual si falla la transferència d’algun dels recursos, informem a la

plataforma d’origen, cancelem la migració i eliminen els recursos ja transferits.

Per altra banda, utilitzarem un esquema basat en ACKs en la fase de descobri-

ment de plataformes de l’agent ETTMA per tal d’actualitzar les taules de decisió.

En concret, per cada missatge que s’envia esperarem rebre un ACK. Aquest ACK

ens informarà que, efectivament, la plataforma destí està al nostre abast.

4.5 Conclusions

En aquest capítol hem vist quin és el disseny global del nostre model de simulació

per la migració d’agents. Hem vist que els principals elements són la plataforma,

que utilitza el protocol RESTTP, i els agents mòbils. També hem vist com els

agents deixen de tenir el control sobre la migració, sent la plataforma qui s’encar-

rega de controlar tot el procés i preguntar als agents si volen migrar o no. També

hem vist la necessitat de simular el comportament d’un tipus d’agent concret com

a prova de concepte. Hem escollit l’ETTMA com un possible candidat i hem defi-

nit un protocol pel descobriment de plataformes en un entorn MANET. Finalment,

hem vist com un esquema molt senzill de control d’errors ens pot proporcionar la

tolerància a fallades.

30 CAPÍTOL 4. DISSENY

Capítol 5

Implementació i prova

En aquest capítol veurem com s’ha dut a terme la fase d’implementació del dis-

seny presentat en el capítol anterior. Començarem veient l’implementació des

d’un punt de vista global per anar centrant l’atenció en els detalls. Finalment,

veurem quines han estat les proves realitzades per comprovar el correcte funcio-

nament del sistema i unes breus conclusions sobre els resultats obtinguts.

5.1 Implementació

Els elements centrals són la plataforma i els agents mòbils, però també hem vist

que necessitem paquets, temporitzadors, un registre d’agents i una taula de deci-

sió. Per això, hem decidit crear els següents fitxers font:

• mtp_http_packets.h: conté la descripció de totes les estructures necessàri-

es per implementar les capçaleres dels paquets HTTP, ACL i MTP_HELLO.

• resttp_platform.{h,cc}: contenen les classes corresponents a l’implemen-

tació de la plataforma (RESTTP_PlatformAgent), els temporitzadors i una

descripció de la taula de decisió utilitzada per l’ETTMA.

• mobile_agent.{h,cc}: contenen les classes necessàries per l’implementa-

ció dels agents mòbils. Concretament, podem trobar l’implementació de

la classe base amb el comportament bàsic dels agents i l’implementació de

31

32 CAPÍTOL 5. IMPLEMENTACIÓ I PROVA

l’ETTMA. També trobem la classe AgentRegistry, una llista de tots els

agents disponibles en la plataforma.

A continuació veurem com s’implementen i quines són les particularitats de

cada un dels elements presentats anteriorment. El diagrama de classes global es

pot veure en la figura 5.1.

5.1.1 RESTTP_PlatformAgent

Com hem comentat anteriorment, inserirem la classe RESTTP_PlatformAgent a

la capa de transport del NS2 i per tant, hem de derivar de la classe Agent. Aquesta

classe ens oferirà els serveis bàsics de transport. En conseqüència, necessitem els

següents mètodes per enviar i rebre paquets:

• send_req(ns_addr_t, int, int): mètode que rep com a paràmetres l’adreça

de la plataforma destí, que en NS2 es representa mitjançant l’estructura

ns_addr_t, un identificador del recurs que es vol demanar i el número de

seqüència de la petició HTTP a enviar. S’encarrega de construir la capçalera

del missatge HTTP amb la informació corresponent i enviar la petició a la

plataforma destí.

• send_acl(ns_addr_t, int): mètode que rep com a paràmetres l’adreça de

la plataforma destí i un identificador del tipus de missatge ACL a enviar

(petició de transferència, informe d’error, etc.). S’encarrega de construir la

capçalera del missatge ACL i enviar-lo a la destinació.

• recv(Packet*, Handler*): és el mètode que s’invoca des del NS2 quan un

paquet arriba a un agent de la capa de transport i se li passa una referència

al paquet rebut. S’encarrega de realitzar el corresponent processament en

funció del tipus de paquet rebut.

Hi ha un altre mètode que es necessari implementar i aquest és command(int

argc, const char*const* argv). Aquest mètode ens permetrà interaccionar amb

l’script oTCL i és on hem d’implementar totes les comandes que des d’aquest es

5.1. IMPLEMENTACIÓ 33

Figura 5.1: Diagrama de classes

34 CAPÍTOL 5. IMPLEMENTACIÓ I PROVA

Figura 5.2: Diagrama de classes de la plataforma

poden invocar. Per exemple, tenim la comanda create-agent que s’encarregarà de

cridar els mètodes necessaris de la classe MobileAgent per crear un nou agent i la

comanda migrate-agents que procedirà a la migració dels agents que expressin

aquesta voluntat.

El servei de pàgines blanques de la plataforma estarà representat per un Agent
Registry, sent aquest un atribut de la plataforma. L’AgentRegistry serà una llis-

ta formada per elements de tipus AgentNode que contindran una referència a un

agent mòbil i un punter al següent agent mòbil disponible en la llista. No només

mantindrem un registre dels agents residents en la plataforma sinó també un re-

gistre del agents que estan preparats per migrar per poder aplicar una política de

transferència en cas que varis agents vulguin migrar al mateix temps.

Hem afegit també un atribut a la plataforma que representi el seu estat de

funcionament. Es a dir, podem tenir una plataforma en un node que si pot reen-

caminar paquets, però no està operativa per processar agents. Així podem parlar

d’un estat ONLINE o OFFLINE de la plataforma. En l’estat OFFLINE els agents

no podran migrar cap a aquesta plataforma.

En el diagrama de classes de la figura 5.2 podem veure l’esquema bàsic de la

plataforma.

5.1. IMPLEMENTACIÓ 35

5.1.2 MobileAgent

Per la implementació dels agents mòbils necessitem una classe base de la que

derivar tots els tipus concrets d’agents. Aquesta classe ens ha de proporcionar un

comportament bàsic, que és el de migrar sempre. Hi ha una serie d’atributs que

són comuns a tots els agents i són:

• id_: identificador únic de l’agent.

• a_type_: tipus d’agent (p.e. ETTMA).

• dst_: en el cas de migrar, l’agent ha d’especificar l’adreça de la plataforma

destí a la que vol migrar.

• code_size_: mida del codi de l’agent.

• data_size_: mida de les dades de l’agent.

• state_size_: mida de l’estat d’execució de l’agent.

El mètode principal d’aquesta classe, i que els agents que derivin d’aquesta

podran sobreescriure, és el mètode int doNext(). La plataforma cridarà aquest

mètode per saber quina és l’acció que vol realitzar l’agent (MIGRAR, MORIR o

altres). En el cas de l’agent base aquesta funció retornarà sempre una constant que

representa l’acció de migrar.

Un agent que derivarà d’aquesta classe base és l’ETTMA sobre el qual hem

parlat en el capítol de disseny. Aquest agent basa la seva decisió en una taula de

decisió que recull els diferents TTRs de les diferents plataformes que estan al seu

abast.

La taula de decisió la representarem mitjançant una taula hash indexada per

l’adreça de la plataforma i el valor corresponent a la clau serà una estructura

de tipus dstInfo amb tres camps: port_, que indica el port de la plataforma,

ttr_, que indica el TTR de la plataforma i nb_, que indicara si la plataforma

es troba en entrega directa o no. Tant la taula de decisió com el TTR seran

36 CAPÍTOL 5. IMPLEMENTACIÓ I PROVA

atributs de la plataforma. Per tant, haurem de modificar l’esquema bàsic pre-

sentat en la figura 5.2 per afegir aquests nous atributs i els mètodes de actua-

lització i tractament d’aquests atributs. També haurem d’afegir un nou mètode

int doNext(map<nsaddr_t,dstInfo> dt, int ttr) que incorpori aquesta modificació.

Llavors l’agent decidirà si ha de migrar o no en base a l’actual topografia de la

xarxa i el TTR de la plataforma en la qual es troba.

En la figura 5.1 podem veure un diagrama de classes integral de la implemen-

tació feta. En aquest diagrama podem veure els atributs i mètodes afegits a la

implementació bàsica de la plataforma per tractar amb aquest nou tipus d’agent.

5.1.3 Paquets

En el capítol anterior hem vist que era necessari l’intercanvi de quatre tipus de

paquets diferents entre les diferents plataformes (ACL, HTTP, MTP_HELLO,

ACK). En canvi, el NS2 imposa que dos agents situats en els extrems d’una conne-

xió només es poden intercanviar un sol tipus de paquet. Podem solucionar aquest

problema definint una jerarquia en la que els paquets mencionats anteriorment

derivin d’un mateix paquet base.

Noves capçaleres de paquets són introduïdes al simulador definint una estruc-

tura C++ amb els camps necessaris i es guarden en una estructura de tipus Bag of

Bits. Llavors es proporciona un mètode d’accés mitjançant un offset per recuperar

els camps de la capçalera. Això no suposa un problema en el nostre cas perquè

una estructura C++ és pot veure com una classe els membres de la qual són públics

per defecte.

Per tant, el que necessitarem és un atribut comú a totes capçaleres que indiqui

de quin tipus de paquet es tracta, i per mantenir la coherència en quant a l’accés,

necessitarem reservar un espai igual a la mida de l’estructura més gran en el Bag of

Bits. En la figura 5.3 podem veure un petit diagrama de la jerarquia implementada.

5.1.4 Temporitzadors

A continuació veurem els quatre cassos on el temps juga un paper important:

5.1. IMPLEMENTACIÓ 37

Figura 5.3: Diagrama de classes dels paquets

1. En el capítol anterior ja hem vist que és la plataforma qui pregunta als agents

si volen migrar o no. Aquest interrogatori s’ha de produir constantment

ja que al llarg de la simulació es poden crear nous agents o un agent pot

variar la seva decisió d’acord amb al seu comportament. La forma més fàcil

de solucionar aquest problema és interrogar als agents periòdicament. Per

tant, necessitem un temporitzador que ens marqui aquest període, que en el

nostre cas serà d’1 segon.

2. Una altra acció que s’ha de dur a terme periòdicament, en el cas de l’agent

ETTMA, és el descobriment de plataformes ja que estem simulant un entorn

MANET. En una MANET la topologia de la xarxa és molt dinàmica i canvia

molt freqüentment. Per tant, necessitarem un segon temporitzador que ens

marqui aquest període d’actualització de la topologia. Basant-nos en una

observació empírica, hem decidit triar un període de 10 segons.

3. Seguint amb l’ETTMA, en la fase d’anunciació d’existència, no sabem a

priori quantes plataformes estan al nostre abast i per tant, ens hem d’esperar

un cert període de temps per rebre totes les respostes. Després d’observar

empíricament l’impacte del valor del temporitzador hem decidit triar un

temps d’espera de 0.2 segons.

4. Seguint amb el mateix escenari dels punts anteriors, ens cal un temporit-

zador per esperar els ACKs en resposta als missatges UNICAST d’actua-

lització. Utilitzarem el mateix temps d’espera que en el cas anterior: 0.2

38 CAPÍTOL 5. IMPLEMENTACIÓ I PROVA

Figura 5.4: Diagrama de classes dels temporitzadors

segons.

En NS2 tots els temporitzadors deriven de la classe base TimerHandler i si

es vol implementar un nou timer el que hem de fer és sobreescriure el mètode

expire(Event* e). Quan es dispara un temporitzador s’invoca el mètode expire()

per saber quines accions s’han de realitzar. Podem veure el diagrama de classes

en la figura 5.4.

5.2 Prova

Pel desenvolupament d’aquest projecte hem utilitzat una metodologia basada en

cicles evolutius per facilitar la detecció i correcció d’errors a mesura que s’anava

avançant. En l’apèndix A podem veure com configurar i quines són les modifica-

cions necessàries en NS2 per afegir el model implementat i realitzar simulacions

a partir d’aquest.

Per realitzar les proves, el que hem fet és dissenyar varis escenaris amb to-

pologia diferent i simular la migració d’agents mòbils dintre d’aquests escenaris.

Els escenaris han estat creats mitjançant el llenguatge oTCL, utilitzant el NAM

com eina de visualització gràfica de les simulacions. Però, per supervisar totes

les accions, l’arribada de missatges, la presa de decisions dels agents no en te-

nim prou amb una simple eina de visualització gràfica. Per tant, utilitzarem els

fitxers de traça amb extensió .tr que ens proporciona també el NS2. En aquests

fitxers es guarda la seqüència de tots els paquets enviats durant la simulació i d’a-

5.2. PROVA 39

Figura 5.5: Escenari 1

questa manera podem comprovar que realment segueixen els passos del protocol

implementat, així com també la política de decisió dels agents.

A continuació veurem en quins escenaris s’han dut a terme les simulacions.

5.2.1 Escenari amb dues plataformes

El primer escenari, és un escenari molt bàsic en el qual tenim dos nodes connec-

tats mitjançant un cable. L’enllaç té un ample de banda de 1Mbps amb un delay

de 10ms i la política de gestió de cues que utilitzarem en els dos extrems és la

DropTail. En la figura 5.5 podem veure aquest escenari.

Inicialitzem una plataforma en cada un dels nodes i establim com a destinació

per defecte dels agents de la plataforma 0, la plataforma 1. Creem un agent mòbil

en la plataforma 0 i farem que en l’instant 0.2 de simulació, la plataforma comenci

la migració.

Hem pogut comprovar com els paquets s’envien segons la seqüència definida

pel protocol RESTTP i com l’agent primer es crea en la plataforma destí i després

es destrueix en la plataforma origen. També hem comprovat que el comporta-

ment és idèntic si substituïm el cable que connecta els dos nodes per un medi de

transmissió wireless.

Una cosa que podem observar a partir de la simulació és el temps que tarda un

agent en realitzar una migració completa. Es a dir, el temps que es tarda en migrar

a una altra plataforma i tornar a la plataforma origen. En la figura 5.6 podem veure

el temps que tarden en migrar varis agents de diferent mida.

El comportament esperat seria que el temps de migració augmenti a mesura

que incrementem la mida de l’agent. La figura 5.6 precisament mostra aquest

40 CAPÍTOL 5. IMPLEMENTACIÓ I PROVA

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

se
go

ns

bytes

Temps

Figura 5.6: Temps en realitzar una migració completa

comportament.

5.2.2 Escenari amb moviment de nodes

L’escenari anterior és un escenari molt bàsic en el qual podem comprovar el cor-

recte funcionament del protocol, però el que realment ens interessa és la simula-

ció de la migració d’agents en entorns molt més complexes, com ara una xarxa

MANET. En una xarxa MANET ens afrontem a un canvi dinàmic de la topologia

i l’agent ha de saber reaccionar davant aquests canvis.

L’escenari que proposem aquí esta composat per 6 nodes en una xarxa mòbil

ad-hoc (figura 5.7). L’algorisme d’encaminament que utilitzarem és el AODV

(Ad hoc On-Demand Distance Vector) [PE99]. A partir de l’instant 10.0 de la

simulació provocarem que el node 0 comenci a desplaçar-se cap a la posició (0,0)

de la topologia, el node 1 es desplaci en direcció als nodes 2 i 5, el node 5 es

desplaci en direcció al node 4, i que els nodes 3 i 4 comencin a desplaçar-se

horitzontalment.

Sobre cada un d’aquests 6 nodes hi haurà una plataforma i el que farem serà

crear dos agents mòbils que tindran com a destinació la plataforma 1. El primer

5.2. PROVA 41

Figura 5.7: Escenari 2

Plataforma 0 1 2 3 4 5
TTR 200 300 250 254 150 50

Taula 5.1: Assignació de TTRs

agent migrarà en l’instant de temps 5.0 mentre que el segon en l’instant 20.0. El

que veurem és que la plataforma 0 durà amb èxit la migració del primer agent

ja que la plataforma 1 està al seu abast. En canvi, la migració del segon agent

no tindrà lloc perquè en l’instant de temps 20.0 la plataforma 1 restarà fora del

radi de cobertura de la plataforma 0. Per tant, hem comprovat que les plataformes

tenen la capacitat de detectar canvis en l’entorn i actuar davant d’aquests.

En el mateix escenari hem creat un agent de tipus ETTMA en la plataforma

0 per veure que aquest és capaç de prendre una decisió basada en els TTR de les

diverses plataformes. Per fer això hem assignat a cada plataforma un valor de

TTR d’acord amb la taula 5.1.

Hem observat que la simulació mostra exactament el comportament esperat.

Es a dir, l’agent salta a la plataforma 4 (de les que té al seu abast en aquest moment,

la plataforma 4 té un TTR menor) per després saltar a la plataforma 5 que és

la plataforma amb el mínim valor de TTR i accessible des de la plataforma 4.

També hem pogut comprovar la correcta actualització de la taula de decisió de la

plataforma 4 ja que inicialment no contenia una entrada per la plataforma 5.

42 CAPÍTOL 5. IMPLEMENTACIÓ I PROVA

5.2.3 Escenari situació d’emergència

Fins ara hem comprovat diferents aspectes funcionals del nostre sistema, però el

que ens interessa realment es simular escenaris reals i analitzar quin és el compor-

tament dels agents dintre d’aquests escenaris.

L’escenari que ens proposem simular aquí és el d’una situació d’emergència

provocada per un desastre com un terratrèmol, un tsunami o un atemptat terrorista,

en la que es despleguen una sèries de nodes corresponents als serveis mèdics que

han d’atendre als ferits. Per donar-li un matís realista a la simulació, hem creat un

escenari basant-nos en l’accident aeri que va succeir a l’aeroport de Barajas el 20

d’agost de 2008.

Degut a un error humà dels pilots i, a la mateixa vegada, a un problema amb la

mecànica de l’avió, el vol JF3022 amb destí Gran Canària de la companya Spanair

va caure al poc d’enlairar-se i es va estavellar al costat de l’aeroport. Les part de

l’avió es van dispersar en un radi de 200 metres del lloc on va caure l’avió, al

costat d’un camí rural habilitat per a la circulació de vehicles.

El dispositiu d’emergència desplegat va ser impresionant [DEP08, DPC08] i

es va aconseguir localitzar 28 supervivents, tot i que en diferent estat de salut.

L’escenari té les següents característiques:

• 3 àrees: àrea de l’incident (impacte de l’avió), l’àrea de tractament de pa-

cients (situada al costat de l’àrea de l’incident, amb 11 UVIs) i les àrees

d’espera per fer sortir els ferits cap als hospitals i d’on surten les ambulàn-

cies.

• L’àrea de l’incident fa 8000 m2, donat que les part de l’avió van quedar dis-

seminades en un radi de 200 metres des de l’impacte. Aquesta àrea compta

amb 15 nodes (cada grup de 4 persones compta com un node i s’han tingunt

en compte 60 persones desplaçades).

• L’àrea de tractament de pacients està situada al costat de l’àrea de l’incident

i compta amb 11 nodes (un node per cada UVI mòbil).

• L’àrea de sortida de la zona de l’accident està situada al costat de l’àrea de

5.2. PROVA 43

Figura 5.8: Delimitació de la zona d’impacte en zona d’incident (3), zona de
tractament (2) i zona de sortida (1)

tractament de pacients i compta amb 35 nodes (un node per cada ambulàn-

cia).

A la figura 5.8 podem veure les característiques d’aquest escenari.

Per simplificar una mica aquest escenari i amb la finalitat de reduir el temps

de simulació, hem reduit el nombre de nodes a 19 (15 a la zona d’incident, 2 a

la zona d’espera i 2 a la zona de sortida). Podem veure la disposició inicial dels

nodes en la figura 5.9. El que es tracta de simular és el recorregut del personal

sanitari des de la zona de tractament fins a la zona d’incidència i a l’inrevés. El

temps durant el qual simularem aquest comportament serà de 3600 segons.

El que tenim en aquest escenari són una serie d’agents mòbils ETTMA que

intentaran migrar el més ràpid possible cap als nodes de la zona de sortida. El que

hem pogut comprovar és com les plataformes actualitzen les seves taules d’acord

amb la topologia actual de la xarxa i com els agents mòbils salten sempre cap a les

plataformes que els ofereixen un TTR menor. Tots els agents creats han complert

amb el seu objectiu: arribar als nodes de la zona de sortida.

Tot i que no és l’objectiu dur a terme una prova de rendiment, sí que és interes-

sant veure si el mòdul afegit per la migració d’agent introdueix algun overhead en

el temps d’execució de la simulació. Per comprovar això, utilitzant aquest mateix

44 CAPÍTOL 5. IMPLEMENTACIÓ I PROVA

Figura 5.9: Escenari 3

escenari, hem substituit els agents mòbils per connexions FTP. Hem crear dues

sessions FTP entre dues parelles de nodes de la zona d’impacte i una sessió entre

un node de la zona d’impacte i un altre situat a la zona de sortida. El temps d’e-

xecució de la simulació pels dos cassos anteriors es pot veure a la figura 5.10. Per

validar els resultats obtinguts hem repetit cinc vegades les simulacions.

Hem pogut comprovar que el fet d’utilitzar agents mòbils no introdueix cap

overhead en el temps d’execució de la simulació, sinó tot el contrari, el disminu-

eix. En la presentació de l’escenari 2 ja veiem que el temps de migració d’un agent

de mides fins i tot mitjanes és baix (aproximadament 0.42 segons), i els resultats

obtingut en aquest escenari ens ho confirmen.

5.3 Conclusions

En aquest capítol hem vist quina ha estat l’implementació del protocol de mi-

gració d’agents mòbils i del comportament de l’agent ETTMA. Hem vist com las

classe RESTTP_PlatformAgent ens pot oferir els serveis bàsics de transport i com

un registre d’agents es pot implementar fàcilment mitjançant una llista. Hem vist

també com aplicar algunes propietats del llenguatge de programació C++ per evi-

5.3. CONCLUSIONS 45

Figura 5.10: Temps de simulació

tar la restricció que imposa l’intercanvi d’un únic tipus de paquet entre dos agents

de la capa de transport, i com s’implementen els temporitzadors en el NS2.

Finalment, hem vist tres escenaris de prova, en el quals hem pogut comprovar

el correcte funcionament de la nostra aplicació. Hem vist com els resultats de

les simulacions són totalment coherents amb els resultats esperats, tant en xarxes

cablejades com en xarxes ad-hoc amb nodes mòbils. Una observació directa de

les simulacions és que el temps que un agent necessita per realitzar una migració

completa augmenta linearment amb la seva mida. A més a més hem pogut com-

provar que la simulació del comportament de l’agent ETTMA compleix totes les

especificacions d’aquest (descobriment de plataformes de forma periòdica, actua-

lització de les taules de decisó i presa de decisions). També hem pogut comprovar

que el mòdul de migració no afegeix cap overhead en el temps de simulació i per

tant, podrem dur a terme simulacions en temps raonables (aproximadament 90

segons de temps d’execució per temps de simulació de 3600 segons).

46 CAPÍTOL 5. IMPLEMENTACIÓ I PROVA

Capítol 6

Conclusions

En aquest capítol veurem un recull dels objectius acomplerts, un resum de la fei-

na realitzada per acomplir aquests objectius, la planificació temporal resultant i

algunes línies de treball futur. Finalment, exposarem una valoració personal del

projecte.

6.1 Objectius acomplerts

Si recordem, el principal objectiu d’aquest projecte era construir un entorn de tre-

ball que ens permeti simular el comportament general dels agents mòbils. Per fer

això necessitavem un pas previ d’estudi dels protocols de migració i del simulador

NS2. Podem dir que hem assolit amb èxit aquests objectius.

Hi ha diversos protocols de migració d’agents mòbils, un dels quals és el

RESTTP. Aquest protocol no està soportat dintre del NS2, fet que ens ha por-

tat a dur a terme una implementació del protocol i afegir-ho al simulador. Dintre

d’un escenari de simulació els agents són capaços de migrar entre varies platafor-

mes disponibles. La decisió de quina serà la plataforma destí es pot fer de forma

estàtica, on l’usuari especifica quina és aquesta plataforma, o bé de forma dinà-

mica, on l’agent ha de prendre una decisió en base a una estructura més complexa

(taula de decisió) que s’actualitza de forma periòdica per indicar canvis en l’en-

torn. Serà la pròpia plataforma qui interrogarà als agents per determinar si volen

47

48 CAPÍTOL 6. CONCLUSIONS

migrar, i en cas afirmatiu portarà a terme un procés de transferència utilitzant el

protocol RESTTP. Una vegada finalitzada la transferència, l’agent quedarà regis-

trat a la plataforma destí i serà eliminat de la plataforma origen. El propi protocol

RESTTP, amb l’utilització dels protocols HTTP i ACL, ens ofereix un esquema

robust i tolerant a fallades de transferència d’agents.

Un altre objectiu d’aquest projecte era dissenyar varis escenaris per la simula-

ció d’agents. També és un objectiu que hem assolit amb èxit. El propi NS2 ens

aporta les eines necessàries per definir un escenari de simulació. Mitjançant un

script descrit en llenguatge oTCL es possible definir tots els paràmetres i elements

d’una simulació: nombre de nodes, topologia, models de propagació i moviment

de nodes en el cas de la tecnologia wireless, etc.

Finalment, un objectiu important d’aquest projecte era poder implementar i

simular el comportament d’un tipus d’agent concret. No només volem veure que

els agents poden migrar sinó que ho fan en base a uns objectius ben definits, per

dur a terme una certa tasca. També podem afirmar que hem acomplert aquest

objectiu.

L’agent seleccionat ha estat el Electronic Triage Tag Mobile Agent. Utilitzat en

situacions d’emergència, l’ETTMA porta informació de la situació de les víctimes

al centre d’operació el més ràpid possible. Utilitza un servei de descobriment

de plataformes per saber quines plataformes té al seu abast. La decisió de la

plataforma destí ja no és estàtica o aleatòria sinó que l’agent pren una decisió

en base a un atribut de la plataforma que indica quin és el seu temps restant per

tornar al centre d’operació (TTR). Periòdicament, es portat a terme un procés de

descobriment de plataformes i es selecciona la que tingui un TTR menor.

En conclusió, podem dir que s’han acomplert tots els objectiu proposat a l’inici

d’aquest projecte.

6.2 Planificació temporal final

Com podem veure a la figura 6.1, la planificació temporal final ha estat diferent

de l’inicial. Tot i així, la durada del projecte només s’ha vist incrementada amb

6.3. TREBALL FUTUR 49

set dies, la qual cosa no va afectar l’entrega final del projecte.

La part que es va veure afectada és la codificació del mòdul que simuli el

comportament d’un agent concret. Per una banda, l’integració del model dintre

del NS2 no ha estat una tasca gens fàcil degut a les varies limitacions del simulador

i a la poca ajuda que hi ha referent al desenvolupament en NS2. Això ha fet que

hi dediquem més hores de les inicialment havíem previst. Per altra banda, hem

hagut de revisar el disseny de la part de descobriment de plataformes de l’agent

escollit perquè no quedava molt clara la seva implementació. En canvi, realitzar

les simulacions necessàries per prova el funcionament del model ens ha costat

menys de l’esperat, reduint la durada d’aquesta tasca a només sis dies.

6.3 Treball futur

Tot i finalitzat el projecte, resten alguns punts que acceptarien millores o encara

podem afegir funcionalitats addicionals, que per manca de temps no s’han pogut

dur a terme. Aquestes són algunes de línies d’ampliació proposades:

1. Implementació d’un nou mòdul que simuli el comportament d’un altre ti-

pus d’agent. Es podria implementar el comportament del Bundle Scheduler

proposat pel Carlos Borrego1 per treballar amb cues. Això ens permetria

realitzar simulacions d’aquest agent en diferents escenaris i veure quins són

els beneficis que aporta.

2. Dissenyar i implementar, si s’escau, un nou protocol per la fase de des-

cobriment de plataformes de l’agent ETTMA escollit per fer la prova de

concepte. Per exemple, si es pensés una forma més eficient per descobrir

les les plataformes que hi ha a l’abast. D’aquesta forma es podrien realitzar

comparacions sobre l’impacte de diferents protocols.

3. Implementar varis protocols de migració. Hi ha altres protocols disponi-

bles per la migració d’agents i es podria fer una implementació d’aquests

1Carlos Borrego és un investigador del grup de recerca SeNDA i el treball al que es fa referència
està pendent de publicació, per això encara no existeix una referència

50 CAPÍTOL 6. CONCLUSIONS

Figura 6.1: Planificació temporal final

6.4. VALORACIÓ PERSONAL 51

protocols i veure quines són les seves diferències. Això s’hauria d’integrar

dintre de l’arquitectura IPMA [FIPA-IPMA] i la plataforma hauria de poder

escollir quin és el millor protocol que necessita per migrar.

4. Modificar o millorar una eina per la generació automàtica d’escenaris, com

per exemple el Bonn Motion, desenvolupat per investigadors en el camp

de les xarxes MANET i les xarxes de sensors de la Universitat de Bonn.

Necessitem una eina que ens generi de forma automàtica la posició inicial

i moviment dels nodes que s’adaptin a les característiques d’un determinat

escenari.

Aquestes línies de treball futur es podrien convertir en propostes per a pro-

pers projectes relacionats amb l’anàlisi del rendiment i comportament dels agents

mòbils.

6.4 Valoració personal

Amb aquest projecte hem fet la nostra petita aportació al món de les simulacions i

als interessats en la tecnologia d’agents mòbils. Amb aquest projecte puc dir que

he aprés molt, tant a nivell tècnic com a nivell personal. És el final d’una etapa

de la meva vida, però al mateix temps el punt de partida d’una nova etapa com a

futur enginyer informàtic.

Amb aquest projecte he pogut viure totes les etapes necessàries en la realitza-

ció d’un projecte i notar en primera persona la complexitat que això suposa, des

de desviacions en la planificació fins a l’estrès provocat per l’acumulació de feina.

És un projecte que no només m’ha servit per posar en pràctica els coneixements

adquirits durant la carrera o per adquirir de nous, sinó que també m’ha servit a

nivell personal. He pogut conèixer gent extraordinària, veure amb uns altres ulls

el món de la recerca i donar-me compte que molt cops la pròpia motivació i la

satisfacció per tenir una nova idea té molt més valor que una gran quantitat de

diners.

El fet de treballar amb un projecte de codi obert i saber que qualsevol persona

52 CAPÍTOL 6. CONCLUSIONS

pot utilitzar-lo en els seus futurs projectes suposa un motiu de satisfacció addici-

onal. És un sentiment molt afalagador el fet de que la teva feina sigui reconeguda

per altres persones.

Bibliografia

[AJ03] Altman, E., & Jiménez, T. (2003). NS Simulator for beginners. Univ.

de Los Andes, Venezuela; Sophia-Antipolis, França

[CEM08] Cucurull, J. (2008). Efficient Mobility and Interoperability of

Software Agents. Tesi doctoral - Universitat Autònoma de Barcelona,

Departament d’Enginyeria de la informació i de les Comunicacions.

[DEP08] La experiencia del 11-M, fundamental en el protocolo de actuación

activado por la Comunidad.(2008). Diari social digital Europa Press

<http://www.europapress.es/epsocial/cooperacion-y-desarrollo-

00331/noticia-accidente-barajas-experiencia-11-fundamental-

protocolo-actuacion-activado-comunidad-20080822115553.html>

[DPC08] 153 muertos en el peor siniestro aéreo de los últimos

25 años.(2008). Diari digital El Periodico de Catalunya

<http://www.elpais.com/articulo/espana/153/muertos/peor/siniestro/

aereo/ultimos/25/anos/elpepuesp/20080820elpepunac_11/Tes>

[FIPA-IPMA] Cucurull, J., Martí, R., Robles, S., Borell, J., & Navarro, G. (2007).

FIPA-based Interoperable Agent Mobility. Artícle presentat al Multi-

Agent Systems and Applications V, Leipzig, Alemania. , 4696 319-

321.

[FIPAMTP-HTTP] FIPA Agent Message Transport Protocol for HTTP Specifica-

tion(2002). <http://www.fipa.org/specs/fipa00084/SC00084F.html>

53

54 BIBLIOGRAFIA

[FIPASpec] Foundation for Intelligent Physical Agent (FIPA). (2010).

<http://www.fipa.org/>

[FT02] Fielding, R. T., & Taylor, R. N. (2002). Principled design of the mo-

dern web architecture. ACM Transactions on Internet Technology.

2(2), 115-150.

[FV09] Fall, K., & Varadhan, K. (2009). The ns Manual

<http://www.isi.edu/nsnam/ns/doc/index.html>

[GTu] Greis, M. Marc Greis Tutorial for the UCB/LBNL/VINT Network

Simulator "ns2". <http://www.isi.edu/nsnam/ns/tutorial/>

[HM04] Herrera M., J. M. (2004). NS2 - Network Simulator. Valparaíso

[IEEE-SRS] IEEE. Recommended practice for software requierements specifi-

cations(1998).

<http://standards.ieee.org/reading/ieee/std_public/description/se/830-

1998_desc.html>

[MUN] Muñoz, J. L. Análisis de protocolos con Net Simulator 2 (ns-2). Un-

published manuscript.

[MR+08] Martí, R., Robles, S., Martín-Campillo, A., & Cucurull, J. (2009).

Providing early resource allocation during emergencies: The mobile

triage tag. Journal of Network and Computer Applications, 32(6),

1167-1182.

[NS2Tu] NS-2 Tutorial. Demokritos University of Thrace

<http://utopia.duth.gr/ skontog/work/wlesson.pdf>

[PE99] Perkins, C. E., & Royer E. M. (1999). Ad hoc On Demand Distance

Vector Routing. Proceedings of the Second Annual IEEE Workshop

on Mobile Computing Systems and Applications, 90-100.

[RG00] Rigo, A., & Genescà, G. (2000). Tesis i treballs. Aspectes formals.

EUMO Editorial.

BIBLIOGRAFIA 55

[RR04] Ros, F. J., & Ruiz, P. M. (2004). Implementing a New Manet Unicast

Routing Protocol in NS2. Departament d’Enginyeria de la Informació

i de les Comunicacions. Universitat de Murcia.

[SEs09] Serrano, R. (2009). Estudi i simulació dels protocols d’encamina-

ment en MANETs amb nodes d’alta mobilitat. Tesina - Universitat

Autònoma de Barcelona, Departament de la Informació i de les Co-

municacions.

[uml05] UML Unified Modeling Language. (2005). <http://www.uml.org/>

[VMRC+06] Viera-Marques, P. M., Robles, S., Cucurull, J., Cruz-Correia, R.

J., Navarro, G., & Martí, R. (2006). Secure Integration of Distributed

Medical Data Using Mobile Agents. IEEE Intelligent Systems, 21(6),

47-54.

[WMA96] White, J. (1996). Mobile Agents White Paper

56 BIBLIOGRAFIA

Apèndix A

Guia per incorporar el framework
d’agents en el NS2

Hem implementat un nou protocol dintre del NS2, però no hem acabat. Necessi-

tem dur a terme una sèries de canvis per integrar el nostre codi dintre del simula-

dor. L’objectiu d’aquest annex és precisament donar a conèixer quins són aquests

canvis. És com una mena de tutorial per facilitar la feina de futurs projectistes o

persones interessades en desenvolupar protocols pel NS2.

A.1 Decidir l’estructura de directoris

En aquest punt donem per fet que es disposa del simulador NS2 correctament

instal·lat amb totes les seves dependències. La versió utilitzada per realitzar aquest

projecte és la 2.34.

Els fitxers font C++ amb l’implementació del nou protocol han d’estar contin-

guts a la carpeta ns-2.34/, que la podem trobar dintre del directori on hem instal·lat

el NS2. Podem copiar-los directament en aquesta carpeta o podem crear una nova

carpeta dintre de l’estructura de directoris per posar els fitxers. Aquesta decisió

esta a la lliure disposició del desenvolupador. En el nostre cas hem decidit crear

una nova carpeta, que anomenarem mtp.

A partir d’ara, suposarem que totes les referències a fitxers de configuració del

57

58APÈNDIX A. GUIA PER INCORPORAR EL FRAMEWORK D’AGENTS EN EL NS2

NS2 estan en base a la carpeta ns-2.34.

A.2 Declarar nous tipus de paquets

Si recordem, hem tingut que declarar nous tipus de paquets i definir les seves

capçaleres (ACL, HTTP i MTP_HELLO). El primer pas és informar al NS2 de

l’existència d’aquests nous tipus de paquets. Totes les declaracions de paquets

les podem trobar dintre del fitxer common/packet.h. En aquest fitxer podem veure

que els paquets es defineixen com nombres constants. Es defineix un nou tipus de

dades packet_t a partir del tipus bàsic unsigned int i els nous paquets es defineixen

de la següent forma:

static const packet_t nom = constant

Hem de tenir en compte que la declaració static const packet_t PT_NTYPE ha

de ser l’última. No es poden definir paquets després d’aquesta línia.

A partir d’ara, el NS2 ja sabrà de l’existència d’un nou tipus de paquet, que

en el nostre cas li hem assignat el valor 62. El següent pas és assignar un nom

textual al valor constant per identificar de forma més senzilla el nou paquet. Per

fer això, en el mateix fitxer hem de localitzar la classe p_info. Aquesta classe té

un atribut name_ que realitza el mapeig entre el valor constant assignat al paquet i

el seu nom. L’inicialització d’aquest vector es duu a terme en la funció initName()

on haurem d’afegir una línia com la següent:

name_[nom] = valor textual

A partir d’aquest moment ja podem utilitzar la constant definida anteriorment

com a identificador del nous tipus de paquet.

A.3 Generació de traces

Si recordem, l’objectiu de la simulació és obtenir un fitxer de traça que descriu

tots els events que han tingut lloc durant la simulació. En el capítol 26 de [FV09]

podem trobar una descripció de les traçes. L’informació d’un paquet s’escriu en

un fitxer sempre que es rebut, enviat o descartat. La classe o objecte encarre-

A.3. GENERACIÓ DE TRACES 59

gat de fer aquest volcat és un objecte de tipus Trace. En el cas de la tecnologia

wireless, aquesta funcionalitat s’obté mitjançat un objecte de tipus CMUTrace.

Podem trobar una descripció més detallada sobre la generació de traçes en simu-

lacions wireless en el capítol 16 de [FV09].

Per tant, haurem d’editar el fitxer trace/cmu-trace.h i afegir una nova funció

dintre de la classe CMUTrace. El prototipus d’aquesta funció podria ser el se-

güent:

void format_nom(Packet *p, int offset);

Hem d’implementar aquesta funció dintre del fitxer trace/cmu-trace.cc. A

continuació podem veure l’implementació que hem fet nosaltres pels paquets

HTTP.

struct hdr_ip *ih = HDR_IP(p);

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_mtp_http *hh = HDR_MTP_HTTP(p);

if (pt_->tagged()) {

sprintf(pt_->buffer() + offset,

"-http:t %d -http:c %d -http:r %d "

"-http:sn %d -http:sz %d -http:s %d "

"-http:sp %d -http:d %d -http:dp %d HTTP",

hh->req,

hh->rcode,

hh->rid,

hh->seq,

ch->size_,

ih->src_.addr_,

ih->src_.port_,

ih->dst_.addr_,

ih->dst_.port_);

} else if (newtrace_) {

sprintf(pt_->buffer() + offset,

60APÈNDIX A. GUIA PER INCORPORAR EL FRAMEWORK D’AGENTS EN EL NS2

"-P http -Pt %d -Pc %d -Pr %d -Psn %d "

"-Psz %d -Ps %d -Psp %d -Pd %d -Pdp %d HTTP",

hh->req,

hh->rcode,

hh->rid,

hh->seq,

ch->size_,

ih->src_.addr_,

ih->src_.port_,

ih->dst_.addr_,

ih->dst_.port_);

} else {

sprintf(pt_->buffer() + offset,

"[%d %d %d %d %d [%d:%d %d:%d]] (HTTP)",

hh->req,

hh->rcode,

hh->rid,

hh->seq,

ch->size_,

ih->src_.addr_,

ih->src_.port_,

ih->dst_.addr_,

ih->dst_.port_);

}

De l’anterior codi podem deduir que hi ha tres tipus de traçes: amb etiquetes, amb

un nou format i tradicionals. La sintaxi utilitzada és bastant senzilla i intuïtiva com

es pot observar. Tant en el cas de les traçes amb etiquetes com les de nou format

s’utilitzen etiquetes (tags) per identificar cada camp de la traça. En el nostre cas

hem utilitzat t pel tipus de missatge HTTP (REQUEST, RESPONSE), c pel codi

retornat en un RESPONSE, r pel recurs demanat i sn pel número de seqüència.

Per poder utilitzar aquesta funció, hem de modificar també la funció format()

A.4. LLIBRERIES TCL 61

que es troba en el fitxer trace/cmu-trace.cc. En aquesta funció ens trobem amb un

selector del tipus de paquet i una crida a la funció que genera les traçes per aquest

tipus de paquet. Per tant, haurem d’afegir un nou cas que es correspongui amb el

nostre nou tipus de paquet i que cridi a la funció que acabem de crear.

A.4 Llibreries Tcl

Finalment, necessitem dur a termes algunes modificacions en els fitxers de confi-

guració Tcl del NS2. El que farem serà afegir un nou tipus de paquet i proporcio-

nar valors per defecte a atributs disponibles en oTCL.

Com hem explicat en el capítol 2 d’aquesta memòria, en NS2 trobem dos

jerarquies: una jerarquia compilada (C++) i una jerarquia interpretada (Tcl). Per

poder utilitzar un nou tipus de paquet durant la simulació, l’hem de definir també

en la jerarquia interpretada. Per fer això, modificarem el fitxer tcl/lib/ns-packet.tcl.

Hem de localitzar el següent codi i afegir el nom del nou tipus de paquet:

foreach prot {

...

Encap # common/encap.cc

IPinIP # IP encapsulation

HDLC # High Level Data Link Control

MtpHTTP # MTP-HTTP protocol

} {

add-packet-header $prot

}

Una altra cosa que ens permet l’NS2 és accedir a atributs definits en les classes

C++ des de l’script oTCL. Per exemple, si volem fer que des de l’script de si-

mulació es pugui accedir directament a l’atribut TTR de la plataforma, amb el

mètode set, dins del constructor de la classe RESTTP_PlatformAgent hem de fer

el següent:

62APÈNDIX A. GUIA PER INCORPORAR EL FRAMEWORK D’AGENTS EN EL NS2

bind(nom de la variable Tcl,&atribut);

Llavors podrem accedir al atribut de la classe C++ utilitzant el nom especifi-

cat com a primer paràmetre de la funció bind(). Si fem això, també haurem de

proporcionar un valor per defecte de l’atribut. El fitxer tcl/lib/ns-default.tcl conté

l’assignació dels valors per defecte. Hem d’afegir al final d’aquest fitxer una línia

com la següent:

Agent/RESTTP_PlatformAgent set ttr_ 100

D’aquesta forma estarem assignant un valor per defecte 100 a l’atribut ttr_ de

la classe RESTTP_PlatformAgent.

A.5 Makefile

Ara que ja ho tenim tot implementat, l’únic pas que ens queda és compilar! Per fer

això haurem de modificar el Makefile per afegir els nostres fitxers. Hem d’afegir

els fitxers objecte en la variable OBJ_CC. Per exemple, si només tenim un fitxer

mtp-http.cc dins de la carpeta mtp hem d’afegir la següent línia en el Makefile:

OBJ_CC = \

...

wpan/p802_15_4trace.o wpan/p802_15_4transac.o \

apps/pbc.o \

mtp/mtp-http.o \

$(OBJ_STL)

Ara ja podem executar la comanda make i disfrutar del nostre propi protocol (o

passar una estona resolent problemes de compilació!).

A.6 Exemple

A continuació podem veure un exemple d’script oTCL on es detalla la forma de

crear una plataforma, assignar-la a un node i com es pot dur a terme una migració

entre dos nodes.

A.6. EXEMPLE 63

#Creem un objecte simulador

set ns [new Simulator]

#Obrim dos fitxers de traça per guardar els

#resultats de la simulació

set tf [open out.tr w]

set nf [open out.nam w]

$ns trace-all $tf

$ns namtrace-all $nf

#Definim un procediment que serà cridat en

#última instància per tancar els fitxers de

#traça i aturar la simulació

proc finish {} {

global ns nf tf

$ns flush-trace

close $nf

close $tf

exec nam out.nam &

exit 0

}

#Creem dos nodes i els connectem amb un enllaç

#dedicat d’1Mbps, 10ms de delay i política de

#gestió de cues Drop Tail

set n0 [$ns node]

set n1 [$ns node]

$ns duplex-link $n0 $n1 1Mb 10ms DropTail

$ns duplex-link-op $n0 $n1 orient right

#Creem dues noves plataformes

64APÈNDIX A. GUIA PER INCORPORAR EL FRAMEWORK D’AGENTS EN EL NS2

set a0 [new Agent/RESTTP_PlatformAgent]

set a1 [new Agent/RESTTP_PlatformAgent]

#Posem les plataformes sobre el primer i

#segon nodes respectivament

$ns attach-agent $n0 $a0

$ns attach-agent $n1 $a1

#Especifiquem que les plataformes estan preparades

#per processar agents

$a0 on

$a1 on

#Creem un nou agent mòbil sobre la primer plataforma

#i especifiquem la seva mida

$a0 create-agent 1

$a0 set-agent-size 1 64 512 24

#Asignem una plataforma destí per defecte en cada

#plataforma. Tots els agents existents tindran com

#destinació per defecte aquesta plataforma

$a0 set-default-dst $a1

$a1 set-default-dst $a0

#Planifiquem els events que s’han de dur a terme

#durant la simulació.

$ns at 0.2 "$a0 migrate-agents"

#Aturem la simulació en l’instant 1.0 segons

$ns at 1.0 "finish"

$ns run

Apèndix B

Proves de funcionament

L’objectiu d’aquest apèndix es donar a conèixer els primers passos en l’interpreta-

ció dels resultats de les simulacions amb NS2. Per això, veurem el contingut dels

fitxers de traça generats en els dos escenaris de prova.

B.1 Escenari 1

En el primer escenari es simula la migració entre dos nodes formant una petita

LAN. El resultat esperat és que es produeixi la seqüència de passos indicada pel

protocol RESTTP per migrar un agent del node 0 al node 1. El fitxer generat és el

següent:

+ 0.2 0 1 MTP_ACL 36 ------- 0 0.0 1.0 -1 0

- 0.2 0 1 MTP_ACL 36 ------- 0 0.0 1.0 -1 0

r 0.210128 0 1 MTP_ACL 36 ------- 0 0.0 1.0 -1 0

+ 0.210128 1 0 MTP_HTTP 40 ------- 0 1.0 0.0 -1 1

- 0.210128 1 0 MTP_HTTP 40 ------- 0 1.0 0.0 -1 1

r 0.220288 1 0 MTP_HTTP 40 ------- 0 1.0 0.0 -1 1

+ 0.220288 0 1 MTP_HTTP 84 ------- 0 0.0 1.0 -1 2

- 0.220288 0 1 MTP_HTTP 84 ------- 0 0.0 1.0 -1 2

r 0.23096 0 1 MTP_HTTP 84 ------- 0 0.0 1.0 -1 2

+ 0.23096 1 0 MTP_HTTP 40 ------- 0 1.0 0.0 -1 3

- 0.23096 1 0 MTP_HTTP 40 ------- 0 1.0 0.0 -1 3

r 0.24112 1 0 MTP_HTTP 40 ------- 0 1.0 0.0 -1 3

+ 0.24112 0 1 MTP_HTTP 532 ------- 0 0.0 1.0 -1 4

- 0.24112 0 1 MTP_HTTP 532 ------- 0 0.0 1.0 -1 4

r 0.255376 0 1 MTP_HTTP 532 ------- 0 0.0 1.0 -1 4

65

66 APÈNDIX B. PROVES DE FUNCIONAMENT

+ 0.255376 1 0 MTP_HTTP 40 ------- 0 1.0 0.0 -1 5

- 0.255376 1 0 MTP_HTTP 40 ------- 0 1.0 0.0 -1 5

r 0.265536 1 0 MTP_HTTP 40 ------- 0 1.0 0.0 -1 5

+ 0.265536 0 1 MTP_HTTP 44 ------- 0 0.0 1.0 -1 6

- 0.265536 0 1 MTP_HTTP 44 ------- 0 0.0 1.0 -1 6

r 0.275888 0 1 MTP_HTTP 44 ------- 0 0.0 1.0 -1 6

+ 0.275888 1 0 MTP_ACL 36 ------- 0 1.0 0.0 -1 7

- 0.275888 1 0 MTP_ACL 36 ------- 0 1.0 0.0 -1 7

r 0.286016 1 0 MTP_ACL 36 ------- 0 1.0 0.0 -1 7

Podem veure 24 traçes generades durant la simulació, 8 operacions d’encua-

ment (indicades amb el símbol “+” en la primera columna), 8 operacions d’elimi-

nació de la cua (indicades amb el símbol “-”) i 8 events de rebre paquets (indicats

amb el caràcter “r”). La segona columna indica l’instant de temps en el que s’-

ha produït l’event. Les dos columnes següents indiquen entre quins nodes s’ha

produït aquest event. El camp següent mostra un nom descriptiu assignat al tipus

de paquet tractat (veure apèndix A). La següent columna ens indica la mida del

paquet incloent la mida de la capçalera IP.

El següent camp conté alguns flags, que en aquest exemple no s’utilitzen.

Aquests flags s’utilitzen en alguns cassos pel control de la congestió, prioritat,

mida de la finestra i altres (capítol 26 [FV09]). El següent camp és un indicador

del flux al que pertany el paquet. En NS2 podem identificar el flux de paquets

entre dos nodes per tal de diferenciar els paquets que pertanyen a una connexió.

Els següents dos camps indiquen les adreces origen i destinació respectivament

del paquet. La penúltima columna ens indicaria el número de seqüència però en

NS2, són només aquells Agents interessats en implementar un esquema basat en

número de seqüència qui modificaran aquest camp. Per últim, es proporciona un

identificador únic del paquet. A cada paquet creat durant la simulació se li assigna

un identificador únic.

B.2 Escenari 2

El segon escenari és un escenari més complex, s’utilitza un algorisme d’enruta-

ment wireless i es generen moviments de nodes. El que es vol comprovar és que

B.2. ESCENARI 2 67

les plataformes tenen la capacitat d’adaptar-se a canvis en l’entorn i per això s’in-

tentaran realitzar dues migracions. En el primer cas, l’agent trobarà un camí fins a

la plataforma destí i la migració es completarà amb èxit. En canvi, el segon agent

no podrà migrar perquè la seva plataforma destí estarà fora del radi de cobertura

de la plataforma origen. A continuació podem veure part del contingut del fitxer

resultant de la simulació amb un format diferent al que havíem vist anteriorment.

El diferent format es degut a que ara estem realitzant una simulació wireless, i per

tant, l’informació que necessitem és diferent.

s 1.000000000 _0_ AGT --- 0 HELLO 12 [0 0 0 0] ------- [0:0 -1:0 2 0]

[80 0 12 [0:0 -1:0]] (MTP_HELLO)

r 1.000000000 _0_ RTR --- 0 HELLO 12 [0 0 0 0] ------- [0:0 -1:0 2 0]

[80 0 12 [0:0 -1:0]] (MTP_HELLO)

s 1.000000000 _0_ RTR --- 0 HELLO 32 [0 0 0 0] ------- [0:0 -1:0 2 0]

[80 0 32 [0:0 -1:0]] (MTP_HELLO)

r 1.001280587 _1_ RTR --- 0 HELLO 32 [0 ffffffff 0 800] ------- [0:0 -1:0 2 0]

[80 0 32 [0:0 -1:0]] (MTP_HELLO)

r 1.001280587 _1_ AGT --- 0 HELLO 32 [0 ffffffff 0 800] ------- [0:0 -1:0 1 0]

[80 0 32 [0:0 -1:0]] (MTP_HELLO)

r 1.001280662 _4_ RTR --- 0 HELLO 32 [0 ffffffff 0 800] ------- [0:0 -1:0 2 0]

[80 0 32 [0:0 -1:0]] (MTP_HELLO)

r 1.001280662 _4_ AGT --- 0 HELLO 32 [0 ffffffff 0 800] ------- [0:0 -1:0 1 0]

[80 0 32 [0:0 -1:0]] (MTP_HELLO)

r 1.001280667 _3_ RTR --- 0 HELLO 32 [0 ffffffff 0 800] ------- [0:0 -1:0 2 0]

[80 0 32 [0:0 -1:0]] (MTP_HELLO)

r 1.001280667 _3_ AGT --- 0 HELLO 32 [0 ffffffff 0 800] ------- [0:0 -1:0 1 0]

[80 0 32 [0:0 -1:0]] (MTP_HELLO)

s 1.100000000 _1_ AGT --- 1 HELLO 12 [0 0 0 0] ------- [1:0 -1:0 2 0]

[80 0 12 [1:0 -1:0]] (MTP_HELLO)

r 1.100000000 _1_ RTR --- 1 HELLO 12 [0 0 0 0] ------- [1:0 -1:0 2 0]

[80 0 12 [1:0 -1:0]] (MTP_HELLO)

s 1.100000000 _1_ RTR --- 1 HELLO 32 [0 0 0 0] ------- [1:0 -1:0 2 0]

[80 0 32 [1:0 -1:0]] (MTP_HELLO)

r 1.101380586 _4_ RTR --- 1 HELLO 32 [0 ffffffff 1 800] ------- [1:0 -1:0 2 0]

[80 0 32 [1:0 -1:0]] (MTP_HELLO)

r 1.101380586 _4_ AGT --- 1 HELLO 32 [0 ffffffff 1 800] ------- [1:0 -1:0 1 0]

[80 0 32 [1:0 -1:0]] (MTP_HELLO)

r 1.101380587 _0_ RTR --- 1 HELLO 32 [0 ffffffff 1 800] ------- [1:0 -1:0 2 0]

[80 0 32 [1:0 -1:0]] (MTP_HELLO)

r 1.101380587 _0_ AGT --- 1 HELLO 32 [0 ffffffff 1 800] ------- [1:0 -1:0 1 0]

[80 0 32 [1:0 -1:0]] (MTP_HELLO)

s 1.101380587 _0_ AGT --- 2 HELLO 22 [0 0 0 0] ------- [0:0 1:0 32 0]

[81 1 22 [0:0 1:0]] (MTP_HELLO)

r 1.101380587 _0_ RTR --- 2 HELLO 22 [0 0 0 0] ------- [0:0 1:0 32 0]

68 APÈNDIX B. PROVES DE FUNCIONAMENT

[81 1 22 [0:0 1:0]] (MTP_HELLO)

r 1.101380750 _5_ RTR --- 1 HELLO 32 [0 ffffffff 1 800] ------- [1:0 -1:0 2 0]

[80 0 32 [1:0 -1:0]] (MTP_HELLO)

r 1.101380750 _5_ AGT --- 1 HELLO 32 [0 ffffffff 1 800] ------- [1:0 -1:0 1 0]

[80 0 32 [1:0 -1:0]] (MTP_HELLO)

s 1.107296284 _0_ RTR --- 2 HELLO 42 [0 0 0 0] ------- [0:0 1:0 30 1]

[81 1 42 [0:0 1:0]] (MTP_HELLO)

r 1.110197369 _1_ AGT --- 2 HELLO 42 [13a 1 0 800] ------- [0:0 1:0 30 1]

[81 1 42 [0:0 1:0]] (MTP_HELLO)

s 5.000000000 _0_ AGT --- 22 ACL 16 [0 0 0 0] ------- [0:0 1:0 32 0]

[16 [65 1 1804289383 846930886 1681692777] 16 [0:0 1:0]] (ACL)

r 5.000000000 _0_ RTR --- 22 ACL 16 [0 0 0 0] ------- [0:0 1:0 32 0]

[16 [65 1 1804289383 846930886 1681692777] 16 [0:0 1:0]] (ACL)

s 5.000000000 _0_ RTR --- 22 ACL 36 [0 0 0 0] ------- [0:0 1:0 30 1]

[16 [65 1 1804289383 846930886 1681692777] 36 [0:0 1:0]] (ACL)

r 5.001529761 _1_ AGT --- 22 ACL 36 [13a 1 0 800] ------- [0:0 1:0 30 1]

[16 [65 1 1804289383 846930886 1681692777] 36 [0:0 1:0]] (ACL)

s 5.001529761 _1_ AGT --- 23 HTTP 20 [0 0 0 0] ------- [1:0 0:0 32 0]

[1 0 1804289383 1714636915 20 [1:0 0:0]] (HTTP)

r 5.001529761 _1_ RTR --- 23 HTTP 20 [0 0 0 0] ------- [1:0 0:0 32 0]

[1 0 1804289383 1714636915 20 [1:0 0:0]] (HTTP)

s 5.001529761 _1_ RTR --- 23 HTTP 40 [0 0 0 0] ------- [1:0 0:0 30 0]

[1 0 1804289383 1714636915 40 [1:0 0:0]] (HTTP)

r 5.003435523 _0_ AGT --- 23 HTTP 40 [13a 0 1 800] ------- [1:0 0:0 30 0]

[1 0 1804289383 1714636915 40 [1:0 0:0]] (HTTP)

s 5.003435523 _0_ AGT --- 24 HTTP 84 [0 0 0 0] ------- [0:0 1:0 32 0]

[2 200 1804289383 1714636916 84 [0:0 1:0]] (HTTP)

r 5.003435523 _0_ RTR --- 24 HTTP 84 [0 0 0 0] ------- [0:0 1:0 32 0]

[2 200 1804289383 1714636916 84 [0:0 1:0]] (HTTP)

s 5.003435523 _0_ RTR --- 24 HTTP 104 [0 0 0 0] ------- [0:0 1:0 30 1]

[2 200 1804289383 1714636916 104 [0:0 1:0]] (HTTP)

r 5.006253284 _1_ AGT --- 24 HTTP 104 [13a 1 0 800] ------- [0:0 1:0 30 1]

[2 200 1804289383 1714636916 104 [0:0 1:0]] (HTTP)

s 5.006253284 _1_ AGT --- 25 HTTP 20 [0 0 0 0] ------- [1:0 0:0 32 0]

[1 0 846930886 1714636917 20 [1:0 0:0]] (HTTP)

r 5.006253284 _1_ RTR --- 25 HTTP 20 [0 0 0 0] ------- [1:0 0:0 32 0]

[1 0 846930886 1714636917 20 [1:0 0:0]] (HTTP)

s 5.006253284 _1_ RTR --- 25 HTTP 40 [0 0 0 0] ------- [1:0 0:0 30 0]

[1 0 846930886 1714636917 40 [1:0 0:0]] (HTTP)

r 5.008419046 _0_ AGT --- 25 HTTP 40 [13a 0 1 800] ------- [1:0 0:0 30 0]

[1 0 846930886 1714636917 40 [1:0 0:0]] (HTTP)

s 5.008419046 _0_ AGT --- 26 HTTP 148 [0 0 0 0] ------- [0:0 1:0 32 0]

[2 200 846930886 1714636918 148 [0:0 1:0]] (HTTP)

r 5.008419046 _0_ RTR --- 26 HTTP 148 [0 0 0 0] ------- [0:0 1:0 32 0]

[2 200 846930886 1714636918 148 [0:0 1:0]] (HTTP)

s 5.008419046 _0_ RTR --- 26 HTTP 168 [0 0 0 0] ------- [0:0 1:0 30 1]

B.2. ESCENARI 2 69

[2 200 846930886 1714636918 168 [0:0 1:0]] (HTTP)

r 5.011628807 _1_ AGT --- 26 HTTP 168 [13a 1 0 800] ------- [0:0 1:0 30 1]

[2 200 846930886 1714636918 168 [0:0 1:0]] (HTTP)

s 5.011628807 _1_ AGT --- 27 HTTP 20 [0 0 0 0] ------- [1:0 0:0 32 0]

[1 0 1681692777 1714636919 20 [1:0 0:0]] (HTTP)

r 5.011628807 _1_ RTR --- 27 HTTP 20 [0 0 0 0] ------- [1:0 0:0 32 0]

[1 0 1681692777 1714636919 20 [1:0 0:0]] (HTTP)

s 5.011628807 _1_ RTR --- 27 HTTP 40 [0 0 0 0] ------- [1:0 0:0 30 0]

[1 0 1681692777 1714636919 40 [1:0 0:0]] (HTTP)

r 5.013674568 _0_ AGT --- 27 HTTP 40 [13a 0 1 800] ------- [1:0 0:0 30 0]

[1 0 1681692777 1714636919 40 [1:0 0:0]] (HTTP)

s 5.013674568 _0_ AGT --- 28 HTTP 44 [0 0 0 0] ------- [0:0 1:0 32 0]

[2 200 1681692777 1714636920 44 [0:0 1:0]] (HTTP)

r 5.013674568 _0_ RTR --- 28 HTTP 44 [0 0 0 0] ------- [0:0 1:0 32 0]

[2 200 1681692777 1714636920 44 [0:0 1:0]] (HTTP)

s 5.013674568 _0_ RTR --- 28 HTTP 64 [0 0 0 0] ------- [0:0 1:0 30 1]

[2 200 1681692777 1714636920 64 [0:0 1:0]] (HTTP)

r 5.015992330 _1_ AGT --- 28 HTTP 64 [13a 1 0 800] ------- [0:0 1:0 30 1]

[2 200 1681692777 1714636920 64 [0:0 1:0]] (HTTP)

s 5.015992330 _1_ AGT --- 29 ACL 16 [0 0 0 0] ------- [1:0 0:0 32 0]

[17 [0 0 0 0 0] 16 [1:0 0:0]] (ACL)

r 5.015992330 _1_ RTR --- 29 ACL 16 [0 0 0 0] ------- [1:0 0:0 32 0]

[17 [0 0 0 0 0] 16 [1:0 0:0]] (ACL)

s 5.015992330 _1_ RTR --- 29 ACL 36 [0 0 0 0] ------- [1:0 0:0 30 0]

[17 [0 0 0 0 0] 36 [1:0 0:0]] (ACL)

r 5.017886091 _0_ AGT --- 29 ACL 36 [13a 0 1 800] ------- [1:0 0:0 30 0]

[17 [0 0 0 0 0] 36 [1:0 0:0]] (ACL)

s 20.000000000 _0_ AGT --- 78 ACL 16 [0 0 0 0] ------- [0:0 1:0 32 0]

[16 [65 2 1957747793 424238335 719885386] 16 [0:0 1:0]] (ACL)

r 20.000000000 _0_ RTR --- 78 ACL 16 [0 0 0 0] ------- [0:0 1:0 32 0]

[16 [65 2 1957747793 424238335 719885386] 16 [0:0 1:0]] (ACL)

s 20.000000000 _0_ RTR --- 78 ACL 36 [0 0 0 0] ------- [0:0 1:0 30 1]

[16 [65 2 1957747793 424238335 719885386] 36 [0:0 1:0]] (ACL)

D 20.026045000 _0_ RTR CBK 78 ACL 36 [13a 1 0 800] ------- [0:0 1:0 30 1]

[16 [65 2 1957747793 424238335 719885386] 36 [0:0 1:0]] (ACL)

El que podem aquí són les traçes generades durant la fase de descobriment de

plataformes, la primera migració i la segona migració respectivament. Hi ha varis

camps que són comuns a totes les traçes i que podem arribar a deduir fàcilment,

però el que ens interessa més són els camps específics dels diferents tipus de

paquets utilitzats durant la simulació.

En el cas dels paquets MTP_HELLO, el primer camp ens indica si es tracta

d’un paquet enviat en BROADCAST, en resposta a un missatge en BROADCAST,

70 APÈNDIX B. PROVES DE FUNCIONAMENT

o bé es tracta d’un paquet enviat en UNICAST. El segon camp ens indica el nom-

bre d’entrades de la taula de decisió que s’envien. El següent camps indica la mida

en bytes del paquet. Finalment, els últims dos camps indiquen l’origen i destí del

paquet en format adreça:port.

En el cas dels paquets ACL, el primer camp indica si es tracta d’una petició de

migració, un informe d’èxit de la migració o un informe d’error. Els cinc següents

camps ens ofereixen informació sobre l’agent a transferir (en el cas d’una petició

de transferència), així com tipus d’agent, identificador i identificadors únics esco-

llits pel codi, dades i estat d’execució respectivament. Finalment, tenim un camp

que ens indica la mida del paquet, i igual que en el cas anterior, informació sobre

l’origen i destí del paquet.

En el cas del paquets HTTP, el primer camp indica si es tracta d’una petició o

d’una resposta. Si es tracta d’una resposta, el segon camp indica un codi resultant

del processament de la petició. El següent camp és un identificador del recurs que

s’està demanant o s’està servint en aquest moment. També necessitem números

de seqüència per identificar el flux de missatges HTTP, número de seqüència que

queda reflectit en el quart camp. I ja per acabar, igual que en els dos cassos

anteriors, els últims camps indiquen la mida del paquet i informació sobre el seu

origen i destí.

Firmat: Cristian Stefan Tanas

Bellaterra, Juny de 2010

71

Resum
Avui en dia, estem assistint a una expansió de la tecnologia d’agents mòbils i

noves aplicacions basades en aquesta s’estan obrint pas constantment. Les apli-

cacions han de demostrar la seva viabilitat sobretot en entorns heterogenis i com-

plexos com les xarxes MANET. En aquest projecte es desenvolupa un sistema per

simular el comportament dels agents mòbils, ampliant l’actual simulador de xar-

xa NS2, i també es comprova la viabilitat de l’implementació de l’ETTMA pel

triatge de víctimes en situacions d’emergència.

Resumen
Hoy en día, estamos asistiendo a una expansión de la tecnología de agentes

móviles y nuevas aplicaciones basadas en esta se están abriendo paso constante-

mente. Las aplicaciones han de demostrar su viabilidad sobretodo en entornos

heterogéneos y complejos como las redes MANET. En este proyecto se desarrolla

un sistema para simular el comportamiento de los agentes móviles, ampliando el

actual simulador de red NS2, y también se comprueba la viabilidad de la imple-

mentación del ETTMA para la selección de víctimas en situaciones de emergen-

cia.

Abstract
Nowadays we are attending an expansion of the mobile agents technology

and new applications based on it are arising constantly. The applications need to

prove their viability specially in heterogeneous and complex environments such

as MANET networks. In this project a new system to simulate the behaviour of

the mobile agents is developed by extending the existing network simulator NS2.

Also the viability of the implementation of ETTMA for victim classification in

emergency situations is proved.

