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Implementació del planificador . . . . . . . . . . . . . . . . . . . . . 45
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3.6 Millora de la tolerància a fallades . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Disseny de mecanismes de tolerància a fallades . . . . . . . . . . . . 55
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ÍNDEX iii

IV Conclusions i treball futur 75

5 Conclusions del projecte 77
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Treball futur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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3.5 Dinàmica de la mesura del temps d’espera en cua. . . . . . . . . . . . . . . 50
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1.5 Quadre de costos totals del projecte agrupats per concepte. . . . . . . . . . 11
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Caṕıtol 1

Introducció

Aquest projecte busca estendre l’entorn de programació paral.lela COMP Superscalar
(COMPSs) dissenyat a BSC-CNS ( Barcelona Supercomputing Center - Centro Nacional
de Supercomputación, http://www.bsc.es) per tal de dotar-lo de funcionalitats actualment
no suportades.

Aquesta extensió radica principalment en la implementació de mecanismes que per-
metin incrementar la flexibilitat, robustesa i polivalència del sistema. Al llarg d’aquest
primer caṕıtol es mostraran en detall els objectius que ha calgut assolir per tal de com-
pletar el projecte i en conseqüència quins han estat els problemes als quals ens hem hagut
d’afrontar.

1.1 Motivació

Aquesta última dècada ha estat un peŕıode clau pel desenvolupament de models de com-
putació paral.lela i distribüıda.

Aquests han anat aflorant a gran celeritat, intervenint actualment i gairebé de forma
invisible en la nostra vida quotidiana.

La constant necessitat de capacitat de càlcul i algunes de les noves branques d’investi-
gació, com són: l’anàlisi de models climàtics, la interacció entre protëınes, simulacions de
fluids, disseny aeroespacial o el desenvolupament de nous fàrmacs, són clars exemples de la
necessitat de recrear en computadors el comportament del món real. Aquestes simulacions
requereixen gran capacitat de càlcul i a la vegada una gran capacitat d’emmagatzematge
que fan que sigui necessari l’ús de grans computadors o supercomputadors.

Un supercomputador és, doncs, una eina molt potent al servei de la recerca i el desen-
volupament, però també és molt costosa de mantenir, tant en termes de manteniment com
d’eficiència energètica.

Malauradament, doncs, l’accés a supercomputadors és moltes vegades limitat. I és per
aquest fet que només una petita part d’investigadors poden accedir a aquests tipus de
màquines.

Per sort, el desenvolupament de nous models de negoci basats en l’oferta de serveis
de computació, coneguts també com a serveis de computació en el núvol (Cloud/Grid
Computing), permeten als investigadors accedir a recursos de càlcul sense haver de tenir
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4 CAṔITOL 1. INTRODUCCIÓ

en compte cap dels costos associats als supercomputadors. Només paguen pel temps que
els utilitzen (”Pay-on-demand”).

Aquests nous serveis han obligat a desenvolupar solucions que permetin la viabilitat
d’aquests nous models, oferint a la vegada una bona qualitat.

Aquesta meta ha obligat a desenvolupar: nous sistemes de fitxers distribüıts, sistemes
robustos i tolerants a fallades, mecanismes eficients de planificació i gestió de recursos que
han permès mantenir un concepte de localitat deslocalitzada (deslocalització transparent
a l’usuari).

No obstant, malgrat que es tracta d’un model sòlid i amb projecció, a dia d’avui encara
hi ha elements que no estan del tot perfilats. Un d’aquests són els models de programació
orientats a aquest tipus d’infraestructures.

COMPSs és, doncs, un entorn desenvolupat per BSC-CNS que proveeix d’un model de
programació orientat a Grid i que permet executar aplicacions seqüencials de forma paral-
lela sobre una infraestructura Grid, de forma que l’execució sigui totalment transparent a
l’usuari. Això permet pensar en paral.lel, però programar en seqüencial.

Actualment COMPSs es troba en la seva primera versió i com qualsevol software que
es troba en les seves primeres etapes de desenvolupament, disposa d’un nombre redüıt de
funcionalitats.

Disposa d’un planificador funcional, però a la vegada simple i bàsic, que no implementa
cap funcionalitat que li permeti treballar amb rèpliques del fitxers inicials; és a dir, cada
vegada que s’executa una aplicació, els fitxers d’entrada han de ser transferits de nou al
Grid i no hi ha cap mètode que permeti indicar a COMPSs que alguns dels fitxers requerits
per l’aplicació ja es troben als nodes, ja sigui perquè han estat transferits prèviament de
forma deliberada o bé perquè una execució anterior ja li ha deixat còpies.

Aix́ı doncs, haver de transferir els fitxer al Grid cada vegada resulta un problema, ja
que depenent de la mida del fitxer i de la velocitat de la xarxa, aquest procés pot arribar
a resultar realment lent.

La motivació principal d’aquest projecte serà doncs estendre i millorar aquestes fun-
cionalitats implementant un nou planificador basat en l’anàlisi a temps real de diferents
paràmetres mesurats i extrets del Grid com: la velocitat de la xarxa entre nodes, velocitat
de processament dels nodes, percentatge de disponibilitat dels nodes i el temps d’espera
en cua per tal de poder executar en els nodes, que permetran a COMPSs escollir en cada
moment el millor node del Grid per enviar a executar una tasca determinada.

A més a més, a causa de la carència anteriorment esmentada, desenvoluparem també
un sistema per tal de permetre a COMPSs tenir consciència de la localització dels fitxers
que distribueix al Grid; d’aquesta manera es minimitzarà el nombre de transferències en
cas que els fitxers que es necessiten per executar una aplicació es trobin ja en algun node
del Grid.

A la següent secció, explicarem i desglossarem amb més detall cada un dels objectius
anteriorment esmentats.
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1.2 Objectius

Vistes, doncs, les necessitats de càlcul en certs entorns, explicats en l’apartat anterior,
l’objectiu del projecte serà aconseguir un entorn de treball capaç d’executar aplicacions
en Grid de forma més eficient que en la versió actual.

La meta del projecte serà desenvolupar una nova versió del runtime de COMPSs,
ampliant-lo en funcionalitats i millorant-lo de forma que sigui menys sensible a fallades,
estenent el seu sistema de tolerància a fallades de tal manera que es permeti al planificador
tenir en compte quins són els recursos del Grid que són mes fiables, i tenir-los també en
compte a l’hora d’assignar-hi tasques.

Es desenvoluparà la funcionalitat que permetrà al runtime mantenir una consciència de
la localització dels fitxers; d’aquesta manera aconseguirem minimitzar el volum de trans-
ferències al llarg de diferents llançaments de l’aplicació, evitant aix́ı que a cada execució
d’una aplicació es transfereixin els fitxers necessaris.

Això s’aconseguirà mantenint una llista de rèpliques vàlides de cadascun dels fitxers,
que també servirà al planificador perquè seleccioni com a preferent un recurs que té en el seu
disc el màxim nombre de fitxers necessaris per poder-hi executar una tasca determinada.

S’implementaran també diferents sistemes de recollida d’informació, com per exemple
la mesura dels temps mig que cal esperar per accedir al processador d’un recurs determinat,
el càlcul del temps mig d’execució d’una tasca determinada a un recurs determinat, o bé
els mecanismes necessaris per tal de fer la predicció del temps de transferència dels fitxers
necessaris per executar una tasca.

D’aquesta manera, les dades anteriors serviran posteriorment perquè el planificador
que desenvoluparem sigui capaç d’avaluar quin és el millor dels recursos d’entre tots els
que disposa, entenent el millor com el que minimitza el temps d’espera per poder accedir
a un recurs, el temps d’execució de la tasca i el que en maximitza la seva fiabilitat.

Amb això, la meta final del projecte és construir una nova versió de COMPSs que
gestioni els recursos d’una forma més eficient i intel.ligent, obtenint a la vegada un bon
compromı́s entre el consum de recusos i l’encert en la presa de decisions.
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1.3 Metodologia

La metodologia seguida per desenvolupar aquest projecte ha estat la següent:

1. Analitzar en detall el funcionament de l’entorn COMPSs i comprendre el model de
components en que està basat.

2. Definir un conjunt de funcionalitats no existents en l’entorn actual, assegurant que
puguin ser implementables en el termini de duració del projecte.

3. Realitzar una anàlisi dels requisits particulars que s’hauran de complir per tal que la
implementació de les extensions pugui ser acoblada correctament i de forma senzilla.
Es farà també el disseny de l’arquitectura de cada extensió proposada per tal de
satisfer aquests requisits.

4. L’estructuració de l’extensió a realitzar quedarà dividida en parts ben diferenciades,
que seran tractades com a paquets de treball independents:

(a) Desenvolupament del sistema de gestió de rèpliques de fitxers.

(b) Anàlisi de diverses alternatives de planificació.

(c) Desenvolupament del sistema d’emmagatzematge de l’històric.

(d) Desenvolupament del sistema de planificació, desglossat en:

i. Anàlisi dels possibles paràmetres del sistema a mesurar.

ii. Anàlisi dels paràmetres que caldrà registrar a l’històric.

iii. Desenvolupament del mètode de predicció del temps de trasferència de
fitxers.

iv. Desenvolupament del mètode per mesurar el temps d’espera en cua.

v. Desenvolupament del mètode per mesurar el temps mig d’execució de cada
tasca a cada node.

vi. Desenvolupament del sistema de tolerància a fallades (càlcul de % de fia-
bilitat dels nodes).

vii. Desenvolupament del planificador final.

(e) Desenvolupament del sistema de càlcul de la velocitat de xarxa.

(f) Fase d’avaluació del rendiment.

(g) Fase de correccions.

(h) Fase d’optimització del nou codi.

(i) Redacció de la documentació.

5. Per cada paquet de treball es faran proves de validació individuals per tal d’assegurar-
ne el bon funcionament.

6. Establir un entorn de proves per validar el comportament global del sistema.

7. Realitzar el conjunt de proves en un entorn real on es realitzaran assajos d’escalabi-
litat, rendiment, consum de memòria, etc...
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1.4 Planificació inicial

Un cop introdüıts els objectius i la metodologia del projecte, en aquesta secció realitzarem
l’assignació temporal inicial de cada una de les tasques definides partint sempre del temps
total disponible per a la realització del projecte i amb una implicació aproximada de 4
hores diàries.

Les primeres 100 hores de treball anirien dedicades a preparar tant la definició com els
objectius del projecte, realitzar l’anàlisi de la documentació de COMPSs i familiaritzar-se
amb l’entorn d’aquest.

En el procés de desenvolupament del prototip calculem invertir-hi aproximadament
unes 616 hores, que quedarien desglossades de la següent manera:

1. Sistema de gestió de rèpliques (92 hores) desglossat en:

(a) Desenvolupament localització de fitxers (56 hores)

(b) Test del sistema (36 hores)

2. Desenvolupament del planificador (340 hores) desglossat en:

(a) Anàlisi i disseny del planificador (56 hores)

(b) Gestió d’històric (28 hores)

(c) Implementació de millores en la tolerància a fallades (52 hores)

(d) Càlcul dinàmic de la velocitat de xarxa (60 hores)

(e) Mesura del temps d’espera en cua (48 hores)

(f) Mesura del temps d’execució (28 hores)

(g) Test del planificador (68 hores)

3. Optimitzacions realitzades al nou runtime (40 hores)

4. Avaluació de rendiment global (120 hores)

5. Fase de correccions finals (24 hores)

Cal tenir present a l’hora de planificar que part del projecte inclou també la redacció
de la memòria final, que haurà de prendre al voltant de 244 hores.

Per tant, en total, el projecte comportarà 100 hores de familiaritació i anàlisi inicial,
616 hores de desenvolupament del prototip, més les 244 hores de redacció de la memòria,
que resulten finalment una previsió de 960 hores de dedicació, que es repartiran en sessions
de mitja jornada de duració (4 hores) entre el mes de Febrer de 2010 i Gener de 2011 tal,
i com mostra el diagrama de Gantt de la figura 1.1.
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Figura 1.1: Planificació inicial del projecte.
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1.5 Anàlisi econòmica

Un dels aspectes més importants a l’hora de desenvolupar un projecte és el cost econòmic
que aquest pot comportar. Al llarg d’aquesta secció detallarem els costos econòmics que
hagués suposat desenvolupar-lo en un entorn empresarial. Tot i la dificultat de quantificar
els costos d’ús de les màquines i serveis del BSC-CNS, es revisaran el seguit de costos
desglossats en: recursos humans, hardware i software utilitzats al llarg del procés de
desenvolupament.

Recursos humans

Per calcular els costos de contractació de personal, s’ha classificat en tres possibles perfils
les persones necessàries per desenvolupar el projecte:

• Cap de Projecte: pren les decisions executives a través de les diverses opcions
plantejades per l’analista.

• Analista: pren decisions sobre la tecnologia i l’arquitectura del disseny. Proporcio-
nar al programador la informació necessària perquè pugui desenvolupar l’aplicació.

• Programador: implementa el disseny de l’analista en un llenguatge de programació
determinat.

• Tècnic en sistemes: s’encarrega de realitzar la instal.lació, configuració i mante-
niment dels entorns necessaris per a la resta d’actors del projecte.

En la taula 1.1 es mostra el repartiment d’hores dedicades. En la redacció de la
memòria, gran part de la feina recau en l’analista, que és qui argumenta el disseny elaborat
i coneix les tecnologies utilitzades.

Perfil Cost (e/hora) Hores dedicades Total

Cap de projecte 75 25 1.875

Analista 60 527 31.620

Programador 42 376 15.792

Tècnic en sistemes 50 32 1.600

Subtotal 50.887 e

Taula 1.1: Quadre resum de costos en recursos humans.

Hardware utilitzat

Per al desenvolupament i realització tant del prototip com de les proves posteriors, s’han
fet servir les màquines de l’entorn descrit en el caṕıtol 4. Tal i com mostra la taula 1.2,
aquests són els seus costos.
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Perfil Cost/Unitat (e) Quantitat Amortització Total

Màquines Dual Core (BSC-CNS) 1.534 3 0.3 1.381

Màquines Quad Core (BSC-CNS) 1.897 2 0.3 1.138

Màquines 24 Core (BSC-CNS) 36.755 1 0.027 993

Computador Personal 600 1 0.33 198

Subtotal 3.710 e

Taula 1.2: Quadre resum dels costos en recursos hardware.

La infaestructura Grid utilitzada consta de 3 tipus de màquines: 3 de Dual Core,
2 de Quad Core i una màquina de 24 Cores dels quals s’han fet servir un màxim de
12. L’amortització de les màquines ha estat comptada a 3 anys donant un cost total en
hardware de 3.710 e.

Software utilitzat per desenvolupar el projecte

Les llicències de software necessàries per desenvolupar un projecte són un altre aspecte
a tenir en compte a l’hora de valorar-ne els costos. En alguns casos utilitzar software
espećıfic pot arribar a resultar una part important del cost total del projecte; en aquest
cas no ha estat aix́ı, però cal tenir-ho en compte. A la taula 1.3 podem veure el cost de
les diferents llicències de software necessàries per desenvolupar aquest projecte.

Software Cost (e)

OpenSuSE 11.2 (Sistema Operatiu) gratüıt

Java J2SE Software Development Kit gratüıt

NetBeans IDE 6.8 gratüıt

NetBeans UML Plug-in gratüıt

Apache-ant gratüıt

NetPerf gratüıt

Visual VM gratüıt

Subtotal 0 e

Taula 1.3: Quadre resum dels costos en software per al desenvolupament.

Software utilitzat per a la redacció la memòria

Realitzar el prototip no és l’únic que requereix l’ús de programari, la redacció de la memòria
és també una part important del projecte i l’ús d’alguns dels programes utilitzats poden
requerir també l’ús de llicències de pagament. La taula 1.4 descriu els diferents programes
utilitzats a l’hora de realitzar la memòria i el seu cost.
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Software Cost (e)

Gedit gratüıt

Vi gratüıt

Latex gratüıt

Paquet Texlive (generació de pdf per latex) gratüıt

OpenOffice (Writter, Calc i Draw) gratüıt

GNUPlot (gràfics) gratüıt

MathPlotLib (gràfics) gratüıt

GIMP gratüıt

Planner (gestió de projectes) gratüıt

Subtotal 0 e

Taula 1.4: Quadre resum de costos del programari utilitzat en la redacció de la memòria.

Material fungible

El tòner, paper d’impressió per a la memòria i l’enquadernació d’aquesta tenen un cost
total aproximat de 200 e.

Anàlisi del cost total

Concepte Cost (e)

Recursos humans 50.887

Hardware 3.710

Software utilitzat per al desenvolupament 0

Software per redactar la memòria 0

Materials Fungibles 200

Total 54.797 e

Taula 1.5: Quadre de costos totals del projecte agrupats per concepte.

Tal com es mostra a la taula 1.5, el cost total del projecte puja a 54.797 e. Com
podem veure, quasi el 93% del cost ve donat per Recursos humans. En concret, l’analista
s’enduu gairebé el 61% de la inversió. De les 527 hores de feina que se li han assignat, 244
eren en concepte de redacció de la memòria. D’aquestes, bona part han estat dedicades a
la redacció del caṕıtol d’anàlisi de l’estat de l’art.

En ser un projecte final de carrera, bona part d’aquestes hores han estat invertides en
la recerca, lectura i śıntesi de la informació. Per tant, si s’hagués contractat un analista
professional amb coneixements adquirits sobre la matèria, és possible que aquesta quantitat
s’hagués pogut reduir 50 hores quedant un total de 477 hores assignades a l’analista i
disminuint aix́ı el seu cost de 31.620 a uns 28.620 e i, per tant, també el del projecte a
51.797 e.
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1.6 Organització de la memòria

Aquest document s’ha dividit en les següents parts:

1. Introducció: en aquesta secció es defineix el projecte. Quina és la seva motivació,
quins són els seus objectius i quin és el treball realitzat per aconseguir materialitzar-
los. En aquest apartat analitzarem també tant la sostenibilitat econòmica del pro-
jecte com la planificació i distribució inicial de les tasques.

2. Anàlisi del projecte i estat de l’art: en aquest apartat es facilita la introducció
a tots els conceptes que seran necessaris per comprendre aquest document. S’in-
trodüıran conceptes relacionats amb la computació distribüıda, les èines de treball
utilitzades, i es farà també una repassada a altres projectes importants que compar-
teixen com a base del seu èxit el concepte de computació distribüıda.

3. Desenvolupament del projecte: aquesta secció descriu tot el desenvolupament re-
alitzat, tant a nivell de disseny com d’implementació, experimentació final i extracció
de resultats, explicant de forma acurada el procés de desenvolupament, modificació
i adaptació del nou runtime de COMPSs a partir del punt de partida inicial.

4. Conclusions i treball futur: aquest apartat sintetitza tots els resultats obtinguts
i extreu les conclusions que se’n deriven; a més presenta propostes de futures millores
per tal d’aportar-hi més valor al projecte.

5. Apèndix: per acabar, podem trobar aqúı tant la descripció com l’explicació de
conceptes suplementaris que poden ajudar a comprendre certs ı́tems del document.



Part II

Anàlisi del projecte i estat de l’art
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Caṕıtol 2

Grid Computing

En el passat, gran part dels recursos de computació es trobaven reunits principalment en
centres integrats. Actualment això ja no és aix́ı, l’augment en les necessitats de recursos
de càlcul i en la complexitat dels problemes a abordar, ha provocat que sigui necessari
el desenvolupament de noves tecnologies de computació distribüıda que permetin oferir
serveis de computació a costos moderats, la computació basada en aquesta arquitectura
és l’anomenada Grid Computing.

2.1 Què és Grid Computing

La tecnologia Grid es pot veure com un conjunt heterogeni de computadors o recursos
de càlcul (de diferents arquitectures, supercomputadors, clústers...) distribüıts geogràfica-
ment i que permet compartir de forma global la capacitat de procés i d’emmagatzematge
a través de xarxes.

Aquest model d’organització permet la integració i l’ús col.lectiu de computadors d’alt
rendiment, xarxes, bases de dades i, en general, de diferents tipus de recursos que poden
ser administrats per diverses institucions.

El terme Grid va ser proposat a meitat dels anys 90 per Ian Foster i Carl Kesselman [1],
fent referència a una infraestructura de computació distribüıda capaç d’aportar capacitat
de càlcul a baix cost, oferint aix́ı serveis de computació a diferents camps d’investigació
cient́ıfica [3]. Ian Foster defineix el Grid com un conjunt de recursos de computació no
administrats centralment, basats en estàndards oberts i amb una qualitat de servei dif́ıcil
d’assegurar.

L’última part d’aquesta definició és un dels punts més importants i cal tenir-lo espe-
cialment en compte. Garantir la qualitat de servei en un Grid és una de les tasques que
poden resultar complexes. Aquest tema el tractarem en més profunditat en l’apartat 2.2.

Remuntant en el temps, els antecessors directes del concepte de computació en Grid
se solen citar en el projecte SETI@Home 1.

Aquest projecte és ampliament conegut i una de les raons és el seu objectiu, la recerca
de vida intel.ligent a l’espai (Search for ExtraTerrestrial Intelligence). Aquest projecte
requeria una quantitat enorme de còmput i aquesta s’aconseguia compartint els cicles de
CPU de milions de màquines cedides de forma voluntària.

1 http://www.seti.org/

15
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D’aquesta manera el propietari d’un computador cedia recursos de la seva màquina de
manera que quan estava inactiva, executava tasques per al projecte. Aquesta iniciativa,
pionera en el seu moment, va interconnectar milions de computadors a tot el món, per-
metent disposar d’una capacitat de càlcul molt superior a la dels supercomputadors de
l’època.

La computació en Grid no només tracta de compartir cicles de CPU per realitzar tas-
ques complexes, sinó que també tracta d’establir noves infraestructures de computació
distribüıda. Aquesta tasca és complexa i obliga a realitzar tasques de definició de noves
arquitectures, interconnexions de xarxes, definició d’estàndards, desenvolupament de mo-
dels de programació, nous models de gestió de recursos, etc... Els models de computació
distribüıda, més que una aplicació són i seran una revolució en el futur de la computació.

2.2 Avantatges i inconvenients del Grid

Al llarg d’aquest apartat analitzarem els punts favorables i desfavorables dels sistemes
Grid.

Tal i com s’ha explicat anteriorment en la secció 2.1, podem definir el Grid com un
sistema que coordina recursos que no estan subjectes a un control centralitzat, utilitzant
protocols estàndards, oberts, de propòsit general i interf́ıcies per donar unes qualitats de
serveis no trivials.

Aquest sistema està creat amb la finalitat de solucionar determinats problemes que
requereixen un gran nombre de cicles de processament i/o accés a grans quantitats de
dades.

Disposar de hardware i software que permeti aquestes funcionalitats, planteja habitu-
alment inconvenients a nivell de costos, seguretat i disponibilitat. En aquest sentit, en
un Grid s’integren diferents tipus de màquines i recursos, per tant un Grid no quedarà
obsolet mentre tots els recursos del què es disposa s’aprofitin; de la mateixa manera que
gràcies a l’escalabilitat que ofereix aquesta arquitectura és possible anar-hi afegint recursos
(habitualment de diverses caracteŕıstiques) segons el nivell de necessitats.

Aquesta tecnologia ofereix a la vegada un servei de computació de rendiment mig-alt
amb uns costos de manteniment continguts, que suposen un avantatge a l’hora d’oferir
serveis de computació a l’abast de la investigació.

Respecte a l’apartat de seguretat, aquesta anirà lligada a la seguretat que sigui capaç
de garantir la xarxa sobre la qual és suportada la infraestructura. Això pot arribar a
resultar un problema, especialment si parlem de la utilització de xarxes WAN o, més en
concret, de les de tipus best-efford com és el cas d’Internet.

Habitualment seran necessàries connexions permanents de banda ampla les 24 hores
i 365 dies de l’any, un bon nivell de seguretat, VPN’s, firewalls, encriptació i túnels,
comunicacions segures, poĺıtiques de seguretat i altres caracteŕıstiques que assegurin tot
el conjunt de dades que flueixen entre els nodes del Grid.

Un dels punts especialment importants quan parlem de computació Grid és la toleràn-
cia a fallades. Aquesta garanteix el funcionament de la infraestructura si alguna de les
màquines que en formen part es col.lapsa o queda inoperativa. En aquest cas, el sistema ha
de ser capaç de detectar-ho i prendre alguna decisió com pot ser, per exemple, replanificar
la tasca de nou en una altra màquina que resti operativa. D’aquesta manera s’aconsegueix
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crear infraestructures robustes i resistents, a la vegada que flexibles.

La figura 2.1 descriu el conjunt de capes que conformen un sistema de Grid Computing.
L’estrat més baix correspon als servidors, és a dir, a la infraestructura de computació f́ısica.
El segon estrat correspon al conjunt d’infraestructures de xarxa, d’emmagatzemament,
etc...

La tercera tot el conjunt de serveis que garanteixen la seguretat de les dades que
s’allotjen al Grid. La quarta capa correspondria al software encarregat de gestionar i
monitoritzar els recursos de les capes inferiors. Finalment per sobre d’aquesta capa, es
recolzen el conjunt d’aplicacions que exploten l’arquitectura de Grid Computing i el client
o usuari de l’aplicació.

Figura 2.1: Components que conformen un sistema de Grid Computing.

2.3 Aplicacions del Grid al món real

Actualment hi ha 5 aplicacions generals i ben definides de la computació Grid:

1. Supercomputació distribüıda:

Són aquelles aplicacions on les necessitats temporals per solucionar el problema no
puguin ser satisfetes exclusivament per un sol node. Algunes d’aquestes necessitats
poden ser generades en curts instants de temps consumint gran quantitat de recursos.

2. Sistemes distribüıts en temps real:

Són aquelles aplicacions que generen fluxos de dades d’alta velocitat que han de ser
analitzats i processats en temps real.

3. Serveis puntuals:

En aquest tipus d’aplicacions pot no ser especialment important la potència de càlcul
o la capacitat d’emmagatzemament, sinó els recursos que una organització considera
com a no necessaris en un moment determinat. En aquest cas, el Grid pot presentar
l’organització d’aquests recursos.
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4. Procés intensiu de tractament de dades (Data-Crunching):

Són aquelles aplicacions que fan un gran ús de l’espai d’emmagatzemament i, en
general, provoquen una gran càrrega als sistemes d’entrada/sortida. Aquest tipus
d’aplicacions superen la capacitat d’emmagatzemament d’un únic node i les dades
són distribüıdes a través de tot el Grid. A més de l’increment total en l’espai dis-
ponible, la distribució de les dades a través del Grid en permet l’accés de forma
distribüıda.

5. Entorns virtuals de col.laboració (Còmput Voluntari):

Aquestes aplicacions utilitzen els recursos computacionals del Grid i la seva natura-
lesa per generar entorns virtuals 3D distribüıts.

Existeixen aplicacions reals que encaixen perfectament en cadascuna de les classifi-
cacions descrites anteriorment.

Ara, al següent apartat presentarem els models de programació distribüıts, introdüınt al
final de la secció, l’entorn de programació que ha motivat l’elaboració d’aquest projecte.
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2.4 Models de programació distribüıts

A principis dels anys 90, les plataformes software monoĺıtiques perdien força davant les
distribüıdes. Els models de programació distribüıts sorgeixen de la necessitat de crear
software més flexible, autònom, tolerant a fallades i, el més important, deslocalitzat. L’ob-
jectiu d’aquest caṕıtol és realitzar una introducció a alguns d’ells, veient com a exemple
final COMP Superscalar.

2.4.1 Model d’objectes distribüıts

El model d’objectes distribüıts permet al software dividir-se en mòduls, permetent que
treballin en conjunt encara que resideixin en diferents computadors interconnectats a tra-
vés d’una xarxa, o bé en diferents processsos dins un mateix equip. Un objecte envia un
missatge a un altre que es troba allotjat en una màquina o procés remot per tal que realitzi
una tasca. La informació, un cop processada, és retornada, en acabar aquest procés, a
l’objecte que n’ha realitzat la crida.

Aquest procediment genèric és el modus operandi comú entre els models d’objectes
distribüıts. En aquesta secció veurem de forma detallada Grid Component Model, la base
de COMPSs.

Grid Component Model (GCM)

Un component és un paquet o mòdul software que encapsula un conjunt de funcions o dades
relacionades. Cada un dels processos del sistema es distribueixen en diferents components
de tal forma que totes les funcions i dades de cada component estiguin semànticament
relacionades. Per aquest motiu, moltes vegades es diu que els components són modulars i
cohesius.

Pel que fa la coordinació global del sistema, els components es comuniquen entre si a
través d’interf́ıcies. Quan un component vol comunicar-se amb la resta del sistema, ho fa
a través d’una interf́ıcie en què hi especifica quins dels seus serveis poden ser utilitzats per
altres components.

Aquesta interf́ıcie es pot veure com la signatura del component, permetent aix́ı ocultar-
ne la implementació i encapsular-ne la funcionalitat.

Un dels factors més importants d’aquest model és que permet que els components
siguin sustitüıbles (ja sigui en temps de disseny o d’execució) si el component candidat
manté els mateixos requeriments (expressats a través de les interf́ıcies) que el component
inicial. En conseqüència, els components poden ser reemplaçats per una versió alternativa
o actualitzada sense haver de realitzar altres canvis en la resta del sistema.

GCM (Grid Component Model) és un model de componentització jeràrquica que per-
met que un component pugui estar format com una composició d’altres components ja
existents. Aquesta propietat ja havia estat descrita en altres models de components com
per exemple: Fractal 2, el model de components en què es basa GCM.

Fractal és un model de components abstracte, modular i altament extensible que pot
ser utilitzat en diversos llenguatges de programació per tal de dissenyar, implementar,

2 http://fractal.ow2.org
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desplegar i configurar tant aplicacions com sistemes. L’objectiu de Fractal és reduir el
desenvolupament i els costos de manteniment d’aquests.

Utilitza alguns dels patrons de disseny ben coneguts, com ara la separació entre inter-
f́ıcies i implementacions, promovent també la separació de competències.

Figura 2.2: Interacció de components a Fractal.

Algunes de les implementacions més conegudes d’aquest model són: Julia, Cecilia,
AOKell, Think i ProActive. Aquesta última serà la que analitzarem a continuació, ja
que és el model sobre el que COMPSs està constrüıt.

ProActive

ProActive 3 és la implementació de referència del model GCM. ProActive és un middleware
Java orientat a computació paral.lela, distribüıda i multithreaded 4 (veure Figura 2.3)
que ofereix un entorn de fàcil comprensió i un model de programació que en permet
simplificar tant el desenvolupament com l’execució de les aplicacions que corren sobre
sistemes multicore, distribüıts en xarxa local (LANs), clústers, datacenters o Grids. Aquest
model de programació combina tant el disseny amb objectes actius com amb objectes
futurs.

Figura 2.3: Exemple de funcionament seqüencial, multifil i distribüıt de ProActive.

3 http://proactive.inria.fr
4 Amb vàris fils d’execució simultanis.
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Objectes Actius:

Els objectes actius són les unitats bàsiques d’activitat i distribució utilitzades a Pro-
Active per a la construcció aplicacions concurrents. Un objecte actiu s’executa en el seu
propi fil. Aquest fil executa sobre l’objecte, mètodes invocats per altres objectes actius i
també pels objectes passius del subsistema al que l’objecte actiu pertany. Amb Proactive,
no cal manipular expĺıcitament objectes de tipus Thread, a diferència del Java estàndard.

Aquest objecte es compon de dos altres objectes: un cos, i un objecte Java. El cos no
és visible des de l’exterior de l’objecte actiu. S’encarrega de rebre crides (o peticions) en
l’objecte actiu i els emmagatzema en una cua de crides en espera. Aquestes s’executaran
segons l’ordre especificat en la poĺıtica de sincronització. Si aquesta poĺıtica no s’especifica,
llavors es gestionaran segons la poĺıtica FIFO. Posteriorment, el fil d’un objecte actiu tria
mètodes de la cua de peticions pendents i els executa.

Per la banda del subsistema que envia crides a un objecte actiu, aquest es veu com un
proxy 5, que genera objectes futurs per representar-ne valors futurs i transforma les crides
en sol.licituds d’objectes.

Objectes Passius:

A ProActive els objectes passius no són compartits entre subsistemes. Quan un objecte
qualsevol invoca un mètode d’un objecte actiu pot ser que els paràmetres que ha d’enviar
siguin objectes passius. De totes maneres, com que no es poden compartir objectes passius,
el que es fa és passar una còpia. D’altra banda, els objectes actius i els de retorn es passen
per referència.

El fet de no compartir dades ens permet que l’aplicació no necessiti cap canvi estruc-
tural per executar-se tant en forma seqüencial, multithread o distribüıda.

Crides aśıncrones i objectes futurs:

Una altra caracteŕıstica important de ProActive és que totes les crides entre subsis-
temes es realitzen mitjançant crides aśıncrones. Això fa que les aplicacions no hagin
d’esperar que l’altre subsistema els retorni el control. Aquest fet té certs desavantatges
com no poder demanar objectes de retorn en aquestes comunicacions.

Per solucionar aquest problema s’afegeixen objectes futurs. Quan fem la petició al
subsistema es retorna un objecte de tipus Future independentment de l’objecte que voĺıem
rebre. Mentre que l’objecte és processat, el thread del subsistema que n’ha fet la crida pot
continuar amb l’execució i en cas que necessiti operar amb l’objecte bloqueja el thread fins
l’objecte que es tingui f́ısicament. (Figura 2.4).

Figura 2.4: Exemple d’objecte Futur.

5 El proxy desenvolupa la funció d’intermediari.
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2.5 COMP Superscalar

COMPSs [14] 6 és un entorn de programació paral.lela que permet simplificar tant el desen-
volupament com el desplegament d’aplicacions en Grid resultant transparent a l’usuari,
de manera que aquest pugui traslladar una aplicació seqüencial tradicional a una aplicació
paral.lela seleccionant només quines són les tasques que s’hauran d’executar al Grid.

COMPSs es troba compost d’una part estàtica i una de dinàmica. La part estàtica
consta d’una API on es permet al programador seleccionar quines tasques de l’aplicació vol
executar al Grid. La part dinàmica consta d’un runtime que gestiona, en temps d’execució,
tot el comportament de l’aplicació, permetent a COMPSs ser eficient en la coordinació de
recursos, escollint en cada moment quin és el millor recurs per enviar-hi una tasca.

Al llarg d’aquesta secció analitzarem una mica més l’API de COMPSs i el seu runtime.

2.5.1 Model de programació de COMPSs

En la introducció de COMPSs hem anunciat dues de les caracteŕıstiques més importants.
En la primera d’aquestes, la fase estàtica, el model de programació de COMPSs transforma
l’estructura de l’aplicació seqüencial a un patró Master-Worker (Figura 2.5). Aquest patró
obliga a tenir dues entitats lògiques ben diferenciades: el Master, del qual només en tindrem
una, i el Worker, del qual en podem tenir més d’una.

El seu funcionament és molt senzill, el Master inicia l’execució de l’aplicació i en duu
el control, generant a partir de la definició de l’usuari un conjunt de tasques que s’aniran
enviant a cada un dels recursos Worker disponibles, llavors el Master quedarà esperant-ne
el resultat. Els Workers, en finalitzar cada una de les tasques encomanades, retornen els
resultat al Master, que els rep i els processa per tal de generar el resultat final.

L’ús d’aquest patró ens imposa que el codi hagi d’estar dividit en dos grans blocs:
L’aplicació principal (Master) i les tasques (Workers). A causa d’aquesta separació,
caldrà definir una interf́ıcie que ens permeti la comunicació entre ambdues parts.

Figura 2.5: Representació del patró Master-Worker

La segona caracteŕıstica important és la transparència i facilitat que COMPSs aporta
a l’usuari, de manera que l’aplicació codificada de forma seqüencial pugi ser executada
també de forma concurrent i distribüıda al Grid sense necessitat de canvis estructurals.

6 http://www.bsc.es/compss
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Totes les restriccions imposades pel model de programació vénen donades pel fet d’u-
tilitzar el patró Master-Worker i per la forma en què el runtime assigna les tasques.

Algunes d’aquestes restriccions són:

• Les tasques d’un programa Java remot hauran de ser de tipus static.

• Cap crida no podrà tenir tipus de retorn.

• S’accepten tipus String, File i també tipus bàsics com: boolean, char, byte, short,
int, long, float i double.

• Actualment se suporten només llenguatges de programació com Java o C.

En resum, totes les funcions que podem invocar seguiran un esquema similar als se-
güents:

public static void f1 (String,){......}

public static void f2 (File,){......}

public static void f3 (int, float, boolean){......}

En quasi qualsevol aplicació de còmput complex, el més usual és que es requereixin
grans volums de dades d’entrada, ja siguin matrius, bases de dades, objectes complexos,
etc...

Per això, COMPSs ofereix la possibilitat d’utilitzar els fitxers d’entrada de l’aplicació
permetent enviar com a paràmetre d’entrada el nom del fitxer. D’aquesta manera es resol
el problema d’enviar objectes o vectors com a paràmetres d’entrada.

El mateix, doncs, succeeix amb els tipus de retorn de les funcions. Podem fer que el
Worker escrigui en un fitxer l’objecte que es desitja retornar. D’aquesta manera, tant el
Master com els Workers poden llegir aquest objecte del fitxer. Un bon mètode per tal de
realitzar el pas d’objectes a fitxers i viceversa és utilitzar la interf́ıcie serializable oferta
per Java.

2.5.2 L’API de COMPSs

Tal i com hem mencionat a l’inici de l’apartat 2.5, COMPSs disposa d’una API que permet
al programador indicar quines són les tasques que vol executar al Grid.

Durant el procés de càrrega de l’aplicació JavaAssist [16] 7, modifica les classes codifi-
cades pel programador a partir de les dades subministrades a la interf́ıcie anotada (secció
2.5.5), canviant-hi les crides a funcions per crides a COMPSs. Aquest s’encarregarà d’e-
xecutar aquests mètodes en recursos Grid gestionats pel runtime, assegurant-se que es
compleixin les restriccions imposades pel programador.

Aix́ı doncs, en temps de càrrega s’afegeixen les crides necessàries per tal d’arrencar i
aturar el runtime a l’inici i final de l’aplicació. De totes maneres és possible també evitar
tenir activat el toolkit al llarg de tota l’execució. Per aquest motiu COMPSs disposa d’una
API que ofereix al programador la possibilitat d’indicar al runtime quan ha d’arrencar i
aturar els components.

Com que el runtime pot ser aturat i tornat a arrencar més endavant durant la mateixa
execució, el programador haurà d’indicar en quin moment s’està accedint a un fitxer que
és resultat d’una tasca per tal que es tingui en compte la disponibilitat d’aquell fitxer.

7 http://www.javassist.org
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L’API de COMPSs ofereix, doncs, tres funcions:

• startIT(): arrenca el runtime i comença tot el procés d’enviar les tasques als workers
del Grid.

• stopIT(terminate): atura el runtime i executa l’aplicació únicament en el Master.

• openFile(fileName, openMode): obre el fitxer amb nom fileName de forma local
en mode: Read, Write o Append. Abans d’accedir-hi comprovarà si el fitxer és al
Master, si no el portarà del Worker en què es trobi.

2.5.3 Runtime componentitzat

Tal i com s’explica a l’inici de la secció 2.5.1, COMPSs consta de dues parts ben diferen-
ciades; la part estàtica, explicada anteriorment, i la part dinàmica, formada pel runtime,
que en temps d’execució gestiona el comportament de l’aplicació. Aquest s’encarrega de
buscar-hi el paral.lelisme impĺıcit, de gestionar-ne les dependències entre tasques, d’as-
signar els millors recursos del Grid a cada tasca i d’enviar els paràmetres d’execució als
Workers.

El runtime de COMPSs explota la idea d’execució fora d’ordre inspirada en el con-
cepte d’execució Superscalar proposada per Seymour Cray al voltant del 1965 8, intentant
fomentar el paral.lelisme a nivell de tasca. En el cas de COMPSs, això s’aconsegueix ge-
nerant un graf de dependències entre les tasques de l’aplicació per tal d’äıllar-ne les que
són independents. Aquestes es podran executar en diferents recursos del Grid de forma
simultània tal i com il.lustra la figura 2.6.

Figura 2.6: Anàlisi automàtica de dependències.

Components

Com hem vist, el runtime de COMPSs està implementat utilitzant el model de componen-
tització GCM i més concretament la seva implementació, ProActive. Cada un dels seus
components: Task Analyzer, Task Scheduler, Job Manager i File Manager treba-
llen en fils d’execució diferents podent ser desplegats en diferents recursos de computació,
repartint de forma més homogènia la càrrega computacional provocada pel runtime. Aix́ı
doncs, la distribució dels components queda reflectida en el diagrama de la Figura 2.7.

Com veiem, cada component té el seu comportament, que en unir-se al de la resta
dóna lloc a una funcionalitat completa. El Task Analyzer s’encarrega d’analitzar les
dependències generant un graf de precedència que manté les relacions entre les diferents
tasques del l’aplicació.

8 http://en.wikipedia.org/wiki/Superscalar
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Figura 2.7: Interacció de components del runtime.

El Task Scheduler rep les tasques generades pel component anterior i en planifica
l’execució al millor recurs disponible, generant aix́ı un Job o feina. El Job manager és
l’encarregat d’executar-lo en el recurs assignat i de recollir-ne finalment els resultats.

El File Manager està format per dos subcomponents el File Information Provider
i el File Transfer Manager. El primer s’encarrega de gestionar els accessos a fitxers i
mantenir-ne una relació de versions; el segon, gestiona totes les transferències de fitxers
entre nodes del Grid. Aquest, per tal d’actuar de forma transparent es recolza en un
middleware que permet abstreure la gestió de fitxers del protocol de transferència utilitzat.
Aquest middleware és JavaGAT i l’introduirem a continuació.

JavaGAT

JavaGAT (Java Grid Application Toolkit) 9 és un middleware que permet abstraure les
aplicacions Grid dels middlewares de Grid tradicionals. Es col.loca entre les aplicacions
desenvolupades i els middlewares de gestió de Grid com: Globus 10, Glite, SGE (Sun Grid
Engine), etc... Permetent a l’aplicació mantenir-se deslligada de l’entorn de gestió del
Grid.

D’aquesta manera, es permet desenvolupar aplicacions a través de l’API estàndard de
SAGA 11, que proveeix d’una interf́ıcie uniforme que ofereix a la vegada la possibilitat de
realitzar: operacions amb fitxers, lectura de streams 12 de dades, enviament de tasques
(job submission), monitoritació, accés a serveis d’informació (information services), etc...

D’aquesta manera el programador només ha de desenvolupar a partir de l’API, acon-
seguint que l’accés als diversos components del middleware de Grid es faci de forma trans-
parent. A més a més, JavaGAT manté una implementació modular que li permet estendre
fàcilment el suport a altres middlewares a través d’adaptadors.

L’estructura de JavaGAT és la mostrada en la figura següent:

Com podem veure en la figura 2.8, l’aplicació interactuaria amb l’API de SAGA que es
troba un nivell per sota, podent gestionar recursos, fitxers, monitoritzant recursos, etc...
El motor de GAT faria doncs la traducció de les crides SAGA a les crides corresponents al
middleware subjacent al Grid a través d’un adaptador. Com podem veure, hi ha múltiples
adaptadors que permeten suportar: Globus, Unicore, SSH, etc...

9 http://www.cs.vu.nl/ibis/javagat.html
10 http://www.globus.org/toolkit
11 http://saga.cct.lsu.edu
12 La paraula stream fa referència al fet de tractar fluxos de dades continus (sense interrupcions).
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Figura 2.8: Estructura de JavaGAT distribüıda en capes.

El runtime de COMPSs està implementat sobre JavaGAT a nivell de la capa d’a-
plicació. Això permet a COMPSs mantenir-se completament desvinculat de qualsevol
middleware de Grid guanyant polivalència i flexibilitat. D’aquesta manera, en cas de voler
treballar amb algun d’ells, només caldria acoblar-hi el seu adaptador.

2.5.4 Interacció entre components

Com hem explicat en l’apartat 2.5.3, els diferents components del runtime gestionen tot
el procés d’execució de les tasques.

Quan l’aplicació detecta que hi ha una nova tasca s’avisa al Task Analyzer. Aquest
haurà de ser capaç de saber en quin moment es pot enviar a executar, és a dir, ha de ser
capaç de detectar que totes les tasques de les quals depèn han finalitzat. Per poder-ho
fer es construeix un graf de dependències on cada node representa una tasca i una aresta
entre nodes significa una dependència. Una tasca, doncs, podrà ser enviada a executar
quan no tingui cap aresta que hi apunti.

Quan el Task Analyzer rep una tasca, afegeix un node inconnex al graf i en comprova
les dependències. Busca tots els paràmetres de tipus fitxer i anota la tasca que hi accedirà
a través del FIP (File Information Provider).

Aquest s’encarregarà de mantenir un registre de les versions d’aquest fitxer. Cada
vegada que la tasca hi escriu, es crea una nova versió amb un nou nom, aquest procediment
és anomenat renaming. El FIP permet, aix́ı, fer la traducció entre els fitxers lògics i els
reals que la tasca llegeix.

Quan una tasca es troba lliure de dependències, el TA (Task Analyzer) indica al TS
(Task Scheduler) que ja pot ser planificada. Aquest intenta escollir el millor recurs per
executar-hi la tasca. Actualment, el planificador original de COMPSs pren les decisions
analitzant:

• Les restriccions pròpies de la tasca.

• Les tasques que pot assumir en aquell moment el node (segons el nombre de CPUs).

• Nombre de fitxers que requereix la tasca i que ja es troben al node candidat.

Quan arriba una tasca al TS, filtrarem tots els recursos que no compleixen els reque-
riments suficients per executar la tasca. Dels candidats restants, s’analitzarà quins d’ells
tenen slots lliures, això significa que el nombre de tasques planificades en el recurs no su-
peri el nombre màxim de tasques simultànies que pot executar la màquina (habitualment
el nombre de CPUs).
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D’entre els candidats restants d’aquest segon procés de filtratge, buscarem el que té el
màxim de fitxers necessaris per executar la tasca. Això ho farem consultant al FIP (File
Information Provider) quins nodes tenen el fitxer. En cas de no tenir cap recurs disponible
per executar la tasca, quedaria en estat pendent al TS fins que algun node tingui slots
lliures per executar-la.

Un cop la tasca ha estat planificada, s’avisa al JM (Job Manager) que ordena al FTM
(File Transfer Manager) que transfereixi els fitxer necessaris al node planificat. Quan el
FTM notifica el final de les transferències, el JM envia la feina a executar a través de
JavaGAT, que quan acaba, retorna una notificació al JM amb l’estat de finalització de la
feina. Si l’estat és correcte, s’avisa al TS i aquest al TA, que elimina el node de la tasca
del graf.

D’altra banda, durant el procés d’execució d’una tasca poden produir-se tant errors en
la transferència de fitxers, com errors en l’execució. COMPSs implementa alguns mecanis-
mes de tolerància a fallades. Per exemple, en cas de fallada de l’execució d’una feina, el JM
prova d’enviar-la a execució de nou; si torna a fallar, en demana al TS una replanificació a
un altre recurs, llavors aquest provarà de planificar-la de nou en algun dels altres recursos
disponibles del Grid.

La Figura 2.9 mostra el flux d’execució que segueix una tasca a través dels components
del runtime.

Figura 2.9: Flux d’execució d’una tasca a través del runtime.
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2.5.5 Definició de la interf́ıcie i selecció de tasques

En la secció 2.5.1 fèiem referència a la necessitat de definir una interf́ıcie per tal de poder
comunicar el Master amb els Workers.

En aquesta es defineixen totes aquelles tasques que es vol que els Workers puguin
executar. L’estructura d’aquesta interf́ıcie serà com les habituals de Java, encara que a
més hi realitzarem algunes anotacions extra a través de la Java Annotation Interface 13

per tal de permetre al runtime conèixer tant les restriccions de les tasques com els tipus
dels seus paràmetres.

A la vegada, COMPSs necessita saber on es troba implementada cada una de les fun-
cions i també el tipus i direcció dels seus paràmetres (entrada, sortida o entrada-sortida).
Per cada paràmetre, doncs, crearem una anotació @ParamMetadata per tal d’especificar
aquestes dades. La direcció del paràmetre vindrà indicada com: Direction.IN, Directi-
on.OUT o Direction.INOUT.

D’altra banda, el programador pot indicar també al runtime quins requisits ha de com-
plir un recurs per tal de poder ser candidat a executar una tasca. Això ho indicarem afegint
a cada mètode de la interf́ıcie un conjunt d’anotacions del tipus @MethodConstraints. Un
exemple el podem veure a continuació en la funció:

void f1(String a, String b, String c)

Aquesta té una cadena d’entrada a i els fitxers b (entrada) i c (sortida) que recordem,
poden resultar útils per tal de transferir estructures complexes i prèviament serialitzades.

Per aquesta funció tindrem llavors la següent interf́ıcie:

public interface AppItf {

@MethodConstraints(operatingSystemType = Linux,

processorCPUCount = 4,

appSoftware = "Xen")

@ClassName(package.classA)

void f1(

@ParamMetadata(type = Type.STRING, direction = Direction.IN)

String a,

@ParamMetadata(type = Type.FILE, direction = Direction.IN)

String b,

@ParamMetadata(type = Type.FILE, direction = Direction.OUT)

String c);

}

13 Java Annotation Interface permet afegir metadades al codi font Java que poden ser també accedides
pel programador en temps d’execució. Molts cops s’utilitza com una alternativa a la tecnologia XML.
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Caṕıtol 3

Disseny i implementació

El recorregut realitzat fins ara ens ha permès repassar grosso modo el món de la computació
Grid i alguns dels models de programació existents. Ara doncs, és moment de centrar-se
pròpiament en el desenvolupament del projecte. En aquest caṕıtol tractarem de detallar
cada una de les extensions realitzades a COMPSs. Per fer-ho, ens situarem al punt de
partida i anirem presentant cada una de les propostes realitzades.

3.1 Punt de partida i extensions proposades

Tal i com s’explica en la secció d’objectius 1.2, la meta d’aquest projecte és estendre les
funcionalitats de COMP Superscalar a partir del la seva primera versió.

Com a punt de partida trobem, doncs, un model de programació que disposa d’un
runtime format per 5 components en els que als acoblarem noves funcionalitats inten-
tant mantenir i modificar sempre el mı́nim possible l’arquitectura original del runtime
(interf́ıcies dels components) col.locant nous mètodes als components més adequats.

En l’anàlisi de la versió inicial es detectaren alguns dels punts millorables. Per exemple,
cada vegada que es llençava una aplicació, el runtime en transferia els fitxers d’entrada
cap als nodes del Grid; d’aquesta manera s’assegurava que cada vegada que s’executava
una aplicació, aquesta disposava de l’última versió dels fitxers. Això resultava una solució
correcta, però provocava, en cas de tenir fitxers grans, que l’execució es veies considera-
blement alentida.

Aquest fet portà a replantejar la forma en què es gestionaven els fitxers d’entrada,
proposant una extensió per tal de millorar aquest punt. L’objectiu era permetre a COMPSs
tenir consciència dels fitxers de l’aplicació transferits al Grid en execucions anteriors,
emmagatzemant-ne la seva localització de tal forma que en cas d’haver estat transferits
prèviament només calgués transferir-los de nou en cas que haguessin estat modificats entre
les execucions.

A més a més, hi havia altres punts millorables. Com hem mencionat a l’apartat
1.1, COMPSs disposava de la primera versió del planificador, funcional però a la vegada
bàsica. Aquest analitzava per cada conjunt de fitxers d’entrada d’una tasca quin era el
recurs, d’entre els disponibles, que en tenia el màxim nombre de fitxers. D’aquesta manera
s’aconseguia sempre transferir el mı́nim nombre possible de fitxers.
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Això, de fet, no és una bona solució, ja que la decisió de transferir el mı́nim nombre
de fitxers no garanteix minimitzar a la vegada el temps de transferència. Pot succeir que
la mida de cada un d’aquests sigui gran i que, per tant, transferir el mı́nim de fitxers no
aporti cap benefici sobre el temps de transferència, ja que pot resultar millor transferir 4
fitxers de 20KB (petits) que 1 d’1GB (gran).

Per aquest motiu es pensà a realitzar la segona extensió, que buscava solucionar aquesta
situació permetent al planificador predir el temps que es trigaria a transferir el conjunt de
fitxers permetent escollir com a millor recurs el que minimitzés el temps de transferència
entre la font dels fitxers i el Worker escollit.

D’altra banda, el planificador tampoc no era conscient del rendiment de cada un dels
recursos de què disposava, ja que treballava exclusivament amb el nombre de slots lliures
1. Demanava al principi del procés de planificació totes les màquines que tenien com a
mı́nim un slot lliure i que, per tant, podien executar la tasca. D’entre aquestes triava la
que ja tenia el màxim nombre de fitxers.

Per aquest motiu, es va pensar també en la forma de millorar la manera en què el
planificador gestionava els recursos per tal que no considerés tots els slots per igual i, per
tant, fos capaç també de classificar les màquines segons el seu potencial.

Si recordem, COMPSs també implementava cert grau de tolerància a fallades. Aquest
mecanisme també s’ha intentat millorar proposant, a més, mesurar la fiabilitat dels re-
cursos tenint-la en compte a l’hora de planificar i poder donar, aix́ı, més confiança als
Workers amb més grau de fiabilitat.

El desenvolupament d’aquestes tres propostes han marcat el rumb de treball d’aquest
projecte. Al llarg d’aquest caṕıtol explicarem tant el disseny com la implementació de
cada una de les extensions presentades.

3.2 Gestió de rèpliques

Com hem comentat en l’apartat anterior, una de les extensions proposa incorporar a
COMPSs la possibilitat de gestionar rèpliques dels fitxers generats durant les execucions
d’una aplicació.

En aquesta secció explicarem el disseny i la implementació d’aquesta extensió, qui-
nes han estat les funcionalitats que s’han incorporat i com han estat acoblades dins el
component que gestiona els fitxers, el File Information Provider.

3.2.1 Disseny del sistema de gestió de rèpliques

Anàlisi del model

A COMPSs el component que manté tota la informació relacionada amb els fitxers és el File
Information Provider 2. En la seva versió original, registra tots els accessos a fitxers que va
detectant el Task Analyzer. Quan es detecta el primer accés a un fitxer, el FIP li assigna
un identificador únic (enter) anomenat fileId i un objecte de tipus FileInfo. Aquest serà
l’encarregat d’emmagatzemar tota la informació relacionada amb el fitxer com: Locations

1Nombre de processadors desocupats del recurs.
2 Veure secció 2.5.3
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o referències dels fitxers 3, nom original, les múltiples versions que el fitxer ha anat tenint,
etc...

D’altra banda, si l’accés detectat pel Task Analyzer no és el primer accés realitzat
sobre el fitxer, llavors comprova si el mode d’accés és READ, WRITE o READ/WRITE.
Si el mode és un d’aquests 2 últims es genera automàticament una nova versió del fitxer.

Cada versió està composta per un conjunt de locations que indiquen on hi ha rèpliques.
Cada vegada que es genera una nova versió del fitxer aquesta és totalment independent de
l’anterior, deixant les locations de la versió anterior com a obsoletes. D’aquesta manera,
les locations vàlides d’un fitxer seran sempre les de l’última versió existent.

A més, l’objecte FileInfo mencionat anteriorment, conté objectes de tipus FileInstan-
ceId. Aquests objectes permeten realitzar renaming 4 a cada una de les versions dels fitxers,
de manera que a partir d’un identificador de fitxer fileId, la seva versió renanomenarà el
fitxer de la següent manera:

public FileInstanceId(int fileId, int versionId) {

this.fileId = fileId;

this.versionId = versionId;

this.renaming = "f" + fileId + "v" + versionId + "\_" + tStamp + ".IT";

}

Aquest procediment permet que en l’accés a un fitxer en mode READ o WRITE es
generin f́ısicament també les noves versions. Per tant, quan transferim o sol.licitem el fitxer
demanarem al seu FileInfo l’ultima versió i el seu LastFileInstanceId per tal de transferir-
lo amb el nou nom, al qual podrem accedir a través del mètode getRenaming de l’objecte
FileInstanceId.

A la figura 3.1 i 3.2 podem veure les classes originals del component anteriorment
descrit.

Proposta de disseny - Requeriments funcionals

Una vegada detallada la forma en què COMPSs gestiona els fitxers, definirem l’estratègia
i funcionalitats que caldrà implementar per tal de materialitzar l’extensió proposada. En
aquest apartat intentarem establir una llista de necessitats que caldrà realitzar per tal de
satisfer el conjunt de funcionalitats proposades.

Tal i com es veu en l’apartat anterior, COMPSs reanomena els fitxers recolzant-se en
el benefici que això aporta a l’hora de gestionar múltiples versions de fitxers. Aquesta
estratègia és bona, però suposa alguns problemes de cara al nostre desenvolupament.

En finalitzar l’execució d’una aplicació, COMPSs recull les últimes versions dels fitxers
de sortida o entrada/sortida, d’allà on indiquen les seves locations i les porta al Master,
recollint els resultats finals de l’aplicació. Després, realitza el clean-up de cada Worker,
que consisteix a eliminar tots els fitxers reanomenats considerats com fitxers temporals o
intermedis.

3 Cadena de caràcters que identifica ineqúıvocament un fitxer, habitualment una URI.
4 Reanomenament aplicat als fitxers.
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Figura 3.1: Classes dels objectes FileInfo, Version i Location.

Figura 3.2: Classe de l’objecte FileInstanceId.

Per tant, a l’hora d’implementar la millora caldrà desenvolupar les següents subfunci-
onalitats:

1. Caldrà que dels fitxers d’entrada (en als que mai no s’escriurà) no se’n faci renaming,
d’aquesta manera, els podrem localitzar amb més facilitat, ja que el seu nom serà
sempre el mateix a tot arreu; aix́ı podrem evitar que el procés de neteja final aplicat
a cada Worker els elimini.

2. S’haurà d’establir una sintaxi que permeti emmagatzemar les locations, de les quals
en voldrem guardar: el nom del fitxer, l’última data de modificació d’aquest i el
conjunt de locations on es troba el fitxer en format URI.

3. Per què el funcionament sigui transparent l’úsuari, caldrà implementar també mèto-
des per poder realitzar tant consultes sobre la mida dels fitxers 5 com de les dates
de modificació d’aquests.

5 Es veurà a la secció 3.4.1
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4. S’haurà d’habilitar la possibilitat d’emmagatzemar, al final d’una execució, les lo-
calitzacions d’un fitxer i també la possibilitat de carregar-les a l’inici. Aquestes es
guardaran al fitxer de configuració project.xml (que explicarem en detall a la secció
3.7.1) que és propi de cada aplicació.

5. Es desenvoluparà la possibilitat de poder gestionar fitxers d’entrada que no estiguin
estŕıctament a la màquina Master, podent aix́ı treballar amb dades inicials externes
al Grid.

6. Per últim, caldrà modificar el component principal, el FIP, per tal que a l’hora de
registrar els primers accessos de cada fitxer de tipus READ, es busqui si aquest té
altres rèpliques a més de l’original i les incorpori a l’objecte FileInfo de cada fitxer.
A més, caldria incorporar-hi també la seva mida i data de modificació. També es
comprovarà que el fitxer no hagi estat modificat des de l’última execució, ja que en
cas de haver-ho estat no n’incorporaŕıem les rèpliques a causa de la possibilitat que
no estiguin actualizades.

3.2.2 Implementació del sistema de gestió de rèpliques

Un cop vist quins seran els requeriments funcionals que haurà de complir l’extensió, només
ens queda veure la implementació de les funcions que desenvolupen les subfuncionalitats
esmentades. De totes maneres, no entrarem massa en detall en el codi, només en mostrarem
en aquells casos en què pugui resultar interessant veure certs detalls d’implementació.

1. Eliminació de renaming en fitxers de tipus IN:

Com hem dit, la primera de les modificacions anunciades era anul.lar el renaming
dels fitxers de tipus IN. Aix́ı doncs, s’ha hagut de focalitzar el treball principalment
en el File Transfer Manager.

Quan el Task Analyzer detecta en el graf l’accés a un fitxer, ho notifica al FIP perquè
el registri. Un cop fet, el TA envia les tasques que són lliures de dependències al Task
Scheduler perquè les planifiqui. Un cop el TS ha decidit a quin recurs s’executarà la
tasca, envia aquesta decisió al Job Manager que crea un Job o feina. Llavors, el Job
Manager mira si s’ha de transferir algun fitxer al Worker seleccionat. Si és aix́ı, les
transferències s’encarreguen al File Transfer Manager que a través del seu mètode
transferFiles, en transfereix les còpies al Worker.

En la versió original del FTM, és transferFiles qui transfereix la còpia reanomenada.
Per tant, serà en aquest mètode on haurem de realitzar les modificacions esmentades.

En el següent exemple veiem part del codi que s’ha hagut d’afegit al FIP per tal
de poder accedir al nom original d’un fitxer des de fora del component. Aquest
mètode accedeix a l’estructura idToFile de tipus Map de Java que permet relacionar
l’identificador únic del fitxer amb el seu objecte de tipus FileInfo.

public String getOriginalName(FileInstanceId fId){

FileInfo info = idToFile.get(fId.getFileId());

return info.getOriginalName();

}

El següent fragment és la funció transferFiles anteriorment mencionada, on podem
veure la substitució de codi realitzada respecte al mètode original.
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private int transferFiles(List<FileAccessId> fileAccesses, ...){
for (FileAccessId faId : fileAccesses) { //Per cada access a fitxer

if (faId instanceof RAccessId) {
raId = (RAccessId)faId;
sourceFile = raId.getReadFileInstance();
//targetName = sourceFile.getRenaming();
targetName = fileInformation.getOriginalName(sourceFile);
...

}
else {

if (faId instanceof WAccessId) {
//Es crea el fitxer reanomenat en al Worker.

}
else { //RW

//Es còpia el fitxer reanomenat i versionat.
...

}
//Les noves versions de fitxer R i RW es reanomenaran.
targetName = targetFile.getRenaming();

}
}

2. La sintaxi de les locations:

Al segon ı́tem dels presentats en l’apartat de requeriments funcionals, es planteja
crear una sintaxi per tal de tenir una estructura on emmagatzemar les locations dels
fitxers. Aquesta estructura es trobarà en un fitxer de tipus XML i, per tant, la
sintaxi adoptada serà la pròpia d’aquest tipus de documents.

El codi que veiem a continuació és l’exemple de la implementació final de l’etiqueta
que representarà les rèpliques.

<Locations>
<File LastModDate=“1292137021000” Name=“file1”>

<Path>file://host1.foo.es/home/user/path1/</Path>
<Path>file://host2.foo.es/path2/</Path>

</File>
</Locations>

Com veiem, esta format per: el nom del fitxer, l’última data de modificació i
per cada una de les referències URI de cada una de les rèpliques. Aquesta etiqueta
s’inclourà dins el fitxer project.xml gestionat pel ProjectManager, que s’explicarà de
forma més detallada en la secció 3.7.1.

3. Emmagatzemament del tamany dels fitxers:

El FIP emmagatzema en els objectes de tipus FileInfo (Figura 3.1) tota la informació
referent al fitxer. En aquest apartat s’han implementat les funcions auxiliars neces-
sàries per tal de poder emmagatzemar-hi la mida i la data de modificació. Com que
cada versió pot tenir diferents valors d’aquestes dades, ha calgut afegir a la classe
Versions, atributs i mètodes per tal de poder guardar-les.
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Com hem dit, cada versió és dins l’objecte FileInfo i a causa d’això ha calgut també
implementar mètodes que, donada una versió, permetessin tant afegir com obtenir
mides i dates de modificació dels fitxers.

Modificacions fetes en la classe FileInfo:

• getSizeForVersion(int versionId): donada una versió, retorna la mida del
fitxer.

• addSizeForVersion(Version v, long Size): donada una versió, afegeix la
mida del fitxer a l’objecte de tipus Version.

• getLastModForVersion(int versionId): donada una versió, retorna la data
de modificació del fitxer.

• addLastModForVersion(Version v, long modDate): donada una versió,
afegeix la data de modificació a l’objecte de tipus Version.

Modificacions fetes en la classe Version:

• addSize(long size): afegeix la mida del fitxer.

• getSize(): retorna la mida del fitxer.

• addLastMod(long size): afegeix la data de modificació del fitxer.

• getLastMod(): retorna la data de modificació del fitxer.

Modificacions del component File Information Provider:

En el component FIP és on s’han implementat gran part de les modificacions que
permeten gestionar les rèpliques. Per aquesta finalitat s’han implementat el següent
conjunt de mètodes:

Mètodes afegits:

• addSize(FileInstanceId fId,List<Long> sizeModDate): afegeixen a l’ob-
jecte FileInfo del fitxer la seva mida i data de modificació.

• getSize(FileInstanceId fId): retorna la mida del fitxer a partir del seu ob-
jecte FileInstanceId.

• getFileSizeAndLastMod(String fileName,String host,String path): de-
mana la mida i la data de modificació consultant directament el fitxer. Aquest
mètode el veurem de forma detallada a la secció 3.4.1

• storeLocations(): emmagatzema les locations dels fitxers al project.xml a
través del ProjectManager.

• getOriginalName(FileInstanceId fId): retorna el nom original d’un fitxer.
Explicada a l’apartat Eliminació de renaming en fitxers IN.

Gran part de les modificacions fetes han estat realitzades a registerFileAccess, el
mètode del FIP que registra els fitxers. Al següent apartat desglossarem pas a pas
l’ampliació realitzada a partint del mètode original.
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public FileAccessId registerFileAccess(String fileName, ...){
FileInfo fileInfo;
String locationKey = fileName + ”:”+ host + ”:”+ path;
Integer fileId = nameToId.get(locationKey);
//Primer access al fitxer
if (fileId == null){

//Actualitzem els mappings
fileInfo = new FileInfo(fileName, host, path);
fileId = fileInfo.getFileId();
nameToId.put(locationKey, fileId);
idToFile.put(fileId, fileInfo);
//Inserció del nou codi
//S’informa al File Transfer Manager sobre el nou fitxer
...

}//Si ja s’ha accedit prèviament al fitxer...
else {

fileInfo = idToFile.get(fileId);
}

}

El mètode anterior crea una clau de localització a partir del nom, màquina i ruta
on es troba el fitxer. Després intenta accedir al mapa nameToId que relaciona
l’identificador únic de fitxer amb aquesta clau. Si no existeix és perquè és el primer
accés que s’hi realitza. En aquest cas, es crea l’objecte FileInfo i s’actualitzen els
mapes de dades del component. És just en aquest punt on incorporem el conjunt de
noves funcionalitats.

El següent fragment serà l’encarregat de consultar la mida i data de modificació
del fitxer, a la vegada que consulta també al fitxer project.xml l’última data de
modificació del fitxer.

//Consulta la mida actual de fitxer i la seva data de modificació.
List<Long> sizeLastModSet = getFileSizeAndLastMod(fileInfo.getOriginalName(),...);
long size = sizeLastModSet.get(0);
long lastMod = sizeLastModSet.get(1);
//Data anterior de modificació del fitxer
long prev lastMod = projManager.getFileLocLastMod(fileInfo.getOriginalName());

Posteriorment, si el fitxer té locations extra (rèpliques) a banda de l’original, llavors
si la data de modificació del fitxer consultada és la mateixa que l’emmagatzemada
en l’ultima execució, significa que el fitxer no ha estat modificat entre execucions.
Només llavors es permet afegir aquestes rèpliques a l’objecte fileInfo del fitxer. A
continuació podem veure el codi d’aquesta part:

if(projManager.getFileLocations(fileInfo.getOriginalName()) != null
&& (lastMod == prev lastMod)){
//Afegim les locations de les rèpliques
String l = null;
List<String> locat = projManager.getFileLocations(fileInfo.getOriginalName());
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Iterator<String> i = locat.iterator();
...
while (i.hasNext()) {

l = i.next();
try{

URI locURI = new URI(l);
locations.add(new Location(locURI.getHost(),”/”+locURI.getPath()));
//Afegim al FIP cada location de tipus IN
fileInfo.addLocationForVersion(fileInfo.getLastVersionId(),
locURI.getHost(),”/”+locURI.getPath());

}
catch (...) {
...

}

Per últim, actualitzarem la mida i la data del fitxer a l’objecte fileInfo, afegint-los a
la seva última versió, que en aquest cas serà la primera, perquè estem registrant el
primer accés d’un fitxer.

//Afegim al FIP la mida de la versió del fitxer
fileInfo.addSizeForVersion(fileInfo.getLastVersionId(),size);
//Afegim al FIP l’última data de modificació de la versió del fitxer.
fileInfo.addLastModForVersion(fileInfo.getLastVersionId(),lastMod);

4. DataNodes:

Aquest últim punt de l’extensió busca dotar a COMPSs de la possibilitat de gestionar
fitxers d’entrada que no es trobin inicialment a la màquina Master i que, per tant,
funcionin com a DataNodes. 6

La majoria de les vegades, els protocols de transferència de fitxers verifiquen l’accés
entre nodes a través d’un procés de login 7 que demana nom d’usuari i contrasenya.
Aquest és el cas de COMPSs, que utilitza per defecte SCP 8 com a protocol de
transferència a través de l’adaptador proporcionat per JavaGAT.

En aquest apartat definirem la sintaxi utilitzada per declarar un DataNode. Aquest
anirà també inclòs dins el fitxer project.xml a mode d’etiqueta. La sintaxi serà la
següent:

<DataNode Name=“host1.foo.es”>
<User>username</User>

</DataNode>

La implementació i utilització d’aquesta funcionalitat dins el codi de COMPSs, es
troba al mètode getFileSizeAndLastMod del FIP, que veurem en detall a la secció
3.4.1.

6 Nodes que no són Workers i d’on s’agafaran dades d’entrada.
7 Procés mitjançant el qual es controla l’accés individual a un sistema.
8 Secure Copy Protocol.
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3.3 Planificador

En aquesta secció presentarem les propostes per millorar el planificador original. Explica-
rem el nou planificador i en presentarem el disseny i la implementació duta a terme. Per
acabar, analitzarem cada una de les funcionalitats auxiliars que ha calgut desenvolupar
per poder proporcionar la informació necessària perquè pugui avaluar de forma correcta.

3.3.1 Anàlisi del planificador inicial

A la secció 3.1 hem vist que el planificador original de COMPSs tenia certs punt millora-
bles. Entre d’altres, un d’ells era que analitzava per cada conjunt de fitxers d’entrada quin
era el recurs, d’entre els disponibles, que tenia el màxim nombre de fitxers. D’aquesta
forma en transferia el mı́nim nombre possible, encara que això no garantia transferir la
mı́nima quantitat de dades i, per tant, minimitzar el temps de transferència.

L’estratègia per trobar el millor recurs, es troba en el mètode assignTaskToBestRe-
source del Task Scheduler. En la versió inicial d’aquest mètode quedava separada en dues
fases: Scoring 9 i cerca del recurs amb la puntuació més alta.

Aquest mètode busca per cada un dels paràmetres de la tasca que siguin de tipus
fitxer 10 i n’agafa el seu FileInstanceId corresponent, depenent de si és READ, WRITE
o READ/WRITE. A través d’aquest identificador fa una petició per demanar totes les
seves locations al FIP utilitzant la funció getLocations(FileInstanceId fId) publicada a la
interf́ıcie fileLocation.

Per cada una d’aquestes locations (URIs) es comprova el seu host, si coincideix amb
algun dels recursos dels quals es disposa, s’hi anota un punt. D’aquesta manera, al final del
procés obtindrem una puntuació que indicarà quants dels fitxers necessaris per executar la
tasca té cada un dels nostres recursos disponibles. A continuació podem veure un exemple
del codi simplificat.

//Per cada paràmetre de la tasca
for (Parameter p : params) {

//Si p és un fitxer
if (p instanceof FileParameter) {

FileParameter fp = (FileParameter)p;
FileInstanceId fId = null;
switch (fp.getDirection()) {

case IN:
fId = raId.getReadFileInstance();
...

}
//Si fId != null el fitxer és IN o INOUT
if (fId != null) {

Set<Location> locs = fileLocation.getLocations(fId);

9 Procés de puntuació de recursos.
10 Si són de tipus bàsic no s’han de transferir.
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//Per cada location calculem la seva puntuació
for (Location l : locs) {

String host = l.getHost();
if ((score = hostToScore.get(host)) == null) {

score = new Integer(0);
hostToScore.put(host, score);

}
hostToScore.put(host, score + 1);

...

La segona fase busca el valor més gran del mapa de puntuacions hostToScore trobant
el recurs que té el màxim nombre de fitxers i que, per tant, pot ser considerat com el millor
recurs per enviar-hi la tasca.

//Seleccionem el recurs amb més puntuació
String bestResource = null;
int bestScore = 0;

for (Map.Entry<String,Integer> e : hostToScore.entrySet()) {
String host = e.getKey();
Integer score = e.getValue();
if (score > bestScore){

bestResource = host;
bestScore = score;

}
}

Després de veure que aquesta solució no és del tot correcta, es va decidir desenvolupar
un planificador que avalués a partir de la informació extreta directament del Grid, de la
forma més real i actualitzada possible.

3.3.2 Disseny i implementació del planificador

Com hem vist, el planificador original de COMPSs és un planificador estàtic i no és capaç
de minimitzar el temps implicat en les transferències. Això és a causa de no ser un
planificador retroalimentat amb dades directes del Grid.

És per aquest motiu que es planteja desenvolupar un planificador que sigui capaç de
trobar el millor recurs buscant quin d’ells minimitza el temps total d’execució d’una tasca.
Aquest planificador treballarà amb dades extretes del Grid, de la mateixa manera que ho
fa el proposat a l’article: Grid Superscalar and job mapping on the reliable grid resources
[17]. Per fer-ho, doncs, caldrà definir quins seran els paràmetres que determinaran aquest
temps.

Temps de transferència

Hauria de ser possible poder realitzar la predicció del temps que es trigaria a transferir tot el
conjunt de fitxers d’una tasca. Aquest paràmetre és important, ja que ens proporcionarà
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la predicció del temps que hauŕıem d’esperar per poder començar l’execució en el cas
d’escollir aquell node.

Per poder mesurar aquest temps de transferència necessitarem saber:

• La velocitat de la xarxa entre l’origen de cada fitxer i el candidat a dest́ı.

• La mida de cada fitxer.

Aquestes necessitats obligaran a desenvolupar, a més, algunes subfuncionalitats su-
plementàries: els mètodes necessaris per calcular la mida dels fitxers i una forma per
representar i mantenir actualitzades les velocitats de la xarxa. A aquest temps l’ano-
menarem TrfPrediction , i el seu disseny i implementació es veurà als apartats 3.4.1 i
3.5.

Temps d’espera en cua

Per altra banda COMPSs, en la seva versió original, incorpora una funcionalitat anome-
nada prescheduling, que permet al planificador enviar tasques als recursos que en aquell
moment no tenen slots disponibles per poder executar.

Quan el TS envia la decisió al Job Manager aquest inicia, en el cas de ser necessari,
la transferència dels fitxers de la tasca. Si en acabar encara no hi ha slots disponibles al
Worker, la feina queda esperant a una cua de tasques pendents del host anomenada pending
queue. D’aquesta manera, quan una tasca acaba, despertarà un procés que mirarà si n’hi
ha d’altres en espera pendents de disposar de processador.

Aix́ı doncs, al temps d’espera a causa de les transferències cap a un Worker, cal sumar-
hi també el temps d’espera en cua. Aquest temps serà el que haurà d’esperar una tasca des
del moment en què entra a la cua d’espera per slot fins al moment en què se n’hi assigna
un. Aquest temps l’anomenarem WaitTimeInQueue i el seu disseny i implementació
els veurem a la secció 3.4.3.

Temps d’execució

Finalment ens quedaria per definir l’últim paràmetre de la fórmula que modela el planifi-
cador. Quan a una tasca se li ha assignat un slot, l’únic temps que queda saber per poder
calcular el temps total d’execució, és el temps que trigarà aquella tasca a alliberar el slot,
és a dir, en definitiva, el temps d’execució d’aquella tasca. Aquest temps l’anomenarem
TypExecTime .

Per tal de poder-lo predir s’anirà mesurant el temps d’execució de cada un dels mètodes
d’una aplicació enviats a cada node del Grid i s’aniran emmagatzemant en un històric propi
de cada aplicació. D’aquesta manera, a mesura que realitzem execucions, les prediccions
seran cada vegada més acurades. El disseny i la implementació del càlcul d’aquest temps
el veurem en l’apartat 3.4.2.

Per tant, tenint en compte tot això, la fórmula del planificador aplicada a cada un dels
recursos seria:

Per cada tasca t
Per cada recurs r

ExecutionT imer = TrfPredictiont,r + WaitT imeInQueuer + TypExecT imet,r
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Com podem veure, el tipus de tasca és necessari per poder calcular tant la predicció
del temps de transferència com la del temps d’execució. Això és perquè cada tasca té el
seu conjunt de fitxers propi i també el seu temps d’execució t́ıpic, que pot ser diferent en
cada un dels recursos.

Fiabilitat dels recursos

Per altra banda es va voler que el planificador disposés també d’un paràmetre per tal
de poder tenir en compte les màquines més fiables a l’hora de planificar. Encara que el
càlcul d’aquest paràmetre no el veurem en aquest apartat 11, aqúı en mostrarem la seva
utilització.

Per poder ponderar la fiabilitat, es mantindrà un coeficient associat a cada un dels no-
des, que s’emmagatzemarà al llarg de les execucions en un històric propi de cada aplicació.

Inicialment es pensà que el valor de fiabilitat, al qual anomenarem AvailRate, es
relacionés de forma directament proporcional a ExecutionTime; després es va veure que
relacionar-los de forma directa no era una bona solució.

Això venia provocat perquè consideràvem com a millor recurs el que tenia el valor més
petit de ExecutionTime i, per tant, si es multiplicava un valor alt de temps d’execució
(dolent), per un valor de fiabilitat baix, aquest temps disminüıa i, com a conseqüència,
l’anàlisi que en treia el planificador era que el temps millorava quan això no era cert.

Propostes de planificació

Per tant, això resultà totalment incoherent i calia trobar una manera de poder incorporar
correctament el paràmetre de fiabilitat a la fórmula original. A continuació es presenta la
primera proposta plantejada.

Scorer = ExecutionT imer ∗AvailRater on 0 ≤ AvailRater ≤ 1→ Incorrecte

Una altra opció va ser fer-ho de forma inversament proporcional tal i com s’exposa en
la següent fórmula, on els recursos amb temps més baixos donen puntuacions més altes:

Scorer =

(
1

ExecutionT imer

)
∗AvailRater on 0 ≤ AvailRater ≤ 1

Aquesta formula és correcta en la teoria, però pot no resultar-ho a la pràctica, ja
que per temps d’execució grans el quocient podria produir valors molt petits que podrien
acabar-se arrodonint a zero i generant falsos empats entre recursos.

Com a solució final es va decidir abstraure dels recursos els valors d’ExecutionTime
sotmetent-los a un rànquing de classificació ascendent 12. D’aquesta manera es podien
classificar els recursos de forma que el valor més baix del rànquing, l’1, indiqués el pitjor
lloc i a partir d’aqúı anés augmentant de forma ascendent.

11 Es veurà a l’apartat 3.6.1, tolerància a fallades.
12 Classificació per posicions ordenades de forma ascendent on el valor més gran és el millor element.
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Això permetia evitar els problemes presentats en la segona fórmula i aconseguia situar
tots els recursos en una equidistància mútua. D’aquesta manera, quan s’apliqués el coe-
ficient de fiabilitat sobre la classificació de recursos, aquesta podria variar segons el % de
fiabilitat de cada un d’ells.

A continuació podem veure el disseny final del planificador:

Per cada tasca t
Per cada recurs r

ExecutionT imer = TrfPredictiont,r + WaitT imeInQueuer + TypExecT imet,r
Fi Per
Ordenem de gran a petit ExecutionT imer
Per cada valor de ExecutionTime e

Rankr = S’assigna un rank a e
Fi Per
Per cada recurs r

Scorer = Rankr ∗AvailRater
Fi Per
Ordenem de gran a petit Scorer
millorRecurst = max{Score}

Fi Per

En cas d’empat, s’assignaria a tots els recursos el mateix valor de rànquing i es des-
empataria triant-ne un aleatòriament. D’aquesta manera s’obliga al planificador a provar
entre els diferents recursos que es troben en igualtat de condicions.

Això és molt beneficiós, ja que fomenta l’execució en quantes màquines millor i, per
tant, millora l’obtenció de dades per generar l’històric, millorant també la planificació en
futures execucions.

A continuació, a la figura 3.1 podem veure alguns exemples de com actuaria el plani-
ficador en cas de no disposar d’històric previ 13:

Recursos MethodId TP WT ET AvailRate Rank Score

host1 1 0.9s 0s 0s 1.0 1 1
host2 1 0.9s 0s 0s 1.0 1 1
host3 1 0.9s 0s 0s 1.0 1 1
host4 1 0.9s 0s 0s 1.0 1 1

Taula 3.1: Exemple de planificació sense històric.

Com podem veure en aquest cas, l’únic valor diferent a zero serà el temps de trans-
ferència. Això és a causa que l’usuari haurà definit prèviament les velocitats inicials de
xarxa per defecte de cada un dels recursos 14.

La resta de valors seran tots nuls, ja que no hi haurà valors previs ni de temps d’execució
ni de generació de cues als recursos. Per tant, en cas de tenir, per exemple, un Grid amb una
xarxa homogènia, podria donar-se empat entre recursos durant les decisions inicials preses
pel planificador. A més, a base d’anar acumulant informació, s’aniran obtenint valors dels
altres paràmetres restants que quedaran guardats a l’històric en finalitzar l’aplicació.

13 On TP = TrfPrediction | WT = WaitTimeInQueue | ET = TypExecTime.
14 Es veurà a la secció 3.7.2.



3.3. PLANIFICADOR 45

A la figura 3.2 podem veure un exemple de planificació partint, aquesta vegada, d’un
històric previ on els recursos ressaltats són els finalment escollits pel planificador:

Recursos MethodId TP WT ET AvailRate Rank Score

host1 1 0.11s 1504.1484s 0s 0.9 2 1.8
host2 1 0.10s 1316.8849s 0s 1.0 3 3
host3 1 0.15s 1254.6338s 0s 0.7 4 2.8
host4 1 0.09s 8451.267s 0s 1.0 1 1

Taula 3.2: Exemple de planificació amb històric previ.

Implementació del planificador

La implementació del planificador s’ha realitzat, pràcticament en la seva totalitat, dins el
Task Scheduler. Tal com s’ha explicat a la secció 3.3.1, aquest component allotja el mètode
List assignTaskToBestResource(Task t, List<String> resources) que és l’encarregat de
realitzar l’avaluació de recursos.

Aquest mètode rep una tasca i un conjunt de recursos i retorna una llista de dos
elements: una cadena i una llista d’objectes FileInstanceId que contenen el nom del millor
recurs per enviar-hi la tasca i la llista de fitxers que s’hi haurà de transferir.

Aquestes dades s’envien al Job Manager a través de la seva funció sendJob publicada
a la seva interf́ıcie i és l’encarregada d’iniciar la transferència dels fitxers, en el cas que
sigui necessari, i d’enviar la feina al Worker.

La figura 3.3 mostra la classe final modificada del Task Scheduler.

Figura 3.3: Classe simplificada del component Task Scheduler.

A causa que la implementació del mètode assignTaskToBestResource conté gran quan-
titat de codi, s’ha preferit transmetre’n només la seva essència, que queda explicada a
l’apartat 3.3.2, propostes de planificació.
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3.4 Extracció de dades necessàries per al planificador

Desenvolupar un planificador de les caracteŕıstiques esmentades implica haver de mantenir
actualitzat en tot moment el conjunt de dades extretes del Grid per tal que les decisions
siguin preses de la forma més acurada possible; és per aquest motiu que aquest és un dels
punts cŕıtics del desenvolupament, ja que en dependrà gran part del rendiment esperat del
planificador.

En aquesta secció, doncs, veurem de forma detallada com s’ha realitzat l’extracció i
mesura de les dades necessàries per alimentar el planificador.

3.4.1 Predicció del temps de transferència

Com hem vist, la predicció del temps de transferència és un dels elements clau. Com s’ex-
plica a la secció 3.3.2, s’utilitza per obtenir el valor del paràmetre TrfPrediction, el temps
de transferència estimat per enviar els fitxers d’una tasca al recurs determinat. Aquest
mètode l’anomenarem trfTimePredictor i serà utilitzat en la funció assignTaskToBestRe-
source, que serà l’encarregada d’avaluar les decisions del planificador. Per aquest motiu
anirà implementada al Task Scheduler, tal i com indica la Figura 3.3.

La invocació d’aquest mètode es farà dins d’assignTaskToBestResource passant-hi com
a paràmetres: la tasca a planificar i el recurs candidat. Per a cada un dels paràmetes de
la tasca se’n consultarà el tipus i es comprovarà si és un fitxer, ja que només tindrà sentit
realitzar la predicció en cas que el paràmetre ho sigui.

Per tant, si és de tipus fitxer i és IN o INOUT llavors té una o més referències de
localització (URI) que es demanaran al FIP, als fitxers de tipus sortida (OUT) tampoc
no tindrà sentit fer-hi cap predicció, ja que es generaran directament als Workers com a
resultat final d’una tasca. Per tant, a l’hora de realitzar la predicció ens interessarà fer-la
només dels fitxers de tipus IN i INOUT.

En l’apartat de gestió de rèpliques, hem explicat que les de fitxers de tipus IN s’emma-
gatzemaran al project.xml 15; per tant, si el fitxer és d’aquest tipus i té rèpliques definides,
(rèpliques que hagin estat definides manualment o que ja existeixin a causa d’execucions
prèvies de l’aplicació) es comprovarà per cada URI si el seu nom de host fa referència a la
màquina candidata. Si és aix́ı, significa que el fitxer ja existeix a la màquina i no caldrà
transferir-lo.

En cas de no existir-hi l’afegirem a la llista de fitxers a transferir fitxersTransferir i
se’n farà la predicció. Per fer-la, es demanarà al FIP la mida del fitxer que, recordem,
s’emmagatzema gràcies a l’extensió de la gestió de rèpliques. Per altra banda, es demanarà
a la matriu de velocitats 16 la velocitat de l’enllaç entre l’origen del fitxer i el dest́ı en el
qual es vol transferir que, en aquest cas, serà la màquina candidata chosenResource.

Llavors es realitzarà la predicció a partir de la següent fórmula:

Predicció = Predicció +

(
tamanyFitxer (bytes) ∗ 8

velocitatEnllac (Mbits/s) ∗ 1000000

)
(segons)

15 Veure secció 3.7.1
16 Veure secció 3.5
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A continuació podem veure la versió simplificada del codi del mètode:

List trfTimePredictor(Task t, String chosenResource) {
Per cada paràmetre p de la tasca

Selector(p.Tipus){
cas FITXER:

Si (p != OUT)
locs = fileLocation.obtenirLocations(...)

Fi Si
Si (p == IN) && Hi ha rèpliques definides

Per cada element l de locs
host = l.obtenirHost()
path = l.obtenirPath()
Si (host == chosenResource) && (path == workingDir)

fitxerExisteix = true
sortir bucle

Fi Si
Fi Per

Fi Si
Si (!fitxerExisteix) && (paràmetre != OUT)

//Afegim fitxer a llista de fitxers a transferir
fitxersTransferir.afegir(...)
//Predicció del temps de transferència
tamanyFitxer = fileLocation.getSize(...)
//S’agafa el host de la primera de les rèpliques
source = locs.get(0).obtenirHost()
velocitatEnllaç = matriuVelocitats(source, chosenResource)
predicció = predicció + (tamanyFitxer*8)/(velocitatEnllaç*1000000)

Fi Si
Fi cas FITXER
cas DEFECTE:

//El paràmetre és de tipus bàsic, no es fa res
Fi cas DEFECTE

Fi Selector
Fi Per
llistaRetorn.afegir(0,predicció)
llistaRetorn.afegir(1,fitxersTransferir)
retorn llistaRetorn

}

Com podem veure, la funció retorna una llista anomenada llistaRetorn on s’afegeixen
la predicció i la llista d’objectes FileInstanceId corresponents a cada un dels fitxers que
hauran de ser transferits.

Ara, a la següent secció veurem com s’ha mesurat el temps mig d’execució de les
tasques.
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3.4.2 Mesura del temps mig d’execució

Tal i com s’ha explicat a la secció 2.5.5, l’usuari és qui determina quines seran les funcions
de l’aplicació que s’executaran al Grid. Cada una d’elles es definirà a l’interf́ıcie i tindrà
el seu identificador de mètode únic o methodId, consultable com a atribut en cada objecte
de tipus Task (tasca).

D’aquesta manera, per calcular el temps mig d’execució de cada tipus de tasca i recurs,
calia capturar dos instants de temps. El primer, en iniciar la feina, és a dir, en el moment
on el Job Manager l’envia al recurs seleccionat prèviament pel Task Scheduler i el segon
en rebre la notificació, a través de JavaGAT, que la feina ha acabat correctament. En cas
d’acabar amb errors, el temps no es tindrà en compte.

Per fer-ho, es mantindrà una relació de feines començades i es guardarà en una estruc-
tura que relaciona l’identificador JobId amb el temps d’inici de cada una d’elles. D’aquesta
manera, la notificació o callback generada al final d’una feina retorna l’estat i identificador
d’aquesta. Si l’estat és correcte podem calcular llavors el temps d’execució de la feina a
través de la següent fórmula:

JobT ime = JobT imef + JobT imei (segons)

A mesura que es van aconseguint valors, van servint com a mostra per anar calculant i
afinant el temps mig d’execució. Per fer-ho, s’ha implementat al Task Scheduler un mètode
anomenat addHostExTimeMeanValue, que pren com a paràmetres d’entrada la màquina
on s’ha executat la feina, el temps d’execució i el seu identificador.

En la següent figura podem veure la dinàmica de funcionament del sistema.

Figura 3.4: Dinàmica de la mesura del temps mig d’execució.

Aix́ı doncs, el mètode addHostExTimeMeanValue recalcula el temps mig de cada tasca
i host, tal com van arribant noves mostres, a partir de la següent fórmula:

MitjanaActual =
(
∑N

i=1mostresi) + mostraActual

N + 1
on N = #mostres
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Per acabar, en finalitzar l’execució de l’aplicació, aquestes dades quedaran emmagat-
zemades en el fitxer d’històric historical.xml propi de l’aplicació 17, mantenint una sintaxi
de tipus XML com la següent:

<MeanExecTime>
<TaskType Id=“1”>

<Worker Name=“host1.foo.es”>10.5</Worker>
</TaskType>
<TaskType Id=“2”>

<Worker Name=“host2.foo.es”>1.53</Worker>
</TaskType>
...

</MeanExecTime>

3.4.3 Mesura del temps d’espera en cua

Per tal d’estimar el temps que s’haurà d’esperar una feina per poder accedir al proces-
sador d’un recurs que en aquell moment no disposa de slots lliures, ha calgut dissenyar i
desenvolupar aquesta funcionalitat de la manera més eficient possible, ja que serà de vital
importància que el càlcul d’aquest valor es realitzi de forma ràpida i pugui mantenir-se
actualitzat. Aixó és important perquè el planificador pugui decidir amb les dades més
reals possibles.

El temps d’espera en cua serà el temps previst d’execució de cada una de les feines que
ja són a la cua del recurs, més el temps previst perquè el recurs alliberi un slot.

Per tal de calcular el temps d’espera en cua, s’ha implementat al Task Scheduler un mè-
tode anomenat updateWTCounters, que pren com a paràmetres d’entrada la màquina on s’-
ha executat la feina, l’identificador de mètode i el valor de l’incrementador/decrementador.

D’aquesta manera, cada vegada que una feina no es pot executar a causa que al recurs
on ha estat assignada no té slot lliure, entra a la cua d’espera del recurs i llavors es crida
al mètode updateWTCounters(host,methodId,(+1)).

Aquest incrementa el comptador que manté el registre del nombre de feines de cada un
dels tipus de mètode que hi ha a la cua del recurs. D’aquesta manera es porta un recompte
de quantes feines hi ha de cada tipus de mètode. La figura 3.5 n’il.lustra la dinàmica de
funcionament.

D’altra banda, cada vegada que una feina surt de la cua per passar a executar-se a un
slot que hagi quedat lliure gràcies a haver acabat alguna tasca, es crida de nou al mètode,
però aquesta vegada amb els següents paràmetres updateWTCounters(host,methodId,(-
1)), eliminant la feina de la cua i dels comptadors.

Aquest mètode, a més de controlar els comptadors, actualitza els elements de la cua i
recalcula el temps d’espera. Aquest temps es calcula a partir del temps d’execució t́ıpic
de cada mètode, vist en l’apartat anterior.

D’aquesta manera, multiplicant el nombre de feines de cada tipus pels seus temps
d’execució t́ıpics sabrem el temps aproximat que trigaran a executar-se cada un d’aquests
mètodes i, per tant, sumant tots aquests temps, podrem saber el temps que haurà d’esperar

17 Veure secció 3.7.3
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Figura 3.5: Dinàmica de la mesura del temps d’espera en cua.

a la cua una feina que just hi acaba d’entrar. L’algorisme seguit per aproximar aquest
valor és el següent:

Per cada methodId m
Obtenim el comptador c de feines del mètode m
WaitTime = WaitTime + (c * obtenirTExec(recurs,m))

Fi Per

Com es pot veure, en aquest càlcul no s’ha afegit el terme que calcula el temps pre-
vist perquè el recurs alliberi un slot. Tot i que inicialment es plantejà i teòricament és
correcte incloure’l; a la pràctica, implementar aquest càlcul provocava un increment en la
complexitat del mètode i l’alent́ıa considerablement.

Per poder calcular aquest valor calia mantenir en tot moment un registre de les feines
que es trobaven en execució a cada un dels recursos, registrar el temps d’inici de cada una
d’elles, fer la diferència amb el temps d’execució estimat de cada una i buscar el mı́nim
d’aquests temps. És per aquest motiu que la implementació final s’ha realitzat tenint
només en compte el temps d’espera en cua.

3.5 Mesura i actualització de la velocitat de xarxa

Tal i com s’ha presentat a la secció 3.3.2, per poder predir el temps de transferència ens
cal saber, entre altres coses, la velocitat de xarxa entre l’origen de cada fitxer i el seu dest́ı.
Ara bé, per poder disposar d’aquestes velocitats, abans cal tenir alguna manera per poder
representar-les. Aquest és l’aspecte que tractarem en aquesta secció.

Per permetre al planificador disposar d’aquestes dades, ha calgut dissenyar una forma
perquè l’usuari pogués indicar les velocitats inicials de xarxa de cada un dels nodes a
través del fitxer on es detallen les caracteŕıstiques d’aquests, el resources.xml. Per fer-ho
s’ha aprofitat un dels camps no utilitzats d’aquest fitxer, el camp <NetworkAdaptor>, que
veurem més endavant a la secció 3.7.2.
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De totes maneres, cada un dels recursos del Grid tindrà en aquest fitxer una etiqueta
XML definida com la següent, indicant la velocitat de l’adaptador de xarxa de cada node:

<NetworkAdaptor>
<NetworkSpeed>547.2</NetworkSpeed>

</NetworkAdaptor>

D’aquesta manera, a partir d’implementar mètodes addicionals al ResourceManager
es permet carregar aquestes dades en una matriu que es troba al Task Scheduler i que
anomenarem Matriu de velocitat de xarxa. El mètode que més hi haurà d’accedir
serà el trfTimePredictor que, recordem, és l’encarregat de predir el temps de transferència
dels fitxers.

Un detall important a considerar és que a l’hora de carregar aquests valors, s’escull
com a velocitat de l’enllaç la més petita d’entre els dos punts que connecta. Aquest detall
ha de ser considerat en motiu de la possiblitat de trobar nodes interconnectats a través
de xarxes asimètriques i que, per tant, mantenen diferents velocitats a l’hora de rebre i
enviar informació cap a un node determinat.

D’aquesta manera i, a mode d’exemple, podŕıem trobar-nos amb una matriu inicial
definida per l’usuari com la següent:

Recursos host1 host2

host1 91.2 91.2
host2 78.8 504.3

Taula 3.3: Exemple de matriu inicial de velocitat de xarxa (Mbps).

Com podem observar, aquesta primera solució és realment bàsica, en tractar-se d’un
model estàtic que no té en consideració cap de les possibles fluctuacions en la velocitat de la
xarxa. Justament per aquest motiu es va decidir ampliar aquesta funcionalitat permetent
l’actualització dinàmica de la matriu a mesura que es transfereixen fitxers entre nodes.

3.5.1 Actualització dinàmica de la velocitat de xarxa

Com diem en l’apartat anterior, la segona fase de desenvolupament es planteja com un
model dinàmic que sigui capaç d’actualitzar les dades a mida que vagin sorgint transfe-
rències entre nodes del Grid. D’aquesta manera s’espera obtenir un comportament més
realista del planificador permetent-lo disposar de dades com més real i actualitzades sigui
possible.

Tot i que aquest planteig era inicialment correcte, es veié que calia decidir el moment
en què s’actualitzarien les dades d’aquesta matriu. Cal tenir en compte la naturalesa de
components de COMPSs i que l’intercanvi d’informació entre aquests requereix l’existència
d’interf́ıcies entre ells. A més, transferir dades entre components pot penalitzar força el
rendiment global del sistema.

Recordem que, per altra banda, la màxima seguida durant el desenvolupament era
no modificar l’arquitectura inicial de COMPSs, intentant mantenir sempre les interf́ıcies
inicials el més intactes possible.

És per aquest motiu que teńıem un problema, les transferències es gestionen al FTM
i la matriu s’utilitza al TS i entre ells no existia cap interf́ıcie definida.
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Per aquest motiu es va decidir que el Job Manager mantingués també la matriu en
memòria i que les actualitzacions de velocitats que fes el FTM, les fes sobre la matriu
del JM, que en finalitzar l’aplicació quedaria actualitzada i s’emmagatzemaria al fitxer
historical.xml 18, que és on es guarden totes les dades d’històric referents a l’aplicació.

D’aquesta manera s’aconsegueix cert grau de dinamisme entre execucions, però no
durant la mateixa, ja que en llençar una aplicació, el TS carrega inicialment la matriu
des del fitxer d’històric, que havia estat actualitzat al final de l’execució anterior pel JM i
realitza tota l’execució amb aquella matriu, que tornarà a quedar actualitzada pel JM en
acabar l’execució.

L’ús d’aquest sistema presenta els seus avantatges i inconvenients, que veurem descrits
detalladament a l’apartat 3.5.1 d’aquesta secció.

Càlcul de la velocitat de xarxa

El càlcul de la velocitat de xarxa és un dels punts en què més ha calgut treballar. Com
hem comentat en seccions anteriors, quan el TS dóna l’ordre de crear una feina al JM,
aquest verifica a través del seu mètode orderTransfers si s’ha de transferir algun fitxer
abans d’enviar a executar-la. Si és aix́ı, invoca el mètode transferFiles, al qual li passa la
llista de fitxers a transferir i la localització del dest́ı de la transferència.

Un cop el FTM executa aquesta funció, no en comença la còpia immediatament, sinó
que les col.loca en una cua de peticions. Llavors, és l’objecte anomenat TransferDispatcher,
que es troba dins el mateix FTM, l’encarregat de desencuar-les i atendre-les utilitzant cinc
threads independents.

Inicialment, doncs, per calcular la velocitat de tranferència entre dos punts, s’ideà
una primera solució que consistia a realitzar una marca d’inici cada vegada que comencés
una transferència. D’aquesta manera, com que cada transferència és única, en acabar,
es realitzaria una marca de temps final, i aix́ı, amb la diferència de temps final menys
inicial i la mida del fitxer transferit, podŕıem saber fàcilment la velocitat a la qual s’havia
transferit el fitxer.

Aquesta primera aproximació no va funcionar, ja que no es tenia en compte la possi-
bilitat que mentre preńıem la mesura de temps d’una transferència podia apareixe’n una
altra entre el mateix node d’origen i dest́ı, provocada per un dels fils del TransferDispatc-
her que desencués una nova transferència. Això dividia la capacitat de transferència de
l’enllaç repartint-lo entre les dues transferències, que passaven a compartir l’enllaç i, per
tant, a compartir la capacitat d’aquest.

Mesurar aquestes transferències de la forma anteriorment explicada provocava errors en
les mesures, ja que sempre s’assumia la velocitat del canal com la d’una sola transferència.

Per tal de resoldre aquest problema es proposa una nova solució, que té en compte la
utilització global de l’enllaç entre dos punts. El que s’ha realitzat és crear una estructura
que manté un registre dels enllaços sobre els que hi ha transferències en curs.

D’aquesta manera quan s’inicia una transferència entre dos punts, es registra l’ús d’a-
quest enllaç a través d’una estructura que emmagatzema l’instant de temps en què s’ha
començat a utilitzar, el nombre de fitxers simultanis que s’hi estan transferint i el vo-
lum total de dades transferit a través de l’enllaç. Aix́ı, si apareix una nova transferència,

18 Veure secció 3.7.3
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s’incrementarà el nombre de fitxers simultanis en curs i també el volum total de dades
transferides per l’enllaç.

La marca de temps final la posarem quan el nombre de fitxers simultanis d’un enllaç
es redueixi a zero. Just en aquest moment tindrem disponibles el nombre total de dades
que s’han transferit i el temps en què s’ha fet, podent calcular aix́ı la velocitat mitjana de
l’enllaç a partir de la següent fórmula:

V elocitatCanal =
volumDades ∗ 8

tempsTrf ∗ 1000000
(Mbps)

Un cop aplicada la fórmula, es veié que els valors de les mesures no eren sempre
correctes, concretament en el cas de transferències de fitxers petits aquest càlcul no sempre
donava bons resultats, a causa de les caracteŕıstiques de les xarxes TCP/IP.

Aquest protocol presenta un sistema anomenat arrencada lenta (slow-start) 19. Com
que ni l’emissor ni el receptor tenen forma de saber quin és el volum de dades màxim que
poden arribar a transferir a la xarxa, per no saturar-la es comença a enviar i rebre de
forma progressiva augmentant la velocitat de forma gradual fins que la xarxa arribi al seu
cabal màxim o se saturi. En aquest cas, TCP reduirà la tasa d’enviament per disminuir-ne
la saturació.

Per aquest motiu, necessitem mesurar fitxers suficientment grans perquè la velocitat
de la xarxa hagi arribat a estabilitzar-se. Si no, pot passar que les velocitats dels enllaços
mesurades siguin més baixes del que ho són en realitat. Aquest valor ha estat mesurat
emṕıricament fins obtenir valors estables i s’ha deixat com a paràmetre configurable del
sistema per tal de poder ser eliminat en cas d’utilitzar altres tipus de xarxes.

Dit això, la velocitat de xarxa s’actualitzarà només en cas que el volum de dades
transferit pel canal sigui més gran que el del llindar establert per obtenir mesures estables.

A la següent figura 3.6 podem veure, de forma il.lustrativa, com es realitza el càlcul
explicat. Es registraria la marca d’inici de transferències d’aquest enllaç (segon 0) i l’última
transferència, que és la que faria disminuir el nombre de transferències simultànies a zero
i generaria la marca final al cap de 45 segons.

Figura 3.6: Diagrama amb solapament de transferències.

19 http://es.wikipedia.org/wiki/Slow-start
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Actualització de la matriu de velocitat de xarxa

Cada un d’aquests càlculs anteriors actualitzen la matriu que es troba al Job Manager a
través del mètode speedMatrixUpdate. Per fer-ho, rep com a paràmetre un node origen, un
node dest́ı i el nou valor mesurat actualitzant la velocitat de l’enllaç. De totes maneres,
aquest valor no és actualitzat reemplaçant-se, sinó que el valor que queda substitüıt a la
matriu és en un 50% el valor nou i en l’altre 50% el valor anterior, tal i com indica la
fórmula següent:

V elocitat =
V elocitatAnterior + V elocitatActual

2
(Mbps)

D’aquesta manera s’aconsegueix mantenir el resultat anterior, donant també una bona
adaptabilitat als canvis sobtats en la xarxa.

Finalment, en acabar l’execució d’una aplicació, aquesta matriu s’emmagatzemarà al
fitxer d’històric a través del mètode setSpeedMatrix implementat a l’HistoricalManager,
que guardarà l’estructura de la matriu en format XML, tal i com es mostra a continuació.

Per seguir amb l’exemple d’aquest apartat, s’ha utilitzat com a referència la matriu de
la figura 3.3.

<NetSpeed>
<Link Src=“host1.foo.es”>

<Speed Dst=“host2.foo.es”>91.2</Speed>
<Speed Dst=“host1.foo.es”>91.2</Speed>

</Link>
<Link Src=“host2.foo.es”>

<Speed Dst=“host2.foo.es”>504.3</Speed>
<Speed Dst=“host1.foo.es”>78.8</Speed>

</Link>
</NetSpeed>

Avantatges i inconvenients d’utilitzar aquest sistema

Tot sistema té els seus avantatges i els seus inconvenients i com és de suposar aquest
no intenta ser-ne cap excepció. En aquest apartat tractarem d’analitzar quins són els
principals avantatges i inconvenients d’utilitzar aquest sistema per mesurar la velocitat de
la xarxa.

Inicialment i abans de desenvolupar el sistema, es pensà a utilitzar algun sistema
de monitorització i recol.lecció d’informació per a recursos distribüıts (Grid Information
System), per exemple: Globus Toolkit o Ganglia [18] 20, que és un sistema exclusiu per a
monitorització de recursos distribüıts.

Realment, a l’hora de buscar precisió en la mesura, un sistema de monitorització és
possiblement el més adequat, ara bé, utilitzar-lo implicava una sèrie de restriccions com,
per exemple, haver d’estar sempre lligat al sistema o haver de desplegar tot el sistema al
Grid utilitzat, cosa que podria provocar inconvenients sobretot si la persona que instal.la i

20 http://ganglia.sourceforge.net
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gestiona COMPSs, que habitualment és el propi usuari, no és l’administrador de la xarxa
del Grid.

Per aquest motiu es va decidir incorporar el sistema de mesura dins de COMPSs a
mode d’extensió; d’aquesta manera tota la gestió i mesura es realitza de forma transparent
encara que això suposi alguns inconvenients.

El fet de mesurar la velocitat dins el File Transfer Manager pot provocar algunes
desviacions en la mesura a causa de la càrrega del propi component. Recordem que per
tal de gestionar les transferències, el FTM es recolza en JavaGAT, que és qui ordena les
transferències i les execucions de les feines als Workers, les quals en acabar generen una
notificació. Si a causa de la càrrega del FTM aquestes notificacions es processen més
lentament poden provocar variacions en els resultats dels càlculs.

Bo i que és dificil que succeeixi, existeix la possibilitat i, per tant, ha de ser considerada.

3.6 Millora de la tolerància a fallades

Com s’ha explicat a l’apartat 3.3.2, el planificador requereix del paràmetre AvailRate per
poder tenir en compte el % de fiabilitat dels recursos. D’aquesta manera, si un recurs és
menys fiable que altres, perdrà crèdit i per tant el planificador l’escollirà menys vegades.
En aquest apartat s’explicarà quin ha estat el mètode utilitzat per calcular aquest ı́ndex.

3.6.1 Disseny de mecanismes de tolerància a fallades

Quan el Job Manager envia una feina al Worker, aquesta pot acabar correcta o incorrec-
tament; això se sap a partir de la notificació o callback generat per JavaGAT, que invoca
al mètode jobStatusNotification del JM. Segons l’estat de finalització de la tasca, aquest
mètode entrarà dins una etiqueta (case) OK o FAILED, executant diferents accions en
cadascun dels casos.

Aprofitant aquesta estructura, es van implementar al Task Scheduler dos mètodes: un,
que comptabilitzava el nombre de feines correctament executades a cada un dels Workers
i l’altre, el nombre de feines que havien fallat. D’aquesta manera, en rebre una notificació
es comptabilitzava la tasca en un dels dos anotadors.

Aix́ı el % de fiabilitat es calcula segons la següent fórmula:

RatioF iabilitatr =
FeinesOKr

FeinesEnviadesr
on r = recurs

D’aquesta manera, el mètode addOkSubmit incrementarà el nombre de FeinesOK i
FeinesEnviades d’un recurs determinat; en canvi addFailedSubmit n’incrementarà només
el nombre de FeinesEnviades. D’aquesta manera, a mesura que van acabant feines s’obté
de forma no gaire costosa el % de fiabilitat de cada recurs.
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El codi simplificat corresponent a aquests mètodes és el següent:

void addOkSubmit(String r){
feinesEnviades = Obtenir el nombre de feines enviades del recurs r
feinesEnviades = feinesEnviades + 1

feinesOK = Obtenir el nombre de feines ok del recurs r
feinesOK = feinesOK + 1

fiabilitat = feinesOK/feinesEnviades
Guardar valor de fiabilitat a mapa: recurs -> fiabilitat

}

L’única diferència entre ambdues funcionalitats és que addOkSubmit incrementa el
nombre de feines que han acabat correctament i addFailedSubmit no.

void addFailedSubmit(String r){
feinesEnviades = Obtenir el nombre de feines enviades del recurs r
feinesEnviades = feinesEnviades + 1

feinesOK = Obtenir el nombre de feines ok del recurs r

fiabilitat = feinesOK/feinesEnviades
Guardar valor de fiabilitat a mapa: recurs -> fiabilitat

}

Per assegurar la propagació d’aquests valors entre execucions, s’han implementat una
sèrie de funcionalitats que permeten guardar els valors de fiabilitat en format XML al
fitxer d’històric seguint la sintaxi següent:

<Availability>
<Worker Name=“host01.foo.es”>1.0</Worker>
<Worker Name=“host02.foo.es”>0.75</Worker>
<Worker Name=“host03.foo.es”>0.3</Worker>

</Availability>

En iniciar una aplicació, el planificador treballa amb les dades de disponibilitat de
l’històric. Si inicialment no se’n tinguessin, es generen automàticament a l’inici amb valors
de fiabilitat màxima per a cada un dels recursos.

Aquestes dades són sempre estàtiques al llarg de l’execució de l’aplicació, ja que el
planificador treballa sempre amb les dades que ha carregat de l’històric anterior. Tal i
com es va planificant a partir de les dades d’execucions anteriors, també se’n van generant
de noves durant l’execució actual. Aquestes, en acabar passaran a fusionar-se amb les del
nou històric fent servir una mitjana ponderada, de manera que estarà format pel 60% dels
nous valors i el 40% dels antics. La configuració d’aquests pesos ha estat determinada
emṕıricament i és facilment modificable.
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3.6.2 Recuperació de fiabilitat

Com hem vist en l’apartat anterior, és possible que un recurs perdi la confiança del planifi-
cador, és a dir, que en fallar es redueixi el seu ı́ndex de fiabilitat i, per tant, el planificador
l’esculli en menys ocasions.

Podria passar, en cas extrem, que alguns recursos patissin errors freqüents prodüıts
per problemes de connectivitat. A causa d’això, obtindrien valors de fiabilitat tan baixos
que és possible que el planificador no el tornés a escollir més. Justament per aquest
motiu ha calgut desenvolupar un mètode anomenat addConfidence que permeti als recursos
recuperar de forma progressiva la seva confiança.

El mètode desenvolupat és anomenat “mètode de confiança cega” i consisteix a donar,
al final de l’execució, un petit % de confiança extra 21 als recursos que no tenen la fiabilitat
màxima i que no han estat escollits durant aquella execució. D’aquesta manera és possible
que recursos que han perdut tota la fiabilitat, a poc a poc la vagin recuperant fins al
moment en què el planificador els torni a enviar feines. Si aquestes acaben correctament,
aniran recuperant els seus valors de fiabilitat; si segueix fallant, els valors tornaran a baixar
i el planificador els deixarà novament de banda.

3.6.3 Limitació en el nombre de reintents

L’última millora implementada en aquest apartat és limitar el nombre de vegades que es
permetrà fallar a un recurs al llarg d’una execució. D’aquesta manera si un recurs falla
tantes vegades com el ĺımit especificat, quedarà descartat d’aquella execució. En cas que
la seva fiabilitat hagi quedat afectada, el mètode de recuperació anterior s’encarregarà de
restablir-la.

Aquest valor és especificable al fitxer de configuració de l’aplicació project.xml a través
de la següent sintaxi:

<MaxRetries>3</MaxRetries>

En cas de no especificar res, el nombre d’errors permesos per defecte serà de 5 per host
i execució.

3.7 Gestió de recursos

A la versió de COMPSs desenvolupada pel projecte, tota la gestió dels recursos es fa a
través dels 3 gestors presentats a continuació:

• ProjectManager: conté totes les dades necessàries per poder accedir als Workers
per executar-hi tasques i les localitzacions de fitxers.

• ResourceManager: conté les caracteŕıstiques dels recursos i en defineix les seves
capacitats.

• HistoricalManager: manté l’històric d’informació acumulada per poder subministrar-
la al planificador.

21 T́ıpicament en increments d’un 5%.
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Aquests gestors emmagatzemen la seva informació en 3 fitxers que són clau a l’hora de
realitzar la configuració d’una aplicació de COMPSs: el project.xml, resources.xml i
historical.xml, que explicarem a continuació.

D’altra banda, cal mencionar que per poder obtenir una millor comprensió de l’es-
tructura d’aquests fitxers, s’han inclòs a l’apèndix exemples reals d’aquests fitxers de
configuració.

3.7.1 Modificacions al ProjectManager

El ProjectManager és el gestor que permet obtenir la informació continguda al fitxer de
configuració de l’aplicació project.xml, un document escrit en llenguatge XML que conté:

• La definició de cada un dels workers que s’utilitzaran durant l’execució de l’aplicació
(obligatori), d’on se’n definirà:

– WorkerName: el nom del worker.

– InstallDir: la ruta on es troben les classes Java o binaris dels codis de la part
worker de l’aplicació.

– WorkingDir: la ruta de treball on es trobaran els fitxers amb els quals treba-
llarà el Worker.

– User: el nom d’usuari amb el qual COMPSs realitzarà el procés de login cap
a cada Worker.

• Els DataNodes que existeixin, en cas que n’hi hagi (opcional) 22.

• El nombre màxim de reintents abans d’excloure un Worker de l’execució (opcional)
23.

• Les localitzacions inicials dels fitxers, en cas de tenir-ne; si no, es generaran de
forma automàtica al llarg de l’execució (opcional).

El runtime de COMPSs realitzarà consultes a aquest document per tal d’obtenir la
informació per poder enviar feines als Workers o gestionar les funcionalitats anteriorment
explicades.

Per fer-ho, es val de xPath 24, que permet construir expresions per processar dades en
format XML tenint en compte l’estructura jeràrquica del document.

Per poder treballar amb les noves dades emmagatzemades en aquests fitxer, ha calgut
incorporar al gestor algunes funcions addicionals:

• getDataNodeProperty(String name): en especificar el nom d’un recurs, retorna
el nom d’usuari definit perquè COMPSs pugui accedir al node de dades.

• getFileLocations(String filename): en especificar el nom d’un fitxer, retorna
una llista amb les URI’s de les rèpliques d’aquell fitxer.

• getFileLocationsLastMod(String filename): en especificar el nom d’un fitxer,
retorna l’última data de modificació del fitxer.

22 Veure apartat 3.2.2.
23 Veure apartat 3.6.3
24 http://es.wikipedia.org/wiki/XPath
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• getFileLocationsSize(String filename): en especificar el nom d’un fitxer, retorna
la seva mida.

• getMaxRetries(): retorna el nombre màxim de reintents que es permetran a un
Worker abans de ser exclòs de l’execució.

• setFileLocations(...): permet guardar al fitxer project.xml cada una de les etique-
tes de localització de fitxers definits a l’apartat 3.2.2

• hasLocations(): retorna un booleà amb el valor corresponent depenent de si hi ha
localitzacions addicionals definides al project.xml, o no.

3.7.2 Modificacions al ResourceManager

El ResourceManager és l’encarregat de gestionar totes les caracteŕıstiques de la màquina
per saber si compleix amb les restriccions necessàries per poder executar una tasca. En el
codi original de COMPSs, el funcionament era semblant al del ProjectManager, l’usuari
introdüıa al fitxer resources.xml les caracteŕıstiques que definien als seus recursos descrits
a partir de l’estàndard Grid Information and Data Modelling de OGSA [4].

Aleshores, en iniciar l’execució d’una aplicació, el fitxer es carrega i s’hi fan consul-
tes amb xPath retornant aquelles màquines que compleixen les especificacions per poder
executar la tasca.

De totes maneres, bo i utilitzar aquest model de descripció, la majoria de les vegades
a l’hora de definir els recursos no se solen utilitzar tots els seus camps; aquest és el cas
del camp que defineix l’adaptador de xarxa, que no era utilitzat a la versió original de
COMPSs, però śı a la nova. D’aquesta manera es facilita a l’usuari poder definir la
velocitat de la interf́ıcie de xarxa de cada un dels nodes.

Per fer-ho ha calgut implementar un mètode que permet llegir aquest camp a partir
del nom d’un recurs. El mètode getNetworkSpeed retorna la velocitat de l’adaptador de
xarxa definida al fitxer resources.xml.

3.7.3 Implementació de l’HistoricalManager

L’HistoricalManager és l’encarregat de gestionar tot el conjunt de dades que s’emmagat-
zemen per poder mantenir l’històric necessari per al nou planificador. En aquest fitxer
anomenat historical.xml s’hi guardaran dades de: fiabilitat dels recursos, temps mig d’exe-
cució de cada tipus de tasca i recurs disponible i la matriu de velocitat de xarxa, explicats
en apartats anteriors.

De totes maneres és habitual realitzar la primera execució d’una aplicació sense històric
previ; per tant, inicialment no tindrem dades en aquest fitxer. En aquests cas COMPSs
el generarà automàticament i l’anirà completant amb dades extretes de les execucions.

Per tal de poder gestionar aquestes dades ha calgut implementar els següents mètodes:

• getAvailability(): retorna una estructura de tipus mapa amb les dades de fiabilitat
de cada recurs.

• getMeanTimeStructure(String name): En especificar-hi el nom del recurs, re-
torna una estructura amb el temps mig d’execució de cada tipus de tasca en cada
un dels recursos del Grid.



60 CAṔITOL 3. DISSENY I IMPLEMENTACIÓ

• getSpeedMatrix(): retorna una estructura amb la matriu de velocitat guardada a
l’històric.

• setAvailability(...): permet guardar els coeficients de fiabilitat de cada un dels
recursos.

• setMeanExecTime(...): permet guardar els temps mig d’execució de cada tipus
de tasca al fitxer d’històric.

• setSpeedMatrix(...): permet guardar la matriu de velocitat de xarxa al fitxer
d’històric.

Ara, en el següent caṕıtol posarem a prova cada una d’aquestes extensions realitzades.
Experimentarem i analitzarem els resultats per comprovar quines han estat les millores
obtingudes.



Caṕıtol 4

Tests, Experiments i Resultats

Un cop presentat el desenvolupament del projecte, en aquest caṕıtol presentarem el conjunt
de proves i experiments als quals s’ha sotmès el prototip, per verificar el bon funcionament
de les millores finals. En primer lloc presentarem l’entorn sobre el qual s’han realitzat el
seguit de proves, en segon lloc presentarem cada una de les aplicacions utilitzades en el
procés d’experimentació. Finalment es presentarà el conjunt de proves realitzades sobre
cada una de les extensions dissenyades.

4.1 Entorn de proves

Abans de presentar el conjunt de proves i experiments realitzats, introduirem l’entorn de
proves en què s’han realitzat els experiments que es mostraran al llarg d’aquest caṕıtol.

El Grid utilitzat per realitzar les proves consta de 5 servidors. Les màquines: bsc-
grid02, bscgrid03, bscgrid04, bscgrid06 i tamariu.

En tots els experiments, la mateixa màquina que executa l’aplicació principal serà la
que suportarà tots els components del runtime. La màquina Master (bscgrid05) és un
servidor equipat amb un processador Intel Q9300 Core 2 Quad a 2.5GHz amb 3MB de
memòria caché, 4 GB de RAM i un disc de 220GB a 7200rpm.

La màquina bscgrid06 és exactament d’iguals caracteŕıstiques a la bscgrid05, en canvi
les bscgrid02, 03 i 04 són servidors inferiors, que van equipats amb processadors Intel
Pentium 4 Dual Core a 3.6Ghz, 2MB de memòria caché, 1 GB de RAM i un disc de 60GB
a 7200rpm.

D’altra banda, la màquina tamariu, que és la més potent, disposa de 4 processadors
Intel Xeon E7450 @ 2.40GHz de 6 nuclis amb 12MB de caché, 47 GB de RAM i dos discs,
un de 550GB i un de 320GB.
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A la següent figura podem veure la configuració d’aquest Grid.

Figura 4.1: Topologia del Grid de proves.

La connexió entre els diferents nodes es realitza a través de xarxes que disposen de
diferents velocitats. Les connexions entre les màquines bscgrid02, 03 i 04 disposen de 91.2
Mbps reals. En canvi, les connexions entre les bscgrid05, bscgrid06 i tamariu es realitzen
a 547.2 Mbps reals, tal i com especifica la següent taula:

Recursos bscgrid02 bscgrid03 bscgrid04 bscgrid05 bscgrid06 tamariu

bscgrid02 loop 91.2 91.2 91.2 91.2 91.2
bscgrid03 91.2 loop 91.2 91.2 91.2 91.2
bscgrid04 91.2 91.2 loop 91.2 91.2 91.2
bscgrid05 91.2 91.2 91.2 loop 547.2 547.2
bscgrid06 91.2 91.2 91.2 547.2 loop 547.2
tamariu 91.2 91.2 91.2 547.2 547.2 loop

Taula 4.1: Velocitats de connexió entre els nodes del Grid.

4.2 Aplicacions

4.2.1 HMMER

HMMER és una suite d’aplicacions utilitzada en l’àmbit de la bioinformàtica 1 que s’u-
tilitza per analitzar models HMM (Hidden Markov Model) que representen famı́lies de
protëınes. Una de les aplicacions més importants és HMMPfam, que llegeix un conjunt de
seqüències d’aminoàcids i els compara contra una base de dades buscant altres seqüències
similars.

L’objectiu final de l’aplicació és trobar, per cada seqüència, el conjunt de famı́lies de la
base de dades amb les que tenen més similituds. Aquest procés és anomenat alineament de
seqüències proteiques. Aquest procés comporta un càlcul intens, però a la vegada altament
paral.lelitzable.

1 http://hmmer.janelia.org
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Comparat amb altres suites com BLAST 2, que utilitza l’algorisme de Smith-Waterman
per realitzar els alineaments, o FASTA 3, HMMER genera resultats més acurats.

La paral.lelització de l’aplicació es divideix en 3 fases:

• Fragmentació: els fitxers de seqüències i la base de dades es divideixen en funció
del nombre de processadors i de memòria disponible, intentant generar fragments
que càpiguen a la memòria del sistema, evitant aix́ı un accés intensiu a disc.

• Execució: s’executa el binari HMMPfam sobre cada parella de fragments de la base
de dades i seqüències.

• Reducció: els resultats d’aquestes execucions s’uneixen de nou per generar el re-
sultat final.

L’execució d’aquesta aplicació genera un graf com el que mostra la figura 4.2. L’execució
de la fase de segmentació es realitza de forma seqüencial al Master. El nivell més alt de
l’arbre correspon a la segona fase. Els nivells inferiors mostren com la fase de reducció
uneix els fitxers resultants d’aplicar el binari a cada fragment de seqüència i base de dades.

Figura 4.2: Graf de l’aplicació HMMER.

De fet, a la implementació existeixen 3 tipus de tasca de reducció en funció dels frag-
ments que s’haguin d’unir: Si s’uneixen fragments corresponents a la mateixa base de
dades s’utilitzarà el mètode mergeSameDB. En canvi, si s’uneixen fragments amb les ma-
teixes seqüències, s’utilitzarà mergeSameSeq. En funció d’això el temps de cada procés
d’unió serà més o menys gran. D’aquesta manera, l’aplicació queda dividida en 3 tipus de
tasques diferents:

• hmmpfam: executa al Worker el binari HMMPfam amb un fragment de la base de
dades i un del conjunt de seqüències. Generarà un resultat parcial.

• mergeSameDB: a partir de dos resultats parcials que provinguin del mateix frag-
ment de la base de dades, els uneix i genera un nou resultat parcial.

• mergeSameSeq: uneix dos resultats parcials que provinguin del mateix conjunt de
seqüències generant un nou resultat parcial.

2 http://ca.wikipedia.org/wiki/BLAST
3 http://en.wikipedia.org/wiki/FASTA
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La unió dels dos últims resultats parcials es fa sempre al Master.

Tot el conjunt de proves es durà a terme utilitzant la base de dades SMART 4, que
conté 725 models de longituds d’entre 11 i 971. En cada prova es variarà la mida del
fitxer de seqüències d’entrada, agafant-ne 2048, 4096 i 8192 d’entre una base de dades de
100.000 provinent d’UniParc 5.

HMMER és una aplicació que depèn, en un alt grau, de la capacitat de càlcul del
sistema, disposant de tasques de diferent duració i d’un alt nivell de paral.lelisme a l’inici
de l’execució que va decreixent a mida que avança el graf.

Aquesta aplicació s’utilitzarà per realitzar les proves del nou planificador. Indepen-
dentment del nombre de seqüències d’entrada, les proves es faran amb 2, 4, 6, 10, 14, 18
i 22 Workers, analitzant l’evolució del temps final d’execució de la nova versió de COMPSs
vs COMPSs original.

4.2.2 JRA4

JRA4 és una aplicació que permet realitzar prediccions de temperatures de superf́ıcies i
treballa amb conjunts de models de temperatures anteriorment obtingudes sobre el ter-
reny. Per fer-ho utilitza el mètode Multimodel Ensemble Mean Forecasting 6, que permet
realitzar prediccions d’estats futurs en sistemes canviants.

L’aplicació treballa per mitjà d’un binari anomenat CDO (Climate Data Operators)
que permet manipular, analitzar i aplicar més de 400 operadors a fitxers de dades de
prediccions climàtiques.

En aquest cas CDO s’utilitza per computar la Multimodel Ensemble Mean. Per fer-ho
es realitzen 4 passos:

1. Selecció temporal (T1): selecciona el mes i any dins el model agafant-ne un
subconjunt de mostres.

2. Normalització del sistema de referència (T2): normalitza el sistema de refe-
rència agafant-ne un de comú per a tots els models.

3. Computació de la mitjana temporal (T3): realitza la mitjana temporal del
model a partir de la interpolació bilineal 7.

4. Computació de la mitjana del model (T4): aquesta etapa es realitza al Master
un cop s’han computat tots els passos anteriors; llavors, per cada un dels models
d’entrada en realitza l’ensemble mean o mitjana del model.

L’execució d’aquesta aplicació genera un graf com el que es mostra a la figura 4.3. L’e-
xecució de la fase de selecció temporal, normalització del sistema de referència i computació
de la mitjana temporal es realitzen al Grid, mentre que el procés final de la computació
de la mitjana es realitza al Master, processant aix́ı tots els models de forma concurrent.

Aquesta aplicació serà especialment adequada per experimentar amb l’extensió de ges-
tió de rèpliques, ja que els fitxers d’entrada són especialment grans. Utilitza fitxers de

4 http://smart.embl-heidelberg.de
5 http://www.ebi.ac.uk/uniparc
6 http://en.wikipedia.org/wiki/Ensemble forecasting
7 http://en.wikipedia.org/wiki/Bilinear interpolation
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Figura 4.3: Graf de l’aplicació JRA4.

models de tipus netCDF (Network Common Data Form) 8 d’1GB cada un. Per tant,
l’aplicació s’utilitzarà per realitzar les proves del sistema de gestió de rèpliques, on ob-
servarem com la nova versió de COMPSs redueix el volum de transferències respecte a la
versió original agilitant-ne l’execució.

4.2.3 SparseLU

SparseLU és una aplicació que multiplica dues matrius mitjançant el mètode de factorit-
zació o descomposició LU, que consisteix a factoritzar una matriu com el producte d’una
matriu triangular inferior i una superior 9.

La matriu queda dividida en blocs de NxN sobre els quals es van aplicant 4 tipus d’ope-
racions que modifiquen cada un dels blocs: lu0, fwd, bdiv i bmod. A la implementació,
aquestes 4 operacions coincideixen amb les tasques que executaran els Workers.

for (int k = 0; k < NB; k++) {
lu0(A[k][k]);
for (int j = k+1; j < NB; j++) {

fwd(A[k][k], A[k][j]);
}
for (int i = k+1; i < NB; i++) {

bdiv(A[k][k], A[i][k]);
for (int j = k+1; j < NB; j++) {

bmod(A[i][k], A[k][j], A[i][j]);
} } }

8 http://en.wikipedia.org/wiki/NetCDF
9 http://es.wikipedia.org/wiki/Factorizacion LU
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La figura 4.4 mostra el graf de dependències que genera el codi de l’aplicació:

Figura 4.4: Graf de l’aplicació SparseLU.

Tal com es pot veure, només una tasca del mètode lu0 pot ser executada a la vegada.
Les tasques bmod, fwd i bdiv de diverses iteracions poden solapar-se a mesura que les
dependències se solucionen.

Aquesta aplicació serà utilitzada per experimentar amb la millora implementada en
l’apartat de tolerància a fallades, provocant diversos tipus de fallades amb l’objectiu d’a-
nalitzar les reaccions del sistema i veient com varia el nombre final de tasques assignades
a cada Worker entre execucions.

4.3 Anàlisi del rendiment del planificador

4.3.1 Anàlisi del temps d’execució

Com hem dit a l’apartat anterior, l’experiment que realitzarem determinarà la millora de
rendiment del planificador de la nova versió de COMPSs respecte al de l’original.

Per fer-ho es planteja realitzar execucions de l’aplicació HMMER utilitzant 2048, 4096
i 8192 seqüències que permetran analitzar l’evolució dels dos runtimes treballant amb
diferents volums de tasques. Tindrem per a 2048 seqüències un total de 639 tasques 10,
per a 4096 un total 1279 i per a 8192 un total de 2559. D’altra banda, anirem variant també
el nombre de Workers, cosa que permetrà determinar, de forma gràfica, l’escalabilitat de
cada sistema.

A la següent taula (Taula 4.2) podem veure comparat, els temps d’execució de HMMER
aplicat a 4096 i 8192 seqüències i la millora aconseguida respecte al runtime original. Els
valors en verd representen els punts on s’ha obtingut millora respecte la versió original,
les files en vermell representen pèrdua de rendiment.

Hi ha alguns punts on la nova versió de COMPSs perd rendiment respecte a l’original.
El nou planificador desenvolupat és, a fi de comptes, computacionalment més costós que
l’anterior, ja que cada vegada que aquest planifica sobre un recurs ha de realitzar més
etapes que a la versió original (si recordem, ha de calcular el temps de transferència dels
fitxers per cada un del recursos disponibles i elaborar posteriorment el rànquing); per tant
aquest cost afegit comença a ser justificable quan el temps perdut escollint el millor recurs,
beneficia pel fet de triar el millor disponible.

10 Cada tasca correspondrà a cada node del graf creat per COMPSs a l’inici de l’execució.
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Ara bé, quan es disposa de pocs Workers sobre els que planificar, no hi ha massa on
triar i per tant no hi ha possibilitat de determinar quin és el recurs que minimitza el
temps de transferència, ja que, per exemple, només se’n pot triar un. En aquests casos el
planificador original de COMPSs treu cert avantatge al nou.

D’altra banda, a mesura que augmenta el nombre de seqüències d’entrada augmenta
també el nombre de tasques i amb elles, el nombre de fitxers a transferir i la mida d’aquests.
Aix́ı que la mida del problema augmenta, el nou planificador treu més benefici de no haver
de moure, a l’inici de cada execució, tot el conjunt de fitxers d’entrada al Grid i de moure
els fitxers intermitjos de forma més eficient que a la versió original.

4096 Seqüències COMPSs COMPSs v2.0 Millora

2 Workers 7342.74 7762.90 -5.72%
4 Workers 3819.44 4264.4 -11.65%
6 Workers 2667.91 3059.05 -14.66%
10 Workers 1517.55 1481.44 2.38%
14 Workers 1395.19 1051.02 24.67%
18 Workers 1313.20 1021.93 22.18%
22 Workers 1250.30 1008.33 19.35%

8192 Seqüències COMPSs COMPSs v2.0 Millora

2 Workers 15480.51 15654.31 -1.12%
4 Workers 8058.07 8539.07 -5.97%
6 Workers 5931.41 5891.61 0.67%
10 Workers 5105.58 2867.39 43.84%
14 Workers 5007.11 2255.92 54.94%
18 Workers 4843.51 2050.09 57.67%
22 Workers 4780.31 1844.27 61.42%

Taula 4.2: Comparativa de temps d’execució de l’aplicació HMMER.

A la següent figura podem veure les gràfiques on es mostra els temps d’execució segons
el nombre de seqüències i Workers.
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Figura 4.5: Gràfiques de temps d’execució de l’aplicació HMMER.

4.3.2 Anàlisi del balanceig de tasques

El segon experiment que realitzarem consisteix a analitzar com el nou planificador reparteix
el volum de tasques entre els recursos disponibles. Per fer-ho, s’ha partit de les dades
resultants de les execucions de l’apartat anterior.

La figura 4.7 mostra el comportament del sistema executant l’aplicació HMMER amb
8192 seqüències d’entrada i 6, 10, 14 i 22 Workers.

Per interpretar els gràfics s’utilitzarà la llegenda que es mostra a continuació:

Figura 4.6: Llegenda dels gràfics de balanceig de tasques.

Figura 4.7: Gràfics de balanceig de tasques en un HMMER de 8192 seqüències amb 6,
10, 14 i 22 Workers.
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La primera de les gràfiques mostra que el repartiment de tasques és força equitatiu, ja
que les màquines utilitzades, la bscgrid02, bscgrid03 i bscgrid04, són d’iguals caracteŕısti-
ques i la velocitat de xarxa entre la màquina Master (bscgrid05) i cada una d’elles és igual
(91.2 Mbps).

La segona de les gràfiques, en sentit horari, incorpora la màquina bscgrid06 al conjunt
de recursos, passant de tenir 6 Workers a 10. Com podem veure, en aquesta ocasió
s’assignen moltes més tasques a la nova màquina, que disposa de 4 CPUs i per tant és
capaç d’absorbir una major quantitat de tasques; a més a més aquesta màquina disposa
d’una connexió amb el Master a una velocitat superior a la resta.

La tercera de les gràfiques representa el cas que cal analitzar amb més detall. En
aquesta ocasió s’incorpora la màquina tamariu utilitzant-hi 4 de les 24 CPUs disponibles.
Aquesta màquina és molt semblant a bscgrid06, disposa de CPUs de rendiment similar i
d’una interconnexió de xarxa igual que la de bscgrid06, 547.2 Mbps. De totes maneres el
desequilibri que podem veure entre el % de tasques assignades a bscgrid06 i les de tamariu
és degut a la càrrega habitual d’aquesta última.

La màquina bscgrid06 és una màquina exclusivament dedicada, per tant, en el moment
de l’execució ningú més l’estava utilitzant. En canvi, tamariu és compartida per varis
usuaris de diferents departaments del BSC, per tant degut a la durada de les execucions,
va resultar impossible obtenir la màquina de forma exclusiva al llarg de les proves.

A la taula 4.3 podem veure algunes dades extretes de l’històric de l’execució, concre-
tament es mostren els temps d’execució de cada un dels mètodes a cada un dels recursos
disponibles.

Recursos CPUs hmmpfam mergeSameDB mergeSameDB

bscgrid02 2 15.79 s 1.18 s 8.96 s
bscgrid03 2 20.08 s 1.01 s 7.59 s
bscgrid04 2 21.05 s 1.04 s 9.91 s
bscgrid06 4 11.09 s 0.92 s 14.05 s
tamariu 4 10.91 s 1.20 s 16.98 s

Taula 4.3: Temps d’execució de cada tipus de tasca en un HMMER amb 14 Workers.

Com podem observar, tamariu triga més temps a completar els mètodes mergeSameDB
i mergeSameDB que bscgrid06 al ser un recurs compartit. Al mètode mergeSameDB perd
2.93 segons cada cop; per tant, com que la mesura del temps d’espera en cua es calcula a
partir del temps t́ıpic d’execució del mètode en aquell recurs, el planificador assigna més
tasques a bscgrid06 per tal d’evitar que la cua de tamariu segueixi creixent.

A l’última de les gràfiques s’han incorporat 8 CPUs més a tamariu, cedint aix́ı un total
de 12 CPUs (sempre considerant que la màquina disposa de suficient memòria principal
per poder executar 12 Workers de forma simultànea sense haver de fer Swapping 11).
D’aquesta manera es converteix en la màquina capaç d’absorbir més tasques i, per tant,
serà la que tindrà menys cua; per això el planificador hi assignarà moltes més tasques que
en el cas anterior.

11Recorrer a l’espai d’intercanvi del disc al no disposar de prou memòria principal per a poder allotjar
a tots els procesos del sistema.



70 CAṔITOL 4. TESTS, EXPERIMENTS I RESULTATS

4.4 Anàlisi del sistema de gestió de rèpliques

Aquest experiment busca demostrar l’efectivitat del sistema de gestió de rèpliques compa-
rant el temps d’execució final de l’aplicació JRA4 entre la versió original de COMPSs i la
nova.

Per fer-ho es planteja un escenari de proves amb 12 Workers i utilitzant les màquines
bscgrid02, bscgrid03, bscgrid05 i bscgrid06 i 12 models d’entrada de 1GB cada un. D’a-
questa manera, com que els fitxes es trobaran inicialment al Master (bscgrid04), a l’hora
d’executar l’aplicació els 12GB d’entrada hauran de ser transferits al Grid.

La versió original de COMPSs els transferirà cada vegada al no disposar de cap mè-
tode per representar l’existència de rèpliques. En canvi, a la nova versió es transferiran
només una vegada ja que les localitzacions dels fitxers quedaran registrades al fitxer pro-
ject.xml. D’aquesta manera només caldrà transferir-ne de nou en el cas que algun hagi
patit modificacions.

Per poder observar aquests resultats s’han realitzat dues execucions de l’aplicació en
cada una de les versions de COMPSs. A la figura següent podem veure’n els resultats
observant que a COMPSs original les dues execucions amb 12 models triguen prop de
1150 segons, contra els 1133 i 39 segons de la nova versió.

Figura 4.8: Comparativa de temps d’execució entre versions de COMPSs.

Com es pot veure, aquest aplicació te una càrrega alta en transferència i baixa en
computació. Per aquest motiu, minimitzar el temps de transferència li aporta beneficis.

A la taula 4.4 es desglossa el temps d’execució d’un sol model, on podem veure el
temps invertit a cada tasca de l’aplicació.

Les tres primeres files representen les tasques que s’executen al Grid, on s’observa que
el temps de computació de l’aplicació és baix. La quarta fila representa el temps invertit
en la transferència de fitxers corresponent al 91.52% del temps total. La cinquena fila
representa el temps invertit pel runtime en la gestió de l’execució.

Per altra banda, recordem que l’extensió havia de permetre detectar també si entre
execucions hi havia hagut algun canvi en el conjunt de fitxers d’entrada. Per tal de
verificar-ne el bon funcionament s’ha modificat un d’aquests fitxers i s’ha tornat a executar
l’aplicació per comprovar que efectivament el fitxer modificat era transferit de nou.
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Tasca Temps mig % del total

T1 2.8 s 2.37 %
T2 0.86 s 0.73 %
T3 0.77 s 0.65 %
Trf 108 s 91.52 %

Runtime 5.57 s 4.72 %

Total 118 s 100 %

Taula 4.4: Temps mig d’execució inicial per un sol model.

A la següent figura podem observar-ne el funcionament: s’aprecia la transferència a la
primera execució trigant un total de 125 segons, mentre que a la segona ja no hi ha cap
transferència perquè tots els fitxers han estat actualitzats. En aquest cas l’execució triga
només 39 segons.

Figura 4.9: Exemple amb actualització dels models entre execucions.

4.5 Anàlisi de la tolerància a fallades

El tercer experiment que realitzarem consisteix a analitzar com el planificador és capaç de
variar l’assignació de tasques segons el percentatge de fiabilitat dels recursos. Per fer-ho
s’executarà l’aplicació sparseLU amb 10 Workers i un total de 20 blocs de 4x4 valors que
formen una matriu quadrada de 320x320 valors.

4.5.1 Anàlisi sense limit de reintents

Per apreciar el funcionament del sistema, s’executarà l’aplicació amb tots els Workers amb
valors de fiabilitat màxima; després s’anirà reduint la fiabilitat de la màquina bscgrid06
fins al 70%. Aquesta reducció es farà en aquesta màquina pel fet de ser la més potent i la
que en perdre confiança perdrà també més pes en l’execució cedint part de les tasques a
nodes amb menys potència.
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A la següent taula podem veure els resultats d’aquest experiment:

Fiabilitat 100% 90% 80% 75% 70%

bscgrid02 14% 13% 54% 5% 30%
bscgrid03 12% 10% 5% 32% 51%
bscgrid04 7% 19% 3% 44% 19%
bscgrid06 67% 58% 38% 20% 0%

Tasques Ok 890 791 692 643 594

Fallades 0 99 198 247 296

Temps exec. 1011 s 1094 s 1512 s 1592 s 1610 s

Taula 4.5: Assignació de tasques segons el % de fiabilitat de la màquina bscgrid06.

Com podem veure, a mesura que el nombre de fallades augmenta, la fiabilitat de la
màquina bscgrid06 va disminuint i, per tant, el planificador li assigna a la següent execució
un nombre menor de tasques, descartant-la per complet per sota del 70% de fiabilitat.

Cal recalcar que en aquesta prova la limitació en el nombre de reintents ha estat
desactivada per poder detectar el percentatge d’error al qual el recurs era descartat pel
planificador de forma natural. Tal i com es veu a la taula 4.5 el planificador ha permès a
bscgrid06 un error màxim del 30%.

Per altra banda, el repartiment de tasques entre les màquines bscgrid02, 03 i 04 no ha
estat gaire equitatiu, bo i ser màquines de caracteŕıstiques similars. Això és a causa que
els temps d’execució de les tasques d’aquesta aplicació són molt baixos, entre 0.01s i 0.9s.

La mida dels fitxers és també redüıda, al tractar-se de blocs de només 16 valors. Per
aquest motiu el temps de transferència és gairebé negligible, ja que la diferència en la
velocitat de xarxa entre els recursos és practicament irrellevant. Per això, el fet d’haver-hi
una lleugera variació en els temps d’execució dels mètodes ha fet variar també de forma
considerable el repartiment de tasques.

4.5.2 Anàlisi amb ĺımit de reintents

El segon experiment d’aquest apartat consisteix a comprovar el sistema de limitació de
nombre màxim de reintents. Per fer-ho s’ha substitüıt la màquina bscgrid06 per una
fict́ıcia (bscgrid07) amb l’objectiu d’aconseguir un domini que no retornés mai cap resposta.
D’aquesta manera es volia simular la fallada de la màquina al llarg de tota l’execució,
tal i com podria succeir en el cas que, per exemple, una de les màquines quedés sense
connectivitat de forma temporal.

Per fer-ho, s’ha establert el ĺımit a 3 reintents, aix́ı quan el runtime detecti que s’ha
assolit el nombre màxim, descartarà el recurs de l’execució.

Com veiem a la taula 4.6, el nombre de feines enviades a la màquina fict́ıcia és de
21, això és perquè el Job Manager les ha enviat a executar abans de poder rebre les
3 notificacions d’error. De totes maneres, un cop rebudes s’elimina el recurs del Task
Scheduler aconseguint que no s’hi planifiquin més tasques, bo i tenir-ne 21 prèviament
planificades i que caldrà replanificar.

Com veiem, tant el nombre de tasques que han acabat correctament com la seva
disponibilitat són zero, per tant, s’ha hagut de replanificar a altres recursos les 21 que
s’hi han enviat inicialment.
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Recursos T.enviades T.Ok Replanificades Disponibilitat

bscgrid02 183 183 0 100%
bscgrid03 442 442 0 100%
bscgrid04 265 265 0 100%
bscgrid07 (Inactiva) 21 0 21 0%

Taula 4.6: Eliminació de bscgrid07 en excedir el nombre màxim d’errors permesos.

4.6 Anàlisi del consum de recursos

En aquest últim apartat comprovarem quin ha estat l’impacte de les extensions realitzades,
quant a recursos consumits del Master. Per fer-ho ens centrarem principalment en 2
aspectes, el consum de CPU i el de memòria al llarg de l’execució.

L’experiment constarà a executar l’aplicació HMMER amb 10 Workers aplicada a
8192 seqüències, tant al runtime original com al nou. El primer aspecte a analitzar serà
el consum de la CPU.

La figura 4.10 mostra l’execució per les dues versions de runtime. El gràfic de dalt
correspon al percentatge utilitzat per la versió original, el de sota correspon al de la nova
versió.

L’ocupació de memòria, en canvi, és un punt complicat d’avaluar. Existeixen dos
problemes principals que en dificulten l’avaluació: ProActive i l’alliberament d’espai al
heap.

Com s’explica a la secció 2.4.1, per poder enviar una estructura de dades entre dos
components, ProActive necessita fer una còpia de l’objecte de manera que com més comuni-
cacions es generin entre components, més espai de memòria utilitzarà. A Java l’encarregat
d’alliberar dades del heap és el Garbage Collector. Per poder netejar totes les estructures
que ha hagut de copiar ProActive en la comunicació dels components, cal esperar la seva
actuació periòdica.

Com es pot veure, tant el consum de CPU com el de memòria és menor a la nova
versió. Al runtime original el consum de CPU es troba sobre un 20% al llarg de l’execució
generant pics de demanda d’un 43% i donant un consum mig del 24% 12; en canvi, a la
nova versió el consum de CPU oscil.la entre el 10% i el 39% donant un consum mig de
l’11% que suposa un 54% menys.

En quant al consum de memòria (figura 4.11), la versió original consumeix entre 80
i 288MB donant un consum mig de 184MB, mentre que trobem el de la nova entre 63 i
218MB, generant un consum mig de 140.5MB que suposa un 24% menys.

Analitzant la desviació dels valors extrems respecte la mitjana de cada paràmetre me-
surat, s’observa que el consum de CPU del runtime original pateix una desviació respecte
la mitjana d’un 19% contra un 28% del nou, com es pot veure al gràfic el consum de CPU
del runtime original és més constant donant un valor de mitjana superior.

Respecte al consum de memòria, el runtime original presenta una desviació de 104MB
contra 77.5MB del nou, és a dir, el nou runtime a més de consumir menys memòria manté
el consum més constant al llarg de l’execució.

12 Indicat a la figura 4.11 i 4.10 per la ĺınia de color vermell.
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Figura 4.10: Comparació del consum de CPU entre versions de COMPSs.

Figura 4.11: Comparació del consum de memòria entre versions de COMPSs.
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Caṕıtol 5

Conclusions del projecte

5.1 Conclusions

L’objectiu d’aquest projecte era desenvolupar un conjunt d’extensions per COMPS Su-
perscalar amb l’objectiu de millorar-ne la planificació de recursos, habilitar un sistema de
gestió i localització de rèpliques i millorar la gestió de fallades. Es pot afirmar que s’ha
assolit la meta definida inicialment, ja que tot el conjunt d’extensions proposades milloren
el rendiment global del sistema convertint COMPSs en un entorn encara més robust i
potent.

Tal i com mostra el caṕıtol anterior, els resultats obtinguts són força positius. El
disseny del nou planificador ha aportat a COMPSs la capacitat de tenir més feedback del
Grid, capacitant-lo per decidir a partir de més paràmetres que el planificador original,
aconseguint aix́ı decisions més precises.

Per altra banda, s’ha demostrat també l’efectivitat del sistema de gestió de rèpliques,
que ha aportat a COMPSs la possibilitat de representar còpies dels fitxers d’entrada que
es troben als nodes del Grid. D’aquesta manera s’evita haver de transferir cada vegada
aquests fitxers, movent-los només en cas d’haver patit modificacions. D’aquesta manera,
com més gran és la mida dels fitxers d’entrada, més beneficis aporta aquesta extensió.

A l’apartat de gestió de fallades s’ha mostrat com el sistema és capaç de variar de
forma satisfactòria l’assignació de tasques segons el % de fiabilitat dels recursos retirant
de l’execució, si cal, els recursos que superin el nombre màxim de fallades permès.

D’altra banda, l’últim aspecte a destacar és la reducció del consum de recursos. Com
s’ha vist, tant el consum de CPU com el de memòria és menor en la nova versió. Aquesta,
bo i implementar noves funcionalitats, consumeix entre un 21% i 24% menys de memòria
gràcies al conjunt d’optimitzacions realitzades, que han permès reduir substancialment el
nombre de transferències entre components.

Finalment, deixant de banda els aspectes més pràctics, és important ressaltar el ca-
ràcter heterogeni del projecte, abordant diverses àrees de l’enginyeria, des de mètodes
d’obtenció d’informació, gestió d’històrics, anàlisi de rendiment, aplicant també conceptes
de diversos camps com sistemes operatius, enginyeria del software o la programació en
diversos llenguatges. Tot plegat fa que el desenvolupament d’aquest projecte hagi resultat
molt enriquidor.
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5.2 Treball futur

El prototip desenvolupat demostra que les millores plantejades inicialment funcionen i
efectivament milloren el rendiment global de la versió original de COMPSs. De totes
maneres, tot i haver superat els objectius, el prototip no és més que una versió preliminar,
quedant encara força camı́ per explorar.

Aquestes són algunes de les ĺınies d’evolució proposades per poder continuar el desen-
volupament d’aquesta nova versió:

Tal i com s’ha mencionat a la secció 2.5, el runtime de COMPSs es troba implementat
sobre ProActive que, recordem, dóna la possibilitat de distribuir els components a través
de diversos recursos per poder repartir la càrrega de treball dels components.

Recordem també que la transferència de fitxers es realitza través de JavaGAT, que es
val d’un adaptador per transferir-los a través de SSH. Si hi ha moltes transferències, la
càrrega del File Transfer Manager pot arribar a ser alta, podent saturar la màquina on es
troba el runtime, en cas de no trobar-se distribüıt.

De totes maneres, la realitat és més aviat una altra. Poques vegades s’arriba a aquest
punt. Analitzant ProActive s’observa que consumeix una gran quantitat de recursos en
haver de copiar a memòria els objectes que transfereix entre els components, tal i com es
veu a l’últim apartat de Tests, experiments i resultats. Per aquest motiu caldria treballar
per desenvolupar un runtime que no utilitzés cap middleware de componentització man-
tenint cada component diferenciat i fent que cada un s’executés en un thread independent
sobre una màquina amb 5 o 6 nuclis per poder tenir-ne almenys un per component.

Un altre pas a seguir seria prescindir de l’extensió de mesura i actualització de la
velocitat de xarxa passant a utilitzar algun tipus de Grid Information Service com Gan-
glia i provar d’obtenir dades d’estat i velocitat de la xarxa a través d’ell, verificant-ne
posteriorment el resultat.

Per seguir afinant el model, caldria provar-lo també en un entorn més gran com per
exemple un supercomputador; aix́ı es podria observar l’escalabilitat del sistema en un
entorn més real.

A nivell d’optimitzacions, recordem que cada vegada que es planifica una tasca, abans
d’aplicar al conjunt de recursos la funció d’avaluació es fa una preselecció dels recursos
que compleixen les caracteŕıstiques per poder executar aquella aplicació. L’avaluació d’a-
questes caracteŕıstiques es fa comparant la descripció de cada recurs, especificada al fitxer
resources.xml, amb les restriccions programades per l’usuari a la interf́ıcie de definició dels
mètodes de l’aplicació que s’executaran al Grid. Actualment això es fa comparant aquestes
restriccions contra l’arbre XML de definició de cada recurs carregat en memòria en iniciar
el runtime.

Aquestes comparacions es fan utilitzant Xalan i el llenguatge XPath consumint bas-
tants recursos. La manera d’evitar-ho podria ser carregant, a l’inici, totes les dades propor-
cionades pels fitxers XML en una estructura de dades de més ràpid accés per tal d’agilitar
la planificació de tasques.

Com es veu, queda encara treball per fer, però en aquest cas no era abarcable dins el
marc del projecte. De totes maneres, els resultats obtinguts són més que satisfactoris i
superan tots els objectius inicialment plantejats.
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5.3 Anàlisi final de la planificació

Al llarg de la realització del projecte han anat sorgint tot un seguit d’inconvenients que
han fet variar-ne la planificació inicial presentada en l’apartat 1.4.

L’apartat de familiarització es va planificar per poder ser desenvolupat en 100 hores,
encara que només en van caldre 76. Això és perquè l’apartat de comprensió inicial es veié
retallat en 4 dies per poder passar a treballar com més aviat millor en l’apartat de gestió
de rèpliques. Aquesta millora havia de servir també com a aportació al projecte europeu
IS-ENES 1 en el qual el BSC participa. Gràcies a això es va poder avançar la planificació
del projecte 6 dies més.

El procés d’implementació va ser elaborat dins els marges previstos. En un principi es
planificaren els temps de forma que no n’hagués de faltar. De totes maneres, en l’única part
on es van trobar més problemes va ser en la gestió de l’històric. Es va haver de perdre més
temps del planificat fent proves per poder assegurar que els valors que s’hi guardaven eren
els correctes i necessaris per poder obtenir el millor rendiment del planificador. D’altra
banda i per aquest mateix motiu, es van aplicar més esforços dels previstos per poder
implementar de la forma més acurada possible la mesura dels temps d’execució i d’espera
en cua.

L’apartat optimitzacions va prendre finalment 8 dies quan s’havia planificat per durar-
ne 12. Això és perquè es va voler realitzar l’avaluació de rendiment com més aviat possible
per saber com de lluny o a prop s’estava de la versió original de COMPSs. Per ordre
de prioritats es va decidir comprovar abans d’iniciar un procés d’optimització que de ben
segur s’hagués pogut allargar molt.

A més, durant els tests d’avaluació de rendiment es detectaren també alguns problemes
d’estabilitat que van haver de ser resolts consumint 2 dies més dels inicialment previstos.
De totes maneres, aquesta dilatació temporal va poder ser mitigada sense problemes en
l’apartat de redacció de la memòria, on inicialment es van preveure alguns dies més dels
necessaris, que han permès concloure el projecte en menys temps de l’esperat.

A la taula 5.1 es mostra la variació d’hores finals, ressaltant en vermell aquelles etapes
en què s’ha trigat més temps del planificat i en verd aquelles que s’han pogut completar
en menys.

1 https://is.enes.org
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Etapa Planificació inicial Planificació real

Familiarització 100 76

Definició del projecte 12 12
Anàlisi i documentació inicial 32 24
Comprensió de COMPSs 56 40

Implementació 432 444

Gestió de rèpliques 56 52
Test gestió de rèpliques 36 40
Disseny del planificador 56 56
Gestió de l’històric 28 32
Tolerància a fallades 52 52
Càlcul de velocitat de xarxa 60 60
Mesura del temps d’espera en cua 48 52
Mesura del temps d’execució 28 32
Test planificador 68 68

Optimitzacions 40 32

Avaluació 120 100

Correcions finals 24 32

Memòria 244 200

Total 960 890

Taula 5.1: Hores finals dedicades a cada una de les etapes del projecte.
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Tal i com s’ha mencionat en l’apartat 3.7, Gestió de recursos, es mostren aqúı al-
guns exemples reals dels fitxers de configuració: project.xml, resources.xml i histori-
cal.xml.

El següent exemple mostra el fitxer project.xml, on es pot apreciar la definició dels
Workers de l’aplicació, datanodes, el màxim de reintents permesos en cas de fallada i el
conjunt de localització de rèpliques dels fitxers.

<?xml version="1.0" encoding="UTF-8"?>

<Project>

<Worker Name="bscgrid02.bsc.es">

<InstallDir>/home/username/IT_worker/</InstallDir>

<WorkingDir>/home/username/IT_worker/files/</WorkingDir>

<User>username</User>

</Worker>

<Worker Name="bscgrid03.bsc.es">

<InstallDir>/home/username/IT_worker/</InstallDir>

<WorkingDir>/home/username/IT_worker/files/</WorkingDir>

<User>username</User>

</Worker>

<DataNode Name="bscgrid04.bsc.es">

<User>username</User>

</DataNode>

<MaxRetries>2</MaxRetries>

<Locations>

<File LastModDate="1292140891000" Name="dbF0">

<Path>file://bscgrid05.bsc.es/home/username/appfiles/</Path>

<Path>file://bscgrid02.bsc.es/home/username/IT_worker/files/</Path>

<Path>file://bscgrid03.bsc.es/home/username/IT_worker/files/</Path>

</File>

<File LastModDate="1292140891000" Name="dbF1">

<Path>file://bscgrid05.bsc.es/home/username/appfiles/</Path>

<Path>file://bscgrid02.bsc.es/home/username/IT_worker/files/</Path>

<Path>file://bscgrid03.bsc.es/home/username/IT_worker/files/</Path>

</File>

<File LastModDate="1292140891000" Name="dbF10">

<Path>file://bscgrid05.bsc.es/home/username/appfiles/</Path>

<Path>file://bscgrid03.bsc.es/home/username/IT_worker/files/</Path>

<Path>file://bscgrid02.bsc.es/home/username/IT_worker/files/</Path>

</File>

...

</Locations>

</Project>
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El següent exemple mostra el fitxer resources.xml, on es pot observar la definició de
recursos seguint l’estàndard d’OGSA anomenat Grid Information and Data Modelling.

<?xml version="1.0" encoding="UTF-8"?>

<ResourceList>

<Resource Name="bscgrid02.bsc.es">

<Capabilities>

<Host>

<TaskCount>0</TaskCount>

<Queue>short</Queue>

<Queue/>

</Host>

<Processor>

<Architecture>Intel</Architecture>

<Speed>3.6</Speed>

<CPUCount>2</CPUCount>

</Processor>

<OS>

<OSType>Linux</OSType>

<MaxProcessesPerUser>32</MaxProcessesPerUser>

</OS>

<StorageElement>

<Size>60</Size>

</StorageElement>

<Memory>

<PhysicalSize>0.5</PhysicalSize>

<VirtualSize>8</VirtualSize>

</Memory>

<ApplicationSoftware>

<Software>Xerces</Software>

<Software>Xalan</Software>

</ApplicationSoftware>

<Service/>

<VO/>

<Cluster/>

<FileSystem/>

<NetworkAdaptor>

<NetworkSpeed>91.2</NetworkSpeed>

</NetworkAdaptor>

<JobPolicy/>

<AccessControlPolicy/>

</Capabilities>

<Requirements/>

</Resource>

...

</ResourceList>
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El següent exemple mostra el fitxer historical.xml, on es poden apreciar les dades de
fiabilitat dels recursos, temps mig d’execució de cada tipus de tasca i recurs, i la matriu
de velocitat de xarxa.

<?xml version="1.0" encoding="UTF-8"?>

<RunStatistics>

<Availability>

<Worker Name="bscgrid03.bsc.es">1.0</Worker>

<Worker Name="bscgrid02.bsc.es">1.0</Worker>

</Availability>

<MeanExecTime>

<TaskType Id="2">

<Worker Name="bscgrid03.bsc.es">8.587157</Worker>

<Worker Name="bscgrid02.bsc.es">6.7536664</Worker>

</TaskType>

<TaskType Id="1">

<Worker Name="bscgrid03.bsc.es">0.9715135</Worker>

<Worker Name="bscgrid02.bsc.es">1.2075663</Worker>

</TaskType>

<TaskType Id="0">

<Worker Name="bscgrid03.bsc.es">19.917158</Worker>

<Worker Name="bscgrid02.bsc.es">20.031963</Worker>

</TaskType>

</MeanExecTime>

<NetSpeed>

<Link Src="bscgrid03.bsc.es">

<Speed Dst="bscgrid02.bsc.es">82.550415</Speed>

<Speed Dst="bscgrid05.bsc.es">73.84643</Speed>

<Speed Dst="bscgrid03.bsc.es">181.67133</Speed>

</Link>

<Link Src="bscgrid05.bsc.es">

<Speed Dst="bscgrid02.bsc.es">91.2</Speed>

<Speed Dst="bscgrid05.bsc.es">547.2</Speed>

<Speed Dst="bscgrid03.bsc.es">91.2</Speed>

</Link>

<Link Src="bscgrid02.bsc.es">

<Speed Dst="bscgrid02.bsc.es">91.2</Speed>

<Speed Dst="bscgrid05.bsc.es">73.417908</Speed>

<Speed Dst="bscgrid03.bsc.es">63.571274</Speed>

</Link>

</NetSpeed>

</RunStatistics>
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Glossari

API Application Program Interface o interf́ıcie de programació d’aplicacions.

Datacenter Es denomina Datacenter o centre de processament de dades a aquella ubica-
ció on es concentren tots els recursos necessaris per al processament de la informació
d’una organització determinada.

FIFO És l’acrònim en anglès de First In, First Out (primer en entrar, primer en sortir).
És un mètode utilitzat en estructures de dades i teoria de cues. Guarda analogia
amb les persones que esperen en una cua i que són ateses en l’ordre en què han
arribat, és a dir, la primera persona que hi entra és la primera que en surt.

Firewall Un firewall o tallafocs és la part de la xarxa dissenyada per bloquejar l’accés no
autoritzat permetent al mateix temps les comunicacions autoritzades.

Grid Sistema que coordina recursos que no estan subjectes a un control centralitzat,
utilitzant protocols estàndards, oberts, de propòsit general i interf́ıcies per donar
unes qualitats de serveis no trivials [2].

Runtime Es tracta habitualment de software dissenyat per donar suport i ajudar a com-
putadors en l’execució d’aplicacions. És el cas, per exemple, d’aplicacions paral.leles.

Stream Fa referència a un flux continu de dades (sense interrupció).

TCP/IP El model TCP/IP descriu un conjunt de guies de disseny i implementacions de
protocols de xarxa espećıfics que permeten a un computador comunicar-se en una
xarxa. TCP/IP proveeix de connectivitat extrem a extrem especificant com les dades
han de ser formatejades, direccionades, transferides i rebudes per part de l’origen i
el destinatari.

Thread Fil d’execució d’una aplicació. La unitat més petita que pot ser planificada pel
sistema operatiu.

URI Uniform Resource Identifier és una cadena curta de caràcters que identifica ineqúı-
vocament un recurs (servei, pàgina, document, adreça de correu electrònic, etc...)
Normalment accessible a través de la xarxa o sistema.

VPN Una xarxa privada virtual o VPN (en anglès Virtual Private Network), és una
tecnologia de xarxa que permet estendre una xarxa local sobre una xarxa pública no
controlada, com per exemple Internet.
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Resums

Català:

COMPS és un entorn de programació paral.lela desenvolupat per BSC-CNS. Aquest pro-
jecte busca estendre aquest entorn per tal de dotar-lo de funcionalitats inicialment no
suportades. Aquest conjunt d’extensions radiquen principalment en la implementació de
mecanismes que permetin incrementar la flexibilitat, robustesa i polivalència del sistema.

Castellano:

COMPSs es un entorno de programación paralela desarrollado por BSC-CNS. Este proyec-
to busca extender el entorno para dotarlo de funcionalidades inicialmente no soportadas.
Este conjunto de extensiones radican principalmente en la implementación de mecanismos
que permitan incrementar la flexibilidad, robustez y polivalencia del sistema.

English:

COMPSs is a parallel programming environment developed by BSC-CNS. The project aim
is extend this environment giving it some features that were not initially supported. This
set of extensions lies mainly in the implementation of mechanisms that allow to increase
the flexibility, robustness and system versatility.
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