

Proyecto Fin de Carrera

Ingeniería Técnica de Telecomunicaciones

Especialidad en Sistemas Electrónicos

__

Robot Móvil con EVK1100
Estudio y Aplicación

Francisco Manuel Muñoz Verdú

__

Director: Joan Oliver i Malagelada

Departamento de Microelectrónica y Sistemas Electrónicos

 Escola d’Enginyeria (EE)

 Universitat Autònoma de Barcelona (UAB)

Junio 2010

II

III

El tribunal d‟avaluació d‟aquest Treball Fi de Carrera, reunit el dia 7 de juliol de 2010, ha

acordat concedir la següent qualificació:

Tribunal: Joan Oliver i Malagelada

Pedro de Paco Sánchez

Núria Barniol Beumala

IV

V

El sotasignant, Joan Oliver i Malagelada, Professor de l‟Escola d‟Enginyeria (EE) de la

Universitat Autònoma de Barcelona (UAB),

CERTIFICA:

Que el projecte presentat en aquesta memòria de Projecte Fi de Carrera ha estat realitzat sota

la seva direcció per l‟alumne Francisco Manuel Muñoz Verdú.

I, perquè consti a tots els efectes, signa el present certificat.

Bellaterra, 21 de Juny del 2010.

Signatura:

VI

VII

VIII

IX

ÍNDICE

1. Introducción ... 1

1.1 Estructura de la Memoria .. 2

2. Planificación, Requisitos y Herramientas de Trabajo ... 5

2.1 Requisitos Previos ... 5

2.2 Herramientas de Trabajo ... 5

2.3 Planificación .. 6

3. Arquitectura AVR32... 9

3.1 Arquitectura ... 9

3.2 CPU ... 10

3.2.1 Prefetch Unit .. 10

3.2.2 Decode Unit ... 11

3.2.3 The Execute .. 11

3.3 La Memoria .. 11

3.4 Registros ... 12

3.5 Interrupciones y Excepciones ... 13

3.5.1 Supervisor calls ... 13

3.5.2 Debug requests ... 14

3.6 Memory Protection Unit ... 14

3.7 HSB (Matriz de Buses) .. 15

3.8 Sistema OCD ... 16

3.9 Power Manager ... 16

3.10 Real Time Counter .. 16

3.11 Timer/Counter .. 17

3.12 Interrupt Controller... 17

3.13 External Interrupts Controller .. 17

3.14 Interfaces de entrada y salida ... 17

3.14.1 GPIO .. 17

3.14.2 ADC ... 18

3.14.3 PWM .. 18

3.14.4 Universal Sync/Async Receiver/Transmitter ... 18

3.14.5 Two Wire Interface .. 18

4. Comparativa .. 21

4.1 AVR32 vs AVR8 .. 21

4.1.1 AVR 8-Bit RISC ... 21

4.1.2 Principales diferencias... 22

4.2 AVR32 vs ARM .. 24

X

4.3 Otras Alternativas .. 27

4.3.1 Fujitsu .. 27

4.3.2 Altera ... 27

4.3.3 Freescale ... 28

4.3.4 Luminary Micro .. 28

4.3.5 Microchip ... 29

4.3.6 NXP ... 29

4.3.7 Renesas .. 29

4.3.8 Texas Instruments ... 30

4.4 Tabla comparativa ... 30

5. Uso del AVR32 en un robot móvil ... 33

5.1 Características del AVR32 para la robótica .. 33

5.2 La placa EVK1100 en un Robot Autónomo .. 35

5.2.1 Alimentation ... 36

5.2.2 Memoria externa .. 37

5.2.3 Osciladores .. 37

5.2.4 USARTS .. 37

5.2.5 SPI ... 37

5.2.6 TWI .. 38

5.2.7 Ethernet y USB .. 38

5.2.8 JTAG.. 39

5.2.9 LCD.. 39

5.2.10 LEDs .. 39

5.2.11 Push Buttons y Joystick... 39

5.2.12 Area de conexionado... 40

5.2.13 Potenciómetro y Sensor de Temperatura y Luz .. 40

5.3 Personalizando la placa .. 40

5.3.1 Motores DC ... 41

5.3.2 Servomotor .. 41

5.3.3 Sensores IR ... 42

5.3.4 Bluemore200 ... 42

5.3.5 Tabla de Conexionado .. 42

5.4 Programación del AVR32 .. 43

5.5 Software de control.. 46

5.5.1 Aplicación de Control... 46

5.5.2 Software del AVR32 .. 46

5.6 Pruebas y Resultados ... 47

5.6.1 Pruebas ... 47

XI

5.6.2 Resultados ... 48

6. Conclusiones ... 51

7. Bibliografía .. 53

Anexos .. 55

A. Programación .. 55

A.1 Entorno de programación .. 55

A.2 AVR32 Studio .. 55

A.3 ¿FreeRTOS o programación “standalone”? .. 58

A.4 Programación del AVR32 .. 59

B. Aplicación de Control en Visual Basic 6.0 ... 65

C. Software de Control del Microcontrolador ... 72

XII

ÍNDICE DE FIGURAS

Figura 1: Herramientas necesarias para el diseño del Software .. 6

Figura 2: Planificación del Proyecto .. 7

Figura 3: Diagrama de bloques del núcleo AVR32 UC3 ... 10

Figura 4: Etapas del Pipeline del AVR32 UC3 .. 11

Figura 5: Ficheros de Registro del AVR32 .. 12

Figura 6: Parte superior del registro SR (Status Register) ... 13

Figura 7: Memory Protection Unit Address Register ... 14

Figura 8: Memory Protection Unit Access Permission Register ... 15

Figura 9: La matriz de buses (HSB) .. 15

Figura 10: Escalabilidad de los microcontroladores AVR8 ... 22

Figura 11: Diagrama de bloques de la arquitectura AVR32 (derecha) vs AVR8 (Izquierda) 23

Figura 12: Relación Consumo / Potencia de los microcontroladores AVR8 y AVR32 24

Figura 13: Pruebas de rendimiento normalizadas para AVR32, ARM9 y ARM11. 26

Figura 14: Pruebas de tamaño de código optimizado para la velocidad. 26

Figura 15: Visión general de la placa de evaluación EVK1100 .. 36

Figura 16: Conectores USART (izquierda) y interfaz SPI (derecha) .. 38

Figura 17: Visión del conector USB .. 38

Figura 18: Visión de la pantalla LCD ... 39

Figura 19: Pulsadores y Joystick de la EVK1100 ... 40

Figura 20: Elementos necesarios para la construcción del Robot .. 41

Figura 21: Funcionamiento de un servomotor .. 42

Figura 22: Diferentes interfaces de programación del AVR32 .. 43

Figura 23: Conexiones necesarias para la programación a través de JTAG 45

Figura 24: Conexiones necesarias para la programación JTAG .. 45

Figura 25: Aplicación de Control ... 46

Figura 26: Diagrama de bloques del conexionado del sistema .. 47

Figura 27: Ventana de dispositivos en AVR32 Studio .. 56

Figura 28: Configuración del microcontrolador en AVR32 Studio .. 56

file:///C:/Users/Fran/Desktop/PFC_Robot_Movil_con_EVK1100_Francisco_Manuel_Munoz_Verdu.docx%23_Toc264910516
file:///C:/Users/Fran/Desktop/PFC_Robot_Movil_con_EVK1100_Francisco_Manuel_Munoz_Verdu.docx%23_Toc264910517
file:///C:/Users/Fran/Desktop/PFC_Robot_Movil_con_EVK1100_Francisco_Manuel_Munoz_Verdu.docx%23_Toc264910527

XIII

ÍNDICE DE TABLAS

Tabla 1: Cantidad de memoria según el modelo .. 11

Tabla 2: Direcciones de memoria del AVR32 UC3 ... 12

Tabla 3: Tabla paramétrica del AVR8 y el AVR32 .. 24

Tabla 4: Características paramétricas de los diferentes microcontroladores 31

Tabla 5: Conexiones necesarias hacia la placa de evaluación EVK1100 43

Tabla 6: Programadores disponibles en el mercado... 44

XIV

1

1. INTRODUCCIÓN

En la actualidad, el microcontrolador forma parte fundamental del entorno que nos rodea,

encontrándose presente en nuestro trabajo, casa y vida en general. La versatilidad que

introducen los microcontroladores permite desarrollar sistemas complejos, que de haber sido

desarrollados de forma tradicional, hubieran necesitado grandes cantidades de componentes

electrónicos. Este hecho ha favorecido su uso en todo tipo de dispositivos como pueden ser

pantallas LCD, dispositivos USB, dispositivos de comunicación Bus-CAN o Wireless, en

vehículos, en elementos lumínicos como pueden ser bombillas o fluorescentes, baterías o en

general en cualquier dispositivo electrónico que podamos encontrar en nuestro entorno.

La compañía Atmel puso en el mercado en el año 1997 los microcontroladores AVR8, el primer

producto de arquitectura propia de Atmel. Los AVR8 son altamente utilizados en múltiples

aplicaciones, ofreciendo un rendimiento muy bueno, debido a que fueron los primeros micros

de 8 bits en implementar instrucciones RISC (aunque no todas las instrucciones tienen el

mismo tamaño) y ofreciendo un diseño mucho más moderno que sus competidores, los PIC.

En general, podemos decir que los AVR8 ofrecen un rendimiento excepcional, equiparable a

otros microcontroladores de 16 bits, pero a un coste de uno de 8 bits.

Con la aparición de la arquitectura AVR32 (como evolución natural del AVR8), Atmel ha vuelto

a revolucionar el mercado de los microcontroladores. Esta nueva arquitectura proporciona

CPU‟s de altas prestaciones y bajo consumo energético, a un precio reducido. Comparados

con sus competidores directos en precio y prestaciones, los ARM9 y ARM11, los AVR32 son un

35% más veloces y la densidad de código empleado es entre un 30% y un 50% más pequeña.

El estudio de los microcontroladores, los AVR32, representa la base del presente proyecto. Por

ello, el proyecto se ha desglosado en dos partes: el estudio de la arquitectura AVR32 y el

desarrollo de un robot móvil basado en la arquitectura AVR32.

La primera de estas dos partes, es un estudio enfocado a analizar la versatilidad de la

arquitectura AVR32 frente a otros microcontroladores existentes en el mercado, como son el

AVR8 o los ARM9 y ARM11.

En la segunda parte, se realiza un estudio de las posibilidades de la placa de evaluación

EVK1100, la cual incluye un microcontrolador AVR32 con núcleo AT32UC3A0512. Esta placa

nos proporcionará un completo entorno de desarrollo, equipado con un rico repertorio de

periféricos y memorias, que permite obtener todo el potencial de estos microcontroladores de

forma sencilla. Posteriormente, y mediante el uso de esta placa se desarrollará un robot móvil

que permita poner en manifiesto todas las prestaciones y mejoras que estos núcleos ofrecen.

Los objetivos del proyecto son:

 Estudio y análisis de la arquitectura AVR32.

 Estudio de las prestaciones y características que ofrece la placa de evaluación

EVK1100 para el diseño robótico, la cual incluye un microcontrolador con núcleo

AVR32 UC3 AT32UC3A0512.

 Comparativa entre los microcontroladores AVR32 y sus antecesores, los AVR8.

 Comparativa entre la arquitectura AVR32 y la de ARM9 y ARM11, así como con otras

arquitecturas existentes en el mercado.

2

 Construcción de un robot móvil mediante la placa de evaluación.

o El robot deberá poder funcionar de forma autónoma.

o Además, deberá permitirse el control remoto de forma inalámbrica desde un

PC.

 Programación de un software capaz de controlar la plataforma robótica de forma

remota desde un PC.

1.1 ESTRUCTURA DE LA MEMORIA

El presente documento ha sido estructurado de la siguiente forma:

1. Introducción: Se explica y detalla la motivación del proyecto así como se realiza una

pequeña introducción al estado del arte en el momento que actualmente nos

encontramos. Además, se detallan los objetivos que se pretende alcanzar con el

desarrollo de este proyecto.

2. Planificación, requisitos y herramientas de trabajo: En este punto se ofrece una

visión de cuál ha sido la planificación que se ha seguido durante la elaboración del

proyecto, así como también se detallan los requisitos previos a la ejecución del

proyecto y las herramientas de trabajo necesarias.

3. Arquitectura AVR32: Completo análisis de las principales características que

muestran estos microcontroladores.

4. Comparativa: Este punto se centra en ver cuáles son las ventajas que presentan los

AVR32 respecto a sus antecesores, los AVR8 y respecto a sus directos competidores,

los ARM9 y ARM11. Además, se realiza un estudio comparativo entre los

microcontroladores AVR32 de Atmel y el resto de alternativas presentes en el mercado.

5. Uso del AVR32 en un Robot Móvil: El siguiente capítulo, tiene como objetivos

mostrar cuales son las principales características que ofrece el AVR32 para la robótica.

Además y ya que todo el proyecto se realiza sobre la placa de evaluación EVK1100 la

cual contiene un microcontrolador AVR32 UC3, se muestra cuáles son sus

características y funciones principales. También se muestran las modificaciones que se

han llevado a cabo sobre la placa de evaluación y se explicará cual es el proceso que

se ha de seguir para poder programar estos microcontroladores sin la necesidad de

hacer uso de un kit de evaluación. Por último, se detallan los resultados obtenidos de

las pruebas realizadas al conjunto robótico.

6. Conclusiones: Una vez realizado todo el análisis y obtenidos los resultados, deseados

o no, se procede a hacer una sintaxis final del proyecto valorando también las posibles

problemáticas o incidencias surgidas durante el periodo de tiempo transcurrido entre el

inicio y final del proyecto. Se hace una evaluación personal de éste y se añaden ideas

de mejora de trabajo futuro.

7. Bibliografía: Lista y detalla la fuente de todas las referencias que aparecen en el

informe así como los documentos utilizados en el proyecto. Con esto, se pretende dar

veracidad a la información redactada y también facilitar al lector una serie de recursos,

3

con el fin de que éste entienda y tenga una compresión total de lo que se muestra y se

quiere explicar en cada momento.

8. Anexos: Por último se incluirán otros documentos como son una guía de iniciación a la

programación en AVR32 Studio o el código fuente que utiliza el microcontrolador para

hacer mover el robot móvil.

4

5

2. PLANIFICACIÓN, REQUISITOS Y HERRAMIENTAS DE

TRABAJO

En este segundo capítulo se pretende dar a conocer cuáles son los requisitos necesarios para

la ejecución del proyecto, entre los cuales se encuentran los conocimientos previos de la

tecnología a utilizar o las herramientas que será necesario utilizar para su elaboración.

Además, se detallará cual ha sido la planificación que se ha llevado a cabo en el desarrollo del

presente proyecto a lo largo de los 9 meses de duración de este.

2.1 REQUISITOS PREVIOS

Para la elaboración de este proyecto no es necesario disponer de conocimientos sobre el

estado actual del mercado de los microcontroladores, ni tan si quiera conocer cuál es su

funcionamiento. Será parte del desarrollo de este, el aprendizaje de los conocimientos

necesarios para la correcta puesta en marcha del proyecto.

Sin embargo, sí que se predispone de conocimientos del lenguaje de programación C++ y de

arquitectura de computadores, así como un nivel avanzado en cuanto a entendimiento de

circuitos electrónicos analógicos y digitales se refiere. Estos conocimientos han sido adquiridos

a lo largo de los tres años de duración de la carrera de Ingeniería Técnica de

Telecomunicaciones, Especialidad en Sistemas Electrónicos, por lo que no se requerirá de una

formación previa en el momento de iniciar el proyecto.

2.2 HERRAMIENTAS DE TRABAJO

Las herramientas de trabajo se diferencian entre las utilizadas para el desarrollo del software y

las del hardware.

A nivel de desarrollo de software, la Figura 1 muestra cual es el conjunto de herramientas

necesarias para el desarrollo con microcontroladores AVR32. A continuación se ofrecen más

detalles de cada una de ellas:

 AVR32 Studio: Se trata de un entorno de desarrollo integrado para desarrollar

aplicaciones basadas en microcontroladores AVR32. Soporta todo tipo de

procesadores AVR32 y dispone de herramientas suficientes para comenzar a

desarrollar en lenguaje C++.

 Compilador C/C++: “AVR32 Studio” no dispone de compilador propio y es por eso que

se debe hacer uso de uno externo, aunque se integra totalmente con “AVR32 Studio”.

Es por ello que Atmel ofrece de forma gratuita “AVR32 GNU Toolchain”, que permitirá

compilar, realizar debug y programar los microcontroladores AVR32.

 AVR32 Software Framework: Una de las grandes ventajas de hacer uso de AVR32

Studio es que dispone de ejemplos y librerías incluidos en el propio Framework que

incluye. Todo el Framework está escrito en lenguaje C++, por lo que será el lenguaje

elegido para la elaboración de todo el proyecto.

6

 Starter Kit: Tal y como se detallará en los próximos capítulos, para el desarrollo y

testeo de los microcontroladores AVR32, se hará uso de una placa de evaluación

EVK1100, la cual ofrece un conjunto de periféricos y memorias que permitirán

demostrar todo el potencial de estos microcontroladores.

 Debugger: El debugger será necesario para poder programar la memoria Flash del

microcontrolador. Para ello, se dispone de un JTAG MKII ICE, que ofrece una potente

herramienta de programación y debug sobre el propio chip. No es la única solución

existente para realizar esta tarea, pero para la elaboración del presente proyecto

disponemos de esta herramienta.

Figura 1: Herramientas necesarias para el diseño del Software

A nivel de desarrollo de hardware, se hace uso de diferentes dispositivos electrónicos como

son sensores, servomotores, motores DC, conversores RS232 a Bluetooth o algunos circuitos

integrados como el L293D. Todos estos elementos han sido utilizados para la construcción de

un robot móvil, tal y como se verá en los próximos capítulos, donde se detalla en profundidad,

el uso y finalidad de cada uno de los elementos utilizados.

2.3 PLANIFICACIÓN

Inicialmente la planificación del proyecto fue pensada para llevarse a cabo en 3 meses, con

fecha de inicio el 02/10/2009 (coincidiendo con la primera reunión realizada) y finalización el

12/02/2010.

A pesar de que estas fechas han sido estudiadas y analizadas en función de los requisitos que

se creían convenientes, la planificación final no ha sido tal y como se esperaba. Este hecho es

algo normal si tenemos en cuenta que se trata de un proyecto nuevo y por lo tanto, se

desconocen los posibles retardos que puedan aparecer a lo largo de su ejecución. Es por ello

que su finalización se pospone hasta el mes de Junio.

Los retrasos se deben principalmente, a la carencia de bibliografía especializada acerca de los

microcontroladores AVR32, por lo que todo el aprendizaje se ha llevado a cabo a través del

7

estudio de los ejemplos y drivers disponibles en el Framework de Atmel, así como del análisis

de los datasheets disponibles en la web oficial. La Figura 2 muestra la planificación final

seguida para la ejecución del proyecto.

Figura 2: Planificación del Proyecto

8

9

3. ARQUITECTURA AVR32

La compañía Atmel [1] opera en el mercado de los microcontroladores desde el año 1984 y su

familia de dispositivos está compuesta entre otros, por microcontroladores basados en

arquitectura ARM [2] y microcontroladores con arquitectura propia como los AVR8 y AVR32,

utilizados en el proyecto.

Los microcontroladores AVR32, gracias a la arquitectura Harvard y a los múltiples buses de

alta velocidad, garantizan un rendimiento excepcional y un bajo consumo energético gracias a

los distintos modos de suspensión del MCU y del Escalado Dinámico de Frecuencias. Esta

familia de microcontroladores se provee de herramientas de desarrollo gratuitas como el

AVR32 Studio, que permiten empezar a desarrollar código C/C++ de forma sencilla.

A su vez, los AVR32 se descomponen en otros dos grupos:

 Los Microcontroladores UC3 32-Bit Flash, que disponen de instrucciones DSP y son

capaces de alcanzar 91 DMIPS
(1)

 a una frecuencia de 66 MHz, consiguiendo una

eficiencia energética mejor que ningún otro chip de la competencia (1.3 mW / MHz).

 Los AP7 32-Bit Application Processors, que del mismo modo que los anteriores,

disponen de instrucciones DSP y también SIMD
(2)

. A diferencia de la familia UC3 32-

Bit, estos proporcionan un rendimiento de 210 DMIPS a una frecuencia de 150 MHz, y

disponen de soporte total para Linux.

Para la realización del robot, se dispone del microcontrolador AT32UC3A0512, que pertenece a

la familia de micros AVR32 UC3, construidos sobre los núcleos AVR32 UC, diseñados para el

desarrollo de aplicaciones embebidas que requieran de alto rendimiento y memoria integrada

en el propio chip, además de un comportamiento en tiempo real y bajo consumo energético.

Estos procesadores multiplican por un factor de dos las prestaciones de su competidor más

directo para un mismo código (reduce entre un 5% y un 20% el código generado al compilar), y

son comparables al ARM-Cortex M3 en número de puertas, aunque el AVR32 UC es el único

núcleo de 32-Bit de su rango que incluye instrucciones DSP que son ejecutadas en un solo

ciclo de reloj. Además, se trata del primer núcleo en integrar la memoria SRAM en el propio

Pipeline, permitiendo la lectura y escritura en la memoria en un solo ciclo de reloj.

3.1 ARQUITECTURA

El núcleo AVR32UC está formado principalmente por un pipeline de 3 etapas por ciclo,

diseñado especialmente para optimizar la entrega de instrucciones desde la memoria Flash.

Sin la memoria Flash integrada en el propio chip, no sería posible hacer funcionar la CPU a

máxima velocidad, sin que esta tuviera que esperar para recibir las próximas instrucciones.

Además y entre otros, está formado por una unidad de protección de memoria (MPU), que se

encargará de proteger las regiones de memoria protegidas, el acceso a la memoria y las

declaraciones que se hacen en esta y que es indispensable para la implementación de

sistemas operativos en tiempo real o por ejemplo el Power Manager, que es el encargado de

controlar los osciladores o los PLLs y de generar las señales de reloj y reset del dispositivo. La

1
 Dhrystone-MIP (DMIP) es un test computacional sintético desarrollado en 1984 por Reinhold P. Weicker. La salida de

este test, proporciona el número de iteraciones Dhrystone por segundo, ejecutadas en el microcontrolador.
2
 SIMD son un conjunto de instrucciones que aplican una misma operación sobre un conjunto de datos.

10

Figura 3 muestra el diagrama de bloques del núcleo AVR32UC, donde se pueden ver los ya

indicados anteriormente además de otros.

El núcleo AVR32 UC, además de aceptar instrucciones DSP de un solo ciclo de reloj, da

soporte a eventos como las interrupciones no enmascarables (NMI), a excepciones y a otros

cuatro tipos de interrupciones con niveles de prioridad diferentes. De este modo, los eventos

que tengan prioridades mayores a los eventos con menos, podrán avanzar en la cola de espera

de forma automática. También puede operar en modo privilegiado o no. Este modo es

especialmente usado en los sistemas operativos en tiempo real, permitiendo acceso a todos los

recursos del sistema y usando una pila de sistema separada.

Figura 3: Diagrama de bloques del núcleo AVR32 UC3

3.2 CPU

El procesador de este microcontrolador AVR32UC está formado por un pipeline de tres etapas

(Figura 4), que son: la etapa de Instruction Fetch (IF), Instruction Decode (ID) y la etapa

Execute (EX), por lo que las instrucciones deben ser ejecutadas en ese orden (aunque

algunas requerirán pasar varias veces por la etapa EX para ser completadas).

3.2.1 PREFETCH UNIT
La primera etapa del pipeline está compuesta por el módulo IF, y consiste en precargar una

instrucción de 32 bits o 2 de 16 bits por ciclo de reloj en buffers FIFO internos, y de este modo

alimentar a la etapa siguiente. Al mismo tiempo que se cargan las instrucciones, otras (ya sean

RISC, extendidas o compactas), son entregadas a la etapa de descodificación.

11

3.2.2 DECODE UNIT

La segunda etapa se encarga de decodificar las instrucciones y generar las señales necesarias

para la correcta ejecución de estas. Esta etapa acepta una instrucción por ciclo de reloj

proveniente de la Prefetch Unit, de modo que la instrucción es decodificada y es entonces,

cuando se generan las señales de control y las direcciones de los ficheros de registros. En el

caso de que una instrucción no pueda ser decodificada, de que sea ilegal o que esté

incompleta, una excepción es producida interrumpiendo la ejecución de esta.

3.2.3 THE EXECUTE
La tercera y última etapa es la encargada de realizar las lecturas, escrituras y operaciones

sobre la memoria y los ficheros de registros. Esta etapa se subdivide en 3 sub-etapas: la ALU

(Unidad Aritmético Lógica), la sub unidad de Multiplicación y las unidades de lectura y escritura.

Figura 4: Etapas del Pipeline del AVR32 UC3

3.3 LA MEMORIA

La Tabla 1 muestra las diferentes combinaciones disponibles para el núcleo AT32UC3A. En el

caso a estudio, el microcontrolador utilizado es el AT32UC3A0512, que dispone de 512 KBytes

de memoria Flash y 64 KBytes de SRAM.

Como se puede ver, las diferencias entre versiones de la familia AT32UC3A radican en la

cantidad de memoria disponible. Para este proyecto, se dispone de una memoria interna de

512 KBytes y una SRAM de 64 KBytes. En caso de necesitar más cantidad de memoria, se

puede acceder a las memorias externas que se encuentran en la placa EVK1100 o incluso

almacenar datos en el lector de tarjetas SD/MMC que incorpora, de modo que la cantidad de

memoria disponible se dispara.

Dispositivo Flash SRAM Encapsulado

AT32UC3A0512 512 Kbytes 64 Kbytes LQFP 144

AT32UC3A0256 256 Kbytes 64 Kbytes LQFP 144

AT32UC3A0128 128 Kbytes 32 Kbytes LQFP 144

AT32UC3A1512 512 Kbytes 64 Kbytes TQFP 100

AT32UC3A1256 256 Kbytes 64 Kbytes TQFP 100

AT32UC3A1128 128 Kbytes 32 Kbytes TQFP 100

Tabla 1: Cantidad de memoria según el modelo

12

El espacio de memoria se divide en los segmentos definidos en la Tabla 2. Estos segmentos

tienen direcciones de memoria pre-asignadas y no pueden ser modificadas, aunque como ya

se verá más adelante, este no será un factor a tener en cuenta.

Device Start Address Size

Embedded SRAM 0x0000_0000 64 Kbytes

Embedded Flash 0x8000_0000 512 Kbytes

EBI SRAM CS0 0xC000_0000 16 Mbytes

EBI SRAM CS2 0xC800_0000 16 Mbytes

EBI SRAM CS3 0xCC00_0000 16 Mbytes

EBI SRAM CS1 / SDRAM CS0 0xD000_0000 128 Mbytes

USB Configuration 0xE000_0000 64 Kbytes

HSB-PB Bridge A 0xFFFE_0000 64 Kbytes

HSB-PB Bridge B 0xFFFF_0000 64 Kbytes

Tabla 2: Direcciones de memoria del AVR32 UC3

3.4 REGISTROS

El fichero de registros está organizado en 16 registros de 32 bits y que incluyen, entre otros, el

Program Counter, el Link Register o el Stack Pointer. Adicionalmente, el registro R12 está

diseñado para mantener los valores devueltos por las funciones que son llamadas desde la

aplicación o cuando es usado implícitamente por algunas instrucciones.

Por otro lado, la arquitectura del AVR32UC no implementa hardware dedicado a los ficheros de

registros de interrupciones ni tampoco registros para las direcciones de retorno o retorno de

estados. A cambio, toda esta información se almacena en la pila del sistema (System Stack),

permitiendo ahorrar en área del chip a costa de un tratamiento más lento de las interrupciones.

La Figura 5 muestra los diferentes ficheros de registros, aunque como ya se ha comentado, los

registros de interrupciones, registros para las direcciones de retorno o registros para retorno

de estados, no están implementadas a nivel hardware.

Figura 5: Ficheros de Registro del AVR32

13

El registro SR (Status Register) está dividido en dos partes, la primera superior y la segunda

inferior que podemos verlas en la Figura 6 (parte superior) y en el Datasheet [3] (parte inferior).

Para más información acerca de los registros se debe consultar el manual del AVR32 [3].

Figura 6: Parte superior del registro SR (Status Register)

Los registros de sistema están colocados fuera del espacio de memoria virtual del

microcontrolador y sólo son accesibles utilizando instrucciones con permisos privilegiados

como son la mfsr y mtsr. De este modo, es el programador el responsable de mantener la

correcta secuencia de uso de las instrucciones anteriores y derivar en él las responsabilidades

de su uso.

3.5 INTERRUPCIONES Y EXCEPCIONES

En ocasiones, la CPU se verá obligada a abortar la ejecución normal del programa para poder

atender eventos especiales o que tenga mayores prioridades. Tradicionalmente se han llamado

excepciones a los eventos generados internamente en la CPU y interrupciones a los eventos

externos.

En este sentido, el AVR32 proporciona herramientas potentes para el control de eventos, de

modo que los diferentes eventos que se produzcan tengan bien definidos sus niveles de

prioridad para que no existan conflictos en caso de la recepción de múltiples eventos al mismo

tiempo. Cuando uno de estos eventos aparece, la ejecución normal es “congelada” y se

procede a tratar esta de forma separada. Una vez completada, se retoma la ejecución normal

del programa.

Cada una de las etapas del pipeline posee un registro que mantiene el valor de la petición de

excepción asociada a una instrucción en esa etapa del pipeline, que permitirá más tarde

continuar con la ejecución normal de la instrucción “contaminada”. Las excepciones son

detectadas en dos etapas del pipeline. La etapa EX (3.2.3) detecta todas las excepciones

relacionadas con las direcciones de datos. Por otro lado, todas las otras excepciones incluidas

las interrupciones, son detectadas por la etapa ID.

3.5.1 SUPERVISOR CALLS
La arquitectura AVR32 tiene definida una instrucción que permite ejecutar instrucciones en

modo supervisor. Esta instrucción, llamada scall, está diseñada específicamente para poder

14

ejecutarse en cualquier contexto y que esta pueda ejecutar rutinas que requieran de privilegios

de supervisor.

3.5.2 DEBUG REQUESTS

Por otro lado, esta arquitectura dispone además de interrupciones dedicadas al modo debug.

Cuando una de estas peticiones es recibida por el núcleo, todo él pasa a modo debug.

3.6 MEMORY PROTECTION UNIT

La arquitectura del AVR32 define como opción la inserción de una Unidad de Protección de

Memoria (MPU). De hecho, se trata de una simple alternativa a la inserción de una MMU

(Memory Management Unit) completa, pero que permite proteger del mismo modo la memoria.

Esta unidad permite al usuario dividir la memoria en diferentes espacios protegidos (con un

máximo de 8), de modo que su espacio está definido y tiene comienzo en la dirección de

memoria que el usuario especifica. A su vez, cada región es dividida en 16 subregiones, las

cuales pueden ser definidas con 1 o 2 series de permisos diferentes. El número de regiones

protegidas implementadas se almacena en el campo DMMU SZ del registro de sistema

CONFIG1.

La MPU es la responsable de chequear que todas las transferencias de datos en la memoria

tienen los permisos correctos para que estas puedan completarse. Por ejemplo, si un acceso a

memoria es realizado con permisos incorrectos o se intenta acceder a una dirección de

memoria que no reside en ninguna región protegida, una excepción es generada y el acceso es

cancelado. Por supuesto y como ya se ha dicho, el usuario tiene a su disposición crear

diferentes regiones de acceso a memoria con los permisos que él desee, de modo que todos

los accesos a memoria (protegida) se produzcan sin ningún tipo de problema.

El espacio de las regiones protegidas puede variar desde los 4 Kbytes hasta los 4 Gbytes

(siempre que dispongamos de esa cantidad de espacio), y siempre debe corresponder a una

potencia de dos. Cuando un acceso es realizado a una región de memoria seleccionada por la

MPU, el propio hardware procede a determinar que subregión es la más apropiada para

almacenar los datos. Por el contrario, si se accede a otro espacio de memoria, la transferencia

es abortada inmediatamente.

Si desea activar el uso de la MPU, deberá activar el bit E en el registro MPUCR. En caso de no

activarlo, los accesos a memoria se producirán sin ningún tipo de violación en el acceso. Para

definir una región de memoria protegida, se deberá hacer uso del registro MPUARn (MPU

Address Register), donde se define (Figura 7) la dirección de inicio de memoria y el tamaño de

la región.

Figura 7: Memory Protection Unit Address Register

 Base Address: Este campo indica el inicio de la región de memoria. Para definir las

direcciones de memoria estas deben ser alineadas con su correspondiente tamaño. Es

decir, como el tamaño mínimo de una región de memoria es de 4 KB, únicamente se

hace uso de los 20 bits más significativos del campo “Base Address”. El resto de bits,

15

simplemente deberán ser puestos a 0 y en caso de ser un tamaño distinto, hacerlo

acordemente, ya que en caso contrario, la memoria quedará indefinida.

 Size: Indicará el tamaño de memoria (siempre en potencias de 2).

 V: Siempre que la región protegida sea válida, este flag será marcado a 1. En caso

contrario o cuando se realice un reset, este campo será marcado como 0 y por lo tanto,

no será considerada la región protegida.

Por otro lado, el registro MPUAPR (MPU Access Permission Register A) (Figura 8) indica

cuales son los permisos que tendrá cada región. Cada vez que se haga un reset del sistema,

este campo será puesto a 0, con lo que los permisos desaparecerán.

Figura 8: Memory Protection Unit Access Permission Register

3.7 HSB (MATRIZ DE BUSES)

Todos los buses utilizados en el microcontrolador están integrados dentro de la matriz de buses

de alta velocidad. Esta matriz, implementa una estructura que permite el acceso paralelo entre

múltiples buses de alta velocidad (hasta 16 maestros o 16 esclavos, Figura 9) del sistema,

incrementando notablemente el ancho de banda global. Además, esta matriz incorpora 16

registros para funciones especiales que dan soporte a las aplicaciones para hacer uso de

características especiales y proporciona un decodificador por cada interfaz maestra del bus,

permitiendo que cada bus pueda mapear la memoria de forma distinta.

Figura 9: La matriz de buses (HSB)

16

Todos los módulos conectados a un mismo bus usan el mismo reloj, aunque este reloj puede

ser modificado por el Power Manager.

La matriz HSB, proporciona al AVR32UC tres interfaces de memoria. La primera de ellas se

encuentran conectada a un bus maestro para la etapa de Instruction Fetch del pipeline, otra

para el acceso a los datos y una tercera permite a otros buses maestros acceder a la memoria

RAM interna de la CPU. Esto permite mantener la memoria RAM en el interior de la CPU

mejorando el acceso a esta, reduciendo las latencias y garantizando un tiempo determinista.

Además, el consumo energético es reducido al no necesitar un bus completo para acceder a la

memoria.

3.8 SISTEMA OCD

Los microcontroladores AVR32 están orientados a abarcar un gran número de aplicaciones

distintas. Es por eso que, ya que se espera de estos dispositivos una gran velocidad y

flexibilidad, también se espera que sus posibilidades de testeo sean lo más altas posibles. El

AVR32 incluye el sistema OCD (On Chip Debugging) que proporciona una herramienta flexible

y poderosa para realizar debug sobre el propio chip. Esta interfaz de testeo, proporciona al

debugger externo acceso a la lógica del chip a través del puerto JTAG.

3.9 POWER MANAGER

El Power Manager es el encargado de controlar los osciladores, PLLs y de generar las señales

de reloj y reset del dispositivo. Como controla los dos osciladores de cristal junto con los dos

PLLs, estos pueden ser usados para multiplicar la frecuencia del reloj consiguiendo frecuencias

de funcionamiento mayores, lo que se traduce en más velocidad de cálculo.

Los relojes proporcionados son divididos en dos grupos: los relojes síncronos y los genéricos.

El primero de ellos es usado como reloj principal para la lógica digital del dispositivo, mientras

que el reloj genérico puede ser utilizado para la conexión de periféricos que requieran

frecuencias específicas como pueden ser “Timers” o módulos de comunicación. Además, los

relojes síncronos están divididos en tres dominios que permiten habilitarlos o deshabilitarlos o

incluso hacerlos que funcionen a frecuencias distintas, lo que permite ahorrar energía,

haciendo funcionar los periféricos a una frecuencia baja, mientras que la CPU seguirá

trabajando a plena carga. Esta capacidad que presenta el microcontrolador, puede ser

efectuada “en caliente”, es decir, las frecuencias del dispositivo pueden ser modificadas, una

vez este se encuentre en marcha y sin que por ello, el sistema o los dispositivos se vean

afectados.

3.10 REAL TIME COUNTER

El Real Time Counter (RTC) permite activar interrupciones que sean lanzadas después de

largos intérvalos de tiempo (hasta 272 años reales) o también, medir con precisión (resolución

máxima de 16 KHz), secuencias de tiempo real. Está formado un prescaler de 16 bit, el cual

está conectado a un oscilador RC de 32 KHz. El prescaler puede ser programado como se

desee, de modo que permitirá escoger mayores o menores resolución de tiempos.

17

3.11 TIMER/COUNTER

El Timer Counter (TC) incluye 3 canales idénticos de 16 bits. Cada canal puede ser

programado de forma independiente para realizar una amplia variedad de funciones que

incluyen medidas de frecuencia, contador de eventos, medidas de intérvalos de tiempo,

generación de pulsos, retrasos temporales y pulsos PWM.

Cada canal dispone de 3 entradas de relojes externos, 5 de relojes internos y 2 entradas de

propósito general (tanto de entrada como de salida) que pueden ser configuradas por el

usuario. Además, disponen de interrupciones internas que pueden ser programadas de forma

independiente para cada canal. Sus principales características son:

3.12 INTERRUPT CONTROLLER

El INTC (Interrupt Controller) recoge todas las interrupciones generadas por los periféricos,

priorizándolas y entrega una petición de interrupción a la CPU. La arquitectura del AVR32

soporta hasta 4 niveles de prioridades para las interrupciones, donde estas se dividen en hasta

64 grupos de interrupciones diferentes. Cada grupo dispone de 32 líneas de petición de

interrupción. Si varios grupos tienen pendientes interrupciones del mismo nivel, el grupo con el

número menor es el que toma la prioridad.

3.13 EXTERNAL INTERRUPTS CONTROLLER

El módulo de Interrupciones Externas, permite a los diferentes pines del MCU actuar como

pines para recibir interrupciones externas. Estas interrupciones pueden ser generadas a nivel

bajo o alto de la señal, o en el flanco de subida o de bajada, pero para evitar interrupciones

“falsas”, cada línea tiene un filtro configurable que permite eliminar posibles glitches que

aparezcan en la línea. Este tipo de controlador admite la conexión de un teclado externo, de

modo que cada vez que se presione una tecla, esta generará una interrupción que será

identificada por el módulo.

3.14 INTERFACES DE ENTRADA Y SALIDA

Además de las características antes mencionadas, interesa ver cuáles son las capacidades a

nivel de comunicación que el AVR32 ofrece. Estas interfaces permitirán la comunicación entre

el microcontrolador y los diferentes periféricos que se desee utilizar. A continuación se detallan

algunas de las interfaces más importantes que este dispositivo ofrece.

3.14.1 GPIO
El controlador GPIO (General-Purpose Input/Output Controller) es el responsable de controlar

todos los pines de entrada y salida del microcontrolador. Cada una de las líneas del MCU

puede ser utilizada como un puerto de propósito general (tanto de entrada como de salida) o

puede asignarse una de las funciones disponibles en ese PIN. De este modo, se asegura la

optimización de todos los pines del producto, permitiendo utilizar los 109 pines del

microcontrolador a modo de propósito general (encender un LED, activar un Relé…).

18

Cada puerto es capaz de multiplexar hasta 4 funciones periféricas y además, todos ellos

disponen de un filtro anti-glitch, de modo que los pulsos que sean más cortos de que un ciclo

de reloj, serán rechazados.

3.14.2 ADC
Un conversor ADC puede convertir un voltaje en un número binario digital. Los conversores

A/D son utilizados en cualquier lugar donde sea necesario procesar una señal, almacenarla o

transportarla en forma digital. Los puertos ADC (Analog-to-Digital Converter) incluidos en el

AVR32, están basados en Conversores Analógicos – Digital por Registros de Aproximación

Sucesiva (SAR) de 10 bits.

El ADC soporta dos modos de resolución, 8 bits o 10 bits, dando como resultado una

conversión que es reportada a un registro común para todos los canales. Además, incorpora un

modo “Sleep” que reduce el consumo de potencia del MCU.

La resolución del conversor indica el número de valores discretos que se pueden obtener

dependiendo del rango del voltaje de entrada. Esta resolución se traduce en 256 valores para

el caso de los 8 bits o para 1024 para el caso de los 10 bits.

3.14.3 PWM
Una canal PWM (Pulse Width Modulation Controller) permite generar señales cuadradas que

pueden ser configuradas según se desee, permitiendo modificar características como el

periodo, el duty-cicle y la polaridad de la señal. Estas celdas son capaces de controlar varios

canales independientemente, donde cada canal, controla una salida que proporciona una señal

cuadrada.

El AVR32 dispone de 7 canales independientes con contadores de 20 bits cada uno. Cada

canal puede seleccionar de forma independiente, un clock diferente (de 13 posibles a escoger),

un periodo o un duty-cycle. Además, la polaridad y la situación de la señal puede ser

programada.

3.14.4 UNIVERSAL SYNC/ASYNC RECEIVER/TRANSMITTER

Los USART permiten la transmisión de datos a través de un canal full dúplex universal a través

de un puerto serie. El formato de los datos es ampliamente programable de forma que admite

una gran variedad de estándares. El receptor implementa un código detector de errores por

paridad y además, permite la transmisión con dispositivos más “lentos” gracias al módulo time-

out, que permite la detección de trazas de datos de longitud variable.

Además, el USART posee tres modos de test que son: el loopback remoto, el loopback local y

el “echo” automático. También soporta la conexión de periféricos con controladores DMA,

permitiendo la transferencia de datos desde el transmisor al receptor.

3.14.5 TWO WIRE INTERFACE

El AVR32 dispone de un canal TWI. Este canal, permite interconectar componentes a través de

un bus de dos cables. El primero de estos cables permite transmitir la señal de reloj, mientras

19

que el segundo transmite y recibe datos a una velocidad de hasta 400 Kbits por segundo. Es

compatible con el estándar I2C y programable como maestro o esclavo.

20

21

4. COMPARATIVA

En el mercado existen muchas alternativas a los microcontroladores de AVR32. Una sola

compañía puede disponer de varios modelos, que sumado al elevado número de casas

fabricantes de microcontroladores que hay, dan como resultado un amplio abanico de opciones

para escoger. Es por ello que determinar que microcontrolador es el más idóneo para la tarea

que se va realizar, debe ser parte de un estudio exhaustivo por parte del desarrollador.

Este capítulo pretende hacer una introducción al estado actual del mercado de los

microcontroladores y realizar una pequeña comparativa entre las arquitecturas del AVR8 y

AVR32 y con la de sus competidores directos los ARM9 y ARM11. Además, se presenta de

forma breve, cual es el estado actual del mercado de los microcontroladores.

4.1 AVR32 VS AVR8

La arquitectura AVR32 apareció recientemente en el mercado de MCUs, pero eso no quiere

decir que Atmel no se encontrara en el mercado anteriormente. El microcontrolador AVR8 (que

a continuación se presenta) es altamente utilizado, disponiendo de una de las relaciones

consumo/potencia más bajas del mercado. Estos microcontroladores disponen de 8 o 16 bits

(según modelo) y son capaces de ejecutar instrucciones RISC en un solo ciclo de reloj.

A continuación se hace un breve resumen de las características más importantes de las que

disponen estos microcontroladores y una comparativa respecto a los nuevos AVR32.

4.1.1 AVR 8-BIT RISC
La arquitectura AVR8 es una arquitectura pensada para ofrecer altas prestaciones minimizando

el consumo energético. Haciendo uso de una arquitectura tipo RISC, ejecuta sus instrucciones

en un solo ciclo de reloj, gracias al pipeline de una sola fase que incluye, ofreciendo un

rendimiento de 1 MIPS por MHz. Algunas de sus características más importantes son:

 Arquitectura RISC capaz de ejecutar instrucciones en 1 sólo ciclo de reloj.

 Velocidad de funcionamiento de hasta 32 MHz, ofreciendo hasta 1 MIPS por MHz.

 Uso de la arquitectura Harvard.

 32 registros de propósito general.

Gracias a estos 32 registros, el AVR8 ofrece una gran flexibilidad, especialmente cuando se

programa en lenguajes de alto nivel como pueden ser C, Pascal o Basic.

Su consumo energético es realmente bajo debido a que es capaz de operar en niveles de

tensión tan bajos como 1.8V y además de disponer de hasta 6 modos de reposo, los cuales

son muy útiles cuando se realizan aplicaciones que ahorren energía ya que el microcontrolador

es capaz de volver a su estado de funcionamiento normal de forma muy rápida ante un evento

externo.

Además y siempre en vista de mejorar el consumo de estos microcontroladores, la frecuencia a

la que opera el MCU puede ser controlada mediante el software que diseñemos.

Tal y como se puede ver en la Figura 10, la arquitectura AVR8 la componen 3 familias de

microcontroladores:

22

 TinyAVR: Microcontroladores de propósito general con hasta 16 KBytes de memoria

Flash programable y 512 Bytes de memoria SRAM.

 MegaAVR: Altas prestaciones gracias al multiplicador hardware que implementa.

Además, dispone de 256 KBytes de memoria Flash, 4 KBytes de memoria EEPROM y

8 KBytes de SRAM.

 XMEGA: Los XMEGA son microcontroladores de 8 o 16 bits, que disponen de una

serie de periféricos que incrementan el rendimiento de estos circuitos respecto a los

MegaAVR, como pueden ser las controladoras DMA.

Figura 10: Escalabilidad de los microcontroladores AVR8

Escalabilidad: Una de las ventajas y características más importantes que aportan estos

microcontroladores es la escalabilidad que ofrecen. Es decir, se puede reutilizar código para

que sea utilizado en los distintos dispositivos de la familia AVR8 sin realizar grandes cambios.

Por ejemplo, si se está utilizando un microcontrolador de características limitadas y para la

realización del proyecto es preciso aumentar el rendimiento de este, puede ser sustituido por

uno de la misma familia y que disponga de mejores características, sin realizar cambios

importantes en el código del programa y usando siempre el mismo software de desarrollo.

4.1.2 PRINCIPALES DIFERENCIAS
Ya que el rendimiento de los nuevos microcontroladores AVR32 se sitúa más cerca de los

modelos XMEGA que de los tinyAVR, la comparativa entre ambos productos se hará utilizando

el microcontrolador AT32UC3A0512 y los ATxmega384A1. La Figura 11 muestra las

diferencias entre arquitecturas y a continuación se detallan algunos de los aspectos más

importantes a tener en cuenta entre un dispositivo y el otro:

Número de bits: Para conocer la importancia que tienen el número de bits en el

funcionamiento de los microcontroladores, primero se ha de comprender algunos conceptos de

arquitectura de microcontroladores como los explicados a continuación. Los microcontroladores

AVR hacen uso de un juego de instrucciones tipo RISC (Reduced Instruction Set Computer), de

modo que, todas las instrucciones están limitadas por tamaño al número de bits que pueda

manejar el microcontrolador. En el caso de los AVR8, el número de bits se limita a 8/16, de

modo que las instrucciones han de tener como máximo 8/16 bits de longitud. Para los AVR32

esto se duplica hasta los 32 bits, que sumado al hecho de que estas instrucciones son

ejecutadas en un ciclo de reloj, permite hacer uso de instrucciones más complejas ganando en

velocidad de procesado.

23

Además de velocidad de procesado, el número de bits indica la cantidad de memoria que

puede direccionar el microcontrolador. Para el AVR32 tenemos un total de 2
32

bits, mientras

que para el AVR8 en el mejor de los casos la cantidad de memoria se reduce a 2
16

bits.

Figura 11: Diagrama de bloques de la arquitectura AVR32 (derecha) vs AVR8 (Izquierda)

Velocidad de reloj: Las frecuencias de reloj utilizadas en los AVR8 se encontraban como

máximo en valores de 32 MHz, ofreciendo un rendimiento máximo de 1 DMIPS por cada MHz

de funcionamiento del reloj. Esta velocidad se aumenta hasta los 66 MHz del AT32UC3A0512,

consiguiendo un rendimiento de 1.49 DMIPS por MHz utilizado, con un máximo de 91 DMIPS a

plena potencia.

En términos de potencia, los nuevos microcontroladores están multiplicando por más de 4

veces la capacidad que tenían sus antecesores, de modo que pueden ser utilizados para

aplicaciones que requieran de una mayor potencia y donde los AVR8 se queden atrás. Entre

otros, permitirá hacer correr un sistema operativo en tiempo real, que coordine y gestione todas

las funciones que tenga que desarrollar el dispositivo.

A pesar de las velocidades, ambos microcontroladores son capaces de ejecutar instrucciones

RISC en un solo ciclo de reloj, lo cual los sitúa muy por delante de algunos de sus

competidores, como pueden ser los microcontroladores PIC, que necesitan hasta 4 ciclos para

realizar la misma instrucción.

Memoria: A nivel de memoria Flash, se dobla la cantidad respecto del AVR8, llegando a los

512 KBytes de memoria interna en el MCU, frente los 256 KBytes del AVR8. Si bien, la

memoria es un factor variable según el modelo escogido dentro de una misma familia de

microcontroladores, en el mejor de los casos es el expuesto anteriormente. Una nueva ventaja

que se ofrece para estas nuevas memorias, es poder acceder a ellas en 1 sólo ciclo de reloj

siempre y cuando la velocidad de operación del MCU no sobrepase los 33 MHz, mejorando el

rendimiento global.

La Figura 12 [10] muestra en un gráfico, donde se encontraría cada uno de los

microcontroladores de AVR, en función de la potencia y el consumo energético. Como se

puede ver, los AVR32 UC3 consiguen unos consumos muy parecidos a los del MegaAVR, pero

es superado por los AVR32 AP7, los cuales disponen de la mejor relación de potencia y

consumo energético.

24

Figura 12: Relación Consumo / Potencia de los microcontroladores AVR8 y AVR32

Además, y ya que la diferencia no radica únicamente en los 5 puntos explicados anteriormente,

a continuación se muestra la Tabla 3 donde se detallan todas las diferencias que existen entre

estos dos microchips.

Característica AVR8 (ATxmega256A3B) AVR32 (AT32UC3A0512)
Encapsulado 100 Pines 144 Pines

Velocidad (MHz) 32 MHz 66 MHz

DMIPS 32 DMIPS 91 DMIPS

Memoria Flash 384 KBytes 512 KBytes

Memoria RAM 32 KBytes 64 KBytes

IO 78 109

Timers / Counters 8, 16 Bits 3, 16 Bits

Canales ADC 12 Bits, 16 Canales 10 Bits, 8 Canales

Canales DAC 12 Bits, 4 Canales Ninguno

Communicación 8 USART, 4 SPI 4USARTs, USB2.0, Ethernet…
Tabla 3: Tabla paramétrica del AVR8 y el AVR32 [14]

4.2 AVR32 VS ARM

ARM (Advanced RISC Machines), es la familia de microprocesadores RISC más utilizada en el

mundo (se calcula que cerca del 75% de los microprocesadores del mundo poseen un núcleo

ARM). El diseño de estos microprocesadores comenzó en el año 1983 como un proyecto

dentro de la empresa Acorn Computers, que años más tarde derivó en la creación de la

empresa con el mismo nombre ARM. Entre sus más famosos microcontroladores se

encuentran los de las familias ARM9, ARM11 y ARM Cortex, y todos soportan un gran rango de

periféricos (ADC, DAC, USB, SPI, UART, I2C,…), lo que los sitúan en una de las mejores

opciones del mercado. En general se puede afirmar, que ARM no se trata de una marca si no

de una arquitectura y como tal, esta empresa licencia sus arquitecturas a otras.

De todos los modelos que ofrece ARM, los ARM9, ARM11 o Cortex M3, son los competidores

directos de los AVR32 (en cuanto a prestaciones y precio). Estos núcleos presentan las

siguientes características técnicas:

ARM9: Estos microcontroladores, poseen un núcleo de 32 bits RISC que incluye un pipeline de

5 etapas, logrando hasta 300 MIPS de potencia. Son soportados por una gran variedad de

sistemas operativos entre los que se incluyen WindowsCE, Symbian OS o Linux.

ARM11: Los ARM11 son capaces de ofrecer hasta 740 MIPS, lo que los hacen perfectos para

ser utilizados en PDA‟s, teléfonos móviles, videoconsolas o automoción, entre otros. Estos

25

microprocesadores ofrecen un consumo realmente bajo, llegando a los 0.6mW/MHz, además

de disponer de modos de ahorro energético. A diferencia del ARM9, el pipeline en este caso es

de 8 fases, lo que contribuye al incremento de potencia.

Cortex-M: La familia de microcontroladores Cortex-M está especialmente diseñada para su uso

en aplicaciones que requieran de grandes prestaciones y número de puertas. Esta familia se

divide en tres tipos de microcontroladores que son:

 Cortex M3 diseñado para su uso en microcontroladores.

 Cortex M1, para su implementación en FPGAs

 Cortex M0, que se trata del procesador de ultra bajo consumo más pequeño jamás

creado por ARM

.

Es por ello, que comparativamente, nos interesa el estudio del Cortex M3. Entre otras sus

características más importantes son:

 Núcleo de 32 bits de alto rendimiento

 Basado en un pipeline de 3 etapas y arquitectura Harvard

 Capaz de realizar instrucciones de multiplicación/división en un solo ciclo de reloj

 Hasta 1.25 DMIPS por MHz

 Dispone de las nuevas instrucciones Thumb-2 licenciadas por ARM

A priori, estos núcleos pueden parecer superiores en potencia respecto los AVR32, pero la

realidad es bien distinta, ya que a igualdad de frecuencias, los AVR32 son superiores. Este

hecho, se está haciendo más presente debido al uso de algoritmos complejos, donde se ve

como la arquitectura AVR32 es mejor que la de ARM. Actualmente, el uso de sistemas de

compresión de datos, codificación de señales, decodificación de datos o video, Transformadas

de Fourier (FFTs) o Transformaciones de Cosenos Discretas, por ejemplo, ha provocado la

necesidad de usar algoritmos DSP muy exigentes computacionalmente.

Históricamente, estos problemas se solventaban aumentando la velocidad del procesador o

mediante la inclusión de varios núcleos en un mismo encapsulado. Sin embargo, las

aplicaciones que hacen uso de complejos algoritmos DSP han aumentado, por lo que esta no

es una vía eficiente de mejorar el rendimiento de los microcontroladores. Es por ello que se

pueden llevar a cabo otras mejoras para aumentar el rendimiento computacional sin afectar al

consumo energético, como pueden ser:

 Reducir el número de ciclos utilizados para los procesos de carga y lectura. Más del

30% de instrucciones utilizadas son de este tipo, por lo que su reducción implicará una

mejora sustancial de rendimiento.

 Coordinar las operaciones repetitivas para que estas puedan ser ejecutas de forma

múltiple.

 Maximizar la utilización de los recursos del Pipeline.

 Minimizar las latencias que se producen en las distintas instrucciones de salto (algunas

pueden consumir hasta 5 ciclos de reloj cada una).

 Mejorar la densidad de código. Si este es pequeño, más instrucciones pueden ser

almacenadas en la cache del micro y por lo tanto, se reduce el tráfico con las memorias

externas.

Los microcontroladores AVR32 mejoran todos estos aspectos, viendo incrementado su

rendimiento de forma excelente sin que se vea afectado su consumo energético. Las pruebas

26

(Figura 13 y Figura 14) realizadas por Atmel [7], demuestran como la arquitectura AVR32 es

notablemente mejor que la de ARM:

Figura 13: Pruebas de rendimiento normalizadas para AVR32, ARM9 y ARM11.

La primera de estas gráficas (Figura 13) muestra una serie de tests de rendimiento hechos

sobre los microcontroladores AVR32, ARM9 y ARM11. Los datos ofrecidos en estas pruebas

han sido obtenidos normalizando las frecuencias de todos los microcontroladores, de modo que

se puedan realizar en las mismas condiciones. Como se puede ver, AVR32 es superior

(alrededor de un 35%) a las otras dos arquitecturas en todas las pruebas realizadas:

TeleMark™, OAMark™, AutoMark™, ConsumerMark™ y NetMark™.

Figura 14: Pruebas de tamaño de código optimizado para la velocidad.

La Figura 14, muestra el tamaño de código utilizado para cada uno de las pruebas realizadas.

En general, se puede afirmar que AVR32 requiere entre un 5% y un 20% menos de código que

el empleado por ARM, para ejecutar las mismas instrucciones, incluso se puede decir que en

27

aplicaciones de alto rendimiento, cuando el código se encuentra optimizado para obtener una

máxima velocidad de ejecución, el código de AVR32 es entre un 30% y un 50% más pequeño

que el de la competencia.

Por lo tanto, para aplicaciones que requieran de alto rendimiento, un consumo energético bajo

y de uso de instrucciones DSP, la arquitectura AVR32 se presenta superior en velocidad de

procesado, densidad de código y consumo energético que la de su competencia.

4.3 OTRAS ALTERNATIVAS

Para finalizar con la comparativa entre microcontroladores, es interesante ver como son los

diferentes productos que se pueden encontrar en el mercado. Es por eso que, todo y que ya se

ha optado por la variante AT32UC3A0512 de la familia AVR32 UC3, a continuación se

mostrarán otras alternativas existentes en el mercado:

4.3.1 FUJITSU
Su familia está formada por microcontroladores de 8, 16 y 32 bits, aunque principalmente

orientada a la automoción, con modelos que incluyen el protocolo de comunicación FlexRay el

cual pretende ser el sustituto del bus CAN. En general, no se trata de un competidor directo de

la arquitectura AVR32, ya que todos sus modelos están claramente orientados a la automoción

y no es el caso del MCU utilizado en este proyecto.

F
2
MC: Disponibles en versiones de 8 y 16 bits, estos microcontroladores están enfocados a

aplicaciones de audio digital, productos del hogar y de oficina o para instrumentación en

automoción.

 Funcionamiento hasta 64 MHz

 Disponibles en versiones de 144 pines

 Todos los modelos disponen de memoria Flash en el propio MCU

 Orientados al bajo consumo energético

FR: Esta familia está compuesta por microcontroladores tipo RISC de 32 bits con arquitectura

propia de Fujitsu y están especialmente orientados a aplicaciones de control. Actualmente

existen en desarrollo varios modelos de alta velocidad para atender a aquellas aplicaciones

que requieran de una elevada velocidad de procesado.

4.3.2 ALTERA

Altera es una empresa pionera en dispositivos programables lógicos. En este sentido, Altera

ofrece una gran variedad de FPGAs, que si bien, no son microcontroladores, pueden ser

utilizadas como tal. A grandes rasgos, una FPGA es un dispositivo que puede ser programado

después de ser fabricado (del mismo modo que un microcontrolador) y que permite programar

cualquier tipo de función o aplicación lógica que deseemos en él. En realidad, se programa el

comportamiento del hardware y no un software, de modo que su velocidad de ejecución es

mucho más rápida de lo que sería en un microcontrolador, aunque no son tan versátiles. A

pesar de estar centrada en la producción de FPGAs, Altera pone en el mercado una serie de

procesadores que, como el Nios II, ofrecen un rendimiento de hasta 340 MIPs y unas

posibilidades de configuración que no se encuentran en otros dispositivos del mercado.

28

Nios II: Como ya se ha comentado, el Nios II es un microcontrolador de 32 bits diseñado

específicamente para la familia de FPGAs de Altera. Dispone de un pipeline de 6 etápas para

conseguir el mayor rendimiento posible (hasta 340 MIPS y 1.18 MIPs por MHz). Es un directo

competidor con el microcontrolador MicroBlaze de Xilinx. Entre los modelos de Nios II se

pueden encontrar opciones orientadas al rendimiento, a soluciones económicas y a alternativas

de bajo consumo energético.

4.3.3 FREESCALE
Freescale es una empresa de reciente creación (2004), que nació de la división de

semiconductores de Motorola. Actualmente se encuentra entre las 20 primeras empresas

mundiales de semiconductores. Entre sus microcontroladores y del mismo modo que la gran

mayoría de compañías, encontramos opciones de 8, 16 y 32 bits. Dispone de una arquitectura

propia como es la HCXX (donde XX varía en función del dispositivo) o los ColdFire, y de otros

modelos de microcontroladores basados en tecnología de ARM.

8 Bits: Entre los modelos de 8 bits se puede encontrar los modelos RS08, HC05, HCS08 o

HC11 entre otros. Este último por ejemplo, es un dispositivo con 1 Kbyte de memoria RAM, 640

bytes de memoria EEPROM y 32 Kbytes de EPROM. Además dispone de canales ADC y

PWM, así como modos de operación de bajo consumo energético. Su funcionamiento es de

cómo mucho, 4 MHz, por lo que lo sitúan en uno de los microcontroladores con características

más limitadas de los que se han visto.

16 Bits: La familia de microcontroladores de 16 bits está formada por los modelos S12 y HC16.

Los basados en el modelo S12, tienen frecuencias de operación de hasta 80 MHz, disponen de

entre 1 y 64 Kbytes de memoria RAM y entre 32 y 1000 Kbytes de memoria Flash. Estos

microcontroladores pueden llegar a tener hasta 152 pines, con lo que las posibilidades

aumentan considerablemente respecto sus antecesores, los de 8 bits. Por lo que respecta a los

modelos HC16, disponen de unas características más reducidas que los S12 en todos los

aspectos.

32 Bits: Por último, dentro de la familia de 32 bits, se encuentran los 68K/ColdFire, que son

uno de los procesadores más extendidos en el mercado de microcontroladores, gracias a su

bajo coste y su alto número de periféricos integrados. Los modelos correspondientes a los

Coldfire V4e, proporcionan un rendimiento de 308 MIPS a una frecuencia de 200 MHz, un alto

número de pines (388 como máximo) y opciones de conectividad como pueden ser los puertos

PCI, Ethernet, CAN o I2C.

4.3.4 LUMINARY MICRO

Luminary hace uso del núcleo Cortex M3 de ARM para fabricar sus propios microcontroladores.

Sus MCU corren a una frecuencia de 80 MHz, disponiendo de memoria Flash y SRAM

integrada, una controladora DMA de 32 canales y una gran variedad de periféricos integrados

como los puertos Ethernec, CAN, USB, SPI o I2c. Estos microcontroladores están

específicamente diseñados para su uso en control de motores industriales

 32 Bits de rendimiento con un coste de un microcontrolador de 8/16 bits

 Disponen de hasta 32 canales DMA y funcionan a una velocidad máxima de 80 MHz

 Incluyen periféricos integrados como pueden ser los puertos 10/100 Ethernet

MAC+PHY, CAN, USB On-The-Go, USB Host/Device, SSI/SPI, UARTs, y I2C

29

 Requieren de la mitad del espacio de memoria para el código respecto de los núcleos

ARM7

4.3.5 MICROCHIP
Los microcontroladores fabricados por Microchip son conocidos mundialmente como PIC. Esta

familia de microcontroladores RISC dispone de modelos de 8, 16 y 32 bits, siendo los modelos

de 8 bits uno de los más vendidos alrededor del mundo, con más de 400 tipos distintos.

PIC8: La arquitectura PIC está basada en una modificación de la arquitectura RISC de

Harvard, que permite mejorar el número de pines originales de 6 a 80 y la memoria

programable de 384 bytes a 128 kbytes.

 Compatibles con instrucciones de 12, 14 y 16 bits para mejorar la eficiencia y

rendimiento

 Las instrucciones y los datos son transmitidos por buses separados, evitando los

cuellos de botella

 Disponen de un pipeline de 2 etapas

PIC16: Dentro de los dispositivos de 16 bits de Microchip se encuentran los modelos PIC24

que ofrecen una gran variedad de periféricos, tamaños de memoria o tipos de encapsulado. Se

ofrecen dos versiones, las de alto consumo y las de bajo consumo, donde la potencia varía

desde los 16 MIPS hasta los 40 MIPS del modelo PIC24H.

 Disponibles en versiones de hasta 256 kbytes de memoria Flash y 16 kbytes de SRAM

 Encapsulado de hasta 100 pines

 Ejecución de instrucciones y multiplicaciones en un solo ciclo de reloj

PIC32: El modelo de 32 bits (PIC32), ofrece un rendimiento de 1.56 MIPS por MHz, llegando a

los 183.762 MIPS a una frecuencia de 80 MHz. Además y del mismo modo que el resto de

microcontroladores, ofrecen soporte para una gran variedad de periféricos integrados.

4.3.6 NXP
Esta empresa fabricante de microcontroladores hace uso de núcleos de otras casas. En este

caso, NXP hace uso de los procesadores 8051, ARM7, ARM9 y Cortex. Por lo tanto, sus

procesadores no presentan ninguna novedad reseñable respecto los explicados anteriormente.

4.3.7 RENESAS
El mercado de Renesas está orientado a los microcontroladores de 16 y 32 bits, aunque deja

espacio en su catálogo para un modelo de 8 bits en el que su principal característica es el bajo

consumo energético.

SuperH: El microcontrolador tipo RISC SuperH es el buque insignia de la empresa Renesas.

Se trata de un microcontrolador orientado a conseguir el máximo rendimiento y miniaturización

posible. En este aspecto, su funcionamiento llega a los 600 MHz y dispone de modelos con dos

cores e incluso puertos de expansión PCI Express.

30

4.3.8 TEXAS INSTRUMENTS

Desde los microcontroladores de ultra bajo consumo como los MSP430 hasta los de alto

rendimiento como los TMS320C2000™, pasando por los microcontroladores de 32 bits de

propósito general basados en procesadores ARM y Cortex, Texas Instrument ofrece una gran

oferta de microcontroladores que abarcan todos los mercados.

MSP430: El microcontrolador MSP430 de ultra bajo consumo, es un microcontrolador RISC de

16 bits orientado especialmente a los dispositivos móviles. Su CPU está optimizada para

lenguajes de programación C y Ensamblador y ofrece 16 registros de propósito general. Su

rendimiento es discreto comparado con la competencia, llegando en el mejor de los casos a 25

MIPS, aunque se ha de tener en cuenta de que se trata de un microcontrolador orientado al

bajo consumo. Su precio de salida comienza en los 0.49$ lo que hace que sean una muy

buena opción.

TMS320C2000: Los microcontroladores de 32 bits C2000 están diseñados para alcanzar un

gran rendimiento en aplicaciones de control en tiempo real. Estos microcontroladores están

construidos sobre los existentes F2833x (de alto rendimiento), y ofrecen velocidades de hasta

300 MHz consiguiendo 600 MFLOPS. Además ofrecen 516 Kbytes de memoria RAM y canales

PWM con una resolución de 65 picosegundos.

4.4 TABLA COMPARATIVA

La Tabla 3 muestra de forma paramétrica, cuales son las principales características técnicas de

varios microcontroladores de las compañías antes mencionadas. Como se ha podido ver,

existen muchas alternativas al microcontrolador AVR UC3 usado en nuestro proyecto, algunas

aportan mejoras, otras no, pero si bien es cierto que el mercado de microcontroladores es muy

amplio y el hecho de decantarse por una opción o por otra puede ser debida únicamente a

algunas pequeñas diferencias que se presentan entre estos.

Freescale o Microchip, son alternativas perfectas para nuestro microcontrolador e incluso en el

caso de Freescale, existen modelos que superan con creces las características técnicas de los

AVR32, aunque hay que tener en cuenta que un salto tan grande en potencia como es el caso

de la familia ColdFire de Freescale, siempre vendrá acompañado de un aumento más que

considerable en cuanto a consumo energético y por lo tanto, se puede decir, que están en

sectores diferentes.

31

Familia Dispositivo Flash (kBytes) SRAM (kBytes) DMA Ch. I/O F.Max (MHz)

AVR8 megaAVR 256 16 - 86 20

AVR8 tinyAVR 8 0,5 - 28 20

AVR8 xmegaAVR 384 32 4 78 32

AVR ARM AT91SAM 2048 256 24 160 400

AVR32 AVR UC3 512 64 15 109 66

AVR32 AVR AP7 - 32 - 160 150

AVR 8051 AVR 8051 128 8 - 44 60

Fujitsu F2MC 16 Bits 832 32 16 144 56

Fujitsu F2MC 8 Bits 60 18 - 100 16

Fujitsu FR 32 Bits 2112 128 8 320 100

Altera Nios II 32 Bits - - - - -

Freescale 8 8 Bits 64 4 - 69 25

Freescale 16 16 Bits 128 12 - 91 32

Freescale 32 ColdFire 4000 2576 96 388 1700

Luminary M. Stellaris 256 96 32 72 80

PIC 8 Bits PIC18 128 3,96 - 70 64

PIC 16 Bits PIC24H 256 16 8 85 -

PIC 32 Bits PIC32 512 128 8 100 80

NXP ARM9 ARM9 - 256 - 160 266

NXP Cortex Cortex M3 512 64 - 70 100

Renesas SuperH 2048 1600 - - 600

TI MSP430 256 16 3 87 25

TI C2000 512 516 6 88 300

Familia VCC (V) Timers PWM Ch. RTC SPI TWI USART AD/DA Ch.

AVR8 1.8 – 5.5 6 16 Si 2 Si 4 16

AVR8 0.7 – 5.5 2 6 - Si Si 1 11

AVR8 1.6 – 3.6 8 24 Si 4 4 8 20

AVR ARM 1.6 – 5.5 9 8 (Control.) Si 5 2 3 18

AVR32 1.8 – 3.3 3 7 Si 2 1 4 8

AVR32 - - - - - - 4 -

AVR 8051 2.4 – 6.0 3 - - Si Si 2 Si

Fujitsu F2MC 3.3 – 5.5 - - - - - 1 40

Fujitsu F2MC 1.8 – 5.5 - - - - - 1 12

Fujitsu FR 2.7 – 5.5 - - - - - 3 40

Altera Nios II - - - - - - - -

Freescale 8 1.8 – 5.5 2 - - - - - 12

Freescale 16 4.5 – 5.5 2 - - Si - - 8

Freescale 32 1.8 – 5.5 - - - Si - - 64

Luminary M. - 4 8 - 2 - 3 16

PIC 8 Bits 1.8 – 5.5 7 - - Si - 2 28

PIC 16 Bits 3.0 – 3.6 13 8 Si 2 - 2 -

PIC 32 Bits - 7 5 Si 4 - 6 16

NXP ARM9 1.2 - ¿? 6 11 - 2 - 7 9

NXP Cortex 3.3 - ¿? 4 6 - 1 - 4 9

Renesas 1.2 - ¿? - - Si Si - - -

TI - 33 10 - 8 - 4 16

TI - 24 24 - 4 - 3 16

Tabla 4: Características paramétricas de los diferentes microcontroladores

32

33

5. USO DEL AVR32 EN UN ROBOT MÓVIL

Se desea diseñar y construir una plataforma que permita probar la versatilidad de la placa

EVK1100 y su microcontrolador AVR32 UC3, en un proyecto de aplicación en tiempo real. Para

ello, se ha escogido la construcción de un robot móvil, que dispondrá de funciones similares a

los robots que se pueden encontrar a nivel comercial, por lo que servirá para testear las

características y opciones más interesantes que el AVR32 UC3 nos ofrezca.

A continuación se presenta el diseño y construcción de esta plataforma móvil con fines

académicos y de investigación, pero que servirá para poder testear y validar arquitecturas de

control de robots o para poder probar algoritmos de navegación autónoma, con diferentes

sensores o dispositivos electrónicos. Para ello, se hará un seguimiento de las características

que el AVR32 ofrece a la robótica junto a su placa de evaluación EVK1100, un estudio de las

herramientas y procesos necesarios para poder comenzar a trabajar con los

microcontroladores AVR32 sin la necesidad de una placa de evaluación y el diseño de un

software de control que permita realizar un control manual y autónomo del robot móvil.

5.1 CARACTERÍSTICAS DEL AVR32 PARA LA ROBÓTICA

Sin duda, el microcontrolador AVR32 presenta grandes mejoras respecto al AVR8. Es por ello

que a continuación se revisan los puntos del microcontrolador AVR32 más importantes cuando

se desea realizar un robot.

Número de pines GPIO: En concreto, el encapsulado utilizado de 144Pines LQFP,

proporciona hasta 109 pines de propósito general (GPIO). Este dato es realmente importante

para el manejo de robots, ya que a mayor número de pines utilizables a modo general, mayor

cantidad de periféricos y funciones podrá realizar este robot.

Velocidad de Procesado: Para la realización de nuestra plataforma móvil, no se requiere de

una gran velocidad de cálculo. Así mismo, tampoco es imprescindible que la frecuencia del

MCU sea elevada, premiando la duración de la batería sobre la potencia. En este caso, vemos

que el microcontrolador es capaz de alcanzar las siguientes velocidades:

- Hasta 91 DMIPS corriendo a 66 MHz

- Hasta 49 DMIPS corriendo a 33 MHz (con acceso a la memoria en el mismo ciclo de

reloj)

Todo y que el rendimiento que ofrece el MCU es realmente bueno comparado con otros micros

del mismo segmento, la velocidad de funcionamiento se verá reducida hasta los 12 MHz,

siendo suficiente para la gestión del robot y de todos los dispositivos que a este se encuentren

conectados.

Ejecución de instrucciones en un solo ciclo de reloj: Esta característica puede presentar

grandes mejoras a un robot que realice funciones complejas, como pueden ser el tratamiento

digital de imágenes. En el caso de dotarlo de una cámara que fuera capaz de captar imágenes,

estas podrían ser procesadas más rápido gracias al conjunto de instrucciones DSP que

incluyen estos microcontroladores y que son ejecutadas en un solo ciclo de reloj, ganando en

velocidad de cálculo.

Memoria interna: La cantidad de código a cargar en el microcontrolador variará mucho en

función del programa que se realice. Sin embargo, la elaboración de una plataforma de testeo

del microcontrolador y de su placa de evaluación, provoca que el código se haga extenso

34

debido a la gran inclusión de pruebas y ejemplos de uso de la plataforma móvil. En el caso del

microcontrolador en uso, se dispone de:

- 512 KBytes de memoria interna Flash de alta velocidad

- Capaz de realizar accesos a esta en un solo ciclo de reloj

Para programas como el utilizado y otros mucho más complejos, a mayor cantidad de memoria,

mejor. Sin embargo, esto puede provocar una des-optimización del código empleado, ya que el

hecho de no preocuparse por el espacio consumido, puede hacer que la programación se haga

de una forma menos óptima.

Memoria RAM: En el caso de necesitar mover una gran cantidad de variables y datos, el

microcontrolador nos ofrece 64 KBytes de memoria RAM. Tal cantidad de memoria no es

necesaria para la realización de un proyecto de robot móvil como el que aquí se plantea, ya

que únicamente se moverán datos muy básicos sobre distancias y posicionamiento de modo

que sólo se hará uso de una pequeña cantidad de toda esta memoria disponible. De todos

modos, parte del programa es cargado en memoria una vez iniciamos el micro, así que, a

mayor cantidad de memoria, mayor fragmento de programa se podrá cargar en la memoria

RAM.

Además, en el caso de necesitar hacer uso de más cantidad de memoria RAM, la arquitectura

AVR32 permite ampliar esta cifra conectando memoria externa a través de su interfaz de

memoria externa. De este modo, las posibilidades crecen enormemente, ya que es capaz de

hacer uso de buses de 24 bits, con lo que se puede direccionar 2
24

 bits de memoria.

Control de Interrupciones: El control de interrupciones es parte fundamental en el momento

de programar robots y cualquier otro dispositivo. Permitirán aceptar peticiones internas,

externas de otros periféricos o controlar sensores sin la necesidad de estar pendientes en todo

momento de estos dispositivos. El AVR32 permite hacer uso de hasta 2048 interrupciones

diferentes, con 4 niveles de prioridad, un número suficiente para cumplir con las expectativas

de cualquier entorno robótico.

En el caso de nuestro proyecto, únicamente se hará uso de interrupciones para la

comunicación serie a través del USART del microcontrolador. Para la programación de los

sensores, no se hará uso, ya que interesará activar los sensores en momentos específicos a

modo de ahorrar batería.

Power Manager y Watchdog Timer: Este microcontrolador dispone de dos funciones muy

interesantes como son el Power Manager y el Watchdog Timer. La primera de ellas, permitirá

entrar en modo de suspensión del MCU, de modo que el consumo energético se reduce casi a

0 y además, permite hacer uso de diferentes frecuencias de funcionamiento y que estas

puedan ser modificadas y cambiadas en “caliente”. Mientras que el segundo, el Watchdog

Timer, ofrecerá la posibilidad de realizar un control del robot de modo que este no se quede

“colgado” y en caso de que esto ocurra, poder realizar una recuperación o reset del sistema sin

la necesidad de intervenir.

Ambos elementos son importantes ya que permitirán ahorrar energía y dotar de mayor

autonomía al microcontrolador (en el caso del Watchdog Timer, lo que permitirá es no tener

que manipular la placa en caso de cuelgue), de modo que si se busca premiar la duración de

batería de un robot así como poder variar el rendimiento de este en función del estado en que

se encuentre, se deberán implementar ambas funciones.

Canales PWM y ADC: Gracias a los 7 canales PWM de 16 bits que incluye el microcontrolador

AVR32 UC3, se podrá hacer uso de hasta 7 dispositivos que necesiten señales cuadradas para

su funcionamiento. Este es el caso de los motores o servomotores, por ejemplo, los cuales

35

variarán su posición en función del periodo que tenga la señal PWM. También pueden usarse

para modificar la velocidad a la que un motor DC se desplaza, tal y como se ha realizado en

este proyecto, además de controlar el servomotor que dirige al sensor IR.

Por otro lado, se dispone de 8 canales ADC que permitirán conectar hasta 8 dispositivos que

proporcionen una salida de tensión analógica al microcontrolador. Este es el caso de la

mayoría de sensores infrarrojos que se encuentran en el mercado o potenciómetros.

3 Timer/Counters: En este aspecto, los Timers disponibles en el microcontrolador pueden

llegar a ser insuficientes para la elaboración de proyectos complejos. Únicamente con 3

posibles canales que han de alternarse las funciones de Timer o Contador, serán suficientes

para la realización de una plataforma móvil simple, pero posiblemente los usuarios más

avanzados exijan mayor cantidad de contadores.

Usart, SPI, TWI, USB y Ethernet: En el aspecto de comunicación del microcontrolador, se

puede decir que sus características son idóneas para realizar proyectos de robótica. Con 4

canales USART que pueden funcionar a modo de Modem, 2 SPI, 1 TWI compatible con el

estándar I2C y posibilidad de hacer uso de USB y Ethernet, se cumple con todos los requisitos

del robot móvil que se está realizando, y de bien seguro que se cumplirán el del resto de

usuarios.

5.2 LA PLACA EVK1100 EN UN ROBOT AUTÓNOMO

Para la realización del robot móvil, se dispone de la placa de evaluación EVK1100 (Figura 15).

Esta placa de evaluación, ofrece un entorno de desarrollo para el microcontrolador AVR32

AT32UC3A0512 y está equipada con una serie de memorias y periféricos, que permitirán

experimentar todo el potencial y características de estos microcontroladores.

La ventaja de trabajar con una placa de evaluación como la EVK1100 es que proporciona una

serie de elementos ya pre-instalados y configurados para su utilización. Todos los periféricos y

opciones de los que dispone, pueden ser analizados y estudiados a través de los múltiples

ejemplos que se encuentran en el entorno de programación. A continuación se listan las

características técnicas más importantes de la placa de evaluación, aunque todas ellas serán

analizadas en los siguientes puntos:

 Microcontrolador de 32 Bits AT32UC3A0512 con encapsulado QFP144.

o 512 kBytes de memoria Flash y 64 kBytes de memoria RAM.

 LCD color azul de 4 líneas por 20 caracteres de ancho, con luz de fondo ajustable.

 Conector USB (2.0) y conexión Ethernet RJ45.

 Listo para usar sensores de: Luz, Temperatura y Potenciómetro.

 3 pulsadores y 1 Joystick.

 6 LEDs (4 mono color verde y 2 bicolor verde/rojo).

 8 Mbytes de Atmel DataFlash y 32 Mbytes de SDRAM.

 2 USARTs y 1 conector SPI.

 1 conector JTAG y 1 conector Nexus.

 1 slot SD/MMC.

 1 conector TWI compatible con I2C.

 Área de conexionado.

 Alimentación a través de USB o de conector externo 8-20V DC.

36

Todos estos elementos se interconectan con el microcontrolador y disponen de pines visibles

en la placa para su fácil utilización. A continuación se describen algunos de los elementos más

importantes que componen la placa EVK1100, así como su uso dentro del contexto del robot

móvil que se está realizando.

Figura 15: Visión general de la placa de evaluación EVK1100

5.2.1 ALIMENTATION

La placa de evaluación EVK1100 permite alimentarla a través del puerto USB o de un conector

Jack externo de 2.1mm, siendo los niveles de tensión utilizados en este último caso, los

comprendidos entre los 8 y los 20V DC. Tal y como muestra la ¡Error! No se encuentra el

rigen de la referencia., para poder seleccionar entre un tipo de alimentación u otra, se dispone

de un interruptor externo de dos posiciones (una para la alimentación a través de USB y otra

para la alimentación a través del Jack).

Este sistema de alimentación está formado por tres reguladores de tensión que proporcionan

niveles de tensión de 5, 3.3 y 1.8V, acompañados de un diodo de corriente encargado de que

la polarización de la corriente sea la correcta.

El sistema de reguladores está formado de modo que el regulador de 5V es el encargado de

alimentar el regulador de 3V y este a su vez, el de 1.8V. Las funciones de los reguladores son:

 El regulador de 5V es el regulador de tensión maestro y como tal, el encargado de

proporcionar la potencia necesaria al resto de reguladores.

 El de 3.3V proporciona niveles de tensión aptos a todos los periféricos de la placa. Es

por ello que, todos los dispositivos que conectemos a esta, tienen que ser compatibles

con niveles de tensión mínimos de 3.3V.

 Y por último, el regulador de 1.8V es el encargado de proporcionar la tensión necesaria

al núcleo del microcontrolador.

Otro aspecto a tener en cuenta, es el nivel de corriente que pueden soportar estos reguladores,

de modo que, el máximo nivel de corriente recomendado será de 1A para el regulador de 5V.

Si se sobrepasan estos niveles, se corre el riesgo de quemarlos, por lo que la placa se volvería

inservible ya que no pueden ser sustituidos fácilmente.

En este aspecto, el uso de una placa como es la EVK1100, puede suponer un lastre a nuestro

robot debido a sus grandes dimensiones y la necesidad de alimentarlo a más de 8V. Es de

agradecer, que esta incluya un puerto USB a través de la cual también puede ser alimentada

de modo que durante todo el desarrollo y testeo del robot, no será necesario el uso de baterías

para alimentarla.

37

5.2.2 MEMORIA EXTERNA

A pesar de que la placa proporciona una cantidad de memoria externa considerable (8 Mbytes

de Atmel DataFlash y 32 Mbytes de SDRAM), no será necesaria su utilización para la

realización del proyecto, ya que la cantidad de datos que se manejarán no superarán en ningún

momento los 512 KBytes de memoria Flash que se incluyen en el encapsulado del

microcontrolador. Si fuera necesario mover un gran volumen de datos, sería imprescindible su

uso. Además, el puerto de expansión para tarjetas SD aumenta las posibilidades de

almacenamiento, pudiendo utilizar la placa a modo de memoria USB, por ejemplo.

5.2.3 OSCILADORES
La placa de evaluación EVK1100 permite el funcionamiento del microcontrolador a una

frecuencia de 66 MHz, aunque para la realización del proyecto, se configurará a 12 MHz. En

las pruebas realizadas, se ha observado como esta velocidad es suficiente para que el sistema

garantice un correcto funcionamiento, con el ahorro energético que implica trabajar a menor

frecuencia. Los 12 MHz son obtenidos de un oscilador externo situado sobre la placa de

evaluación, pero aparte de este, existen otros:

 Un oscilador (XC1) principal conectado a la entrada OSC0 del microcontrolador, y que

funciona a 12 MHz.

 Otro oscilador externo (XC2) conectado al OSC1 del microcontrolador, y que funciona

también a 12 MHz.

 Un oscilador RTC (Real Time Counter) (XC5) que funciona a 32,768 KHz.

5.2.4 USARTS
Tal y como se indicó en las características técnicas antes listadas, la placa de evaluación

EVK1100 dispone de dos conectores USART: USART 0 y USART 1 (Figura 16). El primero de

ellos es un conector RS232 estándar, mientras que para el segundo, se añade la capacidad de

poder funcionar a modo de modem. Ambos conectores hacen uso de un puerto DB9.

Gracias a estos conectores, se puede establecer una comunicación con el microcontrolador a

través del puerto RS232 de un ordenador cualquiera. Abriendo un “Terminal” o ejecutando un

programa dedicado, podremos enviar y recibir órdenes de arranque o parada a nuestro robot.

Es importante tener en cuenta que la placa de evaluación permite seleccionar valores de

tensión TTL o RS232, ya que si por error se conecta un dispositivo que funcione con valores

TTL a través del puerto RS232, este se volvería inservible.

5.2.5 SPI
El bus SPI (Serial Peripheral Interface) es usado para la transferencia de información en modo

serie entre dispositivos compatibles con este protocolo (por ejemplo: conectar dos

microcontroladores para que se comuniquen entre ellos, o conectar periféricos que tengan

soporte para bus SPI).

La placa de evaluación proporciona un área de 6 pines (Figura 16), que permitirán conectar

directamente sobre esta un dispositivo SPI. Sin embargo, no se hará uso de estos pines, ya

que internamente la placa conecta el interfaz SPI al LCD, de modo que se podrá hacer uso de

este dispositivo sin necesidad de realizar ningún tipo de conexión.

38

Figura 16: Conectores USART (izquierda) y interfaz SPI (derecha)

5.2.6 TWI
Del mismo modo que ya ocurría para la interfaz SPI, la placa de evaluación proporciona un

área de conexionado directo para el uso del protocolo TWI (hay que recordar que es

compatible con el modo I2C). Gracias a este interfaz de conexionado directo, se podrá hacer

uso de memorias externas EEPROM o de sensores que sean capaces de funcionar mediante

el protocolo I2C (en el mercado existen sensores infrarrojos o por ultrasonidos que permiten ser

conectados a este tipo de puertos directamente).

Únicamente dispone de 4 pines, de los cuales dos se corresponden a las líneas de

alimentación para los dispositivos que conectemos, y los otros dos para las líneas SDA y SCL

(siempre recordando que la alimentación es de 3.3V debido a los reguladores internos de la

placa).

Para la realización de nuestro proyecto no es necesaria de su utilización, ya que los sensores

utilizados serán conectados todos directamente a los puertos ADC.

5.2.7 ETHERNET Y USB

A través del puerto Ethernet que incluye el kit de evaluación, se pueden testear las

capacidades que este protocolo nos ofrece sobre el microcontrolador, asignando una IP a la

placa para realizar transferencia de información o incluso, realizar un servidor web, como el

que viene instalado por defecto en la propia placa. Únicamente es necesario conectar la placa

a un ordenador y configurar la conexión de red, de modo que se podrá acceder a todas las

funcionalidades que a modo de ejemplo trae por defecto.

El robot móvil no hace uso de estos puertos, ya que toda

la comunicación será realizada a través del puerto serie. A

pesar de esto, si fuera necesario transmitir información a

grandes distancias y alta velocidad, esta sería una de las

mejores formas para hacerlo.

Por otro lado, el USB integrado en la placa EVK1100,

proporciona una interfaz que habilita a la placa para

actuar como un host USB o como un dispositivo USB (a

modo de memoria Flash). A pesar de esto, para la

realización del proyecto tampoco será necesario su uso,

ya que únicamente será utilizado para alimentar el

microcontrolador mientras se encuentra conectado al PC y

es programado a través del puerto JTAG.

Figura 17: Visión del conector USB

39

5.2.8 JTAG

El interfaz JTAG permitirá conectar la placa de evaluación al programador JTAGICE MKII de

Atmel, de modo que toda la programación del dispositivo se llevará a cabo a través de este

interfaz serie. Además, el JTAG junto al sistema OCD (incluido en el propio microcontrolador),

proporciona una excelente herramienta de debug y testeo sobre el propio chip.

5.2.9 LCD

El LCD instalado proporciona una pantalla de 4x20

líneas para mostrar los mensajes que creamos

convenientes a través de ella. Puede ser usada a

modo de consola de debug si se cree conveniente,

o simplemente para mostrar datos del robot en todo

momento. En concreto este LCD es un EA-

DIP204B-4NLW, con una pantalla de color

Blanca/Azul, que incluye un potenciómetro ADJ2

que permite cambiar la intensidad de la luz de

fondo.

A pesar de que el microcontrolador utilizado es de bajo consumo, el consumo de potencia por

parte de todo el conjunto de la placa sí que es elevado y sumando el de la pantalla aun lo es

más. Teniendo en cuenta este factor, se hará uso de él, aun sabiendo que perjudicará en la

duración de la batería.

Internamente se encuentra conectado al puerto SPI del microcontrolador, siendo este el

encargado de gestionar toda la información que fluye hacia la pantalla.

5.2.10 LEDS

En la placa se pueden encontrar 6 LED‟s, que permitirán interactuar con esta y servirán para

mostrar códigos de errores visuales o lo que se desee. De los 6 LED‟s proporcionados, 4 LED‟s

son monocromos (de color verde) y 2 bicolor (rojo y verde). Estos LED‟s serán de gran utilidad

para poder ver cómo evoluciona el código programado en la placa así mismo como la

activación de algunos canales PWM y de otros GPIO.

5.2.11 PUSH BUTTONS Y JOYSTICK

Del mismo modo que con los LED‟s, gracias a los pulsadores y al joystick incluidos en la placa,

se podrá interactuar con el microcontrolador, y así poder probar funciones o controlar en un

futuro nuestro robot.

En concreto, la EVK1100 proporciona 3 pulsadores y 1 joystick de 4 direcciones, tal y como se

observa en la Figura 19. Hacen uso de lógica inversa, es decir, mientras están pulsados, su

valor lógico es 0, al contrario de lo que se podría pensar en un comienzo.

Su programación es sencilla, siendo únicamente necesario recoger en una variable el valor de

tensión del puerto al que se encuentra asociado. De este modo, se podrán utilizar como se

crea conveniente.

Figura 18: Visión de la pantalla LCD

40

Figura 19: Pulsadores y Joystick de la EVK1100

5.2.12 AREA DE CONEXIONADO

Un aspecto importante a tener en cuenta en el momento de trabajar con una placa de

evaluación como lo es la EVK1100, son los puertos de expansión que esta tenga. En este

caso, Atmel ha dotado a su placa de toda una serie de pines preparados para conectar lo que

sea necesario. Estos pines serán de gran utilidad para poder hacer un uso directo a través de

ellos de los múltiples pines necesarios del microcontrolador (por ejemplo, conectar

directamente los servomotores a los canales PWM).

A través de estos puertos de expansión también se puede acceder a funciones tales como la

interfaz SSC, los canales PWM, canales ADC, Timers, USART, TWI o todos los puertos GPIO

entre otros (todos con nivel de tensión de 3.3V).

Además, dispone de un área de prototipado que permitirá incluir otros elementos sobre la

propia placa, como si de una placa perforada se tratara. De este modo, el conexionado se

optimiza, ya que la dimensión de las conexiones se reducen al estar sobre la propia placa.

5.2.13 POTENCIÓMETRO Y SENSOR DE TEMPERATURA Y LUZ
Además de todos los elementos ya comentados, la placa de evaluación proporciona otros tres

dispositivos que pueden ser utilizados según se crea conveniente (aunque no serán de ninguna

utilidad para la construcción del robot móvil). En la parte inferior de la placa, se encuentra un

potenciómetro junto con un sensor de luz y temperatura. Estos tres elementos se encuentran

conectados internamente a los canales ADC, de modo que únicamente se debe realizar la

programación que corresponda para activar dichos canales ADC.

5.3 PERSONALIZANDO LA PLACA

A parte del uso de la placa de evaluación EVKK1100, para la elaboración de un robot será

necesario personalizar la placa. Para ello, dispone de puertos de expansión donde se puede

trabajar y soldar directamente los componentes o dispositivos que se crean necesarios.

En concreto, los elementos que deben ser conectados en la placa para poder realizar nuestro

robot móvil son los que detallados en la Figura 20. A continuación, se detalla con más

profundidad cada una de estas modificaciones o adiciones que se han de llevar a cabo sobre la

placa, así como la relación que estos tendrán con cada uno de los canales que se utilicen en la

placa de evaluación EVK1100. Si lo que se desea es obtener más detalle acerca de las

41

conexiones reales que se han de realizar en la placa de evaluación y el microcontrolador

AVR32, debe dirigirse a la Tabla 5, donde se encuentran todos especificados.

Figura 20: Elementos necesarios para la construcción del Robot

5.3.1 MOTORES DC
Para la construcción del robot móvil, se hace uso de 2 motores DC que proporcionarán el

movimiento y control del robot. Estos motores no están conectados directamente a la placa de

evaluación, si no que disponen de un circuito previo formado por un controlador de motor por

PWM. Este circuito permite controlar tanto la dirección como la velocidad del motor DC y para

su funcionamiento será necesario realizar las conexiones mostradas en la Tabla 5.

5.3.2 SERVOMOTOR
El servomotor permitirá realizar un barrido a modo de radar/sonda para poder detectar los

obstáculos que se encuentren en la trayectoria del robot. Estos dispositivos son capaces de

moverse en función de la amplitud de la señal cuadrada (Figura 21) que se le inyecte. Por

ejemplo, para señales con una amplitud de 1.25 ms, el servomotor se situará en una posición.

Si cambiamos a 2 ms, se centrará en otra, de modo que variando este parámetro, se podrá

hacer girar el servomotor.

Este dispositivo dispone de 3 entradas que deberán ser conectadas directamente sobre la

placa de evaluación: VCC, GND y la entrada para la señal PWM. El funcionamiento se hará a

una tensión de 3.3V por lo que, cualquier toma de VCC sobre la placa será apta para alimentar

el dispositivo.

42

Figura 21: Funcionamiento de un servomotor

5.3.3 SENSORES IR
Los sensores infrarrojos se responsabilizarán de medir la distancia a la que se encuentre el

robot de un objeto que pueda obstaculizar su trayectoria. Mediante estas medidas, se variará la

dirección y movimiento del robot de modo que en ningún momento este colisione.

Se hace uso de 3 sensores infrarrojos, uno de los cuales está montado sobre el servomotor y

será el que tome las medidas a modo de radar o sonda. Los otros dos, situados en los

laterales, permitirán detectar las colisiones cuando la distancia del objeto sea demasiado

próxima, para que el radar pueda detectarla.

A pesar de tratarse de dispositivos físicamente diferentes, el funcionamiento es exactamente el

mismo, disponiendo de 1 entrada VCC, 1 GND y otra de Output, que dará un valor de tensión

proporcional a la distancia a la que se encuentre el objeto a evitar. Es por eso, que estos

elementos hacen uso de los canales ADC, para transformar ese voltaje de la salida, en un valor

binario que pueda ser tratado por el microcontrolador.

5.3.4 BLUEMORE200
Por último, disponemos de un dispositivo que permitirá la comunicación vía Bluetooth con un

PC que actuará como controlador del robot. Se trata de un elemento que es capaz de

transformar una señal serie que obtiene a través de un puerto RS232, en una señal apta para

ser transmitida vía Bluetooth. Este proceso es totalmente transparente para el usuario y no

requiere de ningún tipo de programación especial, únicamente conectarlo a través del puerto

COM de la placa de evaluación y realizar toda la comunicación a través del USART del

microcontrolador.

5.3.5 TABLA DE CONEXIONADO
La Tabla 5 muestra cuales han de ser todas las conexiones necesarias que se han de realizar

sobre la placa de evaluación EVK1100. En ella, no se especifican las conexiones a VCC o

GND ya que por lo general todos los elementos las necesitan y la placa dispone de muchos

puertos de expansión que pueden ser utilizados con este fin.

Función Puerto EVK1100 PIN AVR32
1,2 Enable Motor PB20 – 1x PWM 3

1A Motor PB02 – 1x GPIO 96

1Y Motor - -

2Y Motor - -

2A Motor PB03 – 1x GPIO 98

4A Motor PB10 – 1x GPIO 115

4Y Motor - -

43

3Y Motor - -

3A Motor PB09 – 1x GPIO 113

3,4 Enable Motor PB21 – 1x PWM 5

Bluemore200 1x RS232 Ver Datasheet

IR GP2D12 PA21 – 1x ADC 73

IR S320215 PA22 – 1x ADC 74

IR S320215 PA23 – 1x ADC 75

Servo DY-S0206 PB19 – 1x PWM 143
Tabla 5: Conexiones necesarias hacia la placa de evaluación EVK1100

5.4 PROGRAMACIÓN DEL AVR32

Como ya se ha visto, para la realización del robot móvil se hará uso de la placa de evaluación

EVK1100. Pero, ¿qué pasaría si se quisiera programar microcontroladores AVR32 sin disponer

de una de estas placas de evaluación?

Siguiendo con la temática del presente capítulo, a continuación se realiza un estudio de los

pasos y las herramientas que se han de seguir para poder realizar la programación de un

microcontrolador en el caso de no disponer de una placa de evaluación.

La Figura 22 enumera todas las interfaces disponibles, aunque el uso de cada una dependerá

del programador del que se disponga. Esta es la primera cuestión que el desarrollador debe

plantear cuando se programan microcontroladores, ya que en función de la interfaz por la que

se opte, cambiará la herramienta a utilizar.

Figura 22: Diferentes interfaces de programación del AVR32

En este caso, se hace uso del puerto JTAG ya que la herramienta disponible es el JTAG MKII

ICE, el cual tal y como se verá a continuación (Tabla 6), dispone de potentes herramientas para

la programación y el debug sobre el propio microcontrolador. Pero además de este

programador, existen otros diferentes en el mercado [9], todos ellos distribuidos por Atmel y

que se describen a continuación:

44

AVR Dragon: Por menos de 50$ Atmel pone a nuestra
disposición un programador que permite todos los modos
de programación disponibles para la familia AVR:

 In-System Programming (ISP)

 High Voltage Serial Programming (HVSP)

 Programación Paralela

 Programación JTAG

Además, permite realizar debug del microcontrolador.

AVRISP MKII: Esta herramienta de programación tiene
soporte para todos los chips de 8 Bits de AVR, por lo
tanto, no nos será de utilidad para la programación de los
AVR32. A pesar de ello, a continuación se listan algunas
de sus principales características:

 In-System Programming en todos los AVR8

 Totalmente compatible con AVR Studio

 Soporta todos los niveles de tensión de AVR

 Velocidad rápida de programación

JTAGICE MKII: Esta herramienta será la utilizada para la
realización del presente proyecto. Tal y como se está
viendo, no es la única existente en el mercado, pero sí
que es una de las mejores opciones:

 Permite la programación a través de puerto
JTAG y ISP

 Dispone de capacidades para realizar debug
sobre el microcontrolador

 Posibilidad de hacer uso de la interfaz
“debugWire”.

 Soporte para “Program-Breakpoints, Data-
Breakpoints” y para control total de la ejecución
del programa.

AVR ONE: El AVR ONE es una poderosa herramienta de
desarrollo y debug sobre el propio chip para cualquier
dispositivo AVR.

 Soporte para realizar debug a través de las
interfaces JTAG, debugWire, PDI y Nexus.

 Soporte para programar a través de la interfaz
ISP, JTG y PDI.

Tabla 6: Programadores disponibles en el mercado

45

Todo y que existen varias opciones para programar los microcontroladores AVR32, vamos a

centrarnos en la interfaz JTAG, ya que es la que se utilizará para la programación tal y como se

ha dicho anteriormente.

Figura 23: Conexiones necesarias para la programación a través de JTAG

Esta interfaz dispone de 10 pines, tal y como se puede ver en la Figura 23, que irán

conectados al microcontrolador. Todas las conexiones necesarias se encuentran en la

documentación [4] disponible en la propia web de Atmel.

Además de las conexiones del puerto JTAG, también se deberán realizar las conexiones

necesarias sobre el microcontrolador. La Figura 24 muestra el esquemático con las conexiones

que serán necesarias para el funcionamiento del circuito.

Figura 24: Conexiones necesarias para la programación JTAG

En la parte derecha, se pueden ver los 4 pines que irán conectados al puerto JTAG, mientras

que en la parte inferior, se ven todas las conexiones de alimentación que serán necesarias. Sin

embargo, en esta figura no se especifica cómo deben realizarse estas conexiones, por lo que

nuevamente tendremos que dirigirnos a la documentación existente en la web oficial [5].

Por último y una vez que se tengan claras las herramientas y interfaces que van a ser utilizadas

en la programación del robot, así como las conexiones que serán necesarias, se procederá a

abrir la suite AVR32 Studio, que permitirá hacer uso de todas las nombradas y por supuesto,

enviar el código de programa a la memoria interna del microcontrolador.

46

5.5 SOFTWARE DE CONTROL

El software del robot está dividido en dos partes: el software propio del microcontrolador y una

aplicación de control que servirá para poder enviar datos al robot desde un PC con conexión

Bluetooth. A continuación se ofrecen más detalles de ambos programas así como pequeñas

indicaciones sobre su programación.

5.5.1 APLICACIÓN DE CONTROL

Mediante este programa realizado con Visual Basic 6.0, se pretende crear una pequeña

aplicación que permita gobernar el robot desde un PC cualquiera que disponga de conexión

Bluetooth. Su diseño es sencillo, pues no es el objetivo del proyecto, pero como se puede ver

en la Figura 25 dispone de funciones suficientes para testear y gobernar el robot, permitiendo

por ejemplo, activar el modo autónomo o el modo de control manual.

Toda la programación de la comunicación se realiza a través del puerto serie del PC, de modo

que únicamente se debe crear un pequeño interfaz que permita seleccionar el puerto COM a

través del que se establecerá la conexión y pulsar sobre “Conectar”. A partir de este momento,

si la conexión ha sido satisfactoria, se habilitan los botones de control del robot.

Figura 25: Aplicación de Control

Para la comunicación a través del puerto serie se hace uso del componente “MSComm” que se

encuentra disponible en las librerías de Visual Basic 6.0, por lo que en caso de hacer uso de

esta aplicación, primero se deberá comprobar que se dispone de dicho componente instalado

en el sistema. Todo el código utilizado para la generación de este programa se podrá encontrar

en el capítulo [¡Error! No se encuentra el origen de la referencia.] de este documento.

5.5.2 SOFTWARE DEL AVR32

Tal y como se ha comentado en el punto anterior, la aplicación de control permitirá

comunicarse con el robot. Esta comunicación será gestionada por el microcontrolador, en el

extremo del robot móvil, por lo que este deberá disponer de un programa que dote de

autonomía e inteligencia al robot.

Toda la programación del microcontrolador se lleva cabo en lenguaje C++. Así están escritos

todos los ejemplos que se encuentran en el entorno de programación, además de ser un

47

lenguaje ya conocido y por lo tanto el aprendizaje de este se limitará al uso de las funciones o

variables específicas de estos microcontroladores. Dicho software, permitirá la interacción con

la Aplicación de Control antes detallada y además se responsabilizará de dotar al robot de la

inteligencia necesaria para que este no colisione con ningún objeto.

En cualquier caso y si lo que se desea es obtener más información acerca del código utilizado

en este, deberá dirigirse al capítulo [C] del Anexo.

5.6 PRUEBAS Y RESULTADOS

Una vez se dispone de todo el conjunto correctamente montado, conectado y programado, es

necesario realizar una serie de pruebas para comprobar el buen comportamiento de este.

Estas pruebas consisten en la comprobación de que toda la comunicación se establece de

forma correcta y ambas partes (microcontrolador y PC) se entienden e interactúan sin

problemas. Es por ello que a continuación se muestra cual es el funcionamiento de todo el

sistema y cuál debería ser su comportamiento.

5.6.1 PRUEBAS

Las pruebas realizadas se pueden separar en dos partes: la comprobación de la comunicación

e interacción entre el microcontrolador AVR32 y el PC, y el correcto funcionamiento del robot

en modo autónomo.

La Figura 26, muestra el diagrama de bloques de la comunicación entre el AVR32 y la

Aplicación de Control. Tal y como se observa, la Aplicación de Control actúa como maestro de

la comunicación, siendo la encargada de gestionar la transmisión y de dictar cuál es la

siguiente función a realizar, según lo indicado por el usuario.

Figura 26: Diagrama de bloques del conexionado del sistema

El funcionamiento es sencillo, basándose únicamente en el intercambio de caracteres ASCII

entre el PC y el microcontrolador. A continuación se detalla a modo de ejemplo y para entender

su funcionamiento, un posible caso de comunicación:

48

 A través de la Aplicación de Control, se debe seleccionar el puerto COM asociado al

Bluetooth del PC. Una vez elegido, se procederá a realizar la conexión.

 Si la comunicación se produce, se enviará un carácter ASCII a través del puerto serie.

Para hacerlo, bastará con pulsar sobre una de las opciones disponibles en el

programa. Por ejemplo, para habilitar el control manual, deberá pulsarse el botón

correspondiente y este enviará una “f”.

 Este carácter, será enviado de forma inalámbrica desde el PC hasta el

microcontrolador, gracias al conversor RS232 – Bluetooth disponible.

 Si los datos llegan correctamente, el microcontrolador entrará en modo manual y a su

vez, devolverá otro carácter ASCII al PC, de modo que la Aplicación de Control podrá

entender que la comunicación ha sido satisfactoria.

 En caso de querer detener la ejecución del programa en curso, se pulsará sobre el

botón correspondiente y este, enviará una “q”, la cual volverá a ser entendida por el

microcontrolador.

 Nuevamente, si la comunicación se produce de forma satisfactoria, el microcontrolador

devolverá el control de la ejecución a la Aplicación de Control y se podrá volver a

lanzar otra función.

La segunda prueba, consiste en comprobar que el robot es capaz de comportarse de forma

autónoma. Para ello y tal y como ya se detalló en capítulos anteriores, este está dotado de una

serie de sensores infrarrojos que deberán evitar cualquier tipo de colisión.

El algoritmo utilizado finalmente, es relativamente sencillo, habiendo descartado otros más

complejos y con más comprobaciones, por ser toscos y contener demasiadas instrucciones

repetitivas, que finalmente no aportaban nada al comportamiento global. A continuación, se

muestra cual ha sido el algoritmo utilizado:

 El primer paso a realizar una vez se entra en modo autónomo, es realizar una

comprobación íntegra de los tres sensores infrarrojos instalados.

 En caso de que ninguno de los sensores detecte una colisión, el robot por defecto

iniciará su movimiento hacia delante durante 1 segundo.

 En caso contrario, si se detecta un obstáculo, el robot detendrá su marcha e iniciará un

movimiento que permita esquivarlo (retrocederá y girará hacia un costado).

 Si se detecta más de un obstáculo al mismo tiempo, se ha definido una serie de

niveles, que dan prioridad a los sensores laterales, ya que estos detectarán cuando un

objeto se encuentra más cerca.

La velocidad de movimiento del robot es fija y para cambiarla deberá reprogramarse este. Es

por ello, que se ha optado por escoger una velocidad no demasiado rápida y unos tiempos

máximos de ejecución de 1 segundo. De este modo, cada segundo se realizan

comprobaciones del entorno y se pueden detectar objetos de forma satisfactoria.

5.6.2 RESULTADOS
La ejecución de las pruebas ha sido correcta y el funcionamiento final es el esperado. A

continuación se muestran los resultados desglosados en dos partes: los resultados obtenidos

respecto a la arquitectura AVR32 y los obtenidos respecto a la placa de evalución EVK1100.

Arquitectura AVR32: El rendimiento de la arquitectura AVR32 ha demostrado ser excelente

tras las pruebas y el estudio realizado. Las mejoras en la arquitectura desarrolladas por Atmel

han hecho que el AVR32 sea un micro de excelentes prestaciones y con un consumo

energético realmente bajo. A continuación se muestran algunos de los resultados obtenidos

para la arquitectura AVR32:

49

 Dificultad para medir las prestaciones de la arquitectura AVR32: Comprobar todo

el potencial de esta arquitectura, es una ardua tarea, ya que la aplicación construida no

llega a explotar todas sus capacidades. A pesar de esto, a través del estudio de su

arquitectura se ha demostrado como los AVR32 son idóneos para la robótica móvil y

además, se ha podido ver la superioridad frente a otras alternativas existentes en el

mercado.

 Drivers del Framework de Atmel: La suite de desarrollo AVR32 Studio dispone de un

completo Framework donde se puede encontrar multitud de ejemplos y drivers para

estos microcontroladores. Se trata de una ayuda importante para desarrolladores

noveles, ya que estos ejemplos y drivers están listos para ser utilizados y se

encuentran perfectamente detallados.

Placa de evaluación EVK1100: La placa EVK1100 ha demostrado ser una excelente

herramienta para el desarrollo de aplicaciones, debido a la gran cantidad de periféricos

disponibles y a la facilidad de uso que estos presentan gracias a los drivers del framework de

Atmel. A continuación se detallan algunos de los resultados más importantes que se han

obtenido de la construcción de un robot móvil con ella:

 Facilidad de uso de la placa EVK1100: Todas las pruebas realizadas han sido

llevadas a cabo con éxito gracias a la facilidad de uso que presenta esta placa de

evaluación. Por ejemplo, la disponibilidad de puertos RS232 (donde conectar

directamente un cable serie y realizar debug a través de un PC) facilita el desarrollo de

aplicaciones, o también la disponibilidad de una pantalla LCD ya instalada o botones

totalmente configurables.

 Entorno de pruebas del robot móvil: Las pruebas finales realizadas al robot móvil

han sido satisfactorias, aunque ha sido preciso realizar múltiples modificaciones de

código hasta lograr el comportamiento deseado del conjunto. Las pruebas pueden

dividirse en dos:

- Funcionamiento del modo autónomo: Tras muchas modificaciones del código,

se ha podido comprobar cómo el robot funciona de una forma totalmente

autónoma, evitando colisionar con cualquier objeto que se le presente delante.

Ha sido necesaria reducir la velocidad de funcionamiento de los motores, así

como parar todo el conjunto cada vez que se realiza una medición, para evitar

colisiones no deseadas.

- Control manual remoto: La comunicación vía Bluetooth con el PC se realiza de

forma satisfactoria, no detectando ninguna incidencia en su uso.

 Escasa duración de la batería: Durante las pruebas realizadas sobre el conjunto del

robot, se ha apreciado como la duración de la batería es muy corta. A priori la

alimentación de este se ha realizado únicamente con un conjunto de 6 pilas de 1.5V,

proporcionando un total de 9V. Esto es debido principalmente a 2 factores:

- Aunque se trabaja con un microcontrolador de bajo consumo, el conjunto de la

placa de evaluación no lo es. El uso de la pantalla LCD, varios canales PWM,

ADC, GPIO, dispositivos infrarrojos o la inserción del módulo Bluemore200,

provocan que el consumo energético crezca de forma desmesurada.

- El hecho de compartir una única fuente de alimentación entre la placa de

evaluación EVK1100 y los dos motores de corriente continua, provoca una

50

caída de tensión demasiado grande ante la activación de los segundos. Este

hecho tiene como consecuencia continuos reinicios del sistema.

Para solventar este último problema, se ha optado por separar los motores DC de la

placa de evaluación EVK1100 mediante el uso de 2 baterías independientes. Así, se ha

conseguido que los reinicios no se produzcan, aunque el consumo global sigue siendo

excesivo.

 Una única toma de 5V: Aunque no es un impedimento para la elaboración del robot

móvil, el hecho de incluir más de una toma que proporcione valores de 5V hubiera sido

bueno. En este caso, la toma existente ha sido utilizada para alimentar el integrado

L293D, aunque hubiera sido útil disponer de alguna más para poder utilizarlas en el

Bluemore200 o en los sensores infrarrojos.

 Área de conexionado poco eficiente: La soldadura de elementos en la cuadrícula

disponible para la conexión de dispositivos puede ser complicada, debido a que para la

interconexión de puntos deben utilizarse puentes cableados, ya que de otro modo, se

podría dañar la placa de evaluación. Además, todos los pines preparados para ser

utilizados en el lateral (canales PWM, ADC, GPIO…), se encuentran demasiado juntos

y puede provocar que se hagan contactos no deseados, cortocircuitándo la placa en

ocasiones. Este problema se soluciona realizando soldaduras sobre la placa, pero

provoca situaciones problemáticas ante la aparición de errores de diseño.

 Tamaño de la placa: Las dimensiones de la placa de evaluación EVK1100 hacen que

su uso no sea el mejor para la construcción de robot móviles pequeños.

51

6. CONCLUSIONES

Los objetivos principales desarrollados en el proyecto han sido:

 El análisis de la arquitectura AVR32.

 La comparativa con otras alternativas existentes en el mercado (AVR8 o ARM)

 Estudio de la placa de evaluación EVK1100.

 Construcción de un robot móvil haciendo uso de esta.

 Creación de una aplicación de control, capaz de gestionar un robot de forma remota.

Los microcontroladores AVR32 han supuesto una evolución respecto a otros dispositivos

existentes en el mercado. Tal y como se ha detallado en capítulos anteriores, el mercado de

microcontroladores es muy amplio y abarca una enorme cantidad de dispositivos y aplicaciones

distintas. En la medida de lo posible, cada una de las empresas productoras ha ido

evolucionando sus modelos a otros más rápidos y potentes, con más memoria y periféricos,

pero en su mayoría, sin aportar nada nuevo a la arquitectura de estos. Atmel, además de

aumentar la frecuencia de sus microcontroladores, ha optado por la mejora de la arquitectura

ampliando el potencial de sus micros sin ningún tipo de coste energético, a través de:

 La reducción del número de ciclos de carga y lectura de la CPU.

 La ejecución múltiple de tareas repetitivas.

 Maximizar la utilización de los recursos del pipeline.

 Minimizar las latencias en las instrucciones de salto.

 Mejoras en la densidad de código.

La arquitectura AVR32 ha demostrado ser óptima para la elaboración de aplicaciones móviles,

gracias al eficiente uso energético que esta realiza y al nivel de potencia que ofrece. Además,

si sumamos a las mejoras antes citadas, las más de 2000 interrupciones que puede controlar,

junto con la integración de periféricos como el I2C, Ethernet o USB, hacen que sea una de las

mejores opciones cuando se busca movilidad.

Al contrario, la placa de evaluación EVK1100 es poco eficiente cuando se desea personalizar

para la realización de robots móviles. Los objetivos del proyecto han sido cumplidos con éxito,

pero su gran tamaño provoca que la aplicación construida sea pesada. Además, el elevado

número de componentes que integra, incrementa el gasto energético del conjunto de forma

considerable.

La carencia de bibliografía sobre la arquitectura AVR32, ha sido un factor importante a lo largo

del desarrollo del proyecto y puede ser determinante para que un usuario se decante por el uso

de otra arquitectura. Los datos necesarios para realizar el estudio y la programación del

AVR32, se han obtenido a través del análisis de la documentación del dispositivo y de los

drivers disponibles en el entorno de programación. A pesar de que los objetivos han sido

alcanzados, Atmel debería esforzarse en mejorar este aspecto.

Concluyendo este trabajo, pienso que los AVR32 son una de las mejores opciones existentes

en el mercado, pero a pesar de que estos microcontroladores llevan varios años en el mercado,

es difícil encontrar aplicaciones comerciales que hagan uso ellos, debido en gran parte a la

influencia que tiene ARM en el mercado global. Personalmente opino que Atmel debería

hacerse un hueco a nivel mundial, haciendo virtud de las mejoras que presentan estos

microcontroladores e incluso, poner en circulación productos propios que hagan uso de los

AVR32. De esta forma, se podría comenzar a ver productos bajo la marca de Atmel, del mismo

modo que por ejemplo, ARM lo hace en el mercado de los dispositivos móviles.

52

53

7. BIBLIOGRAFÍA

[1] www.atmel.com. “Atmel Corporation”, página web oficial.

[2] www.arm.com. “ARM Ltd.”, página web oficial.

[3] www.atmel.com/dyn/resources/prod_documents/doc32000.pdf. “AVR32 Architecture

Document”, Atmel Corp (11/2007).

[4] www.atmel.com/dyn/resources/prod_documents/doc2562.pdf. “Connecting to a target

board with the AVR JTAGICE MKII”, Atmel Corp (07/2006).

[5] www.atmel.com/dyn/resources/prod_documents/doc32090.pdf. “UC3A schematic

checklist”, Atmel Corp (12/2008).

[6] http://www.atmel.com/dyn/resources/prod_documents/doc32058.pdf. “AVR32 32-Bit

Microcontroller Datasheet”, Atmel Corp (11/2009).

[7] www.atmel.org/dyn/resources/prod_documents/doc4092.pdf. “MCU Architectures for

Compute-Intensive Embedded Applications”, Atmel Corp (12/2005).

[8] www.atmel.com/dyn/resources/prod_documents/doc32103.pdf. “Quick-start Guide.

EVK1100 + Windows”, Atmel Corp (02/2010).

[9] www.atmel.com/dyn/resources/prod_documents/doc4064.pdf. “Quick Reference

Guide”, Atmel Corp (02/2009).

[10] www.atmel.com/dyn/resources/prod_documents/doc7919.pdf. “AVR32 UC3 Flash

Microcontrollers”, Atmel Corp (07/2009).

[11] www.atmel.com/dyn/resources/prod_documents/doc32002.pdf. “AVR32UC: Technical

Reference Manual”, Atmel Corp (03/2010).

[12] www.avrfreaks.com. AVR Freaks, Comunidad oficial de AVR.

[13] www.freertos.org. “The FreeRTOS Project”, página web official.

[14] Kai Qian, David den Haring, Li Cao (2009). “Embedded Software Development with C”,

Springer.

54

55

ANEXOS

A. PROGRAMACIÓN

Este punto pretende realizar una introducción a la programación de los microcontroladores

AVR32 mediante la suite de desarrollo de Atmel. Esta herramienta, el AVR32 Studio, es

gratuita y permitirá desarrollar y obtener multitud de ejemplos.

A continuación se analizan cuales son las dos opciones más comunes para desarrollar

microcontroladores y se detalla el porqué decantarse por la programación Standalone frente a

la implementación de un sistema operativo en tiempo real.

Por último se muestran fragmentos de código utilizados en el desarrollo del proyecto,

detallando el funcionamiento de los diferentes módulos utilizados. De esta forma se pretende

hacer una introducción a la programación en código C++, mostrando ejemplos del

funcionamiento de diversos dispositivos.

A.1 ENTORNO DE PROGRAMACIÓN
El entorno de desarrollo utilizado para la programación del robot, es el que proporciona la

propia compañía Atmel, el AVR32 Studio. Esta herramienta está basada en Eclipse, un popular

entorno de desarrollo integrado y de código abierto.

Eclipse fue desarrollado originalmente por IBM como el sucesor de su familia de herramientas

para VisualAge. Eclipse es ahora desarrollado por la Fundación Eclipse, una organización

independiente sin ánimo de lucro que fomenta una comunidad de código abierto y un conjunto

de productos complementarios, capacidades y servicios.

El funcionamiento de AVR32 Studio es sencillo y como ya se ha comentado, quien esté

familiarizado con Eclipse no deberá tener ningún problema para comprender su

funcionamiento. A pesar de ello, el siguiente punto describe el funcionamiento de este entorno

y algunas de sus funciones más interesantes.

A.2 AVR32 STUDIO
Esta herramienta de trabajo puede ser descargada de forma gratuita de la propia página web

de Atmel [1]. Es por ello que, antes de poder comenzar a programar el microcontrolador, será

necesario instalar el entorno de programación como tal. Para ello [8], se debe instalar el

GNUToolchain (proporciona los componentes necesarios para poder realizar la programación

del MCU) y el AVR32 Studio.

El siguiente paso es conectar el programador JTAGICE MKII al puerto USB del PC y este a su

vez a la placa de evaluación EVK1100 a través del puerto JTAG. Si todo funciona

correctamente, AVR32 Studio reconocerá de forma automática estos dos dispositivos, aunque

la mejor prueba es realizar una lectura de los registros internos del microcontrolador y así ver si

este responde de forma correcta. Para ello, se seguirán los siguientes pasos:

1. Hacer “click” con el botón derecho del ratón sobre “AVR32 Targets” y seleccionar “Scan

Targets”. Deberá aparecer el dispositivo tal y como se ve en la imagen siguiente:

http://es.wikipedia.org/w/index.php?title=VisualAge&action=edit&redlink=1

56

Figura 27: Ventana de dispositivos en AVR32 Studio

2. Ahora que AVR32 Studio ya detecta el JTAGICE MKII, se ha de configurar para

indicarle al programa cual es la configuración exacta que se desea utilizar. Para ello,

pulsamos encima del JTAGICE MKII y rellenamos los campos de la pestaña

“Properties” tal y como se indica a continuación:

3. A continuación, para leer los registros internos del microcontrolador, se ha de hacer

“click” derecho con el ratón sobre el JTAGICE MKII que se encuentra situado en la

parte inferior derecha y posteriormente, pulsar sobre “Read General Registers”. Ahora

se debería ver una nueva ventana con 16 registros y sus correspondientes valores en

ese instante.

4. Por último, si se desea borrar todos los datos que se encuentran grabados sobre el

microcontrolador, se debe proceder del mismo modo que en el punto 3, pero esta vez

pulsando sobre “Chip Erase”. Ahora, si se leen los valores de los registros, estos se

encuentran con valor 0x00.

Antes de realizar el punto número 4 (borrado del Chip), se puede conectar la placa de

evaluación EVK1100 mediante un cable Ethernet a un PC, y ver la aplicación que lleva

implementada de fábrica: un servidor web que proporciona datos en tiempo real de la placa.

Figura 28: Configuración del microcontrolador en AVR32 Studio

57

Aunque en caso de no hacerlo, siempre se puede recuperar esta aplicación del propio AVR32

Studio, ya que está incluida en él.

Estos ejemplos han sido de gran utilidad para la realización del proyecto. La bibliografía acerca

del AVR32 es escasa (al contrario que para el AVR8), y por lo tanto, los ejemplos que se

pueden encontrar también lo son. A pesar de este hecho, gracias al Framework incluido, se ha

podido avanzar en el aprendizaje de este microcontrolador sin problemas. Entre los ejemplos

incluidos en el entorno de programación se encuentran los siguientes (entre otros):

 Control Panel Demo: Se trata del servidor web que se incluye por defecto en la placa

de evaluación EVK1100. En caso de haber hecho un erase del chip y desear

recuperarlo, este es el programa a cargar.

 CPU MPU Example: Ejemplo sobre la configuración de la MPU.

 External Interrupt Controller: Como indica su nombre, proporciona 3 ejemplos

distitnos del funcionamiento de las interrupciones externas.

 General Purpose I/O (GPIO): Ofrece dos ejemplos sobre cómo hacer uso de los

puertos GPIO. Desde el punto de vista del proyecto son muy interesantes ya que la

activación de LEDs y motores, se realiza a través de estos puertos.

 Interrupt Controller (INTC): Ejemplo sobre el uso de las interrupciones internas.

 Power Manager (PM): Indica cómo hacer uso del Power Manager, que entre otras

cosas permitirá seleccionar diferentes velocidades de reloj.

 Pulse Width Modulation (PWM): Importante ejemplo sobre cómo utilizar los canales

PWM que serán vitales para el movimiento de los servomotores.

 USART Example: Detalla el funcionamiento de los USART de la placa. Imprescindible

para la comunicación serie con el robot.

 DIP204 Example: Completo ejemplo que muestra datos a través del LCD integrado y

además hace uso de interrupciones externas que son activadas a través de los botones

incluidos en la placa.

 FreeRTOS Example: Ejemplo de uso de este sistema operativo en tiempo real. Se

trata de un SO gratuito y ampliamente extendido a muchos otros microcontroladores.

En caso de querer utilizar alguno de estos ejemplos, se deberá pulsar sobre “File – New –

AVR32 Example Project” y aquí seleccionar la placa de evaluación. Una vez seleccionado uno

de los ejemplos a utilizar, pulsar sobre “Finish” y en la barra lateral izquierda aparecerá listado

como un nuevo proyecto.

Una vez llegados a este paso, lo único que queda es identificar donde se encuentran los

ficheros con el código fuente. Bajo el directorio “Proyecto / src /” se encontrarán todos los

ficheros fuentes y es aquí, donde se podrán añadir otras fuentes o ficheros de cabeceras, en

caso de ser necesario.

AVR32 Studio dispone de una herramienta que automáticamente instalará sobre el proyecto

todas las dependencias y librerías necesarias para el uso de cualquier componente de nuestro

microcontrolador. De este modo, únicamente se deberá seleccionar los drivers que se

considere necesario y ya se podrá comenzar a trabajar con estos nuevos componentes. Para

acceder a este menú de configuración, se debe hacer “click” en “Framework – Select

Drivers/Components/Services” y seleccionar los que se vallan a utilizar.

58

A.3 ¿FREERTOS O PROGRAMACIÓN “STANDALONE”?

En el momento de iniciar un proyecto en AVR32 Studio, el propio programa hace hincapié en

que tipo de proyecto se desea, y entre otros, una de las opciones que muestra es la de crear

un proyecto standalone. El concepto de standalone, históricamente, no es otro que el de una

aplicación que no necesita ningún tipo de sistema operativo para funcionar. En el caso a

estudio, parece ser claro que no se hará uso de SO, así que los primeros contactos con el

entorno de programación y código se hacen bajo estas condiciones.

Pero a pesar de lo mencionado, una de las ventajas de disponer de un microcontrolador de

altas prestaciones, es la de poder instar en él un sistema operativo en tiempo real, que ayude a

la planificación y coordinación de las tareas que se implementen. Es por ello, que a pesar de

que la programación “standalone” puede ser más sencilla, podría ser interesante el decantarse

por implementar uno de estos sistemas.

Como sistema operativo, AVR32 Studio nos permite hacer uso de FreeRTOS, un sistema

operativo en tiempo real para dispositivos embebidos y que ha sido portado a la mayoría de

microcontroladores. Este SO está distribuido bajo la GPL y está diseñado para ser pequeño y

simple. De hecho, el núcleo del SO está formado únicamente por 3 o 4 ficheros. El lenguaje

utilizado en su programación es C, lo que permite que sea legible, fácil de portar a otras

plataformas y fácil también, de mantener.

Este sistema, se puede descargar de forma totalmente gratuita desde la web de FreeRTOS

[13], y dispone de varios ejemplos específicos para los diferentes microcontroladores que lo

soportan. Algunas de sus características técnicas más importantes son:

 Soporte oficial para 23 arquitecturas de microcontroladores.

 Diseñado para ser pequeño, simple y fácil de utilizar.

 Portable a otras arquitecturas gracias a que su código está escrito en C.

 Soporte para tareas y rutinas.

 No hay límite para el número de tareas que pueden ser creadas y lanzadas.

 No hay límite para el número de prioridades que pueden ser usados.

 Más de una tarea puede tener el mismo nivel de prioridad.

 Soporte para colas, semáforos y mutexes para las comunicaciones y sincronización

entre tareas e interrupciones.

Debido a que las exigencias de nuestro proyecto no requieren su uso, toda la programación se

llevará a cabo de forma Standalone, aunque es conveniente saber de su existencia y uso.

59

A.4 PROGRAMACIÓN DEL AVR32

A continuación se mostrarán fragmentos de código utilizado para la configuración de los

diferentes elementos necesarios en la realización del proyecto, aunque para la obtención del

código fuente completo deben dirigirse al punto B y C del Anexo.

Power Manager:

El Power Manager es el encargado de gestionar, entre otras cosas, el funcionamiento de los

buses internos del microcontrolador. Es por ello que se utilizará para proporcionar un reloj a

todo el sistema, que podrá variar en función de las necesidades. Se ha de tener en cuenta que

a mayor velocidad de reloj, mayor potencia de cálculo, pero también conllevará un aumento del

consumo energético.

Esta velocidad se puede variar mediante la inicialización de relojes externos/internos o

mediante el uso de los PLL‟s, de modo que su velocidad de funcionamiento puede oscilar entre

los 112 KHz hasta los 66 MHz máximos. A continuación se muestra el fragmento de código

utilizado para la inicialización en los siguientes casos:

12 MHz: Únicamente es necesario incluir la siguiente línea al comienzo del programa principal:

pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);

Para el resto de velocidades de reloj, será necesario la modificación de los divisores del PLL,

aunque el proyecto se llevará a cabo a una frecuencia de 12 MHz ya que se trata de una

velocidad suficiente para el funcionamiento del conjunto.

66 MHz:

pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);

pm_pll_setup(&AVR32_PM, 0,

 10,

 1,

 0,

 16);

pm_pll_set_option(&AVR32_PM, 0,

 1,

 1,

 0);

pm_pll_enable(&AVR32_PM, 0);

pm_wait_for_pll0_locked(&AVR32_PM);

pm_cksel(&AVR32_PM,

 0,

 0,

 0,

 0,

 0,

 0);

flashc_set_wait_state(1);

pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);

60

Si bien, para poder hacer uso de estas funciones, primero es necesario incluir en nuestras

librerías las correspondientes al Power Manager a través del menú “Framework – Select

Drivers”. Posteriormente, deberá ser declarada al inicio del programa.

GPIO:

Como ya se ha comentado anteriormente, los canales GPIO permitirán activar/desactivar

señales o leer valores digitales de dispositivos externos. Para el proyecto, su uso gira entorno a

la activación de las ruedas motrices.

En primer lugar, es necesario que del mismo modo que para el Power Manager, se incluyan las

librerías necesarias en el proyecto a través del selector de drivers incluido en AVR32 Studio.

Para este caso y para todos los posteriores deberá realizarse del mismo modo, por lo que de

ahora en adelante este paso será omitido. Una vez incluidas las librerías necesarias, deben

definir las variables que sean acordes a los elementos que se desea controlar. En este caso,

cada uno de los motores dispone de 3 controles:

 El PIN Enable, que activará o desactivará el motor y que será definido para que haga

uso del PIN PB01 del microcontrolador.

 Los interruptores A y B, que serán los encargados de ofrecer las señales necesarias

para poder gobernar el robot.

#define ENABLE_PIN_MOTOR_DER AVR32_PIN_PB01

#define A_PIN_MOTOR_DER AVR32_PIN_PB02

#define B_PIN_MOTOR_DER AVR32_PIN_PB03

Una vez realizado este paso, se debe inicializar el Bus GPIO y este ya se encontrará listo para

utilizarse. Además, AVR32 permite activar el filtro anti-glitch, de modo que cualquier pulso de

duración menor a un ciclo de reloj será descartado y no afectará al funcionamiento del robot.

En este caso, se hace uso de este filtro en todas las salidas/entradas del motor:

gpio_local_init();

gpio_enable_pin_glitch_filter(ENABLE_PIN_MOTOR_DER);

gpio_enable_pin_glitch_filter(A_PIN_MOTOR_DER);

gpio_enable_pin_glitch_filter(B_PIN_MOTOR_DER);

Por último, solo queda hacer uso de estos canales mediante la habilitación o deshabilitación de

estos. Si por el contrario, se desea obtener un valor lógico desde un evento externo, este

puede ser leido mediante el último de los comandos, aunque para la realización de esta tarea,

los canales ADC son los más apropiados, por ofrecer niveles analógicos y no valores de 0 o 1

como ocurre con el GPIO.

gpio_set_gpio_pin(ENABLE_PIN_MOTOR_DER);

gpio_set_gpio_pin(A_PIN_MOTOR_DER);

gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

gpio_get_pin_value(GPIO_PUSH_BUTTON_0);

61

ADC:

Este tipo de canales serán los encargados de realizar la lectura de los sensores externos

utilizados para la detección de colisiones del robot. Serán utilizados estos y no los GPIO, ya

que permitirán obtener un valor “analógico”, que nos aportará datos sobre la distancia a la que

se encuentren los obstáculos más precisos que en el caso de hacer uso del GPIO. Para su

uso, el primer paso es declarar las variables necesarias tal y como se muestra en el siguiente

fragmento. Existen 7 canales posibles para utilizar, aunque en este ejemplo se especifica su

uso para el canal 0.

#define DETECTAR_COLISION_CHANNEL 0

#define DETECTAR_COLISION_PIN AVR32_ADC_AD_0_PIN

#define DETECTAR_COLISION_FUNCTION AVR32_ADC_AD_0_FUNCTION

volatile avr32_adc_t *adc = &AVR32_ADC;

signed short adc_value_ir = -1;

unsigned short adc_channel_sensor = DETECTAR_COLISION_CHANNEL;

Una vez se han declarado estas variables es necesario mapear todos los puertos que se vallan

a utilizar para que funcionen como canales ADC y no como canales de propósito general. Tal y

como se dijo, todos los puertos disponen de varias funciones y es por eso que antes de hacer

uso de ellos se debe especificar en nuestro programa que función han de realizar. Por último,

sólo quedará hacer uso de las funciones que se muestran para poder realizar medidas a través

de estos puertos.

static const gpio_map_t ADC_GPIO_MAP =

{

{DETECTAR_COLISION_PIN, DETECTAR_COLISION_FUNCTION},

{DETECTAR_COLISION_PIN_1, DETECTAR_COLISION_FUNCTION_1},

{DETECTAR_COLISION_PIN_2, DETECTAR_COLISION_FUNCTION_2},

};

gpio_enable_module(ADC_GPIO_MAP, sizeof(ADC_GPIO_MAP) /

sizeof(ADC_GPIO_MAP[0]));

adc_configure(adc);

adc_enable(adc,adc_channel_sensor);

adc_enable(adc,adc_channel_sensor_1);

adc_enable(adc,adc_channel_sensor_2);

adc_start(adc);

adc_value_ir = adc_get_value(adc, adc_channel_sensor);

PWM:

La programación de los canales PWM es sencilla y a diferencia de otros microcontroladores, no

es necesario gestionar ningún tipo de interrupción ni contador. Con la configuración mostrada

se pueden generar pulsos cuadrados del periodo que deseemos a través del canal 0. Como

existen 7 canales, sólo hay que modificar el valor 0 y sustituirlo por un número entre el 0 y el 6.

62

int status_pwm_0 = -1;

pwm_opt_t pwm_opt_channel_0;

avr32_pwm_channel_t pwm_channel_0 = { .ccnt = 0 };

unsigned int channel_id_0;

Como siempre, el primer paso a realizar es una declaración de todas las variables implicadas

en la generación de señales PWM, para posteriormente seguir con la generación de la onda.

Este microcontrolador permite modificar muchas de las características de la señal así como lo

son la polaridad esta, su posición, el periodo o el duty-cycle a utilizar.

channel_id_0 = 0;

gpio_enable_module_pin(AVR32_PWM_0_PIN, AVR32_PWM_0_FUNCTION);

pwm_opt_channel_0.diva = AVR32_PWM_DIVA_CLK_OFF;

pwm_opt_channel_0.divb = AVR32_PWM_DIVB_CLK_OFF;

pwm_opt_channel_0.prea = AVR32_PWM_PREA_MCK;

pwm_opt_channel_0.preb = AVR32_PWM_PREB_MCK;

pwm_init(&pwm_opt_channel_0);

pwm_channel_0.CMR.calg = PWM_MODE_LEFT_ALIGNED;

pwm_channel_0.CMR.cpol = PWM_POLARITY_LOW;

pwm_channel_0.CMR.cpd = PWM_UPDATE_DUTY;

pwm_channel_0.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_1024

pwm_channel_0.cdty = 210;

pwm_channel_0.cprd = 234;

pwm_channel_0.cupd = 0;

Las 4 últimas líneas de código son las que permitirán seleccionar el periodo del pulso PWM.

Mediante la siguiente fórmula se puede calcular el valor de estas variables para generar la

frecuencia deseada.

(115200/256)/20 == 22.5Hz == (Clock Frequency / Prescaler) / Period

Por último, sólo quedará iniciar o parar el canal PWM según sea necesario. Para ello, se hará

uso de las instrucciones “pwm_stop_channels” y “pwm_start_channels” tal y como se puede

ver en el siguiente fragmento de código.

pwm_channel_init(channel_id_0, &pwm_channel_0);

pwm_stop_channels(1 << channel_id_0;

pwm_start_channels(1 << channel_id_0);

Ahora que ya se encuentran configurados y funcionando los canales PWM, se podrá controlar

el servomotor según convenga o proporcionar a los motores DC, una velocidad variable

conectando uno de sus terminales (por ejemplo el Enable), a uno de los canales PWM.

63

Delay:

Nuevamente nos encontramos que gracias a las librerías existentes en el entorno de

programación, será muy sencillo poder generar delays temporales únicamente llamando al

comando “delay_ms()”. Como su nombre indica, nos generará un retraso de tantos

milisegundos como le especifiquemos entre los paréntesis.

Este tipo de función es imprescindible si queremos hacer uso del LCD, ya que con él podremos

limitar el refresco de la pantalla para que esta sea legible (aunque también podríamos hacer

uso de un simple bucle for).

delay_init(FOSC0);

delay_ms(500);

USART:

El uso que se hará del USART en este proyecto, será el poder comunicarse con el robot desde

un PC, mandándole instrucciones y poder realizar un debug a través de un terminal y un puerto

serie. También será útil para mostrar por pantalla el valor de los sensores y de este modo

comprobar si están funcionando de forma correcta. Para ello, una vez más deberán declararse

todas las variables iniciales necesarias para el funcionamiento de este dispositivo, y mapear los

puertos para que funcionen en modo USART.

#define COMM_ROBOT_USART (&AVR32_USART1)

#define COMM_ROBOT_USART_RX_PIN AVR32_USART1_RXD_0_0_PIN

#define COMM_ROBOT_USART_RX_FUNCTION

AVR32_USART1_RXD_0_0_FUNCTION

#define COMM_ROBOT_USART_TX_PIN AVR32_USART1_TXD_0_0_PIN

#define COMM_ROBOT_USART_TX_FUNCTION

AVR32_USART1_TXD_0_0_FUNCTION

int status_usart = -1;

static const gpio_map_t USART_GPIO_MAP =

{

 {COMM_ROBOT_USART_RX_PIN, COMM_ROBOT_USART_RX_FUNCTION},

 {COMM_ROBOT_USART_TX_PIN, COMM_ROBOT_USART_TX_FUNCTION}

};

Ahora llega el momento de definir las características básicas de funcionamiento del USART

como lo son la tasa de transferencia, la longitud del carácter o el tipo de paridad que va a

utilizarse. Para conocer mejor estas características y su uso, se puede revisar la librería

correspondiente al USART, ya que es aquí donde se encuentran las diferentes opciones y

parámetros a utilizar, así como una breve explicación de estos.

static const usart_options_t USART_OPTIONS =

{ .baudrate = 57600,

 .charlength = 8,

 .paritytype = USART_NO_PARITY,

 .stopbits = USART_2_STOPBITS,

 .channelmode = USART_NORMAL_CHMODE };

64

gpio_enable_module(USART_GPIO_MAP, sizeof(USART_GPIO_MAP) /

sizeof(USART_GPIO_MAP[0]));

usart_init_rs232(COMM_ROBOT_USART, &USART_OPTIONS, FOSC0);

Ahora, sólo restará hacer uso de este canal de comunicación ya sea para realizar debug a

través del terminal serie o para comunicarse con el robot.

usart_getchar(COMM_ROBOT_USART);

usart_putchar(COMM_ROBOT_USART, opcion);

print_dbg("\033[22;30m");

print_dgb_hex(opcion);

65

B. APLICACIÓN DE CONTROL EN VISUAL BASIC 6.0

// ##
// # Programa para el control remoto del robot móvil #
// # Por Francisco Muñoz Verdú. UAB. #
// ##

// Variables para la comunicación con el microcontrolador AVR32.
Dim i As Integer, Letra(99)

// Buffer donde se almacenarán los datos de la comunicación RS232.
Dim InBuff As String

// Función para Cambiar / Quitar el control manual del Robot.

Private Sub Command1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

// Deshabilitamos todos los controles a excepción del botón 1, que será el del Control Manual.

If Command1.Caption = "Control Manual" Then

// Guardamos la letra "f" y la enviaremos a través del puerto serie mediante MSComm1.Output

 Letra(0) = "f"

 MSComm1.Output = Letra(0)

// Deshabilitamos los botones, para que no puedan ser utilizados

 Command2.Enabled = False

 Command5.Enabled = False

 Command6.Enabled = False

 Command1.Caption = "Fin Control"

// Si volvemos a pulsar sobre el botón 1, habilitaremos todos los botones de nuevo

ElseIf Command1.Caption = "Fin Control" Then

// Enviamos una "q" al microcontrolador para salir del programa del modo manual.

 Letra(0) = "q"

 MSComm1.Output = Letra(0)

// Y volvemos a deshabilitar los controles manuales.

 Command2.Enabled = True

 Command5.Enabled = True

 Command6.Enabled = True

 Command1.Caption = "Control Manual"

 Command3.Enabled = False

 Command4.Enabled = False

 Command7.Enabled = False

 Command8.Enabled = False

 Command9.Enabled = False

 Command10.Enabled = False

 Command11.Enabled = False

 Command12.Enabled = False

 Command13.Enabled = False

 Command23.Enabled = False

 Command24.Enabled = False

 Command16.Enabled = False

66

 Command17.Enabled = False

 Command18.Enabled = False

End If

End Sub

// Función para activar el modo autónomo. El proceso de envío de datos se hará igual para

// todas las funciones del programa mediante el uso de MSComm1.

Private Sub Command2_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

// Enviamos al micro la orden para entrar en Modo Autónomo

If Command2.Caption = "Modo Autonomo" Then

 Letra(0) = "e"

 MSComm1.Output = Letra(0)

 Command1.Enabled = False

 Command5.Enabled = False

 Command6.Enabled = False

 Command2.Caption = "Fin Modo"

// Enviamos al micro la orden para salir del modo autónomo

ElseIf Command2.Caption = "Fin Modo" Then

 Letra(0) = "t"

 MSComm1.Output = Letra(0)

 Command1.Enabled = True

 Command5.Enabled = True

 Command6.Enabled = True

 Command2.Caption = "Modo Autonomo"

End If

End Sub

// Función que lanzará una prueba sobre el servomotor de forma automática.

Private Sub Command5_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

 Letra(0) = "a"

 MSComm1.Output = Letra(0)

// Inicialmente deshabilitamos todos los botones y más tarde, en el control de comunicación se

// volverán a activar.

 Command1.Enabled = False

 Command2.Enabled = False

 Command5.Enabled = False

 Command6.Enabled = False

 Command5.Caption = "Ejecutando..."

End Sub

// Función que lanzará una prueba sobre el motor DC de forma automática.

Private Sub Command6_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

 Letra(0) = "b"

 MSComm1.Output = Letra(0)

67

// Inicialmente deshabilitamos todos los botones y más tarde, en el control de comunicación se

// volverán a activar.

 Command1.Enabled = False

 Command2.Enabled = False

 Command5.Enabled = False

 Command6.Enabled = False

 Command6.Caption = "Ejecutando..."

End Sub

// Enviamos una "s" para que el robot se mueva hacia detrás

Private Sub Command10_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "s"

MSComm1.Output = Letra(1)

End Sub

// Enviamos una "k" para que el robot realice la medida del sensor frontal

Private Sub Command11_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "k"

MSComm1.Output = Letra(1)

End Sub

// Enviamos una "l" para que el robot realice la medida del sensor derecho

Private Sub Command12_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "l"

MSComm1.Output = Letra(1)

End Sub

// Enviamos una "j" para que el robot realice la medida del sensor izquierdo

Private Sub Command13_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "j"

MSComm1.Output = Letra(1)

End Sub

// Control para la conexión con los puertos COM. Debemos seleccionar el que tengamos

// configurado en nuestro PC

Private Sub Command14_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

// Realizamos un control de errores para evitar que el programa se cierre al seleccionar un

// puerto que esté cerrado

On Error GoTo control_errores

If Combo1.Text = "COM 1" Then

 Letra(2) = 1

End If

68

If Combo1.Text = "COM 2" Then

 Letra(2) = 2

End If

If Combo1.Text = "COM 3" Then

 Letra(2) = 3

End If

If Combo1.Text = "COM 4" Then

 Letra(2) = 4

End If

If Combo1.Text = "COM 5" Then

 Letra(2) = 5

End If

If Combo1.Text = "COM 6" Then

 Letra(2) = 6

End If

// Configuración necesaria para el funcionamiento del módulo MSComm1

With MSComm1

.CommPort = Letra(2)

.RThreshold = 1

.RTSEnable = True

.Settings = "57600,n,8,1"

.SThreshold = 1

.PortOpen = True

End With

Text1.Text = ""

// Si la conexión se establece, ponemos en color verde el círculo

Shape5.BackColor = &HFF00&

Command14.Enabled = False

Command15.Enabled = True

// Y además, habilitamos los botones de control

If MSComm1.PortOpen = True Then

 Command1.Enabled = True

 Command2.Enabled = True

 Command5.Enabled = True

 Command6.Enabled = True

End If

Exit Sub

// Mensaje de error en el caso de no seleccionar un puerto correcto

control_errores:

MsgBox "El Puerto COM indicado no es correcto. Por favor, seleccione otro.", vbExclamation,

"Error de conexión"

End Sub

69

// Función que cerrará la comunicación serie y además, pondrá en rojo el circulo. También se

// deshabilitarán los botones de control.

Private Sub Command15_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

If MSComm1.PortOpen = True Then

 MSComm1.PortOpen = False

End If

Shape5.BackColor = &HFF&

Command15.Enabled = False

Command14.Enabled = True

If MSComm1.PortOpen = False Then

 Command1.Enabled = False

 Command2.Enabled = False

 Command5.Enabled = False

 Command6.Enabled = False

End If

End Sub

// Enviamos una "a" para que el robot se mueva hacia la izquierda

Private Sub Command7_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "a"

MSComm1.Output = Letra(1)

End Sub

// Enviamos una "w" para que el robot se mueva hacia delante

Private Sub Command8_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "w"

MSComm1.Output = Letra(1)

End Sub

// Enviamos una "d" para que el robot se mueva hacia la derecha

Private Sub Command9_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "d"

MSComm1.Output = Letra(1)

End Sub

// Enviamos una "y" para mover el servomotor

Private Sub Command24_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "y"

MSComm1.Output = Letra(1)

End Sub

70

// Enviamos una "u" para mover el servomotor

Private Sub Command16_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "u"

MSComm1.Output = Letra(1)

End Sub

// Enviamos una "i" para mover el servomotor

Private Sub Command17_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "i"

MSComm1.Output = Letra(1)

End Sub

// Enviamos una "o" para mover el servomotor

Private Sub Command18_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "o"

MSComm1.Output = Letra(1)

End Sub

// Enviamos una "p" para mover el servomotor

Private Sub Command23_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Letra(1) = "p"

MSComm1.Output = Letra(1)

End Sub

// Cuando cerremos el formulario, también se cerrará la comunicación con el puerto serie.

Private Sub Form_Unload(Cancel As Integer)

If MSComm1.PortOpen = True Then

 MSComm1.PortOpen = False

End If

End Sub

// Ante la recepción de información a través del puerto COM, establecemos unas reglas para

// que actúe en consecuencia.

Private Sub MSComm1_OnComm()

// Guardamos los datos recibidos en un buffer llamado InBuff, declarado al inicio del programa.

InBuff = MSComm1.Input

Text1.Text = InBuff

// Guardamos el valor del sensor frontal dentro de una casilla de texto

If Letra(1) = "k" Then

 If Text1.Text <> "q" Then

 Text2.Text = InBuff

 End If

71

End If

// Guardamos el valor del sensor izquierdo dentro de una casilla de texto

If Letra(1) = "j" Then

 If Text1.Text <> "q" Then

 Text4.Text = InBuff

 End If

End If

// Guardamos el valor del sensor derecho dentro de una casilla de texto

If Letra(1) = "l" Then

 If Text1.Text <> "q" Then

 Text3.Text = InBuff

 End If

End If

// Variable que recibiremos ante la ejecución del modo manual. Se habilitarán todos los

// botones „de control

If Text1.Text = "8" Then

 Command3.Enabled = True

 Command4.Enabled = True

 Command7.Enabled = True

 Command8.Enabled = True

 Command9.Enabled = True

 Command10.Enabled = True

 Command11.Enabled = True

 Command12.Enabled = True

 Command13.Enabled = True

 Command23.Enabled = True

 Command24.Enabled = True

 Command16.Enabled = True

 Command17.Enabled = True

 Command18.Enabled = True

End If

// Con esta condición, evaluaremos para que función se envía una sentencia de Quit.

If Text1.Text = "q" Then

 If Command5.Caption = "Ejecutando..." Then

 Command1.Enabled = True

 Command2.Enabled = True

 Command5.Enabled = True

 Command6.Enabled = True

 Command5.Caption = "Prueba Servo M."

 End If

 If Command6.Caption = "Ejecutando..." Then

 Command1.Enabled = True

 Command2.Enabled = True

 Command5.Enabled = True

 Command6.Enabled = True

 Command6.Caption = "Prueba Motor DC"

 End If

End If

End Sub

72

C. SOFTWARE DE CONTROL DEL MICROCONTROLADOR

/**
* Robot Móvil. Proyecto Final de Carrera *
**/

// Incluimos todas las librerias necesarias. Previamente tenemos que haber añadido los ficheros
// necesarios a nuestro proyecto. Para hacer eso nos vamos a "Framework – Select Drivers /
// Components/Services" y marcamos los que deseemos.

#include "board.h"
#include "print_funcs.h"
#include "gpio.h"
#include "pm.h"
#include "adc.h"
#include <avr32/io.h>
#include "compiler.h"
#include "usart.h"
#include "delay.h"
#include "pwm.h"
#include "spi.h"
#include "dip204.h"
#include "intc.h"

// Defines necesarios para el funcionamiento de la comunicación USART. Siempre son
// necesarios dos del mismo tipo, ya que el PIN indica el PIN físico del microcontrolador y la
// función nos dirá que función realizará ese PIN. En la parte de configuración del USART se
// mapearán los pines para que funcionen como nosotros deseamos.

#define COMM_ROBOT_USART (&AVR32_USART1)
#define COMM_ROBOT_USART_RX_PIN AVR32_USART1_RXD_0_0_PIN
#define COMM_ROBOT_USART_RX_FUNCTION AVR32_USART1_RXD_0_0_FUNCTION
#define COMM_ROBOT_USART_TX_PIN AVR32_USART1_TXD_0_0_PIN
#define COMM_ROBOT_USART_TX_FUNCTION AVR32_USART1_TXD_0_0_FUNCTION
#define COMM_ROBOT_USART_IRQ AVR32_USART1_IRQ

// Defines necesarios para el funcionamiento de los motores DC. Cada motor tiene 3 entradas,
// el enable y los pines a y b que servirán para controlar el sentido. El pin enable es definido
// como un canal PWM.

#define A_PIN_MOTOR_DER AVR32_PIN_PB02
#define B_PIN_MOTOR_DER AVR32_PIN_PB03
#define A_PIN_MOTOR_IZQ AVR32_PIN_PB09
#define B_PIN_MOTOR_IZQ AVR32_PIN_PB10

// Defines necesarios para el funcionamiento de los canales ADC y los sensores IR. Del mismo
// modo que con los USART, hay que indicar el pin y la función que va a realizar para
// posteriormente poder realizar el mapeo de los GPIO. Además, se definen algunas variables
// para poder almacenar los datos obtenidos, entre otras.

// El canal 0 estará definido para el sensor Frontal. El canal 1 para el sensor derecho y el canal
// 2 para el sensor izquierdo.

#define DETECTAR_COLISION_CHANNEL 0
#define DETECTAR_COLISION_PIN AVR32_ADC_AD_0_PIN
#define DETECTAR_COLISION_FUNCTION AVR32_ADC_AD_0_FUNCTION
#define DETECTAR_COLISION_CHANNEL_1 1
#define DETECTAR_COLISION_PIN_1 AVR32_ADC_AD_1_PIN
#define DETECTAR_COLISION_FUNCTION_1 AVR32_ADC_AD_1_FUNCTION
#define DETECTAR_COLISION_CHANNEL_2 2

73

#define DETECTAR_COLISION_PIN_2 AVR32_ADC_AD_2_PIN
#define DETECTAR_COLISION_FUNCTION_2 AVR32_ADC_AD_2_FUNCTION

volatile avr32_adc_t *adc = &AVR32_ADC; // Variable para definir el canal ADC en MEM.
signed short adc_value_ir = -1; // Lo usaremos para medir los valores del sensor frontal
unsigned short adc_channel_sensor = DETECTAR_COLISION_CHANNEL;

signed short adc_value_ir_1 = -1; // Lo usaremos para medir los valores del sensor derecho
unsigned short adc_channel_sensor_1 = DETECTAR_COLISION_CHANNEL_1;

signed short adc_value_ir_2 = -1; // Lo usaremos para medir los valores del sensor izquierdo
unsigned short adc_channel_sensor_2 = DETECTAR_COLISION_CHANNEL_2;

// Variables necesarias para el funcionamiento de los canales PWM. Estos nos ayudaran
// a poder controlar el movimiento del servomotor y ajustar la velocidad de los motores DC.

int status_pwm_0 = -1;
pwm_opt_t pwm_opt_channel_0; // PWM configurar opciones para el Channel 0.
avr32_pwm_channel_t pwm_channel_0 = { .ccnt = 0 }; // Configuración para un único canal.
unsigned int channel_id_0; // Generamos una variable para que pueda ser utilizada en
referencia al número del canal, a lo largo del programa.

int status_pwm_1 = -1;
pwm_opt_t pwm_opt_channel_1; // PWM configurar opciones para el Channel 3.
avr32_pwm_channel_t pwm_channel_1 = { .ccnt = 0 }; // Configuración para un único canal.
unsigned int channel_id_1; // Generamos una variable para que pueda ser utilizada en
referencia al número del canal, a lo largo del programa.

int status_pwm_2 = -1;
pwm_opt_t pwm_opt_channel_2; // PWM configurar opciones para el Channel 2.
avr32_pwm_channel_t pwm_channel_2 = { .ccnt = 0 }; // Configuración para un único canal.
unsigned int channel_id_2; // Generamos una variable para que pueda ser utilizada en
referencia al número del canal, a lo largo del programa.

int duty_servo_motor = 216;

// Y por último antes del main principal, declararemos todas las funciones que hemos
// ido creando y que son necesarias para la ejecución del programa.

int configurar_usart(void); // Función que configurara todos los parámetros del USART
int configurar_canal_pwm_0(void); // Función que configurara todos los parámetros del PWM0
int configurar_canal_pwm_1(void); // Función que configurara todos los parámetros del PWM1
int configurar_canal_pwm_2(void); // Función que configurara todos los parámetros del PWM2
void configurar_puertos_gpio(void); // Función que configura los puertos GPIO utilizados
void configurar_dip204(void); // Función que configura el display dip204
void configurar_canal_adc(void); // Función para configurar los puertos ADC
void prueba_servomotor(void); // Función que servirá para testear el servomotor
void modo_automata(void); // Función que hará que el robot se mueva de forma autónoma
void modo_manual(void); // Función para que el robot funcione controlado desde el PC
int comprobacion_frontal(void); // Comprobar si hay obstáculo en el frontal derecho
int comprobacion_lateral_derecho(void); // Comprobar si hay obstáculo en el lateral derecho
int comprobacion_lateral_izquierdo(void); // Comprobar si hay obstáculo en el lateral izquierdo
void prueba_motores_dc(void); // Prueba automática de los motores DC

/**
* Función Main *
***/

74

int main()
{
 int status = -1; // Variable para guardar el retorno de las funciones (SUCCES o FAIL)
 int opcion = -1; // Variable para guardar la opción seleccionada en menú

 pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP); // Osc. 0 a 12 MHz
 gpio_local_init(); // Habilita el bus local para la interfaz GPIO.

 delay_init(FOSC0); // Habilita los delays

 configurar_dip204(); // Configuramos el display dip204

 delay_ms(1500);

 // Mostraremos por la pantalla LCD, un mensaje personal
 dip204_clear_display();
 dip204_set_cursor_position(1,1);
 dip204_write_string("Proyecto Final de C.");
 dip204_set_cursor_position(1,2);
 dip204_write_string("Francisco Munoz V.");
 dip204_set_cursor_position(1,3);
 dip204_write_string("Escola d'Enginyeria");
 dip204_set_cursor_position(1,4);
 dip204_write_string("UAB");
 dip204_hide_cursor();

 delay_ms(1500);

// Configuramos la interfaz del USART1 para Debug y transmisión/recepción
 status = configurar_usart();

 dip204_clear_display();
 dip204_set_cursor_position(1,1);
 dip204_write_string("Configurando: USART");
 dip204_hide_cursor();

 delay_ms(1000); // Para que le de tiempo al Bluetooth a configurarse

 dip204_set_cursor_position(1,2);
 dip204_write_string("Configurando: GPIO");
 dip204_hide_cursor();

 configurar_puertos_gpio(); // Configuramos los puertos GPIO

 delay_ms(500);

 dip204_set_cursor_position(1,3);
 dip204_write_string("Configurando: PWM");
 dip204_hide_cursor();

 status = configurar_canal_pwm_0(); // Configuramos el canal PWM0
 status = configurar_canal_pwm_1(); // Configuramos el canal PWM1
 status = configurar_canal_pwm_2(); // Configuramos el canal PWM2

 delay_ms(500);

 dip204_set_cursor_position(1,4);
 dip204_write_string("Configurando: ADC");
 dip204_hide_cursor();

75

 configurar_canal_adc(); // Configuramos el canal ADC para ser usado con el sensor IR

 delay_ms(500);

 // Este será el bucle principal del programa de testeo. Se incluyen 5 funciones posibles

// a realizar y que tendremos que escoger abriendo una sesión de hyperterminal y
// enviando los caracteres correspondientes a la función a realizar. Una vez realizada la
// función volveremos al menú de selección.

 for(;;) // Bucle infinito
 {
 // Existen muchas combinaciones para poder realizar en la comunicación serie

// a través de sesiones de hyperterminal. Si queremos tabular, borrar la pantalla
// o cambiar el color del texto entre otras, deberemos dirigirnos a la librería
// print_funcs.h, donde están todas descritas.

 // Función que esperará recibir un sólo carácter a través del terminal y lo

// almacena en opción.
 opcion = usart_getchar(COMM_ROBOT_USART);

 // Función que cogerá el valor de opción y lo imprimirá por pantalla. Sirve para

// entre otras cosas, comprobar que la comunicación entre el robot y el PC se
// está realizando correctamente.

 delay_ms(1250); // Para hacer mas lento el refresco del terminal

// Switch que nos enviará a una función u otra en función del valor de opción.
// Una vez se complete la función realizada volveremos al switch y el bucle for
// (infinito) volverá a comenzar.

 switch(opcion)
 {
 case 'a':
 prueba_servomotor();
 break;

 case 'b':
 prueba_motores_dc();
 break;

 case 'e':
 modo_automata();
 break;

 case 'f':
 modo_manual();
 break;

 default:
 break;
 }
 }

 return 1; // Devolvemos un uno al finalizar el bucle, aunque nunca saldremos de él...
}

int configurar_usart(void)
{
 // Esta función sólo servirá para iniciar la configuración de los módulos USART. Una

// vez completada, devolverá un valor indicando si la ejecución ha sido correcta o no.

76

// Después ya podremos empezar a hacer uso de la comunicación por puerto serie

int status_usart = -1; // Variable para guardar el valor del retorno del usart_init_rs232

 // Como hemos explicado al comienzo (en el punto de los Defines), tenemos que

// mapear en el mapa de puertos GPIO las funciones que van a realizar los pines del
// USART. Si no lo hacemos, por defecto funcionarán como puertos GPIO.

 static const gpio_map_t USART_GPIO_MAP =
 {

{COMM_ROBOT_USART_RX_PIN,
COMM_ROBOT_USART_RX_FUNCTION},

 {COMM_ROBOT_USART_TX_PIN, COMM_ROBOT_USART_TX_FUNCTION}
 };

// En este punto se especificarán las características de las que deberá hacer uso el
// USART. En el caso de querer realizar una comunicación con el PC, tenemos que
// asegurarnos que nuestro terminal está configurado con los mismos parámetros.

 // Nuevamente, si queremos conocer más opciones debemos ir a las librerías y ver las
 // opciones existentes.

 static const usart_options_t USART_OPTIONS =
 {
 .baudrate = 57600,
 .charlength = 8,
 .paritytype = USART_NO_PARITY,
 .stopbits = USART_1_STOPBIT,
 .channelmode = USART_NORMAL_CHMODE
 };

 // Habilitaremos todos los pines que sean necesarios para su uso
 gpio_enable_module(USART_GPIO_MAP, sizeof(USART_GPIO_MAP) /

sizeof(USART_GPIO_MAP[0]));

 // Iniciamos el USART en modo RS232. Para debug usamos las funciones print.
 status_usart = usart_init_rs232(COMM_ROBOT_USART, &USART_OPTIONS,

FOSC0);

 return status_usart; // Devolvemos el valor del status_usart (FAIL O SUCCESS)
}

void configurar_puertos_gpio(void)
{
 // Mediante la función gpio_enable_pin_glitch_filter() estaremos habilitando el filtro anti

// glitch en todos los puertos GPIO que creamos conveniente. Este hará que si se
// recibe un pulso de duración menor a un ciclo de reloj, sea omitido.

 gpio_enable_pin_glitch_filter(A_PIN_MOTOR_DER);
 gpio_enable_pin_glitch_filter(B_PIN_MOTOR_DER);
 gpio_enable_pin_glitch_filter(A_PIN_MOTOR_IZQ);
 gpio_enable_pin_glitch_filter(B_PIN_MOTOR_IZQ);
 gpio_enable_pin_glitch_filter(GPIO_PUSH_BUTTON_0);
 gpio_enable_pin_glitch_filter(GPIO_PUSH_BUTTON_1);

 // Ahora se ponen a 0 (valor lógico) todos los pines que vamos a utilizar en el

// movimiento de los motores DC, a la espera de recibir órdenes.

 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

77

 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
}

int configurar_canal_pwm_0(void)
{
 // El canal 0 será el utilizado para el funcionamiento del servomotor. Por eso, la
 // configuración de los periodos y dutycycle será distinta a la de los canales 1 y 2.

 channel_id_0 = 0; //Usamos el canal 0, definido al comienzo.

 // Habilitamos el puerto GPIO para que funcione como canal PWM.
 gpio_enable_module_pin(AVR32_PWM_0_PIN, AVR32_PWM_0_FUNCTION);

// PWM controller configuration.
 pwm_opt_channel_0.diva = AVR32_PWM_DIVA_CLK_OFF;
 pwm_opt_channel_0.divb = AVR32_PWM_DIVB_CLK_OFF;
 pwm_opt_channel_0.prea = AVR32_PWM_PREA_MCK;
 pwm_opt_channel_0.preb = AVR32_PWM_PREB_MCK;

 // Inicializamos el canal 0 con la configuración anterior.
 pwm_init(&pwm_opt_channel_0);

 pwm_channel_0.CMR.calg = PWM_MODE_LEFT_ALIGNED; // Channel mode.
 pwm_channel_0.CMR.cpol = PWM_POLARITY_LOW; // Channel polarity.
 pwm_channel_0.CMR.cpd = PWM_UPDATE_DUTY; // No utilizado
 pwm_channel_0.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_1024; // Prescaler.
 pwm_channel_0.cdty = 221; // Channel duty cycle, should be < CPRD.
 pwm_channel_0.cprd = 234; // Channel period.
 pwm_channel_0.cupd = 0; // Channel update is not used here.

 // Para calcular los valores del periodo o del duty cycle tenemos que seguir los

// siguientes pasos. Primero de todo tenemos que saber cual es la frecuencia que
// deseamos. Una vez hecho, modificamos los valores en la siguiente fórmula:
// (115200/256)/20 == 22.5Hz == (MCK/prescaler)/period, con MCK == 115200Hz,

 // prescaler == 256, period == 20.

 // Inicializa el canal 0 pero no iniciamos la señal.
 status_pwm_0 = pwm_channel_init(channel_id_0, &pwm_channel_0);

 return status_pwm_0; // Devolvemos el valor del status_pwm_0 (FAIL O SUCCESS)
}

int configurar_canal_pwm_1(void)
{
 // El funcionamiento es idéntico al del canal 0. Únicamente se variará el valor del
 // periodo y del dutycycle para dejarlo acorde a las necesidades del motor DC.

 channel_id_1 = 1; //Usamos el canal 1, definido al comienzo.

// Habilitamos el puerto GPIO para que funcione como canal PWM.
 gpio_enable_module_pin(AVR32_PWM_1_PIN, AVR32_PWM_1_FUNCTION);

// PWM controller configuration.
 pwm_opt_channel_1.diva = AVR32_PWM_DIVA_CLK_OFF;
 pwm_opt_channel_1.divb = AVR32_PWM_DIVB_CLK_OFF;

pwm_opt_channel_1.prea = AVR32_PWM_PREA_MCK
pwm_opt_channel_1.preb = AVR32_PWM_PREB_MCK;

 pwm_init(&pwm_opt_channel_1); // Inicializamos el canal 1

78

 pwm_channel_1.CMR.calg = PWM_MODE_LEFT_ALIGNED; // Channel mode.
 pwm_channel_1.CMR.cpol = PWM_POLARITY_LOW; // Channel polarity.
 pwm_channel_1.CMR.cpd = PWM_UPDATE_DUTY; // No utilizado
 pwm_channel_1.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_1024; // Prescaler.
 pwm_channel_1.cdty = 1000; // Channel duty cycle, should be < CPRD.
 pwm_channel_1.cprd = 1000; // Channel period.
 pwm_channel_1.cupd = 0; // Channel update is not used here.

// Inicializa el canal 1.
status_pwm_1 = pwm_channel_init(channel_id_1, &pwm_channel_1);

return status_pwm_1; // Devolvemos el valor del status_pwm_1 (FAIL O SUCCESS)

}

int configurar_canal_pwm_2(void)
{

// El funcionamiento es idéntico al del canal 0. Únicamente se variará el valor del
 // periodo y del dutycycle para dejarlo acorde a las necesidades del motor DC.

channel_id_2 = 2; //Usamos el canal 2, definido al comienzo.

 // Habilitamos el puerto GPIO para que funcione como canal PWM.
 gpio_enable_module_pin(AVR32_PWM_2_PIN, AVR32_PWM_2_FUNCTION);

// PWM controller configuration.
 pwm_opt_channel_2.diva = AVR32_PWM_DIVA_CLK_OFF;
 pwm_opt_channel_2.divb = AVR32_PWM_DIVB_CLK_OFF;
 pwm_opt_channel_2.prea = AVR32_PWM_PREA_MCK;
 pwm_opt_channel_2.preb = AVR32_PWM_PREB_MCK;

 pwm_init(&pwm_opt_channel_2); // Inicializamos el canal 3
 pwm_channel_2.CMR.calg = PWM_MODE_LEFT_ALIGNED; // Channel mode.
 pwm_channel_2.CMR.cpol = PWM_POLARITY_LOW; // Channel polarity.
 pwm_channel_2.CMR.cpd = PWM_UPDATE_DUTY; // No utilizado
 pwm_channel_2.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_1024; // Prescaler
 pwm_channel_2.cdty = 1000; // Channel duty cycle, should be < CPRD.
 pwm_channel_2.cprd = 1000; // Channel period.
 pwm_channel_2.cupd = 0; // Channel update is not used here.

// Inicializa el canal 2.
 status_pwm_2 = pwm_channel_init(channel_id_2, &pwm_channel_2);

return status_pwm_2; // Devolvemos el valor del status_pwm_2 (FAIL O SUCCESS)
}

void configurar_dip204(void)
{
 // Esta función será la encargada de realizar todas las configuraciones necesarias
 // para el correcto funcionamiento del display LCD. Por defecto está desactivada al
 // inicio del main para poder ahorrar energía.

 // Mapeamos todos los puertos necesarios. En el caso del LCD, hace uso de la

// comunicación a través del protocolo SPI que funciona sobre los canales USART.

 static const gpio_map_t DIP204_SPI_GPIO_MAP =
 {
 {DIP204_SPI_SCK_PIN, DIP204_SPI_SCK_FUNCTION }, // SPI Clock.
 {DIP204_SPI_MISO_PIN, DIP204_SPI_MISO_FUNCTION}, // MISO.
 {DIP204_SPI_MOSI_PIN, DIP204_SPI_MOSI_FUNCTION}, // MOSI.
 {DIP204_SPI_NPCS_PIN, DIP204_SPI_NPCS_FUNCTION} // Chip S. NPCS.

79

 };

 // El LCD hará uso de interrupciones, por lo que para poder configurarlo correctamente,
 // primero las deberemos deshabilitar y volver a arrancar.

 Disable_global_interrupt(); // Disable all interrupts.

 INTC_init_interrupts(); // Init the interrupts

 Enable_global_interrupt(); // Enable all interrupts.

 // Opciones necesarias del SPI para el funcionamiento del display DIP204.
 spi_options_t spiOptions =
 {
 .reg = DIP204_SPI_NPCS,
 .baudrate = 1000000,
 .bits = 8,
 .spck_delay = 0,
 .trans_delay = 0,
 .stay_act = 1,
 .spi_mode = 0,
 .modfdis = 1
 };

 // Asignamos todos los puertos GPIO necesarios al SPI.
 gpio_enable_module(DIP204_SPI_GPIO_MAP, sizeof(DIP204_SPI_GPIO_MAP) /
 sizeof(DIP204_SPI_GPIO_MAP[0]));

 spi_initMaster(DIP204_SPI, &spiOptions); // Inicializamos el SPI en modo maestro

 // Set selection mode: variable_ps, pcs_decode, delay
 spi_selectionMode(DIP204_SPI, 0, 0, 0);

 spi_enable(DIP204_SPI); // Habilitamos el SPI

 spi_setupChipReg(DIP204_SPI, &spiOptions, FOSC0); // Setup chip registers

 // Con esta función encendemos la pantalla LCD. Es importante tener en cuenta,
 // que el uso de esta pantalla provocará un alto coste de energía, por eso debemos
 // evitar tener encendida cuando no sea necesario.

 dip204_init(backlight_PWM, TRUE);

 // Mostraremos un mensaje por pantalla a modo de ejemplo. También se puede hacer

// uso del LCD para realizar debug sin necesidad de conectar el robot al PC, pero como
// ya hemos comentado, es más costoso a nivel energético.

 dip204_set_cursor_position(8,1);
 dip204_write_string("ATMEL");
 dip204_set_cursor_position(7,2);
 dip204_write_string("EVK1100");
 dip204_set_cursor_position(6,3);
 dip204_write_string("AVR32 UC3");
 dip204_set_cursor_position(3,4);
 dip204_write_string("AT32UC3A Series");
 dip204_hide_cursor();
}

void configurar_canal_adc(void)
{

80

 // Para la configuración de los canales ADC procederemos en primera instancia, del
 // mismo modo que para los GPIO y será habilitando el filtro anti glitch en los puertos
 // que vallamos a utilizar.

 gpio_enable_pin_glitch_filter(AVR32_PIN_PA21);
 gpio_enable_pin_glitch_filter(AVR32_PIN_PA22);
 gpio_enable_pin_glitch_filter(AVR32_PIN_PA23);

 // Mapeamos los puertos GPIO para que realicen las funciones de canales ADC
 static const gpio_map_t ADC_GPIO_MAP =
 {
 {DETECTAR_COLISION_PIN, DETECTAR_COLISION_FUNCTION},
 {DETECTAR_COLISION_PIN_1, DETECTAR_COLISION_FUNCTION_1},
 {DETECTAR_COLISION_PIN_2, DETECTAR_COLISION_FUNCTION_2},
 };

 gpio_enable_module(ADC_GPIO_MAP, sizeof(ADC_GPIO_MAP) /

sizeof(ADC_GPIO_MAP[0]));

 // Función que configurará los parámetros necesarios de los canales ADC
 adc_configure(adc);

 // Con estas 3 funciones estaremos habilitando los 3 canales que se van a utilizar
 adc_enable(adc,adc_channel_sensor);
 adc_enable(adc,adc_channel_sensor_1);
 adc_enable(adc,adc_channel_sensor_2);

 // Hasta el momento no hemos realizado ninguna medición, se trata únicamente de la
 // configuración inicial (necesaria y suficiente), para el uso de estos canales.
}

void prueba_servomotor(void)
{
 // Esta función realizará un testeo del servomotor. Para ello hace un barrido de

// izquierda a derecha. Servirá para comprobar si el servomotor está bien centrado y si
// no es así, volver a colocarlo correctamente.

// La función cambiar_canal_pwm0 parará, arrancará y configurará el canal pwm 0, con
// el periodo que le estemos pasando a la función.

 int prueba_servo = 0;
 unsigned long duty = 200;

 pwm_start_channels(1 << channel_id_0); // Start channel 0.

 // Creamos un bucle que hará aproximadamente 3 iteraciones, que realizará 3 barridos

// del servomotor, actualizando la frecuencia que tiene la señal.
 while(prueba_servo < 90)
 {
 pwm_channel_0.cupd = duty;
 pwm_sync_update_channel(channel_id_0, &pwm_channel_0);
 delay_ms(50);
 duty = duty + 1;

 prueba_servo = prueba_servo + 1;

 if (duty==228)
 {
 duty = 200;
 delay_ms(150);

81

 }
 }

 prueba_servo = 0;
 pwm_stop_channels(1 << channel_id_0);
 print_dbg("q");
}

void prueba_motores_dc(void)
{

// Esta función hará una demostración del movimiento de las ruedas. Primero se
// moverá hacia delante, después hacia atrás y finalmente realizará un pequeño giro.

 // Primero nos aseguramos que los canales están bien parados…
 pwm_stop_channels(1 << channel_id_1);
 pwm_stop_channels(1 << channel_id_2);

 // Para arrancarlos de Nuevo y que cojan la correcta configuración.
 pwm_start_channels(1 << channel_id_1);
 pwm_start_channels(1 << channel_id_2);

 delay_ms(100);

 // Inicialmente el valor del duty es igual al del periodo, por eso las ruedas no actúan. Si
 // queremos modificarlo, deberemos actualizarlo de la siguiente forma:
 pwm_channel_1.cupd = 600;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = 600;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

 // Movimiento de ambas ruedas hacia delante
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_set_gpio_pin(B_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);

 delay_ms(1250);

 // Movimiento de ambas ruedas hacia detrás
 gpio_set_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);
 gpio_set_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);

 delay_ms(1250);

 // Giro hacia la derecha
 gpio_set_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);

 delay_ms(1250);

 // Ahora pararemos los canales PWM y además pondremos a nivel bajo las señales de

// control del integrado L293D
 pwm_stop_channels(1 << channel_id_1);
 pwm_stop_channels(1 << channel_id_2);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

82

 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);

 // Enviamos una “q” para que la aplicación de control entienda que hemos llegado al

// final de la ejecución.
 print_dbg("q");
}

void modo_manual(void)
{
 // Esta función permitirá hacer un control manual del robot, en parte, hacienda uso de
 // todas las funciones antes especificadas. Para ello, inicialmente envía un “8” al

// programa de control, que lo entenderá como una señal para activar todos los mandos
// de control.

 print_dbg("8"); // Escribimos a través del Puerto serie un “8”

 int variable_control = -1; // Variables utilizadas para controlar la ejecución del programa.
 unsigned long valor_duty = 600;

 // Del mismo modo que para la demo de los motores DC, inicialmente los desactivamos
 // para volver a arrancarlos después y que estos se configuren correctamente.
 pwm_stop_channels(1 << channel_id_0);
 pwm_stop_channels(1 << channel_id_1);
 pwm_stop_channels(1 << channel_id_2);

 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(200);

 // Comenzamos a emitir por los 3 canales PWM utilizados (DC + Servomotor)
 pwm_start_channels(1 << channel_id_0); // Comienza a emitir el canal 1.
 pwm_start_channels(1 << channel_id_1); // Comienza a emitir el canal 1.
 pwm_start_channels(1 << channel_id_2); // Comienza a emitir el canal 2.

 // Movemos el servomotor a la posición central
 pwm_channel_0.cupd = 218;
 pwm_sync_update_channel(channel_id_0, &pwm_channel_0);

 // El siguiente bucle se encargará de recibir todas las peticiones que se realicen desde
 // la aplicación de control. No se saldrá del bucle hasta recibir una “q”.
 while (variable_control != 'q')
 {
 // Recogerá un valor a través del USART1
 variable_control = usart_getchar(COMM_ROBOT_USART);

 switch(variable_control)
 {
 case 'a':
 // Esta función moverá las ruedas del motor hacia izq.

 // Primero de todo activaremos los PWM y después GPIO.
 pwm_channel_1.cupd = valor_duty;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = valor_duty;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

83

 // Con esta combinación, los motores se mueven hacia izq.
 gpio_set_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_set_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(1000);

 // Paramos los motores después de moverlos durante 1 seg.
 pwm_channel_1.cupd = 1000;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = 1000;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 break;

 case 'd':
 // Esta función hace exactamente lo mismo que el caso “a” pero
 // moverá el robot hacia la derecha.

 pwm_channel_1.cupd = valor_duty;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = valor_duty;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(1000);

 pwm_channel_1.cupd = 1000;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = 1000;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 break;

 case 'w':
 // Esta función hace exactamente lo mismo que el caso “a” pero
 // moverá el robot hacia delante.

 pwm_channel_1.cupd = valor_duty;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = valor_duty;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);

84

 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_set_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(1000);

 pwm_channel_1.cupd = 1000;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = 1000;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 break;

 case 's':

// Esta función hace exactamente lo mismo que el caso “a” pero
 // Moverá el robot hacia detrás.

 pwm_channel_1.cupd = valor_duty;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = valor_duty;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

 gpio_set_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(1000);

 pwm_channel_1.cupd = 1000;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = 1000;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 break;

 case 'j':
 // Esta función realizará una medición del sensor lateral izq.

 // Para ello, primero iniciamos el canal ADC y realizamos una medición
 // guardando el valor para enviarlo a la aplicación de control.
 adc_start(adc);
 adc_value_ir_2 = adc_get_value(adc, adc_channel_sensor_2);

 // Transmitimos la medición hacia el PC.
 print_dbg_hex(adc_value_ir_2);
 delay_ms(1500);

 break;

 case 'k':

85

 // Esta función realizará una medición del sensor frontal

 // Para ello, primero iniciamos el canal ADC y realizamos una medición
 // guardando el valor para enviarlo a la aplicación de control.
 adc_start(adc);
 adc_value_ir = adc_get_value(adc, adc_channel_sensor);

 // Transmitimos la medición hacia el PC.
 print_dbg_hex(adc_value_ir);
 delay_ms(1500);

 break;

 case 'l':
 // Esta función realizará una medición del sensor frontal

 // Para ello, primero iniciamos el canal ADC y realizamos una medición

 // guardando el valor para enviarlo a la aplicación de control.
 adc_start(adc);
 adc_value_ir_1 = adc_get_value(adc, adc_channel_sensor_1);

// Transmitimos la medición hacia el PC.

 print_dbg_hex(adc_value_ir_1);
 delay_ms(1500);

 break;

 case 'z':
 // Función para mover el servomotor
 if (pwm_channel_0.cupd > 200)
 {
 pwm_channel_0.cupd = pwm_channel_0.cupd - 1;
 pwm_sync_update_channel(channel_id_0, &pwm_channel_0);
 }

 delay_ms(200);

 break;

 case 'x':
 // Función para mover el servomotor
 if (pwm_channel_0.cupd < 230)
 {
 pwm_channel_0.cupd = pwm_channel_0.cupd + 1;
 pwm_sync_update_channel(channel_id_0, &pwm_channel_0);
 }

 delay_ms(200);

 break;

 case 'q':
 // Función que parará todos los canales PWM y parará la ejecución del

// modo manual.

 pwm_stop_channels(1 << channel_id_0);
 pwm_stop_channels(1 << channel_id_1);
 pwm_stop_channels(1 << channel_id_2);

 return;

86

 default: // Función default por si el comando que enviamos no existe.

 break;
 }
 }
}

void modo_automata(void)
{
 // El propósito del modo autómata es dotar al robot de movimiento y "inteligencia"

// suficiente para no topar con ningún objeto que se encuentre en su camino. Es por ello
// que se han una serie de condiciones para que en caso de detectar una colisión sepa
// actuar en consecuencia.

 // En el programa también se hace uso de algunas funciones específicas que han sido
 // definidas a continuación de esta función y que son necesarias para el cálculo de

// distancias y el movimiento de las ruedas.

 int distancia_frontal_derecho = 6;
 int distancia_frontal_frente = 6;
 int distancia_frontal_izquierdo = 6;
 int distancia_lateral_izquierdo = 1;
 int distancia_lateral_derecho = 1;
 int seleccion = -1;
 int var_case = -1;
 int prueba_servo = 0;
 unsigned long duty = 200;

 pwm_start_channels(1 << channel_id_1); // Comienza a emitir el canal 1.
 pwm_start_channels(1 << channel_id_2); // Comienza a emitir el canal 2.
 pwm_start_channels(1 << channel_id_0); // Comienza a emitir el canal 0.

 // Activamos el movimiento de las ruedas.
 pwm_channel_1.cupd = 600;
 pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
 pwm_channel_2.cupd = 600;
 pwm_sync_update_channel(channel_id_2, &pwm_channel_2);

 // Inicialmente y antes de comenzar, realizamos un testeo del servomotor que permitirá
 // comprobar si su funcionamiento es correcto o no. El funcionamiento es el mismo que
 // el utilizado para la función prueba_servomotor().
 while(prueba_servo < 60)
 {
 pwm_channel_0.cupd = duty;
 pwm_sync_update_channel(channel_id_0, &pwm_channel_0);
 delay_ms(50);
 duty = duty + 1;
 prueba_servo = prueba_servo + 1;

 if (duty==228)
 {
 duty = 200;
 delay_ms(150);
 }
 }

 prueba_servo = 0;

 delay_ms(200); // Hacemos delays periódicos para dar tiempo al sistema

87

 for(;;) // Bucle infinito para gestionar el modo autónomo.
 {
 // El siguiente bucle realice un barrido del servomotor, parándose en tres

// posiciones para realizar medidas con los sensors infrarrojos.
 while(duty <= 226)
 {
 pwm_channel_0.cupd = duty;
 pwm_sync_update_channel(channel_id_0, &pwm_channel_0);

 delay_ms(50);

 duty = duty + 1;
 prueba_servo = prueba_servo + 1;

 // Estos “if” llamarán a la función comprobación_frontal() en los tres casos
 if (duty==200)
 {
 distancia_frontal_derecho = comprobacion_frontal();
 delay_ms(50);
 }
 if (duty==219)
 {
 distancia_frontal_frente = comprobacion_frontal();
 delay_ms(50);
 }
 if (duty==226)
 {
 distancia_frontal_izquierdo = comprobacion_frontal();
 delay_ms(50);
 }
 }

 duty = 200; // Iniciamos la variable duty para la siguiente comprobación

 // Comprobación del sensor lateral derecho
 distancia_lateral_derecho = comprobacion_lateral_derecho();
 delay_ms(50);

 // Comprobación del sensor lateral izquierdo
 distancia_lateral_izquierdo = comprobacion_lateral_izquierdo();
 delay_ms(50);

 // Generamos unas condiciones que darán prioridad a los sensores laterales
 // frente al sensor delantero.
 if ((distancia_lateral_derecho == 1)&&(distancia_lateral_izquierdo == 1))
 var_case = 1;
 else if (distancia_lateral_derecho == 1)
 var_case = 3;
 else if (distancia_lateral_izquierdo == 1)
 var_case = 2;
 else if (distancia_frontal_frente == 10)
 var_case = 1;
 else if (distancia_frontal_izquierdo == 10)
 var_case = 2;
 else if (distancia_frontal_derecho == 10)
 var_case = 3;
 else
 var_case = -1;

88

 // El siguiente switch podrá hacer 4 cosas, mover el robot hacia delante, detrás,
 // izquierda o derecha en función de las condiciones antes seleccionadas
 switch(var_case)
 {
 case 1: // Obstáculo delante

 gpio_set_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(750);
 seleccion = rand() % 2;

 // Aleatoriamente decidimos que camino seguir
 // izquierda o derecha

 if (seleccion == 0)
 {
 // Giro hacia la izquierda
 gpio_set_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_set_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(500);

 // Paramos las ruedas
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);
 }
 else if (seleccion == 1)
 {
 // Giro hacia la derecha
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(500);

 // Paramos las ruedas
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);
 }

 break;

 case 2: // Obstáculo izquierdo

 // Movemos hacia atrás
 gpio_set_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

89

 delay_ms(750);

 // Giro hacia la derecha
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(500);

 // Paramos las ruedas
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 break;

 case 3: // Obstáculo derecho

 // Movemos hacia atrás
 gpio_set_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(750);

 // Giro hacia la izquierda
 gpio_set_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_set_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(500);

 // Paramos las ruedas
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 break;

 default:
 // Movimiento hacia delante.
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_set_gpio_pin(B_PIN_MOTOR_DER);

 delay_ms(750);

 // Paramos las ruedas
 gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
 gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
 gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

 break;

90

 }
 }
}

int comprobacion_frontal(void)
{ // Esta función lanzará una medición para el sensor frontal.
 delay_ms(200);
 adc_start(adc); // Inicializa el módulo ADC
 adc_value_ir = adc_get_value(adc, adc_channel_sensor); // Toma la medida

 if (adc_value_ir >= 0x260) // Si el valor es mayor que uno prefijado, enviamos un 1
 return 1; // Este uno indica que se ha encontrado un obstáculo
 else
 return -1;
}

int comprobacion_lateral_derecho(void)
{ // Esta función lanzará una medición para el sensor lateral derecho.
 adc_start(adc); // Inicializa el módulo ADC
 adc_value_ir_2 = adc_get_value(adc, adc_channel_sensor_2); // Toma la medida

 if (adc_value_ir_2 < 0x200) // Si el valor es mayor que uno prefijado, enviamos un 1
 return 1; // Este uno indica que se ha encontrado un obstáculo
 else
 return -1;
}

int comprobacion_lateral_izquierdo(void)
{ // Esta función lanzará una medición para el sensor lateral izquierdo.
 adc_start(adc); // Inicializa el módulo ADC
 adc_value_ir_1 = adc_get_value(adc, adc_channel_sensor_1); // Toma la medida

 if (adc_value_ir_1 < 0x200) // Si el valor es mayor que uno prefijado, enviamos un 1
 return 1; // Este uno indica que se ha encontrado un obstáculo
 else
 return -1;
}

