UNB

Proyecto Fin de Carrera

Ingenieria Técnica de Telecomunicaciones
Especialidad en Sistemas Electronicos

Robot Movil con EVK1100
Estudio y Aplicacion

Francisco Manuel Muinoz Verdu

Director: Joan Oliver i Malagelada
Departamento de Microelectronica y Sistemas Electronicos

Escola d’Enginyeria (EE)
Universitat Autonoma de Barcelona (UAB)

Junio 2010

UNB

El tribunal d’avaluacié d’aquest Treball Fi de Carrera, reunit el dia 7 de juliol de 2010, ha
acordat concedir la seglient qualificacié:

Tribunal: Joan Oliver i Malagelada
Pedro de Paco Sanchez

Ndria Barniol Beumala

UNB

El sotasignant, Joan Oliver i Malagelada, Professor de I'Escola d’Enginyeria (EE) de la

Universitat Autonoma de Barcelona (UAB),

CERTIFICA:

Que el projecte presentat en aquesta memoria de Projecte Fi de Carrera ha estat realitzat sota

la seva direccié per I'alumne Francisco Manuel Mufioz Verdd.
I, perqué consti a tots els efectes, signa el present certificat.

Bellaterra, 21 de Juny del 2010.

Signatura:

VI

VIi

Vi

INDICE

1.

2.

3.

a1 goTo [TelolTo] o ISR PPOPRRTPP 1
1.1 EStructura de 18 MEMOKIAveeiiiiiiiie e 2
Planificacion, Requisitos y Herramientas de Trabajoc.cccccovevvivieiiee i, 5
2.1 =0 [T IS (o R d (=10 1SR 5
2.2 Herramientas de TrabajO.........ueeiieeiiiiiiiiii e e e e s r e e e e s e ennreaee s 5
2.3 PIANIFICACION .ot 6
ATQUITECTUIA AVRSB2...cce ettt ettt e s et e s et e e et e e e e e 9
3.1 F Y (o[81 (=T ox (1] = TP PP PP PPPPPPPPPPPTN 9
3.2 P U s 10
3.21 PrefetCh UNIt.... ... 10
3.2.2 (D =ToloTo [U o S PP P PP OTP PP 11
3.2.3 TRE EXECULE ..ottt ettt 11
3.3 [BV =T 0T] = WO PUPRPP P 11
34 L LS8 5] 10 12
35 INtErruUPCIONES Y EXCEPCIONES ...coevviiiiiiiiieieieeeieeeeeeeeeeeteeeeeeeeeeseessssasassssssssssssssesssssnennnnns 13
3.5.1 SUPEIVISOE CAUIS ... s 13
3.5.2 DEDUQ FEQUESES ...uuvuiiiiiiiiiiiiiiiitii s 14
3.6 MemOory ProteCtion Uit s 14
3.7 HSB (MALIZ d€ BUSES) .iiiiiiiiie ittt ettt 15
3.8 SISTEMA OCD.....ciiiitiie ettt e bt e e s et e e e s it e e e anb et e e e anba e e e b 16
3.9 POWEE MANAGETeuiiiiiiiiiiiiiiiii s 16
3.10 REAI TIME COUNLET ..ttt ettt sttt e et e e bbb e e s nanneee s 16
0 R 1 0 =T (o TU] =T PP PP OTPRPPP 17
I b [(= £ (0] o A @] 1 1o] | L= o PP PP T PPPP 17
3.13 External INterrupts CONLrOIIENoiiiiiiii e 17
3.14 Interfaces de entrada y Salidaccooooiiiiiiiiiiiiiic s 17
BA4. L GO s 17
BLd4.2 A C s 18
Bd4.3 P VM s 18
3.14.4 Universal Sync/Async Receiver/TranSmitterueeevieeiiiiiiiiiiieee e 18
3.145 TWO WIre INTEITACE ...ooeiiiiiee it 18
LO070] 10 oF= 1 2= V1)Y= LT PPPRRPT 21
4.1 AVR32 VS AVRS ...ttt ettt et ettt et et e e eeeeeeeeeeeeeeeeeeeeeennnnnnnnnnnes 21
4.1.1 AVR B-Bit RISC ...ooiiiiiiii ettt e e e e s r e e e e e s st eeneaeeesennnnes 21
41.2 Principales difereNCIas.cooueiii i 22
4.2 AVR32 VS ARM ...ttt ettt ettt et ettt et e e et e e et eeeeeeeeeeeeeneeeeeeeeeennnnrnnnnrnes 24

4.3 (@] 1= TR A | (] 4 1 F= 111V TN 27

A.3. 1 FUJIESU coveeeeeeeeeeeeeeeeeeeeee et e et s e e ee e e en e e e s st et e et s e ees s et er e e en e eeseneeeereens 27
432 1= = TP PP PP PPRRRPRI 27
4.3.3 FrEESCAIE ... ettt 28
4.3.4 I T 0T F= T Y 1Yo o SRR 28
4.3.5 YT o Yo o 11 1P 29
4.3.6 N K P s 29
4.3.7 RENESAS ...eiiiiiiii e 29
4.3.8 TeXas INSITUMENTSccoiiiiiiiiiiie et e e e 30
4.4 Tabla COMPATALIVAeeiiiiiiie ittt e et e e et e e e sbreeeeaaes 30
5. Uso del AVR32 €N UN roDOt MOVIl.....ueiiiiiiiiiie ittt 33
5.1 Caracteristicas del AVR32 para la roboticaccceeeiiiiiiiiiii e, 33
5.2 La placa EVK1100 en un RoOboOt AUtONOMOc..vvviiiieeieiiiiiieece e 35
521 AlIMENTALION ...ttt 36
522 MEMOKTB EXEEIMA. ... eeieiiireiie ittt s s e s 37
5.2.3 OSCIATOIES.... .ot 37
524 US A RT S s 37
5.25 Y N 37
5.2.6 LI PP PUPPPPPPPPPPPPPPPPPN 38
5.2.7 EtNEINEL Y USB ittt 38
5.2.8 N 1 TSP PPPPPPPPPPPPPR 39
5.2.9 G5 5 39
5.2.10 LE DS ettt e et et e e b aeeen s 39
5.2.11 PuSh BULtONS Y JOYSHICK.....ccoiiiiiiiiiiiiee it 39
5.2.12 Area de CONEXIONAAOD.uiiiiiiiiee ittt ettt e e e e e 40
5.2.13 Potenciémetro y Sensor de Temperatura y LUZ..........coccoveeeiiinieenniieeenniieee e, 40
5.3 Personalizando & PIACAc.ueeii i s 40
53.1 MOLOIES DC ... 41
53.2 1= Vo] 1 gL] (o PP POTTPTTI 41
5.3.3 SENSOIES IR ..o 42
534 BIUEMOIE200 ..ottt ettt 42
5.3.5 Tabla de CONEXIONAAOcuviiiiiiiiie ettt 42
5.4 Programacion del AVRB2oiiiiiiiieiiiit ettt e see et e e asbae e e e ntae e e nnees 43
5.5 SOftWAIE A€ CONIOL....cceiiiiiieiiteee ettt 46
55.1 APIICACION A CONLIOL.....ciiiiiiiii i 46
5.5.2 SOftWAre del AVRSB2 ... 46
5.6 Pruebas Y RESUIATOScoouuiiiiiiiiiie et a7
5.6.1 PRUBDEAS ..ot 47

5.6.2 RESUITAAOS ...ttt 48

6. CONCIUSIONESeiiiiiieieie ittt ettt e s e e r e e s e e e e mn e e nsre e s nn e e nnre e e nee s 51
N =11 o] oo [- = RO SERR 53
N TS0 55
N = oo | = 14 - Vo o 1 o SRR 55
A.l ENtOrno de programaciOneeeeiiccuiieeeeeeeesssiiirneeeee e e s s sinieeeeeeeeesesnnraneeeaeeesennnnes 55

A.2 AVR32 SEUAIO ...ttt ettt e e et e e st e e e e e e e nnnes 55

A.3 ¢, FreeRTOS o programacion “standalone”™?...........ccccceeeiiiiiiiiieee e 58

A.4 Programacion del AVRS2........oueiii it ssteee e e s s e e e e e e s s snnran e e e e e e e s ennnnes 59

B. Aplicacion de Control en Visual BasiC 6.0...........cccvviiieieeeiiiiiiiiieeeee s e e sivveeees 65
C. Software de Control del MicroCONtrolador...............eeoiiiiiiiiiiiiee e 72

Xl

INDICE DE FIGURAS

Figura 1: Herramientas necesarias para el disefio del Softwareccccccoevvccvvieeieeee i, 6
Figura 2: Planificacion del PrOYECIOcciuii ittt be e saaee e 7
Figura 3: Diagrama de bloques del nUcleo AVR32 UC3.........oooiiiiiiiiiieiiee e 10
Figura 4: Etapas del Pipeline del AVR32 UC3 ...ttt 11
Figura 5: Ficheros de Registro del AVR32........uuiiii ittt e e e ee e e e 12
Figura 6: Parte superior del registro SR (Status RegIStEr)ccccvviiveeeiiiiiieee e 13
Figura 7: Memory Protection Unit Address REQISIErcocueiiiiiiiiieiiiiiee e 14
Figura 8: Memory Protection Unit Access Permission REgISErccccevvviiiiiiiiiieiniiiee e, 15
Figura 9: La matriz de DUSES (HSB)oviiiiiiiiiiiiiiiiiieieieeeeeeteeeeeeeeeeeeeeaee e eaeeeeeaeaseaaasassaesesasssnsnnnnes 15
Figura 10: Escalabilidad de los microcontroladores AVRSooveviiiiieiivieieiiieeeeieeeieeeeeveeeeneenns 22
Figura 11: Diagrama de bloques de la arquitectura AVR32 (derecha) vs AVR8 (Izquierda) 23
Figura 12: Relacion Consumo / Potencia de los microcontroladores AVR8 y AVR32 24
Figura 13: Pruebas de rendimiento normalizadas para AVR32, ARM9y ARM11..........cccceeee. 26
Figura 14: Pruebas de tamafio de cddigo optimizado para la velocidad.cccoeccvvvienneennn. 26
Figura 15: Vision general de la placa de evaluacion EVKL100ccccoevviiiieiiiiiienniiiee e 36
Figura 16: Conectores USART (izquierda) y interfaz SPI (derecha)cccccoviiiiiiiiiinenninnnen, 38
Figura 17: Vision del CONECION USBcooiiiiiiiiiiie ettt e et a e e et e e e e e e 38
Figura 18: Vision de la pantalla LCDcoccuuiiiiiie ettt e e e e 39
Figura 19: Pulsadores y Joystick de 1a EVKLL100ccovviiiiiiiiiiiiiiiieiieeeeieeeeeveeeeeeeessssesesessesnenenes 40
Figura 20: Elementos necesarios para la construccion del Robot............ccccceviiiiiinen, 41
Figura 21: Funcionamiento de UN SEIVOMOTOLc.ciiuueiieiiieiieiiiieeesiieee ettt e e e e ssenree e saneeee s 42
Figura 22: Diferentes interfaces de programacion del AVR32.........cccccveeeviiiiiiiieeee e, 43
Figura 23: Conexiones necesarias para la programacion a través de JTAGccccccvvevivnnnn. 45
Figura 24: Conexiones necesarias para la programacion JTAGcccccvriiiieiniieeeiniiiee e 45
Figura 25: Aplicacion de CONIOLuueiiiiiiiiie it e e s 46
Figura 26: Diagrama de bloques del conexionado del SiStemacccoovviiiiiiiiiiieininiiiieeeeeenn a7
Figura 27: Ventana de dispositivos €N AVR32 StUAIOcooviiiiiiiiiiiiiiiieeiieeee e 56
Figura 28: Configuracion del microcontrolador en AVR32 StUdioc.ccocovevceeiiieiniicniee e, 56

XIl

file:///C:/Users/Fran/Desktop/PFC_Robot_Movil_con_EVK1100_Francisco_Manuel_Munoz_Verdu.docx%23_Toc264910516
file:///C:/Users/Fran/Desktop/PFC_Robot_Movil_con_EVK1100_Francisco_Manuel_Munoz_Verdu.docx%23_Toc264910517
file:///C:/Users/Fran/Desktop/PFC_Robot_Movil_con_EVK1100_Francisco_Manuel_Munoz_Verdu.docx%23_Toc264910527

INDICE DE TABLAS

Tabla 1: Cantidad de memoria segun €l MOAEl0eeviviiiiiiiiiiiii e 11
Tabla 2: Direcciones de memoria del AVR32 UCS3 ... 12
Tabla 3: Tabla paramétrica del AVR8 Y €1 AVR32ooiiiiiiiiiiiie et 24
Tabla 4: Caracteristicas paramétricas de los diferentes microcontroladores............ccccccceeevennens 31
Tabla 5: Conexiones necesarias hacia la placa de evaluacion EVK1100cccccvvveeeeeiiinnnns 43
Tabla 6: Programadores disponibles en el Mercado............ccoocuviiiiiiiii i 44

Xl

XV

1. INTRODUCCION

En la actualidad, el microcontrolador forma parte fundamental del entorno que nos rodea,
encontrandose presente en nuestro trabajo, casa y vida en general. La versatilidad que
introducen los microcontroladores permite desarrollar sistemas complejos, que de haber sido
desarrollados de forma tradicional, hubieran necesitado grandes cantidades de componentes
electrénicos. Este hecho ha favorecido su uso en todo tipo de dispositivos como pueden ser
pantallas LCD, dispositivos USB, dispositivos de comunicacién Bus-CAN o Wireless, en
vehiculos, en elementos luminicos como pueden ser bombillas o fluorescentes, baterias o en
general en cualquier dispositivo electronico que podamos encontrar en nuestro entorno.

La comparfiia Atmel puso en el mercado en el afio 1997 los microcontroladores AVRS8, el primer
producto de arquitectura propia de Atmel. Los AVR8 son altamente utilizados en multiples
aplicaciones, ofreciendo un rendimiento muy bueno, debido a que fueron los primeros micros
de 8 bits en implementar instrucciones RISC (aunque no todas las instrucciones tienen el
mismo tamafio) y ofreciendo un disefio mucho méas moderno que sus competidores, los PIC.
En general, podemos decir que los AVR8 ofrecen un rendimiento excepcional, equiparable a
otros microcontroladores de 16 bits, pero a un coste de uno de 8 bits.

Con la aparicion de la arquitectura AVR32 (como evolucidn natural del AVR8), Atmel ha vuelto
a revolucionar el mercado de los microcontroladores. Esta nueva arquitectura proporciona
CPU’s de altas prestaciones y bajo consumo energético, a un precio reducido. Comparados
con sus competidores directos en precio y prestaciones, los ARM9 y ARM11, los AVR32 son un
35% mas veloces y la densidad de cddigo empleado es entre un 30% y un 50% mas pequefia.

El estudio de los microcontroladores, los AVR32, representa la base del presente proyecto. Por
ello, el proyecto se ha desglosado en dos partes: el estudio de la arquitectura AVR32 y el
desarrollo de un robot mévil basado en la arquitectura AVR32.

La primera de estas dos partes, es un estudio enfocado a analizar la versatilidad de la
arquitectura AVR32 frente a otros microcontroladores existentes en el mercado, como son el
AVR8 0 los ARM9 y ARM11.

En la segunda parte, se realiza un estudio de las posibilidades de la placa de evaluacion
EVK1100, la cual incluye un microcontrolador AVR32 con nucleo AT32UC3A0512. Esta placa
nos proporcionara un completo entorno de desarrollo, equipado con un rico repertorio de
periféricos y memorias, que permite obtener todo el potencial de estos microcontroladores de
forma sencilla. Posteriormente, y mediante el uso de esta placa se desarrollara un robot movil
que permita poner en manifiesto todas las prestaciones y mejoras que estos nucleos ofrecen.

Los objetivos del proyecto son:
e Estudio y andlisis de la arquitectura AVR32.
e Estudio de las prestaciones y caracteristicas que ofrece la placa de evaluacion
EVK1100 para el disefio robético, la cual incluye un microcontrolador con nucleo
AVR32 UC3 AT32UC3A0512.

e Comparativa entre los microcontroladores AVR32 y sus antecesores, los AVRS.

e Comparativa entre la arquitectura AVR32 y la de ARM9 y ARM11, asi como con otras
arquitecturas existentes en el mercado.

1.1

Construccion de un robot movil mediante la placa de evaluacion.
o Elrobot debera poder funcionar de forma auténoma.
o Ademas, deberd permitirse el control remoto de forma inalambrica desde un
PC.

Programacion de un software capaz de controlar la plataforma robética de forma
remota desde un PC.

ESTRUCTURA DE LA MEMORIA

El presente documento ha sido estructurado de la siguiente forma:

1.

Introduccion: Se explica y detalla la motivacién del proyecto asi como se realiza una
pequefia introduccién al estado del arte en el momento que actualmente nos
encontramos. Ademas, se detallan los objetivos que se pretende alcanzar con el
desarrollo de este proyecto.

Planificacion, requisitos y herramientas de trabajo: En este punto se ofrece una
vision de cual ha sido la planificacion que se ha seguido durante la elaboracién del
proyecto, asi como también se detallan los requisitos previos a la ejecucion del
proyecto y las herramientas de trabajo necesarias.

Arquitectura AVR32: Completo andlisis de las principales caracteristicas que
muestran estos microcontroladores.

Comparativa: Este punto se centra en ver cuéles son las ventajas que presentan los
AVR32 respecto a sus antecesores, los AVRS8 y respecto a sus directos competidores,
los ARM9 y ARM11. Ademas, se realiza un estudio comparativo entre los
microcontroladores AVR32 de Atmel y el resto de alternativas presentes en el mercado.

Uso del AVR32 en un Robot Moévil: El siguiente capitulo, tiene como objetivos
mostrar cuales son las principales caracteristicas que ofrece el AVR32 para la robdtica.
Ademas y ya que todo el proyecto se realiza sobre la placa de evaluacion EVK1100 la
cual contiene un microcontrolador AVR32 UC3, se muestra cudles son sus
caracteristicas y funciones principales. También se muestran las modificaciones que se
han llevado a cabo sobre la placa de evaluacion y se explicara cual es el proceso que
se ha de seguir para poder programar estos microcontroladores sin la necesidad de
hacer uso de un kit de evaluacién. Por ultimo, se detallan los resultados obtenidos de
las pruebas realizadas al conjunto robético.

Conclusiones: Una vez realizado todo el analisis y obtenidos los resultados, deseados
0 no, se procede a hacer una sintaxis final del proyecto valorando también las posibles
problemaéticas o incidencias surgidas durante el periodo de tiempo transcurrido entre el
inicio y final del proyecto. Se hace una evaluacién personal de éste y se afiaden ideas
de mejora de trabajo futuro.

Bibliografia: Lista y detalla la fuente de todas las referencias que aparecen en el
informe asi como los documentos utilizados en el proyecto. Con esto, se pretende dar
veracidad a la informacion redactada y también facilitar al lector una serie de recursos,

con el fin de que éste entienda y tenga una compresion total de lo que se muestra y se
quiere explicar en cada momento.

8. Anexos: Por dltimo se incluiran otros documentos como son una guia de iniciacién a la
programacion en AVR32 Studio o el cddigo fuente que utiliza el microcontrolador para
hacer mover el robot movil.

2. PLANIFICACION, REQUISITOS Y HERRAMIENTAS DE
TRABAJO

En este segundo capitulo se pretende dar a conocer cuales son los requisitos necesarios para
la ejecucion del proyecto, entre los cuales se encuentran los conocimientos previos de la
tecnologia a utilizar o las herramientas que sera necesario utilizar para su elaboracién.
Ademas, se detallara cual ha sido la planificacién que se ha llevado a cabo en el desarrollo del
presente proyecto a lo largo de los 9 meses de duracion de este.

2.1 REQUISITOS PREVIOS

Para la elaboracion de este proyecto no es necesario disponer de conocimientos sobre el
estado actual del mercado de los microcontroladores, ni tan si quiera conocer cual es su
funcionamiento. Sera parte del desarrollo de este, el aprendizaje de los conocimientos
necesarios para la correcta puesta en marcha del proyecto.

Sin embargo, si que se predispone de conocimientos del lenguaje de programacion C++ y de
arquitectura de computadores, asi como un nivel avanzado en cuanto a entendimiento de
circuitos electrénicos analégicos y digitales se refiere. Estos conocimientos han sido adquiridos
a lo largo de los tres afios de duracion de la carrera de Ingenieria Técnica de
Telecomunicaciones, Especialidad en Sistemas Electrénicos, por lo que no se requerira de una
formacién previa en el momento de iniciar el proyecto.

2.2 HERRAMIENTAS DE TRABAJO

Las herramientas de trabajo se diferencian entre las utilizadas para el desarrollo del software y
las del hardware.

A nivel de desarrollo de software, la Figura 1 muestra cual es el conjunto de herramientas
necesarias para el desarrollo con microcontroladores AVR32. A continuacion se ofrecen mas
detalles de cada una de ellas:

e AVR32 Studio: Se trata de un entorno de desarrollo integrado para desarrollar
aplicaciones basadas en microcontroladores AVR32. Soporta todo tipo de
procesadores AVR32 y dispone de herramientas suficientes para comenzar a
desarrollar en lenguaje C++.

e Compilador C/C++: “AVR32 Studio” no dispone de compilador propio y es por eso que
se debe hacer uso de uno externo, aunque se integra totalmente con “AVR32 Studio”.
Es por ello que Atmel ofrece de forma gratuita “AVR32 GNU Toolchain”, que permitira
compilar, realizar debug y programar los microcontroladores AVR32.

e AVR32 Software Framework: Una de las grandes ventajas de hacer uso de AVR32
Studio es que dispone de ejemplos y librerias incluidos en el propio Framework que
incluye. Todo el Framework esté escrito en lenguaje C++, por lo que sera el lenguaje
elegido para la elaboracién de todo el proyecto.

e Starter Kit: Tal y como se detallara en los préximos capitulos, para el desarrollo y
testeo de los microcontroladores AVR32, se hara uso de una placa de evaluacion
EVK1100, la cual ofrece un conjunto de periféricos y memorias que permitirdn
demostrar todo el potencial de estos microcontroladores.

e Debugger: El debugger serd necesario para poder programar la memoria Flash del
microcontrolador. Para ello, se dispone de un JTAG MKII ICE, que ofrece una potente
herramienta de programacion y debug sobre el propio chip. No es la Unica solucion
existente para realizar esta tarea, pero para la elaboracion del presente proyecto
disponemos de esta herramienta.

Studio

Compiler

Framework

Figura 1: Herramientas necesarias para el disefio del Software

A nivel de desarrollo de hardware, se hace uso de diferentes dispositivos electrénicos como
son sensores, servomotores, motores DC, conversores RS232 a Bluetooth o algunos circuitos
integrados como el L293D. Todos estos elementos han sido utilizados para la construccion de
un robot movil, tal y como se vera en los préximos capitulos, donde se detalla en profundidad,
el uso y finalidad de cada uno de los elementos utilizados.

2.3 PLANIFICACION

Inicialmente la planificacion del proyecto fue pensada para llevarse a cabo en 3 meses, con
fecha de inicio el 02/10/2009 (coincidiendo con la primera reunion realizada) y finalizacion el
12/02/2010.

A pesar de que estas fechas han sido estudiadas y analizadas en funcion de los requisitos que
se creian convenientes, la planificacion final no ha sido tal y como se esperaba. Este hecho es
algo normal si tenemos en cuenta que se trata de un proyecto nuevo y por lo tanto, se
desconocen los posibles retardos que puedan aparecer a lo largo de su ejecucién. Es por ello
que su finalizacién se pospone hasta el mes de Junio.

Los retrasos se deben principalmente, a la carencia de bibliografia especializada acerca de los
microcontroladores AVR32, por lo que todo el aprendizaje se ha llevado a cabo a través del

6

estudio de los ejemplos y drivers disponibles en el Framework de Atmel, asi como del andlisis
de los datasheets disponibles en la web oficial. La Figura 2 muestra la planificacion final
seguida para la ejecucion del proyecto.

MNombre de tarea Duracian Comienzo Fin Pred

1 | = Robot movil con EVK1100 - Estudio y Aplicacion 193 dias vie 0210/09 mar 06/07/110

2 Reunidn con el tutor 1 dia vie 02/10/09 vie 021 0/09

3 - Estudio y comprension 44 dias lun 12M0/09 jue 10/12/09

4 Estudio v andlisis del proyecto 2 dias lun 1210/09 mar 1310/09

5 Estado del arte 3 dias mié 14/10/09 vie 16/10/09 4
6 Requisitos del proyecto 1 dia lun 19410/09 lun 181 0/0% 5
7 Recopilacion de informacion y documentacion & dias mar 20/10/09 mar 2710/09 §
3 Estudio de la arguitectura AWR32 15 dias mié 28/10/09 mar 17/11/08 7
9 - Estudio de la placa EVK1100 12 dias mie 18/11/09 jue 03112109

10 Caracteristicas técnicas principales, CPU v memaria 3 dias mié 18/11/09 vie 20/11/05| 8
1 Interfaces de conexidn 3 dias lun 23/11/09 mié 25/11/09 10
12 Programacion mediante JTAGICE MK 1 dia jue 26/11/09 jue 26/M1/08 11
13 Software AVR32 Studio 5 dias vie 27/11/09 jue 03/12/09 | 12
14 Comunicacion con el robot v funciones basicas de este 5 dias vie 04/12/09 jue 10/12/09 13
15 Programacion del robot 111 dias vie 1112109 vie 1410510

16 ;FreeRTOS o programacion Standalone? 3 dias vie 111209 mar 151209 14
17 Programacion del microecentrolador 108 dias mié 18/12/09 vie 14/05/10 16
18 Programacion de la aplicacion de control 55 dias lun 010310 vie 1410510

19 Estudio de la comunicacion serie en Visual Basic 6.0 2 dias lun 0140310 mar 02/03M0

20 Creacion del programa 36 dias vie 260310 vie 14/05/10 19
21 Construccion del robot 7 dias vie 04M2/09 lun 14/12/09

22 -/ Definicion de partes y componentes necesarios 3 dias vie 04/12/09 mar 05/12/09

23 Servomotores v sensores R 2 dias vie 0441209 lun 07M2/08| 13
24 Resto de elementos 1 dia mar 08M12/09 mar 08M2/09 23
25 Ensamblaje de las diferentes partes 4 dias mié 0912/09 lun 1412/09 24
26 Pruebas y resultados 15 dias lun 1710510 vie 0410610

27 Testeo del sistema (aplicacion de control + microcontrolador) 5 dias lun 17/0510 vie 21/05M10 17
28 Analisis de errores y verificacion 10 dias lun 2440510 vie 04/06M10 | 27
29 Documentacion y memoria del PFC 126 dias vie 11/12/09 vie 04/06/10 14
30 Lectura del PFC 1 dia mar 08/07/10 mar 06/07H0

Figura 2: Planificacion del Proyecto

3. ARQUITECTURA AVR32

La compafiia Atmel [1] opera en el mercado de los microcontroladores desde el afio 1984 y su
familia de dispositivos estd compuesta entre otros, por microcontroladores basados en
arquitectura ARM [2] y microcontroladores con arquitectura propia como los AVR8 y AVR32,
utilizados en el proyecto.

Los microcontroladores AVR32, gracias a la arquitectura Harvard y a los multiples buses de
alta velocidad, garantizan un rendimiento excepcional y un bajo consumo energético gracias a
los distintos modos de suspensiéon del MCU y del Escalado Dinamico de Frecuencias. Esta
familia de microcontroladores se provee de herramientas de desarrollo gratuitas como el
AVR32 Studio, que permiten empezar a desarrollar cédigo C/C++ de forma sencilla.

A su vez, los AVR32 se descomponen en otros dos grupos:

e Los Microcontroladores UC3 32-Bit Flash, que disponen de instrucciones DSP y son
capaces de alcanzar 91 DMIPS® a una frecuencia de 66 MHz, consiguiendo una
eficiencia energética mejor que ningun otro chip de la competencia (1.3 mW / MHz).

e Los AP7 32-Bit Application Processors, que del mismo modo que los anteriores,
disponen de instrucciones DSP y también SIMD®. A diferencia de la familia UC3 32-
Bit, estos proporcionan un rendimiento de 210 DMIPS a una frecuencia de 150 MHz, y
disponen de soporte total para Linux.

Para la realizacion del robot, se dispone del microcontrolador AT32UC3A0512, que pertenece a
la familia de micros AVR32 UC3, construidos sobre los nucleos AVR32 UC, disefiados para el
desarrollo de aplicaciones embebidas que requieran de alto rendimiento y memoria integrada
en el propio chip, ademas de un comportamiento en tiempo real y bajo consumo energético.

Estos procesadores multiplican por un factor de dos las prestaciones de su competidor mas
directo para un mismo codigo (reduce entre un 5% y un 20% el c6digo generado al compilar), y
son comparables al ARM-Cortex M3 en nimero de puertas, aunque el AVR32 UC es el Gnico
ndcleo de 32-Bit de su rango que incluye instrucciones DSP que son ejecutadas en un solo
ciclo de reloj. Ademas, se trata del primer nlcleo en integrar la memoria SRAM en el propio
Pipeline, permitiendo la lectura y escritura en la memaoria en un solo ciclo de relo;.

3.1 ARQUITECTURA

El nicleo AVR32UC esta formado principalmente por un pipeline de 3 etapas por ciclo,
disefiado especialmente para optimizar la entrega de instrucciones desde la memoria Flash.
Sin la memoria Flash integrada en el propio chip, no seria posible hacer funcionar la CPU a
maxima velocidad, sin que esta tuviera que esperar para recibir las proximas instrucciones.
Ademas y entre otros, esta formado por una unidad de proteccion de memoria (MPU), que se
encargara de proteger las regiones de memoria protegidas, el acceso a la memoria y las
declaraciones que se hacen en esta y que es indispensable para la implementacion de
sistemas operativos en tiempo real o por ejemplo el Power Manager, que es el encargado de
controlar los osciladores o los PLLs y de generar las sefiales de reloj y reset del dispositivo. La

Dhrystone-MIP (DMIP) es un test computacional sintético desarrollado en 1984 por Reinhold P. Weicker. La salida de
este test, proporciona el numero de iteraciones Dhrystone por segundo, ejecutadas en el microcontrolador.
SIMD son un conjunto de instrucciones que aplican una misma operacion sobre un conjunto de datos.

Figura 3 muestra el diagrama de bloques del nicleo AVR32UC, donde se pueden ver los ya
indicados anteriormente ademas de otros.

El ndcleo AVR32 UC, ademas de aceptar instrucciones DSP de un solo ciclo de reloj, da
soporte a eventos como las interrupciones no enmascarables (NMI), a excepciones y a otros
cuatro tipos de interrupciones con niveles de prioridad diferentes. De este modo, los eventos
que tengan prioridades mayores a los eventos con menos, podran avanzar en la cola de espera
de forma automatica. También puede operar en modo privilegiado o no. Este modo es
especialmente usado en los sistemas operativos en tiempo real, permitiendo acceso a todos los
recursos del sistema y usando una pila de sistema separada.

Pfor““mb" Power / Sleep

Manager
Contre Ao

Data Memaory Controlier

Instruction Me
s CPU RAM
High Sposd High Spoed High Speod
Bus master Bus master Bus slave
3 a & AVR32 UC Core
$ $ §

Figura 3: Diagrama de bloques del nGcleo AVR32 UC3

3.2 CPU

El procesador de este microcontrolador AVR32UC esta formado por un pipeline de tres etapas
(Figura 4), que son: la etapa de Instruction Fetch (IF), Instruction Decode (ID) y la etapa
Execute (EX), por lo que las instrucciones deben ser ejecutadas en ese orden (aunque
algunas requeriran pasar varias veces por la etapa EX para ser completadas).

3.2.1 PREFETCH UNIT

La primera etapa del pipeline esta compuesta por el médulo IF, y consiste en precargar una
instruccion de 32 bits o 2 de 16 bits por ciclo de reloj en buffers FIFO internos, y de este modo
alimentar a la etapa siguiente. Al mismo tiempo que se cargan las instrucciones, otras (ya sean
RISC, extendidas o compactas), son entregadas a la etapa de descodificacion.

10

3.2.2 DECODE UNIT

La segunda etapa se encarga de decodificar las instrucciones y generar las sefiales necesarias
para la correcta ejecucién de estas. Esta etapa acepta una instruccidn por ciclo de reloj
proveniente de la Prefetch Unit, de modo que la instruccion es decodificada y es entonces,
cuando se generan las sefiales de control y las direcciones de los ficheros de registros. En el
caso de que una instruccion no pueda ser decodificada, de que sea ilegal o que esté
incompleta, una excepcién es producida interrumpiendo la ejecucion de esta.

3.2.3 THE EXECUTE

La tercera y Ultima etapa es la encargada de realizar las lecturas, escrituras y operaciones
sobre la memoria y los ficheros de registros. Esta etapa se subdivide en 3 sub-etapas: la ALU
(Unidad Aritmético Ldgica), la sub unidad de Multiplicacion y las unidades de lectura y escritura.

‘ > MUL ‘wu\a
Register Register
'“r-:l e File =t AU —» Fio ALU
v Read Write
Deocode unit l
Ll 1§ — Load/Store

Figura 4: Etapas del Pipeline del AVR32 UC3

3.3 LA MEMORIA

La Tabla 1 muestra las diferentes combinaciones disponibles para el nucleo AT32UC3A. En el
caso a estudio, el microcontrolador utilizado es el AT32UC3A0512, que dispone de 512 KBytes
de memoria Flash y 64 KBytes de SRAM.

Como se puede ver, las diferencias entre versiones de la familia AT32UC3A radican en la
cantidad de memoria disponible. Para este proyecto, se dispone de una memoria interna de
512 KBytes y una SRAM de 64 KBytes. En caso de necesitar mas cantidad de memoria, se
puede acceder a las memorias externas que se encuentran en la placa EVK1100 o incluso
almacenar datos en el lector de tarjetas SD/MMC que incorpora, de modo que la cantidad de
memoria disponible se dispara.

Dispositivo Flash SRAM Encapsulado
AT32UC3A0512 | 512 Kbytes | 64 Kbytes LQFP 144
AT32UC3A0256 | 256 Kbytes | 64 Kbytes LQFP 144
AT32UC3A0128 | 128 Kbytes | 32 Kbytes LQFP 144
AT32UC3A1512 | 512 Kbytes | 64 Kbytes TQFP 100
AT32UC3A1256 | 256 Kbytes | 64 Kbytes TQFP 100

AT32UC3A1128 | 128 Kbytes | 32 Kbytes TQFP 100
Tabla 1: Cantidad de memoria segln el modelo

11

El espacio de memoria se divide en los segmentos definidos en la Tabla 2. Estos segmentos
tienen direcciones de memoria pre-asignadas y no pueden ser modificadas, aunque como ya
se vera mas adelante, este no sera un factor a tener en cuenta.

Device Start Address Size
Embedded SRAM 0x0000_0000 64 Kbytes
Embedded Flash 0x8000_0000 512 Kbytes

EBI SRAM CS0 0xC000_0000 16 Mbytes

EBI SRAM CS2 0xC800_0000 16 Mbytes

EBI SRAM CS3 0xCCO00_0000 16 Mbytes

EBI SRAM CS1/ SDRAM CSO 0xD000_0000 128 Mbytes
USB Configuration 0xE000_0000 64 Kbytes
HSB-PB Bridge A OxFFFE_0000 64 Kbytes
HSB-PB Bridge B OxFFFF_0000 64 Kbytes

Tabla 2: Direcciones de memoria del AVR32 UC3

3.4 REGISTROS

El fichero de registros esta organizado en 16 registros de 32 bits y que incluyen, entre otros, el
Program Counter, el Link Register o el Stack Pointer. Adicionalmente, el registro R12 esté
disefiado para mantener los valores devueltos por las funciones que son llamadas desde la
aplicaciéon o cuando es usado implicitamente por algunas instrucciones.

Por otro lado, la arquitectura del AVR32UC no implementa hardware dedicado a los ficheros de
registros de interrupciones ni tampoco registros para las direcciones de retorno o retorno de
estados. A cambio, toda esta informacidn se almacena en la pila del sistema (System Stack),
permitiendo ahorrar en area del chip a costa de un tratamiento mas lento de las interrupciones.
La Figura 5 muestra los diferentes ficheros de registros, aunque como ya se ha comentado, los
registros de interrupciones, registros para las direcciones de retorno o registros para retorno
de estados, no estan implementadas a nivel hardware.

Application Supervisor INTO INT1 INT2 INT3 Exception HMI

Bt 31 Bit o Bit 31 Bit o Bit 31 Bit 0 Bit 31 Bito Bit 31 BiD BIt 31 Bito Blt 31 Bita Bit 31 Bitd
PC PC PC PC PC PC PC PC
LR LR LR LR LR LR LR LR

SP_AFP SP_SYS SP_SYS SP_SYS SP_SYS S5P_SYS S5P_SYS S5P_SYS

R12 R12 R12 R12 R12 R12 R12 R12
R11 R11 R11 R11 R11 R11 R11 R11
R10 R10 R10 R10 R10 R10 R10 R10
RS RS RS RS R3 R3 R3 RS
R8 R8 RE RE RE RE8 Rg& R&
RT R7 RT RT RT R7 RT RT
R& RE RE RE RE& RE R& R&
R5 RS RS RS RS R5 RS RS
R4 R4 R4 R4 R4 R4 R4 R4
R3 R3 R3 R3 R3 R3 R3 R3
R2 R2 R2 R2 R2 R2 R2 R2
R1 R1 R1 R1 R1 R1 R1 R
RO RO RO RO RO RO RO R0
SR |] SR | | SR | 5R | SR | | SR |] SR | SR

Figura 5: Ficheros de Registro del AVR32

12

El registro SR (Status Register) esta dividido en dos partes, la primera superior y la segunda
inferior que podemos verlas en la Figura 6 (parte superior) y en el Datasheet [3] (parte inferior).
Para mas informacién acerca de los registros se debe consultar el manual del AVR32 [3].

Bt 31 Bt 18

H J DM D - M2 | M1 MO | EM | 13M [12M | HM [I0M | GM |Bitname

]] 0] 0 0 0 0 0 1 1 1] 1] 1]] Initial value

L—- Globkal Interrupt Mask

L——= Interrupt Level 0 Mask
L— = Interrupt Level 1 Mask
= Interrupt Level 2 Mask
Interrupt Level 3 Mask
»- Exception Mask

= Mode Bit 0

= Mode Bit 1

= Mode Bit 2

Reserved

Debug State

= Debug State Mazk

= Java State

Java Handle
Reserved

Reserved

Figura 6: Parte superior del registro SR (Status Register)

Los registros de sistema estdn colocados fuera del espacio de memoria virtual del
microcontrolador y s6lo son accesibles utilizando instrucciones con permisos privilegiados
como son la mfsr y mtsr. De este modo, es el programador el responsable de mantener la
correcta secuencia de uso de las instrucciones anteriores y derivar en él las responsabilidades
de su uso.

3.5 INTERRUPCIONES Y EXCEPCIONES

En ocasiones, la CPU se vera obligada a abortar la ejecucion normal del programa para poder
atender eventos especiales o que tenga mayores prioridades. Tradicionalmente se han llamado
excepciones a los eventos generados internamente en la CPU vy interrupciones a los eventos
externos.

En este sentido, el AVR32 proporciona herramientas potentes para el control de eventos, de
modo que los diferentes eventos que se produzcan tengan bien definidos sus niveles de
prioridad para que no existan conflictos en caso de la recepcién de multiples eventos al mismo
tiempo. Cuando uno de estos eventos aparece, la ejecucion normal es “congelada” y se
procede a tratar esta de forma separada. Una vez completada, se retoma la ejecucién normal
del programa.

Cada una de las etapas del pipeline posee un registro que mantiene el valor de la peticion de
excepcidn asociada a una instruccion en esa etapa del pipeline, que permitira mas tarde
continuar con la ejecucion normal de la instruccion “contaminada”. Las excepciones son
detectadas en dos etapas del pipeline. La etapa EX (3.2.3) detecta todas las excepciones
relacionadas con las direcciones de datos. Por otro lado, todas las otras excepciones incluidas
las interrupciones, son detectadas por la etapa ID.

3.5.1 SUPERVISOR CALLS
La arquitectura AVR32 tiene definida una instruccidn que permite ejecutar instrucciones en
modo supervisor. Esta instruccion, llamada scall, esta disefiada especificamente para poder

13

ejecutarse en cualquier contexto y que esta pueda ejecutar rutinas que requieran de privilegios
de supervisor.

3.5.2 DEBUG REQUESTS
Por otro lado, esta arquitectura dispone ademas de interrupciones dedicadas al modo debug.
Cuando una de estas peticiones es recibida por el ndcleo, todo él pasa a modo debug.

3.6 MEMORY PROTECTION UNIT

La arquitectura del AVR32 define como opcién la inserciéon de una Unidad de Proteccién de
Memoria (MPU). De hecho, se trata de una simple alternativa a la insercion de una MMU
(Memory Management Unit) completa, pero que permite proteger del mismo modo la memoria.
Esta unidad permite al usuario dividir la memoria en diferentes espacios protegidos (con un
maximo de 8), de modo que su espacio esta definido y tiene comienzo en la direcciéon de
memoria que el usuario especifica. A su vez, cada region es dividida en 16 subregiones, las
cuales pueden ser definidas con 1 o 2 series de permisos diferentes. El nUmero de regiones
protegidas implementadas se almacena en el campo DMMU SZ del registro de sistema
CONFIG1.

La MPU es la responsable de chequear que todas las transferencias de datos en la memoria
tienen los permisos correctos para que estas puedan completarse. Por ejemplo, si un acceso a
memoria es realizado con permisos incorrectos o se intenta acceder a una direccion de
memoria que no reside en ninguna regién protegida, una excepcion es generada y el acceso es
cancelado. Por supuesto y como ya se ha dicho, el usuario tiene a su disposicion crear
diferentes regiones de acceso a memoria con los permisos que él desee, de modo que todos
los accesos a memoria (protegida) se produzcan sin ningun tipo de problema.

El espacio de las regiones protegidas puede variar desde los 4 Kbytes hasta los 4 Gbytes
(siempre que dispongamos de esa cantidad de espacio), y siempre debe corresponder a una
potencia de dos. Cuando un acceso es realizado a una regién de memoria seleccionada por la
MPU, el propio hardware procede a determinar que subregién es la mas apropiada para
almacenar los datos. Por el contrario, si se accede a otro espacio de memoria, la transferencia
es abortada inmediatamente.

Si desea activar el uso de la MPU, debera activar el bit E en el registro MPUCR. En caso de no
activarlo, los accesos a memoria se producirdn sin ningun tipo de violacion en el acceso. Para
definir una regiébn de memoria protegida, se debera hacer uso del registro MPUARn (MPU
Address Register), donde se define (Figura 7) la direccion de inicio de memoria y el tamafio de
la region.

MPUARRN
31 12 11 6 5 10

Base Address - Size v

Figura 7: Memory Protection Unit Address Register

e Base Address: Este campo indica el inicio de la region de memoria. Para definir las
direcciones de memoria estas deben ser alineadas con su correspondiente tamafo. Es
decir, como el tamafio minimo de una regién de memoria es de 4 KB, Unicamente se
hace uso de los 20 bits mas significativos del campo “Base Address”. El resto de bits,

14

simplemente deberan ser puestos a 0 y en caso de ser un tamafio distinto, hacerlo
acordemente, ya que en caso contrario, la memoria quedara indefinida.

e Size: Indicara el tamafio de memoria (siempre en potencias de 2).

e V: Siempre que la regién protegida sea valida, este flag sera marcado a 1. En caso
contrario o cuando se realice un reset, este campo sera marcado como 0 y por lo tanto,
no sera considerada la region protegida.

Por otro lado, el registro MPUAPR (MPU Access Permission Register A) (Figura 8) indica
cuales son los permisos que tendra cada region. Cada vez que se haga un reset del sistema,
este campo sera puesto a 0, con lo que los permisos desapareceran.

MPUAPRA / MPUAPRB
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

APT APGB APS AP4 AP3 AP2 AP1 APO

Figura 8: Memory Protection Unit Access Permission Register

3.7 HSB (MATRIZ DE BUSES)

Todos los buses utilizados en el microcontrolador estan integrados dentro de la matriz de buses
de alta velocidad. Esta matriz, implementa una estructura que permite el acceso paralelo entre
multiples buses de alta velocidad (hasta 16 maestros o 16 esclavos, Figura 9) del sistema,
incrementando notablemente el ancho de banda global. Ademas, esta matriz incorpora 16
registros para funciones especiales que dan soporte a las aplicaciones para hacer uso de
caracteristicas especiales y proporciona un decodificador por cada interfaz maestra del bus,
permitiendo que cada bus pueda mapear la memoria de forma distinta.

HMATRI SLAVES
=
& L g
] @e @ - = 5
= % # G # v g & =
-<] -]
E & 2F | B z w
H zd =& E i
E z >
o 2 E] 4 L
—
A ry r N r 4 F K
CFU Data o]] b v)
cPUY , — i~ “}
Imstruction - = ¥
o
&
: CPU SAB 2 | I ™ r i |
el = * I - - - -
=
0
z POCA 3 e = - - -
g - Pt ety P -
il Y =
MACE 4) @ [)
¥
& ry - -
USEB OMA | 5 h (] [[>

Figura 9: La matriz de buses (HSB)

15

Todos los modulos conectados a un mismo bus usan el mismo reloj, aunque este reloj puede
ser modificado por el Power Manager.

La matriz HSB, proporciona al AVR32UC tres interfaces de memoria. La primera de ellas se
encuentran conectada a un bus maestro para la etapa de Instruction Fetch del pipeline, otra
para el acceso a los datos y una tercera permite a otros buses maestros acceder a la memoria
RAM interna de la CPU. Esto permite mantener la memoria RAM en el interior de la CPU
mejorando el acceso a esta, reduciendo las latencias y garantizando un tiempo determinista.
Ademas, el consumo energético es reducido al no necesitar un bus completo para acceder a la
memoria.

3.8 SIsTEMA OCD

Los microcontroladores AVR32 estan orientados a abarcar un gran nimero de aplicaciones
distintas. Es por eso que, ya que se espera de estos dispositivos una gran velocidad y
flexibilidad, también se espera que sus posibilidades de testeo sean lo mas altas posibles. El
AVR32 incluye el sistema OCD (On Chip Debugging) que proporciona una herramienta flexible
y poderosa para realizar debug sobre el propio chip. Esta interfaz de testeo, proporciona al
debugger externo acceso a la légica del chip a través del puerto JTAG.

3.9 POWER MANAGER

El Power Manager es el encargado de controlar los osciladores, PLLs y de generar las sefiales
de reloj y reset del dispositivo. Como controla los dos osciladores de cristal junto con los dos
PLLs, estos pueden ser usados para multiplicar la frecuencia del reloj consiguiendo frecuencias
de funcionamiento mayores, lo que se traduce en mas velocidad de calculo.

Los relojes proporcionados son divididos en dos grupos: los relojes sincronos y los genéricos.
El primero de ellos es usado como reloj principal para la légica digital del dispositivo, mientras
que el reloj genérico puede ser utilizado para la conexién de periféricos que requieran
frecuencias especificas como pueden ser “Timers” o médulos de comunicacién. Ademas, los
relojes sincronos estan divididos en tres dominios que permiten habilitarlos o deshabilitarlos o
incluso hacerlos que funcionen a frecuencias distintas, lo que permite ahorrar energia,
haciendo funcionar los periféricos a una frecuencia baja, mientras que la CPU seguira
trabajando a plena carga. Esta capacidad que presenta el microcontrolador, puede ser
efectuada “en caliente”, es decir, las frecuencias del dispositivo pueden ser modificadas, una
vez este se encuentre en marcha y sin que por ello, el sistema o los dispositivos se vean
afectados.

3.10 REeAL TIME COUNTER

El Real Time Counter (RTC) permite activar interrupciones que sean lanzadas después de
largos intérvalos de tiempo (hasta 272 afios reales) o también, medir con precision (resolucion
maxima de 16 KHz), secuencias de tiempo real. Esta formado un prescaler de 16 bit, el cual
esta conectado a un oscilador RC de 32 KHz. El prescaler puede ser programado como se
desee, de modo que permitird escoger mayores o menores resolucion de tiempos.

16

3.11 TIMER/COUNTER

El Timer Counter (TC) incluye 3 canales idénticos de 16 bits. Cada canal puede ser
programado de forma independiente para realizar una amplia variedad de funciones que
incluyen medidas de frecuencia, contador de eventos, medidas de intérvalos de tiempo,
generacion de pulsos, retrasos temporales y pulsos PWM.

Cada canal dispone de 3 entradas de relojes externos, 5 de relojes internos y 2 entradas de
propdsito general (tanto de entrada como de salida) que pueden ser configuradas por el
usuario. Ademas, disponen de interrupciones internas que pueden ser programadas de forma
independiente para cada canal. Sus principales caracteristicas son:

3.12 INTERRUPT CONTROLLER

El INTC (Interrupt Controller) recoge todas las interrupciones generadas por los periféricos,
priorizandolas y entrega una peticion de interrupcion a la CPU. La arquitectura del AVR32
soporta hasta 4 niveles de prioridades para las interrupciones, donde estas se dividen en hasta
64 grupos de interrupciones diferentes. Cada grupo dispone de 32 lineas de peticién de
interrupcioén. Si varios grupos tienen pendientes interrupciones del mismo nivel, el grupo con el
namero menor es el que toma la prioridad.

3.13 EXTERNAL INTERRUPTS CONTROLLER

El moédulo de Interrupciones Externas, permite a los diferentes pines del MCU actuar como
pines para recibir interrupciones externas. Estas interrupciones pueden ser generadas a nivel
bajo o alto de la sefial, o en el flanco de subida o de bajada, pero para evitar interrupciones
“falsas”, cada linea tiene un filtro configurable que permite eliminar posibles glitches que
aparezcan en la linea. Este tipo de controlador admite la conexién de un teclado externo, de
modo que cada vez que se presione una tecla, esta generara una interrupcion que sera
identificada por el madulo.

3.14 INTERFACES DE ENTRADA Y SALIDA

Ademas de las caracteristicas antes mencionadas, interesa ver cuéles son las capacidades a
nivel de comunicacion que el AVR32 ofrece. Estas interfaces permitiran la comunicacién entre
el microcontrolador y los diferentes periféricos que se desee utilizar. A continuacion se detallan
algunas de las interfaces mas importantes que este dispositivo ofrece.

3.14.1 GPIO

El controlador GPIO (General-Purpose Input/Output Controller) es el responsable de controlar
todos los pines de entrada y salida del microcontrolador. Cada una de las lineas del MCU
puede ser utilizada como un puerto de propésito general (tanto de entrada como de salida) o
puede asignarse una de las funciones disponibles en ese PIN. De este modo, se asegura la
optimizacién de todos los pines del producto, permitiendo utilizar los 109 pines del
microcontrolador a modo de propdsito general (encender un LED, activar un Relé...).

17

Cada puerto es capaz de multiplexar hasta 4 funciones periféricas y ademas, todos ellos
disponen de un filtro anti-glitch, de modo que los pulsos que sean mas cortos de que un ciclo
de reloj, seran rechazados.

3.14.2 ADC

Un conversor ADC puede convertir un voltaje en un ndmero binario digital. Los conversores
A/D son utilizados en cualquier lugar donde sea necesario procesar una sefial, almacenarla o
transportarla en forma digital. Los puertos ADC (Analog-to-Digital Converter) incluidos en el
AVR32, estan basados en Conversores Analdgicos — Digital por Registros de Aproximacion
Sucesiva (SAR) de 10 bits.

El ADC soporta dos modos de resolucion, 8 bits o 10 bits, dando como resultado una
conversion que es reportada a un registro comudn para todos los canales. Ademas, incorpora un
modo “Sleep” que reduce el consumo de potencia del MCU.

La resolucién del conversor indica el nimero de valores discretos que se pueden obtener
dependiendo del rango del voltaje de entrada. Esta resolucién se traduce en 256 valores para
el caso de los 8 bits 0 para 1024 para el caso de los 10 bits.

3.14.3 PWM

Una canal PWM (Pulse Width Modulation Controller) permite generar sefiales cuadradas que
pueden ser configuradas segun se desee, permitiendo modificar caracteristicas como el
periodo, el duty-cicle y la polaridad de la sefial. Estas celdas son capaces de controlar varios
canales independientemente, donde cada canal, controla una salida que proporciona una sefial
cuadrada.

El AVR32 dispone de 7 canales independientes con contadores de 20 bits cada uno. Cada
canal puede seleccionar de forma independiente, un clock diferente (de 13 posibles a escoger),
un periodo o un duty-cycle. Ademas, la polaridad y la situaciéon de la sefial puede ser
programada.

3.14.4 UNIVERSAL SYNC/ASYNC RECEIVER/TRANSMITTER

Los USART permiten la transmisién de datos a través de un canal full daplex universal a través
de un puerto serie. El formato de los datos es ampliamente programable de forma que admite
una gran variedad de estandares. El receptor implementa un cédigo detector de errores por
paridad y ademas, permite la transmision con dispositivos mas “lentos” gracias al moédulo time-
out, que permite la deteccion de trazas de datos de longitud variable.

Ademas, el USART posee tres modos de test que son: el loopback remoto, el loopback local y
el “echo” automético. También soporta la conexién de periféricos con controladores DMA,
permitiendo la transferencia de datos desde el transmisor al receptor.

3.14.5 Two WIRE INTERFACE

El AVR32 dispone de un canal TWI. Este canal, permite interconectar componentes a través de
un bus de dos cables. El primero de estos cables permite transmitir la sefial de reloj, mientras

18

que el segundo transmite y recibe datos a una velocidad de hasta 400 Kbits por segundo. Es
compatible con el estandar 12C y programable como maestro o esclavo.

19

20

4. COMPARATIVA

En el mercado existen muchas alternativas a los microcontroladores de AVR32. Una sola
compafiia puede disponer de varios modelos, que sumado al elevado numero de casas
fabricantes de microcontroladores que hay, dan como resultado un amplio abanico de opciones
para escoger. Es por ello que determinar que microcontrolador es el mas idéneo para la tarea
que se va realizar, debe ser parte de un estudio exhaustivo por parte del desarrollador.

Este capitulo pretende hacer una introduccion al estado actual del mercado de los
microcontroladores y realizar una pequefia comparativa entre las arquitecturas del AVR8 y
AVR32 y con la de sus competidores directos los ARM9 y ARM11. Ademas, se presenta de
forma breve, cual es el estado actual del mercado de los microcontroladores.

4.1 AVR32vs AVRS

La arquitectura AVR32 aparecid recientemente en el mercado de MCUs, pero eso no quiere
decir que Atmel no se encontrara en el mercado anteriormente. El microcontrolador AVR8 (que
a continuacién se presenta) es altamente utilizado, disponiendo de una de las relaciones
consumo/potencia més bajas del mercado. Estos microcontroladores disponen de 8 o 16 bits
(segun modelo) y son capaces de ejecutar instrucciones RISC en un solo ciclo de relo;.

A continuacién se hace un breve resumen de las caracteristicas mas importantes de las que
disponen estos microcontroladores y una comparativa respecto a los nuevos AVR32.

4.1.1 AVR 8-BITRISC

La arquitectura AVR8 es una arquitectura pensada para ofrecer altas prestaciones minimizando
el consumo energético. Haciendo uso de una arquitectura tipo RISC, ejecuta sus instrucciones
en un solo ciclo de reloj, gracias al pipeline de una sola fase que incluye, ofreciendo un
rendimiento de 1 MIPS por MHz. Algunas de sus caracteristicas mas importantes son:

e Arquitectura RISC capaz de ejecutar instrucciones en 1 sélo ciclo de reloj.

¢ Velocidad de funcionamiento de hasta 32 MHz, ofreciendo hasta 1 MIPS por MHz.
e Uso de la arquitectura Harvard.

e 32 registros de propésito general.

Gracias a estos 32 registros, el AVRS8 ofrece una gran flexibilidad, especialmente cuando se
programa en lenguajes de alto nivel como pueden ser C, Pascal o Basic.

Su consumo energético es realmente bajo debido a que es capaz de operar en niveles de
tensién tan bajos como 1.8V y ademas de disponer de hasta 6 modos de reposo, los cuales
son muy Utiles cuando se realizan aplicaciones que ahorren energia ya que el microcontrolador
es capaz de volver a su estado de funcionamiento normal de forma muy ripida ante un evento
externo.

Ademas y siempre en vista de mejorar el consumo de estos microcontroladores, la frecuencia a
la que opera el MCU puede ser controlada mediante el software que disefiemos.

Tal y como se puede ver en la Figura 10, la arquitectura AVR8 la componen 3 familias de
microcontroladores:

21

e TinyAVR: Microcontroladores de proposito general con hasta 16 KBytes de memoria
Flash programable y 512 Bytes de memoria SRAM.

e MegaAVR: Altas prestaciones gracias al multiplicador hardware que implementa.
Ademas, dispone de 256 KBytes de memoria Flash, 4 KBytes de memoria EEPROM y
8 KBytes de SRAM.

e XMEGA: Los XMEGA son microcontroladores de 8 o 16 bits, que disponen de una
serie de periféricos que incrementan el rendimiento de estos circuitos respecto a los
MegaAVR, como pueden ser las controladoras DMA.

sizée (prvimem)

features

Figura 10: Escalabilidad de los microcontroladores AVR8

Escalabilidad: Una de las ventajas y caracteristicas mas importantes que aportan estos
microcontroladores es la escalabilidad que ofrecen. Es decir, se puede reutilizar cédigo para
que sea utilizado en los distintos dispositivos de la familia AVR8 sin realizar grandes cambios.
Por ejemplo, si se esté utilizando un microcontrolador de caracteristicas limitadas y para la
realizacion del proyecto es preciso aumentar el rendimiento de este, puede ser sustituido por
uno de la misma familia y que disponga de mejores caracteristicas, sin realizar cambios
importantes en el cédigo del programa y usando siempre el mismo software de desarrollo.

4.1.2 PRINCIPALES DIFERENCIAS

Ya que el rendimiento de los nuevos microcontroladores AVR32 se sitla mas cerca de los
modelos XMEGA que de los tinyAVR, la comparativa entre ambos productos se hara utilizando
el microcontrolador AT32UC3A0512 y los ATxmega384Al. La Figura 11 muestra las
diferencias entre arquitecturas y a continuaciéon se detallan algunos de los aspectos mas
importantes a tener en cuenta entre un dispositivo y el otro:

Numero de bits: Para conocer la importancia que tienen el ndimero de bits en el
funcionamiento de los microcontroladores, primero se ha de comprender algunos conceptos de
arquitectura de microcontroladores como los explicados a continuacién. Los microcontroladores
AVR hacen uso de un juego de instrucciones tipo RISC (Reduced Instruction Set Computer), de
modo que, todas las instrucciones estan limitadas por tamafio al nimero de bits que pueda
manejar el microcontrolador. En el caso de los AVRS8, el nimero de bits se limita a 8/16, de
modo que las instrucciones han de tener como méaximo 8/16 bits de longitud. Para los AVR32
esto se duplica hasta los 32 bits, que sumado al hecho de que estas instrucciones son
ejecutadas en un ciclo de reloj, permite hacer uso de instrucciones mas complejas ganando en
velocidad de procesado.

22

Ademas de velocidad de procesado, el numero de bits indica la cantidad de memoria que
puede direccionar el microcontrolador. Para el AVR32 tenemos un total de 2 bits, mientras
que para el AVR8 en el mejor de los casos la cantidad de memoria se reduce a 2'° bits.

= = =
H
£
g <: CATA BUS
. Fl}sn
Program
system Program
e o e |
32 x & General
Purpase
AVR32 . Instruetion Registers
‘ AVRIZUC CPU pipeline ‘ oco ‘ | Register ‘
Vs

AVR8 t
| ; e i L T |

Instruction memory controller Data memory controller MlgEulsmn'
o High | CPU Local
g
High Spaed Bus master Sgﬁ?’ Spead Bus
[Bus slave | master g TATA B80S >

T

Peripharal
Module 2

EEFROM

ata RAM irfes

SRAM ‘

PMIC ‘

g
1
§

W % e
L b

CPU Local Bus
[i]

L=

Figura 11: Diagrama de bloques de la arquitectura AVR32 (derecha) vs AVRS8 (Izquierda)

Velocidad de reloj: Las frecuencias de reloj utilizadas en los AVR8 se encontraban como
maximo en valores de 32 MHz, ofreciendo un rendimiento maximo de 1 DMIPS por cada MHz
de funcionamiento del reloj. Esta velocidad se aumenta hasta los 66 MHz del AT32UC3A0512,
consiguiendo un rendimiento de 1.49 DMIPS por MHz utilizado, con un maximo de 91 DMIPS a
plena potencia.

En términos de potencia, los nuevos microcontroladores estan multiplicando por mas de 4
veces la capacidad que tenian sus antecesores, de modo que pueden ser utilizados para
aplicaciones que requieran de una mayor potencia y donde los AVR8 se queden atras. Entre
otros, permitira hacer correr un sistema operativo en tiempo real, que coordine y gestione todas
las funciones que tenga que desarrollar el dispositivo.

A pesar de las velocidades, ambos microcontroladores son capaces de ejecutar instrucciones
RISC en un solo ciclo de reloj, lo cual los sitla muy por delante de algunos de sus
competidores, como pueden ser los microcontroladores PIC, que necesitan hasta 4 ciclos para
realizar la misma instruccion.

Memoria: A nivel de memoria Flash, se dobla la cantidad respecto del AVRS, llegando a los
512 KBytes de memoria interna en el MCU, frente los 256 KBytes del AVR8. Si bien, la
memoria es un factor variable segin el modelo escogido dentro de una misma familia de
microcontroladores, en el mejor de los casos es el expuesto anteriormente. Una nueva ventaja
que se ofrece para estas nhuevas memorias, es poder acceder a ellas en 1 sélo ciclo de reloj
siempre y cuando la velocidad de operacion del MCU no sobrepase los 33 MHz, mejorando el
rendimiento global.

La Figura 12 [10] muestra en un grafico, donde se encontraria cada uno de los
microcontroladores de AVR, en funcién de la potencia y el consumo energético. Como se
puede ver, los AVR32 UC3 consiguen unos consumos muy parecidos a los del MegaAVR, pero
es superado por los AVR32 AP7, los cuales disponen de la mejor relacién de potencia y
consumo energético.

23

LESS POWER

megaAVR AVR32

MORE PERFORMANCE

Figura 12: Relacién Consumo / Potencia de los microcontroladores AVR8 y AVR32

Ademas, y ya que la diferencia no radica Unicamente en los 5 puntos explicados anteriormente,
a continuacién se muestra la Tabla 3 donde se detallan todas las diferencias que existen entre

estos dos microchips.

Caracteristica AVR8 (ATxmega256A3B) AVR32 (AT32UC3A0512)
Encapsulado 100 Pines 144 Pines
Velocidad (MHz) 32 MHz 66 MHz
DMIPS 32 DMIPS 91 DMIPS
Memoria Flash 384 KBytes 512 KBytes
Memoria RAM 32 KBytes 64 KBytes
10 78 109
Timers / Counters 8, 16 Bits 3, 16 Bits
Canales ADC 12 Bits, 16 Canales 10 Bits, 8 Canales
Canales DAC 12 Bits, 4 Canales Ninguno
Communicacion 8 USART, 4 SPI AUSARTSs, USB2.0, Ethernet...

Tabla 3: Tabla paramétrica del AVR8 y el AVR32 [14]

4.2 AVR32 vs ARM

ARM (Advanced RISC Machines), es la familia de microprocesadores RISC mas utilizada en el
mundo (se calcula que cerca del 75% de los microprocesadores del mundo poseen un nucleo
ARM). EIl disefio de estos microprocesadores comenzé en el afio 1983 como un proyecto
dentro de la empresa Acorn Computers, que afios mas tarde derivd en la creacion de la
empresa con el mismo nombre ARM. Entre sus méas famosos microcontroladores se
encuentran los de las familias ARM9, ARM11 y ARM Cortex, y todos soportan un gran rango de
periféricos (ADC, DAC, USB, SPI, UART, 12C,...), lo que los sitian en una de las mejores
opciones del mercado. En general se puede afirmar, que ARM no se trata de una marca si no
de una arquitectura y como tal, esta empresa licencia sus arquitecturas a otras.

De todos los modelos que ofrece ARM, los ARM9, ARM11 o Cortex M3, son los competidores
directos de los AVR32 (en cuanto a prestaciones y precio). Estos nlcleos presentan las
siguientes caracteristicas técnicas:

ARMH9: Estos microcontroladores, poseen un nucleo de 32 bits RISC que incluye un pipeline de
5 etapas, logrando hasta 300 MIPS de potencia. Son soportados por una gran variedad de
sistemas operativos entre los que se incluyen WindowsCE, Symbian OS o Linux.

ARM11: Los ARM11 son capaces de ofrecer hasta 740 MIPS, lo que los hacen perfectos para
ser utilizados en PDA’s, teléfonos moviles, videoconsolas o automocién, entre otros. Estos

24

microprocesadores ofrecen un consumo realmente bajo, llegando a los 0.6mW/MHz, ademas
de disponer de modos de ahorro energético. A diferencia del ARM9, el pipeline en este caso es
de 8 fases, lo que contribuye al incremento de potencia.

Cortex-M: La familia de microcontroladores Cortex-M esta especialmente disefiada para su uso
en aplicaciones que requieran de grandes prestaciones y niumero de puertas. Esta familia se
divide en tres tipos de microcontroladores que son;

e Cortex M3 disefiado para su uso en microcontroladores.

e Cortex M1, para su implementacion en FPGAs

e Cortex MO, que se trata del procesador de ultra bajo consumo mas pequefio jamas
creado por ARM

Es por ello, que comparativamente, nos interesa el estudio del Cortex M3. Entre otras sus
caracteristicas mas importantes son:

¢ Ndcleo de 32 bits de alto rendimiento

e Basado en un pipeline de 3 etapas y arquitectura Harvard

e Capaz de realizar instrucciones de multiplicacion/divisién en un solo ciclo de reloj
e Hasta 1.25 DMIPS por MHz

e Dispone de las nuevas instrucciones Thumb-2 licenciadas por ARM

A priori, estos nacleos pueden parecer superiores en potencia respecto los AVR32, pero la
realidad es bien distinta, ya que a igualdad de frecuencias, los AVR32 son superiores. Este
hecho, se esta haciendo mas presente debido al uso de algoritmos complejos, donde se ve
como la arquitectura AVR32 es mejor que la de ARM. Actualmente, el uso de sistemas de
compresién de datos, codificacion de sefales, decodificacién de datos o video, Transformadas
de Fourier (FFTs) o Transformaciones de Cosenos Discretas, por ejemplo, ha provocado la
necesidad de usar algoritmos DSP muy exigentes computacionalmente.

Histéricamente, estos problemas se solventaban aumentando la velocidad del procesador o
mediante la inclusiébn de varios ndcleos en un mismo encapsulado. Sin embargo, las
aplicaciones que hacen uso de complejos algoritmos DSP han aumentado, por lo que esta no
es una via eficiente de mejorar el rendimiento de los microcontroladores. Es por ello que se
pueden llevar a cabo otras mejoras para aumentar el rendimiento computacional sin afectar al
consumo energético, como pueden ser:

e Reducir el nimero de ciclos utilizados para los procesos de carga y lectura. Mas del
30% de instrucciones utilizadas son de este tipo, por lo que su reduccion implicara una
mejora sustancial de rendimiento.

e Coordinar las operaciones repetitivas para que estas puedan ser ejecutas de forma
multiple.

e Maximizar la utilizacion de los recursos del Pipeline.

e Minimizar las latencias que se producen en las distintas instrucciones de salto (algunas
pueden consumir hasta 5 ciclos de reloj cada una).

e Mejorar la densidad de cédigo. Si este es pequefio, mas instrucciones pueden ser
almacenadas en la cache del micro y por lo tanto, se reduce el trafico con las memorias
externas.

Los microcontroladores AVR32 mejoran todos estos aspectos, viendo incrementado su
rendimiento de forma excelente sin que se vea afectado su consumo energético. Las pruebas

25

(Figura 13 y Figura 14) realizadas por Atmel [7], demuestran como la arquitectura AVR32 es
notablemente mejor que la de ARM:

100 %
90 %
30 % -
w4 [] |
60 % - & & & b &
1 EHEE E SENEY e F
g 8 3
40% 1 g § E § § g o E @
30 % - @ § 2 o o
20 % g 8 g g g
10% - E
0% T T T T
&“'&* ‘9«&* 5@ & &*
& o) v\j} Q@@ ¥
{\‘9

C.P

Figura 13: Pruebas de rendimiento normalizadas para AVR32, ARM9 y ARM11.

La primera de estas gréficas (Figura 13) muestra una serie de tests de rendimiento hechos
sobre los microcontroladores AVR32, ARM9 y ARM11. Los datos ofrecidos en estas pruebas
han sido obtenidos normalizando las frecuencias de todos los microcontroladores, de modo que
se puedan realizar en las mismas condiciones. Como se puede ver, AVR32 es superior
(alrededor de un 35%) a las otras dos arquitecturas en todas las pruebas realizadas:
TeleMark™, OAMark™, AutoMark™, ConsumerMark™ y NetMark ™.

100,00 %

90,00 % -

80,00 % -

70,00 % -
60,00 % -
50,00 %
o
40,00 % - o E E
b o E
20,00 % g E g g{ g
3 g 3)
20,00 % - g g g
10,00 %
0,00 % T T T T
5 & & * g+
&‘b @‘é \@\}‘D &’b @‘é
{.\\B é‘b «Q \)\ 0?‘
05_.,0 kel

CP

Figura 14: Pruebas de tamafio de codigo optimizado para la velocidad.

La Figura 14, muestra el tamafio de codigo utilizado para cada uno de las pruebas realizadas.
En general, se puede afirmar que AVR32 requiere entre un 5% y un 20% menos de cédigo que
el empleado por ARM, para ejecutar las mismas instrucciones, incluso se puede decir que en

26

aplicaciones de alto rendimiento, cuando el codigo se encuentra optimizado para obtener una
maxima velocidad de ejecucion, el codigo de AVR32 es entre un 30% y un 50% mas pequefio
que el de la competencia.

Por lo tanto, para aplicaciones que requieran de alto rendimiento, un consumo energético bajo
y de uso de instrucciones DSP, la arquitectura AVR32 se presenta superior en velocidad de
procesado, densidad de cédigo y consumo energético que la de su competencia.

4.3 OTRAS ALTERNATIVAS

Para finalizar con la comparativa entre microcontroladores, es interesante ver como son los
diferentes productos que se pueden encontrar en el mercado. Es por eso que, todo y que ya se
ha optado por la variante AT32UC3A0512 de la familia AVR32 UC3, a continuaciéon se
mostraran otras alternativas existentes en el mercado:

4.3.1 FuJiTsu

Su familia estd formada por microcontroladores de 8, 16 y 32 bits, aunque principalmente
orientada a la automocién, con modelos que incluyen el protocolo de comunicacién FlexRay el
cual pretende ser el sustituto del bus CAN. En general, no se trata de un competidor directo de
la arquitectura AVR32, ya que todos sus modelos estan claramente orientados a la automocion
y no es el caso del MCU utilizado en este proyecto.

F°MC: Disponibles en versiones de 8 y 16 bits, estos microcontroladores estan enfocados a
aplicaciones de audio digital, productos del hogar y de oficina o para instrumentacién en
automocioén.

e Funcionamiento hasta 64 MHz

e Disponibles en versiones de 144 pines

e Todos los modelos disponen de memoria Flash en el propio MCU
e Orientados al bajo consumo energético

FR: Esta familia estd compuesta por microcontroladores tipo RISC de 32 bits con arquitectura
propia de Fujitsu y estdn especialmente orientados a aplicaciones de control. Actualmente
existen en desarrollo varios modelos de alta velocidad para atender a aquellas aplicaciones
que requieran de una elevada velocidad de procesado.

4.3.2 ALTERA

Altera es una empresa pionera en dispositivos programables légicos. En este sentido, Altera
ofrece una gran variedad de FPGAs, que si bien, no son microcontroladores, pueden ser
utilizadas como tal. A grandes rasgos, una FPGA es un dispositivo que puede ser programado
después de ser fabricado (del mismo modo que un microcontrolador) y que permite programar
cualquier tipo de funcién o aplicacion légica que deseemos en él. En realidad, se programa el
comportamiento del hardware y no un software, de modo que su velocidad de ejecucion es
mucho mas répida de lo que seria en un microcontrolador, aunque no son tan versatiles. A
pesar de estar centrada en la produccion de FPGAs, Altera pone en el mercado una serie de
procesadores que, como el Nios Il, ofrecen un rendimiento de hasta 340 MIPs y unas
posibilidades de configuracién que no se encuentran en otros dispositivos del mercado.

27

Nios Il: Como ya se ha comentado, el Nios Il es un microcontrolador de 32 bits disefiado
especificamente para la familia de FPGAs de Altera. Dispone de un pipeline de 6 etapas para
conseguir el mayor rendimiento posible (hasta 340 MIPS y 1.18 MIPs por MHz). Es un directo
competidor con el microcontrolador MicroBlaze de Xilinx. Entre los modelos de Nios Il se
pueden encontrar opciones orientadas al rendimiento, a soluciones econémicas y a alternativas
de bajo consumo energético.

4.3.3 FREESCALE

Freescale es una empresa de reciente creacidon (2004), que nacié de la division de
semiconductores de Motorola. Actualmente se encuentra entre las 20 primeras empresas
mundiales de semiconductores. Entre sus microcontroladores y del mismo modo que la gran
mayoria de compafiias, encontramos opciones de 8, 16 y 32 bits. Dispone de una arquitectura
propia como es la HCXX (donde XX varia en funcién del dispositivo) o los ColdFire, y de otros
modelos de microcontroladores basados en tecnologia de ARM.

8 Bits: Entre los modelos de 8 bits se puede encontrar los modelos RS08, HC05, HCS08 o
HC11 entre otros. Este ultimo por ejemplo, es un dispositivo con 1 Kbyte de memoria RAM, 640
bytes de memoria EEPROM y 32 Kbytes de EPROM. Ademés dispone de canales ADC y
PWM, asi como modos de operacion de bajo consumo energético. Su funcionamiento es de
cémo mucho, 4 MHz, por lo que lo sitian en uno de los microcontroladores con caracteristicas
mas limitadas de los que se han visto.

16 Bits: La familia de microcontroladores de 16 bits esta formada por los modelos S12 y HC16.
Los basados en el modelo S12, tienen frecuencias de operacion de hasta 80 MHz, disponen de
entre 1 y 64 Kbytes de memoria RAM y entre 32 y 1000 Kbytes de memoria Flash. Estos
microcontroladores pueden llegar a tener hasta 152 pines, con lo que las posibilidades
aumentan considerablemente respecto sus antecesores, los de 8 bits. Por lo que respecta a los
modelos HC16, disponen de unas caracteristicas mas reducidas que los S12 en todos los
aspectos.

32 Bits: Por ultimo, dentro de la familia de 32 bits, se encuentran los 68K/ColdFire, que son
uno de los procesadores mas extendidos en el mercado de microcontroladores, gracias a su
bajo coste y su alto niumero de periféricos integrados. Los modelos correspondientes a los
Coldfire V4e, proporcionan un rendimiento de 308 MIPS a una frecuencia de 200 MHz, un alto
namero de pines (388 como maximo) y opciones de conectividad como pueden ser los puertos
PCI, Ethernet, CAN o I12C.

4.3.4 LUMINARY MICRO

Luminary hace uso del nucleo Cortex M3 de ARM para fabricar sus propios microcontroladores.
Sus MCU corren a una frecuencia de 80 MHz, disponiendo de memoria Flash y SRAM
integrada, una controladora DMA de 32 canales y una gran variedad de periféricos integrados
como los puertos Ethernec, CAN, USB, SPI o I2c. Estos microcontroladores estan
especificamente disefiados para su uso en control de motores industriales

e 32 Bits de rendimiento con un coste de un microcontrolador de 8/16 bits

e Disponen de hasta 32 canales DMA y funcionan a una velocidad méaxima de 80 MHz

e Incluyen periféricos integrados como pueden ser los puertos 10/100 Ethernet
MAC+PHY, CAN, USB On-The-Go, USB Host/Device, SSI/SPI, UARTSs, y I12C

28

e Requieren de la mitad del espacio de memoria para el cédigo respecto de los ndcleos
ARM7

4.3.5 MICROCHIP

Los microcontroladores fabricados por Microchip son conocidos mundialmente como PIC. Esta
familia de microcontroladores RISC dispone de modelos de 8, 16 y 32 bits, siendo los modelos
de 8 bits uno de los mas vendidos alrededor del mundo, con mas de 400 tipos distintos.

PIC8: La arquitectura PIC esta basada en una modificacion de la arquitectura RISC de
Harvard, que permite mejorar el nimero de pines originales de 6 a 80 y la memoria
programable de 384 bytes a 128 kbytes.

e Compatibles con instrucciones de 12, 14 y 16 bits para mejorar la eficiencia y
rendimiento

e Las instrucciones y los datos son transmitidos por buses separados, evitando los
cuellos de botella

e Disponen de un pipeline de 2 etapas

PIC16: Dentro de los dispositivos de 16 bits de Microchip se encuentran los modelos PIC24
que ofrecen una gran variedad de periféricos, tamafios de memoria o tipos de encapsulado. Se
ofrecen dos versiones, las de alto consumo y las de bajo consumo, donde la potencia varia
desde los 16 MIPS hasta los 40 MIPS del modelo PIC24H.

e Disponibles en versiones de hasta 256 kbytes de memoria Flash y 16 kbytes de SRAM
e Encapsulado de hasta 100 pines
e Ejecucion de instrucciones y multiplicaciones en un solo ciclo de reloj

PIC32: El modelo de 32 bits (PIC32), ofrece un rendimiento de 1.56 MIPS por MHz, llegando a
los 183.762 MIPS a una frecuencia de 80 MHz. Ademas y del mismo modo que el resto de
microcontroladores, ofrecen soporte para una gran variedad de periféricos integrados.

4.3.6 NXP

Esta empresa fabricante de microcontroladores hace uso de nlcleos de otras casas. En este
caso, NXP hace uso de los procesadores 8051, ARM7, ARM9 y Cortex. Por lo tanto, sus
procesadores no presentan ninguna novedad resefable respecto los explicados anteriormente.

4.3.7 RENESAS

El mercado de Renesas esta orientado a los microcontroladores de 16 y 32 bits, aunque deja
espacio en su catalogo para un modelo de 8 bits en el que su principal caracteristica es el bajo
consumo energeético.

SuperH: El microcontrolador tipo RISC SuperH es el buque insignia de la empresa Renesas.
Se trata de un microcontrolador orientado a conseguir el maximo rendimiento y miniaturizacion
posible. En este aspecto, su funcionamiento llega a los 600 MHz y dispone de modelos con dos
cores e incluso puertos de expansiéon PCI Express.

29

4.3.8 TEXAS INSTRUMENTS

Desde los microcontroladores de ultra bajo consumo como los MSP430 hasta los de alto
rendimiento como los TMS320C2000™, pasando por los microcontroladores de 32 bits de
propdsito general basados en procesadores ARM y Cortex, Texas Instrument ofrece una gran
oferta de microcontroladores que abarcan todos los mercados.

MSP430: El microcontrolador MSP430 de ultra bajo consumo, es un microcontrolador RISC de
16 bits orientado especialmente a los dispositivos moéviles. Su CPU esta optimizada para
lenguajes de programaciéon C y Ensamblador y ofrece 16 registros de propdsito general. Su
rendimiento es discreto comparado con la competencia, llegando en el mejor de los casos a 25
MIPS, aunque se ha de tener en cuenta de que se trata de un microcontrolador orientado al
bajo consumo. Su precio de salida comienza en los 0.49% lo que hace que sean una muy
buena opcion.

TMS320C2000: Los microcontroladores de 32 bits C2000 estan disefiados para alcanzar un
gran rendimiento en aplicaciones de control en tiempo real. Estos microcontroladores estan
construidos sobre los existentes F2833x (de alto rendimiento), y ofrecen velocidades de hasta
300 MHz consiguiendo 600 MFLOPS. Ademés ofrecen 516 Kbytes de memoria RAM y canales
PWM con una resolucion de 65 picosegundos.

4.4 TABLA COMPARATIVA

La Tabla 3 muestra de forma paramétrica, cuales son las principales caracteristicas técnicas de
varios microcontroladores de las compafiias antes mencionadas. Como se ha podido ver,
existen muchas alternativas al microcontrolador AVR UC3 usado en nuestro proyecto, algunas
aportan mejoras, otras no, pero si bien es cierto que el mercado de microcontroladores es muy
amplio y el hecho de decantarse por una opcién o por otra puede ser debida Unicamente a
algunas pequefas diferencias que se presentan entre estos.

Freescale o Microchip, son alternativas perfectas para nuestro microcontrolador e incluso en el
caso de Freescale, existen modelos que superan con creces las caracteristicas técnicas de los
AVR32, aunque hay que tener en cuenta que un salto tan grande en potencia como es el caso
de la familia ColdFire de Freescale, siempre vendra acompafado de un aumento mas que
considerable en cuanto a consumo energético y por lo tanto, se puede decir, que estan en
sectores diferentes.

30

Familia Dispositivo | Elash (kBytes) | SRAM (kBytes) | DMA Ch. | /O F.Max (MHz)
AVR8 megaAVR 256 16 - 86 20
AVR8 tinyAVR 8 0,5 - 28 20
AVR8 xmegaAVR 384 32 4 78 32

AVR ARM AT91SAM 2048 256 24 160 400

AVR32 AVR UC3 512 64 15 109 66

AVR32 AVR AP7 - 32 - 160 150
AVR 8051 AVR 8051 128 8 - 44 60
Fujitsu F2MC 16 Bits 832 32 16 144 56
Fujitsu F2MC 8 Bits 60 18 - 100 16
Fujitsu FR 32 Bits 2112 128 8 320 100
Altera Nios I 32 Bits - - - - -
Freescale 8 8 Bits 64 4 - 69 25
Freescale 16 16 Bits 128 12 - 91 32
Freescale 32 ColdFire 4000 2576 96 388 1700
Luminary M. Stellaris 256 96 32 72 80
PIC 8 Bits PIC18 128 3,96 - 70 64
PIC 16 Bits PIC24H 256 16 8 85 -
PIC 32 Bits PIC32 512 128 8 100 80
NXP ARM9 ARM9 - 256 - 160 266
NXP Cortex Cortex M3 512 64 - 70 100
Renesas SuperH 2048 1600 - - 600
TI MSP430 256 16 87 25
TI C2000 512 516 88 300

Familia VCC (V) Timers PWM Ch. RTC | SPI | TWI USART AD/DA Ch.
AVRS8 1.8-55 6 16 Si 2 Si 4 16
AVRS8 0.7-5.5 2 6 - Si Si 1 11
AVR8 1.6-3.6 8 24 Si 4 4 8 20

AVR ARM 1.6-55 9 8 (Control.) Si 5 2 3 18
AVR32 1.8-33 3 7 Si 2 1 4 8
AVR32 - - - - - - 4 -

AVR 8051 24-6.0 3 - - Si Si 2 Si

Fujitsu F2MC 3.3-55 - - - - - 1 40
Fujitsu F2MC 1.8-55 - - - - - 1 12
Fujitsu FR 2.7-55 - - - - - 3 40
Altera Nios Il - - - - - - - -
Freescale 8 1.8-55 - - - - - 12
Freescale 16 45-55 - - Si - - 8
Freescale 32 1.8-55 - - - Si - - 64
Luminary M. - 4 8 - 2 - 3 16

PIC 8 Bits 1.8-55 7 - - Si - 2 28

PIC 16 Bits 3.0-36 13 Si 2 - 2 -

PIC 32 Bits - 7 Si - 6 16

NXP ARM9 1.2-¢4? 6 11 - - 7

NXP Cortex 3.3-¢? 4 6 - - 4
Renesas 1.2-¢4? - - Si Si - - -
TI - 33 10 - - 4 16
Tl - 24 24 - - 3 16

Tabla 4: Caracteristicas paramétricas de los diferentes microcontroladores

31

32

5. Uso DEL AVR32 EN UN ROBOT MOVIL

Se desea disefiar y construir una plataforma que permita probar la versatilidad de la placa
EVK1100 y su microcontrolador AVR32 UC3, en un proyecto de aplicacion en tiempo real. Para
ello, se ha escogido la construccién de un robot mévil, que dispondra de funciones similares a
los robots que se pueden encontrar a nivel comercial, por lo que servira para testear las
caracteristicas y opciones mas interesantes que el AVR32 UC3 nos ofrezca.

A continuacién se presenta el disefio y construccién de esta plataforma mdvil con fines
académicos y de investigacion, pero que servira para poder testear y validar arquitecturas de
control de robots o para poder probar algoritmos de navegacién auténoma, con diferentes
sensores o dispositivos electronicos. Para ello, se hard un seguimiento de las caracteristicas
gue el AVR32 ofrece a la robdtica junto a su placa de evaluacion EVK1100, un estudio de las
herramientas y procesos necesarios para poder comenzar a trabajar con los
microcontroladores AVR32 sin la necesidad de una placa de evaluacion y el disefio de un
software de control que permita realizar un control manual y auténomo del robot maovil.

5.1 CARACTERISTICAS DEL AVR32 PARA LA ROBOTICA

Sin duda, el microcontrolador AVR32 presenta grandes mejoras respecto al AVRS8. Es por ello
que a continuacién se revisan los puntos del microcontrolador AVR32 mas importantes cuando
se desea realizar un robot.

Numero de pines GPIO: En concreto, el encapsulado utilizado de 144Pines LQFP,
proporciona hasta 109 pines de propésito general (GPIO). Este dato es realmente importante
para el manejo de robots, ya que a mayor nimero de pines utilizables a modo general, mayor
cantidad de periféricos y funciones podra realizar este robot.

Velocidad de Procesado: Para la realizacion de nuestra plataforma maovil, no se requiere de
una gran velocidad de calculo. Asi mismo, tampoco es imprescindible que la frecuencia del
MCU sea elevada, premiando la duracién de la bateria sobre la potencia. En este caso, vemos
que el microcontrolador es capaz de alcanzar las siguientes velocidades:

- Hasta 91 DMIPS corriendo a 66 MHz
- Hasta 49 DMIPS corriendo a 33 MHz (con acceso a la memoria en el mismo ciclo de
reloj)

Todo y que el rendimiento que ofrece el MCU es realmente bueno comparado con otros micros
del mismo segmento, la velocidad de funcionamiento se vera reducida hasta los 12 MHz,
siendo suficiente para la gestion del robot y de todos los dispositivos que a este se encuentren
conectados.

Ejecucion de instrucciones en un solo ciclo de reloj: Esta caracteristica puede presentar
grandes mejoras a un robot que realice funciones complejas, como pueden ser el tratamiento
digital de imagenes. En el caso de dotarlo de una cadmara que fuera capaz de captar imagenes,
estas podrian ser procesadas mas rapido gracias al conjunto de instrucciones DSP que
incluyen estos microcontroladores y que son ejecutadas en un solo ciclo de reloj, ganando en
velocidad de célculo.

Memoria interna: La cantidad de codigo a cargar en el microcontrolador variara mucho en
funcién del programa que se realice. Sin embargo, la elaboracién de una plataforma de testeo
del microcontrolador y de su placa de evaluacion, provoca que el cédigo se haga extenso

33

debido a la gran inclusion de pruebas y ejemplos de uso de la plataforma mévil. En el caso del
microcontrolador en uso, se dispone de:

- 512 KBytes de memoria interna Flash de alta velocidad
- Capaz de realizar accesos a esta en un solo ciclo de reloj

Para programas como el utilizado y otros mucho mas complejos, a mayor cantidad de memoria,
mejor. Sin embargo, esto puede provocar una des-optimizacion del codigo empleado, ya que el
hecho de no preocuparse por el espacio consumido, puede hacer que la programacion se haga
de una forma menos 6ptima.

Memoria RAM: En el caso de necesitar mover una gran cantidad de variables y datos, el
microcontrolador nos ofrece 64 KBytes de memoria RAM. Tal cantidad de memoria no es
necesaria para la realizacién de un proyecto de robot mévil como el que aqui se plantea, ya
que Unicamente se moveran datos muy basicos sobre distancias y posicionamiento de modo
que so6lo se hara uso de una pequefia cantidad de toda esta memoria disponible. De todos
modos, parte del programa es cargado en memoria una vez iniciamos el micro, asi que, a
mayor cantidad de memoria, mayor fragmento de programa se podra cargar en la memoria
RAM.

Ademas, en el caso de necesitar hacer uso de mas cantidad de memoria RAM, la arquitectura
AVR32 permite ampliar esta cifra conectando memoria externa a través de su interfaz de
memoria externa. De este modo, las posibilidades crecen enormemente, ya que es capaz de
hacer uso de buses de 24 bits, con lo que se puede direccionar 2?* bits de memoria.

Control de Interrupciones: El control de interrupciones es parte fundamental en el momento
de programar robots y cualquier otro dispositivo. PermitirAn aceptar peticiones internas,
externas de otros periféricos o controlar sensores sin la necesidad de estar pendientes en todo
momento de estos dispositivos. EI AVR32 permite hacer uso de hasta 2048 interrupciones
diferentes, con 4 niveles de prioridad, un niamero suficiente para cumplir con las expectativas
de cualquier entorno robético.

En el caso de nuestro proyecto, Unicamente se hard uso de interrupciones para la
comunicacién serie a través del USART del microcontrolador. Para la programacion de los
sensores, no se hard uso, ya que interesara activar los sensores en momentos especificos a
modo de ahorrar bateria.

Power Manager y Watchdog Timer: Este microcontrolador dispone de dos funciones muy
interesantes como son el Power Manager y el Watchdog Timer. La primera de ellas, permitira
entrar en modo de suspension del MCU, de modo que el consumo energético se reduce casi a
0 y ademas, permite hacer uso de diferentes frecuencias de funcionamiento y que estas
puedan ser modificadas y cambiadas en “caliente”. Mientras que el segundo, el Watchdog
Timer, ofrecera la posibilidad de realizar un control del robot de modo que este no se quede
“colgado” y en caso de que esto ocurra, poder realizar una recuperacion o reset del sistema sin
la necesidad de intervenir.

Ambos elementos son importantes ya que permitiran ahorrar energia y dotar de mayor
autonomia al microcontrolador (en el caso del Watchdog Timer, lo que permitira es no tener
gue manipular la placa en caso de cuelgue), de modo que si se busca premiar la duracion de
bateria de un robot asi como poder variar el rendimiento de este en funcion del estado en que
se encuentre, se deberan implementar ambas funciones.

Canales PWM y ADC: Gracias a los 7 canales PWM de 16 bits que incluye el microcontrolador
AVR32 UC3, se podra hacer uso de hasta 7 dispositivos que necesiten sefiales cuadradas para
su funcionamiento. Este es el caso de los motores o servomotores, por ejemplo, los cuales

34

variaran su posicion en funcion del periodo que tenga la sefial PWM. También pueden usarse
para modificar la velocidad a la que un motor DC se desplaza, tal y como se ha realizado en
este proyecto, ademas de controlar el servomotor que dirige al sensor IR.

Por otro lado, se dispone de 8 canales ADC que permitirdn conectar hasta 8 dispositivos que
proporcionen una salida de tension analdgica al microcontrolador. Este es el caso de la
mayoria de sensores infrarrojos que se encuentran en el mercado o potenciometros.

3 Timer/Counters: En este aspecto, los Timers disponibles en el microcontrolador pueden
llegar a ser insuficientes para la elaboracion de proyectos complejos. Unicamente con 3
posibles canales que han de alternarse las funciones de Timer o Contador, seran suficientes
para la realizacion de una plataforma moévil simple, pero posiblemente los usuarios mas
avanzados exijan mayor cantidad de contadores.

Usart, SPI, TWI, USB y Ethernet: En el aspecto de comunicacion del microcontrolador, se
puede decir que sus caracteristicas son idéneas para realizar proyectos de robética. Con 4
canales USART que pueden funcionar a modo de Modem, 2 SPI, 1 TWI compatible con el
estandar 12C y posibilidad de hacer uso de USB y Ethernet, se cumple con todos los requisitos
del robot mévil que se esta realizando, y de bien seguro que se cumpliran el del resto de
usuarios.

5.2 LAPLACA EVK1100 EN UN ROBOT AUTONOMO

Para la realizacion del robot mévil, se dispone de la placa de evaluacion EVK1100 (Figura 15).
Esta placa de evaluacion, ofrece un entorno de desarrollo para el microcontrolador AVR32
AT32UC3A0512 y estd equipada con una serie de memorias y periféricos, que permitiran
experimentar todo el potencial y caracteristicas de estos microcontroladores.

La ventaja de trabajar con una placa de evaluacion como la EVK1100 es que proporciona una
serie de elementos ya pre-instalados y configurados para su utilizacion. Todos los periféricos y
opciones de los que dispone, pueden ser analizados y estudiados a través de los mdultiples
ejemplos que se encuentran en el entorno de programacién. A continuacién se listan las
caracteristicas técnicas mas importantes de la placa de evaluacién, aunque todas ellas seran
analizadas en los siguientes puntos:

e Microcontrolador de 32 Bits AT32UC3A0512 con encapsulado QFP144.
o 512 kBytes de memoria Flash y 64 kBytes de memoria RAM.

e LCD color azul de 4 lineas por 20 caracteres de ancho, con luz de fondo ajustable.

e Conector USB (2.0) y conexion Ethernet RJ45.

e Listo para usar sensores de: Luz, Temperatura y Potenciometro.

e 3 pulsadores y 1 Joystick.

e 6 LEDs (4 mono color verde y 2 bicolor verde/rojo).

e 8 Mbytes de Atmel DataFlash y 32 Mbytes de SDRAM.

e 2 USARTs Yy 1 conector SPI.

e 1 conector JTAG y 1 conector Nexus.

e 1 slot SD/MMC.

e 1 conector TWI compatible con I2C.

e Area de conexionado.

e Alimentacién a través de USB o de conector externo 8-20V DC.

35

Todos estos elementos se interconectan con el microcontrolador y disponen de pines visibles
en la placa para su facil utilizacion. A continuacion se describen algunos de los elementos mas
importantes que componen la placa EVK1100, asi como su uso dentro del contexto del robot
movil que se esta realizando.

EVK11L

=

Figura 15: Vision general de la placa de evaluacién EVK1100

5.2.1 ALIMENTATION

La placa de evaluacién EVK1100 permite alimentarla a través del puerto USB o de un conector
Jack externo de 2.1mm, siendo los niveles de tensidn utilizados en este ultimo caso, los
comprendidos entre los 8 y los 20V DC. Tal y como muestra la jError! No se encuentra el
rigen de la referencia., para poder seleccionar entre un tipo de alimentacion u otra, se dispone
de un interruptor externo de dos posiciones (una para la alimentacion a través de USB y otra
para la alimentacion a través del Jack).

Este sistema de alimentacién esta formado por tres reguladores de tension que proporcionan
niveles de tensién de 5, 3.3 y 1.8V, acompafiados de un diodo de corriente encargado de que
la polarizacion de la corriente sea la correcta.

El sistema de reguladores esta formado de modo que el regulador de 5V es el encargado de
alimentar el regulador de 3V y este a su vez, el de 1.8V. Las funciones de los reguladores son:

e El regulador de 5V es el regulador de tension maestro y como tal, el encargado de
proporcionar la potencia necesaria al resto de reguladores.

e El de 3.3V proporciona niveles de tension aptos a todos los periféricos de la placa. Es
por ello que, todos los dispositivos que conectemos a esta, tienen que ser compatibles
con niveles de tensién minimos de 3.3V.

e Y por ultimo, el regulador de 1.8V es el encargado de proporcionar la tensién necesaria
al nucleo del microcontrolador.

Otro aspecto a tener en cuenta, es el nivel de corriente que pueden soportar estos reguladores,
de modo que, el maximo nivel de corriente recomendado sera de 1A para el regulador de 5V.
Si se sobrepasan estos niveles, se corre el riesgo de quemarlos, por lo que la placa se volveria
inservible ya que no pueden ser sustituidos facilmente.

En este aspecto, el uso de una placa como es la EVK1100, puede suponer un lastre a nuestro
robot debido a sus grandes dimensiones y la necesidad de alimentarlo a mas de 8V. Es de
agradecer, que esta incluya un puerto USB a través de la cual también puede ser alimentada
de modo que durante todo el desarrollo y testeo del robot, no sera necesario el uso de baterias
para alimentarla.

36

5.2.2 MEMORIA EXTERNA

A pesar de que la placa proporciona una cantidad de memoria externa considerable (8 Mbytes
de Atmel DataFlash y 32 Mbytes de SDRAM), no sera necesaria su utilizacion para la
realizacion del proyecto, ya que la cantidad de datos que se manejaran no superaran en ningun
momento los 512 KBytes de memoria Flash que se incluyen en el encapsulado del
microcontrolador. Si fuera necesario mover un gran volumen de datos, seria imprescindible su
uso. Ademas, el puerto de expansion para tarjetas SD aumenta las posibilidades de
almacenamiento, pudiendo utilizar la placa a modo de memoria USB, por ejemplo.

5.2.3 OSCILADORES

La placa de evaluacion EVK1100 permite el funcionamiento del microcontrolador a una
frecuencia de 66 MHz, aunque para la realizacién del proyecto, se configurara a 12 MHz. En
las pruebas realizadas, se ha observado como esta velocidad es suficiente para que el sistema
garantice un correcto funcionamiento, con el ahorro energético que implica trabajar a menor
frecuencia. Los 12 MHz son obtenidos de un oscilador externo situado sobre la placa de
evaluacion, pero aparte de este, existen otros:

e Un oscilador (XC1) principal conectado a la entrada OSCO del microcontrolador, y que
funciona a 12 MHz.

e Otro oscilador externo (XC2) conectado al OSC1 del microcontrolador, y que funciona
también a 12 MHz.

e Un oscilador RTC (Real Time Counter) (XC5) que funciona a 32,768 KHz.

5.2.4 USARTS

Tal y como se indicé en las caracteristicas técnicas antes listadas, la placa de evaluacién
EVK1100 dispone de dos conectores USART: USART 0 y USART 1 (Figura 16). El primero de
ellos es un conector RS232 estandar, mientras que para el segundo, se afiade la capacidad de
poder funcionar a modo de modem. Ambos conectores hacen uso de un puerto DB9.

Gracias a estos conectores, se puede establecer una comunicacién con el microcontrolador a
través del puerto RS232 de un ordenador cualquiera. Abriendo un “Terminal” o ejecutando un
programa dedicado, podremos enviar y recibir 6rdenes de arranque o parada a nuestro robot.

Es importante tener en cuenta que la placa de evaluacion permite seleccionar valores de
tension TTL o RS232, ya que si por error se conecta un dispositivo que funcione con valores
TTL a través del puerto RS232, este se volveria inservible.

5.2.5 SPI

El bus SPI (Serial Peripheral Interface) es usado para la transferencia de informacién en modo
serie entre dispositivos compatibles con este protocolo (por ejemplo: conectar dos
microcontroladores para que se comuniquen entre ellos, o conectar periféricos que tengan
soporte para bus SPI).

La placa de evaluacion proporciona un area de 6 pines (Figura 16), que permitiran conectar
directamente sobre esta un dispositivo SPI. Sin embargo, no se hara uso de estos pines, ya
que internamente la placa conecta el interfaz SPI al LCD, de modo que se podra hacer uso de
este dispositivo sin necesidad de realizar ningun tipo de conexion.

37

M. AYR32
. © -4

‘e BN N

Figura 16: Conectores USART (izquierda) y interfaz SPI (derecha)

5.2.6 TWI

Del mismo modo que ya ocurria para la interfaz SPI, la placa de evaluacion proporciona un
area de conexionado directo para el uso del protocolo TWI (hay que recordar que es
compatible con el modo 12C). Gracias a este interfaz de conexionado directo, se podra hacer
uso de memorias externas EEPROM o de sensores que sean capaces de funcionar mediante
el protocolo 12C (en el mercado existen sensores infrarrojos o por ultrasonidos que permiten ser
conectados a este tipo de puertos directamente).

Unicamente dispone de 4 pines, de los cuales dos se corresponden a las lineas de
alimentacion para los dispositivos que conectemos, y los otros dos para las lineas SDA y SCL
(siempre recordando que la alimentacién es de 3.3V debido a los reguladores internos de la
placa).

Para la realizacion de nuestro proyecto no es necesaria de su utilizacién, ya que los sensores
utilizados seran conectados todos directamente a los puertos ADC.

5.2.7 ETHERNET Y USB

A través del puerto Ethernet que incluye el kit de evaluacién, se pueden testear las
capacidades que este protocolo nos ofrece sobre el microcontrolador, asignando una IP a la
placa para realizar transferencia de informacion o incluso, realizar un servidor web, como el
que viene instalado por defecto en la propia placa. Unicamente es necesario conectar la placa
a un ordenador y configurar la conexién de red, de modo que se podra acceder a todas las
funcionalidades que a modo de ejemplo trae por defecto.

El robot moévil no hace uso de estos puertos, ya que toda
la comunicacién sera realizada a través del puerto serie. A
pesar de esto, si fuera necesario transmitir informacién a
grandes distancias y alta velocidad, esta seria una de las
mejores formas para hacerlo.

Por otro lado, el USB integrado en la placa EVK1100,
proporciona una interfaz que habilita a la placa para
actuar como un host USB o como un dispositivo USB (a , A'lirAvkaz
modo de memoria Flash). A pesar de esto, para la G A
realizacion del proyecto tampoco sera necesario su uso,
ya que Unicamente serd utlizado para alimentar el
microcontrolador mientras se encuentra conectado al PC y

es programado a través del puerto JTAG.

Figura 17: Vision del conector USB

38

5.2.8 JTAG

El interfaz JTAG permitira conectar la placa de evaluacién al programador JTAGICE MKII de
Atmel, de modo que toda la programacion del dispositivo se llevarda a cabo a través de este
interfaz serie. Ademas, el JTAG junto al sistema OCD (incluido en el propio microcontrolador),
proporciona una excelente herramienta de debug y testeo sobre el propio chip.

5.2.9 LCD

El LCD instalado proporciona una pantalla de 4x20
lineas para mostrar los mensajes que creamos
convenientes a través de ella. Puede ser usada a
modo de consola de debug si se cree conveniente,
0 simplemente para mostrar datos del robot en todo
momento. En concreto este LCD es un EA-
DIP204B-4NLW, con wuna pantalla de color
Blanca/Azul, que incluye un potenciémetro ADJ2
que permite cambiar la intensidad de la luz de Figura 18: Visién de la pantalla LCD
fondo.

A pesar de que el microcontrolador utilizado es de bajo consumo, el consumo de potencia por
parte de todo el conjunto de la placa si que es elevado y sumando el de la pantalla aun lo es
mas. Teniendo en cuenta este factor, se har4 uso de él, aun sabiendo que perjudicara en la
duracion de la bateria.

Internamente se encuentra conectado al puerto SPI del microcontrolador, siendo este el
encargado de gestionar toda la informacion que fluye hacia la pantalla.

5.2.10 LEDs

En la placa se pueden encontrar 6 LED’s, que permitiran interactuar con esta y servirdn para
mostrar cédigos de errores visuales o lo que se desee. De los 6 LED’s proporcionados, 4 LED’s
son monocromos (de color verde) y 2 bicolor (rojo y verde). Estos LED’s seran de gran utilidad
para poder ver cémo evoluciona el codigo programado en la placa asi mismo como la
activacion de algunos canales PWM y de otros GPIO.

5.2.11 PusH BUTTONS Y JOYSTICK

Del mismo modo que con los LED’s, gracias a los pulsadores y al joystick incluidos en la placa,
se podra interactuar con el microcontrolador, y asi poder probar funciones o controlar en un
futuro nuestro robot.

En concreto, la EVK1100 proporciona 3 pulsadores y 1 joystick de 4 direcciones, tal y como se
observa en la Figura 19. Hacen uso de logica inversa, es decir, mientras estan pulsados, su
valor légico es 0, al contrario de lo que se podria pensar en un comienzo.

Su programacion es sencilla, siendo Unicamente necesario recoger en una variable el valor de
tension del puerto al que se encuentra asociado. De este modo, se podran utilizar como se
crea conveniente.

39

Figura 19: Pulsadores y Joystick de la EVK1100

5.2.12 AREA DE CONEXIONADO

Un aspecto importante a tener en cuenta en el momento de trabajar con una placa de
evaluaciéon como lo es la EVK1100, son los puertos de expansion que esta tenga. En este
caso, Atmel ha dotado a su placa de toda una serie de pines preparados para conectar lo que
sea necesario. Estos pines serdn de gran utilidad para poder hacer un uso directo a través de
ellos de los mdltiples pines necesarios del microcontrolador (por ejemplo, conectar
directamente los servomotores a los canales PWM).

A través de estos puertos de expansion también se puede acceder a funciones tales como la
interfaz SSC, los canales PWM, canales ADC, Timers, USART, TWI o todos los puertos GPIO
entre otros (todos con nivel de tension de 3.3V).

Ademas, dispone de un area de prototipado que permitira incluir otros elementos sobre la
propia placa, como si de una placa perforada se tratara. De este modo, el conexionado se
optimiza, ya que la dimension de las conexiones se reducen al estar sobre la propia placa.

5.2.13 POTENCIOMETRO Y SENSOR DE TEMPERATURA Y LUZ

Ademas de todos los elementos ya comentados, la placa de evaluacién proporciona otros tres
dispositivos que pueden ser utilizados segun se crea conveniente (aunque no seran de ninguna
utilidad para la construccién del robot mévil). En la parte inferior de la placa, se encuentra un
potencidmetro junto con un sensor de luz y temperatura. Estos tres elementos se encuentran
conectados internamente a los canales ADC, de modo que Unicamente se debe realizar la
programacién que corresponda para activar dichos canales ADC.

5.3 PERSONALIZANDO LA PLACA

A parte del uso de la placa de evaluacion EVKK1100, para la elaboracion de un robot sera
necesario personalizar la placa. Para ello, dispone de puertos de expansion donde se puede
trabajar y soldar directamente los componentes o dispositivos que se crean necesarios.

En concreto, los elementos que deben ser conectados en la placa para poder realizar nuestro
robot mévil son los que detallados en la Figura 20. A continuacion, se detalla con mas
profundidad cada una de estas modificaciones o adiciones que se han de llevar a cabo sobre la
placa, asi como la relacidon que estos tendran con cada uno de los canales que se utilicen en la
placa de evaluaciébn EVK1100. Si lo que se desea es obtener mas detalle acerca de las

40

conexiones reales que se han de realizar en la placa de evaluacién y el microcontrolador
AVR32, debe dirigirse a la Tabla 5, donde se encuentran todos especificados.

Sensor IR: Sensor IR: SHARP Conversor RS232 ->
$320215 HiTech GP2D12 Bluetooth:

1x VCC +3.3V 1x VCC +3.3V Bluemore200

1x GND 1x GND 1x VCC 3.3V

1x ADC (PA22) 1x ADC (PA21) 1x RS232 (USART1)

Baterias (Debajo)

1x Conector DC
Servomotor Externo
DY-S0206 v

1x VCC +3.3v_f> '
1x GND

1x PWM (PB19)

2

Circuito integrado:
L293D

1x VCC 5V

1x VCC hasta 36V
Sensor IR: 4x GND
$320215 HiTech 2 Motores DC 2x PWM (PB20 y PB21)
1x VCC +3.3V Conexiones 4x GPIO (PB02, PBO3,
1x GND directas al L293D PBO9 y PB10)

1x ADC (PA23)

Figura 20: Elementos necesarios para la construccion del Robot

5.3.1 MoToRES DC

Para la construcciéon del robot movil, se hace uso de 2 motores DC que proporcionaran el
movimiento y control del robot. Estos motores no estan conectados directamente a la placa de
evaluacion, si no que disponen de un circuito previo formado por un controlador de motor por
PWM. Este circuito permite controlar tanto la direccién como la velocidad del motor DC y para
su funcionamiento serd necesario realizar las conexiones mostradas en la Tabla 5.

5.3.2 SERVOMOTOR

El servomotor permitira realizar un barrido a modo de radar/sonda para poder detectar los
obstaculos que se encuentren en la trayectoria del robot. Estos dispositivos son capaces de
moverse en funcién de la amplitud de la sefial cuadrada (Figura 21) que se le inyecte. Por
ejemplo, para sefiales con una amplitud de 1.25 ms, el servomotor se situara en una posicion.
Si cambiamos a 2 ms, se centrara en otra, de modo que variando este parametro, se podra
hacer girar el servomotor.

Este dispositivo dispone de 3 entradas que deberan ser conectadas directamente sobre la
placa de evaluacién: VCC, GND y la entrada para la sefial PWM. El funcionamiento se hara a
una tension de 3.3V por lo que, cualquier toma de VCC sobre la placa sera apta para alimentar
el dispositivo.

41

0,3 ms 12 ms
—— -+ i
o 50
o 20 m= I -+ 20 me -

Figura 21: Funcionamiento de un servomotor

5.3.3 SENSORES IR

Los sensores infrarrojos se responsabilizaran de medir la distancia a la que se encuentre el
robot de un objeto que pueda obstaculizar su trayectoria. Mediante estas medidas, se variara la
direccion y movimiento del robot de modo que en ninglin momento este colisione.

Se hace uso de 3 sensores infrarrojos, uno de los cuales estd montado sobre el servomotor y
sera el que tome las medidas a modo de radar o sonda. Los otros dos, situados en los
laterales, permitirdn detectar las colisiones cuando la distancia del objeto sea demasiado
préxima, para que el radar pueda detectarla.

A pesar de tratarse de dispositivos fisicamente diferentes, el funcionamiento es exactamente el
mismo, disponiendo de 1 entrada VCC, 1 GND y otra de Output, que dara un valor de tension
proporcional a la distancia a la que se encuentre el objeto a evitar. Es por eso, que estos
elementos hacen uso de los canales ADC, para transformar ese voltaje de la salida, en un valor
binario que pueda ser tratado por el microcontrolador.

5.3.4 BLUEMOREZ200

Por ultimo, disponemos de un dispositivo que permitira la comunicacién via Bluetooth con un
PC que actuara como controlador del robot. Se trata de un elemento que es capaz de
transformar una sefial serie que obtiene a través de un puerto RS232, en una sefial apta para
ser transmitida via Bluetooth. Este proceso es totalmente transparente para el usuario y no
requiere de ningun tipo de programacion especial, Unicamente conectarlo a través del puerto
COM de la placa de evaluacién y realizar toda la comunicacion a través del USART del
microcontrolador.

5.3.5 TABLA DE CONEXIONADO

La Tabla 5 muestra cuales han de ser todas las conexiones necesarias que se han de realizar
sobre la placa de evaluacion EVK1100. En ella, no se especifican las conexiones a VCC o
GND vya que por lo general todos los elementos las necesitan y la placa dispone de muchos
puertos de expansion que pueden ser utilizados con este fin.

Funcién Puerto EVK1100 PIN AVR32
1,2 Enable Motor PB20 — 1x PWM 3

1A Motor PB02 — 1x GPIO 96

1Y Motor - -

2Y Motor - -

2A Motor PB03 — 1x GPIO 98

4A Motor PB10 — 1x GPIO 115

4Y Motor - -

42

3Y Motor - -
3A Motor PB09 — 1x GPIO 113

3,4 Enable Motor PB21 — 1x PWM 5

Bluemore200 1x RS232 Ver Datasheet

IR GP2D12 PA21 — 1x ADC 73

IR S320215 PA22 — 1x ADC 74
IR S320215 PA23 — 1x ADC 75
Servo DY-S0206 PB19 — 1x PWM 143

Tabla 5: Conexiones necesarias hacia la placa de evaluaciéon EVK1100

5.4 PROGRAMACION DEL AVR32

Como ya se ha visto, para la realizacién del robot mévil se hara uso de la placa de evaluacién
EVK1100. Pero, ¢,qué pasaria si se quisiera programar microcontroladores AVR32 sin disponer
de una de estas placas de evaluaciéon?

Siguiendo con la tematica del presente capitulo, a continuacién se realiza un estudio de los
pasos y las herramientas que se han de seguir para poder realizar la programacién de un
microcontrolador en el caso de no disponer de una placa de evaluacion.

La Figura 22 enumera todas las interfaces disponibles, aunque el uso de cada una dependera
del programador del que se disponga. Esta es la primera cuestion que el desarrollador debe
plantear cuando se programan microcontroladores, ya que en funcion de la interfaz por la que
se opte, cambiara la herramienta a utilizar.

Autoprogramacion usando cualquier interfaz fisica.

- Programacion a través de cualquier interfaz (SPI, TWI ...)
- Programacian remota 100%

In-System Programming
- PDI Mativo (2 Cables) o SPI (3 Cables)
- Facil de utilizar

Programacion Paralela
- Uno de los métodos mas rapidos para cargar codigo
- Compatible con la majoria de programadores.

JTAG

- Compatible con la interfaz IEEE 1149.1

- Puede programar Flash, EEPROM, Fusibles v Lock-Bits
- Debug sobre el propiochip

- Permite realizar Boundary Scan

Figura 22: Diferentes interfaces de programacion del AVR32

En este caso, se hace uso del puerto JTAG ya que la herramienta disponible es el JTAG MKII
ICE, el cual tal y como se vera a continuacion (Tabla 6), dispone de potentes herramientas para
la programacion y el debug sobre el propio microcontrolador. Pero ademés de este
programador, existen otros diferentes en el mercado [9], todos ellos distribuidos por Atmel y
que se describen a continuacion:

43

AVR Dragon: Por menos de 50$% Atmel pone a nuestra
disposicion un programador que permite todos los modos
de programacion disponibles para la familia AVR:

In-System Programming (ISP)

High Voltage Serial Programming (HVSP)
Programacion Paralela

Programacion JTAG

Ademas, permite realizar debug del microcontrolador.

AVRISP MKII: Esta herramienta de programacion tiene
soporte para todos los chips de 8 Bits de AVR, por lo
tanto, no nos sera de utilidad para la programacién de los
AVR32. A pesar de ello, a continuacion se listan algunas
de sus principales caracteristicas:

¢ In-System Programming en todos los AVR8
e Totalmente compatible con AVR Studio

e Soporta todos los niveles de tensién de AVR
e Velocidad rapida de programacién

JTAGICE MKII: Esta herramienta sera la utilizada para la
realizacion del presente proyecto. Tal y como se esti
viendo, no es la Unica existente en el mercado, pero si
gue es una de las mejores opciones:

e Permite la programacion a través de puerto
JTAG y ISP

e Dispone de capacidades para realizar debug
sobre el microcontrolador

e Posibilidad de hacer uso de la interfaz
“debugWire”.

e Soporte para “Program-Breakpoints, Data-
Breakpoints” y para control total de la ejecucién
del programa.

AVR ONE: El AVR ONE es una poderosa herramienta de
desarrollo y debug sobre el propio chip para cualquier
dispositivo AVR.

e Soporte para realizar debug a través de las
interfaces JTAG, debugWire, PDI y Nexus.

e Soporte para programar a través de la interfaz
ISP, JTG y PDI.

Tabla 6: Programadores disponibles en el mercado

44

Todo y que existen varias opciones para programar los microcontroladores AVR32, vamos a

centrarnos en la interfaz JTAG, ya que es la que se utilizara para la programacién tal y como se
ha dicho anteriormente.

[aNalaNala] o o o

<€ € <€ < T << < <

ooooo o o o

g g e F E FE

[ROE RO w w w

L L [T¥} w w

FEkEFE = = -

<+ 0O~ © o o =

OOMmoOm ™ %

onoono o o o

FEFFE F

[L X X] [] L
J58
1 VCC3
JTAG_TCK . 3 0O 4 0
JTAG_TDO = OO e
JTAG TMS Stoor8 SSRESETn
EVTO 9 0O 10
JTAG _TDI 0 C
STL2-660VTT-10U =
VCC3
Pin Header SMD 2, 54mm T
C79
| 100n

Figura 23: Conexiones necesarias para la programacion a través de JTAG

Esta interfaz dispone de 10 pines, tal y como se puede ver en la Figura 23, que iran
conectados al microcontrolador. Todas las conexiones necesarias se encuentran en la
documentacién [4] disponible en la propia web de Atmel.

Ademas de las conexiones del puerto JTAG, también se deberan realizar las conexiones
necesarias sobre el microcontrolador. La Figura 24 muestra el esquemético con las conexiones
que serdn necesarias para el funcionamiento del circuito.

OMTAGI3..0]
TCK
TDO
_ . TD
RESETn(—— 23 | RESET n T™S
s
VDDANA, - 81
ADVREF 3 g2 | yODANA, BEZE —
AGNDS & lagwp 3 8888z 20090900 uR%egnEe
8 BBE88 B8BB8B888 22222222z o
> S>> >> e agoaoaoaa =
o oy oy I~
AT22UC3AOS12.0esAL 2 8 @ Sh-?i&i&??—i SHHHMMF ST
=
w
]
TPT ElL =4 &
TESTPAY “s 1% YoDIN VDDIO
Rif| 2 [R20
|| >]||or

VDDOUT,. |

Figura 24: Conexiones necesarias para la programacion JTAG

En la parte derecha, se pueden ver los 4 pines que iran conectados al puerto JTAG, mientras
gue en la parte inferior, se ven todas las conexiones de alimentacion que seran necesarias. Sin
embargo, en esta figura no se especifica cdmo deben realizarse estas conexiones, por lo que
nuevamente tendremos que dirigirnos a la documentacién existente en la web oficial [5].

Por dltimo y una vez que se tengan claras las herramientas y interfaces que van a ser utilizadas
en la programacion del robot, asi como las conexiones que seran necesarias, se procedera a
abrir la suite AVR32 Studio, que permitird hacer uso de todas las nombradas y por supuesto,
enviar el cédigo de programa a la memoria interna del microcontrolador.

45

5.5 SOFTWARE DE CONTROL

El software del robot esta dividido en dos partes: el software propio del microcontrolador y una
aplicacién de control que servira para poder enviar datos al robot desde un PC con conexion
Bluetooth. A continuacién se ofrecen mas detalles de ambos programas asi como pequefias
indicaciones sobre su programacion.

5.5.1 APLICACION DE CONTROL

Mediante este programa realizado con Visual Basic 6.0, se pretende crear una pequefia
aplicacién que permita gobernar el robot desde un PC cualquiera que disponga de conexién
Bluetooth. Su disefio es sencillo, pues no es el objetivo del proyecto, pero como se puede ver
en la Figura 25 dispone de funciones suficientes para testear y gobernar el robot, permitiendo
por ejemplo, activar el modo auténomo o el modo de control manual.

Toda la programacion de la comunicacion se realiza a través del puerto serie del PC, de modo
que Unicamente se debe crear un pequefio interfaz que permita seleccionar el puerto COM a
través del que se establecera la conexién y pulsar sobre “Conectar”. A partir de este momento,
si la conexion ha sido satisfactoria, se habilitan los botones de control del robot.

[Aplicacion de Control [&J

Robot Movil - MCU AVR32

Francisco Mufioz Verdi - Proyecto Final de Carrera

CoM3 - Conectar | | . ‘ ‘ ‘ ‘
Movimiento del Robot Movimiento del 5 ervomotor Sensores Inframojos

. 5. Frantal: Ii
S lzquierda: Ii
jE— E— S.Deecha [

Figura 25: Aplicacion de Control

Para la comunicacion a través del puerto serie se hace uso del componente “MSComm” que se
encuentra disponible en las librerias de Visual Basic 6.0, por lo que en caso de hacer uso de
esta aplicacion, primero se deberda comprobar que se dispone de dicho componente instalado
en el sistema. Todo el cadigo utilizado para la generacion de este programa se podra encontrar
en el capitulo [iError! No se encuentra el origen de la referencia.] de este documento.

5.5.2 SOFTWARE DEL AVR32

Tal y como se ha comentado en el punto anterior, la aplicacion de control permitira
comunicarse con el robot. Esta comunicacion sera gestionada por el microcontrolador, en el
extremo del robot mdvil, por lo que este deberda disponer de un programa que dote de
autonomia e inteligencia al robot.

Toda la programacion del microcontrolador se lleva cabo en lenguaje C++. Asi estan escritos
todos los ejemplos que se encuentran en el entorno de programacion, ademas de ser un

46

lenguaje ya conocido y por lo tanto el aprendizaje de este se limitara al uso de las funciones o
variables especificas de estos microcontroladores. Dicho software, permitira la interaccion con
la Aplicacion de Control antes detallada y ademas se responsabilizara de dotar al robot de la
inteligencia necesaria para que este no colisione con ningun objeto.

En cualquier caso y si lo que se desea es obtener mas informacion acerca del cédigo utilizado
en este, debera dirigirse al capitulo [C] del Anexo.

5.6 PRUEBAS Y RESULTADOS

Una vez se dispone de todo el conjunto correctamente montado, conectado y programado, es
necesario realizar una serie de pruebas para comprobar el buen comportamiento de este.
Estas pruebas consisten en la comprobacion de que toda la comunicacién se establece de
forma correcta y ambas partes (microcontrolador y PC) se entienden e interactlan sin
problemas. Es por ello que a continuacion se muestra cual es el funcionamiento de todo el
sistema y cuél deberia ser su comportamiento.

5.6.1 PRUEBAS
Las pruebas realizadas se pueden separar en dos partes: la comprobacion de la comunicacion
e interaccién entre el microcontrolador AVR32 y el PC, y el correcto funcionamiento del robot
en modo auténomo.

La Figura 26, muestra el diagrama de bloques de la comunicacién entre el AVR32 y la
Aplicacion de Control. Tal y como se observa, la Aplicacion de Control actia como maestro de
la comunicacién, siendo la encargada de gestionar la transmisién y de dictar cudl es la
siguiente funcion a realizar, segun lo indicado por el usuario.

PC
Bluemore 200
4 Y
Comunicacion
Inaldmbrica
Aplicacién de Control ¢ Comunicacién Conversor R5232
Serie a Través de a Bluetooth:
Visual Basic 6.0 ¢ Bluetooth Bluemore200
b ok
Placa de evaluacion EVK1100
4 Y
Microcontrolador AVR32 ¢
| Software de Gestion del Puerto R5232
Robot Mévil :>
b
b v

Figura 26: Diagrama de blogques del conexionado del sistema

El funcionamiento es sencillo, basandose Unicamente en el intercambio de caracteres ASCII
entre el PC y el microcontrolador. A continuacion se detalla a modo de ejemplo y para entender
su funcionamiento, un posible caso de comunicacion:

47

e A través de la Aplicacién de Control, se debe seleccionar el puerto COM asociado al
Bluetooth del PC. Una vez elegido, se procedera a realizar la conexion.

e Sila comunicacion se produce, se enviara un caracter ASCII a través del puerto serie.
Para hacerlo, bastard con pulsar sobre una de las opciones disponibles en el
programa. Por ejemplo, para habilitar el control manual, deberd pulsarse el botdn
correspondiente y este enviara una “f’.

e Este caracter, sera enviado de forma inaldmbrica desde el PC hasta el
microcontrolador, gracias al conversor RS232 — Bluetooth disponible.

e Silos datos llegan correctamente, el microcontrolador entrara en modo manual y a su
vez, devolvera otro caracter ASCIl al PC, de modo que la Aplicacion de Control podra
entender que la comunicacién ha sido satisfactoria.

e En caso de querer detener la ejecucion del programa en curso, se pulsara sobre el
botdn correspondiente y este, enviara una “q”, la cual volvera a ser entendida por el
microcontrolador.

e Nuevamente, si la comunicacién se produce de forma satisfactoria, el microcontrolador
devolvera el control de la ejecucion a la Aplicacion de Control y se podra volver a
lanzar otra funcion.

La segunda prueba, consiste en comprobar que el robot es capaz de comportarse de forma
autonoma. Para ello y tal y como ya se detall6é en capitulos anteriores, este esta dotado de una
serie de sensores infrarrojos que deberan evitar cualquier tipo de colision.

El algoritmo utilizado finalmente, es relativamente sencillo, habiendo descartado otros mas
complejos y con mas comprobaciones, por ser toscos y contener demasiadas instrucciones
repetitivas, que finalmente no aportaban nada al comportamiento global. A continuacion, se
muestra cual ha sido el algoritmo utilizado:

e El primer paso a realizar una vez se entra en modo autonomo, es realizar una
comprobacion integra de los tres sensores infrarrojos instalados.

e En caso de que ninguno de los sensores detecte una colisién, el robot por defecto
iniciard su movimiento hacia delante durante 1 segundo.

e En caso contrario, si se detecta un obstaculo, el robot detendra su marcha e iniciara un
movimiento que permita esquivarlo (retrocedera y girara hacia un costado).

e Si se detecta mas de un obstaculo al mismo tiempo, se ha definido una serie de
niveles, que dan prioridad a los sensores laterales, ya que estos detectaran cuando un
objeto se encuentra mas cerca.

La velocidad de movimiento del robot es fija y para cambiarla deberé reprogramarse este. Es
por ello, que se ha optado por escoger una velocidad no demasiado rapida y unos tiempos
maximos de ejecucion de 1 segundo. De este modo, cada segundo se realizan
comprobaciones del entorno y se pueden detectar objetos de forma satisfactoria.

5.6.2 RESULTADOS

La ejecucion de las pruebas ha sido correcta y el funcionamiento final es el esperado. A
continuacion se muestran los resultados desglosados en dos partes: los resultados obtenidos
respecto a la arquitectura AVR32 y los obtenidos respecto a la placa de evalucién EVK1100.

Arquitectura AVR32: El rendimiento de la arquitectura AVR32 ha demostrado ser excelente
tras las pruebas y el estudio realizado. Las mejoras en la arquitectura desarrolladas por Atmel
han hecho que el AVR32 sea un micro de excelentes prestaciones y con un consumo
energético realmente bajo. A continuacion se muestran algunos de los resultados obtenidos
para la arquitectura AVR32:

48

e Dificultad para medir las prestaciones de la arquitectura AVR32: Comprobar todo
el potencial de esta arquitectura, es una ardua tarea, ya que la aplicacion construida no
llega a explotar todas sus capacidades. A pesar de esto, a través del estudio de su
arquitectura se ha demostrado como los AVR32 son idéneos para la robética mévil y
ademas, se ha podido ver la superioridad frente a otras alternativas existentes en el
mercado.

e Drivers del Framework de Atmel: La suite de desarrollo AVR32 Studio dispone de un
completo Framework donde se puede encontrar multitud de ejemplos y drivers para
estos microcontroladores. Se trata de una ayuda importante para desarrolladores
noveles, ya que estos ejemplos y drivers estan listos para ser utlizados y se
encuentran perfectamente detallados.

Placa de evaluaciéon EVK1100: La placa EVK1100 ha demostrado ser una excelente
herramienta para el desarrollo de aplicaciones, debido a la gran cantidad de periféricos
disponibles y a la facilidad de uso que estos presentan gracias a los drivers del framework de
Atmel. A continuacién se detallan algunos de los resultados mas importantes que se han
obtenido de la construccién de un robot mavil con ella:

e Facilidad de uso de la placa EVK1100: Todas las pruebas realizadas han sido
llevadas a cabo con éxito gracias a la facilidad de uso que presenta esta placa de
evaluacion. Por ejemplo, la disponibilidad de puertos RS232 (donde conectar
directamente un cable serie y realizar debug a través de un PC) facilita el desarrollo de
aplicaciones, o también la disponibilidad de una pantalla LCD ya instalada o botones
totalmente configurables.

e Entorno de pruebas del robot movil: Las pruebas finales realizadas al robot movil
han sido satisfactorias, aunque ha sido preciso realizar multiples modificaciones de
coédigo hasta lograr el comportamiento deseado del conjunto. Las pruebas pueden
dividirse en dos:

- Funcionamiento del modo auténomo: Tras muchas modificaciones del cédigo,
se ha podido comprobar como el robot funciona de una forma totalmente
autébnoma, evitando colisionar con cualquier objeto que se le presente delante.
Ha sido necesaria reducir la velocidad de funcionamiento de los motores, asi
como parar todo el conjunto cada vez que se realiza una medicion, para evitar
colisiones no deseadas.

- Control manual remoto: La comunicacion via Bluetooth con el PC se realiza de
forma satisfactoria, no detectando ninguna incidencia en su uso.

e Escasa duracién de la bateria: Durante las pruebas realizadas sobre el conjunto del
robot, se ha apreciado como la duracién de la bateria es muy corta. A priori la
alimentacion de este se ha realizado Unicamente con un conjunto de 6 pilas de 1.5V,
proporcionando un total de 9V. Esto es debido principalmente a 2 factores:

- Aunque se trabaja con un microcontrolador de bajo consumo, el conjunto de la
placa de evaluacién no lo es. El uso de la pantalla LCD, varios canales PWM,
ADC, GPIO, dispositivos infrarrojos o la insercién del moédulo Bluemore200,
provocan que el consumo energético crezca de forma desmesurada.

- El hecho de compartir una Unica fuente de alimentacion entre la placa de
evaluacion EVK1100 y los dos motores de corriente continua, provoca una

49

caida de tensién demasiado grande ante la activacion de los segundos. Este
hecho tiene como consecuencia continuos reinicios del sistema.

Para solventar este Gltimo problema, se ha optado por separar los motores DC de la
placa de evaluacion EVK1100 mediante el uso de 2 baterias independientes. Asi, se ha
conseguido que los reinicios no se produzcan, aunque el consumo global sigue siendo
excesivo.

Una Gnica toma de 5V: Aunque no es un impedimento para la elaboracion del robot
movil, el hecho de incluir mas de una toma que proporcione valores de 5V hubiera sido
bueno. En este caso, la toma existente ha sido utilizada para alimentar el integrado
L293D, aunque hubiera sido (til disponer de alguna mas para poder utilizarlas en el
Bluemore200 o en los sensores infrarrojos.

Area de conexionado poco eficiente: La soldadura de elementos en la cuadricula
disponible para la conexién de dispositivos puede ser complicada, debido a que para la
interconexidn de puntos deben utilizarse puentes cableados, ya que de otro modo, se
podria dafar la placa de evaluacion. Ademas, todos los pines preparados para ser
utilizados en el lateral (canales PWM, ADC, GPIO...), se encuentran demasiado juntos
y puede provocar que se hagan contactos no deseados, cortocircuitando la placa en
ocasiones. Este problema se soluciona realizando soldaduras sobre la placa, pero
provoca situaciones problematicas ante la aparicion de errores de disefio.

Tamafio de la placa: Las dimensiones de la placa de evaluacién EVK1100 hacen que
Su uso no sea el mejor para la construccion de robot moéviles pequefios.

50

6. CONCLUSIONES

Los objetivos principales desarrollados en el proyecto han sido:

e El analisis de la arquitectura AVR32.

e Lacomparativa con otras alternativas existentes en el mercado (AVR8 0 ARM)

e Estudio de la placa de evaluacién EVK1100.

e Construccion de un robot mévil haciendo uso de esta.

e Creacion de una aplicacion de control, capaz de gestionar un robot de forma remota.

Los microcontroladores AVR32 han supuesto una evolucion respecto a otros dispositivos
existentes en el mercado. Tal y como se ha detallado en capitulos anteriores, el mercado de
microcontroladores es muy amplio y abarca una enorme cantidad de dispositivos y aplicaciones
distintas. En la medida de lo posible, cada una de las empresas productoras ha ido
evolucionando sus modelos a otros mas rapidos y potentes, con mas memoria y periféricos,
pero en su mayoria, sin aportar nada nuevo a la arquitectura de estos. Atmel, ademés de
aumentar la frecuencia de sus microcontroladores, ha optado por la mejora de la arquitectura
ampliando el potencial de sus micros sin ninguln tipo de coste energético, a través de:

e Lareduccion del numero de ciclos de carga y lectura de la CPU.
e La ejecucion multiple de tareas repetitivas.

e Maximizar la utilizacién de los recursos del pipeline.

e Minimizar las latencias en las instrucciones de salto.

e Mejoras en la densidad de cédigo.

La arquitectura AVR32 ha demostrado ser 6ptima para la elaboracion de aplicaciones mdéviles,
gracias al eficiente uso energético que esta realiza y al nivel de potencia que ofrece. Ademas,
si sumamos a las mejoras antes citadas, las més de 2000 interrupciones que puede controlar,
junto con la integracion de periféricos como el 12C, Ethernet o USB, hacen que sea una de las
mejores opciones cuando se busca movilidad.

Al contrario, la placa de evaluacion EVK1100 es poco eficiente cuando se desea personalizar
para la realizacién de robots méviles. Los objetivos del proyecto han sido cumplidos con éxito,
pero su gran tamafio provoca que la aplicacion construida sea pesada. Ademas, el elevado
namero de componentes que integra, incrementa el gasto energético del conjunto de forma
considerable.

La carencia de bibliografia sobre la arquitectura AVR32, ha sido un factor importante a lo largo
del desarrollo del proyecto y puede ser determinante para que un usuario se decante por el uso
de otra arquitectura. Los datos necesarios para realizar el estudio y la programacién del
AVR32, se han obtenido a través del andlisis de la documentacién del dispositivo y de los
drivers disponibles en el entorno de programacion. A pesar de que los objetivos han sido
alcanzados, Atmel deberia esforzarse en mejorar este aspecto.

Concluyendo este trabajo, pienso que los AVR32 son una de las mejores opciones existentes
en el mercado, pero a pesar de que estos microcontroladores llevan varios afios en el mercado,
es dificil encontrar aplicaciones comerciales que hagan uso ellos, debido en gran parte a la
influencia que tiene ARM en el mercado global. Personalmente opino que Atmel deberia
hacerse un hueco a nivel mundial, haciendo virtud de las mejoras que presentan estos
microcontroladores e incluso, poner en circulacidon productos propios que hagan uso de los
AVR32. De esta forma, se podria comenzar a ver productos bajo la marca de Atmel, del mismo
modo que por ejemplo, ARM lo hace en el mercado de los dispositivos moviles.

51

52

7. BIBLIOGRAFIA

[1]
2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]
[14]

www.atmel.com. “Atmel Corporation”, pagina web oficial.

www.arm.com. “ARM Ltd.”, pagina web oficial.
www.atmel.com/dyn/resources/prod_documents/doc32000.pdf. “AVR32 Architecture
Document”, Atmel Corp (11/2007).
www.atmel.com/dyn/resources/prod_documents/doc2562.pdf. “Connecting to a target
board with the AVR JTAGICE MKII”, Atmel Corp (07/2006).
www.atmel.com/dyn/resources/prod_documents/doc32090.pdf. “UC3A schematic
checklist”’, Atmel Corp (12/2008).
http://www.atmel.com/dyn/resources/prod_documents/doc32058.pdf. “AVR32 32-Bit
Microcontroller Datasheet”, Atmel Corp (11/2009).
www.atmel.org/dyn/resources/prod_documents/doc4092.pdf. “MCU Architectures for
Compute-Intensive Embedded Applications”, Atmel Corp (12/2005).
www.atmel.com/dyn/resources/prod_documents/doc32103.pdf. “Quick-start Guide.
EVK1100 + Windows”, Atmel Corp (02/2010).
www.atmel.com/dyn/resources/prod_documents/doc4064.pdf. “Quick Reference
Guide”, Atmel Corp (02/2009).
www.atmel.com/dyn/resources/prod_documents/doc7919.pdf. “AVR32 UC3 Flash
Microcontrollers”, Atmel Corp (07/2009).
www.atmel.com/dyn/resources/prod_documents/doc32002.pdf. “AVR32UC: Technical
Reference Manual”, Atmel Corp (03/2010).

www.avrfreaks.com. AVR Freaks, Comunidad oficial de AVR.

www.freertos.org. “The FreeRTOS Project”’, pagina web official.

Kai Qian, David den Haring, Li Cao (2009). “Embedded Software Development with C”,
Springer.

53

54

ANEXOS

A. PROGRAMACION

Este punto pretende realizar una introduccién a la programacién de los microcontroladores
AVR32 mediante la suite de desarrollo de Atmel. Esta herramienta, el AVR32 Studio, es
gratuita y permitira desarrollar y obtener multitud de ejemplos.

A continuacion se analizan cuales son las dos opciones mas comunes para desarrollar
microcontroladores y se detalla el porqué decantarse por la programacién Standalone frente a
la implementacion de un sistema operativo en tiempo real.

Por dltimo se muestran fragmentos de cdédigo utilizados en el desarrollo del proyecto,
detallando el funcionamiento de los diferentes mddulos utilizados. De esta forma se pretende
hacer una introduccibn a la programacién en cédigo C++, mostrando ejemplos del
funcionamiento de diversos dispositivos.

A.1 ENTORNO DE PROGRAMACION

El entorno de desarrollo utilizado para la programacién del robot, es el que proporciona la
propia compariia Atmel, el AVR32 Studio. Esta herramienta esta basada en Eclipse, un popular
entorno de desarrollo integrado y de cédigo abierto.

Eclipse fue desarrollado originalmente por IBM como el sucesor de su familia de herramientas
para VisualAge. Eclipse es ahora desarrollado por la Fundaciéon Eclipse, una organizacién
independiente sin animo de lucro que fomenta una comunidad de cddigo abierto y un conjunto
de productos complementarios, capacidades y servicios.

El funcionamiento de AVR32 Studio es sencillo y como ya se ha comentado, quien esté
familiarizado con Eclipse no debera tener ningdn problema para comprender su
funcionamiento. A pesar de ello, el siguiente punto describe el funcionamiento de este entorno
y algunas de sus funciones mas interesantes.

A.2 AVR32 STuDIO

Esta herramienta de trabajo puede ser descargada de forma gratuita de la propia pagina web
de Atmel [1]. Es por ello que, antes de poder comenzar a programar el microcontrolador, sera
necesario instalar el entorno de programacién como tal. Para ello [8], se debe instalar el
GNUToolchain (proporciona los componentes necesarios para poder realizar la programacion
del MCU) y el AVR32 Studio.

El siguiente paso es conectar el programador JTAGICE MKII al puerto USB del PC y este a su
vez a la placa de evaluacion EVK1100 a través del puerto JTAG. Si todo funciona
correctamente, AVR32 Studio reconocera de forma automatica estos dos dispositivos, aunque
la mejor prueba es realizar una lectura de los registros internos del microcontrolador y asi ver si
este responde de forma correcta. Para ello, se seguiran los siguientes pasos:

1. Hacer “click” con el botén derecho del raton sobre “AVR32 Targets” y seleccionar “Scan
Targets”. Debera aparecer el dispositivo tal y como se ve en la imagen siguiente:

55

http://es.wikipedia.org/w/index.php?title=VisualAge&action=edit&redlink=1

A2 BVREZ Targets 52 « — 0

Marne Adapter Board
M AVRSEZ Simulakor AWRSEZ Simulator AVREZ S
[| JTAGICE mkII ITAGICE mkIl EWk 1100

< >
Figura 27: Ventana de dispositivos en AVR32 Studio

2. Ahora que AVR32 Studio ya detecta el JTAGICE MKII, se ha de configurar para
indicarle al programa cual es la configuracién exacta que se desea utilizar. Para ello,
pulsamos encima del JTAGICE MKIl y rellenamos los campos de la pestafia
“Properties” tal y como se indica a continuacion:

t Problemns | =] Properties £ El console € Progress ¥ =0

@ ITAGICE mkII

General Debugger/programmer

Details [

Microcontroller: UC3A0512 Select...]

Daisy Chain
InFarmation Clock source: Crystal connecked to OSC0 .

Eoard: Evk1100
w Connection
Serial number: 070000000806
Conneckion: ush v

COM Port:

w Clock @
This programmer/debugger does not have controllable clocks.

w Yoltage @

YTargek:

Figura 28: Configuracion del microcontrolador en AVR32 Studio

3. A continuacion, para leer los registros internos del microcontrolador, se ha de hacer
“click” derecho con el ratén sobre el JTAGICE MKII que se encuentra situado en la
parte inferior derecha y posteriormente, pulsar sobre “Read General Registers”. Ahora
se deberia ver una nueva ventana con 16 registros y sus correspondientes valores en
ese instante.

4. Por ultimo, si se desea borrar todos los datos que se encuentran grabados sobre el
microcontrolador, se debe proceder del mismo modo que en el punto 3, pero esta vez
pulsando sobre “Chip Erase”. Ahora, si se leen los valores de los registros, estos se
encuentran con valor 0x00.

Antes de realizar el punto ndmero 4 (borrado del Chip), se puede conectar la placa de
evaluacion EVK1100 mediante un cable Ethernet a un PC, y ver la aplicacion que lleva
implementada de fabrica: un servidor web que proporciona datos en tiempo real de la placa.

56

Aunque en caso de no hacerlo, siempre se puede recuperar esta aplicacion del propio AVR32
Studio, ya que esta incluida en él.

Estos ejemplos han sido de gran utilidad para la realizacion del proyecto. La bibliografia acerca
del AVR32 es escasa (al contrario que para el AVRS8), y por lo tanto, los ejemplos que se
pueden encontrar también lo son. A pesar de este hecho, gracias al Framework incluido, se ha
podido avanzar en el aprendizaje de este microcontrolador sin problemas. Entre los ejemplos
incluidos en el entorno de programacién se encuentran los siguientes (entre otros):

e Control Panel Demo: Se trata del servidor web que se incluye por defecto en la placa
de evaluacion EVK1100. En caso de haber hecho un erase del chip y desear
recuperarlo, este es el programa a cargar.

e CPU MPU Example: Ejemplo sobre la configuracion de la MPU.

e External Interrupt Controller: Como indica su nombre, proporciona 3 ejemplos
distitnos del funcionamiento de las interrupciones externas.

e General Purpose /O (GPIO): Ofrece dos ejemplos sobre como hacer uso de los
puertos GPIO. Desde el punto de vista del proyecto son muy interesantes ya que la
activacion de LEDs y motores, se realiza a través de estos puertos.

e Interrupt Controller (INTC): Ejemplo sobre el uso de las interrupciones internas.

e Power Manager (PM): Indica cdmo hacer uso del Power Manager, que entre otras
cosas permitira seleccionar diferentes velocidades de reloj.

e Pulse Width Modulation (PWM): Importante ejemplo sobre como utilizar los canales
PWM gue seran vitales para el movimiento de los servomotores.

e USART Example: Detalla el funcionamiento de los USART de la placa. Imprescindible
para la comunicacién serie con el robot.

e DIP204 Example: Completo ejemplo que muestra datos a través del LCD integrado y
ademas hace uso de interrupciones externas que son activadas a través de los botones
incluidos en la placa.

o FreeRTOS Example: Ejemplo de uso de este sistema operativo en tiempo real. Se
trata de un SO gratuito y ampliamente extendido a muchos otros microcontroladores.

En caso de querer utilizar alguno de estos ejemplos, se debera pulsar sobre “File — New —
AVR32 Example Project”’ y aqui seleccionar la placa de evaluacién. Una vez seleccionado uno
de los ejemplos a utilizar, pulsar sobre “Finish” y en la barra lateral izquierda aparecera listado
€COMOo un nuevo proyecto.

Una vez llegados a este paso, lo Unico que queda es identificar donde se encuentran los
ficheros con el cédigo fuente. Bajo el directorio “Proyecto / src /” se encontraran todos los
ficheros fuentes y es aqui, donde se podran afadir otras fuentes o ficheros de cabeceras, en
caso de ser necesario.

AVR32 Studio dispone de una herramienta que autométicamente instalara sobre el proyecto
todas las dependencias y librerias necesarias para el uso de cualquier componente de nuestro
microcontrolador. De este modo, Unicamente se debera seleccionar los drivers que se
considere necesario y ya se podra comenzar a trabajar con estos nuevos componentes. Para
acceder a este menu de configuracion, se debe hacer “click” en “Framework — Select
Drivers/Components/Services” y seleccionar los que se vallan a utilizar.

57

A.3 ¢ FREERTOS 0 PROGRAMACION “STANDALONE”"?

En el momento de iniciar un proyecto en AVR32 Studio, el propio programa hace hincapié en
que tipo de proyecto se desea, y entre otros, una de las opciones que muestra es la de crear
un proyecto standalone. El concepto de standalone, histéricamente, no es otro que el de una
aplicaciébn que no necesita ningun tipo de sistema operativo para funcionar. En el caso a
estudio, parece ser claro que no se hara uso de SO, asi que los primeros contactos con el
entorno de programacion y cédigo se hacen bajo estas condiciones.

Pero a pesar de lo mencionado, una de las ventajas de disponer de un microcontrolador de
altas prestaciones, es la de poder instar en él un sistema operativo en tiempo real, que ayude a
la planificacién y coordinacién de las tareas que se implementen. Es por ello, que a pesar de
que la programacion “standalone” puede ser mas sencilla, podria ser interesante el decantarse
por implementar uno de estos sistemas.

Como sistema operativo, AVR32 Studio nos permite hacer uso de FreeRTOS, un sistema
operativo en tiempo real para dispositivos embebidos y que ha sido portado a la mayoria de
microcontroladores. Este SO esta distribuido bajo la GPL y esta disefiado para ser pequefio y
simple. De hecho, el nicleo del SO esta formado Unicamente por 3 o 4 ficheros. El lenguaje
utilizado en su programacion es C, lo que permite que sea legible, facil de portar a otras
plataformas y facil también, de mantener.

Este sistema, se puede descargar de forma totalmente gratuita desde la web de FreeRTOS
[13], y dispone de varios ejemplos especificos para los diferentes microcontroladores que lo
soportan. Algunas de sus caracteristicas técnicas més importantes son:

e Soporte oficial para 23 arquitecturas de microcontroladores.

e Disefiado para ser pequefio, simple y facil de utilizar.

e Portable a otras arquitecturas gracias a que su cédigo esta escrito en C.

e Soporte para tareas y rutinas.

¢ No hay limite para el nimero de tareas que pueden ser creadas y lanzadas.
¢ No hay limite para el nimero de prioridades que pueden ser usados.

e Mas de una tarea puede tener el mismo nivel de prioridad.

e Soporte para colas, semaforos y mutexes para las comunicaciones y sincronizacion
entre tareas e interrupciones.

Debido a que las exigencias de nuestro proyecto no requieren su uso, toda la programacion se
llevara a cabo de forma Standalone, aunque es conveniente saber de su existencia y uso.

58

A.4 PROGRAMACION DEL AVR32

A continuacién se mostraran fragmentos de cédigo utilizado para la configuracién de los
diferentes elementos necesarios en la realizacién del proyecto, aunque para la obtencion del
cédigo fuente completo deben dirigirse al punto B y C del Anexo.

Power Manager:

El Power Manager es el encargado de gestionar, entre otras cosas, el funcionamiento de los
buses internos del microcontrolador. Es por ello que se utilizara para proporcionar un reloj a
todo el sistema, que podra variar en funcién de las necesidades. Se ha de tener en cuenta que
a mayor velocidad de reloj, mayor potencia de calculo, pero también conllevara un aumento del
consumo energético.

Esta velocidad se puede variar mediante la inicializacion de relojes externos/internos o
mediante el uso de los PLL'’s, de modo que su velocidad de funcionamiento puede oscilar entre
los 112 KHz hasta los 66 MHz méximos. A continuacion se muestra el fragmento de cdodigo
utilizado para la inicializacién en los siguientes casos:

12 MHz: Unicamente es necesario incluir la siguiente linea al comienzo del programa principal:

pm_switch_to_oscO(&AVR32_PM, FOSCO0, OSCO_STARTUP);

Para el resto de velocidades de reloj, sera necesario la modificacién de los divisores del PLL,
aunque el proyecto se llevard a cabo a una frecuencia de 12 MHz ya que se trata de una
velocidad suficiente para el funcionamiento del conjunto.

66 MHz:

pm_switch_to_oscO(&AVR32_PM, FOSCO0, OSCO_STARTUP);
pm_pll_setup(&AVR32_PM, 0,

10,

1,

0,

16);
pm_pll_set_option(&AVR32_PM, 0,

1,

1,

0);
pm_pll_enable(&AVR32_PM, 0);
pm_wait_for_pll0_locked(&AVR32_PM);
pm_cksel(&AVR32_PM,

0,

O O O o

0);
flashc_set wait_state(1);
pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLLO);

59

Si bien, para poder hacer uso de estas funciones, primero es necesario incluir en nuestras
librerias las correspondientes al Power Manager a través del menu “Framework — Select
Drivers”. Posteriormente, debera ser declarada al inicio del programa.

GPIO:

Como ya se ha comentado anteriormente, los canales GPIO permitiran activar/desactivar
sefiales o leer valores digitales de dispositivos externos. Para el proyecto, su uso gira entorno a
la activacion de las ruedas motrices.

En primer lugar, es necesario que del mismo modo que para el Power Manager, se incluyan las
librerias necesarias en el proyecto a través del selector de drivers incluido en AVR32 Studio.
Para este caso y para todos los posteriores debera realizarse del mismo modo, por lo que de
ahora en adelante este paso sera omitido. Una vez incluidas las librerias necesarias, deben
definir las variables que sean acordes a los elementos que se desea controlar. En este caso,
cada uno de los motores dispone de 3 controles:

e EI PIN Enable, que activara o desactivara el motor y que sera definido para que haga
uso del PIN PBO1 del microcontrolador.

e Los interruptores A y B, que seran los encargados de ofrecer las sefales necesarias
para poder gobernar el robot.

#define ENABLE_PIN_MOTOR_DER AVR32_PIN_PBO01
#define A_PIN_MOTOR_DER AVR32_PIN_PB02
#define B_PIN_MOTOR_DER AVR32_PIN_PB03

Una vez realizado este paso, se debe inicializar el Bus GPIO y este ya se encontrara listo para
utilizarse. Ademas, AVR32 permite activar el filtro anti-glitch, de modo que cualquier pulso de
duraciéon menor a un ciclo de reloj sera descartado y no afectara al funcionamiento del robot.
En este caso, se hace uso de este filtro en todas las salidas/entradas del motor:

gpio_local_init();
gpio_enable_pin_glitch_filter(ENABLE_PIN_MOTOR_DER);
gpio_enable_pin_glitch_filter(A_PIN_MOTOR_DER);
gpio_enable_pin_glitch_filter(B_PIN_MOTOR_DER);

Por ultimo, solo queda hacer uso de estos canales mediante la habilitacion o deshabilitacion de
estos. Si por el contrario, se desea obtener un valor I4gico desde un evento externo, este
puede ser leido mediante el Ultimo de los comandos, aunque para la realizacién de esta tarea,
los canales ADC son los mas apropiados, por ofrecer niveles analdgicos y no valores de 0 0 1
como ocurre con el GPIO.

gpio_set_gpio_pin(ENABLE_PIN_MOTOR_DER);
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

gpio_get_pin_value(GPIO_PUSH_BUTTON_0);

60

ADC:

Este tipo de canales seran los encargados de realizar la lectura de los sensores externos
utilizados para la detecciéon de colisiones del robot. Seran utilizados estos y no los GPIO, ya
que permitiran obtener un valor “analégico”, que nos aportara datos sobre la distancia a la que
se encuentren los obstaculos mas precisos que en el caso de hacer uso del GPIO. Para su
uso, el primer paso es declarar las variables necesarias tal y como se muestra en el siguiente
fragmento. Existen 7 canales posibles para utilizar, aunque en este ejemplo se especifica su
uso para el canal 0.

#define DETECTAR_COLISION_CHANNEL 0
#define DETECTAR_COLISION_PIN AVR32_ADC_AD_0_PIN
#define DETECTAR_COLISION_FUNCTION AVR32_ADC_AD_0_FUNCTION

volatile avr32_adc_t *adc = &AVR32_ADC;
signed short adc_value_ir = -1;
unsigned short adc_channel_sensor = DETECTAR_COLISION_CHANNEL;

Una vez se han declarado estas variables es necesario mapear todos los puertos que se vallan
a utilizar para que funcionen como canales ADC y no como canales de propésito general. Tal y
como se dijo, todos los puertos disponen de varias funciones y es por eso que antes de hacer
uso de ellos se debe especificar en nuestro programa que funcién han de realizar. Por Gltimo,
sélo quedara hacer uso de las funciones que se muestran para poder realizar medidas a través
de estos puertos.

static const gpio_map_t ADC_GPIO_MAP =
{
{DETECTAR_COLISION_PIN, DETECTAR_COLISION_FUNCTION},

{DETECTAR_COLISION_PIN_1, DETECTAR_COLISION_FUNCTION_1},
{DETECTAR_COLISION_PIN_2, DETECTAR_COLISION_FUNCTION_2},

3

gpio_enable_module(ADC_GPIO_MAP, sizeof(ADC_GPIO_MAP) /
sizeof(ADC_GPIO_MAPI[0]));

adc_configure(adc);
adc_enable(adc,adc_channel_sensor);
adc_enable(adc,adc_channel_sensor_1);

adc_enable(adc,adc_channel_sensor_2);

adc_start(adc);
adc_value_ir = adc_get_value(adc, adc_channel_sensor);

PWM:

La programacion de los canales PWM es sencilla y a diferencia de otros microcontroladores, no
es necesario gestionar ningdn tipo de interrupcién ni contador. Con la configuracion mostrada
se pueden generar pulsos cuadrados del periodo que deseemos a través del canal 0. Como
existen 7 canales, sélo hay que modificar el valor 0 y sustituirlo por un nimero entre el O y el 6.

61

int status_pwm_0 = -1;

pwm_opt_t pwm_opt_channel_0;
avr32_pwm_channel_t pwm_channel 0 ={.ccnt=0};
unsigned int channel_id_0;

Como siempre, el primer paso a realizar es una declaracién de todas las variables implicadas
en la generacion de sefiales PWM, para posteriormente seguir con la generacién de la onda.
Este microcontrolador permite modificar muchas de las caracteristicas de la sefial asi como lo
son la polaridad esta, su posicién, el periodo o el duty-cycle a utilizar.

channel_id_0=0;
gpio_enable_module_pin(AVR32_PWM_0_PIN, AVR32_PWM_0_FUNCTION);

pwm_opt_channel_0.diva = AVR32_PWM_DIVA_CLK_OFF;
pwm_opt_channel_0.divb = AVR32_PWM_DIVB_CLK_OFF;
pwm_opt_channel_0.prea = AVR32_PWM_PREA_MCK;
pwm_opt_channel_0.preb = AVR32_PWM_PREB_MCK;

pwm_init(&pwm_opt_channel_0);

pwm_channel_0.CMR.calg = PWM_MODE_LEFT_ALIGNED;
pwm_channel_0.CMR.cpol = PWM_POLARITY_LOW;
pwm_channel_0.CMR.cpd = PWM_UPDATE_DUTY;
pwm_channel_0.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_1024
pwm_channel_0.cdty = 210;

pwm_channel_0.cprd = 234;

pwm_channel_0.cupd = 0;

Las 4 ultimas lineas de cédigo son las que permitiran seleccionar el periodo del pulso PWM.
Mediante la siguiente férmula se puede calcular el valor de estas variables para generar la
frecuencia deseada.

(115200/256)/20 == 22.5Hz == (Clock Frequency / Prescaler) / Period
Por dltimo, sélo quedara iniciar o parar el canal PWM segun sea necesario. Para ello, se hara

uso de las instrucciones “pwm_stop_channels” y “pwm_start_channels” tal y como se puede
ver en el siguiente fragmento de cédigo.

pwm_channel_init(channel_id_0, &pwm_channel_0);
pwm_stop_channels(1 << channel_id_0;
pwm_start_channels(1 << channel_id_0);

Ahora que ya se encuentran configurados y funcionando los canales PWM, se podra controlar
el servomotor segln convenga o proporcionar a los motores DC, una velocidad variable
conectando uno de sus terminales (por ejemplo el Enable), a uno de los canales PWM.

62

Delay:

Nuevamente nos encontramos que gracias a las librerias existentes en el entorno de
programacion, sera muy sencillo poder generar delays temporales Unicamente llamando al
comando “delay _ms()”. Como su nombre indica, nos generara un retraso de tantos
milisegundos como le especifiquemos entre los paréntesis.

Este tipo de funcion es imprescindible si queremos hacer uso del LCD, ya que con él podremos
limitar el refresco de la pantalla para que esta sea legible (aunque también podriamos hacer
uso de un simple bucle for).

delay_init(FOSCO0);
delay_ms(500);

USART:

El uso que se hara del USART en este proyecto, sera el poder comunicarse con el robot desde
un PC, mandandole instrucciones y poder realizar un debug a través de un terminal y un puerto
serie. También sera Util para mostrar por pantalla el valor de los sensores y de este modo
comprobar si estan funcionando de forma correcta. Para ello, una vez mas deberan declararse
todas las variables iniciales necesarias para el funcionamiento de este dispositivo, y mapear los
puertos para que funcionen en modo USART.

#define COMM_ROBOT_USART (&AVR32_USART1)

#define COMM_ROBOT_USART_RX_PIN AVR32_USART1 _RXD 0 0 _PIN
#define COMM_ROBOT_USART_RX_FUNCTION
AVR32_USART1_RXD_0_0_FUNCTION

#define COMM_ROBOT_USART_TX_PIN AVR32_USART1_TXD_0_0_PIN
#define COMM_ROBOT_USART_TX_FUNCTION
AVR32_USART1_TXD_0_0_FUNCTION

int status_usart = -1;

static const gpio_map_t USART_GPIO_MAP =
{
{COMM_ROBOT_USART_RX_PIN, COMM_ROBOT_USART_RX_FUNCTION},
{COMM_ROBOT_USART_TX_PIN, COMM_ROBOT_USART_TX_ FUNCTION}

I;

Ahora llega el momento de definir las caracteristicas basicas de funcionamiento del USART
como lo son la tasa de transferencia, la longitud del caracter o el tipo de paridad que va a
utilizarse. Para conocer mejor estas caracteristicas y su uso, se puede revisar la libreria
correspondiente al USART, ya que es aqui donde se encuentran las diferentes opciones y
pardmetros a utilizar, asi como una breve explicacion de estos.

static const usart_options_t USART_OPTIONS =
{ .baudrate =57600,
.charlength =8,
paritytype = USART_NO_PARITY,
.Sstopbits = USART_2_STOPBITS,
.channelmode = USART_NORMAL_CHMODE },

63

gpio_enable_module(USART_GPIO_MAP, sizeof(USART_GPIO_MAP) /
sizeof(USART_GPIO_MAPJ[0]));

usart_init_rs232(COMM_ROBOT_USART, &USART_OPTIONS, FOSCO);

Ahora, solo restara hacer uso de este canal de comunicacién ya sea para realizar debug a
través del terminal serie 0 para comunicarse con el robot.

usart_getchar(COMM_ROBOT_USART);
usart_putchar(COMM_ROBOT_USART, opcion);

print_dbg("\033[22;30m");
print_dgb_hex(opcion);

64

B. APLICACION DE CONTROL EN VISUAL BAsIc 6.0

[B T T R R R R R R
I/l # Programa para el control remoto del robot movil #
/I # Por Francisco Mufioz Verdu. UAB. #
[R R R R e R R e e e e R AR

/I Variables para la comunicacién con el microcontrolador AVR32.
Dim i As Integer, Letra(99)

/I Buffer donde se almacenaran los datos de la comunicacion RS232.
Dim InBuff As String

/I Funcién para Cambiar / Quitar el control manual del Robot.
Private Sub Commandl_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

/I Deshabilitamos todos los controles a excepcién del botén 1, que sera el del Control Manual.
If Command1.Caption = "Control Manual" Then

/I Guardamos la letra "f" y la enviaremos a través del puerto serie mediante MSComm1.Output
Letra(0) = "
MSComm1.Output = Letra(0)

/I Deshabilitamos los botones, para que no puedan ser utilizados
Command2.Enabled = False
Command5.Enabled = False
Command6.Enabled = False
Command1.Caption = "Fin Control"

/I Si volvemos a pulsar sobre el boton 1, habilitaremos todos los botones de nuevo
Elself Command1.Caption = "Fin Control" Then
/I Enviamos una "q" al microcontrolador para salir del programa del modo manual.
Letra(0) ="g"
MSComm1.Output = Letra(0)

/I'Y volvemos a deshabilitar los controles manuales.
Command2.Enabled = True
Command5.Enabled = True
Command6.Enabled = True
Command1.Caption = "Control Manual"
Command3.Enabled = False
Command4.Enabled = False
Command7.Enabled = False
Command8.Enabled = False
Command9.Enabled = False
Command10.Enabled = False
Command11.Enabled = False
Command12.Enabled = False
Command13.Enabled = False
Command23.Enabled = False
Command24.Enabled = False
Commandl16.Enabled = False

65

Commandl7.Enabled = False
Command18.Enabled = False

End If
End Sub

/I Funcién para activar el modo auténomo. El proceso de envio de datos se hara igual para

// todas las funciones del programa mediante el uso de MSComm1.

Private Sub Command2_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

/I Enviamos al micro la orden para entrar en Modo Autbnomo
If Command2.Caption = "Modo Autonomo" Then

Letra(0) = "e"

MSComm1.Output = Letra(0)

Commandl.Enabled = False

Command5.Enabled = False

Command6.Enabled = False

Command2.Caption = "Fin Modo"

/I Enviamos al micro la orden para salir del modo auténomo
Elself Command2.Caption = "Fin Modo" Then
Letra(0) = "t"
MSComm1.Output = Letra(0)
Commandl.Enabled = True
Command5.Enabled = True
Command6.Enabled = True
Command2.Caption = "Modo Autonomo"
End If
End Sub

/I Funcién que lanzara una prueba sobre el servomotor de forma automatica.
Private Sub Command5_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(0) = "a"

MSComm1.Output = Letra(0)

I Inicialmente deshabilitamos todos los botones y mas tarde, en el control de comunicacién se
Il volveran a activar.

Commandl.Enabled = False

Command2.Enabled = False

Command5.Enabled = False

Command6.Enabled = False

Command5.Caption = "Ejecutando..."
End Sub

/I Funcién que lanzara una prueba sobre el motor DC de forma automatica.
Private Sub Command6_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(0) = "b"

MSComm1.Output = Letra(0)

66

I Inicialmente deshabilitamos todos los botones y mas tarde, en el control de comunicacién se
Il volveran a activar.

Commandl.Enabled = False

Command2.Enabled = False

Command5.Enabled = False

Command6.Enabled = False

Command6.Caption = "Ejecutando..."
End Sub

/I Enviamos una "s" para que el robot se mueva hacia detras
Private Sub Command10_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(1) = "s"
MSComm1.Output = Letra(1)
End Sub

/I Enviamos una "k" para que el robot realice la medida del sensor frontal
Private Sub Commandl11l_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(1) = "k"
MSComm1.Output = Letra(1)
End Sub

/I Enviamos una "I" para que el robot realice la medida del sensor derecho
Private Sub Command12_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(1) ="I"

MSComm1.Output = Letra(1)

End Sub

/I Enviamos una "j" para que el robot realice la medida del sensor izquierdo

Private Sub Command13_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(1) ="j"
MSComm1.Output = Letra(1)
End Sub

/I Control para la conexiéon con los puertos COM. Debemos seleccionar el que tengamos

/I configurado en nuestro PC

Private Sub Command14_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

/I Realizamos un control de errores para evitar que el programa se cierre al seleccionar un
/I puerto que esté cerrado
On Error GoTo control_errores

If Combol.Text = "COM 1" Then
Letra(2) =1
End If

67

If Combol.Text = "COM 2" Then
Letra(2) =2
End If

If Combol.Text ="COM 3" Then
Letra(2) =3
End If

If Combol.Text = "COM 4" Then
Letra(2) = 4
End If

If Combol.Text ="COM 5" Then
Letra(2) =5
End If

If Combol.Text = "COM 6" Then
Letra(2) = 6
End If

/I Configuracion necesaria para el funcionamiento del médulo MSComm1
With MSComm1

.CommPort = Letra(2)

.RThreshold =1

.RTSEnable = True

.Settings = "57600,n,8,1"

.SThreshold = 1

.PortOpen = True

End With

Textl.Text=""

/I Si la conexidn se establece, ponemos en color verde el circulo
Shapeb5.BackColor = &HFF00&

Commandl14.Enabled = False

Command15.Enabled = True

/'Y ademas, habilitamos los botones de control

If MSComm1.PortOpen = True Then
Commandl.Enabled = True
Command2.Enabled = True
Command5.Enabled = True
Command6.Enabled = True

End If

Exit Sub

/l Mensaje de error en el caso de no seleccionar un puerto correcto
control_errores:

MsgBox "El Puerto COM indicado no es correcto. Por favor, seleccione otro.", vbExclamation,

"Error de conexién"

End Sub

68

/I Funcioén que cerrara la comunicacion serie y ademas, pondré en rojo el circulo. También se

/I deshabilitaran los botones de control.

Private Sub Command15 MouseUp(Button As Integer, Shift As Integer,

Single)

If MSComm1.PortOpen = True Then
MSComm1.PortOpen = False
End If

Shape5.BackColor = &HFF&
Command15.Enabled = False
Command14.Enabled = True

If MSComm1.PortOpen = False Then
Command1.Enabled = False
Command2.Enabled = False
Command5.Enabled = False
Command6.Enabled = False

End If

End Sub

/[l Enviamos una "a" para que el robot se mueva hacia la izquierda
Private Sub Command7_MouseUp(Button As Integer, Shift As Integer,
Single)

Letra(1l) = "a"
MSComm1.Output = Letra(1)
End Sub

/l Enviamos una "w" para que el robot se mueva hacia delante
Private Sub Command8_ MouseUp(Button As Integer, Shift As Integer,
Single)

Letra(l) = "w"
MSComm1.Output = Letra(1)
End Sub

/l Enviamos una "d" para que el robot se mueva hacia la derecha
Private Sub Command9_MouseUp(Button As Integer, Shift As Integer,
Single)

Letra(1) = "d"
MSComm1.Output = Letra(1)
End Sub

/I Enviamos una "y" para mover el servomotor
Private Sub Command24 MouseUp(Button As Integer, Shift As Integer,
Single)

Letra(1) ="y"
MSComm1.Output = Letra(1)
End Sub

X As Single, Y As

X As Single, Y As

X As Single, Y As

X As Single, Y As

X As Single, Y As

69

/l Enviamos una "u" para mover el servomotor
Private Sub Command16_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(1) = "u"
MSComm1.Output = Letra(1)
End Sub

/I Enviamos una "i" para mover el servomotor
Private Sub Commandl17_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(1) = "i"
MSComm1.Output = Letra(1)
End Sub

/l Enviamos una "0" para mover el servomotor
Private Sub Command18 MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(1) = "o"
MSComm1.Output = Letra(1)
End Sub

/I Enviamos una "p" para mover el servomotor
Private Sub Command23_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Letra(1) ="p"
MSComm1.Output = Letra(1)
End Sub

/I Cuando cerremos el formulario, también se cerrara la comunicacién con el puerto serie.
Private Sub Form_Unload(Cancel As Integer)

If MSComm1.PortOpen = True Then
MSComm1.PortOpen = False

End If

End Sub

/I Ante la recepcién de informacién a través del puerto COM, establecemos unas reglas para
/I que actlie en consecuencia.
Private Sub MSComm1_OnComm()

/I Guardamos los datos recibidos en un buffer llamado InBuff, declarado al inicio del programa.
InBuff = MSComm1.Input
Textl.Text = InBuff

/I Guardamos el valor del sensor frontal dentro de una casilla de texto
If Letra(1) = "k" Then
If Textl.Text <>"g" Then
Text2.Text = InBuff
End If

70

End If

/I Guardamos el valor del sensor izquierdo dentro de una casilla de texto
If Letra(1) = "j" Then
If Textl.Text <>"q" Then
Text4.Text = InBuff
End If
End If

/I Guardamos el valor del sensor derecho dentro de una casilla de texto
If Letra(1) = "I" Then
If Textl.Text <>"q" Then
Text3.Text = InBuff
End If
End If

/I Variable que recibiremos ante la ejecucion del modo manual. Se habilitaran todos los

/I botones ‘de control

If Textl.Text ="8" Then
Command3.Enabled = True
Command4.Enabled = True
Command7.Enabled = True
Command8.Enabled = True
Command9.Enabled = True
Commandl10.Enabled = True
Commandl1l.Enabled = True
Commandl12.Enabled = True
Commandl13.Enabled = True
Command23.Enabled = True
Command24.Enabled = True
Commandl16.Enabled = True
Commandl17.Enabled = True
Command18.Enabled = True

End If

/I Con esta condicion, evaluaremos para que funcion se envia una sentencia de Quit.
If Textl.Text ="q" Then
If Command5.Caption = "Ejecutando..." Then
Commandl.Enabled = True
Command2.Enabled = True
Command5.Enabled = True
Command6.Enabled = True
Command5.Caption = "Prueba Servo M."
End If
If Command6.Caption = "Ejecutando...” Then
Commandl.Enabled = True
Command2.Enabled = True
Command5.Enabled = True
Command6.Enabled = True
Command6.Caption = "Prueba Motor DC"
End If
End If
End Sub

C. SOFTWARE DE CONTROL DEL MICROCONTROLADOR

/**

* Robot Movil. Proyecto Final de Carrera *

**/

/I Incluimos todas las librerias necesarias. Previamente tenemos que haber afadido los ficheros
/I necesarios a nuestro proyecto. Para hacer eso nos vamos a "Framework — Select Drivers /
/I Components/Services" y marcamos los que deseemos.

#include "board.h"
#include "print_funcs.h"
#include "gpio.h"
#include "pm.h"
#include "adc.h"
#include <avr32/io.h>
#include "compiler.h"
#include "usart.h"
#include "delay.h"
#include "pwm.h"
#include "spi.h"
#include "dip204.h"
#include "intc.h"

/I Defines necesarios para el funcionamiento de la comunicacion USART. Siempre son

/I necesarios dos del mismo tipo, ya que el PIN indica el PIN fisico del microcontrolador y la
/I funcion nos dird que funcion realizara ese PIN. En la parte de configuracion del USART se
/ mapearan los pines para que funcionen como nosotros deseamos.

#define COMM_ROBOT_USART (&AVR32_USART1)
#define COMM_ROBOT_USART_RX_PIN AVR32_USART1_RXD_0_0_PIN

#define COMM_ROBOT_USART_RX_FUNCTION AVR32_USART1_RXD_0_0_FUNCTION
#define COMM_ROBOT_USART_TX_PIN AVR32_USART1_TXD_0_0_PIN
#define COMM_ROBOT_USART_TX_FUNCTION AVR32_USART1_TXD_0_0_FUNCTION

#define COMM_ROBOT_USART_IRQ AVR32_USART1_IRQ

/I Defines necesarios para el funcionamiento de los motores DC. Cada motor tiene 3 entradas,
/I el enable y los pines a y b que serviran para controlar el sentido. El pin enable es definido
/I como un canal PWM.

#define A_PIN_MOTOR_DER AVR32_PIN_PB02
#define B_PIN_MOTOR_DER AVR32_PIN_PB03
#define A_PIN_MOTOR_IZQ AVR32_PIN_PB09
#define B_PIN_MOTOR_IZQ AVR32_PIN_PB10

/I Defines necesarios para el funcionamiento de los canales ADC y los sensores IR. Del mismo
/I modo que con los USART, hay que indicar el pin y la funcion que va a realizar para
/I posteriormente poder realizar el mapeo de los GPIO. Ademas, se definen algunas variables
/I para poder almacenar los datos obtenidos, entre otras.

/I El canal 0 estara definido para el sensor Frontal. El canal 1 para el sensor derecho y el canal
/I 2 para el sensor izquierdo.

#define DETECTAR_COLISION_CHANNEL 0

#define DETECTAR_COLISION_PIN AVR32_ADC_AD_0_PIN
#define DETECTAR_COLISION_FUNCTION AVR32_ADC_AD_0_FUNCTION
#define DETECTAR_COLISION_CHANNEL_1 1

#define DETECTAR_COLISION_PIN_1 AVR32_ADC_AD 1 PIN
#define DETECTAR_COLISION_FUNCTION_1AVR32_ADC_AD_1_FUNCTION
#define DETECTAR_COLISION_CHANNEL 2 2

72

#define DETECTAR_COLISION_PIN_2 AVR32_ADC_AD_2_PIN
#define DETECTAR_COLISION_FUNCTION_2 AVR32_ADC_AD_2_FUNCTION

volatile avr32_adc_t *adc = &AVR32_ADC; // Variable para definir el canal ADC en MEM.
signed short adc_value_ir = -1; // Lo usaremos para medir los valores del sensor frontal
unsigned short adc_channel_sensor = DETECTAR_COLISION_CHANNEL;

signed short adc_value_ir_1 =-1; // Lo usaremos para medir los valores del sensor derecho
unsigned short adc_channel_sensor_1 = DETECTAR_COLISION_CHANNEL _1;

signed short adc_value_ir_2 =-1; // Lo usaremos para medir los valores del sensor izquierdo
unsigned short adc_channel_sensor_2 = DETECTAR_COLISION_CHANNEL _2;

/I Variables necesarias para el funcionamiento de los canales PWM. Estos nos ayudaran
/I a poder controlar el movimiento del servomotor y ajustar la velocidad de los motores DC.

int status_pwm_0 = -1;

pwm_opt_t pwm_opt_channel_0; / PWM configurar opciones para el Channel 0.
avr32_pwm_channel_t pwm_channel_0 ={.ccnt=0}; // Configuracion para un Unico canal.
unsigned int channel_id_0; // Generamos una variable para que pueda ser utilizada en
referencia al nimero del canal, a lo largo del programa.

int status_pwm_1 =-1;

pwm_opt_t pwm_opt_channel_1; // PWM configurar opciones para el Channel 3.
avr32_pwm_channel_t pwm_channel_1 ={.ccnt=0}; // Configuracion para un unico canal.
unsigned int channel_id_1; // Generamos una variable para que pueda ser utlizada en
referencia al nimero del canal, a lo largo del programa.

int status_pwm_2 =-1;

pwm_opt_t pwm_opt_channel_2; // PWM configurar opciones para el Channel 2.
avr32_pwm_channel_t pwm_channel_2 ={.ccnt =0}; // Configuracion para un Unico canal.
unsigned int channel_id_2; // Generamos una variable para que pueda ser utlizada en
referencia al nimero del canal, a lo largo del programa.

int duty_servo_motor = 216;

/I'Y por dltimo antes del main principal, declararemos todas las funciones que hemos
// ido creando y que son necesarias para la ejecucion del programa.

int configurar_usart(void); // Funcién que configurara todos los parametros del USART

int configurar_canal_pwm_0(void); // Funcién que configurara todos los parametros del PWMO
int configurar_canal_pwm_1(void); / Funcién que configurara todos los parametros del PWM1
int configurar_canal_pwm_2(void); // Funcién que configurara todos los parametros del PWM2
void configurar_puertos_gpio(void); // Funcion que configura los puertos GPIO utilizados

void configurar_dip204(void); // Funcion que configura el display dip204

void configurar_canal_adc(void); // Funcion para configurar los puertos ADC

void prueba_servomotor(void); / Funcién que servira para testear el servomotor

void modo_automata(void); / Funcién que hara que el robot se mueva de forma autonoma
void modo_manual(void); // Funcién para que el robot funcione controlado desde el PC

int comprobacion_frontal(void); // Comprobar si hay obstaculo en el frontal derecho

int comprobacion_lateral_derecho(void); // Comprobar si hay obstaculo en el lateral derecho
int comprobacion_lateral_izquierdo(void); // Comprobar si hay obstaculo en el lateral izquierdo
void prueba_motores_dc(void); // Prueba automatica de los motores DC

/
* Funcion Main *

***/

73

int main()

{
int status = -1; // Variable para guardar el retorno de las funciones (SUCCES o FAIL)
int opcion = -1; // Variable para guardar la opcién seleccionada en menu

pm_switch_to_oscO(&AVR32_PM, FOSCO0, OSCO_STARTUP); // Osc. 0 a 12 MHz
gpio_local_init(); / Habilita el bus local para la interfaz GPIO.

delay_init(FOSCO); // Habilita los delays
configurar_dip204(); // Configuramos el display dip204
delay_ms(1500);

/I Mostraremos por la pantalla LCD, un mensaje personal
dip204_clear_display();
dip204_set_cursor_position(1,1);
dip204_write_string("Proyecto Final de C.");
dip204_set_cursor_position(1,2);
dip204_write_string("Francisco Munoz V.");
dip204_set_cursor_position(1,3);
dip204_write_string("Escola d'Enginyeria");
dip204_set_cursor_position(1,4);
dip204_write_string("UAB");
dip204_hide_cursor();

delay_ms(1500);

/I Configuramos la interfaz del USART1 para Debug y transmision/recepcion
status = configurar_usart();

dip204_clear_display();
dip204_set_cursor_position(1,1);
dip204_write_string("Configurando: USART");
dip204_hide_cursor();

delay_ms(1000); // Para que le de tiempo al Bluetooth a configurarse
dip204_set_cursor_position(1,2);

dip204_write_string("Configurando: GPIO");

dip204_hide_cursor();

configurar_puertos_gpio(); // Configuramos los puertos GPIO

delay _ms(500);

dip204_set_cursor_position(1,3);

dip204_write_string("Configurando: PWM");

dip204_hide_cursor();

status = configurar_canal_pwm_0(); // Configuramos el canal PWMO

status = configurar_canal_pwm_1(); // Configuramos el canal PWM1
status = configurar_canal_pwm_2(); // Configuramos el canal PWM2

delay _ms(500);
dip204_set_cursor_position(1,4);

dip204_write_string("Configurando: ADC");
dip204_hide_cursor();

}

configurar_canal_adc(); // Configuramos el canal ADC para ser usado con el sensor IR

delay _ms(500);

/I Este seré el bucle principal del programa de testeo. Se incluyen 5 funciones posibles
/I a realizar y que tendremos que escoger abriendo una sesién de hyperterminal y

/I enviando los caracteres correspondientes a la funcién a realizar. Una vez realizada la
/l funcion volveremos al menu de seleccion.

for(;;) // Bucle infinito

{

}

/I Existen muchas combinaciones para poder realizar en la comunicacién serie
Il a través de sesiones de hyperterminal. Si queremos tabular, borrar la pantalla
/I o cambiar el color del texto entre otras, deberemos dirigirnos a la libreria

I print_funcs.h, donde estan todas descritas.

/I Funcién que esperara recibir un sélo caracter a través del terminal y lo
/I almacena en opcion.
opcion = usart_getchar(COMM_ROBOT_USART);

/I Funcién que cogera el valor de opcion y lo imprimird por pantalla. Sirve para
/I entre otras cosas, comprobar que la comunicacién entre el robot y el PC se
/I est4 realizando correctamente.

delay_ms(1250); // Para hacer mas lento el refresco del terminal

/I Switch que nos enviara a una funcion u otra en funcién del valor de opcién.
/I Una vez se complete la funcion realizada volveremos al switch y el bucle for
/I (infinito) volvera a comenzar.

switch(opcion)

case 'a"
prueba_servomotor();
break;

case 'b"
prueba_motores_dc();
break;

case 'e"
modo_automatay);
break;

case 'f:
modo_manual();
break;

default:
break;

return 1; // Devolvemos un uno al finalizar el bucle, aunque nunca saldremos de él...

int configurar_usart(void)

{

/I Esta funcion sélo servird para iniciar la configuracion de los médulos USART. Una
/I vez completada, devolvera un valor indicando si la ejecucion ha sido correcta o no.

75

}

/I Después ya podremos empezar a hacer uso de la comunicacion por puerto serie
int status_usart = -1; // Variable para guardar el valor del retorno del usart_init_rs232

/I Como hemos explicado al comienzo (en el punto de los Defines), tenemos que
/I mapear en el mapa de puertos GPIO las funciones que van a realizar los pines del
/I USART. Si no lo hacemos, por defecto funcionardn como puertos GPIO.

static const gpio_map_t USART_GPIO_MAP =

{COMM_ROBOT_USART_RX_PIN,
COMM_ROBOT_USART_RX_FUNCTION},
{COMM_ROBOT_USART_TX_PIN, COMM_ROBOT_USART_TX_FUNCTION}

5

/I En este punto se especificaran las caracteristicas de las que debera hacer uso el
/I USART. En el caso de querer realizar una comunicacion con el PC, tenemos que
[/l asegurarnos que nuestro terminal esta configurado con los mismos parametros.

/I Nuevamente, si queremos conocer mas opciones debemos ir a las librerias y ver las
/I opciones existentes.

static const usart_options_t USART_OPTIONS =

{
.baudrate =57600,
.charlength =38,
.paritytype = USART_NO_PARITY,
.stopbits = USART_1_STOPBIT,
.channelmode = USART_NORMAL_CHMODE
3

/I Habilitaremos todos los pines que sean necesarios para su uso
gpio_enable_module(USART_GPIO_MAP, sizeof(USART_GPIO_MAP) /
sizeof(USART_GPIO_MAPI0)));

/I Iniciamos el USART en modo RS232. Para debug usamos las funciones print.
status_usart = usart_init_rs232(COMM_ROBOT_USART, &USART_OPTIONS,
FOSCO0);

return status_usart; // Devolvemos el valor del status_usart (FAIL O SUCCESS)

void configurar_puertos_gpio(void)

{

/I Mediante la funcion gpio_enable_pin_glitch_filter() estaremos habilitando el filtro anti
/I glitch en todos los puertos GPIO que creamos conveniente. Este hara que si se
/I recibe un pulso de duracién menor a un ciclo de reloj, sea omitido.

gpio_enable_pin_glitch_filter(A_PIN_MOTOR_DER);
gpio_enable_pin_glitch_filter(B_PIN_MOTOR_DER);
gpio_enable_pin_glitch_filter(A_PIN_MOTOR_1ZQ);
gpio_enable_pin_glitch_filter(B_PIN_MOTOR_IZQ);
gpio_enable_pin_glitch_filter(GPIO_PUSH_BUTTON_0);
gpio_enable_pin_glitch_filter(GPIO_PUSH_BUTTON_1);

/I Ahora se ponen a 0 (valor I6gico) todos los pines que vamos a utilizar en el
/I movimiento de los motores DC, a la espera de recibir 6rdenes.

gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

76

}

gpio_clr_gpio_pin(A_PIN_MOTOR_I1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_1ZQ);

int configurar_canal_pwm_0(void)

{

}

/I El canal O serd el utilizado para el funcionamiento del servomotor. Por eso, la
/I configuracion de los periodos y dutycycle sera distinta a la de los canales 1y 2.

channel_id_0 = 0; //Usamos el canal 0, definido al comienzo.

/I Habilitamos el puerto GPIO para que funcione como canal PWM.
gpio_enable_module_pin(AVR32_PWM_0_PIN, AVR32_PWM_0_FUNCTION);

/I PWM controller configuration.

pwm_opt_channel_0.diva = AVR32_PWM_DIVA CLK_OFF;
pwm_opt_channel_0.divb = AVR32_PWM_DIVB_CLK_OFF;
pwm_opt_channel_0.prea = AVR32_PWM_PREA_MCK;
pwm_opt_channel_0.preb = AVR32_PWM_PREB_MCK;

/I Inicializamos el canal 0 con la configuracion anterior.
pwm_init(&pwm_opt_channel_0);

pwm_channel_0.CMR.calg = PWM_MODE_LEFT_ALIGNED; // Channel mode.
pwm_channel_0.CMR.cpol = PWM_POLARITY_LOW,; /I Channel polarity.
pwm_channel_0.CMR.cpd = PWM_UPDATE_DUTY; /I No utilizado
pwm_channel_0.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_1024; // Prescaler.
pwm_channel_0.cdty =221; // Channel duty cycle, should be < CPRD.
pwm_channel_0.cprd = 234; // Channel period.

pwm_channel_0.cupd = 0; /I Channel update is not used here.

/[Para calcular los valores del periodo o del duty cycle tenemos que seguir los

/I siguientes pasos. Primero de todo tenemos que saber cual es la frecuencia que
/I deseamos. Una vez hecho, modificamos los valores en la siguiente formula:

/I (115200/256)/20 == 22.5Hz == (MCK/prescaler)/period, con MCK == 115200Hz,
/I prescaler == 256, period == 20.

/I Inicializa el canal 0 pero no iniciamos la seial.
status_pwm_0 = pwm_channel_init(channel_id_0, &pwm_channel_0);

return status_pwm_0; // Devolvemos el valor del status_pwm_0 (FAIL O SUCCESS)

int configurar_canal_pwm_21(void)

{

/I El funcionamiento es idéntico al del canal 0. Unicamente se variaré el valor del
/I periodo y del dutycycle para dejarlo acorde a las necesidades del motor DC.

channel_id_1 =1; //Usamos el canal 1, definido al comienzo.

/I Habilitamos el puerto GPIO para que funcione como canal PWM.
gpio_enable_module_pin(AVR32_PWM_1_PIN, AVR32_PWM_1 FUNCTION);

/I PWM controller configuration.

pwm_opt_channel_1.diva = AVR32_PWM_DIVA_CLK_OFF;
pwm_opt_channel_1.divb = AVR32_PWM_DIVB_CLK_OFF;
pwm_opt_channel_1.prea = AVR32_PWM_PREA_ MCK
pwm_opt_channel_1.preb = AVR32_PWM_PREB_MCK;

pwm_init(&pwm_opt_channel_1); // Inicializamos el canal 1

77

}

pwm_channel_1.CMR.calg = PWM_MODE_LEFT_ALIGNED; // Channel mode.
pwm_channel_1.CMR.cpol = PWM_POLARITY_LOW; /I Channel polarity.
pwm_channel_1.CMR.cpd = PWM_UPDATE_DUTY; /I No utilizado
pwm_channel_1.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_1024; // Prescaler.
pwm_channel_1.cdty = 1000; // Channel duty cycle, should be < CPRD.
pwm_channel_1.cprd = 1000; // Channel period.

pwm_channel_1.cupd = 0; /I Channel update is not used here.

/I Inicializa el canal 1.
status_pwm_1 = pwm_channel_init(channel_id_1, &pwm_channel_1);

return status_pwm_1; // Devolvemos el valor del status_pwm_1 (FAIL O SUCCESS)

int configurar_canal_pwm_ 2(void)

{

}

/I El funcionamiento es idéntico al del canal 0. Unicamente se variara el valor del
/I periodo y del dutycycle para dejarlo acorde a las necesidades del motor DC.

channel_id_2 =2; //Usamos el canal 2, definido al comienzo.

/I Habilitamos el puerto GPIO para que funcione como canal PWM.
gpio_enable_module_pin(AVR32_PWM_2_PIN, AVR32_PWM_2_FUNCTION);

/I PWM controller configuration.

pwm_opt_channel_2.diva = AVR32_PWM_DIVA_CLK_OFF;
pwm_opt_channel_2.divb = AVR32_PWM_DIVB_CLK_OFF;
pwm_opt_channel_2.prea = AVR32_PWM_PREA_MCK;
pwm_opt_channel_2.preb = AVR32_PWM_PREB_MCK;

pwm_init(&pwm_opt_channel_2); // Inicializamos el canal 3
pwm_channel_2.CMR.calg = PWM_MODE_LEFT_ALIGNED; // Channel mode.
pwm_channel_2.CMR.cpol = PWM_POLARITY_LOW; /I Channel polarity.
pwm_channel_2.CMR.cpd = PWM_UPDATE_DUTY; /I No utilizado
pwm_channel_2.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_1024; // Prescaler
pwm_channel_2.cdty = 1000; // Channel duty cycle, should be < CPRD.
pwm_channel_2.cprd = 1000; // Channel period.

pwm_channel_2.cupd = 0; /I Channel update is not used here.

/l'Inicializa el canal 2.
status_pwm_2 = pwm_channel_init(channel_id_2, &pwm_channel_2);

return status_pwm_2; // Devolvemos el valor del status_pwm_2 (FAIL O SUCCESS)

void configurar_dip204(void)

{

/I Esta funcién serd la encargada de realizar todas las configuraciones necesarias
/I para el correcto funcionamiento del display LCD. Por defecto esta desactivada al
/ inicio del main para poder ahorrar energia.

/I Mapeamaos todos los puertos necesarios. En el caso del LCD, hace uso de la
/I comunicacién a través del protocolo SPI que funciona sobre los canales USART.

static const gpio_map_t DIP204_SPI_GPIO_MAP =

{
{DIP204_SPI_SCK_PIN, DIP204 SPI_SCK_FUNCTION}, // SPI Clock.
{DIP204_SPI_MISO_PIN, DIP204_SPI_MISO_FUNCTION}, // MISO.
{DIP204_SPI_MOSI_PIN, DIP204_SPI_MOSI_FUNCTION}, // MOSI.
{DIP204_SPI_NPCS_PIN, DIP204_SPI_NPCS_FUNCTION} // Chip S. NPCS.

78

}

h

/I EI LCD hara uso de interrupciones, por lo que para poder configurarlo correctamente,

/I primero las deberemos deshabilitar y volver a arrancar.
Disable_global_interrupt(); / Disable all interrupts.
INTC_init_interrupts(); // Init the interrupts
Enable_global_interrupt(); // Enable all interrupts.

/I Opciones necesarias del SPI para el funcionamiento del display DIP204.
spi_options_t spiOptions =

{
.reg = DIP204_SPI_NPCS,
.baudrate =1000000,
.bits =8,
.spck_delay =0,
trans_delay =0,
.Stay_act =1,
.Sspi_mode =0,
.modfdis =1
3

/I Asignamos todos los puertos GPIO necesarios al SPI.
gpio_enable_module(DIP204_SPI_GPIO_MAP, sizeof(DIP204_SPI_GPIO_MAP) /
sizeof(DIP204_SPI_GPIO_MAPI[0]));

spi_initMaster(DIP204_SPI, &spiOptions); // Inicializamos el SPI en modo maestro

/I Set selection mode: variable_ps, pcs_decode, delay
spi_selectionMode(DIP204_SPI, 0, 0, 0);

spi_enable(DIP204_SPI); // Habilitamos el SPI

spi_setupChipReg(DIP204_SPI, &spiOptions, FOSCO); // Setup chip registers

/I Con esta funcién encendemos la pantalla LCD. Es importante tener en cuenta,

/I que el uso de esta pantalla provocara un alto coste de energia, por eso debemos

/I evitar tener encendida cuando no sea necesario.

dip204_init(backlight_PWM, TRUE);

/I Mostraremos un mensaje por pantalla a modo de ejemplo. También se puede hacer
/[uso del LCD para realizar debug sin necesidad de conectar el robot al PC, pero como

/I ya hemos comentado, es mas costoso a nivel energético.

dip204_set_cursor_position(8,1);
dip204_write_string("ATMEL");
dip204_set_cursor_position(7,2);
dip204_write_string("EVK1100");
dip204_set_cursor_position(6,3);
dip204_write_string("AVR32 UC3");
dip204_set_cursor_position(3,4);
dip204_write_string("AT32UC3A Series");
dip204_hide_cursor();

void configurar_canal_adc(void)

{

79

/I Para la configuracién de los canales ADC procederemos en primera instancia, del
/I mismo modo que para los GPIO y sera habilitando el filtro anti glitch en los puertos
/I que vallamos a utilizar.

gpio_enable_pin_glitch_filter(AVR32_PIN_PA21);
gpio_enable_pin_glitch_filter(AVR32_PIN_PA22);
gpio_enable_pin_glitch_filter(AVR32_PIN_PA23);

/I Mapeamos los puertos GPIO para que realicen las funciones de canales ADC
static const gpio_map_t ADC_GPIO_MAP =

{

{DETECTAR_COLISION_PIN, DETECTAR_COLISION_FUNCTION},
{DETECTAR_COLISION_PIN_1, DETECTAR_COLISION_FUNCTION_1},
{DETECTAR_COLISION_PIN_2, DETECTAR_COLISION_FUNCTION_2},

5

gpio_enable_module(ADC_GPIO_MAP, sizeof(ADC_GPIO_MAP) /
sizeof(ADC_GPIO_MAPI[Q]));

/I Funcién que configurara los pardmetros necesarios de los canales ADC
adc_configure(adc);

/I Con estas 3 funciones estaremos habilitando los 3 canales que se van a utilizar
adc_enable(adc,adc_channel_sensor);

adc_enable(adc,adc_channel_sensor_1);
adc_enable(adc,adc_channel_sensor_2);

/I Hasta el momento no hemos realizado ninguna medicion, se trata Gnicamente de la
/I configuracion inicial (necesaria y suficiente), para el uso de estos canales.

}

void prueba_servomotor(void)
/I Esta funcion realizara un testeo del servomotor. Para ello hace un barrido de
I/l izquierda a derecha. Servird para comprobar si el servomotor esta bien centrado y si
/I no es asi, volver a colocarlo correctamente.

/I La funcion cambiar_canal_pwmO parard, arrancara y configurara el canal pwm 0, con
/I el periodo que le estemos pasando a la funcién.

int prueba_servo = 0;
unsigned long duty = 200;

pwm_start_channels(1 << channel_id_0); // Start channel O.

/I Creamos un bucle que hard aproximadamente 3 iteraciones, que realizara 3 barridos
/I del servomotor, actualizando la frecuencia que tiene la sefal.
while(prueba_servo < 90)
{
pwm_channel_0.cupd = duty;
pwm_sync_update_channel(channel_id_0, &pwm_channel_0);
delay_ms(50);
duty = duty + 1;

prueba_servo = prueba_servo + 1;
if (duty==228)
duty = 200;
delay_ms(150);

80

}
}

prueba_servo = 0;
pwm_stop_channels(1 << channel_id_0);
print_dbg("g");

}

void prueba_motores_dc(void)
{
/I Esta funcion hara una demostracion del movimiento de las ruedas. Primero se
/l movera hacia delante, después hacia atras y finalmente realizara un pequefio giro.

/I Primero nos aseguramos que los canales estan bien parados...
pwm_stop_channels(1 << channel_id_1);
pwm_stop_channels(1 << channel_id_2);

/I Para arrancarlos de Nuevo y que cojan la correcta configuracion.
pwm_start_channels(1 << channel_id_1);
pwm_start_channels(1 << channel_id_2);

delay_ms(100);

/I Inicialmente el valor del duty es igual al del periodo, por eso las ruedas no acttan. Si
/I queremos modificarlo, deberemos actualizarlo de la siguiente forma:
pwm_channel_1.cupd = 600;

pwm_sync_update_channel(channel_id_1, &pwm_channel_1);

pwm_channel_2.cupd = 600;

pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

/I Movimiento de ambas ruedas hacia delante
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_set_gpio_pin(B_PIN_MOTOR_DER);
gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);

delay_ms(1250);

/I Movimiento de ambas ruedas hacia detras
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);
gpio_set_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);

delay_ms(1250);

/I Giro hacia la derecha
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);
gpio_clr_gpio_pin(A_PIN_MOTOR_I1ZQ);
gpio_set_gpio_pin(B_PIN_MOTOR_1ZQ);

delay_ms(1250);

/I Ahora pararemos los canales PWM y ademas pondremos a nivel bajo las sefales de
/I control del integrado L293D

pwm_stop_channels(1 << channel_id_1);

pwm_stop_channels(1 << channel_id_2);

gpio_clr_gpio_pin(A_PIN_MOTOR_DER);

gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

81

}

gpio_clr_gpio_pin(A_PIN_MOTOR_I1ZQ);

gpio_clr_gpio_pin(B_PIN_MOTOR_1ZQ);

/l Enviamos una “q” para que la aplicacién de control entienda que hemos llegado al
/I final de la ejecucion.

print_dbg("q");

void modo_manual(void)

{

/I Esta funcion permitira hacer un control manual del robot, en parte, hacienda uso de
/I todas las funciones antes especificadas. Para ello, inicialmente envia un “8” al

/I programa de control, que lo entenderd como una sefial para activar todos los mandos
/I de control.

print_dbg("8"); // Escribimos a través del Puerto serie un “8”

int variable_control = -1; // Variables utilizadas para controlar la ejecucion del programa.
unsigned long valor_duty = 600;

/I Del mismo modo que para la demo de los motores DC, inicialmente los desactivamos
/I para volver a arrancarlos después y que estos se configuren correctamente.
pwm_stop_channels(1 << channel_id_0);

pwm_stop_channels(1 << channel_id_1);

pwm_stop_channels(1 << channel_id_2);

gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(200);

/I Comenzamos a emitir por los 3 canales PWM utilizados (DC + Servomotor)
pwm_start_channels(1 << channel_id_0); // Comienza a emitir el canal 1.
pwm_start_channels(1 << channel_id_1); // Comienza a emitir el canal 1.
pwm_start_channels(1 << channel_id_2); // Comienza a emitir el canal 2.

/I Movemos el servomotor a la posicion central
pwm_channel_0.cupd = 218;
pwm_sync_update_channel(channel_id_0, &pwm_channel_0);

/I El siguiente bucle se encargara de recibir todas las peticiones que se realicen desde

/l'la aplicacién de control. No se saldra del bucle hasta recibir una “q”.
while (variable_control !='q")

/I Recogera un valor a través del USART1
variable_control = usart_getchar(COMM_ROBOT_USART);

switch(variable_control)
{
case 'a"
/I Esta funcion movera las ruedas del motor hacia izq.

/I Primero de todo activaremos los PWM y después GPIO.
pwm_channel_1.cupd = valor_duty;
pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
pwm_channel_2.cupd = valor_duty;
pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

82

/I Con esta combinacion, los motores se mueven hacia izq.
gpio_set_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR _1ZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_set_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(1000);

/l Paramos los motores después de moverlos durante 1 seg.
pwm_channel_1.cupd = 1000;
pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
pwm_channel_2.cupd = 1000;
pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

gpio_clr_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

break;

case 'd"
/I Esta funcién hace exactamente lo mismo que el caso “a” pero
/I movera el robot hacia la derecha.
pwm_channel_1.cupd = valor_duty;
pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
pwm_channel_2.cupd = valor_duty;
pwm_sync_update_channel(channel_id_1, &pwm_channel_2);
gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);
delay_ms(1000);
pwm_channel_1.cupd = 1000;
pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
pwm_channel_2.cupd = 1000;
pwm_sync_update_channel(channel_id_1, &pwm_channel_2);
gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);
break;

case 'w"

/I Esta funcién hace exactamente lo mismo que el caso “a” pero
/I movera el robot hacia delante.

pwm_channel_1.cupd = valor_duty;
pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
pwm_channel_2.cupd = valor_duty;
pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

gpio_clr_gpio_pin(A_PIN_MOTOR_1Z2Q);
gpio_set_gpio_pin(B_PIN_MOTOR_1ZQ);

83

case's"

case "

/I Esta funcion realizara una medicion del sensor lateral izg.

gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_set_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(1000);

pwm_channel_1.cupd = 1000;

pwm_sync_update_channel(channel_id_1, &pwm_channel_1);

pwm_channel_2.cupd = 1000;

pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

gpio_clr_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR _1ZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

break;

/I Esta funcién hace exactamente lo mismo que el caso

/I Movera el robot hacia detras.

pwm_channel_1.cupd = valor_duty;

a’ pero

pwm_sync_update_channel(channel_id_1, &pwm_channel_1);

pwm_channel_2.cupd = valor_duty;

pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

gpio_set_gpio_pin(A_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_I1ZQ);
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(1000);

pwm_channel_1.cupd = 1000;

pwm_sync_update_channel(channel_id_1, &pwm_channel_1);

pwm_channel_2.cupd = 1000;

pwm_sync_update_channel(channel_id_1, &pwm_channel_2);

gpio_clr_gpio_pin(A_PIN_MOTOR_I1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_I1ZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

break;

// Para ello, primero iniciamos el canal ADC y realizamos una mediciéon

/I guardando el valor para enviarlo a la aplicaciéon de control.

adc_start(adc);

adc_value_ir_2 = adc_get_value(adc, adc_channel_sensor_2);

/I Transmitimos la medicion hacia el PC.
print_dbg_hex(adc_value_ir_2);
delay_ms(1500);

break;

case 'k

84

/I Esta funcion realizard una medicion del sensor frontal

/I Para ello, primero iniciamos el canal ADC y realizamos una medicion
/I guardando el valor para enviarlo a la aplicacién de control.
adc_start(adc);

adc_value_ir = adc_get_value(adc, adc_channel_sensor);

/I Transmitimos la medicion hacia el PC.
print_dbg_hex(adc_value_ir);
delay_ms(1500);

break;

case 'l
/I Esta funcion realizara una medicion del sensor frontal
/I Para ello, primero iniciamos el canal ADC y realizamos una medicion
/I guardando el valor para enviarlo a la aplicacion de control.
adc_start(adc);
adc_value_ir_1 = adc_get_value(adc, adc_channel_sensor_1);
/I Transmitimos la medicion hacia el PC.
print_dbg_hex(adc_value_ir_1);
delay_ms(1500);
break;

case 'z"

/I Funcién para mover el servomotor
if (pwm_channel_0.cupd > 200)
{
pwm_channel_0.cupd = pwm_channel_0.cupd - 1;
pwm_sync_update_channel(channel_id_0, &pwm_channel_0);

}
delay_ms(200);
break;

case 'X"
/I Funcion para mover el servomotor
if (pwm_channel_0.cupd < 230)
{

pwm_channel_0.cupd = pwm_channel_0.cupd + 1;
pwm_sync_update_channel(channel_id_0, &pwm_channel_0);

}
delay_ms(200);
break;
case'q"
/I Funcién que pararéa todos los canales PWM y parard la ejecucion del
/l modo manual.
pwm_stop_channels(1 << channel_id_0);
pwm_stop_channels(1 << channel_id_1);

pwm_stop_channels(1 << channel_id_2);

return;

85

}

default: // Funcién default por si el comando que enviamos no existe.

break;

void modo_automata(void)

{

/I El propdsito del modo autdmata es dotar al robot de movimiento y "inteligencia"

/I suficiente para no topar con ningln objeto que se encuentre en su camino. Es por ello
/I que se han una serie de condiciones para que en caso de detectar una colision sepa
[/l actuar en consecuencia.

/I En el programa también se hace uso de algunas funciones especificas que han sido
/I definidas a continuacién de esta funcién y que son necesarias para el célculo de
/I distancias y el movimiento de las ruedas.

int distancia_frontal_derecho = 6;
int distancia_frontal_frente = 6;

int distancia_frontal_izquierdo = 6;
int distancia_lateral_izquierdo = 1;
int distancia_lateral_derecho =1,
int seleccion = -1;

int var_case =-1;

int prueba_servo = 0;

unsigned long duty = 200;

pwm_start_channels(1 << channel_id_1); // Comienza a emitir el canal 1.
pwm_start_channels(1 << channel_id_2); // Comienza a emitir el canal 2.
pwm_start_channels(1 << channel_id_0); // Comienza a emitir el canal 0.

/I Activamos el movimiento de las ruedas.
pwm_channel_1.cupd = 600;
pwm_sync_update_channel(channel_id_1, &pwm_channel_1);
pwm_channel_2.cupd = 600;
pwm_sync_update_channel(channel_id_2, &pwm_channel_2);

/I Inicialmente y antes de comenzar, realizamos un testeo del servomotor que permitira
/I comprobar si su funcionamiento es correcto o no. El funcionamiento es el mismo que
/I el utilizado para la funcién prueba_servomotor().
while(prueba_servo < 60)
{

pwm_channel_0.cupd = duty;

pwm_sync_update_channel(channel_id_0, &pwm_channel_0);

delay_ms(50);

duty = duty + 1;

prueba_servo = prueba_servo + 1;

if (duty==228)
duty = 200;

delay_ms(150);

}
}

prueba_servo = 0;

delay_ms(200); // Hacemos delays periédicos para dar tiempo al sistema

86

for(;;) // Bucle infinito para gestionar el modo auténomo.

/I El siguiente bucle realice un barrido del servomotor, parandose en tres
/I posiciones para realizar medidas con los sensors infrarrojos.
while(duty <= 226)
{
pwm_channel_0.cupd = duty;
pwm_sync_update_channel(channel_id_0, &pwm_channel_0);

delay_ms(50);

duty = duty + 1;
prueba_servo = prueba_servo + 1;

/I Estos “if” llamaran a la funcién comprobacién_frontal() en los tres casos
if (duty==200)

distancia_frontal_derecho = comprobacion_frontal();
delay_ms(50);

}
if (duty==219)

distancia_frontal_frente = comprobacion_frontal();
delay_ms(50);

}
if (duty==226)

distancia_frontal_izquierdo = comprobacion_frontal();
delay_ms(50);
}
}

duty = 200; // Iniciamos la variable duty para la siguiente comprobacion

/l Comprobacién del sensor lateral derecho
distancia_lateral_derecho = comprobacion_lateral_derecho();
delay_ms(50);

/l Comprobacioén del sensor lateral izquierdo
distancia_lateral_izquierdo = comprobacion_lateral_izquierdo();
delay_ms(50);

/l Generamos unas condiciones que daran prioridad a los sensores laterales
/I frente al sensor delantero.
if ((distancia_lateral_derecho == 1)&&(distancia_lateral_izquierdo == 1))
var_case = 1,
else if (distancia_lateral_derecho ==1)
var_case = 3;
else if (distancia_lateral_izquierdo == 1)
var_case = 2;
else if (distancia_frontal_frente == 10)
var_case =1;
else if (distancia_frontal_izquierdo == 10)
var_case = 2;
else if (distancia_frontal_derecho == 10)
var_case = 3;
else
var_case = -1;

87

/I El siguiente switch podra hacer 4 cosas, mover el robot hacia delante, detras,

Il izquierda o derecha en funcion de las condiciones antes seleccionadas
switch(var_case)

{

case 1: // Obstaculo delante

gpio_set_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_1ZQ);
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(750);
seleccion = rand() % 2;

/I Aleatoriamente decidimos que camino seguir
/l'izquierda o derecha

if (seleccion == 0)

{

/I Giro hacia la izquierda
gpio_set_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_set_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(500);

/I Paramos las ruedas
gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

else if (seleccion == 1)

{

}

break;

/I Giro hacia la derecha
gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(500);

/I Paramos las ruedas
gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

case 2: // Obstaculo izquierdo

/I Movemos hacia atras
gpio_set_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

88

delay_ms(750);

/I Giro hacia la derecha
gpio_clr_gpio_pin(A_PIN_MOTOR _1ZQ);
gpio_set_gpio_pin(B_PIN_MOTOR_1ZQ);
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(500);

/I Paramos las ruedas
gpio_clr_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR _1ZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

break;

case 3: // Obstaculo derecho

default:

/I Movemos hacia atras
gpio_set_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_set_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(750);

/I Giro hacia la izquierda
gpio_set_gpio_pin(A_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_set_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(500);

/l Paramos las ruedas
gpio_clr_gpio_pin(A_PIN_MOTOR_I1ZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_1ZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

break;

/I Movimiento hacia delante.
gpio_clr_gpio_pin(A_PIN_MOTOR_I1ZQ);
gpio_set_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_set_gpio_pin(B_PIN_MOTOR_DER);

delay_ms(750);

/l Paramos las ruedas
gpio_clr_gpio_pin(A_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(B_PIN_MOTOR_IZQ);
gpio_clr_gpio_pin(A_PIN_MOTOR_DER);
gpio_clr_gpio_pin(B_PIN_MOTOR_DER);

break;

89

}

int comprobacion_frontal(void)

{

}

/I Esta funcion lanzara una medicion para el sensor frontal.

delay _ms(200);

adc_start(adc); // Inicializa el médulo ADC

adc_value_ir = adc_get_value(adc, adc_channel_sensor); // Toma la medida

if (adc_value_ir >= 0x260) // Si el valor es mayor que uno prefijado, enviamos un 1
return 1; // Este uno indica que se ha encontrado un obstaculo
else

return -1;

int comprobacion_lateral_derecho(void)

{

}

/I Esta funcion lanzard una medicion para el sensor lateral derecho.
adc_start(adc); // Inicializa el médulo ADC
adc_value_ir_2 = adc_get_value(adc, adc_channel_sensor_2); // Toma la medida

if (adc_value_ir_2 < 0x200) // Si el valor es mayor que uno prefijado, enviamos un 1
return 1; // Este uno indica que se ha encontrado un obstaculo
else

return -1;

int comprobacion_lateral_izquierdo(void)

{

/I Esta funcién lanzara una medicion para el sensor lateral izquierdo.
adc_start(adc); // Inicializa el médulo ADC
adc_value_ir_1 = adc_get value(adc, adc_channel_sensor_1); // Toma la medida

if (adc_value_ir_1 < 0x200) // Si el valor es mayor que uno prefijado, enviamos un 1
return 1; // Este uno indica que se ha encontrado un obstéaculo
else

return -1;

90

