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1. Introduccion

La evolucién de los procesadores ha pasado por diversas etapas en el transcurso de los anos, con
el objetivo de aumentar el rendimiento posible. La primera etapa por la que pasé fue el aumento
del numero de transistores que podian caber en un chip de silicio, doblandose esta cifra cada 18
meses [1]. En la segunda etapa el rendimiento sigui6é incrementandose a costa del aumento la
frecuencia de reloj del procesador.

Tanto con el aumento del nimero de transistores como con el aumento de la frecuencia del reloj
se vié que los transistores generaban demasiado calor, y un procesador caliente puede hacer que
un ordenador falle. Los ordenadores con procesadores rapidos necesitaban un sistema de
refrigerado eficiente para evitar el sobrecalentamiento. Cuanto mas se aumentaba el tamano del
chip del procesador y/o la frecuencia de reloj, mas calor generaba el equipo cuando trabajaba a
toda velocidad y mayor era el coste econémico dirigido a disipar el calor que producia.

La alternativa propuesta por la industria para aumentar la velocidad de ejecucion sin aumentar el
numero de transistores ni la frecuencia de reloj fueron los procesadores multicore. Los
procesadores multicore combinan 2 o mas procesadores en un mismo chip. Se trata de aumentar
el rendimiento mediante el paralelismo .

Con la aparicion de los procesadores multicore las aplicaciones singlethread no pueden
aprovecharse del rendimiento extra, se requiere paralelizar las aplicaciones para aumentar la
velocidad de ejecucion de las aplicaciones.

Este cambio en la programacién de aplicaciones dificulta el trabajo del programador. Por lo que el
programador necesitara de una metodologia para el disefio e implementacion de aplicaciones
paralelas. Una forma de dividir las instrucciones entre los procesadores es el uso de la API
OpenMP.



1.1. Objetivos

Este trabajo analiza el tiempo de ejecucion y el rendimiento de una aplicacion en sistemas
multicore y multithreading. El objetivo es aumentar el rendimiento de la aplicacion y disminuir lo
maximo posible su tiempo de ejecucidn.

La aplicacién que se estudiara pertenece al campo de la Bioinformatica, es el algoritmo de
alineamiento de secuencias genéticas denominado Needleman-Wunsch.

El alineamiento de secuencias es una forma de comparar dos 0 mas secuencias o cadenas de
ADN, ARN, o proteinas para resaltar sus zonas de similitud.

Los sistemas donde analizaremos las aplicaciones tienen en comun que son multicore, es decir,
estan formados por varios cores. También son multithreading, pueden ejecutar diversos threads en
cada core.
Objetivos:

— Aprender el funcionamiento de los algoritmos de comparacion de secuencias genéticas.

— Caodificar el algoritmo serie, plantear una serie de optimizaciones y analizar el rendimiento.

— Disefar y implementar la version en paralelo del algoritmo, asi como intentar planificar la
correcta distribucién de los threads para ejecutar en procesadores multicore.

— Medir las prestaciones del algoritmo con el que vamos a trabajar, y comparar entre los
diferentes tipos de procesadores multicore y multithread

— Realizar una investigacion de todos los resultados de tiempo de ejecucion de la aplicacion,
e utilizar los datos de medida de prestaciones para optimizar el cédigo, mejorar el tiempo
de ejecucion, el rendimiento y el uso de memoria.



1.2. Planificaciéon temporal del trabajo

Las tareas a realizar seran :

» Eleccién del algoritmo de alineamiento de secuencias.

* Documentarse sobre herramientas de medida.

* Documentarse sobre la arquitectura de distintos procesadores.
* Andlisis, evaluacién y optimizacion del algoritmo serie.

Codificacion del algoritmo.

Andlisis computacional de la version serie.
Estudio de la fase critica.

Plantear optimizaciones.

Obtener datos de medida.

» Disefio, evaluacion y optimizacién del algoritmo paralelo.

Identificar paralelismo y dependencias de datos.
Codificacion del algoritmo.

Estudio y analisis de las partes criticas.
Experimentacion.

Uso de datos de medida para optimizar cadigo.

* Comparacion entre los algoritmos serie y paralelo.
¢ Conclusiones.
¢ Realizaciéon de la documentacion.

El diagrama de Gantt posterior representa la planificacion temporal del trabajo con las tareas que
hemos definido previamente.
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1.3. Esquema de la memoria

La memoria se compone de 7 capitulos, que seran descritos brevemente a continuacion.

Capitulo 1: Se describen los objetivos del trabajo, la planificacion de trabajo y finalmente se
describen los diferentes capitulos de los que consta la memoria.

Capitulo 2: Marco tedrico, en el que se describen y explican los conceptos necesarios que
engloban este trabajo. Se introduce al lector en conceptos relacionados con la evolucion de los
procesadores, las limitaciones de los procesadores singlethread, los procesadores
multicore/multithread, los factores que limitan el rendimiento en sistemas multicore/multithread y
OpenMP.

Capitulo 3: En él se plantea y describe el algoritmo de Needleman-Wunsch asi como su ubicacion
dentro del mundo de la biologia.

Capitulo 4: Se realiza el disefo y estudio del algoritmo serie, asi como las posibles mejoras que
se han ido aplicando a éste. Acto seguido, se exponen los resultados (tiempo de ejecucion) para
diferentes arquitecturas de computadores. Finalmente, se explican e interpretan los resultados
para ambos sistemas.

Capitulo 5: En este capitulo se discute la posibles maneras de paralelizar el algoritmo, se realiza
el disefio y estudio del algoritmo paralelo de la variante de grano fino y de grano grueso.
Finalmente se explican y comparan los resultados de ambas variantes.

Capitulo 6: Incluye las conclusiones y las lineas futuras de investigacion.

Capitulo 7: Bibliografia



2. Marco Teoérico

En este capitulo describiremos el procesador clasico asi como sus limitaciones, para explicar
posteriormente los procesadores multithread y multicore, y los problemas que impiden conseguir
un alto rendimiento en estos sistemas. Finalmente realizaremos una breve introduccion a
OpenMP.

2.1. Evolucién del procesador singlethread

¢ Procesador clasico

El procesador clasico ejecuta instrucciones almacenadas como nimeros binarios organizados
secuencialmente en la memoria principal. La ejecucion de las instrucciones se realiza en varias
fases:

* PreFetch, pre lectura de la instruccion desde la memoria principal.

* Fetch, envio de la instruccion al decodificador

» Decodificacion de la instruccion, es decir, determinar qué instruccion es y por tanto
qué se debe hacer.

* Lectura de operandos (si los hay).

* Ejecucion, lanzamiento de las maquinas de estado que llevan a cabo el
procesamiento.

» Escritura de los resultados en la memoria principal o en los registros.

Cada una de estas fases se realiza en uno o varios ciclos de CPU, dependiendo de la estructura
del procesador. La duracion de estos ciclos viene determinada por la frecuencia de reloj, y nunca
podra ser inferior al tiempo requerido para realizar la tarea individual (realizada en un solo ciclo)
de mayor coste temporal. Ademas hasta que una instruccion no finaliza no se puede comenzar la
busqueda de la siguiente instruccion.

* Procesador Segmentado

En el procesamiento segmentado se adopta una nueva estrategia con el objetivo de disminuir el
tiempo medio de ejecucidon por instruccion de una aplicacion. Se divide internamente el
computador en segmentos individuales, cada uno especializado en una de las etapas.

La segmentacion es una técnica de implementacion de procesadores que desarrolla el paralelismo
a nivel de intrainstruccion. Mediante la segmentacion se puede solapar la ejecucion de multiples
instrucciones. El procesamiento segmentado aprovecha la misma filosofia de trabajo de la
fabricacién en cadena : cada etapa de la segmentacion completa una parte de la tarea total. Los
segmentos estan conectados cada uno con el siguiente, de forma que la salida de uno pasa a ser
la entrada del siguiente. Asi, los segmentos configuran un cauce a través del que se va
procesando la tarea deseada . Lo mas interesante de la segmentacién es que las diferentes
subtareas pueden procesarse de forma simultdnea, aunque sea sobre diferentes datos.

A diferencia del procesador clasico, la segmentacion nos ofrece la posibilidad de comenzar una
nueva tarea sin necesidad de que la anterior se haya terminado. La medida de eficacia de un
procesador segmentado no es el tiempo total transcurrido desde que se comienza una
determinada tarea hasta que se termina (tiempo de latencia del procesador), sino el tiempo
maximo que puede pasar entre la finalizacién de dos tareas consecutivas.

Evidentemente, la segmentacion no es posible sin incrementar los recursos de proceso.



* Procesador superescalar

Un procesador superescalar es aquel que es capaz de procesar mas de una instruccion
simultaneamente en cada una de las etapas De esta manera pueden aumentar el paralelismo a
nivel de instruccion.

Sin embargo, un procesador superescalar sélo es capaz de ejecutar mas de una instruccion
simultdaneamente si las instrucciones no presentan ningun tipo de dependencia. Las dependencias
que pueden aparecer son :

= Estructurales: cuando dos instrucciones requieren el mismo tipo de unidad
funcional pero su numero no es suficiente.

= De datos: cuando una instruccion necesita el resultado de otra para ejecutarse.

= De escritura: cuando dos instrucciones necesitan escribir en el mismo registro de
memoria.

Podemos distinguir diferentes tipos de procesadores por la forma de actuar ante una dependencia.
En un procesador con ejecucién en orden las instrucciones quedaran paradas a la espera de que
se resuelva la dependencia. Mientras que en un procesador con ejecucion fuera de orden las
instrucciones dependientes quedaran paradas pero sera posible solapar parte de la espera con la
ejecucion de otras instrucciones independientes que vayan detras [2].

* Limitaciones del procesador singlethread

La diferencia de velocidad entre procesador y memoria, limita el rendimiento del procesador. Las
operaciones de memoria son lentas comparadas con la velocidad del procesador. Los accesos a
memoria, por ejemplo en un fallo de cache, pueden llevar hasta 500 ciclos de reloj en los que el
procesador debe esperar hasta que el acceso a memoria se haya completado (Figura 7).

. Memory Latency
2 Compute

Thread | L8 1] 1Y)

Figura 1 : Fases de la ejecucién de un programa singlethread

#  Time

Por tanto, un aumento de la frecuencia del procesador sin incrementar la velocidad de la memoria
solamente mejoraria el rendimiento en un pequefo porcentaje. Los ciclos de computo se
realizarian mas rapido pero el tiempo de acceso a memoria continuaria siendo el mismo. Por
ejemplo Una disminucion del 50% del tiempo de CPU supone menos de un 10% de mejora en
tiempo total de computacién (Figura 2).

Time Saved
Thread E 1) 1Y) E 1Y) |ﬁ|

$ Time

Figura 2 : Fases de la ejecucion de un programa singlethread con un procesador mas rapido.



La solucién para aprovechar todos estos ciclos que se pierden en cada acceso a memoria es el
multi-threading por hardware.

El multithreading por hardware es una propiedad que permite al procesador alternar de un thread
a otro thread cuando el thread que esta ocupando el procesador queda parado (Figura 3). Esta
solucion se analizara en el siguiente apartado.

—. Memory Latency
ol Compute

'Y

Thread 4 e m 4 m @ m |
Thread 3 & M ﬁ m Cc
Thread 2 . m da m & m |

Thread 1 ﬂ m ﬁ M ﬂ m |
& Time

Figura 3 : Fases de la ejecucién de un programa usando multithreading.

El incremento de la frecuencia de reloj del procesador es otro de los problemas del procesador
singlethread ya que este incremento implica un aumento de la potencia consumida y del calor
generado. En la actualidad los altos valores de frecuencia de reloj de los procesadores suponen
un problema, tanto econdmico (consumo eléctrico, y gasto dedicado a la disipacion del calor y
refrigeracion), como tecnoldgico (dificultad para disipar la gran cantidad de calor generado, de la
pequefa superficie de un procesador)

Por estos motivos, se abandona la idea de aumentar la frecuencia de reloj del procesador para
aumentar el rendimiento, y se opta por afadir mas procesadores en el mismo chip. Con esta
solucion el calor se incrementa de forma lineal y no exponencial como ocurre con el aumento de
frecuencia de reloj.

2.2. Procesador multithread

Un thread, en sistemas operativos, es una caracteristica que permite a una aplicacién realizar
varias tareas concurrentemente. Los distintos threads comparten una serie de recursos tales como
el espacio de memoria, la pila de ejecucion, el estado de la CPU, etc. Esta técnica permite
simplificar el disefio de una aplicacion que debe llevar a cabo distintas funciones
simultaneamente.

En ocasiones no es posible explotar el paralelismo a nivel de instruccion dentro de un proceso
debido a las dependencias que existen entre unas instrucciones y otras y que impiden su
ejecucion paralela. Una posible solucion es el multithreading, que permite explotar el paralelismo
entre instrucciones que pertenecen a diferentes hilos de ejecucion o threads, y que por lo tanto es
menos probable que dependan unas de otras (TLP o paralelismo a nivel de thread).

El multihtreading consiste en ejecutar al mismo tiempo dos o0 mas threads de un programa,
permitiendo que cada uno de estos threads sea planificado de la manera mas conveniente en el
procesador, es decir, aprovechando al maximo todos los recursos disponibles. Es equivalente a
tener dos 0 mas procesadores légicos o virtuales en lugar de uno sdlo. [3]



Existen diferentes politicas de multithreading, que son :
e Large-grain multithreading :

El procesador ejecuta el thread de forma habitual y solamente realiza un cambio de contexto
cuando ocurre un evento de larga duracién (como un fallo de caché). Para que el cambio de
contexto sea eficiente es necesario que exista una copia del estado de la arquitectura (PC,
registros visibles) para cada thread (Figura 4. Este método tiene la ventaja de ser sencillo de
implementar.

Functional units

B Threadt BB Thread2  Thread3 | Thread2

Clock cycles (one block represents one clock cycle) --=

Figura 4: Ejecucion de threads siguiendo el modelo Large-grained Multithreading.

* Fine-grain multithreading:

Se basa en un cambio rapido entre threads, ejecutando en cada ciclo un thread diferente. Es un
mecanismo que tiene como base una planificacion de la ejecucion de las instrucciones en orden.
Con el fin de evitar largas latencias por threads bloqueados, se ejecutan instrucciones de
diferentes threads. Este enfoque tiene la ventaja de eliminar las dependencias de datos que paran
el procesador. Al pertenecer las instrucciones a diferentes threads, las dependencias de datos
desaparecen (Figura 5).

L Thread! @ Thread2  Thread3 [} Thread2

Figura 5 : Ejecucion de threads siguiendo el modelo Fine-grained Multithreading.

* Simultaneous multithreading :

Consiste en permitir que se emitan en el mismo ciclo instrucciones que pertenecen a distintos
hilos de ejecucion o threads (Figura 6). EI mecanismo se ha creado utilizando como base un
procesador superescalar con planificacion dinamica fuera de orden. Desarrollar el SMT requiere
un hardware adicional para toda la l6gica.
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B Thread! B Thread2  Thread3 [ Thread2

Figura 6 : Ejecucion de threads siguiendo el modelo Simultaneous Multithreading.

2.3. Multicore

Los procesadores multicore combinan dos 0 mas procesadores independientes en un mismo chip.
Los procesadores se pueden configurar para que ejecute cada uno una parte de un programa o
varios programas al mismo tiempo. Un diagrama de bloques de esta arquitectura se muestra en la
figura 7. Un multiprocesador estd generalmente formado por n procesadores y m modulos de
memoria. La red de interconexién conecta cada procesador a un subconjunto de los médulos de
memoria.

Dado que los multiprocesadores comparten los diferentes médulos de memoria, pudiendo
acceder varios procesadores a un mismo médulo, a los multiprocesadores también se les llama
sistemas de memoria compartida. Dependiendo de la forma en que los procesadores comparten la
memoria, podemos hacer una subdivision de los multiprocesadores:

*  UMA (Uniform Memory Access) :

En un modelo de Memoria de Acceso Uniforme, la memoria fisica esta uniformemente compartida
por todos los procesadores. Esto quiere decir que todos los procesadores tienen el mismo tiempo
de acceso a todas las palabras de memoria. Cada procesador puede tener su cache privada, y los
periféricos son también compartidos de alguna manera [4]. La figura 7 muestra el modelo UMA de
un multiprocesador.

Es frecuente encontrar arquitecturas de acceso uniforme que ademas tienen coherencia

de caché, a estos sistemas se les suele llamar CC-UMA (Cache-Coherent Uniform Memory
Access).

A los procesadores los llamamos P1, P2, . . ., Pny a las memorias M1,M2, . . . ,Mn

Pl P2 e s Pn

Red de interconexion

| L

Memoria compartida __¥

Lo M1 L Ivim

Figura 7 : Modelo de arquitectura UMA de multiprocesador

11



*  NUMA (Non Uniform Memory Access) :

Un multiprocesador de tipo NUMA es un sistema de memoria compartida donde el tiempo de
acceso varia segun el lugar donde se encuentre localizado el acceso. La figura 8 muestra una
posible configuracion de tipo NUMA, donde toda la memoria es compartida pero local a cada
modulo procesador. Otras posibles configuraciones incluyen los sistemas basados en
agrupaciones (clusters) de sistemas como el de la figura que se comunican a través de otra red de
comunicacion que puede incluir una memoria compartida global. 4]

La ventaja de estos sistemas es que el acceso a la memoria local es mas rapido que en los UMA
aunque un acceso a memoria no local es mas lento. Lo que se intenta es que la memoria utilizada
por los procesos que ejecuta cada procesador, se encuentre en la memoria de dicho procesador
para que los accesos sean lo mas locales posible.

Aparte de esto, se puede afadir al sistema una memoria de acceso global. En este caso se dan
tres posibles patrones de acceso. El mas rapido es el acceso a memoria local. Le sigue el acceso
a memoria global. El mas lento es el acceso a la memoria del resto de modulos.

—
Red de interconexion
| | |
Pn P2 P1
[ * o o [ [
LMn LM2 LM1
I

Figura 8 : Modelo de arquitectura NUMA de multiprocesador

2.4. Evaluacion del rendimiento de un programa

Para obtener un alto rendimiento del sistema es necesario que haya una sintonia entre la
capacidad de la maquina y el comportamiento del programa.

La capacidad de la maquina es susceptible de mejora con las nuevas tecnologias hardware y
software, ademas de la gestién eficiente de los recursos.

El comportamiento del programa depende basicamente de los siguiente factores:

* Disefio del algoritmo

* Estructuras de datos

» Eficiencia de los lenguajes

* Conocimientos del programador
» Tecnologia de los compiladores

Para la evaluacién del rendimiento de un programa se utilizan una serie de parametros que
conforma un modelo simplificado de la medida del rendimiento de un sistema. Dentro de este
modelo, estos son los indicadores de rendimiento mas utilizados :

12



* Frecuencia de reloj (f) : Es la inversa del tiempo de ciclo. f = 1/. Medida en Megahertz.

» Total de Instrucciones (Icount) : Es el numero de instrucciones objeto a ejecutar en un
programa.

* Ciclos por instruccion (CPI) : Es el numero de ciclos que requiere cada instruccion.

» Tiempo de ejecucion de programa (Tp) Es el tiempo que tarda un programa en ejecutarse.
Tp =Ic *CPI *=Ic * CPIl/f = C/f

* Total de ciclos de reloj en la ejecucion de un programa (C) : C = Ic * CPI

2.5. Factores que impiden un alto rendimiento en sistemas multicore y
multithread

Si el rendimiento de las aplicaciones en sistemas multicore/multithread escalara linealmente al
aumentar el numero de threads con los que se ejecuta la aplicacion, el problema estaria resuelto.
Pero lo cierto es que esta escena no se produce nunca ya que existen una serie de factores que
impiden que esta escalabilidad sea lineal, estos son:

o Overheads por creacién/eliminacién de threads

La creacion y destruccion de los threads que trabajan en paralelo, tiene un coste en tiempo
(overhead). La importancia de este overhead dependera de la relacion entre el (tiempo total de
ejecucion del bucle con un thread / n° de threads) y (tiempo que se tarda en crear los threads,
repartir el trabajo, recoger el resultado y eliminar los threads).El overhead ha de ser pequefio en
comparacion con (tiempo de ejecucién / n threads) sino no nos resulta rentable trabajar con
threads.

o Desbalanceo de carga

Una incorrecta distribucion del volumen de computo por thread implicara que algunos threads
finalicen su trabajo antes que otros. Por lo que los threads que han finalizado tendran que esperar.
Esta espera supone un coste en ciclos de reloj del procesador desaprovechados y por lo tanto un
overhead.

En el disefio de aplicaciones paralelas es muy importante una optima asignacién del trabajo a
realizar a cada uno de los threads.

o Las comunicaciones entre las memorias de los cores

Los threads de una ejecucion multithread pueden trabajar de manera independiente y con datos
independientes. Pero por las caracteristicas de las aplicaciones, en alguin momento necesitaran
intercambiar datos. Este intercambio de datos se realiza de manera transparente al thread ya que
éste Unicamente accedera a unas posiciones de memoria que previamente otro thread habra
modificado. Esto aunque es transparente para el thread no esta libre de coste en tiempo. Los
datos que hayan sido modificados en la cache de un thread tendran que ser copiados a la cache
del thread que los necesita en ese momento.

Hay que tener en cuenta que el coste de comunicar datos modificados por threads que se
ejecutan dentro de un mismo procesador es muy inferior al coste de comunicar datos entre
threads que se ejecutan en cores de diferentes procesadores.
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Estos costes suponen un overhead a considerar a la hora de disefiar una aplicacién multithread.
Habra que prestar especial atencién a la localidad temporal y espacial de la aplicacién y a la
descomposicion por dominio, intentando primero minimizar las comunicaciones entre threads que
se ejecutan en distintos procesadores y segundo minimizar las comunicaciones entre threads que
se ejecutan en el mismo procesador.

2.6. OpenMP

OpenMP es una API para la programacién multiproceso de memoria compartida en multiples
plataformas. Permite afiadir concurrencia a los programas escritos en C, C++ y Fortran sobre la
base del modelo de ejecucion fork-join. Esta disponible en muchas arquitecturas, incluidas las
plataformas de Unix y de Microsoft Windows.

OpenMP se basa en el modelo fork-join (Figura 9), paradigma que proviene de los sistemas Unix,
donde una tarea muy pesada se divide en K hilos (fork) con menor peso, para luego "recolectar"
sus resultados al final y unirlos en un solo resultado (join).

£

{ parallel region } { parallel region }
Figura 9: Modelo fork-join

master
thread

Cuando se incluye una directiva OpenMP esto implica que se incluye una sincronizacion
obligatoria en todo el bloque. Es decir, el bloque de codigo se marcara como paralelo y se
lanzaran threads segun las caracteristicas que nos dé la directiva, y al final de ella habra una
barrera para la sincronizacion de los diferentes hilos (salvo que implicitamente se indique lo
contrario con la directiva nowait). Este tipo de ejecucion es la que llamamos fork-join. (5]

La sintaxis basica que nos encontramos en una directiva de OpenMP es:

# pragma omp <directiva> [cléusula [ , ...] ...]

Directivas a destacar

e parallel: Indica la parte del codigo que se podra ejecutar por varios threads (Figura 10)

#pragma omp parallel
» Codigo
/% Codigo a ser ejecutado por cada thread #/ paralelo

b

| | | l
| foo(i... ) | ‘ foo(i... ) ‘ |foo(i_....) ‘ ‘foo(i_....} |

i=0;
#pragma omp parallel
[ printf(“%dwn”, D | { footi.a,b.ci}
#pragma omp end parallel
printf(**%ed\n’, i

Figura 10: Ejemplo directiva parallel
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« for : Indica que a cada thread se le asigna una parte del for a ejecutar (paralelismo de datos).

« sections: Indica que cada seccién sera ejecutada por un thread (paralelismo funcional).

¢ single: Indica que esta seccion sera ejecutada por un unico thread.

« master : delimita un bloque estructurado que solo es ejecutado por el thread maestro. Los
otros threads no lo ejecutan.

« parallel for: Combinacion de parallel (fork) + for (reparticion del for entre los threads).

e parallel sections: Combinacion de parallel (fork) + sections (asignacion de cada seccion a un
thread).

» critical: Indica que la seccion sera de exclusién mutua.

« barrier: Indica la necesidad de una sincronizacion de los threads en este punto.

Clausulas a destacar

* schedule (static | dynamic | guided | runtime [, chunk]): Determina de que forma se
realizara la asignacion del trabajo a los threads. (Figura 11)

o static : “chunk” iteraciones se asignan de manera estatica a los threads en round-
robin

o dynamic: Cada thread toma “chunk” iteraciones cada vez que esta sin trabajo

o guided :Cada thread toma iteraciones dinamicamente y progresivamente va
tomando menos iteraciones

static dynamic{3) guided(1)
= [ & l
= & =
= = B £
= £ B
= B 5] E
= & B £
O | 22| B
E3 2] &
O 2 Ed &=
Cl e ] ]
O E £l E7]
& £ &=l a

Figura 11: Asignacion del trabajo dependiendo de la directiva schedule

» private (variable [,variable, ...]): Indica que las variables que aparecen en la clausula seran
privadas, cada thread tendra una copia independiente.
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En la figura 12 vemos un ejemplo de uso de OpenMP.

Codigo secuencial

| {
i | int id, 1, Nthreads, istart, iend; I

Region paralela id = omp_get_thread num(i);

GPEJ.'M P I Nthreads = omp_get_num_threads(); |
| istart = id * N/ Nthreads; |
| iend=(id + 1) * N / Nthreads; |
| for(i=istart;i<iend;i++) {a[i]=ali]+b[1];} |
L }____________________________'J

Region paralela y l_#pragma omp parallel |
constructor para compartir | #pragma omp for schedule(static)
Trabajo en OpenMP | for(i=0:1<n:i++) {a[i] = a[i] + b[i]:}

Figura 12: Ejemplo del uso de OpenMP en un programa escrito en el lenguaje de programaciéon C
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3. Algoritmo Needleman-Wunsch

En este capitulo se describira el problema del alineamiento de secuencias para cadenas de ADN,
utilizando como solucidn el algoritmo conocido como Needleman-Wunsch.

3.1. Marco del algoritmo dentro de la biologia

Una de las claves fundamentales de los descubrimientos en la biologia se basa en las
comparaciones entre dos individuos diferentes para obtener conclusiones sobre ellas.

En la biologia molecular se realiza el mismo tipo de comparaciones para obtener conclusiones,
pero en este caso los individuos son secuencias de genes o de proteinas. En estos casos
analizamos las similaridades y diferencias entre dos proteinas (0 ADN) con el objetivo de deducir
relaciones estructurales, funcionales o evolutivas entre ellas.

Una de las aplicaciones mas importantes de comparar secuencias es la determinacién de una
similitud entre dos o mas secuencias que justifique la inferencia de una homologia evolutiva (]
entre ellas. La homologia indica si dos secuencias son homoélogas o no, dependiendo del grado de
similitud y la significancia estadistica del alineamiento. Es poco probable que dos proteinas con
secuencias similares hayan evolucionado independientemente. Tales similitudes indican, por lo
tanto, que las dos proteinas deben estar relacionadas y que comparten un ancestro comun. Las
proteinas relacionadas se dice que son homodlogas.

La forma mas comun de comparar dos secuencias es realizar alineamientos de secuencias.

El alineamiento de secuencias normalmente se representan escribiendo las 2 secuencias que
queremos comparar una encima de la otra (rigura 13). Si €n una posicidon nos encontramos la misma
letra para ambas secuencias, esto significa que esa posicion se ha conservado durante la
evolucién. En cambio, si las letras no coinciden o nos encontramos un hueco, esto se interpreta
como una mutacién puntual.

G-IISKEILREE-EGGYEITIVDASNERQWVID
GEIVAITALSEREREGGFEVSIEFA-NGEVVVD

Figura 13 : Ejemplo de alineamiento entre 2 secuencias.

Existen dos formas de alinear dos secuencias: intentar encontrar los dos fragmentos de ambas
secuencias que tienen un alineamiento con una puntuacion maxima ( alineamiento local ) o
intentar encontrar un alineamiento de las secuencias completas con una puntuacion maxima
(alineamiento global).

El alineamiento local es adecuado cuando las secuencias a comparar no se parecen a lo largo de
toda su secuencia, mientras que el global se usa cuando las secuencias son muy parecidas entre
ellas y de medidas parecidas.

En nuestro trabajo nos centraremos en uno de los algoritmos de alineamiento global mas
conocidos que existe, el algoritmo de Needleman- Wunsch [7]

3.2. Descripciodn del algoritmo
El algoritmo de Needleman-Wunsch fue propuesto por primera vez en 1970, por Saul Needleman

y Christian Wunsch. Se trata de un ejemplo tipico de programacion dinamica, con la finalidad de
obtener el alineamiento optimo de secuencias de proteinas o de acidos nucleicos.
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Sea el alfabeto Y = { A, G, C, T} sobre el cual definimos 2 cadenas, s1 = GAATTCAGTTA y
s2 = GGATCGA. El objetivo del algoritmo es alinear las 2 cadenas de forma que se pueda
identificar en qué partes de las secuencias se produce una mutaciéon o qué partes se mantienen
indiferentes. El alineamiento seria el siguiente:

G A A T T C A G T T A
G G A T - C - G - - A

Segun el alineamiento vemos que el segundo, quinto, séptimo, noveno y décimo caracter son
diferentes para ambas secuencias, esto significa que han sufrido una mutacion.
Para llevar a cabo esta tarea, el algoritmo se divide en 3 partes:

1) Inicializacién de la matriz de puntuaciones.

2) Calculo de la matriz de puntuaciones.

3) Realizacion del traceback y generacion del alineamiento.

En la primera parte, se genera la matriz M en la cual se colocan todas las posibles combinaciones
de las dos secuencias s7 y s2 mas una fila y columna de ceros para la generacién de la
recursividad. Definimos n =|s7| y m =|s2| entonces la matriz M serade (m+ 1) x (n +1).

Por lo que en la posicion i se encuentra el i-1ésimo nucleétido y en la posicion j el j-1ésimo
nucleotido (Figura 14).

G A A T T C A G T T A
0 0 0 0 0 0 0 0 0 0 0

>0 o0 4> 0 o
o|lolo|lo|o|o|o]o

Figura 14 : Matriz de puntuaciones inicializada

El segundo paso, consiste en realizar el calculo de cada elemento de la matriz de puntuaciones
(Figura 16), aplicando la siguiente formula para cada una de las posiciones de la matriz :

Mi,j= maximo ( Mi-1,j-1 + Si,j ; Mi,j-1 +W; Mi-1,j +W )
Donde :

* M., 1+ S;: Indica la coincidencia o no coincidencia de los caracteres de la secuencia, si
los caracteres coinciden Si; sera un valor positivo, sino sera un valor negativo.

* M, + W:Indica la suma en horizontal mas la penalizacion por gap (W).
* M. ;+ W :Indica la suma vertical mas la penalizacion por gap (W).
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Es decir para calcular cada elemento de la matriz de puntuaciones necesitamos el valor de los
elementos que se encuentran inmediatamente a la izquierda, arriba y en diagonal del elemento
que queremos calcular. ( Figura 15)

Mi-1 j-1 Mi-1.

v

M -1 ——- M

Figura 15: Dependencia de datos para el calculo del elemento Mi,j de la matriz de puntuaciones

wlw|lw]|dv]=2]=2]co]|4H
wlw|lw]dv]=2]=2]co]4H
NN FRE N Y Y = e
INEENE S N B EN R

=~ l=f=]=21=]=]-19|0
NI NN ENEEE RS
NN NN EEIER
alalslwlnIv][=Tolo
alalslw[d]dv][=]o]4
alalslwdv][=To]4
wla|[r]w|w]|d][=2]o]>

ol Nol Noll Noll Noll Nol Noll N

> o o0 4 2 60 0

3 3 4 5

Figura 16 :Célculo de la matriz de puntuaciones

El tercer paso consiste en hacer el traceback (Figura 17), €l cual empieza desde el extremo inferior
derecho de la matriz M y acaba en el extremo superior izquierdo. Se avanza siempre o hacia la
diagonal izquierda o hacia arriba o hacia la izquierda, cogiendo siempre el valor mayor de las
opciones precedentes. En caso de que el valor mayor sea el mismo en mas de un vecino se le da
prioridad a la diagonal izquierda.

WD|WITWIN]|—=~]=~]O]|H
Al |JOIN]|=2]2]O0O

==l =]=]=]=2l-l9|
NN Y N NN EE
NN NI R EYNEEERS
wlwlwl|lw|[dv]=2]=]lo]4
Al |lOIN]I=2]2O>
alalr]lw|d[d]=]o]
alalr]lw|d[d]2]o]4
alalr]w]v]v] 2ol 4
wlalsa]lw|lw|v]=]o]l >

>0 0 4> 0 0
o|lol|lo]o|o|o|o]|o

3 4

Figura 17: Traceback
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Ya solo nos falta alinear las 2 secuencias a partir del fraceback, el cual se construye de la
siguiente manera :

Sea a1 el alineamiento correspondiente a s7y a2 el alineamiento correspondiente a s2.
Comenzando con a1= @ y a2= @

» Si el avance es diagonal, alineamos:
al=atl+s1
a2=a2+s14

e Sj el avance es horizontal, alineamos :
al=at1 +sti-1
a2=a2+ -

« Si el avance es vertical, alineamos :
al=at+-
a2=a2+ st
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4. Estudio y optimizacion del algoritmo Needleman-Wunsch serie

En este capitulo se analizara el algoritmo de alineamiento de secuencias Needleman-Wunsch, se
presentaran una serie de optimizaciones y finalmente se presentaran los resultados en forma de
tiempo de ejecucion del programa.

El algoritmo que se tomara como punto de partida es un pseudocddigo (8], el cual ha sido
adaptado al lenguaje C. El cadigo resultante no es todo lo eficiente que quisiéramos, por lo tanto
se le aplicaran una serie de optimizaciones con la finalidad de disminuir su tiempo de ejecucion,
reduciendo la cantidad de operaciones primitivas a realizar.

En este capitulo solo consideraremos la ejecucién del programa sobre un unico nucleo del
procesador.

4.1. Analisis de la estructura del programa

La finalidad de este analisis es identificar la fase mas significativa de nuestro programa.

El tiempo de ejecucidén depende de factores variados y, muy en particular, del tamafio de los datos
de entrada o mas bien del tamano problema.

Por lo tanto el primer paso para analizar el algoritmo sera identificar los parametros que
determinan el tamafo del problema.

Para el algoritmo Needleman-Wunsch el tamafio del problema (Problem Size) se define por :

= N: longitud de la secuencia 1
. M: longitud de la secuencia 2

La estructura de nuestro programa se muestra en la siguiente figura (Figura 18). Donde la funcion
alinear es el programa que queremos analizar.

Secuencian® 1 Secuencian® 2

GAATTCAGTTA (Longitud @ N ) GGATCGA (Longitud: M)

Input

Output

Alineamiento :

GAATTCAGTTA Langitud : mas((M W3, Kbt
GGAT-C SR

A
G -G

Figura 18 : Estructura del programa
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Analizando los bucles del cédigo identificamos 3 fases que comprenden la funcién alinear (Figura 19),
las cuales se ejecutan de forma secuencial.

Fase 1 : inicializacion
matriz de puntuaciones

Fase 2 : calculo
matriz de puntuaciones

Fase 3 : Traceback

Figura 19 : Fases de la funcién alinear

Si procedemos a calcular la complejidad de computo de cada una de las fases en funcién del
tamano de las secuencias, obtenemos :

* Fase 1:Estaes de O (N + M) operaciones de computo. Esto es debido a que tenemos
que recorrer la matriz de puntuacién inicializando a 0 la primera fila de tamafio N y la
primera columna de tamafio M.

* Fase 2 :Estaesde O (N x M) operaciones de computo. Esta complejidad es debido a
que hay que realizar el proceso de comparacion entre cada pareja de elementos de cada
una de las secuencias y en total tendremos N x M parejas.

* Fase3: Esde O (N + M) operaciones de computo ya que tan solo hemos de recorrer
hacia atras N + M elementos de la matriz para obtener el alineamiento de mayor similitud
entre las 2 secuencias.

Los requerimientos de memoria crecen linealmente respecto a M y N. No dependen ni del nUmero
de fases, ni del numero de iteraciones que realizamos. Concretamente se necesita una matriz de
tamano N x M y dos vectores de tamafo N y M. Por lo tanto la complejidad de memoria para las 3
fases sera de O(N x M).

Para finalizar el analisis inicial del programa se ha ejecutado y se ha medido el porcentaje de
tiempo que tarda en ejecutarse cada fase. La ejecucion se ha hecho con valores de Ny M = 100
y Ny M = 1.000. Estos valores se escogen porque, como se mostrara mas adelante, representan
casos significativos.
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Tamano de las secuencias Fase 1 Fase 2 Fase 3
N=100,M=100 18% 80% 2%
N =1.000, M =1.000 13% 86% 1%

Por lo tanto, podemos concluir que la Fase 2 es la parte mas significativa de nuestro programa, ya
que ademas de ser la que realiza el mayor numero de operaciones, como se puede observar por
su complejidad, es la que tarda mas tiempo en ejecutarse.

Por lo tanto en los siguientes apartados nos centraremos especificamente en ella.

4.2. Fase critica

Como hemos visto en el apartado anterior, la fase critica de nuestro programa es la encargada del
célculo de la matriz de puntuaciones. En este apartado se analizara en detalle esta parte del
programa.

4.2.1. Analisis del bucle critico

A continuacion se muestra el pseudo-cédigo de la primera versién del bucle critico y las variables
utilizadas para representar el problema. El algoritmo resultante no es todo lo eficiente que deberia
ser y posteriormente se le aplicaran una serie de optimizaciones.

Cddigo Fase critica :
for (1i=1;1i<M+1;1i++) {

for (j=1;j<N+1;j++) {

match= MATCHING (s1l[j-1],s2[i-1]);

opciol = matriul ((i-1)*(N+1)) + j-1] + match;

opcio?2 = matriu [(i*(N+1)) + j-1]1 + gap;

opcio3 = matriu [((1i-1)*(N+1)) + J] + gap;

matriul (1*(N+1)) + j] = MAX(opciol, MAX (opcio2,opcio3));

Variables :
* M longitud de la primera secuencia a alinear
* s1: primera secuencia
* N longitud de la segunda secuencia a alinear
e s2:segunda secuencia.
* matriu[1..m][1..n] : Vector que contiene la matriz de puntuaciones.
* gap: valor de penalizacion por alinear la secuencia con un agujero.

* match : valor de coincidencia de secuencias.

23




* opciol: variable donde se guarda el valor del vecino que se encuentra en la posicidon
diagonal izquierda al valor que queremos calcular.

e opcio2: variable donde se guarda el valor del vecino que se encuentra en la posicion
superior al valor que queremos calcular.

* opcio3: variable donde se guarda el valor del vecino que se encuentra a la izquierda del
valor que queremos calcular.

Funciones :

* int Matching ( char a, char b) : Compara el primer parametro con el segundo y nos retorna
un valor positivo (2) en caso que sean iguales o un valor negativo (-1) en caso que no lo
sean.

#define MATCHING(A,B) (((A) == (B)) 2?2 (2) : (-1))

* int MAX (inta, intb): Compara a con b y retorna el que sea mayor de los 2.

#fdefine MAX (A, B) (((A) > (B)) 2 (A) : (B))

Las funciones se han definido como una macro para que cuando el programa se compile el
cédigo generado para la funcion se inserte en el punto donde se invoca a la funcién, en lugar de
hacerlo en otro lugar y tener que hacer una llamada.

Definirlo de esta manera nos permite que el cédigo de estas funciones se ejecute mas rapido, ya
que evita usar la pila para pasar parametros, a la vez que también evitamos las instrucciones de
salto y retorno que se generan al definir funciones externas al cédigo principal.

Las operaciones en el interior del bucle mostrado se ejecutan N x M veces. Queremos estimar el
numero de operaciones realizadas. Al contar el niumero de operaciones no se han tenido en
cuenta las operaciones con enteros ya que estas son dificiles de estimar debido a que varian en
funcién de cémo optimiza el codigo el compilador y de la arquitectura usada. La arquitectura
usada influye ya que no podemos saber una operacion de alto nivel exactamente a cuantas
operaciones de bajo nivel corresponde.

Para estimar las operaciones de lectura y escritura en memoria consideraremos que las variables
escalares locales (match,opcio1,0pcio2,0pcio3) se corresponderan en la implementacion del
programa con registros de propdsito general del procesador. Por lo tanto, los accesos a estas
variables supondremos que no requieren la ejecucion de operaciones de acceso a memoria. Esto
sélo sera cierto si el numero de registros del procesador es suficiente para contener todas las
variables escalares que se estan utilizando durante ciertos periodos de tiempo.

Por otro lado, se considera que los vectores (matriu,s1,s2) se almacenan en la memoria, y no en
registros, y que por lo tanto todos los accesos a un vector suponen operaciones de acceso a
memoria.

Supondremos 1 salto condicional para controlar el bucle interior.

La cantidad de operaciones que se realizan en el bucle principal son las siguientes :

LoadMem: 5
StoreMem : 1
Salto Cond : 1
Integer Op: **
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4.2.2. Analisis del patrén de accesos a memoria

Si observamos los accesos a memoria que hace el bucle principal, nos encontramos en que
tenemos 5 operaciones de lectura ( LOAD ) y 1 de escritura ( STORE ) para calcular cada
elemento de la matriz de puntuaciones. Cada una de las 6 operaciones se ejecuta N x M veces.

Concretamente los accesos a memoria que se realizan son 3 LOADS ( matriufi-1][j-1] , matriuli][j-
1] y matriufi-1]fjl ) y 1 STORE (matriufi][jj ) para calcular cada elemento de la matriz de
puntuaciones y 2 LOADS ( s1[j-1]y s2[i—1] ) para traernos a memoria las 2 secuencias que vamos
a comparar entre ellas para el posterior alineamiento.

Para calcular cada elemento de la matriz de puntuaciones necesitaremos los valores que se
encuentran a la izquierda, arriba y en diagonal del elemento que queremos calcular. En la figura
20 podemos ver el patrén de accesos a memoria. A la hora de recorrer la matriz accedemos a
posiciones inmediatamente consecutivas por filas (stride = 1, mejor caso posible) lo cual aumenta
la localidad espacial de acceso a los datos.

Como veremos mas adelante, el patrén de acceso secuencial es el mas favorable al rendimiento
en los procesadores. En realidad, como se trata de un patrén de acceso muy comun, los
procesadores estan optimizados para ser eficientes con este tipo de accesos.

Por contra, tenemos poca localidad temporal, ya que en general solo accedemos 1 vez para
escribir y 3 veces para leer cada elemento de la matriz de puntuaciones.

.

_— = STORE

Figura 20 : Patrén de accesos a memoria para el calculo de un elemento de la matriz de puntuacion

A la hora de comparar los elementos de cada una de las secuencias entre si, podemos observar
(Figura 21) que el elemento 1 de la secuencia 1 se compara con los N elementos de la secuencia 2, y
asi con cada uno de los elementos que forman la secuencia 1.

Este patrén de accesos a memoria tiene una buena localidad temporal ya que constantemente
estamos referenciando posiciones de memoria que ya han sido accedidas en un “pasado
cercano”. En concreto para la secuencia 1 accederemos M veces consecutivas al mismo elemento
y para la secuencia 2, accedemos N veces al mismo elemento, pero recorriendo todos los
elementos antes de volver a acceder al mismo.
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SECUEMCIA 2 Elemento 1 Elemento M

Figura 21 : Patrén de comparacion de las secuencias

4.2.3. Analisis de saltos condicionales

Hay 1 salto condicional que se ejecuta N x M veces y su comportamiento es que siempre salta,
excepto 1 vez de cada N ejecuciones. Un patrén de saltos en el que la mayor parte de las veces
el resultado es el mismo, como es nuestro caso, es bueno ya que favorece el rendimiento de los
procesadores que realizan prediccion de saltos. Como en el caso de los accesos secuenciales a
memoria, los procesadores estan optimizados para ser eficientes con este tipo de patrones de
comportamiento de saltos.

4.2.4 Analisis del tipo de datos usados

A la hora de trabajar se ha analizado la viabilidad de utilizar el tipo de datos signed short en favor
del tipo de datos signed int, para la matriz de puntuacion.

La ventaja de usar signed shorts es que ocupan la mitad que los signed int, 2 bytes frente a los 4
bytes de los enteros. Por lo tanto las variables ocupan menos memoria lo que provoca un ahorro
de memoria. Los calculos también se realizan mas rapido.

Como inconveniente nos encontramos que los signed shorts solo pueden contener niumeros de
-32.768 a +32.767. Mientras que los signed int pueden representar del -2.147.483.648 a
+2.147.483.647.

Si suponemos el caso de N = 8400 y M = 8400, el nUmero mas grande que podria contener la
matriz de puntuaciones seria aproximadamente el 16.800

Por lo cual deducimos que si usamos signed short podremos alinear secuencias de tamafio
16.383 caracteres.

Hemos hecho pruebas iniciales y la ganancia en forma de tiempo de ejecucién es muy poca. A
partir de aqui consideraremos que los datos de la matriz de puntuaciones son siempre signed int
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4.3. Optimizaciones

Se han implementado una serie de optimizaciones sencillas sobre el algoritmo, con la finalidad de
reducir el numero de instrucciones ejecutadas y mejorar el tiempo de ejecucion. En este apartado
explicaremos como funcionan, cual es su objetivo y como han sido implementadas dentro de
nuestro programa.

4.3.1. Code Motion

El Code Motion consiste en mover instrucciones invariantes fuera del cuerpo del bucle sin afectar
la semantica del programa. El cédigo movido fuera del cuerpo del bucle (calculo o acceso a
memoria) se ejecuta con menos frecuencia, reduciendo el tiempo total de ejecucion.

El objetivo de esta optimizacién es intentar reducir el numero de instrucciones que se ejecutan
dentro del bucle critico.

En nuestro caso lo hemos implementado moviendo las siguientes instrucciones fuera del bucle :
a La posicién de la secuencia en la que nos encontramos se lee fuera del

bucle y se guarda en una variable local.

b. Calculamos estas expresiones fuera del bucle.

Es posible que alguno de estos movimientos de instrucciones el propio compilador ya los saque
fuera del bucle, pero como podremos ver en el capitulo dedicado a los resultados los cambios que
hemos realizado son significativos ya que reducen el tiempo de ejecucion del codigo. La razén es
que el compilador no sabe si los vectores matriu, s1y s2 se solapan en memoria.

Cddigo fase critica :
for (i=1;i<M+1;i++) {

c= (i-1)* (N+1);
c2 = i*(N+1);
s2char = s2[i-1];

for (j=1;J<N+1;J++) {

match= MATCHING(sl[j-1],s2char);

opciol = matriul[e + j-1] + match;

opcio2 = matriu [ec2 + j-1] + gap;

opcio3 matriu [ ¢ + j] + gap;

matriul[ec2 + j] = MAX(opciol, MAX (opcio2,opcio3));

4.3.2. Loop Unroll

La técnica de Loop Unrolling consiste en agrandar el cuerpo de los ciclos para hacer una mayor
cantidad de cosas en cada paso de iteracion. La efectividad de la estrategia se basa en el
pipelining del procesador de la siguiente manera: un ciclo que itera mil veces sobre una
instruccién nunca deja que se llene al pipeline (cada vez que se vuelve a ejecutar el cuerpo del
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ciclo el pipeline se vacia), pero si el ciclo itera solo 10 veces y realizando 100 operaciones en cada
iteracién, entonces el pipeline puede aprovecharse en cada iteracion, resultando en una clara
mejora de eficiencia.

El objetivo de esta optimizacion es reducir el nimero de instrucciones de acceso a memoria que
hace el programa.

« Load Data Reuse dentro del bucle

Como vemos en la figura 22 al realizar 2 iteraciones dentro del mismo bucle podemos
reaprovechar los valores R3 y RES1 para calcular RES2, lo que nos da un ahorro de 2
accesos a memoria cada 2 elementos calculados en relacién con la version sin loop
unrolling.

Por tanto, de media en cada iteracion tendremos 4 LOAD en lugar de los 5 que teniamos
en el bucle inicial (reduccion del 20% en numero de LOAD)

Fila i R1 R3 R4

N
T W

Fila i+1 R2 — RES1 —B RES?

Figura 22: Dependencias de datos entre 2 elementos consecutivos en la matriz de puntuaciones

Cadigo fase critica:

for (j=1;j<N+1;J=7+2) {

matchl = MATCHING(sl[j-1],s2char);

match?2 = MATCHING(sl1l[j],s2char);
rl = matriulc+ j-11;

r2 = matriulc2 + j-1];

r3 = matriulc+ j1;

opciol = rl + matchl;

opcio2 = r2 + gap;

opcio3 = r3 + gap;

resultatl = MAX (opciol, MAX (opcio2,opcio3));

r4d = matriulc + Jj+1];
opciol = r3 + match2;
opcio2 = resultatl + gap;
opcio3 = r4 + gap;

matriul[c2 + j+1] = MAX (opciol, MAX (opcio2,opcio3));
matriul[c2 + j] = resultatl;
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* Load Data Reuse entre iteraciones
Podemos aplicar la misma técnica de reaprovechar valores, que hemos aplicado en el apartado

anterior, pero en vez de dentro del bucle entre iteraciones. Es decir, si nuestros datos se
representan de la siguiente manera (Figura 23) :

lteracion j+1

lteracian |
Fila i R R3 R4 R5 B
o, i = i —— EY 4
L RZ2 —f= RES1 —® RES? ™ RES3 —p» RES4
Filai+1
Columna 1 Columna M

Figura 23: Dependencias de datos entre 2 iteraciones del bucle

En la iteracion j, calculamos RES1 y RES2, para ello necesitamos los valores R1, R2, R3 y R4,

en la iteracién j+1 calcularemos RES3 y RES4 para ello necesitamos R4 , R5, R6 y RES2. En este
punto nos damos cuenta que en la iteracion j+1 accedemos a memoria para ir a buscar datos que
ya teniamos en la iteracion j ( R4 y RES2).

Por lo tanto si en la iteracion j guardamos los valores R4 y RES2 en 2 registros, los podremos usar
en la siguiente iteracidn sin necesidad de acceder a memoria para traérnoslos.

A nivel de instrucciones este hecho nos ahorrara 2 lecturas a memoria. Y este paso lo podemos
aplicar a todas las iteraciones del programa excepto a los 2 primeros elementos de cada fila.

Por tanto, de media en cada iteracion tendremos 3 LOAD en lugar de los 5 que teniamos en el
bucle inicial (reduccion del 40% en numero de LOAD)

Cadigo fase critica:
for (j=1; J<N+1;3=3+2) {

r3 = matriulc+ JI;
matchl = MATCHING(sl[j-1],s2char);
match?2 = MATCHING(sl[j],s2char);

opciol = rl + matchl;

opcio2 = r2 + gap;

opcio3 = r3 + gap;

resultatl = MAX2 (opciol, MAX2 (opcio2,opcio3));

rl = matriuf[c + j+1];

opciol = r3 + match2;

opcio2 = resultatl + gap;

opcio3 = rl + gap;

r2 = MAX (opciol, MAX2 (opcio2,opcio3));

matriul[c2 + j] = resultatl;
matriu[c2 + j+1] = r2;

29



4.4. Experimentacion

En este apartado se describiran los procesadores utilizados en este trabajo. A continuacion se
presentara el método experimental para tomar medidas de rendimiento de cada procesador y los
workloads utilizados.

4.4.1. Sistemas de computo

Para cada procesador se muestra el nombre clave, su arquitectura, el modelo de ejecucion de
instrucciones, los tamafios de cada nivel de memoria caché, el sistema operativo y el compilador

usado.

Intel Pentium D
Procesador

Arquitectura

Ejecucion de instrucciones
Cache L1 de instrucciones
Cache L1 de datos

Cache L2

Compilador :

Sistema Operativo :
Kernel

Intel Pentium Core 2 Duo
Procesador

Arquitectura

Ejecucion de instrucciones
Cache L1 de instrucciones
Cache L1 de datos

Cache L2

Compilador

Sistema Operativo :

Kernel

Sun UltraSPARC T2
Procesador

Arquitectura

Ejecucion de instrucciones
Cache L1 de instrucciones
Cache L1 de datos

Cache L2

Compilador

Sistema Operativo :
Kernel

Intel Core 2 Duo @ 3.00 GHz
32 bits

Fuera de orden

32 Kbytes

32 Kbytes

2048 Kbytes

GCC4.33ylICC 111

Ubuntu

2.6.28-15

Intel T8100 Duo @ 2,1 GHz
64 bits

Fuera de orden

32 Kbytes

32 Kbytes

3072 Kbytes

GCC4.3.2

Debian

2.22.3

SUN SPARC-E-T5120, UltraSPARC T2 @ 1165 MHz
64 bits

En orden

16 Kbytes

8 Kbytes

4096 Kbytes

Sun C 5.9 SunOS Sparc

Sun OS

02/06/24

4.4.2. Métodos de medicion y analisis

Tanto los sistemas operativos como los lenguajes tienen instrucciones que permiten medir el
tiempo total de ejecucion de un programa.

Pero nuestro interés recae solamente en medir la parte del programa que realiza el mayor nimero
de operaciones, es decir, la parte de mayor complejidad con la mayor precision posible.

Por este motivo se han anadido al algoritmo funciones concretas que miden solamente esta parte
del cédigo.
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Para medir tiempos en el procesador Sun UltraSPARC hemos utilizado la funcion gettimeofday

* int gettimeofday(struct timeval *tv, struct timezone *tz) : Esta funcién nos permite obtener la
hora del sistema operativo en el momento de su llamada. La precisiéon con la que trabaja
es de microsegundos.

A la hora de trabajar con ella la usamos antes y después de la ejecucién en la zona que queremos
medir el tiempo. Luego tan solo hay que restar los valores entre si para obtener el tiempo que ha
tardado esa zona en ejecutarse.

Para medir tiempos en procesadores x86 hemos utilizado una instruccion maquina especial.
Estas instrucciones hacen uso del acumulador principal EAX y del secundario EDX de la
arquitectura Intel x86 para obtener el numero de ciclos totales.

A la hora de trabajar con ellos, se llama a la funcién que inicializa los acumuladores a 0 antes de
la ejecucion de la fase que queremos medir, y se llama a la funciéon que nos calcula el numero
total de ciclos acumulados al final de la ejecucion de la fase a medir.

4.4.3. Métricas y Workloads

La métrica fundamental que se ha medido en las ejecuciones ha sido el tiempo de ejecucion del
programa.

En las graficas el eje Y muestra el tiempo de ejecucion dividido por la complejidad, en
nanosegundos mientras que el eje X estan expuestas las versiones del programa. Dividimos el
tiempo entre la complejidad ya que asi se anula el efecto de crecimiento en el tiempo de ejecucion
debido al incremento del volumen de operaciones.

El programa usado para medir los tiempos es la version con todas las optimizaciones discutidas
en el apartado anterior.

Las ejecuciones se realizaran con tamafos de secuencia que van de los 50 hasta los 10.000
caracteres de longitud. Se han hecho las pruebas alineando mas de una secuencia y con tamanos
diferentes. En todos los casos el numero total de iteraciones que tiene que hacer el programa es
el mismo, pero como se podra apreciar los resultados varian dependiendo del tamafio de las
secuencias. El numero de tamafios y secuencias usados son :

* Alineamos 2 secuencias de longitud 10.000 entre ellas.
* Alineamos 100 secuencias de longitud 200 entre ellas.
* Alineamos 400 secuencias de longitud 50 entre ellas.

Estos workload se escogen porque, como se vera mas adelante, representan casos significativos.
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4.5. Resultados

En este apartado se mostraran y discutiran los resultados de rendimiento obtenidos al ejecutar la
implementacion del algoritmo Needleman-Wunsch en serie en los tres procesadores descritos
anteriormente.

4.5.1. Evolucién de tiempos de las diferentes versiones del programa en
la arquitectura x86-32

Se han realizado pruebas sobre el procesador Intel con arquitectura de 32 bits usando diferentes
versiones del programa para comprobar que realmente las optimizaciones propuestas en el
apartado anterior aportan una mejora a nivel de tiempo de ejecucién. Las versiones utilizadas
son:

* Laversién “normal” es la version que contiene tan solo la mejora del code-motion.

* La versién “Loop Unroll” contiene las mejoras de code-motion y el Loop Unroll con Load
Data Reuse dentro del bucle

* La version “Loop Unroll mejorado” es la version mas optimizada del algoritmo en serie. Ya
que contiene las mejoras de code-motion y el Loop Unroll con Load Data Reuse entre
iteraciones.

La figura 24 nos muestra el tiempo de ejecucion de las diferentes versiones del programa usando
el compilador GCC.

Arquitectura x86-32
Compilador GCC

20
18
16
14
N 4o W N=50 S=400
n
* 10 B N=200 S=100
o 7 N=10000 S=2
Z 8
@
c 6
4
2
0
Normal Loop Unroll Loop Unroll Mejorado
Programa

Figura 24: Tiempo de ejecucion divididos por complejidad para la ejecucion del algoritmo serie en el procesador x86-32 utilizando el compilador GCC con
diferentes versiones del programa.

Podemos apreciar como las optimizaciones planteadas en el apartado anterior, mejoran el tiempo
de ejecucion, siendo la versidn que contiene todas las optimizaciones planteadas (Loop Unroll
mejorado) la que funciona sustancialmente mejor sobretodo en el peor caso ( N=50 y S = 400).
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Hemos realizado las mismas mediciones utilizando otro compilador como es el Intel C Compiler, y
los resultados los podemos apreciar en la figura 25.

Arquitectura x86-32
Compilador ICC

18

16

14

12

N B N=50 S=400
» B N=200 S=100
g g [ N=10000 S=2
g - -
(2]

C

Normal Loop Unroll Loop Unroll Mejorado

Programa

Figura 25: Tiempo de ejecucion divididos por complejidad para la ejecucion del algoritmo serie en el procesador x86-32 utilizando el compilador ICC con
diferentes versiones del programa.

Si comparamos tiempos entre las 2 versiones vemos como la version compilada con ICC es
ligeramente mas rapida, esto es debido a que este compilador genera un ensamblador mas
eficiente que el GCC. Ya que si miramos el numero de instrucciones de la mejor version ( Loop
Unroll mejorado) tenemos :

e GCC: Icount : 55 instrucciones x N x M Instrucciones
e |CC : lcount 47 instrucciones x N x M instrucciones

Una de las grandes diferencias es que el compilador ICC es capaz de utilizar las instrucciones
CMOV ( Conditional Move) por contra del GCC que necesita de 3 instrucciones para realizar la
misma tarea que hace el CMOV, de las cuales una es un salto.

El compilador ICC trabajando con el procesador con arquitectura de 32 bits igualmente tiene un
problema y es que no es capaz de sustituir todas las instrucciones de comparacion + salto por un
CMOV, tan solo puede con las mas basicas. Cosa que por el contrario los compiladores que
trabajan con arquitecturas de 64 bits si que son capaces de realizar.
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4.5.2. Resultados en las 3 arquitecturas

En la figura 26 se muestran los resultados obtenidos de ejecutar la version mas optimizada del
programa sobre los 3 procesadores. El objetivo es comparar el rendimiento en los 3 procesadores.

Comparacion entre los 3 procesadores

35

30

25
©
©
2 90
2 M N=50 S=400
o
E 5 M N=200 S=100
3 I N=10000 S=2
)
c

10

0 HE

Intel 32 bits (ICC) Intel 64 bits (GCC) UltraSparc T2 (CC)

Procesador

Figura 26: Tiempo de ejecucion divididos por complejidad, para la ejecucion del algoritmo serie mas optimizado sobre los 3 procesadores

Para el procesador Intel de 32 bits lo que podemos apreciar es que sobre todo para el primer caso
(N=50, S=400) el tiempo es mas elevado. Esto seguramente es debido al overhead causado por
los bucles ya que esta version al tener que alinear mas secuencias ejecuta 6.000 veces mas el
bucle principal que la version con N = 200 S = 100 y aproximadamente16.000 veces mas que la
versiéon con N=10.000y S = 2.

Otro de los grandes problemas que tenemos al ejecutar el programa con esta arquitectura es el
hecho de que tan solo tenemos 8 registros de propdsito general con lo cual tenemos que estar
haciendo continuamente movimientos de memoria a registros o entre registros porque nos
quedamos sin registros para poder trabajar, lo cual hace aumentar el tiempo de ejecucion,
sobretodo si lo comparamos con la arquitectura de 64 bits.

Como podemos observar en el procesador Intel de 64 bits los tiempos se han reducido alrededor
de un 60% para el primer caso y un 50% para los 2 ultimos casos en comparacion con el
procesador con arquitectura de 32 bits, esto es debido a que el numero de registros de propdsito
general se ha incrementado de 8 en los procesadores x86-32 a 16, y el tamano de todos estos
registros se ha incrementado de 32 bits a 64 bits.

Adicionalmente, el compilador trabaja de forma mucho mas eficiente que su homaologo de 32 bits
lo cual también influye en la mejora del tiempo de ejecucion obtenido. Se ha analizado el cédigo
ensamblador generado por nuestro programa y los resultados son :

¢ Procesador Intel 32 bits : Icount : 47 instrucciones en el bucle interno
* Procesador Intel 64 bits : Icount: 35 instrucciones en el bucle interno

Por ultimo, a partir de la grafica podremos ver como claramente el rendimiento que obtenemos en
la maquina UltraSparc T2 es 7 veces inferior a los obtenidos en las arquitecturas Intel de 64 bits y
unas 5 veces inferior al obtenido en la Intel de 32 bits.
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Una de los grandes problemas que hace que empeore el rendimiento es el hecho de que esta
arquitectura ejecuta las instrucciones en orden, al contrario que sus homaélogas que son capaces
de ejecutar fuera de orden. También hay que tener en cuenta que la UltraSparc tiene una
frecuencia de reloj 2 veces inferior a la maquina de 64 bits y 3 veces inferior a la maquina de 32
bits con la que se han realizado las pruebas de medicién.

Si observamos el ensamblador generado nos encontramos que éste esta menos optimizado que
el generado por el compilador GCC de 64 bits, y resulta bastante parecido al generado por el
compilador ICC de 32 bits. Si contamos las instrucciones ensamblador generadas tenemos :

UltraSPARC T2 : Icount : 46 instrucciones x N x M
Procesador Intel 64 bits : Icount: : 35 instrucciones x N x M
Procesador Intel 32 bits : Icount:: 47 instrucciones x N x M

Las 3 maquinas son multicore pero en el algoritmo serie tan solo se trabaja en uno de sus cores,

por lo que ademas no estamos utilizando las posibilidades que tiene la UltraSPARC de ejecutar
hasta 8 threads por core.

4.5.3. Analisis de los factores que determinan el rendimiento

Uno de los indicadores para determinar el rendimiento y tiempo de ejecucion de una aplicacion es
el CPI (Ciclos por Instruccion ejecutada). En nuestro caso hemos calculado el CPl de la mejor
version ( Loop Unroll mejorado) y lo hemos comparado con el nimero de ciclos minimo que
requiere cada instruccion (CPl minimo) en cada unos de los 3 procesadores. Los resultados son

los siguientes :

Procesador x86-32

Num. secuencias / |Ciclos Totales| Tiempo | Instrucciones| Ciclos por CPI CPI/CPI
longitud (segs.) | delbucle Resultado minimo
S=2,N=10.000 7226545261 2,41 47 18,07 0,77 0,77 /0,33
S =100, N =200 7572779310 3,01 47 18,93, 0,81 0,81/0,33
S =400,N=50 11015968804 3,67 47 27,54 1,17 1,17 /0,33
Procesador x86-64
Num. secuencias / | Ciclos Totales | Tiempo | Instrucciones | Ciclos por | CPI CPI/CPI
longitud (segs.) del bucle Resultado minimo
S=2,N=10.000 3546187964 1,77 35 8,87 0,51 0,51/0,33
S =100, N =200 3110415868 1,56 35 7,78 0,44 0,44 /0,33
S =400,N=50 3209548549 1,6 35 8,02/ 0,46 0,46 /0,33
Procesador UltraSPARC T2
Num. secuencias / | Ciclos Totales| Tiempo Instrucciones | Ciclos por | CPI CPI/CPI
longitud ( microsegs)| del bucle |Resultado minimo
S=2,N=10.000 | 16033476000 10739539 46 32,22 1,4 1,40/ 1
S =100, N =200 15645067200 10317640 46 30,95 1,35 1.35/1
S =400,N=50 16123306800 11636166 46 34,91 1,52 1,52 /1
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El analisis del CPI permite hacer comparaciones sin considerar la frecuencia de reloj. En cada uno
de los casos obtenemos :

* Intel 64 bits : 0,33/ 0,44 = 75 % del rendimiento pico del CPI

* Intel 32 bits : 0,33/ 0,77 =42 % del rendimiento pico del CPI
47 |/ 35 = 34% mas instrucciones ejecutadas que la version x86-64 bits.

e UltraSPARC T2:1/1,35= 70% del rendimiento pico del CPI
46 / 35 = 31% mas instrucciones ejecutadas que la version x86- 64 bits.

En la figura 27 podemos apreciar la comparacion del CPI entre los 3 procesadores

Comparacion del CPI entre los 3 procesadores

1,6
1.4
1,2
1
_ 08 B N=50 S$=400
& B N=200 S=100
0.6 [ N=10000 S=2
04
0.2

Intel 32 bits (ICC) Intel 64 bits (GCC) UttraSparc T2 (CC)

Procesador

Figura 27: Comparacion del CPI entre los 3 procesadores.

Los mejores resultados los obtenemos con el procesador Intel de 64 bits, viendo su CPI
apreciamos que no hay problemas de dependencias de datos ni de latencias de ejecucién que
provoquen esperas. Podemos reducir el camino critico pero no sirve de nada en este caso, ya
que posiblemente el problema es que se esta saturando algun recurso de cémputo, es decir el
procesador es capaz de ejecutar 3 instrucciones por ciclo pero es probable que para algun tipo de
instruccion tenga un limite mas estricto.

En los otros procesadores hay margen de mejora, ya que como veremos en el siguiente apartado
la UltraSPARC reduce mucho su tiempo de ejecucion gracias al multithreading ya que consigue
una eficiencia por thread de casi el 100%. En la arquitectura Intel 32 bits muchas de las
anomalias de rendimiento se deben a la interaccién con la jerarquia de memoria. En muchas
ocasiones es debido a la confluencia de ciertos alineamientos en los accesos a memoria. Una
forma de verificar que efectivamente el problema es causado por la jerarquia de memoria seria
analizar los fallos de caché.
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5. Diseno y estudio del algoritmo Needleman-Wunsch paralelo

En este capitulo se disefara y analizara la paralelizacién del algoritmo de alineamiento de
secuencias Needleman-Wunsch.

Se estudiaran 2 variantes que difieren entre la cantidad de cémputo y la de comunicacion
( granularidad). En la primera variante la comunicacion entre los procesadores es poco frecuente
y se realiza después de largos periodos de ejecucion (granularidad gruesa). La segunda variante
las tareas individuales son relativamente pequefias en término de tiempo de ejecucion y la
comunicacion entre los procesadores es frecuente (granularidad fina).

Finalmente se presentaran y analizaran los resultados de ambas variantes en forma de tiempo de
ejecucion del programa.

5.1. Paralelizacion large-grained

La paralelizacién de grano grueso se ha implementado basandonos en el hecho de que cuando
alineamos secuencias genéticas normalmente se alinean dos o mas secuencias entre ellas. Por lo
tanto podemos repartir entre los threads el nimero de secuencias a alinear y que cada uno trabaje
alineando una serie de secuencias diferentes.

Para repartir las secuencias entre los threads se ha implementado una funcién en C ajena a la
funcion de alineamiento de secuencias. A continuacion se muestra el pseudocodigo simplificado
de la funcién

Pseudocddigo
#pragma omp parallel for default (shared) private(i)

for (i=0; i < (numero_de_secuencias * numero_de_secuencias ); i++)

{

int sl i / numero_de_secuencias;
int s2 = i % numero_de_secuencias;

alinear (seql(sl) ,seq2(sl));

En esta variante del algoritmo la asignacion del volumen de computo a cada thread es equitativa.
A partir de ahora llamaremos nthreads al numero total de threads.

El bucle que se reparte entre los threads esta compuesto de :
Numero_de_secuencias * Numero_de_secuencias elementos.
Al repartir el bucle, a cada thread le corresponden :

(Numero_de_secuencias * Numero_de_secuencias) / nthreads.
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En la figura 28 se muestra como repartimos el trabajo si tenemos 3 secuencias a alinear y 2

threads.

Secuencia 1

Secuencia 2

Secuencia 3

Thread 0

Alinear(Zec. 1, Sec. 1)
Alinear(Zec.1, Sec.2)

Alinear(Sec. 1, Sec. 3)

; 1)

-2)

Alinear(Sec. 2, Sec. 1
Alinear{Sec. 2, Sec. 2

#pragma omp parallel for

Thread 1

Alinear(Sec. 2, Sec. 3
Alinear(Sec. 3, Sec. 1

-3)
1)
Alinear(Sec. 3, Sec. 2)
-3)

Alinear{Sec. 3, Sec. 3

Sincronizacion

Figura 28: Reparticion de las secuencias entre los threads

En esta variante del algoritmo paralelo los threads no deben esperar datos que provengan de
otros threads por lo tanto no hay sincronizacion.

Requerimientos de memoria

Los requerimientos de memoria globales aumentan con el numero de threads ya que cada thread
escribe en una matriz de puntuaciones diferente, que es local a cada thread.

Los requerimientos de memoria para la funcién alinear crecen linealmente respecto al tamano de
las secuencias. Concretamente se necesita un vector de tamafo M ( longitud de la secuencia 1)
y un vector de tamano N ( longitud de la secuencia 2 ).

Memoria = N x M x nthreads + (N + M) x nthreads
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Comunicacion

Cuando un thread de una region paralela escribe en una variable y posteriormente cualquiera de
los otros threads de la region paralela necesita leer dicha variable, el sistema debe asegurar que
el valor que se lee es el correcto. Las variables légicas del programa se asignhan a posiciones de
memoria, que en un determinado momento del tiempo pueden corresponder con el contenido de
una caché privada de un procesador, o de una posicion de la memoria principal compartida. Por lo
tanto, para que un thread lea el resultado producido por otro thread, puede ser necesario mover
los datos entre los procesadores y las memorias caché. A este movimiento de datos entre threads
le denominamos comunicacién entre threads, y es importante determinar su volumen.

En cuanto a las comunicaciones, un mismo thread tiene dos comportamientos. Los threads
generan datos (escribiendo resultados en memoria) y consumen datos (leyendo datos de la
memoria, que previamente han sido escritos por otros threads).

En esta variante del algoritmo paralelo no tenemos comunicacion entre los threads ya que los
threads no escriben datos que vayan a ser leidos por otros threads. Esto es debido a que cada
thread lee secuencias ( que pueden ser las mismas ) pero escribe en matrices de puntuacién
diferentes, que son locales a cada thread, y que solo lee el thread que escribe.

5.2. Paralelizacion fine-grained

La paralelizacion de grano fino tiene sentido cuando sélo es necesario alinear una pareja de
secuencias, ademas veremos que para que sea efectivo las secuencias deben ser largas.

Esta variante se ha implementado paralelizando la fase donde calculamos la matriz de
puntuaciones, que como vimos en el capitulo anterior es la fase critica del programa.

A la hora de paralelizar esta fase nos encontramos con las siguientes dependencias de datos
(Figura 29).

Columna 1 Colurmna M

Fila 1

Fila M

Figura 29 : Dependencias de datos de la matriz de puntuaciones

39



Siendo la figura anterior la matriz de puntuaciones y sus dependencias, esto nos impone una
restriccion en el momento de repartir el trabajo :

* Para calcular una nueva posicion Mi,j de la matriz de puntuaciones hemos de haber
calculado previamente M1 .1, Mi.1j Y Mij1 (Figura 30)

Figura 30 : Dependencia de datos para el calculo de un elemento de la matriz de puntuaciones

Debido a las dependencias de datos a la hora de calcular la matriz de puntuaciones se ha
planteado un algoritmo basado en la estrategia de descomposicion WaveFront.

Mi-1,j-1 Mi-1
Mij-1 == nij

Para poder paralelizar el bucle critico necesitamos aseguramos que no haya dependencias entre

iteraciones del bucle, la manera de conseguir esto es calculando las diagonales, que como

podemos ver en la figura 31 es exactamente como funciona el WaveFront.[9]

17
N
a7
/N
* /8797,
i 878787477/
i 7

v

Figura 31 : Recorrido de la matriz siguiendo la estrategia de descomposicién Wavefront
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A la hora de repartir el trabajo primero se calcula el elemento (a0,b0). Seguidamente calculamos
[(a0,b1), (a1,b0)] y estos 2 elementos ya podemos calcularlos en paralelo repartiendo un elemento
a cada thread. Acto seguido, se calcula [(a0, b2), (a1,b1), (a2,b0)] el cual también podemos
calcular en paralelo, y asi hasta el final de la matriz.

En el algoritmo propuesto por nosotros a la hora de repartir el trabajo en vez de darle a cada
thread un elemento de la diagonal de la matriz de puntuaciones, como se mostraba en la figura
anterior, se le dara un bloque horizontal de elementos para que los calcule.
Cada uno de estos bloques tendra un tamano de :

M / nthreads.

De manera que si tenemos las secuencias :

secuencia 1 = GAATTCAGTTAA
secuencia 2 = GGATCGAGTTGA

Y queremos repartir el trabajo en 3 threads tendremos bloques de :
12/ 3 = 4 elementos

El resultado obtenido sera una matriz de M columnas x N filas como muestra la figura 32

MColumnas G A A T T C A G T T A A
N Filas 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 THREAD 3
G 0 THREAD 3
A 0 THREAD 3
T 0
C 0
G 0
A 0
G 0 THREAD 1 THREAD 3
T 0 THREAD 2 THREAD 3
T 0 THREAD 1
G 0 THREAD 1
A 0 THREAD 1 THREAD 1

Figura 32: Division de la matriz de puntuaciones en bloques

En la figura 33 podemos apreciar los bloques asignados a los threads en cada iteracion.

lteracion 1 Thread 1
lteracion 2  Thread 1y 2
lteracion 3  Thread 1,2y 3
lteracion4  Thread 1,2y 3
lteracion 5 Thread 1,2y 3
P tteracion 6 Thread 1,2y 3
lteracion 7 Thread 1,2y 3
lteracion 8 Thread 1,2y 3
P tteracion 9 Thread 1,2y 3
lteraciéon 10 Thread 1,2y 3
lteraciéon 11 Thread 1,2y 3
lteracion 12 Thread 1,2y 3
Iteracion 13  Thread 1y 2
lteracion 14 Thread 1

Figura 33: Bloques asignados a los threads



Vemos en el ejemplo que se produce un desbalanceo de cémputo ya que solo en el 71% de las
iteraciones se ejecuta el numero maximo de threads que tenemos definidos. En los siguientes
apartados, entraremos mas en detalle.

El algoritmo se ha implementado usando el lenguaje de programaciéon C. A continuacién se
muestra el pseudocdodigo simplificado de la funcion

Pseudocddigo

Accedemos a una diagonal de la matriz de puntuaciones en cada iteracion
Para k = 2 ... k = numthreads+M

Repartimos el trabajo dandole a cada thread un bloque de la diagonal
#fpragma omp parallel for default (shared) private (i)

EN PARALELO :

Cada thread ejecutara un bloque de la diagonal. El primer thread
ejecutara el bloque que se encuentre mds a la izquierda de la diagonal

Cada thread calcula un bloque de p elementos.
Para p = 0 .. p<pfinal
{

Calcular Elemento()

barrera de sincronizacién

Cémputo

En esta variante del algoritmo a cada thread le corresponde calcular un bloque, el cual esta
formado por :

M / nthreads elementos de la matriz

Pero al principio y al final de la matriz de puntuaciones se ejecutan menos threads de los que
hemos definido (desbalanceo de computo), este hecho es importante sobretodo si M (longitud de
la secuencia 2) es pequefia ya que entonces el numero de iteraciones en las que utilizamos el
numero maximo de threads definidos seran pocas.

Sincronizacion

En esta variante del algoritmo paralelo es necesario que todos los threads finalicen el calculo de
todos los elementos del bloque que tienen asignados antes de proseguir. Estos elementos son
necesarios para poder calcular los elementos de la siguiente iteracion.

Al coste de la sincronizacién ademas hay que afadirle que tendremos un tiempo de desbalanceo
de carga ya que lo mas probable es que un thread finalice su trabajo antes que otros. Por lo que
los threads que han finalizado tendran que esperar. Esta espera supone un coste en ciclos de reloj
del procesador desaprovechados y por lo tanto un overhead.

Num. veces que se sincroniza : nthreads + N -1 veces
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Requerimientos de memoria

Los requerimientos de memoria no crecen respecto al numero de threads ya que cada thread
trabaja con variables locales. Concretamente cada thread tratara N / nthreads elementos de una
fila de la matriz de puntuaciones cada vez

Los requerimientos de memoria globales no aumentan con el numero de threads.

Memoria : Nx M + (N + M)

Comunicacion

En esta variante del algoritmo paralelo tenemos comunicacién entre threads, ya que para poder
calcular los elementos de la matriz de puntuaciones cada thread necesita leer las posiciones
calculadas previamente en la iteracion anterior.

La figura 34 representa los datos de entrada necesarios para calcular los elementos de un bloque
de datos. Los datos que leemos de la fila superior han sido calculados en la iteracién anterior
(iteracion i-1) por el mismo core que esta calculando ahora este bloque inferior de datos, por lo
tanto los datos se encuentran en la memoria caché lo que comporta que no haya comunicacion.
En cambio, el elemento que se encuentra a la izquierda de nuestro bloque de datos ha sido
calculado en otro thread que se encuentra en otro core, por lo tanto habra comunicacion entre
cores para obtener ese dato ( 1 linea de cache ).

El elemento que se encuentra diagonal al bloque de datos que estamos calculando comporta
comunicacion en la iteracion i-1 para calcular el bloque de datos ejecutado por el thread t, pero en
la iteracion i no comporta comunicacion debido a que ya tenemos en la caché este dato y no hay
necesidad de pedirselo al thread t-1.

ihread -1 thread t thread t+1

leer datos generados por mi
propio nucleo { No hay ¢comunicacion

lteracicn -1
N N

k J 4 k 4 L k4 k 4

G—V Blogue de datos P fteracion |

Comunicacian
desde otro

niiclen N fnthreads

Figura 34: Comunicaciones que se producen en el calculo de un bloque de datos

.
L

F 3

El volumen de datos leidos por cada thread, que previamente han sido escritos por otros threads
se corresponde con 1 dato por iteracion (1 linea de caché) entre vecinos.

Comunicacién : 1 dato ( 1 linea de caché ) x nthreads + N -1 veces
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Diagnéstico

Si analizamos el algoritmo podemos apreciar que hay una gran cantidad de sincronizacion (M +
numthreads sincronizaciones) ya que cada vez que calculamos la diagonal se tienen que
sincronizar todos los threads. También apreciamos que a esta sincronizacién hay que sumarle un
desbalanceo de carga en cada iteracién ya que como hemos comentado los threads no acaban
necesariamente todos a la vez, sino que suelen acabar en tiempos distintos y se tienen que
esperar a que hayan finalizado todos.

También es un problema a tener en cuenta el desbalanceo de computo que se produce durante
las primeras y ultimas iteraciones del calculo de la matriz de puntuaciones, en las que no se
aprovechan todos los threads que tenemos definidos ya que estan trabajando menos threads de
los que hemos asignado. Este es un problema derivado de tener que usar un método de
descomposicion como es el WaveFront para poder implementar el calculo de la matriz de
puntuaciones.

Por ultimo tenemos un total de comunicaciones de nthreads + N -1 veces, que es el mismo
numero de veces que tenemos que sincronizar, pero por contra el coste de las comunicaciones
en nivel de ciclos de ejecucion es mucho menor que la sincronizacién ( del orden de 10 veces
inferior).

El diagndstico que extraemos es el siguiente :

sincronizacién > comunicaciones > desbalanceo de computo

El problema mas importante de nuestro programa es la sincronizacion ya que su coste es mas
elevado que las comunicaciones, mientras que el desbalanceo de computo es un problema que
depende de N, cuando la N es grande el problema del desbalanceo decrece, mientras que el
numero de sincronizaciones aumenta, por lo tanto las optimizaciones que plantearemos intentaran
minimizar la sincronizacién.

5.2.1. Optimizaciones

Se han implementado una serie de optimizaciones sobre la versién de grano fino con la finalidad
de evitar el problema de la falsa comparticion, que provoca falsa comunicacion, y de reducir la
sincronizacion entre threads a costa de aumentar el desbalanceo de computo. En este apartado
explicaremos como funcionan, cual es su objetivo y cédmo han sido implementadas dentro de
nuestro programa. La figura 35 muestra las 2 optimizaciones que realizaremos :

O Optimizacian : Alineacian anchura (M)

- .
Aochura
@ optimizacion - Aumentar  awe Blogue asignado
altura (T] al thread.

Figura 35: Esquema de las 2 optimizaciones que se realizaran

44



1. Alineacion del bloque de datos asignado a cada thread

La memoria caché esta estructurado por celdas, donde cada celda almacena un byte. La entidad
basica de almacenamiento la conforman las filas, llamadas también lineas de caché, que por lo
regular son de 64 bytes, con las direcciones de 0 a 63 se accede a la linea de cache 0, con las
direcciones 64 a 127 a la linea de cache 1, etc.

Cuando se copia o se escribe informacion de la RAM a caché, por cada movimiento siempre cubre
una linea de caché. Las lineas de caché de uso mas intensivo se mantienen en una caché de alta

velocidad situada dentro de la CPU. Cuando el programa necesita leer una palabra de memoria, el
hardware de caché determina si la linea necesaria esta o no en la caché

El objetivo de esta optimizacion es asegurar que la particion en columnas no corte una linea de
caché, porque se pueden generar problemas de Falsa comparticion.

La Falsa comparticion ocurre cuando dos 0 mas nucleos estan actualizando bytes de memoria
distintos que coinciden en la misma linea de caché, esto provoca falsa comunicacion.

Esta optimizacion la hemos llevado a cabo comprobando que la direccion de una linea de datos
horizontal asignada a cada thread sea multiplo de 64 bytes. En caso de no serlo, aumentamos el
tamanio de los datos que cogemos hasta que lo sea.

Se ha generado un diagrama de flujo para representar graficamente como hemos implementado
esta optimizacion (Figura 36)

Es multipla

e B4 bytes? Finalizar

Aumentar en 1 el tamafio
de |3 partician

Figura 36: Diagrama de flujo perteneciente a la optimizacion de alineacion de bloques de datos asignado a cada thread
2. Variacion de la altura de los bloques de datos asignados a cada thread
El objetivo principal de esta optimizacion es reducir el overhead de sincronizacion.

La manera de reducir la sincronizacion del programa es aumentando la altura de los bloques de
datos que se calculan en la diagonal. De manera que el numero de iteraciones que haga el
programa sea inferior y por lo tanto se reduzca el niumero de veces que se tienen que sincronizar
los threads.
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La diferencia ahora es que en la versién anterior de nuestro algoritmo la altura de los bloques era
1 (una fila). Ahora para realizar esta optimizacion se ha definido un parametro extra T, el cual nos
permitira definir la altura de los bloques.

De manera que si tenemos las mismas secuencias que en el ejemplo anterior :

secuencia 1 = GAATTCAGTTAA
secuencia 2 = GGATCGAGTTGA
Y queremos repartir el trabajo en 3 threads tendremos bloques de :
12/ 3 = 4 elementos

Si definimos la T = 3. El resultado obtenido sera el de la figura 37

MColumnas G A A T T C A G T T
N Filas 0 0 0 0 0 0 0 0 0 0 0 0
G 0 THREAD 2 THREAD 3
G 0 THREAD 2 THREAD 3
A 0 THREAD 2 THREAD 3
T 0 THREAD 1 THREAD 2 THREAD 3
C 0 THREAD 1 THREAD 2 THREAD 3
G 0 THREAD 1 THREAD 2 THREAD 3
A 0 THREAD 1 THREAD 2 THREAD 2
G 0 THREAD 1 THREAD 2 THREAD 2
T 0 THREAD 1 THREAD 2 THREAD 2
T 0 THREAD 1 THREAD 1 THREAD 1
G 0 THREAD 1 THREAD 1 THREAD 1
A 0 THREAD 1 THREAD 1 THREAD 1

Figura 37: Division de la matriz de puntuaciones en bloques de altura T

En la figura 38 podemos apreciar los bloques asignados a los threads en cada iteracion.

B teracion 1 Thread 1

lteracion 2 Thread 1y 2
Iteracion 3  Thread 1,2y 3
lteracion 4  Thread 1,2y 3
lteracion 5 Thread 1y 2
Iteracion 6  Thread 1

Figura 38: Bloques asignados a los threads

Vemos como hemos empeorado el desbalanceo de cémputo en relacién a la versién anterior ya
que en el ejemplo del apartado anterior teniamos un 71% de iteraciones en las que se ejecutaban
el numero maximo de threads. Por contra ahora tan sélo en el 33% de las iteraciones se ejecuta el
namero maximo de threads.

En el dibujo también se puede apreciar como hemos reducido el nimero de iteraciones
(sincronizaciones) de 14 que realizaba la version anterior a 6. Ahora el volumen de datos escrito
entre sincronizaciones por cada thread es de :

(M / nthreads) * T elementos

El volumen de datos leidos por cada thread, que previamente han sido escritos por otros threads
(comunicacion ) se corresponde a:

T elementos
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Vemos como esta optimizacion ha aumentado el nimero de célculos que hacemos en paralelo
entre sincronizaciones de (num. columnas / thread) a (num. columnas /thread) * T.

La cantidad de comunicacién entre threads ha aumentado en volumen de datos que leemos, pero
ha disminuido en la cantidad global de veces que cada thread tiene que leer datos.

A continuacién se muestra el pseudocdédigo simplificado de la optimizacion

Pseudocddigo

Accedemos a la diagonal correspondiente a cada iteracion, donde cada bloque que Ia
forma tiene una longitud ( num.columnas / thread ) y un anchura T

Para k = 2 ... k = (numthreads+ (M/T)) *T

Repartimos el trabajo dandole a cada thread un bloque de la diagonal
#pragma omp parallel for default (shared) private(i)

EN PARALELO :

Cada thread ejecutara un bloque de la diagonal.
El primer thread ejecutara el bloque que se encuentre mas a la izquierda
de la diagonal.

Esta vez hay que decrementar T elementos el indice para posicionarnos
en el bloque siguiente.

Recorremos las T filas que forman un bloque
Para 7 =0 .. 7 < T
{

y en cada fila calculamos p elementos.
Para p = 0 .. p<pfinal
{

Calcular Elemento ()

barrera de sincronizacién
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5.3. Experimentacion
En este apartado se describiran los procesadores utilizados. A continuacion se presentara el

método experimental para tomar medidas de rendimiento de cada procesador y los workloads
utilizados.

5.3.1. Sistemas de computo

Para cada procesador se muestra el niumero de procesadores, cuantos cores tiene cada
procesador y cuantos threads puede ejecutar cada uno.

Intel Pentium D

Procesador Intel Core 2 Duo @ 3.00 GHz
Cores 2
Threads per core 1

Intel Pentium Core 2 Duo

Procesador Intel T8100 Duo @ 2,1 GHz
Cores por procesador 2
Threads per core 1

Sun UltraSPARC T2

Procesador SUN SPARC-E-T5120, UltraSPARC T2 @ 1165 MHz
Cores por procesador 4
Threads per core 8

5.3.2. Métodos de medicion y analisis

Para medir tiempos de la aplicacién paralela en el procesador Sun UltraSPARC hemos utilizado la
funcién gettimeofday.

Para medir tiempos en procesadores x86 hemos utilizado una instruccion maquina especial.
Estas instrucciones hacen uso del acumulador principal EAX y del secundario EDX de la
arquitectura Intel x86 para obtener el numero de ciclos totales de cada uno de los threads.

5.3.3. Métricas y Workloads

Igual que en la experimentacién del apartado 4.4 la métrica fundamental que se ha medido en las
ejecuciones de ambas variantes ha sido el tiempo de ejecucién del programa.

En las graficas el eje Y muestra el Speedup mientras que el eje X estan expuestos los 3 sistemas
sobre los que hemos probado el programa. El Speedup se calcula haciendo t° /#° donde ° es el

tiempo que se requiere para ejecutar el programa serie y t° es el tiempo que se requiere para
ejecutar el programa paralelo

48



Los programa usado para medir los tiempos son:

» Parala version large — grained se utiliza el cédigo en serie con todas las optimizaciones,
ademas de la funcién explicada en el apartado dedicado al large-Grain, que es la
encargada de repartir el trabajo entre los threads.

» Parala version fine-grained se utiliza la version con todas las optimizaciones discutidas en
el apartado dedicado a la paralelizacion fine-grained.

Se han hecho las pruebas alineando mas de una secuencia y con tamanos diferentes, en todos
los casos el numero de iteraciones que tiene que hacer el programa es el mismo, pero como se
podra apreciar los resultados varian dependiendo del tamafio de las secuencias. Las pruebas para
ambos casos se han realizado con 1 y 2 threads respectivamente en las arquitecturas x86 y con 1
a 32 threads en la arquitectura UltraSparc.

El numero de tamanos y secuencias usadas para la version large-grain son :

* Alineamos 2 secuencias de longitud 10.000 entre ellas.
* Alineamos 100 secuencias de longitud 200 entre ellas.

* Alineamos 400 secuencias de longitud 50 entre ellas.

El numero de tamanos y secuencias usadas para la version fine-grain son :

* Alineamos 2 secuencias de longitud 10.000 entre ellas.
Estos workload se escogen porque, como se vera mas adelante, representan casos significativos.

En la version fine-grain también variaremos el tamano de la altura de bloques de datos, para
poder encontrar cual es el tamafo que nos permite minimizar mas la comunicacion entre threads y
aumentar el calculo de datos en paralelo. Los tamarios elegidos son :

¢« Tamafo = 50 filas.
« Tamano = 100 filas.

« Tamano = 500 filas.
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5.4. Resultados

Los resultados del estudio se dividen en tres apartados:

En el primero se veran y discutiran los resultados de la paralelizacién large-grained.

En el segundo se veran y discutiran los resultados para la version fine-grained. Finalmente en el
ultimo apartado se compararan las dos versiones y se analizara cual es mejor dependiendo de la
situacién en que nos encontremos.

5.4.1. Resultados en las 3 arquitecturas de la paralelizacién large-
grained

En la figura 39 se muestran el speedup obtenido de ejecutar el programa sobre los 3 sistemas
usando 1 thread.
Speedup de los 3 sistemas

Tejec. version serie / Tejec. Large-grain 1 thread
1,2

0,8
a H N=50 S=400
3 06 B N=200 S=100
o [J N=10000 S=2
o
[7p]

0,4

0,2

Intel 64 bits (GCC) ~ UltraSparc T2 (CC) Intel 32 bits (ICC)

Sistemas

Figura 39: Tiempo de ejecucion de la version serie dividido por el tiempo de ejecucién de la version paralela large-grain usando 1 thread en cada uno de
los procesadores (Speedup)

El speedup obtenido al dividir el tiempo de ejecucion de la version serie entre el tiempo de
ejecucion de la version paralela large-grain con 1 thread nos muestra:

* La versiébn de 64 bits y UltraSPARC funcionan bien ya que alcanzamos un speedup
cercano al 1. Es decir, la variante con 1 thread tarda mas o menos lo mismo en ejecutarse
que la version serie.

* La version de 32 bits funciona mal en relacion a la version serie ya que tan sélo en el caso
de N=200 y S =100 su tiempo de ejecucién se acerca a la version serie.
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En la figura 40 se muestran el speedup obtenido de ejecutar el programa sobre los 3 sistemas
usando 2 threads.

Speedup de los 3 sistemas

Tejec. version serie / Tejec. Large-grain 2 threads

25
2

N 1,5 B N=50 S=400
E} B N=200 S=100
3 [J N=10000 S=2
Q1
%)

0,5

Intel 64 bits (GCC) UltraSparc T2 (CC)  Intel 32 bits (ICC)

Sistemas

Figura 40 Tiempo de ejecucién de la version serie dividido por el tiempo de ejecucion de la version paralela large-grain usando 2 threads en cada uno de
los procesadores (Speedup)

El procesador Intel de 64 bits dispone de dos nucleos. En cada uno de ellos es capaz de ejecutar
un thread. Cuando ejecutamos el algoritmo de grano grueso con dos threads y el Workload (N =
50, S=400) obtenemos un speedup de 1.82 y una eficiencia por thread del 85%. Mientras que
para el workload (N=200, S=100) obtenemos un speedup del 1.77 y una eficiencia por thread del
85%. Finalmente si ejecutamos el programa con el workload (N=10.000, S= 2) obtenemos un
speedup del 1.31 y una eficiencia por thread del 52%

Vemos que en el procesador Intel de 64 bits a medida que vamos aumentando el tamafio de la
secuencia vamos perdiendo eficiencia por thread. Por lo tanto, podemos decir que el
multithreading de granularidad gruesa en el procesador de 64 bits es bueno al trabajar con
secuencias no muy grandes ya que tenemos un speedup entorno al 1,8. En cambio a medida que
va aumentando el tamafio de las secuencias empeora la eficiencia por thread, seguramente
debido a que para tratar secuencias grandes los datos no caben en la memoria caché del
procesador, y hay que obtenerlos de la memoria principal. También es muy probable que haya
conflicto entre los threads / cores al acceder a la memoria principal por un canal compartido.

En el procesador UltraSPARC disponemos de un procesador con cuatro nucleos (cores). A
diferencia de los nodos anteriores, cada uno de estos cores puede ejecutar hasta 8 threads en
paralelo. Al ejecutar el algoritmo de grano grueso con dos threads obtenemos un speedup cercano
al 2 para los Workloads (N=50, S=400) y (N =200, S=100), mientras que para el Workload
(N=10.000, S=2) obtenemos un speedup del 1.86

Por lo tanto, podemos decir que el multithreading de granularidad gruesa en el procesador
UltraSparcT2 es bueno en todos los casos ya que al ejecutar el programa con 2 threads se ha
conseguido reducir casi al 50% el tiempo de ejecucion en los 3 casos. Por tanto, no se satura el
ancho de banda.
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El procesador Intel de 32 bits dispone de dos nucleos. En cada uno de ellos es capaz de ejecutar
un thread. Cuando ejecutamos el algoritmo de grano grueso con dos threads obtenemos y el
Workload (N = 50 y S=400) obtenemos un speedup de 0.96. Si ejecutamos el programa con el
Workload (N=200 y S=100) obtenemos un speedup de 1.22 y finalmente con el Workload
(N=10.000 y S= 2) obtenemos un speedup de 1.03 en relacion a la version serie

Si comparamos la version large-grain en el procesador de 32 bits al ejecutarla con 1 thread y con
2 threads, vemos que el tiempo de ejecuciéon se reduce aproximadamente un 30%. Pero todo y
haberse reducido el tiempo de ejecucion esta versién apenas funciona ligeramente mejor que la
version serie con excepcion del workload (N=50 S=400) que sigue funcionando peor que la
version serie.

Por lo tanto, podemos concluir que el multithreading de granularidad gruesa en el procesador de
32 bits NO es ventajoso ya que al aumentar el numero de threads el tiempo de ejecucién de esta
variante sigue siendo superior a la version serie.

A continuacion compararemos el tiempo de ejecucion en forma de ns. / Complejidad cuando
ejecutamos la aplicacion large-grain variando el numero de threads desde 1 hasta 32 (Figura 41).
Esto nos servira para determinar cual es el numero de threads idoneo para nuestro programa en
la maquina UltraSPARC.

Con el Workload (N=10.000, S = 2) tan solo podemos ejecutar la aplicacion con 4 threads ya que
con 2 secuencias solo son posibles 4 alineamientos. Si probamos de ejecutar la aplicacion
aumentando el numero de secuencias de manera que cada thread pueda realizar un alineamiento
nos encontramos con un problema de memoria, ya que se supera el tamano de memoria
disponible debido a que tenemos una matriz de 10.000 x 10.000 x 4 bytes por cada thread.

Por lo tanto en los apartados correspondientes a 8,16 y 32 threads tan sé6lo se ha medido el
tiempo de los Workloads (N=50, S=400) y (N=200,S=100)
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Figura 41: Tiempo de ejecucion divididos por complejidad, para la ejecucion del algoritmo paralelo large-grain en el procesador SPARC variando el
numero de threads

Al aumentar el numero de threads con el que ejecutamos la aplicacion paralela se va perdiendo
eficiencia por thread.
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En el procesador UltraSparc con el Workload (N=50, S = 400) al ejecutar el algoritmo con 2,4y 8
threads obtenemos una eficiencia por thread cercana al 100%, al ejecutar con 16 threads la

eficiencia por thread es del 51% y finalmente al ejecutar con 32 threads la eficiencia por thread es
del 25%.

Al ejecutar el Workload (N=200, S=100), al igual que en el caso anterior obtenemos una eficiencia
por thread cercana al 100% cuando ejecutamos la aplicacion con 2, 4 y 8 threads,al ejecutar con
16 threads la eficiencia por thread baja hasta el 50% y finalmente al ejecutar con 32 threads la
eficiencia por thread es del 20%.

Con el Workload (N=10.000, S = 2) tan s6lo podemos ejecutar la aplicacion con 2 y 4 threads, ya
que como hemos comentado antes si aumentamos el numero de threads superamos el maximo
de memoria del sistema. El ejecutar este Workload con 2 y 4 threads obtenemos una eficiencia
por thread del 100%:

A continuacion compararemos el rendimiento obtenido al ejecutar el algoritmo large-grain en los
distintos procesadores que estamos analizando. En la figura 42, se muestra una grafica resumen
de los tiempos de ejecucion divididos por complejidad, para la ejecucién del algoritmo de grano-
fino, en los tres sistemas analizados (utilizando el maximo numero de threads posible por
procesador). En la figura 43 se muestra una grafica resumen del Speedup.
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Figura 42: Tiempo de ejecucion divididos por complejidad, para la ejecucién del algoritmo paralelo large-grain en los 3 procesadores con el maximo
numero de threads

Como podemos apreciar en la grafica con el procesador Intel de 64 bits es con el que obtenemos
el mejor rendimiento en los 3 Workloads. EI procesador UltraSPARC también nos da un
rendimiento bueno con 32 threads acercandose bastante al tiempo del Intel de 64 bits.

Hay que tener en cuenta que con el workload (N=10.000 S=2) no podemos utilizar todo el
potencial de la maquina UltraSPARC, ya que so6lo podemos utilizar 4 threads debido a que como
hemos visto anteriormente si usamos mas threads se supera el tamafio de la memoria disponible.
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Este problema se resolvera con la versién Fine-grained que veremos a continuacion.

Speedup
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Figura 43: Tiempo de ejecucion de la version serie dividido por el tiempo de ejecucion de la version paralela large-grain usando el maximo nimero de
threads en cada procesador.

El procesador que obtiene un mayor speedup al ejecutar el programa con el niumero maximo de
threads per core es el UltraSPARC, el cual obtiene un speedup de 11 al ejecutarla con 32 threads
frente al 1.8 del Intel de 64 bits y 1.22 del Intel de 32 bits. La razén de que la UltraSPARC obtenga
un speedup tan elevado es debido a que el rendimiento de éste con 1 thread es muy malo.

5.4.2. Resultados en las 3 arquitecturas de la paralelizacién fine-grained

En esta variante del algoritmo paralelo se ha definido un parametro extra T, el cual nos permitira
definir la altura de los bloques, en este apartado se ha ido variando el tamafio de la altura de
blogues de datos, para poder encontrar cual es el tamafio que nos da un mejor resultado.

El hecho de aumentar la T nos permite disminuir el nUmero de sincronizaciones que realizamos
para calcular la matriz de puntuaciones pero aumenta el desbalanceo de computo, ya que cédmo
hemos visto en el ejemplo cuanto mas aumenta el valor de la T mas disminuye el niumero de
iteraciones en las que usamos el numero maximo de threads .

El hecho de disminuir la T, es el caso opuesto, nos permite disminuir el desbalanceo de cémputo
pero por contra aumenta el numero de veces que los threads tienen que sincronizarse ya que
aumenta el numero de iteraciones que tiene que realizar el algoritmo para calcular la matriz de
puntuaciones.
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En la figura 44 se muestran el Speedup obtenido de ejecutar el programa con el Workload
(N=10.000 y S=2) sobre los 3 procesadores usando 1 thread:

Speedup de los 3 sistemas
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Figura 44: Tiempo de ejecucion de la version serie dividido por el tiempo de ejecucién de la version paralela fine-grain usando 1 thread en cada uno de los
procesadores (Speedup)

Los resultados obtenidos son parecido a la version large-grained, la version de 64 bits y
UltraSPARC funcionan bien ya que alcanzamos un speedup cercano al 1, mientras que la version
de 32 bits funciona mal en relacion a la version serie ya que se tarda mas tiempo en ejecutarse.

En la figura 45 se muestran el Speedup obtenido de ejecutar el programa con el Workload
(N=10.000 y S=2) sobre los 3 procesadores usando 2 threads :

Speedup de los 3 sistemas
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Figura 45: Tiempo de ejecucion de la versién serie dividido por el tiempo de ejecucion de la version paralela fine-grain usando 2 threads en cada uno de
los procesadores (Speedup)
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Como podemos apreciar en las graficas del speedup, el mejor valor de T depende del procesador
con el que realicemos las mediciones. En el Intel de 32 y 64 bits el mejor speedup lo obtenemos
con T = 500 mientras que en la UltraSPARC con T = 50.

En el procesador Intel 64 bits disponemos de un procesador con dos nucleos (cores). Cada uno
de estos cores es capaz de ejecutar un thread. Al ejecutar el algoritmo paralelo con dos threads y
el Workload (N = 10.000, S=2, T=50 ) obtenemos un speedup de 1.33 y una eficiencia por thread
del 51%. Si ejecutamos el programa con el Workload (N = 10.000, S=2, T=100 ) obtenemos un
speedup de 1.35 en relacion a la versién serie y una eficiencia por thread del 53%. Finalmente con
el Workload (N = 10.000, S=2, T=500 ) obtenemos un speedup de 1.38 y una eficiencia por thread
del 57%

En la figura 44 se puede apreciar como con el workload (N=10.000 S=2 T=500) el speedup
obtenido es 1.38, éste ya es superior a su homdlogo de la version de grano grueso que era de
1.31. Si se hicieran pruebas alineando pocas secuencias de tamafo cada vez mayor, se podria
apreciar como cada vez seria mas significativa la mejoria de la version de grano fino por contra de
la version de grano grueso.

En el procesador UltraSPARC T2 cuando ejecutamos con 2 threads obtenemos que para (N =
10.000, S=2, T=50 ), (N = 10.000, S=2, T=100 ) y (N = 10.000, S=2, T=500 ) el tiempo de
ejecucion se reduce a la mitad. Obtenemos un speedup cercano al 1.8 en todos los casos. La
eficiencia por thread es del 90%.

En el procesador Intel 32 bits, disponemos de un procesador con dos nucleos (cores). Cada uno
de estos cores es capaz de ejecutar un thread. Al ejecutar el algoritmo paralelo de grano fino con
dos threads y los Workloads (N = 10.000, S=2, T=50 )y (N = 10.000, S=2, T=500 ) obtenemos un
speedup de 1.40 y una eficiencia por thread del 73%. Mientras que con el workload (N = 10.000,
S=2, T=100 ) se obtiene un speedup de 1.37 y una eficiencia por thread del 71%

A continuacién compararemos el tiempo de ejecucion en forma de ns. / Complejidad cuando
ejecutamos la aplicacion large-grain variando el numero de threads desde 1 hasta 32 (Figura 46).
Esto nos servira para determinar cual es el numero de threads idéneo para nuestro programa en
la maquina UltraSPARC. El Workload elegido para realizar la prueba es (N = 10.000, S=2, T=50 ),
que como hemos podido comprobar es con el que conseguimos el mejor Speedup en el
procesador UltraSparc T2.
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UltraSparc T2 Workload: N=10.000 S=2 T=50
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Figura 46: Tiempo de ejecucion divididos por complejidad, para la ejecucion del algoritmo paralelo fine-grain en el procesador SPARC variando el numero
de threads

Al aumentar el numero de threads con el que ejecutamos la aplicacion paralela se va perdiendo
eficiencia por thread. Con 2 threads obtenemos una eficiencia por thread del 85%. Al ejecutar la
aplicacion con 4 threads la eficiencia por thread es del 72%. Con 8 threads la eficiencia por thread
se reduce hasta el 50%. Con 16 threads tenemos una eficiencia por thread del 44% vy finalmente
con 32 threads la eficiencia por thread es del 39%.

En concreto, con hasta cuatro threads, se ejecuta un thread por core. Al ir afiadiendo threads por
core, se va perdiendo cada vez mas eficiencia.

A continuacion comparemos el rendimiento obtenido al ejecutar el algoritmo paralelo en los
distintos procesadores que estamos analizando. En la figura 47, se muestra una grafica resumen
de los tiempos de ejecucion divididos por complejidad, para la ejecucién del algoritmo de grano-
fino, en los tres sistemas analizados (utilizando el maximo numero de threads posible por
procesador). En la figura 48 se muestra una gréafica resumen del Speedup.

El Workload utilizado para estas graficas es (N = 10.000 S=2) con la mejor T en para cada uno de
los casos. Es decir en el Intel de 32 y 64 bits T = 500 mientras que en la UltraSPARC T = 50

57



Comparacion mejor version fine-grain
Workload: N=10.000 S = 2

4,5

4
3,5
2,5
1,5
0,5

0

Intel 64 bits (GCC) 2 Thr UitraSparc (CC) 32 Thr Intel 32 bits (ICC) 2 Thr

w

ns./Complejidad
N

N

Procesador/Num. Threads

Figura 47: Tiempo de ejecucion divididos por complejidad, para la ejecucion del algoritmo paralelo fine-grain en los 3 procesadores con el maximo
numero de threads
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Figura 48: Tiempo de ejecucién de la version serie dividido por el tiempo de ejecucion de la version paralela fine-grain usando el maximo nimero de
threads en cada procesador.

Como podemos apreciar en la primera grafica con el procesador Intel de 64 bits es con el que
obtenemos el mejor rendimiento con un speedup de 1.3 frente al procesador Intel de 32 bits y un
speedup de 1.4 frente al UltraSPARC.

Por contra, el procesador que obtiene un mayor speedup al ejecutarla con el nUmero maximo de
threads per core es el UltraSPARC, el cual obtiene un speedup de 5.8 al ejecutarla con 32 threads
frente al 1.3 del Intel de 64 bits y 1.4 del Intel de 32 bits. Como se ha comentado en el apartado
anterior la razén de que el UltraSPARC obtenga un speedup tan elevado en comparacion al resto
de sistemas es debido a que el rendimiento de éste con 1 thread es muy malo.
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5.4.3. Conclusiones de la paralelizacion large-grained y fine-grained

En la figura 49 y figura 50, se muestran 2 graficas resumen de los tiempos de ejecucion divididos
por complejidad, para la ejecucién del algoritmo de grano grueso y el de grano-fino, en los tres
sistemas analizados.

Para la versién de grano grueso se ejecuta el programa con el numero de threads que mejores
resultados nos ha dado en las pruebas para cada uno de los procesadores, mientras que para la
version de grano fino se ejecuta el programa con el mejor niumero de threads y con el mejor valor
de T para cada uno de los procesadores.

Con el Workload (N=1.000, S=20) los valores de T usados son para el sistema x86-64 y x86-32
T=100 y para la UltraSparc T=50.

Comparacion version large-grain y fine-grain
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Figura 50: Tiempo de ejecucion divididos por complejidad, para la ejecucién de las 2 variantes paralelas en los 3 procesadores con el maximo nimero de
threads para ambas variantes y el mejor valor de T para cada procesador en la variante fine-grain.

Con el Workload (N=10.000, S=2) los valores de T usados son para el sistema x86-64 y x86-32
T=500 y para la UltraSparc T=50.

En este Workload tan solo podemos ejecutar la aplicacién con 4 threads ya que con 2 secuencias
s6lo son posibles 4 alineamientos. Si probamos de ejecutar la aplicacién aumentando el nimero
de secuencias de manera que cada thread pueda realizar un alineamiento nos encontramos con
un problema de memoria, ya que se supera el tamafio de memoria disponible. Por lo tanto
podemos concluir que con secuencias muy grandes la version large-grain no es viable debido al
espacio en memoria que ocupara cada una de las matrices con las que trabaja cada uno de los
threads ( 400 MB. aproximadamente cada matriz)
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Comparacion version large-grain y fine-grain
Workload : N=10.000 S=2
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Figura 50: Tiempo de ejecucion divididos por complejidad, para la ejecucion de las 2 variantes paralelas en los 3 procesadores con el maximo nimero de

threads para ambas variantes y el mejor valor de T para cada procesador en la variante fine-grain.

Se han extraido una serie de conclusiones a raiz de los resultados mostrados :

Si comparamos las 2 variantes paralelas nos encontramos con que si tenemos pocas
secuencias y de tamafo grande la variante de granularidad fina es la que funciona mejor.
Por contra, si tenemos muchas secuencias y de tamafo pequefo la variante de
granularidad gruesa es la que va mejor.

En el procesador Intel de 64 bits el multithreading en ambas variantes resulta beneficioso.
Aunque el rendimiento se degrada al aumentar el tamano de las secuencias. Seguramente
debido a que para tratar secuencias grandes los datos no caben en la memoria caché del
procesador, y hay que obtenerlos de la memoria principal. El hecho de utilizar un método
de descomposicién como el WaveFront también nos dificulta la tarea de la paralelizacion
ya que al tener que ir calculando cada momento la diagonal hemos de esperar a que todos
los threads acaben de calcular su parte para poder pasar a calcular los siguientes
elementos (desbalanceo de carga).

Si ejecutamos la version de granularidad gruesa y la versién de granularidad fina con 1
thread sobre el procesador UltraSparc T2 los tiempos por iteraciéon son muy altos. Los
motivos principales son el alto tiempo de acceso a Memoria Principal y cache L2, el cual no
puede compensarse con la ejecucion de instrucciones del thread, porque la planificacion
de instrucciones es en orden.

El multi-threading en ambas variantes es muy positivo porque resuelve los anteriores
problemas. Los tiempos de espera se pueden solapar con la ejecucion de instrucciones de
otros threads. Por este motivo a medida que dispone de mas threads para ejecutar, el
tiempo disminuye.

En el procesador Intel de 32 bits la variante de granularidad gruesa no resulta beneficioso
ya que los tiempos obtenidos son bastante peores que la version en serie.

Mientras que la variante de granularidad fina el multi-threading es positivo ya que
obtenemos un speedup de 1.4 en comparacion a la version serie.
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6. Conclusiones y lineas abiertas

El objetivo principal de este trabajo consiste en realizar un proceso de analisis y optimizacion de
un problema. En nuestro caso se trataba de implementar eficientemente un algoritmo para ser
ejecutado en procesadores multicore. El primer paso consiste en la implementacion del problema
en un lenguaje de programacion. Seguidamente se planifican y ejecutan los experimentos en
procesadores de caracteristicas diferentes. Finalmente se interpretan los resultados obtenidos
para poder extraer conclusiones que permitan optimizar el rendimiento del algoritmo en cada
procesador.

Este proceso de andlisis, implementacion, ejecucion, interpretacion de resultados y posterior
optimizacion hemos visto que resulta mas complicado de lo que parece. Esto es debido a que
para poder llevar a cabo la optimizacidn se requiere un conocimiento muy a fondo tanto del
comportamiento del procesador como del programa. Este conocimiento se va refinando a base de
pruebas y medidas, esto es debido a que no podemos ver los problemas internos que provocan la
bajada del rendimiento, tan sélo podemos hacer pruebas para obtener datos de forma indirecta, ya
sea en forma de tiempo, numero de fallos de caché o numero de fallos de prediccion.

Hemos visto que el proceso de optimizacién de un problema puede resultar complejo debido a que
al mejorar un aspecto de nuestro programa podemos estar empeorando otro. Un ejemplo claro es
la relacion entre sincronizacion y balanceo de computo que encontramos en la variante de grano
fino, en la cual el hecho de mejorar la sincronizacion hace que empeore el balanceo de cémputo y
a la inversa.

A nivel del trabajo, hemos visto que la paralelizacion del algoritmo en threads ha sido efectiva en
casi todos los experimentos realizados. La Unica excepcion ha sido el procesador Intel 32 bits en
la variante de grano grueso que apenas ha llegado a funcionar mejor que la version serie. Las 2
variantes que hemos analizado poseen ventajas e inconvenientes que hacen que nos decantemos
por una o por otra dependiendo del tipo y nUmero de secuencias con las que queramos trabajar.
Para alinear varias secuencias entre ellas la variante Large-Grained va mejor en cuanto a tiempo
de ejecucion , en cambio si queremos alinear pocas secuencias y muy grandes la variante Fine-
Grained es mas rapida.

En cuanto a los procesadores analizados podemos concretar que el procesador Intel de 64 bits
ofrece el mejor rendimiento tanto en la versién serie, como en las 2 variantes paralelas. El
procesador Intel de 32 bits obtiene un rendimiento 2 veces menor que su homélogo de 64 bits. En
cambio el procesador UltraSPARC obtiene un rendimiento 6 y 4 veces menor que utilizando los
procesadores Intel de 64 y 32 bits correspondientemente (ejecutando con un thread). En el
UltraSPARC T2, es necesario ejecutar las variantes paralelas con 32 threads, para que el
rendimiento se aproxime al obtenido en el resto de procesadores (ejecutando en éstos 2 threads).
Lo que nos lleva a afirmar que en el UltraSPARC se requiere un esfuerzo especial para obtener
(ejecutando una aplicacion), un rendimiento cercano al obtenido en los procesadores Intel Dual
Core.
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6.1. Lineas futuras de investigacion

A continuacién se presentan lineas futuras de investigacion que por falta de tiempo no se han
podido investigar con mas detalle.

* Investigar con mas profundidad el uso de los recursos de célculo para descubrir cual es el
cuello de botella del rendimiento.

* Andlisis de rendimiento la aplicacién ejecutada en un procesador con una arquitectura
diferente, como pudiera ser AMD

» Estudio en mas profundidad de los fallos en caché para poder analizar posibles problemas
de rendimiento.

* Explorar la viabilidad de usar instrucciones SSE para realizar la paralelizacion en los

procesadores Intel minimizando lo mas posible la dependencia de datos de la matriz de
puntuaciones.

* Uso de la aplicacion VTUNE para realizar un analisis del rendimiento del programa.
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RESUMEN

Este trabajo analiza el rendimiento del algoritmo de alineamiento de secuencias conocido como
Needleman-Wunsch, sobre 3 sistemas de computo multiprocesador diferentes. Se analiza y se
codifica el algoritmo serie usando el lenguaje de programacion C y se plantean una serie de
optimizaciones con la finalidad de minimizar el volumen y el tiempo de computo. Posteriormente,
se realiza un analisis de las prestaciones del programa sobre los diferentes sistemas de cémputo.
En la segunda parte del trabajo, se paraleliza el algoritmo serie y se codifica ayudandonos de
OpenMP. El resultado son dos variantes del programa que difieren en la relacion entre la cantidad
de computo y la de comunicacion.
En la primera variante, la comunicacién entre procesadores es poco frecuente y se realiza tras
largos periodos de ejecucién (granularidad gruesa). En cambio, en la segunda variante las tareas
individuales son relativamente pequefias en término de tiempo de ejecucién y la comunicacién
entre los procesadores es frecuente (granularidad fina).
Ambas variantes se ejecutan y analizan en arquitecturas multicore que explotan el paralelismo a
nivel de thread. Los resultados obtenidos muestran la importancia de entender y saber analizar el
efecto del multicore y multithreading en el rendimiento.

* Palabras clave: Multicore, multithread, rendimiento, OpenMP, alineamiento, ADN.

RESUM

Aquest treball analitza el rendiment de l'algoritme d'alineament de seqiéncies conegut com a
Needleman-Wunsch sobre 3 sistemes de comput multiprocessador diferents. S'analitza i es
codifica l'algoritme série emprant el llenguatge de programacié C i es plantegen una serie
d'optimitzacions amb la finalitat de minimitzar el volum i el temps de comput. Posteriorment es
realitza un analisis de les prestacions del programa sobre els diferents sistemes de comput. En la
segona part del treball, es paral-lelitza I'algoritme série i es codifica ajudant-nos de OpenMP. El
resultat son dues variants del programa que difereixen en la relacié entre la quantitat de comput i
la de comunicacio.

En la primera variant, la comunicacié entre processadors es poc habitual i es realitza després de
llargs periodes d'execucié ( granularitat gruixuda). En canvi, en la segona variant les tasques
individuals s'executen relativament rapides i la comunicacié entre els processadors es frequent
(granularitat fina).

Ambdues variants s'executen i s'analitzen en arquitectures multicore que exploten el paral-lelisme
a nivell de thread. Els resultats obtinguts ens mostren la importancia d'entendre i saber analitzar
I'efecte del multicore i el multithreading en el rendiment.

* Paraules clau: Multicore, multithread, rendiment, OpenMP, alineament, ADN.

ABSTRACT

This research analyzes the performance of three multiprocessor computing nodes solving the
sequence alignment algorithm known as Needleman-Wunsh. First of all, the algorithm is analyzed
and coded using the C language. We raise a series of optimizations with a common goal :
minimize memory requirements and reduce computation time. Right afterwards we analyze the
program’s performance over the three computation nodes. In the second part of the research the
sequential algorithm is parallelized using OpenMP. Two program variations are designed, these
two variations differs between them in the amount of computation and the comunication.
On the first variation the comunication between processors is rarely common and only occurs after
long time periods . On the second variation the tasks are processed rapidly and the
communication between processors is common.
Both variations have been implemented and executed in multicore architectures that exploits
thread-level parallelism. The result shows the importance of understanding and knowing how to
analyze the effect of multicore and multithreading performance.

+ Keywords: Multicore, multithread, performance, OpenMP, alignment, DNA.
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