Universitat
Autonoma
de Barcelona

A

etse)

GAMEPLAY MORPHING

Memoria del Projecte Fi de Carrera
d'E’ gi' yeriae' I formatica
realitzat per

Roger Pla’ es Camprodo’

1 dirigit per

E’ ric Marti Godia

Bellaterra, 2 de Febrer de 2010

To Andrew, for your help, patience, support, and all
those long hours hearing all my crazy ideas.

To everybody who helped me by taking the test,

thank you all, this project would be nothing without
your help.

ii

il

iv

INDEX

1. INTRODUCTION

1.1 State of art

1.1.1 Dynamic difficulty adjustment

1.1.2 Settable difficulty levels on games

1.2 The GamePlay morphing project

2.SYSTEM REQUERIMENTS

2.1 Gamershape
2.1.1 Extension of the profile
2.2 GamePlay morphing
2.2.1 Single Player
2.2.2 Multiplayer
2.3 H/W and developing environment
2.3.1 Nintendo DS hardware
2.3.2 Developing environment
a) DevkitPRO
b) Libnds & other libraries

3. IMPLEMENTATION
3.1 Evaluating skills

3.1.1 Precision
3.1.2 Timing
3.1.3 Controller
a) Button tapping
b) Combo making
3.1.4 Strategy and puzzle solving
a) Memory Test
b) The Door

N o wow

11
14
15
15
17
18
19
22
22
23

25
25
25
26
27
27
28
28
29
29

c) Hidden Numbers
3.1.5 Dedication
3.2 Obtaining the player handicap
3.3 Developing Process
3.3.1 Setting up the environment
3.3.2 Developing the skills’ test

a) Button tapping function

b) The Door & hidden humbers functions

c) The response time function
d) The shooting targets function
e) The combo making function
f) The memory test function
3.4 Approach to real systems
3.4.1 Making it a standard
3.4.2 Single game gameplay adjusting

4.RESULTS

4.1 The test
4.2 Expected results
4.3 Skills’ test results

5. CONCLUSIONS & IMPROVEMENTS

APPENDIX A

APPENDIX B

BIBLIOGRAPHY & REFERENCES

vi

29
30
30
33
33
34
35
36
37
38
40
42
44
44
45

47
47
51

51

59

61

63

69

1. INTRODUCTION

The idea of creating this project comes from the concern as a gamer about the expansion of
the videogame industry experienced in the last 5 years. This industry has been in constant
growth since it's beginning being able to introduce new customers to every generation,

appealing to different targets.

The first videogame was created in 1958, by Wiliam Higinbotham, using an oscilloscope and
one analog computer. This game was called Tennis for two (Figure 1), showing a simplified

tennis court from the side and a gravity-controlled ball.

Figure 1 : Tennis for two

After this first videogame, games started to be created using arcade machines, which were then
placed in bars and malls. This hardware could not be made personal yet because of the
hardware’s high price. When in 1980 the first gaming computers appeared, people were able to
play the games they had been playing in the arcade machines for the last decade from home.
With the introduction of Commodore 64 and Amstrad systems we can declare the start of the
videogaming industry as we know it now. When the first videogame consoles appeared in
1984, the industry was able to appeal to more consumers as now, as people played

videogames on their tv’s.

Up until the year 2000 videogames have been seen mostly as an entertainment for children
and nerds, but the expansion of the industry lately towards casual gamers has change the view

of videogames in our society.

The first step on this expansion can be related to Sony and it's system, Playstation2 (Figure
2a), when it was launched in 2000. Combining a hardcore software developed by both first
and third party studios, Sony established some new franchises directed to the casual gamers,
like Buzz, Singstar or Eyetoy ... These franchises and others to come were named as social
games based on its appeal of being used by groups of people instead of the one or two player
games we had known before. These two different software lines helped Sony to distribute an
astonishing 120 million consoles breaking the mass market. With the low pricing of computer
games and the appeal of the entertainment factor of video games, this made people interested

in having a console in their living rooms.

Figure 2a : Playstation 2 Figure 2b : Nintendo DS

Nintendo took the idea of party games and introduced a new way of how to play games, thus
trying to appeal to the market Sony had created. With the introduction of the Nintendo DS
(Figure 2b) system in 2004, and later the Wii system in 2006’s holiday season, the two
machines were created with the same goal of an easy user interface that wouldn't scare people

who were not used to 8 buttoned controllers.

With the handheld system (Nintendo DS), they had implemented for the first time a touch
screen in a videogame system which was also accompanied with the microphone, a dual screen
system and the buttons that has been used since 20 years ago. The public’s reception to the

new system was good but it wasnt until Nintendo did a revision of the system and an

2

introduction of the “Brain Training” franchise, that sky-rocketed both hardware and software

sales to numbers never seen before.

Under the ‘protection’ of the “Touch”™ Generations, brand new software was created with the
goal to appeal to a market that was never interested in videogames before. (women and senior

market)

The introduction of the Wi during E3 2006 (Electronic Entertainment Expo) unveiled the next
step of Nintendo, motion system controllers that would make it easier to play anyone, even if
they had never played games before. The launch of the Wii system was a success worldwide,
Nintendo was seling all it’s produced consoles. Due to a stock shortage in the first year of
release in all the markets (Countries), they had to increase the production count more than

once from 1.2 milion to a 1.8 million Wii units produced per month.

The introduction of the motion system controller lead to a new line of games such as Wii sports,
Wi fit and Wii music. These games were created to appeal to the widest audience possible,
along with the classic company’s franchises such as, the well known “Mario”, “The Legend of

Zelda”, Metroid etc.

As Nintendo’s software was getting closer to the casual gamers or new gamers, hardcore
gamers have been continuously disappointed with the proposals of the company for them as
they found the games “too easy to complete” as the games created for the Nintendo system
were made to appeal to the widest audience. The industry finds itself with a really fragmented

market and most companies release their products to a specific group of players.

1.1 state of art

This section will give a brief description of each step that will need to be followed in order to
perform this project. The last section explained the motivation and main goal of this project, so
the first thing that will be needed to do in this section wil be a research into the state of art of

dynamic difficulty adjusting and settable difficulty levels.

1.1.1 dynamic difficulty adjustment

Even if the mainstream games released nowadays still follow the same pattern than the games

released fifteen years ago, the discussion about difficulty in games being a dynamic feature has

been talked about in the industry for almost a decade. In 2004 Hunicke and Chapman (Robin
3

Hunicke 2004) proposed a “probabilistic technique that dynamically evaluates the difficulty of
given obstacles based en user performance, as the game is running”. The term “developed” in
Hunicke’'s paper is ‘Dynamic Difficulty Adjustment (DDA)" and is performed by the Hamlet

system, a set of libraries embedded in the Half Life! game engine.

Defining events into the gameplay and evaluating different game statistics lead the Hamlet
system along with the probabilistic formulas to perform a dynamic balancing in terms of the
difficulty applied in the game. Depending on a rate of hit/missed shots, lives that were lost or
time used in performing a task, the system would recalculate the enemies accuracy and life, and

increase players ammunition to balance the difficulty in the game.

This last term leads us to the benefits on balancing games studied in the past. Ernest Adam
(Adam 2002) worked on getting positive feedback from balanced games bringing some clues
on how to get an ideal game progression that would keep players interested but challenged at
the same time. As Figure 3 shows us, the ideal game is the one that starts off balanced but
slowly gets unbalanced over time until one player wins, using A and B as the two players that

play this game.

55

i

Figure 3 : Ideal Game Progression

The player cannot find the game really easy, leading to a probability of boring the player
avoiding a further experience, or cause the player’s frustation when the game doesn't give a
chance on being beaten. The consumer will most likely spend their time playing a game that

offers a challenge but at the same time can be beaten with some effort.

1 Half Live , 1998 Valve Software

We are going to include player skills at this point of the discussion. The skills needed to complete
a game will be increased the more time we spend on the game, making the game easier the
better the user gets playing at it. If we want to provide an approximation to the ideal game
progression seen before, it is at that point where the balancing has to be performed, reverting
the impression of the player that the lead of the game is on the player's side. Raising the
difficulty parameters or changing the gameplay at that point, it wil become a challenge to the
player, who will then need to play better or increase their skills in order access new areas in the

game creating a balanced experience that the player will most likely enjoy.

As Figure 4 shows, we have to find a balance between the player’s skills and the difficulty of the

game, creating a game that is never too easy or too difficult.

A
o High
o Too Difficult » Skill
[}]
©
5 Flow
> Channel
w
o Low
E Skill << Too Easy

Increasing Skill

Figure 4 : Game Balance

The Hamlet system and the other approaches seen in this section are biased towards single
game DDA (Dynamic Difficulty Adjusting), using the same game data to balance the game’s
difficulty. This piece of work is biased towards finding a system to create a standard that will
allow developers to adjust difficulty levels and gameplay morphing based in the skills of each

player.
1.1.2 settable difficulty levels on games

As stated at the beginning of this section, since the start of the industry, the difficulty levels have
been taken from the same point view, a set of options to choose from to make the game
harder for an expert in whichever genre, or easy for newcomers, known as settable difficulty

levels (Figure 5).

When a new game starts, the player chooses which level rather played at, setting the

parameters of the gameplay to a specified value.
5

Nearly all difficulty levels nowadays follow the same pattern, they base themselves on the
artificial intelligence of the created sofware and number of elements on screen at once. When a
gamer picks a game to play they are offered a range of levels normally between 3 and 5, so
they can choose which level is more appropiate to their skills. These levels use the Al of the
characters controlled by the CPU as a measure for the difficulty level. As higher the level is
chosen, the better Al we wil have to front, this system is used in shooters, racing games ,

fighting games etc..

very easy

easy

medium
DIFFICULTY LEVEL

hard

very hard

Figure 5 :Standard Difficulty levels

These are not the only approaches to balancing games in the past. Lately Nintendo presented a
feature, which approaches the problem from another perspective, that tries to help the user
when the game is too hard for them. In June 15th, 2009, the newspaper USA Today
(Saltzman 2009) revealed some news on a project Nintendo had been working on that will
help gamers in the walkthrough of the game. As it has been reported, if the player finds it hard
to overcome a certain point in the game, the game can automatically take over and show the
players how it's done, returning the control when any button is pressed. This new feature is
avalaible with New Super Mario Bross Wii © and is expected to appear in future games. This
demo mode shows the interest of the industry helping players through the gameplay, in any
case it doesn't follow this work’s direction, based on adjusting difficulty instead of showing the

player how it's done.

With this approach the company is helping the users that cannot keep up with the game, but is

exchanging the frustation on not being able to beat the game for the frustation of being told

what to do, not allowing the satisfaction accomplished of going through without help. This

system resolves one of the problems stated in section 1.1, the increasingly unease of core
6

gamers against the low difficulty in Nintendo’s software. A system is yet to be found that will

satisfy all users, from casual to hardcore gamers. This is one of the goals of this approach.

There is also disagreement on DDA being a good feature in videogames, as some experts
defend the idea of the settable difficulty levels. Ernest Adam dedicates one of his articles
discussing DDA (Adam 2008), giving some developping advice on how to integrate DDA into
real games. The first fact recommends to increase game difficulty instead of weakening the
player taking something the player has already achieved from their arbitrary. It is also

recommended to keep DDA optional and to hide it's details avoiding player cheats.

This advice does not need to be followed as they are not mandatory, but all of them have a
point on creating a transparent system where the player doesn't feel cheated by the game, and

in any case, always make the game harder before we downsize player abilities in the game.

As seen in this section, it's clear that the difficulty levels are a concern to the industry in order to
appeal to the maximum amount of people. Having seen different aproaches to the same

problem, we will present a new approach in this project.

1.2 the GamePlay Morphing project

According to this, the starting point of our project (GamePlay Morphing, GPM) is to find a way
to release videogames that will themselves adapt to the skills of each player giving a challenging
experience to all kind of players. The first topic we will need to discuss is how these skills can
represented and how we can capture them in an understandable way. After we represent a
gamer’s skills, we will need a method to obtain the level of these skills and compare them with

other players to be able to normalize these abilities.

It's important to remark that these capabilities won't be based only on psychological aptitudes of
the player. This project’'s goal is more interested in the skills a person needs to actually play
these games i.e: From the puzzle solving used in most adventure genres nowadays, skills with
the buttons as response time of the player or the capability of pressing a sequence of buttons
to produce an action in the game amongst other skills that will be discussed in the corresponding
session. Some other abstract skills will have to be taken into account too, having to differ
between a gamer that finds having some difficulty a challenge and the player that loses interest

in playing as soon as they don't know what to do or where to go.

GamePlay morphing is a new approach to the difficulty levels based in different parameters as
the ones discussed before. The goal of GPM is to introduce a satisfactory experience to every

kind of person that can play a game.

Imagine an adventure game that combines both puzzles, fights and explorations in its gameplay.
By the standards of the industry, the player is given a choice to select a difficulty level at the
start of the game (easy, normal, hard levels). Based on the level chosen, the player will have to
solve from easier to harder puzzles, if the programmers have implemented this, the different
enemies will take more or less life everytime they attack or we will have to defeat more or less
enemies depending on the level chosen. To summarise, all the parameters will only rise as the

level goes upward. (easy to hard)

This project’s goal is to find a method where all these parameters can be raised or lowered
separately based on the player’s level. If the player is good at solving puzzles but finds battling
hard or is not interested, we can give a better experience if we increase the level of the puzzles
and decrease the number of enemies to defeat. All of these parameters can be re-calculated at

some checkpoints of the game to keep adapting the player’s skills.

Another example of this adaptation to every player skil can be represented by the fighting
genre. Most of the games released in the last 5 years use the same formula, e.g the player has
to press a certain combination of buttons as quick as possible to do a move in the game. This
formula is good for hardcore gamers but it turns away casual gamers that dont want to learn
all the moves and want to just to play occasionally. We could adapt the number of buttons
needed to do a certain move based on how often the player plays or even based on the results
of the player fighting against the CPU, only concentrating on the skills a player has by pressing a

combination of buttons.

These exposed ideas does not mean extra resources or a longer development time, nor does it
mean changing the way we create games, we just need to add an easier level in the user

interface originally created and switch to it if it's needed.

An application to obtain the player’s different skills and evaluate them after will be implemented.
One of the main factors will be how many people use this application to be able to have a good

range of results to normalize all the data and extract the conclusions of this project.

The project will be divided into five chapters, this being the first chapter. Chapter 2 will be
dedicated to define the requirements needed to perform this project. First, we wil enumerate

skills needed to play videogames and to find a way to represent these skills.
8

Once we clarify which are the skills to be tested, we will discuss the details in full about how
these skills can be used for Gameplay Morphing, giving examples of how existing genres could
take advantatge of GPM. The rest of the chapter wil be focused on choosing a console to
develop the test for and an overview to this console’s hardware and the developing environment

that will be used to implement the test.

Chapter 3 will discuss the proper implementation process followed to develop the ability test.
First we will need to define all the different skill's challenges that will be used in the skill's test.
Once we have specified how the test will be performed, we will clarify how to obtain the skill's
level of each user, including all the formulas used to calculate each value. The majority of the
chapter wil be devoted to the implementation of the test for the chosen platform, explaining the
developed code if necessary. The last section of chapter 3 will expose some ideas on how to
integrate the ability test and the representation of each user skill in real systems, using GPM as

a standard for all the games in a console or using GPM as a single game difficulty adjusting.

Chapter 4 will show the obtained results including the test itself, the results people obtained
performing it, a proper discussion about these results, considering if they are the expected ones

and how they can affect the videogame industry.

Last but not least, chapter 5 will be left to explain the conclusions extracted from the realization
of this project, along with the improvements that could be implemented in this project in the

future.

10

2. SYSTEM REQUERIMENTS

This chapter will explain the needs for creating a system that will allow us to observe a player’s
skills and how to represent them in a graphical way, the GamerShape. It will also be explained
how GamePlay morphing can be used in real games in order to improve gaming experience and
which hardware and developing environment wil be used in order to create a test able to

evaluate all types of gaming skills.
2.1 gamershape

In order to study and represent the abilities of the game player we wil need to specify which
different areas will be tested and how these are going to be represented in an easy way for the

videogames players.

As explained in the introduction, these abilities refer to the actual interaction of the player with
the controller and the game itself. It is not intended to create a psychological profile of the player
in order to adjust the different aspects of the gameplay. We will need to know how each player
solves different situations or how good they are interacting with the game. Due to being
experienced with playing computer games for a long time and other types of games, the abilities

that will be taken have been divided as follows:

Dedication : Fairly the most abstract ability. The point is to track the way each person
faces gaming. In the vast amount of players we can find people that experience bordem
when they get stuck without knowing what to do next and we obviously can find people
that enjoy the challenge of using a lack of the hints option. We can also track in a puzzle
solving situation how long it takes for the user to ask for a hint (seen in the “Professor

Layton” series for the Nintendo DS system).

Controller : Each player wil test their ability by pressing button sequences. When a
game requires a 10+ button sequence to perform a special move or combo from a 8+
button controller, the majority of casual players find it to difficult to perform, being left
to do simple moves as experienced gamers can perform any move in the game,

creating a lack of competivity on the online gaming.

Strategy and Solving : Ability of the player to solve different situations in a game in
order to progress further. We will need to track the time used in solving a situation (if
it's solved) and the option used to solve the situation (most obvious or not). It will also

11

be computed as a type of this skill, the ability of the player in strategy games and how

good they are at deciphering an Al routine.

Precision : With the most succesful genre in videogames being FPS (First Person
Shooter), it is important to test the precision of the player at pointing either with the
controller stick or it's pointer to a certain part of the screen and the time it takes to do it,

with and without stress of environment.

Timing : The skills that involve time somehow will be included in this category. Reflexes
are one of the most important skills needed to play videogames, since racing games,
sports games and even shooting games base part of their gameplay on the player’s
reflexes. Pressing a button at a correct time is another skill mostly used in the music

games genre like Guitar Hero, DJ Hero etc..

Controller | Precision Timing Solving Dedication
Action X X
Action-Adventure X X
Adventure X X
Fighting X X X
Life Simulation X
Music X X X
Racing X X X
Role Playing Games X X
Shooter X X X
Sports X X X
Strategy X X

Table 1 : Skills needed per genre

Obtaining the results from these five areas, it wil be possible to adjust the different parameters
of the gameplay to what the player wants or is able to do. By tracking them we can rise the
gameplay level as the player rises on their abilities. Table 1 shows which abilities are needed

depending on the different genres (Various 2008) in the videogame industry.

12

As we can see in the table above we will use the dedication to adjust difficulty in all kind of
games as dedication involves how the players feel towards gaming. More precised skils are
used depending on the genre but it is clear to see that each genre aims towards different skills
and that someone that is good at some games does not necessarily mean that they wil be

good at other games.

Once we have the abilties of each person tested, we need to find a graphical and
understandable way to show them, easy to check and compare, bringing even competition to
see who's got the best skills. These abilities wil be shown as a pentagon which shape
determines the player’s skills. As seen in some other games such as Pro Evolution Soccer, the
pentagon represents the abilities of each soccer player or in Brain Training’s case, it shows the

results in five different brain areas.

controller

strategy

dedication and solving

timing precision

Figure 6 : The GamerShape

As Figure 6 shows, we have created a graphical way to show the skills to the people, under the
name of “GamerShape”. Each person wil have their own GamerShape that wil change its form
as the person’s abilities improve. A cause of a long time without playing wil affect these skills

and in return are decreased.

Each line between the center and each vertex is used to measure the level of the player in that
area on a normalized scale from O to 100, O being the center of the pentagon and the

maximum (100) at the same vertex point.

13

The method used for the normalization of this abilities will be discussed in further sections along
with the test needed to obtain the player skills. The user will need to do some actions and solve

different situations to allow the system change the gameplay.

This GamerShape is only the final representation of each player’s skills in order to provide a
graphical representation instead of providing the user with just a sequence of numbers. As
explained briefly above, each ability wil have a punctuation in the 0- 100 range to create this

shape. These values are what we actually need to store not the whole Gamershape image.

It will only be needed to store a five integer position array, from now on will be called Player
Handicap (Figure 7). It wil be discussed if this Player Handicap should be allocated with each
user’s profile, if it should be shared for all the owned games of the users, or it should be used as

a single game handicap having more than one handicap per user.

PLAYER HANDICAP

Dedication Precision Controller Strat. & Timing
Solving
50 30 80 30 25

Figure 7 : Representation of the Player Handicap

2.1.1 extension of the profile

With the last generation of consoles being released, the integration of well-known OS user
profile into the gaming industry could allow us more than just storing a friends list,
achievements? or trophies3. With these new all-in-one entertaintment machines that consoles

have become, including a hard drive in consoles will become a standard by next generation.

Gameplay morphing could take advantage of these resources to store some data involving each
console’s user preferences. The “term user preferences’ applies in this case to more specific

guestions about different genres and how the gaming experience can be more satisfactory.

2 Specific term for special goals that can be completed on Xbox Live-enabled games. Achievement Points are
awarded for completing Achievernents, which count towards a player’'s Gamerscore.

3 Playstation version of Xbox Achievements.
14

As seen in the last section, there are many genres that would not allow putting all videogames
in the same box because between some of these genres the differences in terms of gameplay
are quite important. Being able to save all this data would allow developers to be able to change

the gameplay of the game before it even starts.

Developers could take advantage knowing these preferences giving a different experience to

each player all on one single disc.
2.2 gameplay morphing

This section contains examples on how to implement GamePlay Morphing in real games. When
we talk about games and gaming, it is important to differ between single player and multiplayer

games.

In a single player game there is only one playable character on screen controlled by the user.
There can be other characters that help the player to go through the game, but these

characters are controlled by the CPU.

Multiplayer games are the ones where more than 1 playable character is shown on the screen
at the same time. Multiplayer games can have cooperative modes and versus modes where
players wil have to join forces to beat the game in cooperative mode and wil have to play

against each other in versus modes.
2.2.1 single player

The ultimate outcome for the Gameplay Morphing is for it to become an automatic difficulty
level system in charge of the gameplay parameters, but this is not the only outcome we should
expect. As seen in the introduction, the growing disagreement of the hardcore sector of the
community with games getting easier to appeal the mass market is one of the main reasons this
project started. Gameplay Morphing can explore with gameplay beyond setting difficulty

parameters to a desired choice.

Based on both skills and preferences of the consumer, developers can serve a personalised
game experience to all kind of players, for example we can remove some “scenes” of the game
for players that are not interested or allow an experienced player to access optional phases of
the game. Each different genre can offer something different for each sector of the market. We

will provide some examples on applying gameplay morphing to existing games.

15

The RPG (Role Playing Game) genre could really take advantage of the system being able to
appeal to more consumers. This genre provides the games with the longest average duration,
no less than 30 hours in most cases. Turn based battles based on extensive menus, random
battle on field and experience based levels can be too much for a newcomer in the genre or for
someone more interested in the story line or action/exploration parts of the game. Knowing
what each player demands can allow the industry to provide an experience for everyone on a

single disc.

The hardcore gamer will have no problem as the game can still be played at 100%, while
somebody with less avalaible time or less interest wil be able to play a lighter version of the

game cutting off the less atractive parts of the game in their opinion.

A game that lasts 40 hours going through all the elements created for it can be reduced to a 20
hour game with no random battles, easier and clearer menu interface (less options displayed)
and no optional or secondary content, without leaving the sensation that half the game was not
played as the user does not see the chance to do it. We could even ask the player how many
hours he will want to play in order to adjust the difficulty so the game can be completed in that

time.

If the recently Achievements (Hyman 2007) or Trophies (Entertainment 2008) are used to
give the players an extra motivation to re-play the game with more features and the possibility
of giving different endings, for each type of gameplay we can extend the game’s life in the

future. Involving Achievements can be extended to all different genres avalaible today.

The action-adventure genre can also benefit from the gameplay morphing system allowing
customers to focus on the gameplay elements more suited in their preferences. Combining
combats with puzzle-solving and sometimes statistical character developing, some people can
enjoy exploration and puzzle-solving but find caring about statistics tedious. The game could
automatically build up these statistics based on where the player is (give the expected level to a
character when arriving to a certain point in a game). Different scenarios are found if the
consumer is not attracted to puzzle-solving. We can clearly give easier puzzles to be solved or

even change the situations to the gamer’s preference to allow acces to a new area or item.

Even if the platform genre is not on its peak nowadays, there are still some titles that could take
advantage of the gameplay morphing. Recent titles are based on different stages with different

goals for each scenario.

16

These games can be completed (understand completed as seeing the ending and final credits)
when 50-60% of the game is achieved, leaving it optional to complete the rest of the game. It
may seem irrelevant but not allowing experienced players to access the last stage/s until they
achieve 80 or 90% of the game can be an extra motivation for them, while consumers that

would complete the game at 50% and not play anymore, still have the option of doing it.

These examples show that most genres can take advantage of gameplay morphing one way or
another as seen in both introduction and this section's examples. Implementing these features
won't mean a large increase in both resources and time, developers will create the same game
just needing to remove different parts of the game as required, there are no additions as the

game is made with all that was intended.
2.2.2 multiplayer

Most cooperative and versus multiplayer game modes use absolute metrics* in order to give
punctuations to set the difficulty level or determine the winner of a task. Thanks to the
Gamershape we could also use relative metrics® as an optional feature in multiplayer games.
The use of relative metrics could be an alternative way to play multiplayer as we would
automatically include a handicap for the player with worse skills. This option is specifically aimed

towards making friendly® multiplayer matches more competitive.

Imagine a group of players with different skill levels the same as families with young members or
more experienced users playing along with casual gamers. In these cases we could balance

both gameplay or difficulty to match their skills.

For example, in racing games the player with less experience would need less precision with the
control of the car in order to balance the race. Most games already incorporate some help
giving the player in the last position better power-ups/weapons in order to balance the race but

if the problem is due to a low skill level, the player will go back to lower positions sooner or later.

Fighting games could also take advantage of balanced gameplay by allowing fights where the

player with lower button skills (if there is a significant difference) can do the same movements

4 When the outcome of a battle/task is decided on who have better skills.
5 When the outcome of a battle/task is decided on who performed better in reference to their skills.

6 As a result of the match no change neither in the status or the number of gamepoints will reflect on the game.

17

as his oponent with less button combination, instead of just giving him more life that most

handicap adjusment systems have already.

When the outcome of a battle or task comes from the number of buttons pressed that a player
can do in an interval of time, we could use the relative metrics to determinate the winner. Based
on the maximum number of buttons each player can press, the winner will be the one that gave

a better performance based on their maximum.

These methods of balancing matches in multiplayer games have to be seen as another way of
making games challenging because as we balance the match, the probabilities of having the
same winner in different matches decrease allowing more uncertainty on the winner of the
match. This would also mean a better approximation to the ideal game progression seen in

section 1.3.1, and making more of an enjoyable experience to play multiplayer matches.

2.3 H/W and developing environment

In order to develop a test that evaluates gaming skills, we first need to decide which platform
the test will be developed for. Between home console systems and handheld systems, the best
option in our case is to develop for a handheld system as it’s portabliity allows us to develop for
it with any computer that includes a gcc compiler and it will be easier to get people to take the

test from a handheld system.

The current handheld systems in the market are Playstation Portable and Nintendo DS. Having
studied both system’s characteristics, the Nintendo DS is the system we have chosen to

develop our skill test.

The system’s input devices as touch screen or microphone are the perfect way to test skills
such as precision or puzzle solving and we still have the input buttons as every other console to

test the controller skills for each user.

Also, as it has been stated in section 1.1, Nintendo expanded the videogames market, having
surfaced controversy about difficulty of games on their systems, making this the perfect

platform and company to develop this project for.

Section 2.3.1 discusses the hardware of the chosen system, the “Nintendo DS”. This section
specifically aimed to specify the main memory banks the system provides and the different input
devices that can be used to interact with the users will also provide a brief history of the system

and its different re-designs.

18

Section 2.3.2 will be dedicated to introduce the developing environment and the libraries that will

be used to develop for the Nintendo DS.
2.3.1 nintendo DS hardware

The Nintendo DS’s Hardware was developed by Nintendo in 2003 when the success of the
company was at the lowest point in it's history. Seeking a revolution in terms of gameplay
interaction Nintendo focused their efforts on providing a combination of existing technologies
never used in the gaming industry rather than focusing on a powerful hardware that would
increment the developing cost and the price of the system. In terms of processing power, the
NDS system is similar to the power held by the Nintendo 64 (Figure 8), the Nintendo home

system released in 1996 that was quite larger and non portable system.

The Nintendo DS was first released to the American market in November 21, 2004. With
measures of 148.7 x 84.7 x 28.9 mm its hardware it's rather powerful for its size. NDS runs
on two different ARM processors, a 67.028 MHz ARM946E-S that works as a main CPU and
one 33.514 MHz ARM7TDMI coprocessor.

Each one of these processors can be used to create a 2D graphic engine to one of the two
NDS'’s 3 inches LCD. These two screens run at a resolution of 256 x 192 pixels, with the only

difference being the built-in touch screen on the bottom LCD.

Figure 8 : Nintendo 64.

There is also the possibility of using a 3D graphic engine, in which case can only be rendered at
one screen at a time. Some developers have accomplished rendering 3D graphics on both

screens, splitting the graphic power into two less powerfull engines.

19

In order to decrease the processing power from the core processor, the NDS includes a
transform and lighting chip in its hardware. This 3D hardware has a maximum number of 6144

vertices that can be rendered in a frame or single scene.

The system hardware stores it's data on a 4MB RAM commonly known as main memory (see
Figure 9 for a memory map of the system). This main memory stores the current processing
instructions and data. Both ARM9 and ARM7 processors can access main memory, where as

the ARM7 has a higher priority in order to avoid any bus conflicts.

The ARM7 processor also has an exclusive 64KB fast RAM (IWRAM) used to store the ARM7
executable code and data. The bus connection between the ARM7 and the IWRAM is 32bit

connection while the rest of the memory banks have a 16 bit connection bus.

The ARMO processor has both data and instruction cache memories. Since the main memory is
cacheable, all the data wil be temporarily stored in these caches memory to improve

performance.

There is also a nine bank 656 KB video RAM (VRAM). These nine banks can be used for
different purposes; as holding the textures of the 3D engine, holding the sprites that are use in
the game or holding images that will be directly mapped onto one of the screens. Along with the
VRAM there’s a possibility to dedicate some of the VRAM memory to the 2D engines, which is

caused by the lack of 2D dedicated memory on the NDS system (also known as Virtual video
RAM).

Finally we find two banks of fast shared RAM. Each one can be assigned to any of the
processors but they are initially mapped to the ARM7, providing along the IWRAM memory,
96KB of RAM memory.

The Nintendo DS system provides the users a Wi-Fi connection to play multiplayer games, both
through LAN or the Internet. If the player wants access to the internet, the Wi-Fi hardware

allows a connection to any B or G Wi-Fi hotspot, including WEP encryption security.

Last but not least, we find the input devices that provide the user interface. As stated before,
the bottom screen includes a touch screen that allows input of one point at a time. There is
also a directional pad (Dpad), two shoulder buttons (R- right and L-left) and four buttons
known as A, B, X and Y. The NDS has also a standard microphone built-in avalaible for input,

allowing input controls by voice commands or by blowing into the microphone.

20

Flash Card
Devices

‘ (GBAMP SC etc)

il

lmcmsm'

ITCM 32KB]

%

GBA CART
32MB Max

BIOS

16K
wram

16K
wram

it

ARMS

DCache

ICache

3D Graphics Memory
No direct read or write
Access.
(vertex ram, line
buffers, matrix stack.
that sort of thing)

Palette Main

Palette B Sub

32 Bit

7

Main Memory
4MB

7o

LN

ARM7

IWRAM 64KB

ARM7
BIOS

VRAM
Control

—

OAM Main

N7~z

OAM SUB

Bank | 16KB

Bank H 32KB

Bank G 16KB

Bank F 16KB

Bank E 64KB

[TJLI]

Bank D 128 KB

I

Bank C 128K8

|

Bank B 128KB

I

Bank A 128KB

Figure 9 : Nintendo DS Memory Map (dev-scene.com 2006).

21

Fourteen months after its first release, Nintendo launched the first redesign of their system, the
DS Lite. This redesign had the same features and capabilities of the original model, smaller in
size being the main atraction (133 x 73.9 x 21.5 mm) and a modern appearance to appeal to
a wider audience. On November 1, 2008 a new redesign hit the stores in Japan, called
Nintendo DSi system. This third iteration of the system included few hardware changes in
comparition with the original design, includind two build-in cameras (one in the interior hinge and
one in the external shell). The DSi also included an ARM9E processor running at 133 MHz and
an upgrade regarding RAM memory, being now avalaible 16MB of RAM.It also features bigger
screens (0.25 inches larger), and a 256MB flash memory to store the photos that can be

taken by the camera.

Figure 10 : Nintendo DS , Nintendo DS Lite, Nintendo DSi, Nintendo DS

Nintendo recently launched a new redesign of the system, called DSi XXL, this newer version
includes bigger screen as the only modification (new screens ar 0.95 inches larger than DSi
screens, and 1.2 inches larger than both DS and DS lite screens). See Figure 10 for the

different redesigns of the system.

2.3.2 developing environment

This section will introduce the chosen developing environment, devkitPRO and which of the

available libraries have been chosen to implement the source code of the test.
a) devkitPRO

DevkitPro is a collection of development toolchains for the GBA, NDS, GameCube and PSP
systems. For the DS youll need devkitARM which allows the compiling of ARM binaries, and is

based on gcc, the gnu compiler collection.

22

We will only need to install devkitARM which is the toolchain needed to compile ARM assembly
code. However, devkitARM also contains the necessary tools to allow DS programming on a

higher level language, as C or C++.

It is also important to note that devkitPro is not an Integrated Development Environment (IDE).
This environment installs path variables into the Operating Systems and attach these variables
to an existing compiler such as gcc or g++. Once the environment is set up, developers can use

any existing IDE to compile and make files.

b) libnds & other libraries

In order to develop software for the NDS system, a developing environment is needed. Libnds is
the toolchain used for the development of this application. Created by Jason Rogers and Michael
Noland (Amero 2008, ch. 4), libnds is a library of register definitions and low level functions in

order to provide and open source alternative to the official SDK developed by Nintendo.

Nowadays, libnds is maintained by Dave Murphy through the devkitPro project. DevkitPro offers
all the libraries to allow homebrew development for all the consoles, leaving which libraries to
install as a developer’s choice. In libnds’ case, it also includes different tools to allow developers

to create data for their projects, providing audio and image converters.

There is another alternative library in order to develop for the NDS system, called PAlib. PAlib is
an open source community project with it's goal of creating different basic functions for the DS
development. All the documentation of the PAlib project has been translated into seven different
languages, including; spanish, french, german and japanese. Although PAlib is not distributed

along with devkitPro, it is easy to integrate it’s libraries into the environment.

Libnds and PAlib offer general libraries to allow development. There are also other smaller and
specialized purpose libraries, as MaxMod(Various) or DSwifi. Maxmod library is a sound solution
for the NDS system that allow developers to add MOD, WAV, IT modules to their software,
while DSwifi is the library that provides the necessary tools to use the built-in WI-FI in the
system. All these specialized libraries can be integrated to devkitPro by just adding the source

files to the needed folders.

This project is not focused towards going into full details of the libbnds libraries and NDS
development tools, using this section to give an overall view on the libraries and its different
functions. Table A1 in Appendix A has been extracted from the libonds documentation and a
brief description for each source file has been given.

23

24

3. IMPLEMENTATION

Chapter 3 contains the process made by us to create a skill test from the different applications

used to evaluate these skills until the proper developing process using devkitPRO and libnds.

Section 3.1 is devoted to the design of the skill test, and which challenges wil have to be
performed by users. Section 3.2 discusses the method created to obtain each Player Handicap
from the test’'s outputs, whie section 3.3 wil be dedicated to the proper implementation

process used to create the test.
3.1 evaluating skills

Having defined the different skills needed to play videogames (see section 2.1), an application
is needed to evaluate these skills. This test wil be a comprehension of smaller applications
where each application evaluates one or two different skills. Each section is devoted to a
different skill, precision (3.1.1), timing (3.1.2), controller (3.1.3), strategy and puzzle solving
(3.1.4) and finally the dedication (3.1.5).

3.1.1 precision

The first skill to evaluate wil be the precision. We will need to evaluate the precision of the
player at shooting or touching objects. Taking advantage of the Nintendo DS touch screen, we

will define the application named Shooting Targets to test the precision.

In this application the user will need to touch with the stylus’ as many targets as posible during
the three rounds the application has. Each round wil have 20 sets of targets to be touched.
There are three rounds so that each round can have a different difficulty level; easy, medium
and hard.

First round will show a single target that appears in a random coordinates of the screen. If the
user touches the target, we will update the hit count and create a new target in other
coordinates of the screen. If the user misses, the target will dissapear and be replaced by a new
target with random coordinates. Each target will disappear on it's own after a second if the user

doesn't touch any part of the screen.

The Second round will show two targets at the same time to be touched in a second. Each

target wil appear randomly on the screen and will have to be touch separately. In this case, we

7 Pen specially designed for the Nintendo DS to use with the touch screen.
25

cannot count it as a miss if the user doesn’t touch one of the targets, because it can be aiming
to the second target. If the user doesn’t touch the target but touches a coordinate close enough
to the target, we will be suppose that they were aiming at this target and will be counted as a

miss.

The number of hits in the second round will be added to the total hits achieved during the first

round.

The Third round of the application wil be the same as the second round. In this case showing
three targets at a time that will dissapear after a second. The same method used in the second
round for counting hit and misses wil be used in the third one, evaluating if the user’s touch

coordinates close enough to the target but not the target itself.

The output of the application will be the number of hits achieved by the user during the three

rounds, 120 being the maximum number of hits.

TOTAL = (Round 1) 20 hits + (Round 2) 2 * 20 hits + (Round 3) 3 * 20 hits = 120 hits

3.1.2 timing

In order to evaluate the timing skills of each player we wil need an application that evaluates the
response time of the player. The game Resident Evil 4 (Capcom 2006) introduced the quick
time events, where in the middle of a game sequence the player needs to press an explicit
button as quick as possible in order to succeed. These quick time events have become common
in most adventure and actions games lately and is a good method to process the response time

of the player.
We suggest the Response Time application for the timing skill.

This application will provide the user with a sequence of buttons that will need to be pressed as
quickly as possible and evaluate the response time of the player touching the demanded

buttons.

Each step of the sequence will choose randomly which button wil be need to be pressed

between buttons A, B, X, Y, shoulder buttons R and L which are shown in Figure 11.

To avoid time patterns that wil allow the user to know when the image of the button will have
to be pressed will be displayed, we will create a random system where each button can appear
between 0.5 and 6 seconds after the last displayed button. Once the button is displayed we will
check how long it takes the user to press it, considering it as penalty if the button pressed is not

the one asked for.
26

\

R shoulder button

/

L shoulder button

A,B,X,Y buttons

Figure 11 : Nintendo DS buttons’ position.

The sequence will have ten buttons to be pressed. The average time needed to press those

buttons being the output of the application.
3.1.3 controller

To evaluate the controller ability of each player, we wil need more than one application due to

the different ways games can be played. For this test we will create two application:
a) Button Tapping

b) Combo Making

a) Button Tapping

The first application will evaluate the button tapping 8 skills, needed in adventure, action, shooting
and some fighting games. We will evaluate both the time needed to press a button an exact

number of times and the amount of times a button is pressed in a interval of time.

The program will have three rounds, the first two dedicated to counting the time needed, and

the third round dedicated to the number of times a button is pressed.

8 Amount of times a button can be pressed in an interval of time.
27

First round will evalutate the time needed to press a button 10 times while the second round will
evaluate the time needed to press a button 20 times. It will be expected that the player won't

need a double amount of time due to a higher number of times the button needs to be pressed .

Third round will evaluate a long run of button tapping. The user will have 20 seconds to press a

button as many times as possible, aiming at the resistance ability of the player.

The output of the application will be both times needed in first and second rounds, and the

amount of times the button is pressed in round 3.

b) Combo making

Apart from the button tapping skills the test will also evaluate the ability of each player at quickly
pressing a sequence of buttons. These sequences, commonly known as combos, were created
for fighting games but ended up spreading to other game genres such as puzzle and sports

games.

There will be 10 different sequences to be pressed, starting with the easiest combinations as X
+Y or BBB and finishing with 8 button sequences involving both the directional pad, frontal
buttons and shoulder buttons. The sequences need to be entered in a short period of time, less

than 0.3 seconds between each button of the sequence.

Giving the complexity of some of the combos, players wil have two opportunities to enter each

seguence in order to ensure that the actual skil is obtained.

The output for this test will be the number of combos correctly entered.
3.1.4 strategy and puzzle solving

As most games require memory to solve some puzzles or remember numbers or codes to go
through the game, it is interesting to observe the memory ability each player has. Also the
player wil be asked to solve two puzzles that are similar to puzzles that can be found in real

games. In total there will be three applications that will evaluate this skill:
a) Memory Test.
b) The Door.

c) Hidden Numbers.

28

a) Memory Test

A memory test wil be performed giving a random sequence of colours that the player will need

to repeat later. The colours chosen are white, red, green, blue and yellow.

The first round of this application will show a sequence of five colours. If the player succeeds, a
second round of 8 colours will be displayed. In the case the second round is completed, there
will be a third round with a sequence of 11 colours. If the player fails either the first or second

round, the memory test will be finished and the counter for the rest of rounds wil be 0.

The output of the application will be the number of colours remembered for each round.
b) The Door

This first puzzle is called the door, where the player needs to identify a code in order open a
door that allows access to a new zone (see Figure 12). Most experienced gamers will find the
puzzle simple, as it's been used in a lot of genres and games, but casual gamers would find it
more difficult as they are not used to it. There will be also be the option of getting a hint to solve

the puzzle, being used to process the dedication of each player.

We will evaluate the time needed to open the door (enter the right sequence) and the use of

the hint to solve the puzzle.

Figure 12 : The door puzzle.

c) Hidden Numbers

The second puzzle will show and image of a supposed map that could appear in a videogame.

Hidden in the image there are four numbers (see Figure 13) that need to be found in order to

29

solve the puzzle. There is also the possibility to get a hint in order to solve it and the use or non-

use of this hint will count towards the dedication computing.

The output of this application will be the same as the first puzzle.

Figure 13 : Hidden numbers puzzle.

3.1.5 dedication

The dedication that each player puts into gaming can be hard to analyse. In the case of this
project, dedication will be evaluated based on the use of hints in the different applications to
know if the player likes the challenge and solving the problem on their own. If the player uses a

hint, it will be considered as the user not enjoying the challenge and prefers easier gameplay.
3.2 obtaining the player handicap

At this point we have defined the skills test that wil allow us to generate a player handicap and
the gamershape. As stated in section 2.1, each ability wil have a value a between 0 and 100
that will come from the test results. In this section we will establish the rules that will be followed

to calculate each parameter of the player handicap.

Starting with the precision parameter, it wil be totally generated by the output of the targets
test. In this case, the maximum value to be scored is 120, so this value wil have to be
normalized. Once we have the output value we wil follow a simple rule of three to obtain the

value.
Precision parameter = (output * 100) / 120.

30

For the controller parameter we have more than one output, the button tapping and the number
of combos completed. Giving that the combo making are much more important in videogames
than the button tapping (the button tapping is not used as nearly as much as the combos). it
has been decided that the combo making wil count 70% towards the final value, leaving the
other 30% to the button tapping results. These values have been decided by our own

experience playing videogames, so it's an empirical decision.

The button tapping results come from three rounds, each round will equally count to the player
handicap (10 % each). The minimum possible times for round 1 and round 2 of the button
tapping test are 1 and 2.4 seconds, while the maximum achievable value for round 3 will be

160 presses.

The minimum time for round 1 means the user should press the button every 0.1 seconds,
while for round 2 the button should be presses once every 0.12 seconds. For the third round
we will count as the maximum punctuation 160 presses in 20 seconds (one press each 0.125

seconds).

Every 3 hundreths of a second or presses above the minimum values will have an impact of -1

in the total value for each round.
Button tapping R1 = 100 - ((timeR1 - 1) * 100) / 3.
Button tapping R2 = 100 - ((tmeR2 - 2,2) * 100) / 3.
Button tapping R3 = 100 - ((160 - R3output) / 3).

Controller parameter = 0.7*(combo output * 10) + 0.1*(round 1 button tapping) +

0.1*(round 2 button tapping) + 0.1*(round 3 button tapping).

The timing parameter also comes from just one output, the response time application. The
output value is the average response time from the ten button sequence the user will have to

press.

Robert J. Kosinski has done a research (Kosinski 2009) on reaction time types and times, as
single and choice experiments. A single reaction time is the one that comes from only one
stimule (seeing how a light turns on), while the multiple choice have more than one stimuli (the
same light can turn on in different colours). The normal reaction time for a simple stimuli is an
average of 0.2 seconds if we are talking of a visual stimuli (seeing an image). When there’s
more than one choice we follow Hick's reaction time experiments, he concluded that response
time was proportional to log(N), where N is the number of possible stimuli. For a six choice

response time the minimum value is 0,6 seconds, and we will use this value as the minimum

31

achievable value. If the user’s response time is 0,6 seconds the timing parameter will be 100,

decreasing a point for each hundreth of a second over the minimum value.

Timing parameter = 100 - (output value - 60).

The puzzle solving & strategy parameter comes from the outputs of three different tests. There
is a proper puzzle, a visual puzzle and a memory test. The proper puzzle wil count 40%
towards the puzzle parameter whie the visual puzzle and the memory test wil count 30 %

each.

Both puzzle’s minimum solving time are estimated at 15 seconds, every three seconds above
that time will have an effect of minus one point in the total value for that puzzle. If the user gets
a hint, it will have a penalty of 30 seconds (double the minimum resolve time). In the case of
the memory test, each round wil count a 10% to the total value. If the round is completed it will
give the maximum points, if not, we wil give a mark according to the total of colours

remembered per round.

Door value = 100 - (solve time -15 + (hint value * 30)/3).

Numbers value = 100 - (solve time - 15 + (hint value * 30)/3).

Memory R1 = 20*colours_remembered.

Memory R2 = 12.5*colours_remembered.

Memory R3 = 9.1*colours remembered.

Puzzle parameter = 0.4 * (Door value) + 0.3 * (Numbers value) + 0.1 * (Memory
R1) + 0.1 * (Memory R2) + 0.1 * (Memory R3).

The dedication parameter comes from the use the player gives to the hint on both puzzles. If
the user decides to not use a hint the maximum value will be given (50) but if they use it, we

will use the next formula:

Dedication parameter = 0.5 * (door_time hint/3) + 0.5 * (numbers_time _hint/3).

32

If the hint is used in just one puzzle, we wil add the maximum value for one puzzle with the

result of the formula of the other puzzle.

Once we have obtained the player handicap it will be possible to obtain the GamerShape for
each player. For the realization of this project, we wil use Microsoft’'s Excel 2007 to perfom all
the needed calculations to obtain each player handicap and use it's graphic's engine to draw
each gamershape. Excel 2007 can draw a filled radial graph that is close enough to the

GamerShape presented in section 2.1 (see Figure 14).

CONTROLLER

DEDICATION ’ PUZZLE

GamerShape

TIMING — PRECISION

Figure 14 . Radial graphic for the values in figure 7.

3.3 developing process

This section will give us a description of the developing process needed to implement the skills
test for the Nintendo DS system. Starting from the environment and libraries set up, to the most

important code needed to develop each application.

Section 3.3.1 will show the steps needed to set up the developing environment, while section
3.3.2 wil be devoted to explain the developing process and source code of the created

application.
3.3.1 setting up the environment

The platform used to develop this program is an Apple MacBook with MacOs 10.6 (Snow
Leopard OS).

First we will need to install devkitPRO and the needed libraries to the platform:

1) We will download the needed libraries from devkitPRO web page. The versions used for this

project are libnds-1.3.2, devkitARM-r25 and maxmod-1.0.3.

33

2) Once we have the libraries we will need to create a folder in /usr/local/ named devkitPRO
and extract the binary files of the libraries into this new folder, having a new folder for each

library.

3) We can also download some code examples to start programming. They must also be

located inside the devkitPRO folder.

4) When all the libraries are installed we have to add some variables to our execution

environment file, for MacOS .bash profile file located in the home folder.
export DEVKITPRO=/usr/local/ devkitPRO
export DEVKITARM=%$ {DEVKITPRO}/devkitARM

Now we are ready to start writing some code and compiling it with gcc, having an
executable .nds file as the output of the process. The code can be written using any application,

in this case Xcode? is used to write the C++ code.
3.3.2 developing the skills’ test

This section is aimed to explain the developing process followed to create the skills application
written in C++. Libnds is a really big library and it is impossible to put all the functions used and
the explanation for all of them in this project. For each of the small applications of the test we
will be explain their most important feature, these features being; the use of timers, sprites or

loading .png files as backgrounds.

Before we start with the proper code of the developed application, we suggest reading the

developing basics on libnds that we have written in Appendix B.

The program’s main function will need to call each one of the subroutines that perform each
small test and retrieve the output data of each routine. This function is mostly written with C/C+

+ code, with calls to functions and screen printing.

Each subsection will be devoted to one application of the program :
a) button tapping function.

b) the door & hidden numbers functions.

c) the response time function.

d) the shooting targets function.

9 Xcode is Apple's premiere development environment for Mac OS X.
34

e) the combo making function.

f) the memory test function.
a) button tapping function

The button tapping function have to count how long it takes for the player to press the same
button 10 and 20 times, and the number of times the button is pressed in 20 seconds. Apart
from the input handiing code (seen in section 3.3.2.1) needed to count the times the button is

pressed, the use of timers that can count up to a undredth of a second.

Timers are handled by the DS’s interrupt system. We wil need to use the macros defined in

timers.h to set up the timers frequence and other parameters (see Code 1).

// this line sets timer0 to be overflowed 100 times for each second

TIMERO DATA = TIMER FREQ 1024 (100);

// list of setting for timer0, enable the selected timer, enable a 1024 divider
// the timer will count at 33.514 / 1024 MHz, and enable the generation of an
interrupt when the timer is overflowed

TIMERO CR = TIMER ENABLE | TIMER DIV 1024 | TIMER IRQ REQ;

//set which function will be called when the timer is overflowed.

irgSet (IRQ TIMERO, timerFunction);

Code 1 : Setting up timer O.

The function timerfunction will be called everytime the timer overflows (100 times per second),
but we will need to call it from our function to know how many seconds the user needed to
press the button. Timerfunction will call contador function with value O in order to increase the
count of hundreths, and also contador can be called with value 1 when we want to retrieve the
numbers of hundreths counted until some point (see Code 2).

int contador (int mode)

{

int mili2;

if (mode==0)

{
mili++;

}

if (mode==1) {
mili2=mili;
mili=0;

return mili2;

}

return 0;

}

void timerFunction ()

{
int dumb;
dumb=contador (0) ;

Code 2 : Timerfunction and contador
35

With this code we will only need to enable or disable the timer interrupt when needed (see code
3). Once the player presses A to start counting, we enable the timer interrupt until the number
of required times the button needs to be pressed is achieved.
while (! (keysDown() & KEY A)) scanKeys
)7
irgEnable (IRQ TIMERO) ;
while (cont!=(i+1)*10) {
scanKeys () ;
if (keysDown () & KEY X)

{
cont++;
}

}
irgDisable (IRQ TIMERO) ;

Code 3: Enabling and disabling timer interrupt.
b) the door & hidden numbers functions

This function will count the seconds needed to open a door using a code that is hidden in an
image. These functions use sound effects to let the players know if they are entering the
correct numbers or not. Using the maxmod library functions, we can easily load the sound

effects and play them when needed.

We need to store our .WAV files into a folder so the libbrary can automatically create the
soundbank files used during programming. Once all files are included in our soundbank, we need

to initialize it and set up the parameters for each effect (See Code 4).

//initialise soundbank file
mmInitDefaultMem ((mm addr) soundbank bin);
// load sound effects

mmLoadEffect (SFX THRUST) ;

//set up effect

mm_sound effect thrust = {
{ SFX THRUST } , // id
(int) (1.0f * (1<<10)), // rate
0, // handle
255, // volume
128, // panning

}s

Code 4 : Setting up sound effects.

36

Once we have loaded and set it up the sound effect, we will just need to call it when we want it
to be played (see Code 5)
switch (opcio) {
case 1:
combo=1;
break;
case 2:
combo=2;
break;
case 3:
combo=3;
break;
case 4:
combo=4;
mmEffectEx (&boom) ;
break;

default:
break;

Code 5 : Playing a sound effect.

Maxmod library also allows developers to play background melodies throught 16 different audio
channels, to see more information of the Maxmod library refer to it's documentation (Maxmod
2008).

As stated in section 3.1.5, these functions will also need to track the dedication of each player.
The test informs the possibility of getting a hint for solving the puzzle by pressing the Select
button. If the player ever presses the button, the hint will be shown and the seconds elapsed
since the start of the puzzle will be stored in a variable. This way, we can know how long it took

to ask for a hint and calculate the dedication of the player.
c) the response time function

This function shows an on screen image of the button that requires to be pressed and
calculates the hundreths of a second the user needed to press it. The images shown on screen
are portable network files (png), but first they need to be converted so the DS hardware can

manipulate them.

Libnds includes an external library called GRIT, developed by Jasper Vijn (Vijn 2007). This
library reads the png files and converts them to binary data of various bitdepths which can be

directly put into VRAM, but also can convert the images to tilesets '°.

10 A 32x32 pixel image is converted to a tileset of 8x8 pixels tiles, so it reduces the overhead in processing
power updating the screens. The hardware won’t need to update the whole screen if it’s not needed, just
updating the needed tiles.

37

Each png file has to be associated with a GRIT file (see Code 6) that includes the rules the
library will use to convert the file (see Appendix B for the original GRIT documentation extracted
from the project’s webpage). The function decompress will allow us to copy the binary data to
the desired memory bank when we call it with the source, destination and compression type as
parameters.

-W3

fg??sable alpha and set opaque bit for all pixels

use 1z77 compression
-gzl

16 bit bitmap
-gBl6

Code 6 : GRIT file used to convert button images.

To determine the user’s response time, the timers exposed in section 3.3.3.2 are also used in
this application. In order to avoid patterns, each time this application is executed it will generate a
random sequence of buttons to be pressed, and each button will appear after a random interval

of time (between 0,5 and 6 seconds).
d) the shooting targets function

To be able to show a background and the targets at the same time, we wil need to configure
the main engine to be able to show sprites. The Nintendo DS handles sprites via the object
attribute memory (OAM) and libnds defines two basic structures that each sprite wil use to
render itself, SpriteEntry and SpriteRotation. The SpriteEntry structure contains the

“ObjectAttributes”, and they can be set using the top level function oamSet (see Code 7).

oamSet (graphics engine,
oam index (0 to 127),
coodx, coody,
priority, lower renders last (on top),
palette index,
SpriteSize 64x32,
SpriteColorFormat 256Color,
pointer to the loaded graphics,
sprite rotation data,
double the size when rotating?,
hide the sprite?,
flipx, flipy,
apply mosaic?

);

Code 7 : oamSet function.

38

When developers want to work with sprites, the first thing needed is to initialize the object
attribute memory at the start of the application using the oaminit function. Once the OAM is set
up, we need a memory address where to allocate the sprite graphics data, providing libnds
function oamAllocateGfx with the paramaters graphics engine, sprite size and sprite colour

format we can store the memory address that the function returns.

To copy the graphics to the obtained memory address we can take advantatge of the direct
memory access the system provides. When DMA is activated, the DMA controller takes control
over the hardware (halting the CPU), the data is transferred and the control is given back to the

CPU.

Transferring the data through DMA is much faster than doing it through a loop in the main code.
Libnds library provides developers with a couple of functions that allow DMA data transferring,
being used in this application the dmaCopy function. This function needs three parameters,
source, destination and lenght of the transferred data, and as seen in section 3.3.3.4, we use
GRIT library to obtain the converted data and its length. When the graphics data is finally stored
in the obtained memory address, we wil use the top level oamSet function to set the
parameters as coordinates, the priority for each sprite and update the object attribute memory.
Code 8 shows the steps used in the application to load the target sprite.
oamInit (&oamMain, SpriteMapping 1D 32, false);
ule* gfx2 = oamAllocateGfx (&oamMain, SpriteSize 32x32,
SpriteColorFormat 256Color);
dmaCopy (//0-3

dianaTiles, //grit generated

gfx3, //destination (oamAllocateGfx () will

dianaTilesLen);//grit generated

oamSet (&oamMain, //main graphics engine context

1, //oam index (0 to 127)

164, 100, //x and y pixle location of the sprite
0, //priority, lower renders last (on top)
0, //this is the palette index

SpriteSize 32x32,
SpriteColorFormat 256Color,

gfx2, //pointer to the loaded graphics
-1, //sprite rotation data

false, //double the size when rotating?
false, //hide the sprite?

false, false, //vflip, hflip

false //apply mosaic

) ;

Code 8 : Code needed to load an sprite and show it on screen.

39

e) the combo making function

This function provides the user with 10 different button series to be entered. To complete a
series each button has to be pressed before 0,3 seconds once the user presses the first button

of the sequence. This time condition is handled via timer’s interrupts, as seen in section 3.3.3.2.

The complexity of this application consists in tracking the pressed button at each step and give

an error either the button is not the required one or the time interval elapses.

Code 9 shows the code needed to track the user’s input for combo number 6
(right,down,left,A,B,A).

//SIXTH COMBO ->|<- ABA

combo=0;
ok=0;
i=0;

decompress (combo6Bitmap, video buffer main,

printf ("\n\n\t*****COMBO 6***** \n");

while (ok==0 && 1<2)

{

while (combo==

{

scanKeys () ;
if (keysDown ()

)

scanKeys () ;
(keysDown () & KEY DOWN) {

& KEY_RIGHT) {
cont2=contador3 (1) ;
while ((cont=contador3(l)) < cont2+30)

cont2=cont;
while ((cont=contador3 (1))
{
scanKeys () ;
if (keysDown () & KEY LEFT)
{
cont2=cont;
while ((cont=contador3 (1))
{
scanKeys () ;
if (keysDown () & KEY A)
{
cont2=cont;
while ((cont=contador3(1l))

{

scanKeys () ;
if (keysDown () & KEY B)
{
cont2=cont;
while ((cont=contador3 (1))
{

scanKeys () ;

40

LZ77Vram) ;

cont2+30)

cont2+30)

cont2+30)

cont2+30)

if ((keysDown () & KEY A) && ok==0)
{

combo=1;

ok=1;

combocount++;

printf ("\n\n\t COMBO 6 OK !");
}

if (keysDown() & ~KEY A && combo==0) {
combo=1;

}

}

if (combo==0) combo=1;

}
if (keysDown() & ~KEY B) {
combo=1;
}
}
if (combo==0) combo=1;
}
if ((keysDown() & ~KEY A) && (keysDown() & ~KEY LEFT))

{
combo=1;
}
}
if (combo==0) combo=1;
}

if ((keysDown() & ~KEY LEFT) && (keysDown () & ~KEY DOWN)) {
combo=1;
}
}
if (combo==0) combo=1;

}
if ((keysDown() & ~KEY DOWN) && (keysDown () & ~KEY RIGHT)) {

combo=1;
}}
if (combo==0) combo=1;
H}
if (ok==0) printf ("\n\n\t COMBO 6 FALLADO\n");

if (ok==0 && 1i==0)
{

starttime=checktime () ;
while (endtime-starttime!=2)

{

endtime=checktime () ;

}
printf ("\n\nSEGUNDA OPORTUNIDAD PARA COMBO 6\n\n");

combo=0;
}
i++;
while ((keysDown () & KEY Y) || (keysDown() & KEY X) || (keysDown() & KEY A) ||
(keysDown () & KEY B)) scanKeys();
}

Code 9 : Combo number 6

There is a second chance to enter each combo if there is an error at the first try, with a wating
period of 2 seconds (use of checktime function). At each step of the series, if a button is
pressed and is not the required button, the combo variable will be set at 1 while the ok variable
will remain at value O. If at the end of the loop the ok variable is O and we are still at the first

iteration, the second oportunity will be granted.

41

f) the memory test function

The memory function is mainly written in C code using some of the libnds’ top-level functions to
display the backgrounds. This application consists of three rounds but the user wil have to

complete each round to be able to access the next round, in the case of a fail, the test will end.

Each round will give a sequence of 5, 8 or 11 colours generated randomly. Each sequence will
be a combination of 5 different colours (white, green, blue, yellow and red) with the only
condition that the same colour cannot appear twice in a row. Each colour of the series wil be
displayed during 3 seconds. Once the series is finished, the user will have the opportunity to

enter a sequence of colours, see Figure 15 and Code 10 for the input sequence handling.

ENTRA LA COMBINRCION CORRECTH

Figure 15 : Input sequence background

Once the image is shown the code checks which pixels are touched on the screen. If the
touched coordinates are inside the range of a colour, the colour pressed wil be store in the

seguence array.

If the touched area is not in the range of any colour, an error message will be displayed on the
screen, communicating the invalid entry. When the input sequence is complete the code
compares the generated sequence with the input sequence giving access to next round if both

seguences are equal.

42

decompress (colorsBitmap, video buffer sub, LzZ77Vram);
while (it<n+1) {

scanKeys () ;
if (keysDown () & KEY TOUCH)
{

updatelInput (&touchXY) ;

opcio=6;
if (touchXY.px >= 166 && touchXY.px <= 226 && touchXY.py >= 131 && touchXY.py <= 185) opcio=1l;
if (touchXY.px >= 96 && touchXY.px <= 158 && touchXY.py >= 83 && touchXY.py <= 135) opcio=2;
if (touchXY.px >= 29 && touchXY.px <= 90 && touchXY.py >= 129 && touchXY.py <= 184) opcio=3;
if (touchXY.px >= 28 && touchXY.px <= 89 && touchXY.py >= 28 && touchXY.py <= 83) opcio=4;
if (touchXY.px >= 162 && touchXY.px <= 226 && touchXY.py >= 28 && touchXY.py <= 81) opcio=5;

switch (opcio) {
case 1:
input[ronda] [1t]=0;
it++;
break;
case 2:
input[ronda] [1t]=3;
it++;
break;
case 3:
input[ronda] [1it]=2;
it++;
break;
case 4:
input[ronda] [it]=1;
it++;
break;
case 5:
input[ronda] [it]=4;
it++;
break;
default:
videoSetModeSub (MODE_5_2D | DISPLAY_BGO_ACTIVE);
consoleDemoInit () ;
bgUpdate () ;
iprintf ("\n\n\n\tINVALID COLOUR ENTRY\n") ;
iprintf ("\n\tINTRODUCE AGAIN THE COLOUR\n");
iprintf ("\n\t\tPRESS A TO CONTINUE\n");

while (! (keysDown () & KEY A))
{

scanKeys () ;

}

videoSetModeSub (MODE 5 2D | DISPLAY BG3 ACTIVE);
bgUpdate () ;

decompress (colorsBitmap, video buffer sub, LZ77Vram);
fora=0;

break;

}

Code 10: Sequence input handling.

43

3.4 approach to real systems

Once we have designed and developed the application, we wil need to integrate our
GamerShape into real systems, making it a standard by introducing it into every users profile, or

using it as a single game difficulty adjusting.
3.4.1 making it a standard

This section wil discuss the integration of this method on real videogames systems as the
Nintendo Wii, Xbox 360 or Playstation 3. With the introduction of Miis and Avatars users have
a visual profile to check (see Figure 16 for a simulation of an integration of the GamerShape on
Xbox 360), and with the addition of Achievements and Trophies, players usually check their
profile. With the introduction of the GamerShape in each user’s profile, it would be much easier
for every user to access their skills level or being able to change their user preferences as they

get more experience.

Shoapstick z'
2LHTe 0@ -

Community

Welcome to E3

. Shapstick \‘.—«
¢ 7180 ®
/] ‘“"IE:":}

ﬂ"Jn'

Figure 16 : Representation of the GamerShape integrated on the XBOX360 dashboard.

Once a new profile is created, the system will ask the user to perform an ability test to create a
player handicap that matches user’s level and store it's values into the user profile. This will allow
the system to recreate the GamerShape at any given time. After that, we will need to ask the

user some questions to obtain each user preferences and add them too.

44

store the player handicap and the
user preferences insde the profie

.

-access user profie
-load player handicap
-adjust gameplay as needed

Figure 17 : Integration scheme.

This data will have to be accessible for all the different games played on the console. Once we
start playing a game, while loading, access to the profile wil be needed in order to adjust the
game difficulty and gameplay to the required level (see Figure 17 for an scheme). When the
player finally completes the game, based on their performance, an update of the Player
Handicap would be needed to approximate the new skills after completing the game. The user
can also update his Player Handicap taking the ability test again once every two or three

months, if they don't play usually.

Associating the GamerShape and user preferences with the extension of the profile will allow our
friends or any player to check our skils, bringing online gaming a step further. Using the internet
connection, any player could download their profile to a friend’'s console in order to adjust the
difficulty or gameplay while playing multiplayer. We will not only know the level of a player as a
number, we wil know which skill each player is good at. As more games include online
cooperative modes, players will able to choose team mates that compensate their own skills or

players with equal skills so the gameplay doesn’t change.

3.4.2 single game gameplay adjusting

With the amount of companies and studios in the videogame industry, people may think it’s
impossible to reach an agreement on standardizing difficulty levels, the GPM can be used to
come to a standard among different studios in a major distributor. If we base the project from
this point of view, specially if it's a third party distributor, getting players to play a test for each
company or the use the GamerShape to represent their skills wouldn’t be the appropiate method

to proceed.

45

The market is not gonna be interested on having a dozen of gamershapes in their profile to
compare, less if they have to go through a skill test everytime they purchase a game from a

new company.

We must obtain the same results while the process is invisible to the consumer, the goal is to
obtain the data from the player and calibrate gameplay based on the skills levels. Even
considering saving data, thanks to the large capacity hard drives consoles include lately, this
data will need to be actualized at some point or created for the first time. It is in this case where

we need to obtain the data without letting the player know when it is done.

This can be achieved taking advantatge of the tutorial. Most games have a tutorial at the start
of the game to let players get used to the controllers, training mode if avalaible or even the
game walkthrough. Single player modes or campaigns usually include a first “level” or zone used
as tutorial to show actions or situations the game is based on. Obtaining different data from
these tutorials could allow developers to determine the skills of the gamer playing their own

game and adjust the parameters of the gameplay without changing the game experience.

The time needed to finish the tutorial and the simple actions that compound it, the outcome of
the different actions as damage received, number of deaths or even shots needed to defeat an
enemy are just some examples of how the data can be obtained. If GPM is used, once a game
has been finished, if it has been started again or the second time a player does the tutorial, the
data results wil in most cases improve from the first time it was played, raising the difficulty
where needed in this second walkthrough or allow the player visit new areas that in the first time

weren't avalaible.

Until this point, GamePlay Morphing can be seen as an automatic difficulty level chosen at the
start of the game. GPM's goal is to improve game’s experience making the game more
challenging as the user gets better at playing at it. We can mark some checkpoints through the
game where more data will be obtained and establish the new gameplay scene. For a 20 hour
single player game, five checkpoints can be performed to see how the player manages the
game. The data stored, along with the game data, can be something similar to the player

handicap explained before and be saved on the hard drive.

Single Game dynamic difficulty adjustment has been discussed by a large amount of industry
insiders as seen in section 1.1. Single game adjustment is not the main focus of this work as it
is more focused at creating a standard in the industry. For more detailed information read
Hunicke's (Robin Hunicke 2004 ; Hunicke 2005) work.

46

4. RESULTS

This chapter is dedicated to show the obtained results in this project. First, in section 4.1, we
will show the skill's test running on a Nintendo DS Lite. Section 4.2 wil give a description on the
expected results, based on studies in how people that play videogames have better skills.

Section 4.3 wil finally discuss the results obtained by people actually performing the skills™ test.

4.1 the test

Once the test has been developed and tested we can show some images of the test running in

an actual Nintendo DS Lite (see Figures 18-24).

FenCOMBO 13

COMBO 1 OR t@
WNNNCONBD Swewnwn

COMBD 2 FRALLADD

SEGUNDAR OPORTUNIDAD PARA COMBOD 2

COMBO 2 OK
saexCOMBO Swwwwx

Figure 18 : Combo making application.

Figure 18 shows the combo application running in the system. We can see on the top screen
the button sequence the user has to press while the bottom screen prints the results for each
combo. If the combo is achieved, the application wil print an Ok message, while if the combo is

a fail, an error message will appear on screen.

47

Figure 19 : The touching targets application.

Figure 19 shows the first round of the shooting target application. This application displays on
the bottom screen a background with the image of a forest and renders the target as a sprite

on top of the background.

Figure 20 : Response time application.

Figure 20 shows the response time application. The required button to be pressed appears on
the bottom screen and stays there until the user presses it. After a random interval between

0,5 and 6,5 seconds a new button will appear on the screen.

48

Figure 21 : The door puzzle.

Figure 21 is The Door puzzle. As we can see, the top screen shows the puzzle itself, where the
colours that appear in the door are linked to colours of the clock. The bottom screen shows us

a keypad where the right combination has to be introduced.

Figure 22 : Hidden numbers puzzle.

The image on the top screen of Figure 22 shows a hypothetical game map with numbers
hidden in it. When the user finds the correct combination, it has to be introduced in the bottom
screen’s keypad.

49

B

TEST DE MEWORIA
RECUERDR LOS COLORES
ROMDR 1 S COLORES

PRESIONA R FAFR EWFEZA%

Figure 23a : Memory test sequence. Figure 23b : Memory test input.

Figures 23a and 23b show the memory test. In Figure a we can see how the colour sequence
is displayed on screen, the whole top screen displays each colour in the sequence, while Figure
b, shows the user's sequence input. Once the colour sequence is finished, the top screen

becomes black, and an image with all the possible colours appears in the bottom screen.

COMBOS : 7

DIANAS : 6 aciertos
T. RESPUESTA: 937 centesimas

B3 S ™
FIEYRO. P"R e’ sEBuRBEE"C"
FIBMR. MRTOG ocOnBBE "

BT

A

Figure 24 : Skills’ test results.

50

Figure 24 shows the output of the skills test once is finished. The test will display on screen all
the output for each application, so the results can be copied all at once and processed to obtain

the Player Handicap and its GamerShape.
4.2 expected results

Studies made to test how videogames can improve human skills (Roach 2003; Delahunty
2007; H 2007), have come to similar conclusions that people that play videogames improve

their cognitive skills, reaction time and also improve their pheripherical vision.

The implemented skills test will be performed by both gamers and non-gamers and we can
expect different results from both groups. From the skills that will be tested (precision, timing,

controller, puzzle and dedication), there are some that will likely be higher in the gamers group.

The controller ability is most likely to be higher in the gamers group because this group is used to
playing videogames. With the controller ability there is a remark that has to be made, as this test
is only performed in one system, some players could not be used to playing with this system
therefore the final value could be different if performed on another system. Players that usually
play videogames on the Nintendo DS system wil likely have a better performance in the

controller test.

The other abilities expected to be performed better by the group of gamers are the timing (that
comes from a reaction time test) and the puzzle solving. As the studies mentioned before, the
reaction time improves the more hours a person plays videogames. The puzzle solving test is
based on puzzles that have similarities with puzzles in real videogames, but it doesnt mean that
gamers will perform better as there can be people that don't play videogames that are used to

it or like to solve puzzles.

The precision ability doesn't have to be necessarily better in the gamers group as it just involves
touching targets on the touch screen and the dedication also depends on each person, if they

like challenge or not.
4.3 skills” test results

The test has been finished and debugged and we have asked people to take the test in order to
have enough results to evaluate them. The test has been sent to people that own a Nintendo
DS. We have asked them to provide us with the results with the condition that the test could

only be taken once or the results that were sent back would be from the first take.

51

Some of the results have been discarded as it was clear they were not possible (maximum
results in all the challenges or impossible solving times for both puzzles). To discuss the obtained
results in this section it has been decided to only use the results taken from people that did the

test infront of us so we can be sure the final results are valid.

The results presented in this section come from 50 different people, divided into 25 people that
play videogames usually and 25 people who don't play videogames. It has been decided to use
the same amount of people from both groups so we can compare the average GamerShape

from each group.

These 50 people are also compose of 33 men and 17 women, although the comparision of the
average GamerShape of each group may not be precise, it can be interesting to compare both

GamerShapes.

The first GamerShape to be discussed is the one obtained when taking the average Player

Handicap values from the 50 people (see Figures 25 and 26).

Average GamerShape

CONTROLLER
DEDICATION ¢ ? 5 PUZZLE PAR
GamerShape
TIMING ™ PRECISION
Figure 25 : Average GamerShape.
AVERAGE PLAYER HANDICAP
Controller Puzzie Precision Timing Dedication
46 64 71 78 66

Figure 26 : Average Player Handicap.

As we can see it's an equilbrated GamerShape with the controller skill having the smaller value.
This is expected because the non-gamer group are not used to playing videogames and the
gamer group doesn't have to be used to playing with the Nintendo DS buttons, that is why the

combo making values can be low.

52

The other skills have an average value in the range of 66-75% aproximately of the maximum
value, which can be considered as good values but with enough room for improvement. The
best skill is timing, with a value of 78. We will need to see if this high value comes from the

gamers or non-gamers group.

Now we wil compare the gamers group’s average GamerShape with the non-gamers one.

(Figures 27-30).
Average gamer GamerShape

CONTROLLER
E
DEDICATION ¢~ . PUZZLE PAR

GamerShape

TIMING " PRECISION

Figure 27 : Average gamer GamerShape.

AVERAGE GAMER PLAYER HANDICAP

Controller Puzzle Precision Timing Dedication

58 71 71 87 77

Figure 28 : Average gamer Player Handicap.

Average non-gamer GamerShape

CONTROLLER

DEDICATION <__ 5 . PUZZLE PAR

GamerShape

TIMING — PRECISION

Figure 29 : Average non-gamer GamerShape.

AVERAGE NON-GAMER PLAYER HANDICAP

Controller Puzzle Precision Timing Dedication

35 58 71 68 55

Figure 30 : Average non-gamer Player Handicap.

53

The figures in the last page show clearly how the gamer’'s GamerShape is significantly better
than the non-gamers one. Looking at their Player Handicaps, the timing value is specially high
for the gamers’ group, as we could expect thanks to the studies exposed in section 4.2. All the
values are higher in the gamers group except the precision value where both groups achieved
the same value. This reinforces the hypothesis on how touching the screen with the stylus

wasn't related to playing videogames, as everybody has used a touch screen before.

Gamers were also better at solving the puzzles and remembering colours and used less hints
than non-gamers. With these results we can say that non-gamers are less likely to enjoy being
stuck while playing and that they play more to have fun. Figure 30 also shows how non-
gamers can find it really complicated to play videogames as they are not used to the controllers.
Having to play a game with 8 different buttons can be a serious problem making people not

enjoy the experience.

Non-gamers could really take advantage of GamePlay morphing with these values, because the
games they play would be at their skill's level, for example in precision they wouldn’t need an
easier game, but both puzzles and controller would be less complicated for them. Also with
GPM, if one person of each group played against each other, we could balance the gameplay so
it would be an interesting game. If GPM is not applied, the non gamer wouldn't have a chance at
winning.

Next we will compare the average men and women’s GamerShape, starting with the groups of

33 men and 17 women (Figures 31-34).

Average women GamerShape

CONTROLLER
|
l
DEDICATION «._ | -~y PUZZLE PAR

GamerShape

TIMING — PRECISION

Figure 31 : Average women GamerShape.

AVERAGE WOMEN PLAYER HANDICAP

Controller Puzzle Precision Timing Dedication

41 65 75 74 66

Figure 32 : Average women Player Handicap.

54

Average men GamerShape

CONTROLLER
i
%
DEDICATION ¢ ‘ » PUZZLE PAR

GamerShape

TIMING ~ ~ PRECISION

Figure 33 : Average men GamerShape.

AVERAGE MEN PLAYER HANDICAP

Controller Puzzle Precision Timing Dedication

49 64 69 79 66

Figure 34 : Average men Player Handicap.

We can extract some interesting conclusions from these two GamerShapes, although the
groups are not balanced. The 17 women show better precision (6 points above) and they are
slighty faster at solving the puzzles, while we can see the dedication doesn’t have anything to do
with genres as both groups have the same value. The men obtain better results at timing and

controller, something that could be expected.

Finally we will show some interesting GamerShapes obtained from the test, and explain how

they could take advantge of GPM (see Figures 35-40)

FEMALE 29 NO
CONTROLLER
E
DEDICATION e % > PUZZLE
GamerShape
TIMING— PRECISION

Figure 35 : 29 years old non-gamer female GamerShape.

55

Figure 35 shows the obtained GamerShape from a 29 year old female who doesnt play
videogames. We can clearly see a really good skil precision, and a total dedication, while the
other skills are quite poor. With GPM, this person would find a higher difficulty for her skills level,
and parts of the game that involve timing or puzzles would be easier compared to more
experienced player. The games that need precision, would have a higher difficulty as her level is
high.

MALE 34 NO
CONTROLLER
DEDICATION ¢ L - puzILE
GamerShape
TIMING * ~/bRECISION

Figure 36 : 34 years old non-gamer male GamerShape.

Figure 36 shows us a similar case with the difference being that this user has a high puzzle skills
level. If this user plays an adventure game, the puzzle parts would be difficult, while the fight
parts that involve controller skills would be easier. We could also reduce the number of needed

buttons to play while the person gets used to playing videogames.

MALE 26 NO
CONTROLLER
|
DEDICATION : N PUZZLE
A GamerShape
TIMING— PRECISION

Figure 37 : 26 years old non-gamer male GamerShape.

The GamerShape in Figure 37 shows us a completely different case, a non-gamer with actually
good skills for playing videogames. When this person plays videogames, they wouldn't need to

be as easier as expected. Precision parts of the gameplay would need to lower their difficulty,

56

while puzzles and quick events would be more difficult. Also, seeing the dedication, we know this
person likes challenges, so GPM would increase the difficulty of the game, in order to provide a

personalized experience to this player.

MALE 24 YES
CONTROLLER
DEDICATION #& _ PUZZLE
GamerShape
TMING — PRECISION

Figure 38 : 24 years old gamer male GamerShape.

Comparing the GamerShape in Figure 38 with the one in Figure 37, we can see a good
difference between a gamer user and a non-gamer one. Obviously the gamer will have better
controller skills, but in this case, the non-gamer is better at solving puzzles. For the
GamerShape in Figure 38, fighting games will have a higher difficulty than puzzle games, and
advendure games would adjust each part of the gameplay to the required levels, matching the
player’s level in each ability. We can see in this GamerShape how a gamer doesn't have to be
good at all the abilities, so it doesn't make sense to raise or decrease the difficulty of all the

parameters to the same level.

MALE 29 YES
CONTROLLER
DEDICATION ¢ S PUZZLE
. GamerShape
TIMING ’+PREC'ISION

Figure 39 : 29 years old gamer male GamerShape.

57

The user with the GamerShape in Figure 39 have similar skills to the user who's GamerShape is
in Figure 38. The difference in this case is the dedication, being half the dedication in Figure 39.
This gamer doesn't really enjoy getting stuck at playing videogames, so the difficulty would be
better adjusted to his level, so he could finish the game without complications, enjoying the
game more. For this GamerShape, quick events and other timing gameplay parts would have a

higher difficulty than the rest of the game.

MALE 24 YES
CONTROLLER
DEDICATION ¢ . PUZZLE
GamerShape
TIMINGI';— “PRECISION

Figure 40 : 24 years old gamer male GamerShape.

Finally, the gamer who's GamerShape is in Figure 40 would have a high difficulty in all the
parameters of the game, making the precision games slightly easier. This Gamershape is the

best one from all the obtained results.

58

5. CONCLUSIONS & IMPROVEMENTS

In this project we have introduced the current state of dynamic difficulty adjustment and the
different approaches the videogame industry has done to solve this problem. We also have
exposed the increasing concern the industry has about appealing to the widest possible audience

when releasing a new game.

We have exposed some examples of why GamePlay morphing can be beneficial for the
videogame industry by balancing videogames difficulty based on differents parts of gameplay,

instead of raising or decreasing all the parameters of the game at the same time.

In order to balance videogames’ gameplay and dynamically adjust the difficulty of these games,
we have defined the necessary skills required to play videogames and provided a graphical way

to show these skills to the console users, the GamerShape and its Player Handicap.

We also have defined techniques to evaluate these skills, designing the ability test that will be
used to create each user's GamerShape from the obtained values of this test. An explanation
and justification of the output values from this test and the created formulas to obtain the Player

Handicap and consequently the GamerShape has also been made.

The ability test has been implemented for the Nintendo DS platform explaining all the steps
needed to set up a developing environment. For each application we have exposed the most

important feature that has been used and the source code needed to implement this feature.

In order to anticipate which results would be good to obtain from the ability test, we have done
a research on the different projects that study how videogames improve human skills. Thanks

to this research we have exposed the expected results from this project.

Once the test was implemented, we have asked different people to take it so we could extract
the required results for this project. We have presented the obtained results showing different

Gamershapes from both groups of people and from a single person.

The results of the ability test match up with the expected results, proving that GamePlay

morphing can be a valid solution to balance difficulty in today’s videogames.

The hardest part of this project has been the design of the ability test, in order to be able to
create a valid test that would correctly evaluate the required skills. Implementing the test hasn't

been easy, the most problems occurred when trying to display the sprites on screen.

59

As for future improvements that could be made for this project, we could implement the ability

test for other console systems and find the best way to update the GamerShape of each user:

- Regarding the controller ability, if the test is implemented on home game consoles, their
controller implements analogue sticks. We should update the combo application to
include button sequences with the analogue sticks. Musical games can be seen as a
combination of timing and controller ability as they ask to press a sequence of buttons
at a correct rhythm. We could use these musical games to track both timing and

controller abilities.

- For the precision skill we should also add the analogue sticks to our test. One way to
observe the precision could be making the user change the direction of the camera with
the stick and make them look at an object. Tracking the time needed and the number
of direction changes achieved to correctly point the object. The wii remote controller
includes a pointer that allows people to point directly to the screen, so we should
change the target test using the pointer instead of the stylus. In the case of analogue

controllers, the stick would be used to point the different targets.

- It's obvious that making each player perform the same test over and over again to
update their Player Handicap is not a wise choice. Most people would remember the
answers and it would be tedious to perform the same task everytime. There are two
options to update the player's handicap and we can use them separately or combine
both of them. First option would be creating a new test every two or three months to
update the values, these tests wouldn't have to be as big as the first test that each
user does when creating a profile, just adding a new challenge for each ability would be
enough to see if it has improved. As most videogames give punctuations when the
player has finished a game, depending on the difficulty and the scored value, we can
easily know if the skill's level is good or bad. If the punctuation is high, we could update
the player handicap (a reasonable value) by increasing it, or decrease it if the

punctuation is bad.

60

APPENDIX A

This appendix contains a brief description of each header file that is included on the libnds library.

Each file contains the needed definitions to implement some high level functions.

background.h
bios.h
boxtest.h
cache.h
console.h
debug.h

decompress.h

dma.h
dynamicArray.h
fifocommon.h
fifomessages.h
image.h
arm7/input.h
arm9/input.h
interrupts.h
keyboard.h
linkedlist.h
math.h

memory.h

nds.h
ndsmotion.h
ndstypes.h
pcx.h

postest.h

Nds background defines and functionality
Nintendo DS Bios functions

Box Test Functions

ARMS cache control functions

Nds stdio support

Currently only used to send debug messages to NO$GBA debug window

Wraps the bios decompress functionality into something a bit easier to deal

with

Wrapper functions for direct memory access hardware
A dynamically resizing array for general use

Low level FIFO API

Standard fifo messages utilized by libnds

An image abstraction for working with image data
NDS input support

NDS input support

Nds interrupt support

Nds stdio keyboard integration

A simple doubly linked, unsorted list implementation
Hardware coprocessor instructions

Defines for many of the regions of memory on the DS as well as a few
control functions for memory bus access

Master include file for nds applications

Interface code for the ds motion card, ds motion pak, MK6
Custom types employed by libbnds

A simple 256 color pcx file loader

Position Test Functions.

61

http://www.devkitpro.org/libnds/a00062.html
http://www.devkitpro.org/libnds/a00062.html
http://www.devkitpro.org/libnds/a00063.html
http://www.devkitpro.org/libnds/a00063.html
http://www.devkitpro.org/libnds/a00064.html
http://www.devkitpro.org/libnds/a00064.html
http://www.devkitpro.org/libnds/a00065.html
http://www.devkitpro.org/libnds/a00065.html
http://www.devkitpro.org/libnds/a00068.html
http://www.devkitpro.org/libnds/a00068.html
http://www.devkitpro.org/libnds/a00069.html
http://www.devkitpro.org/libnds/a00069.html
http://www.devkitpro.org/libnds/a00070.html
http://www.devkitpro.org/libnds/a00070.html
http://www.devkitpro.org/libnds/a00073.html
http://www.devkitpro.org/libnds/a00073.html
http://www.devkitpro.org/libnds/a00074.html
http://www.devkitpro.org/libnds/a00074.html
http://www.devkitpro.org/libnds/a00076.html
http://www.devkitpro.org/libnds/a00076.html
http://www.devkitpro.org/libnds/a00077.html
http://www.devkitpro.org/libnds/a00077.html
http://www.devkitpro.org/libnds/a00079.html
http://www.devkitpro.org/libnds/a00079.html
http://www.devkitpro.org/libnds/a00044.html
http://www.devkitpro.org/libnds/a00044.html
http://www.devkitpro.org/libnds/a00044.html
http://www.devkitpro.org/libnds/a00044.html
http://www.devkitpro.org/libnds/a00080.html
http://www.devkitpro.org/libnds/a00080.html
http://www.devkitpro.org/libnds/a00081.html
http://www.devkitpro.org/libnds/a00081.html
http://www.devkitpro.org/libnds/a00082.html
http://www.devkitpro.org/libnds/a00082.html
http://www.devkitpro.org/libnds/a00085.html
http://www.devkitpro.org/libnds/a00085.html
http://www.devkitpro.org/libnds/a00087.html
http://www.devkitpro.org/libnds/a00087.html
http://www.devkitpro.org/libnds/a00088.html
http://www.devkitpro.org/libnds/a00088.html
http://www.devkitpro.org/libnds/a00089.html
http://www.devkitpro.org/libnds/a00089.html
http://www.devkitpro.org/libnds/a00090.html
http://www.devkitpro.org/libnds/a00090.html
http://www.devkitpro.org/libnds/a00091.html
http://www.devkitpro.org/libnds/a00091.html
http://www.devkitpro.org/libnds/a00092.html
http://www.devkitpro.org/libnds/a00092.html
http://www.devkitpro.org/libnds/a00093.html
http://www.devkitpro.org/libnds/a00093.html
http://www.devkitpro.org/libnds/a00094.html
http://www.devkitpro.org/libnds/a00094.html

rumble.h
sassert.h

sound.h

sprite.h
system.h

timers.h

trig_lut.h

video.h

videoGL.h

Nds rumble option pak support
Simple assertion with a message conplies to nop if NDEBUG is defined

A simple sound playback library for the DS. Provides functionality for starting
and stopping sound effects from the ARM9 side as well as access to PSG
and noise hardware. Maxmod should be used in most music and sound effect
situations

Nds sprite functionality
NDS hardware definitions

Contains defines and macros for ARM7 and ARM9 timer operation. It also
contains a simplified API for timer use including the ability to chain multiple
callbacks to a single hardware timer

Fixed point trig functions. Angle can be in the range of -32768 to 32767.
There are 32768 degrees in the unit circle used by nds. To convert between
standard degrees (360 per circle) :

Basic defnitions for controliing the video hardware

OpenGL (ish) interface to DS 3D hardware

Table A1 : libnds files and brief description.

62

http://www.devkitpro.org/libnds/a00096.html
http://www.devkitpro.org/libnds/a00096.html
http://www.devkitpro.org/libnds/a00097.html
http://www.devkitpro.org/libnds/a00097.html
http://www.devkitpro.org/libnds/a00099.html
http://www.devkitpro.org/libnds/a00099.html
http://www.devkitpro.org/libnds/a00100.html
http://www.devkitpro.org/libnds/a00100.html
http://www.devkitpro.org/libnds/a00101.html
http://www.devkitpro.org/libnds/a00101.html
http://www.devkitpro.org/libnds/a00102.html
http://www.devkitpro.org/libnds/a00102.html
http://www.devkitpro.org/libnds/a00105.html
http://www.devkitpro.org/libnds/a00105.html
http://www.devkitpro.org/libnds/a00106.html
http://www.devkitpro.org/libnds/a00106.html
http://www.devkitpro.org/libnds/a00107.html
http://www.devkitpro.org/libnds/a00107.html

APPENDIX B

To start writing code for the Nintendo DS system there are some basic topics such as input

handling and graphic modes that will be discussed in this section.
B.1 input handiing

To be able to interact with the user we will need to know how to recognise the input of the

system, either buttons or touch screen.

Libnds defines a register named REG_KEYINPUT (see Figure B1) where the state of each

button will be stored in order to provide an easy way to check the current state of each button.

EFf D| C ([B|A|9)| 8| 7 (6|5 |4 |3 | 2 |1]0

- - Touch | Y X L R | Down | Up | Left | Right | Start | Select | B A

Figure B1 : Register in memory that holds the current state all keys

This register will contain a 1 in state of rest, and O if the key is pressed. Libnds provides top-
level functions to help checking button states. The first function is named scanKeys() and has
to be called before any key press processing is done. It scans the REG_KEYINPUT register and
prepares the data to be used for key state comparison functions. These three functions are
keysHeld(), keysDown(), and keysUp(). KeysHeld() function is used to scan which keys are
down and have down for a while, keysDown() and keyUp() are used to scan for the keys that

have been pressed down or released recently.

Libnds also defines each bit of the register as KEY_A for the A button, KEY_B for the B button

and so on. Code B1 and Code B2 gives an exameple of key handling.

scanKeys () ;

if (keysDown () & KEY A)

}/ If A button have been pressed recently
if(keysHeld() & KEY A)

}/ If A button have been pressed for a while
j_f (keysUp() & KEY A)

}/ If A button have been released recently

}

Code B1 : Example of key handling.

63

while (! (keysDown & KEY A))
{

scankeys () ;

}
//Wait until key A is pressed

Code B2 : Another example of key handling.

Touch screen’s input is a bit more complicated than the button’s input as it is not just a bit which
status is either on or off. The touch screen have to store the coordinates of the touch so the
developer can make interactive objects to the user. Libnds has a built-in struct named
touchPosition that holds px and py variables, and integer value between O and 256 for px and

an interger value between O and 192 for py.

The developer will only have to call the function touchRead(touchPosition) to store the new
coordinates in the struct (see Code B3).

// Create var touchXY type touchPosition

touchPosition touchXY;

scanKeys () ;

//if the touch screen have been pressed
if (keysDown () & KEY TOUCH)

{

//read new coordinates
touchRead (touchXY) ;

}
//New coordinates stored in touchXY.px and
//touchXY.py

Code B3 : Example of how to obtain coordinates of the touch screen.

These are just some basic examples to help understand libnds input handling, combining all

these different functions developers can create some complicated user interaction.
B.2 graphic modes and backgrounds

Backgrounds are a basic feature on videogames where the user is in control of a character that
moves on some type of background. As the Nintendo DS have two screens, there exists two
different 2D graphic engines, named main engine and sub engine. Each graphic engine will be
assigned to any of the bottom or top screens, leaving it up to the developer’s choice (see Code
B4).

lcdMainOnTop (); // main engine renders graphics in the top screen
lcdMainOnBottom(); // main engine renders graphics on bottom screen
lcdSwap(); //swap the screens the engines were rendering to

Code B4 : Existing functions to assign top and bottom screens to main and sub engines.

64

The main engine has 8 graphic modes avalaible while the sub engine has 6 graphics modes to
be used (see Table B1). There are some differences between both engines, the main engine is
the only able to render 3D graphics in the background O of each mode, and it also allows

developers to work with the framebuffer mode.

Main 2D Engine

Mode BGO BG1 BG2 BG3
Mode O Text / 3D Text Text Text
Mode 1 Text/ 3D Text Text Rotation
Mode 2 Text/ 3D Text Rotation Rotation
Mode 3 Text/ 3D Text Text Extended
Mode 4 Text/ 3D Text Rotation Extended
Mode 5 Text / 3D Text Extended Extended
Mode 6 3D - Large Bitmap -

Frame Buffer Direct VRAM display as a bitmap

Sub 2D Engine

Mode BGO BG1 BG2 BG3
Mode O Text Text Text Text
Mode 1 Text Text Text Rotation
Mode 2 Text Text Rotation Rotation
Mode 3 Text Text Text Extended
Mode 4 Text Text Rotation Extended
Mode 5 Text Text Extended Extended

Table B1 : Graphic modes.

Each graphic mode has 4 different background layers that are rendered separately where each
layer has a priority (O highes priority and 3 lowest priority) to know which layers wil be

rendered above the others.

65

FrameBuffer : Allows developers to manipulate every pixel on it's own. There’s a region
of memory that gets printed on screen directly. It has 256*192 pixels to manipulate and
the colour has to be set using RGB15 (5 bits for red, 5 bits for green and 5 bits for
blue).

3D : Background used to render 3D graphics, using videoGL (libnds library similar to
OpenGL).

Text: Text backgrounds divide the backgrounds into blocks of 8x8 pixels named Tiles.

Supports up to 512x512 pixels backgrounds.

Rotation: Similar to text backgrounds but they allow rotating and scaling these

backgrounds.

Extended : Similar to rotation backgrounds allowing developers to scroll and zoom the

backgrounds.
LargeBitmap : Allows developers to use 1024 x 512 pixels backgrounds.

Once the developer decides which graphic mode needs to be used for their application, they will
also need to know which memory bank to store the graphics in. There are 9 vram banks in total

to be used. Each one of them can be used for different purposes (see Table B2).

BANK CONTROL SIZE MODES
REGISTER
VRAM |VRAM_A _CR 128 VRAM A LCD
VRAM A KiB VRAM A MAIN BG 0x6000000 = VRAM A MAIN BG

VRAM A MAIN BG 0x6020000

VRAM A MAIN BG_0x6040000

VRAM A MAIN BG_0x6060000
VRAM A MAIN SPRITE

VRAM A TEXTURE SLOT0 = VRAM A TEXTURE
VRAM A TEXTURE SLOT1

VRAM A TEXTURE_SLOT2

VRAM_A TEXTURE_SLOT3
VRAM_B|VRAM_B_CR 128 VRAM B LCD

KiB VRAM B MAIN BG_0x6000000

VRAM B MAIN BG 0x6020000 = VRAM B MAIN BG
VRAM B MAIN BG 0x6040000

VRAM B _MAIN BG_0x6060000
VRAM B MAIN SPRITE

VRAM B TEXTURE_ SLOTO

VRAM B TEXTURE SLOT1 = VRAM B TEXTURE
VRAM B TEXTURE SLOT2

VRAM B _TEXTURE_SLOT3

66

VRAM_C

VRAM_C_CR

128
KiB

VRAM_C_ICD
VRAM C_MAIN BG_0x6000000

VRAM C_MAIN BG_0x6020000

VRAM C_MAIN BG_0x6040000 = VRAM C_MAIN BG
VRAM_C_MAIN BG_0x6060000

VRAM_C_ARM7

VRAM_C_SUB_BG_0x6200000 = VRAM C_SUB_BG
VRAM C_SUB_BG_0x6220000

VRAM C_SUB BG_0x6240000

VRAM C_SUB BG_0x6260000
VRAM_C_TEXTURE_SLOTO

VRAM_C_TEXTURE_SLOT1

VRAM_C_TEXTURE_SLOT2 = VRAM C_TEXTURE
VRAM C_TEXTURE_SLOT3

VRAM_D

VRAM_D_CR

128
KiB

VRAM D _LCD

VRAM D _MAIN BG_0x6000000

VRAM D MAIN BG_0x6020000

VRAM D MAIN BG_0x6040000

VRAM D MAIN BG_0x6060000 = VRAM D MAIN BG
VRAM D _ARM7

VRAM D _SUB_SPRITE
VRAM_D_TEXTURE_SLOTO
VRAM_D_TEXTURE_SLOT1
VRAM_D_TEXTURE_SLOT2

VRAM D _TEXTURE_SLOT3 = VRAM D TEXTURE

VRAM_E

VRAM_E_CR

64 KiB |VRAM_E_LCD

VRAM_E_MAIN BG
VRAM_E_MAIN_ SPRITE
VRAM_E_TEX_ PALETTE
VRAM_E_BG_EXT PALETTE
VRAM_E_OBJ_ EXT PALETTE

VRAM_F

VRAM_F_CR

16 KiB |VRAM F_LCD

VRAM_F_MAIN BG
VRAM_F_MAIN_ SPRITE
VRAM_F_TEX PALETTE
VRAM_F_BG_EXT PALETTE
VRAM_F_OBJ_ EXT_ PALETTE

VRAM_G

VRAM_G_CR

16 KiB |VRAM G _LCD

VRAM_G_MAIN_ BG
VRAM_G_MAIN_ SPRITE
VRAM_G_TEX PALETTE
VRAM_G_BG_EXT PALETTE
VRAM_G_OBJ_EXT_PALETTE

VRAM_H

VRAM_H_CR

32 KiB |VRAM_H_LCD

VRAM_H SUB_BG
VRAM _H SUB_BG_EXT PALETTE

VRAM_I

VRAM_I_CR

16 KiB |VRAM I LCD

VRAM I SUB_BG
VRAM I SUB_SPRITE
VRAM I _SUB_SPRITE_ EXT PALETTE

Table B2 :VRAM banks.

67

As we can see in Table B2 each memory bank can be used to store backgrounds, sprites,
textures for the main or sub engine, depending on the bank. Libnds provides some macros to

help configure graphic modes and vram banks.

videoSetMode & videoSetModeSub : used to determine the graphic mode used for each
engine and which backgrounds or layers will be enabled (see Code B5).
//set video mode to mode 5 with background 3 enabled
videoSetMode (MODE 5 2D | DISPLAY BG3 ACTIVE);

//set video mode to mode 5 with both background 2 and 3 enabled
VideOSetMOdeSub(MODE_5_2D | DISPLAY BG2 ACTIVE | DISPLAY BG3 ACTIVE);

Code B5: How to set up a graphic mode.

vramSetBankX : macro used to determine which function will have the desired bank and

which address will allocate the graphics (see Code B6).
//map vram A to start of main sprite graphics memory
vramSetBankA (VRAM A MAIN SPRITE 0x06400000) ;

//map vram B to start of main background graphics memory
vramSetBankB (VRAM B MAIN BG) ;

Code B6: How to set up banks to allocate graphics.

This section is just a glimpse of the functions avalaible to developers for configuring and using
graphics and input on the DS. There are so many functions and macros defined by libnds to be
explained in this project. The reason for this is to teach the basics on how to develop for the DS.
For more information refer to libnds documentation(doxygen 2009) and dev-scene tutorials

(Hull 2009).

68

BIBLIOGRAPHY & REFERENCES

Adam, E. (2002). "Balancing Games with Positive Feedback.” Gamasutra (Electronic)

Adam, E. (2008). "Difficulty Modes and Dynamic Difficulty Adjustment ”
Gamasutra_(Electronic).

Amero, J. (2008). “Introduction to Nintendo DS Programming’.

Capcom. (2006). "Resident Evil Portal.” from http://www.residentevil.com/.

David Thomas, K. O., Scott Steinberg (2007). “The videogame style guide and reference
manual’, Power Play Publishing.

Delahunty, J. (2007) "Video games improve Surgeons’ skills.”
dev-scene.com (2006). “Nintendo DS Memory Map”, dev-scene. 736x996.

doxygen. (2009). "Libnds Documentation.” Retrieved 12-01, 2010,
from http://www.devkitpro.org/libnds/ .

Entertainment, S. C. (2008). "Playstation Network Trophies.”
from http://www.us.playstation.com/go/trophies/ .

H, N. (2007). "Benefits of playing videogames.” Helium.

Hull, A. (2009). "NDS Tutorials.” Retrieved 12-01, 2010,
from http://dev-scene.com/NDS/ Tutorials.

Hunicke, R. (2005). "The case for dynamic difficulty adjustment in games.”
Hyman, P. (2007) "Microsoft’s Achievement Points Yield ‘Nerd Cred’.” GameDaily.
Kosinski, R. J. (2009). “A Literature Review on Reaction Time Clemson University”.

Maxmod. (2008). "Maxmod Programming Reference.” Retrieved 12-01, 2010,
from http://www.maxmod.org/ref/.

Roach, J. (2003). "Video Games Boost Visual Skills, Study Finds.” National Geographic.
Robin Hunicke, V. C. (2004). "Al for Dynamic Difficulty Adjustment in Games.”
Saltzman, M. (2009). “Nintendo confirms secret 'Help’ feature”. USA Today

Various. "Maxmod Sound System.” Retrieved 12/20, 2009,
from http://www.maxmod.org/.

69

http://www.residentevil.com
http://www.residentevil.com
http://www.devkitpro.org/libnds/
http://www.devkitpro.org/libnds/
http://www.us.playstation.com/go/trophies/
http://www.us.playstation.com/go/trophies/
http://dev-scene.com/NDS/Tutorials
http://dev-scene.com/NDS/Tutorials
http://www.maxmod.org/ref/
http://www.maxmod.org/ref/
http://www.maxmod.org
http://www.maxmod.org

Various. (2008). "Video game genres.” Retrieved 03-01, 2010,
from http://en.wikipedia.org/ wiki/ Video game genres.

Vijn, J. (2007). "Coranac) Projects.” Retrieved 12/01, 2010,
from http://www.coranac.com/projects/#grit.

70

http://en.wikipedia.org/wiki/Video_game_genres
http://en.wikipedia.org/wiki/Video_game_genres

