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Capitol 1

Introduccio

Aquest projecte busca estendre I’entorn de programacié parallela COMP Superscalar
(COMPSs) dissenyat a BSC-CNS ( Barcelona Supercomputing Center - Centro Nacional
de Supercomputacion, http://www.bsc.es) per tal de dotar-lo de funcionalitats actualment
no suportades.

Aquesta extensio radica principalment en la implementacié de mecanismes que per-
metin incrementar la flexibilitat, robustesa i polivaléncia del sistema. Al llarg d’aquest
primer capitol es mostraran en detall els objectius que ha calgut assolir per tal de com-
pletar el projecte i en conseqiiéncia quins han estat els problemes als quals ens hem hagut
d’afrontar.

1.1 Motivacio

Aquesta ultima decada ha estat un periode clau pel desenvolupament de models de com-
putacié parallela i distribuida.

Aquests han anat aflorant a gran celeritat, intervenint actualment i gairebé de forma
invisible en la nostra vida quotidiana.

La constant necessitat de capacitat de calcul i algunes de les noves branques d’investi-
gacid, com sén: l'analisi de models climatics, la interaccié entre proteines, simulacions de
fluids, disseny aeroespacial o el desenvolupament de nous farmacs, sén clars exemples de la
necessitat de recrear en computadors el comportament del mén real. Aquestes simulacions
requereixen gran capacitat de calcul i a la vegada una gran capacitat d’emmagatzematge
que fan que sigui necessari I'is de grans computadors o supercomputadors.

Un supercomputador és, doncs, una eina molt potent al servei de la recerca i el desen-
volupament, pero també és molt costosa de mantenir, tant en termes de manteniment com
d’eficiencia energetica.

Malauradament, doncs, I'accés a supercomputadors és moltes vegades limitat. I és per
aquest fet que només una petita part d’investigadors poden accedir a aquests tipus de
maquines.

Per sort, el desenvolupament de nous models de negoci basats en l'oferta de serveis
de computacié, coneguts també com a serveis de computacié en el nivol (Cloud/Grid
Computing), permeten als investigadors accedir a recursos de calcul sense haver de tenir



CAPITOL 1. INTRODUCCIO

en compte cap dels costos associats als supercomputadors. Només paguen pel temps que
els utilitzen ("Pay-on-demand”).

Aquests nous serveis han obligat a desenvolupar solucions que permetin la viabilitat
d’aquests nous models, oferint a la vegada una bona qualitat.

Aquesta meta ha obligat a desenvolupar: nous sistemes de fitxers distribuits, sistemes
robustos i tolerants a fallades, mecanismes eficients de planificacié i gestié de recursos que
han permes mantenir un concepte de localitat deslocalitzada (deslocalitzacié transparent
a l'usuari).

No obstant, malgrat que es tracta d’'un model solid i amb projeccid, a dia d’avui encara
hi ha elements que no estan del tot perfilats. Un d’aquests sén els models de programacié
orientats a aquest tipus d’infraestructures.

COMPSs és, doncs, un entorn desenvolupat per BSC-CNS que proveeix d’un model de
programacié orientat a Grid i que permet executar aplicacions seqiiencials de forma paral-
lela sobre una infraestructura Grid, de forma que I’execucié sigui totalment transparent a
I'usuari. Aixo permet pensar en parallel, perd programar en seqiiencial.

Actualment COMPSs es troba en la seva primera versié i com qualsevol software que
es troba en les seves primeres etapes de desenvolupament, disposa d’un nombre reduit de
funcionalitats.

Disposa d’un planificador funcional, pero a la vegada simple i basic, que no implementa
cap funcionalitat que li permeti treballar amb repliques del fitxers inicials; és a dir, cada
vegada que s’executa una aplicacid, els fitxers d’entrada han de ser transferits de nou al
Grid i no hi ha cap metode que permeti indicar a COMPSs que alguns dels fitxers requerits
per Daplicacié ja es troben als nodes, ja sigui perqué han estat transferits préviament de
forma deliberada o bé perqué una execucio anterior ja li ha deixat copies.

Aixi doncs, haver de transferir els fitxer al Grid cada vegada resulta un problema, ja
que depenent de la mida del fitxer i de la velocitat de la xarxa, aquest procés pot arribar
a resultar realment lent.

La motivacié principal d’aquest projecte sera doncs estendre i millorar aquestes fun-
cionalitats implementant un nou planificador basat en ’analisi a temps real de diferents
parametres mesurats i extrets del Grid com: la velocitat de la xarxa entre nodes, velocitat
de processament dels nodes, percentatge de disponibilitat dels nodes i el temps d’espera
en cua per tal de poder executar en els nodes, que permetran a COMPSs escollir en cada
moment el millor node del Grid per enviar a executar una tasca determinada.

A més a més, a causa de la caréncia anteriorment esmentada, desenvoluparem també
un sistema per tal de permetre a COMPSs tenir consciéncia de la localitzacié dels fitxers
que distribueix al Grid; d’aquesta manera es minimitzara el nombre de transferencies en
cas que els fitxers que es necessiten per executar una aplicacio es trobin ja en algun node
del Grid.

A la segiient seccid, explicarem i desglossarem amb més detall cada un dels objectius
anteriorment esmentats.
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1.2 Objectius

Vistes, doncs, les necessitats de calcul en certs entorns, explicats en I'apartat anterior,
I’objectiu del projecte sera aconseguir un entorn de treball capag d’executar aplicacions
en Grid de forma més eficient que en la versié actual.

La meta del projecte sera desenvolupar una nova versié del runtime de COMPSs,
ampliant-lo en funcionalitats i millorant-lo de forma que sigui menys sensible a fallades,
estenent el seu sistema de tolerancia a fallades de tal manera que es permeti al planificador
tenir en compte quins sén els recursos del Grid que sén mes fiables, i tenir-los també en
compte a I’hora d’assignar-hi tasques.

Es desenvolupara la funcionalitat que permetra al runtime mantenir una consciencia de
la localitzacié dels fitxers; d’aquesta manera aconseguirem minimitzar el volum de trans-
ferencies al llarg de diferents llancaments de ’aplicacid, evitant aixi que a cada execucid
d’una aplicacié es transfereixin els fitxers necessaris.

Aix0 s’aconseguira mantenint una llista de repliques valides de cadascun dels fitxers,
que també servira al planificador perque seleccioni com a preferent un recurs que té en el seu
disc el maxim nombre de fitxers necessaris per poder-hi executar una tasca determinada.

S’implementaran també diferents sistemes de recollida d’informacié, com per exemple
la mesura dels temps mig que cal esperar per accedir al processador d’un recurs determinat,
el calcul del temps mig d’execucié d’una tasca determinada a un recurs determinat, o bé
els mecanismes necessaris per tal de fer la prediccié del temps de transferencia dels fitxers
necessaris per executar una tasca.

D’aquesta manera, les dades anteriors serviran posteriorment perque el planificador
que desenvoluparem sigui capag d’avaluar quin és el millor dels recursos d’entre tots els
que disposa, entenent el millor com el que minimitza el temps d’espera per poder accedir
a un recurs, el temps d’execucié de la tasca i el que en maximitza la seva fiabilitat.

Amb aix0, la meta final del projecte és construir una nova versi6 de COMPSs que
gestioni els recursos d’una forma més eficient i intelligent, obtenint a la vegada un bon
compromis entre el consum de recusos i ’encert en la presa de decisions.
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1.3 Metodologia

La metodologia seguida per desenvolupar aquest projecte ha estat la segiient:

1. Analitzar en detall el funcionament de I'entorn COMPSs i comprendre el model de
components en que esta basat.

2. Definir un conjunt de funcionalitats no existents en ’entorn actual, assegurant que
puguin ser implementables en el termini de duracié del projecte.

3. Realitzar una analisi dels requisits particulars que s’hauran de complir per tal que la
implementacié de les extensions pugui ser acoblada correctament i de forma senzilla.
Es fara també el disseny de ’arquitectura de cada extensié proposada per tal de
satisfer aquests requisits.

4. L’estructuracio de ’extensi6 a realitzar quedara dividida en parts ben diferenciades,
que seran tractades com a paquets de treball independents:

Desenvolupament del sistema de gestié de repliques de fitxers.
Analisi de diverses alternatives de planificacié.
Desenvolupament del sistema d’emmagatzematge de I'historic.
Desenvolupament del sistema de planificacio, desglossat en:

i. Analisi dels possibles parametres del sistema a mesurar.

ii. Analisi dels parametres que caldra registrar a I’historic.

iii. Desenvolupament del metode de prediccié del temps de trasferencia de
fitxers.

iv. Desenvolupament del meétode per mesurar el temps d’espera en cua.

v. Desenvolupament del meétode per mesurar el temps mig d’execucié de cada
tasca a cada node.

vi. Desenvolupament del sistema de tolerancia a fallades (calcul de % de fia-
bilitat dels nodes).

vii. Desenvolupament del planificador final.
Desenvolupament del sistema de calcul de la velocitat de xarxa.

Fase d’avaluacié del rendiment.

Fase d’optimitzacié del nou codi.

)
)
g) Fase de correccions.
)
) Redaccié de la documentacio.

5. Per cada paquet de treball es faran proves de validacid individuals per tal d’assegurar-
ne el bon funcionament.

6. Establir un entorn de proves per validar el comportament global del sistema.

7. Realitzar el conjunt de proves en un entorn real on es realitzaran assajos d’escalabi-
litat, rendiment, consum de memoria, etc...
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1.4 Planificacid inicial

Un cop introduits els objectius i la metodologia del projecte, en aquesta secci realitzarem
I’assignacié temporal inicial de cada una de les tasques definides partint sempre del temps
total disponible per a la realitzacié del projecte i amb una implicacié aproximada de 4
hores diaries.

Les primeres 100 hores de treball anirien dedicades a preparar tant la definicié com els
objectius del projecte, realitzar I’analisi de la documentacié de COMPSs i familiaritzar-se
amb ’entorn d’aquest.

En el procés de desenvolupament del prototip calculem invertir-hi aproximadament
unes 616 hores, que quedarien desglossades de la segiient manera:

1. Sistema de gesti6 de repliques (92 hores) desglossat en:

(a) Desenvolupament localitzacié de fitxers (56 hores)

(b) Test del sistema (36 hores)
2. Desenvolupament del planificador (340 hores) desglossat en:

(a) Analisi i disseny del planificador (56 hores)
(b) Gestié d’historic (28 hores)

(c¢) Implementacié de millores en la tolerancia a fallades (52 hores)
(d) Calcul dinamic de la velocitat de xarxa (60 hores)
(e) Mesura del temps d’espera en cua (48 hores)
(f) Mesura del temps d’execucié (28 hores)

(g) Test del planificador (68 hores)
3. Optimitzacions realitzades al nou runtime (40 hores)
4. Avaluacié de rendiment global (120 hores)

5. Fase de correccions finals (24 hores)

Cal tenir present a I’hora de planificar que part del projecte inclou també la redaccié
de la memoria final, que haura de prendre al voltant de 244 hores.

Per tant, en total, el projecte comportara 100 hores de familiaritacié i analisi inicial,
616 hores de desenvolupament del prototip, més les 244 hores de redaccié de la memoria,
que resulten finalment una previsié de 960 hores de dedicacid, que es repartiran en sessions
de mitja jornada de duraci6 (4 hores) entre el mes de Febrer de 2010 i Gener de 2011 tal,
i com mostra el diagrama de Gantt de la figura 1.1.
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1.5. ANALISI ECONOMICA

1.5 Analisi econOmica

Un dels aspectes més importants a I’hora de desenvolupar un projecte és el cost economic
que aquest pot comportar. Al llarg d’aquesta seccié detallarem els costos economics que
hagués suposat desenvolupar-lo en un entorn empresarial. Tot i la dificultat de quantificar
els costos d’tis de les maquines i serveis del BSC-CNS, es revisaran el seguit de costos
desglossats en: recursos humans, hardware i software utilitzats al llarg del procés de

desenvolupament.

Recursos humans

Per calcular els costos de contractacié de personal, s’ha classificat en tres possibles perfils
les persones necessaries per desenvolupar el projecte:

e Cap de Projecte: pren les decisions executives a través de les diverses opcions

plantejades per I'analista.

e Analista: pren decisions sobre la tecnologia i I’arquitectura del disseny. Proporcio-
nar al programador la informacié necessaria perque pugui desenvolupar ’aplicacio.

e Programador: implementa el disseny de ’analista en un llenguatge de programacié

determinat.

e Técnic en sistemes: s’encarrega de realitzar la installacié, configuracié i mante-
niment dels entorns necessaris per a la resta d’actors del projecte.

En la taula 1.1 es mostra el repartiment d’hores dedicades.
memoria, gran part de la feina recau en ’analista, que és qui argumenta el disseny elaborat

i coneix les tecnologies utilitzades.

En la redaccié de la

Perfil Cost (€/hora) | Hores dedicades | Total
Cap de projecte 75 25 1.875
Analista 60 527 31.620
Programador 42 376 15.792
Tecnic en sistemes 50 32 1.600
Subtotal 50.887 €

Taula 1.1: Quadre resum de costos en recursos humans.

Hardware utilitzat

Per al desenvolupament i realitzacié tant del prototip com de les proves posteriors, s’han
fet servir les maquines de I'entorn descrit en el capitol 4. Tal i com mostra la taula 1.2,

aquests sén els seus costos.
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Perfil Cost/Unitat (€) | Quantitat | Amortitzacié | Total
Magquines Dual Core (BSC-CNS) 1.534 3 0.3 1.381
Maquines Quad Core (BSC-CNS) 1.897 2 0.3 1.138
Magquines 24 Core (BSC-CNS) 36.755 1 0.027 993
Computador Personal 600 1 0.33 198
Subtotal 3.710 €

Taula 1.2: Quadre resum dels costos en recursos hardware.

La infaestructura Grid utilitzada consta de 3 tipus de maquines: 3 de Dual Core,
2 de Quad Core i una maquina de 24 Cores dels quals s’han fet servir un maxim de
12. L’amortitzacié de les maquines ha estat comptada a 3 anys donant un cost total en
hardware de 3.710 €.

Software utilitzat per desenvolupar el projecte

Les llicencies de software necessaries per desenvolupar un projecte sén un altre aspecte
a tenir en compte a I’hora de valorar-ne els costos. En alguns casos utilitzar software
especific pot arribar a resultar una part important del cost total del projecte; en aquest
cas no ha estat aixi, pero cal tenir-ho en compte. A la taula 1.3 podem veure el cost de
les diferents llicencies de software necessaries per desenvolupar aquest projecte.

Software Cost (€)
OpenSuSE 11.2 (Sistema Operatiu) gratuit
Java J2SE Software Development Kit gratuit
NetBeans IDE 6.8 gratuit
NetBeans UML Plug-in gratuit
Apache-ant gratuit
NetPerf gratuit
Visual VM gratuit
Subtotal 0 €

Taula 1.3: Quadre resum dels costos en software per al desenvolupament.

Software utilitzat per a la redaccié la memoria

Realitzar el prototip no és I'inic que requereix 1’as de programari, la redaccié de la memoria
és també una part important del projecte i I'is d’alguns dels programes utilitzats poden
requerir també 1'tas de llicencies de pagament. La taula 1.4 descriu els diferents programes
utilitzats a 'hora de realitzar la memoria i el seu cost.
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Software Cost (€)
Gedit gratuit
Vi gratuit
Latex gratuit
Paquet Texlive (generacié de pdf per latex) gratuit
OpenOffice (Writter, Calc i Draw) gratuit
GNUPIlot (grafics) gratuit
MathPlotLib (grafics) gratuit
GIMP gratuit
Planner (gesti6é de projectes) gratuit
Subtotal 0 €

Taula 1.4: Quadre resum de costos del programari utilitzat en la redaccié de la memoria.

Material fungible

El toner, paper d’impressié per a la memoria i 'enquadernacié d’aquesta tenen un cost
total aproximat de 200 €.

Analisi del cost total

Concepte Cost (€)
Recursos humans 50.887
Hardware 3.710
Software utilitzat per al desenvolupament 0
Software per redactar la memoria 0
Materials Fungibles 200
Total 54.797 €

Taula 1.5: Quadre de costos totals del projecte agrupats per concepte.

Tal com es mostra a la taula 1.5, el cost total del projecte puja a 54.797 €. Com
podem veure, quasi el 93% del cost ve donat per Recursos humans. En concret, I’analista
s’enduu gairebé el 61% de la inversié. De les 527 hores de feina que se li han assignat, 244
eren en concepte de redaccié de la memoria. D’aquestes, bona part han estat dedicades a
la redaccié del capitol d’analisi de 'estat de I’art.

En ser un projecte final de carrera, bona part d’aquestes hores han estat invertides en
la recerca, lectura i sintesi de la informacié. Per tant, si s’hagués contractat un analista
professional amb coneixements adquirits sobre la materia, és possible que aquesta quantitat
s’hagués pogut reduir 50 hores quedant un total de 477 hores assignades a ’analista i

disminuint aixi el seu cost de 31.620 a uns 28.620 € i, per tant, també el del projecte a
51.797 €.
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1.6 Organitzaci6é de la memoria

Aquest document s’ha dividit en les segiients parts:

. Introduccié: en aquesta seccié es defineix el projecte. Quina és la seva motivacid,

quins sén els seus objectius i quin és el treball realitzat per aconseguir materialitzar-
los. En aquest apartat analitzarem també tant la sostenibilitat economica del pro-
jecte com la planificacié i distribuci6 inicial de les tasques.

. Analisi del projecte i estat de ’art: en aquest apartat es facilita la introduccié

a tots els conceptes que seran necessaris per comprendre aquest document. S’in-
troduiran conceptes relacionats amb la computacié distribuida, les eines de treball
utilitzades, i es fara també una repassada a altres projectes importants que compar-
teixen com a base del seu exit el concepte de computacié distribuida.

. Desenvolupament del projecte: aquesta seccié descriu tot el desenvolupament re-

alitzat, tant a nivell de disseny com d’implementacio, experimentaci6 final i extraccié
de resultats, explicant de forma acurada el procés de desenvolupament, modificacié
i adaptacié del nou runtime de COMPSs a partir del punt de partida inicial.

. Conclusions i treball futur: aquest apartat sintetitza tots els resultats obtinguts

i extreu les conclusions que se’n deriven; a més presenta propostes de futures millores
per tal d’aportar-hi més valor al projecte.

. Apendix: per acabar, podem trobar aqui tant la descripcié com l’explicacié de

conceptes suplementaris que poden ajudar a comprendre certs items del document.
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Capitol 2

Grid Computing

En el passat, gran part dels recursos de computacié es trobaven reunits principalment en
centres integrats. Actualment aix0 ja no és aixi, 'augment en les necessitats de recursos
de calcul i en la complexitat dels problemes a abordar, ha provocat que sigui necessari
el desenvolupament de noves tecnologies de computacié distribuida que permetin oferir
serveis de computacié a costos moderats, la computacié basada en aquesta arquitectura
és 'anomenada Grid Computing.

2.1 Que és Grid Computing

La tecnologia Grid es pot veure com un conjunt heterogeni de computadors o recursos
de calcul (de diferents arquitectures, supercomputadors, clisters...) distribuits geografica-
ment i que permet compartir de forma global la capacitat de procés i d’emmagatzematge
a través de xarxes.

Aquest model d’organitzacié permet la integracié i s collectiu de computadors d’alt
rendiment, xarxes, bases de dades i, en general, de diferents tipus de recursos que poden
ser administrats per diverses institucions.

El terme Grid va ser proposat a meitat dels anys 90 per Ian Foster i Carl Kesselman [1],
fent referéncia a una infraestructura de computacié distribuida capag d’aportar capacitat
de calcul a baix cost, oferint aixi serveis de computacié a diferents camps d’investigacié
cientifica [3]. Tan Foster defineix el Grid com un conjunt de recursos de computacié no
administrats centralment, basats en estandards oberts i amb una qualitat de servei dificil
d’assegurar.

L altima part d’aquesta definicié és un dels punts més importants i cal tenir-lo espe-
cialment en compte. Garantir la qualitat de servei en un Grid és una de les tasques que
poden resultar complexes. Aquest tema el tractarem en més profunditat en 'apartat 2.2.

Remuntant en el temps, els antecessors directes del concepte de computacié en Grid

se solen citar en el projecte SETI@Home !.

Aquest projecte és ampliament conegut i una de les raons és el seu objectiu, la recerca
de vida intelligent a l’espai (Search for ExtraTerrestrial Intelligence). Aquest projecte
requeria una quantitat enorme de comput i aquesta s’aconseguia compartint els cicles de
CPU de milions de maquines cedides de forma voluntaria.

! http://www.seti.org/
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D’aquesta manera el propietari d’'un computador cedia recursos de la seva maquina de
manera que quan estava inactiva, executava tasques per al projecte. Aquesta iniciativa,
pionera en el seu moment, va interconnectar milions de computadors a tot el moén, per-
metent disposar d’una capacitat de calcul molt superior a la dels supercomputadors de
I’época.

La computacié en Grid no només tracta de compartir cicles de CPU per realitzar tas-
ques complexes, siné que també tracta d’establir noves infraestructures de computacié
distribuida. Aquesta tasca és complexa i obliga a realitzar tasques de definicié de noves
arquitectures, interconnexions de xarxes, definicié d’estandards, desenvolupament de mo-
dels de programacid, nous models de gestié de recursos, etc... Els models de computacid
distribuida, més que una aplicaci6 son i seran una revolucié en el futur de la computacié.

2.2 Avantatges i inconvenients del Grid

Al llarg d’aquest apartat analitzarem els punts favorables i desfavorables dels sistemes
Grid.

Tal i com s’ha explicat anteriorment en la seccié 2.1, podem definir el Grid com un
sistema que coordina recursos que no estan subjectes a un control centralitzat, utilitzant
protocols estandards, oberts, de proposit general i interficies per donar unes qualitats de
serveis no trivials.

Aquest sistema esta creat amb la finalitat de solucionar determinats problemes que
requereixen un gran nombre de cicles de processament i/o accés a grans quantitats de
dades.

Disposar de hardware i software que permeti aquestes funcionalitats, planteja habitu-
alment inconvenients a nivell de costos, seguretat i disponibilitat. En aquest sentit, en
un Grid s’integren diferents tipus de maquines i recursos, per tant un Grid no quedara
obsolet mentre tots els recursos del que es disposa s’aprofitin; de la mateixa manera que
gracies a I’escalabilitat que ofereix aquesta arquitectura és possible anar-hi afegint recursos
(habitualment de diverses caracteristiques) segons el nivell de necessitats.

Aquesta tecnologia ofereix a la vegada un servei de computacié de rendiment mig-alt
amb uns costos de manteniment continguts, que suposen un avantatge a 1’hora d’oferir
serveis de computacio a l'abast de la investigacié.

Respecte a 'apartat de seguretat, aquesta anira lligada a la seguretat que sigui capag
de garantir la xarxa sobre la qual és suportada la infraestructura. Aixo pot arribar a
resultar un problema, especialment si parlem de la utilitzacié de xarxes WAN o, més en
concret, de les de tipus best-efford com és el cas d’Internet.

Habitualment seran necessaries connexions permanents de banda ampla les 24 hores
i 365 dies de ’any, un bon nivell de seguretat, VPN’s, firewalls, encriptacié i tunels,
comunicacions segures, politiques de seguretat i altres caracteristiques que assegurin tot
el conjunt de dades que flueixen entre els nodes del Grid.

Un dels punts especialment importants quan parlem de computacié Grid és la toleran-
cia a fallades. Aquesta garanteix el funcionament de la infraestructura si alguna de les
maquines que en formen part es collapsa o queda inoperativa. En aquest cas, el sistema ha
de ser capag de detectar-ho i prendre alguna decisié com pot ser, per exemple, replanificar
la tasca de nou en una altra maquina que resti operativa. D’aquesta manera s’aconsegueix
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crear infraestructures robustes i resistents, a la vegada que flexibles.

La figura 2.1 descriu el conjunt de capes que conformen un sistema de Grid Computing.
L’estrat més baix correspon als servidors, és a dir, a la infraestructura de computacio fisica.
El segon estrat correspon al conjunt d’infraestructures de xarxa, d’emmagatzemament,
etc...

La tercera tot el conjunt de serveis que garanteixen la seguretat de les dades que
s’allotjen al Grid. La quarta capa correspondria al software encarregat de gestionar i
monitoritzar els recursos de les capes inferiors. Finalment per sobre d’aquesta capa, es
recolzen el conjunt d’aplicacions que exploten 'arquitectura de Grid Computing i el client
o usuari de ’aplicacio.

Client
Aplicacio
p .
Gestio
- S
Seguretat
Infraestructura
\ v,
Servidors

Figura 2.1: Components que conformen un sistema de Grid Computing.

2.3 Aplicacions del Grid al mén real
Actualment hi ha 5 aplicacions generals i ben definides de la computacié Grid:

1. Supercomputacié distribuida:

Son aquelles aplicacions on les necessitats temporals per solucionar el problema no
puguin ser satisfetes exclusivament per un sol node. Algunes d’aquestes necessitats
poden ser generades en curts instants de temps consumint gran quantitat de recursos.

2. Sistemes distribuits en temps real:
Son aquelles aplicacions que generen fluxos de dades d’alta velocitat que han de ser
analitzats i processats en temps real.

3. Serveis puntuals:

En aquest tipus d’aplicacions pot no ser especialment important la poténcia de calcul
o la capacitat d’emmagatzemament, sin6 els recursos que una organitzacio considera
com a no necessaris en un moment determinat. En aquest cas, el Grid pot presentar
l'organitzacié d’aquests recursos.
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4. Procés intensiu de tractament de dades (Data-Crunching):

Sén aquelles aplicacions que fan un gran us de l'espai d’emmagatzemament i, en
general, provoquen una gran carrega als sistemes d’entrada/sortida. Aquest tipus
d’aplicacions superen la capacitat d’emmagatzemament d’un tnic node i les dades
sén distribuides a través de tot el Grid. A més de l'increment total en I'espai dis-
ponible, la distribucié de les dades a través del Grid en permet l'accés de forma
distribuida.

. Entorns virtuals de collaboracié (Comput Voluntari):

Aquestes aplicacions utilitzen els recursos computacionals del Grid i la seva natura-
lesa per generar entorns virtuals 3D distribuits.

Existeixen aplicacions reals que encaixen perfectament en cadascuna de les classifi-
cacions descrites anteriorment.

Ara, al segiient apartat presentarem els models de programacio distribuits, introduint al

final de la seccid, I’entorn de programacié que ha motivat 1’elaboracié d’aquest projecte.
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2.4 Models de programacio6 distribuits

A principis dels anys 90, les plataformes software monolitiques perdien forga davant les
distribuides. Els models de programacié distribuits sorgeixen de la necessitat de crear
software més flexible, autonom, tolerant a fallades i, el més important, deslocalitzat. L’ob-
jectiu d’aquest capitol és realitzar una introduccié a alguns d’ells, veient com a exemple
final COMP Superscalar.

2.4.1 Model d’objectes distribuits

El model d’objectes distribuits permet al software dividir-se en moduls, permetent que
treballin en conjunt encara que resideixin en diferents computadors interconnectats a tra-
vés d’'una xarxa, o bé en diferents processsos dins un mateix equip. Un objecte envia un
missatge a un altre que es troba allotjat en una maquina o procés remot per tal que realitzi
una tasca. La informacié, un cop processada, és retornada, en acabar aquest procés, a
I’'objecte que n’ha realitzat la crida.

Aquest procediment generic és el modus operandi comu entre els models d’objectes
distribuits. En aquesta seccié veurem de forma detallada Grid Component Model, 1a base
de COMPSs.

Grid Component Model (GCM)

Un component és un paquet o modul software que encapsula un conjunt de funcions o dades
relacionades. Cada un dels processos del sistema es distribueixen en diferents components
de tal forma que totes les funcions i dades de cada component estiguin semanticament
relacionades. Per aquest motiu, moltes vegades es diu que els components sén modulars i
cohesius.

Pel que fa la coordinacié global del sistema, els components es comuniquen entre si a
través d’interficies. Quan un component vol comunicar-se amb la resta del sistema, ho fa
a través d’una interficie en que hi especifica quins dels seus serveis poden ser utilitzats per
altres components.

Aquesta interficie es pot veure com la signatura del component, permetent aixi ocultar-
ne la implementacié i encapsular-ne la funcionalitat.

Un dels factors més importants d’aquest model és que permet que els components
siguin sustituibles (ja sigui en temps de disseny o d’execucid) si el component candidat
manté els mateixos requeriments (expressats a través de les interficies) que el component
inicial. En conseqiiéncia, els components poden ser reemplacats per una versié alternativa
o actualitzada sense haver de realitzar altres canvis en la resta del sistema.

GCM (Grid Component Model) és un model de componentitzacié jerarquica que per-
met que un component pugui estar format com una composicié d’altres components ja
existents. Aquesta propietat ja havia estat descrita en altres models de components com
per exemple: Fractal 2, el model de components en qué es basa GCM.

Fractal és un model de components abstracte, modular i altament extensible que pot
ser utilitzat en diversos llenguatges de programacié per tal de dissenyar, implementar,

2 http://fractal.ow2.org
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desplegar i configurar tant aplicacions com sistemes. L’objectiu de Fractal és reduir el
desenvolupament i els costos de manteniment d’aquests.

Utilitza alguns dels patrons de disseny ben coneguts, com ara la separacié entre inter-
ficies i implementacions, promovent també la separacié de competencies.

e s i e o C1

|_

Figura 2.2: Interaccié de components a Fractal.
Algunes de les implementacions més conegudes d’aquest model sén: Julia, Cecilia,

AOKell, Think i ProActive. Aquesta ultima sera la que analitzarem a continuacio, ja
que és el model sobre el que COMPSs esta construit.

ProActive

ProActive 3 és la implementacié de referencia del model GCM. ProActive és un middleware
Java orientat a computacié parallela, distribuida i multithreaded * (veure Figura 2.3)
que ofereix un entorn de facil comprensié i un model de programacié que en permet
simplificar tant el desenvolupament com l’execucié de les aplicacions que corren sobre

sistemes multicore, distribuits en xarxa local (LANSs), clisters, datacenters o Grids. Aquest
model de programacié combina tant el disseny amb objectes actius com amb objectes

futurs.
Q J S
O*/( @ OJ ) C)*/< C?

o Threaded object O Passive object D Java virtual Machine

Figura 2.3: Exemple de funcionament seqiiencial, multifil i distribuit de ProActive.

3 http://proactive.inria.fr
4 Amb varis fils d’execucié simultanis.
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Objectes Actius:

Els objectes actius sén les unitats basiques d’activitat i distribucié utilitzades a Pro-
Active per a la construccié aplicacions concurrents. Un objecte actiu s’executa en el seu
propi fil. Aquest fil executa sobre 1'objecte, metodes invocats per altres objectes actius i
també pels objectes passius del subsistema al que I'objecte actiu pertany. Amb Proactive,
no cal manipular explicitament objectes de tipus Thread, a diferéncia del Java estandard.

Aquest objecte es compon de dos altres objectes: un cos, i un objecte Java. El cos no
és visible des de 'exterior de 'objecte actiu. S’encarrega de rebre crides (o peticions) en
I’objecte actiu i els emmagatzema en una cua de crides en espera. Aquestes s’executaran
segons 'ordre especificat en la politica de sincronitzacid. Si aquesta politica no s’especifica,
llavors es gestionaran segons la politica FIFO. Posteriorment, el fil d’'un objecte actiu tria
metodes de la cua de peticions pendents i els executa.

Per la banda del subsistema que envia crides a un objecte actiu, aquest es veu com un
prozy 5, que genera objectes futurs per representar-ne valors futurs i transforma les crides
en sollicituds d’objectes.

Objectes Passius:

A ProActive els objectes passius no sén compartits entre subsistemes. Quan un objecte
qualsevol invoca un metode d’un objecte actiu pot ser que els parametres que ha d’enviar
siguin objectes passius. De totes maneres, com que no es poden compartir objectes passius,
el que es fa és passar una copia. D’altra banda, els objectes actius i els de retorn es passen
per referencia.

El fet de no compartir dades ens permet que ’aplicacié no necessiti cap canvi estruc-
tural per executar-se tant en forma seqiiencial, multithread o distribuida.

Crides asincrones i objectes futurs:

Una altra caracteristica important de ProActive és que totes les crides entre subsis-
temes es realitzen mitjancant crides asincrones. Aix0 fa que les aplicacions no hagin
d’esperar que l'altre subsistema els retorni el control. Aquest fet té certs desavantatges
com no poder demanar objectes de retorn en aquestes comunicacions.

Per solucionar aquest problema s’afegeixen objectes futurs. Quan fem la peticié al
subsistema es retorna un objecte de tipus Future independentment de I'objecte que voliem
rebre. Mentre que 'objecte és processat, el thread del subsistema que n’ha fet la crida pot
continuar amb ’execucié i en cas que necessiti operar amb ’objecte bloqueja el thread fins
l'objecte que es tingui fisicament. (Figura 2.4).

Stub V

Figura 2.4: Exemple d’objecte Futur.

5 El proxy desenvolupa la funcié d’intermediari.
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2.5 COMP Superscalar

COMPSs [14] 6 és un entorn de programacié parallela que permet simplificar tant el desen-
volupament com el desplegament d’aplicacions en Grid resultant transparent a l'usuari,
de manera que aquest pugui traslladar una aplicacié seqiiencial tradicional a una aplicacié
parallela seleccionant només quines son les tasques que s’hauran d’executar al Grid.

COMPSs es troba compost d’una part estatica i una de dinamica. La part estatica
consta d’una API on es permet al programador seleccionar quines tasques de ’aplicacié vol
executar al Grid. La part dinamica consta d’un runtime que gestiona, en temps d’execucié,
tot el comportament de I'aplicacié, permetent a COMPSs ser eficient en la coordinacié de
recursos, escollint en cada moment quin és el millor recurs per enviar-hi una tasca.

Al llarg d’aquesta seccié analitzarem una mica més ’API de COMPSs i el seu runtime.

2.5.1 Model de programacié de COMPSs

En la introduccié de COMPSs hem anunciat dues de les caracteristiques més importants.
En la primera d’aquestes, la fase estatica, el model de programacié de COMPSs transforma
lestructura de laplicacié seqiiencial a un patré Master-Worker (Figura 2.5). Aquest patrd
obliga a tenir dues entitats logiques ben diferenciades: el Master, del qual només en tindrem
una, i el Worker, del qual en podem tenir més d’una.

El seu funcionament és molt senzill, el Master inicia ’execucié de ’aplicacié i en duu
el control, generant a partir de la definicié de I'usuari un conjunt de tasques que s’aniran
enviant a cada un dels recursos Worker disponibles, llavors el Master quedara esperant-ne
el resultat. Els Workers, en finalitzar cada una de les tasques encomanades, retornen els
resultat al Master, que els rep i els processa per tal de generar el resultat final.

L’as d’aquest patré ens imposa que el codi hagi d’estar dividit en dos grans blocs:
L’aplicacié principal (Master) i les tasques (Workers). A causa d’aquesta separacio,
caldra definir una interficie que ens permeti la comunicacié entre ambdues parts.
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Figura 2.5: Representacié del patré Master-Worker

La segona caracteristica important és la transparencia i facilitat que COMPSs aporta
a 'usuari, de manera que l'aplicacié codificada de forma seqiiencial pugi ser executada
també de forma concurrent i distribuida al Grid sense necessitat de canvis estructurals.

6 http://www.bsc.es/compss
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Totes les restriccions imposades pel model de programacié vénen donades pel fet d’u-
tilitzar el patré Master-Worker i per la forma en queé el runtime assigna les tasques.

Algunes d’aquestes restriccions sén:
e Les tasques d’un programa Java remot hauran de ser de tipus static.
e Cap crida no podra tenir tipus de retorn.

e S’accepten tipus String, File i també tipus basics com: boolean, char, byte, short,
int, long, float i double.

e Actualment se suporten només llenguatges de programacié com Java o C.

En resum, totes les funcions que podem invocar seguiran un esquema similar als se-
gients:

public static void f1 (String,){...... }
public static void f2 (File,){...... }
public static void f3 (int, float, boolean){...... }

En quasi qualsevol aplicacié de comput complex, el més usual és que es requereixin
grans volums de dades d’entrada, ja siguin matrius, bases de dades, objectes complexos,
etc...

Per aixo, COMPSs ofereix la possibilitat d’utilitzar els fitxers d’entrada de I’aplicacié
permetent enviar com a parametre d’entrada el nom del fitxer. D’aquesta manera es resol
el problema d’enviar objectes o vectors com a parametres d’entrada.

El mateix, doncs, succeeix amb els tipus de retorn de les funcions. Podem fer que el
Worker escrigui en un fitxer I'objecte que es desitja retornar. D’aquesta manera, tant el
Master com els Workers poden llegir aquest objecte del fitxer. Un bon metode per tal de
realitzar el pas d’objectes a fitxers i viceversa és utilitzar la interficie serializable oferta
per Java.

2.5.2 L’API de COMPSs

Tal i com hem mencionat a I'inici de 'apartat 2.5, COMPSs disposa d’una API que permet
al programador indicar quines son les tasques que vol executar al Grid.

Durant el procés de carrega de 'aplicacié JavaAssist [16] 7, modifica les classes codifi-
cades pel programador a partir de les dades subministrades a la interficie anotada (seccié
2.5.5), canviant-hi les crides a funcions per crides a COMPSs. Aquest s’encarregara d’e-
xecutar aquests metodes en recursos Grid gestionats pel runtime, assegurant-se que es
compleixin les restriccions imposades pel programador.

Aixi doncs, en temps de carrega s’afegeixen les crides necessaries per tal d’arrencar i
aturar el runtime a l'inici i final de I'aplicacié. De totes maneres és possible també evitar
tenir activat el toolkit al llarg de tota ’execucié. Per aquest motiu COMPSs disposa d’una
API que ofereix al programador la possibilitat d’indicar al runtime quan ha d’arrencar i
aturar els components.

Com que el runtime pot ser aturat i tornat a arrencar més endavant durant la mateixa
execucio, el programador haura d’indicar en quin moment s’esta accedint a un fitxer que
és resultat d’una tasca per tal que es tingui en compte la disponibilitat d’aquell fitxer.

" http://www.javassist.org
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L’API de COMPSs ofereix, doncs, tres funcions:

e startIT(): arrenca el runtime i comenga tot el procés d’enviar les tasques als workers
del Grid.

e stopIT(terminate): atura el runtime i executa l’aplicaci6é inicament en el Master.

e openFile(fileName, openMode): obre el fitxer amb nom fileName de forma local
en mode: Read, Write o Append. Abans d’accedir-hi comprovara si el fitxer és al
Master, si no el portara del Worker en que es trobi.

2.5.3 Runtime componentitzat

Tal i com s’explica a I'inici de la secci6 2.5.1, COMPSs consta de dues parts ben diferen-
ciades; la part estatica, explicada anteriorment, i la part dinamica, formada pel runtime,
que en temps d’execucié gestiona el comportament de I'aplicacié. Aquest s’encarrega de
buscar-hi el parallelisme implicit, de gestionar-ne les dependeéncies entre tasques, d’as-
signar els millors recursos del Grid a cada tasca i d’enviar els parametres d’execucié als
Workers.

El runtime de COMPSs explota la idea d’execucié fora d’ordre inspirada en el con-
cepte d’execuci6 Superscalar proposada per Seymour Cray al voltant del 1965 8, intentant
fomentar el parallelisme a nivell de tasca. En el cas de COMPSs, aix0 s’aconsegueix ge-
nerant un graf de dependeéncies entre les tasques de 'aplicacié per tal d’aillar-ne les que
sén independents. Aquestes es podran executar en diferents recursos del Grid de forma
simultania tal i com illustra la figura 2.6.

Application Code Z:> Z>

Figura 2.6: Analisi automatica de dependeéncies.

Components

Com hem vist, el runtime de COMPSs esta implementat utilitzant el model de componen-
titzacié GCM i més concretament la seva implementacié, ProActive. Cada un dels seus
components: Task Analyzer, Task Scheduler, Job Manager i File Manager treba-
llen en fils d’execucié diferents podent ser desplegats en diferents recursos de computacié,
repartint de forma més homogenia la carrega computacional provocada pel runtime. Aixi
doncs, la distribucié dels components queda reflectida en el diagrama de la Figura 2.7.

Com veiem, cada component té el seu comportament, que en unir-se al de la resta
dona lloc a una funcionalitat completa. El Task Analyzer s’encarrega d’analitzar les
dependencies generant un graf de precedencia que manté les relacions entre les diferents
tasques del I'aplicacio.

8 http://en.wikipedia.org/wiki/Superscalar
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Figura 2.7: Interaccié de components del runtime.

El Task Scheduler rep les tasques generades pel component anterior i en planifica
I’execuci6 al millor recurs disponible, generant aixi un Job o feina. El Job manager és
Pencarregat d’executar-lo en el recurs assignat i de recollir-ne finalment els resultats.

El File Manager esta format per dos subcomponents el File Information Provider
i el File Transfer Manager. El primer s’encarrega de gestionar els accessos a fitxers i
mantenir-ne una relacié de versions; el segon, gestiona totes les transferencies de fitxers
entre nodes del Grid. Aquest, per tal d’actuar de forma transparent es recolza en un
middleware que permet abstreure la gestio de fitxers del protocol de transferéncia utilitzat.
Aquest middleware és JavaGAT i 'introduirem a continuacio.

JavaGAT

JavaGAT (Java Grid Application Toolkit) © és un middleware que permet abstraure les
aplicacions Grid dels middlewares de Grid tradicionals. Es colloca entre les aplicacions
desenvolupades i els middlewares de gestié de Grid com: Globus 19, Glite, SGE (Sun Grid
Engine), etc... Permetent a l’aplicacié mantenir-se deslligada de I'entorn de gestié del
Grid.

D’aquesta manera, es permet desenvolupar aplicacions a través de I’API estandard de
SAGA ', que proveeix d'una interficie uniforme que ofereix a la vegada la possibilitat de
realitzar: operacions amb fitxers, lectura de streams 2 de dades, enviament de tasques
(job submission), monitoritacid, accés a serveis d’informacié (information services), etc...

D’aquesta manera el programador només ha de desenvolupar a partir de ’API, acon-
seguint que 'accés als diversos components del middleware de Grid es faci de forma trans-
parent. A més a més, JavaGAT manté una implementacié modular que li permet estendre
facilment el suport a altres middlewares a través d’adaptadors.

L’estructura de JavaGAT és la mostrada en la figura segiient:

Com podem veure en la figura 2.8, I'aplicacié interactuaria amb ’API de SAGA que es
troba un nivell per sota, podent gestionar recursos, fitxers, monitoritzant recursos, etc...
El motor de GAT faria doncs la traduccié de les crides SAGA a les crides corresponents al
middleware subjacent al Grid a través d’un adaptador. Com podem veure, hi ha multiples
adaptadors que permeten suportar: Globus, Unicore, SSH, etc...

9 http://www.cs.vu.nl/ibis/javagat.html

10 http:/ /www.globus.org/toolkit

" http://saga.cct.lsu.edu

12 1a paraula stream fa referéncia al fet de tractar fluxos de dades continus (sense interrupcions).
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Figura 2.8: Estructura de JavaGAT distribuida en capes.

El runtime de COMPSs esta implementat sobre JavaGAT a nivell de la capa d’a-
plicacié. Aix0 permet a COMPSs mantenir-se completament desvinculat de qualsevol
middleware de Grid guanyant polivalencia i flexibilitat. D’aquesta manera, en cas de voler
treballar amb algun d’ells, només caldria acoblar-hi el seu adaptador.

2.5.4 Interaccidé entre components

Com hem explicat en I'apartat 2.5.3, els diferents components del runtime gestionen tot
el procés d’execucio de les tasques.

Quan D'aplicacié detecta que hi ha una nova tasca s’avisa al Task Analyzer. Aquest
haura de ser capag de saber en quin moment es pot enviar a executar, és a dir, ha de ser
capag de detectar que totes les tasques de les quals depén han finalitzat. Per poder-ho
fer es construeix un graf de dependencies on cada node representa una tasca i una aresta
entre nodes significa una dependeéncia. Una tasca, doncs, podra ser enviada a executar
quan no tingui cap aresta que hi apunti.

Quan el Task Analyzer rep una tasca, afegeix un node inconnex al graf i en comprova
les dependencies. Busca tots els parametres de tipus fitxer i anota la tasca que hi accedira
a través del FIP (File Information Provider).

Aquest s’encarregara de mantenir un registre de les versions d’aquest fitxer. Cada
vegada que la tasca hi escriu, es crea una nova versié amb un nou nom, aquest procediment
és anomenat renaming. El FIP permet, aixi, fer la traduccié entre els fitxers logics i els
reals que la tasca llegeix.

Quan una tasca es troba lliure de dependencies, el TA (Task Analyzer) indica al TS
(Task Scheduler) que ja pot ser planificada. Aquest intenta escollir el millor recurs per
executar-hi la tasca. Actualment, el planificador original de COMPSs pren les decisions
analitzant:

e Les restriccions propies de la tasca.
e Les tasques que pot assumir en aquell moment el node (segons el nombre de CPUs).

e Nombre de fitxers que requereix la tasca i que ja es troben al node candidat.

Quan arriba una tasca al TS, filtrarem tots els recursos que no compleixen els reque-
riments suficients per executar la tasca. Dels candidats restants, s’analitzara quins d’ells
tenen slots lliures, aixo significa que el nombre de tasques planificades en el recurs no su-
peri el nombre maxim de tasques simultanies que pot executar la maquina (habitualment
el nombre de CPUs).
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D’entre els candidats restants d’aquest segon procés de filtratge, buscarem el que té el
maxim de fitxers necessaris per executar la tasca. Aix0 ho farem consultant al FIP (File
Information Provider) quins nodes tenen el fitxer. En cas de no tenir cap recurs disponible
per executar la tasca, quedaria en estat pendent al TS fins que algun node tingui slots
lliures per executar-la.

Un cop la tasca ha estat planificada, s’avisa al JM (Job Manager) que ordena al FTM
(File Transfer Manager) que transfereixi els fitxer necessaris al node planificat. Quan el
FTM notifica el final de les transferéencies, el JM envia la feina a executar a través de
JavaGAT, que quan acaba, retorna una notificacié al JM amb l’estat de finalitzaci6 de la
feina. Si l'estat és correcte, s’avisa al TS i aquest al TA, que elimina el node de la tasca
del graf.

D’altra banda, durant el procés d’execucié d’una tasca poden produir-se tant errors en
la transferencia de fitxers, com errors en ’execucié. COMPSs implementa alguns mecanis-
mes de tolerancia a fallades. Per exemple, en cas de fallada de I’execucié d’una feina, el JM
prova d’enviar-la a execucié de nou; si torna a fallar, en demana al T'S una replanificaci6 a
un altre recurs, llavors aquest provara de planificar-la de nou en algun dels altres recursos
disponibles del Grid.

La Figura 2.9 mostra el flux d’execucié que segueix una tasca a través dels components
del runtime.

Tinc Recursos? Si Peticio
localitzacio
- —ﬁtxers

Bloqueig
Planificacio No o8 Bt
fitxers?

al TS
Blogueig i
al TA m Enviem a executar

Inicio transferéncies

Figura 2.9: Flux d’execucié d’una tasca a través del runtime.
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2.5.5 Definicié de la interficie i seleccié de tasques

En la secci6 2.5.1 feiem referéncia a la necessitat de definir una interficie per tal de poder
comunicar el Master amb els Workers.

En aquesta es defineixen totes aquelles tasques que es vol que els Workers puguin
executar. L’estructura d’aquesta interficie sera com les habituals de Java, encara que a
més hi realitzarem algunes anotacions extra a través de la Java Annotation Interface '3
per tal de permetre al runtime coneixer tant les restriccions de les tasques com els tipus
dels seus parametres.

A la vegada, COMPSs necessita saber on es troba implementada cada una de les fun-
cions i també el tipus i direccié dels seus parametres (entrada, sortida o entrada-sortida).
Per cada parametre, doncs, crearem una anotacié @ParamMetadata per tal d’especificar
aquestes dades. La direccié del parametre vindra indicada com: Direction.IN, Directi-
on.OUT o Direction.INOUT.

D’altra banda, el programador pot indicar també al runtime quins requisits ha de com-
plir un recurs per tal de poder ser candidat a executar una tasca. Aixo ho indicarem afegint
a cada metode de la interficie un conjunt d’anotacions del tipus @MethodConstraints. Un
exemple el podem veure a continuacié en la funcié:

void f1(String a, String b, String c)

Aquesta té una cadena d’entrada a i els fitxers b (entrada) i ¢ (sortida) que recordem,
poden resultar 1tils per tal de transferir estructures complexes i previament serialitzades.

Per aquesta funcié tindrem llavors la segiient interficie:

public interface AppItf {

@MethodConstraints (operatingSystemType = Linux,
processorCPUCount = 4,
appSoftware = "Xen")

@ClassName (package.classA)

void f1(
@ParamMetadata(type
String a,
@ParamMetadata(type
String b,
@ParamMetadata(type
String c);

Type.STRING, direction = Direction.IN)

Type.FILE, direction = Direction.IN)

Type.FILE, direction = Direction.0UT)

13 Java Annotation Interface permet afegir metadades al codi font Java que poden ser també accedides
pel programador en temps d’execucié. Molts cops s’utilitza com una alternativa a la tecnologia XML.
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Capitol 3
Disseny i implementacio

El recorregut realitzat fins ara ens ha permes repassar grosso modo el moén de la computacid
Grid i alguns dels models de programacié existents. Ara doncs, és moment de centrar-se
propiament en el desenvolupament del projecte. En aquest capitol tractarem de detallar
cada una de les extensions realitzades a COMPSs. Per fer-ho, ens situarem al punt de
partida i anirem presentant cada una de les propostes realitzades.

3.1 Punt de partida i extensions proposades

Tal i com s’explica en la seccié d’objectius 1.2, la meta d’aquest projecte és estendre les
funcionalitats de COMP Superscalar a partir del la seva primera versio.

Com a punt de partida trobem, doncs, un model de programacié que disposa d’un
runtime format per 5 components en els que als acoblarem noves funcionalitats inten-
tant mantenir i modificar sempre el minim possible 'arquitectura original del runtime
(interficies dels components) collocant nous metodes als components més adequats.

En ’analisi de la versio inicial es detectaren alguns dels punts millorables. Per exemple,
cada vegada que es llencava una aplicacio, el runtime en transferia els fitxers d’entrada
cap als nodes del Grid; d’aquesta manera s’assegurava que cada vegada que s’executava
una aplicacid, aquesta disposava de 'iltima versié dels fitxers. Aixo resultava una solucié
correcta, perd provocava, en cas de tenir fitxers grans, que 1’execucid es veies considera-
blement alentida.

Aquest fet porta a replantejar la forma en qué es gestionaven els fitxers d’entrada,
proposant una extensié per tal de millorar aquest punt. L’objectiu era permetre a COMPSs
tenir consciéncia dels fitxers de 'aplicacié transferits al Grid en execucions anteriors,
emmagatzemant-ne la seva localitzacié de tal forma que en cas d’haver estat transferits
previament només calgués transferir-los de nou en cas que haguessin estat modificats entre
les execucions.

A més a més, hi havia altres punts millorables. Com hem mencionat a ’apartat
1.1, COMPSs disposava de la primera versié del planificador, funcional pero a la vegada
basica. Aquest analitzava per cada conjunt de fitxers d’entrada d’una tasca quin era el
recurs, d’entre els disponibles, que en tenia el maxim nombre de fitxers. D’aquesta manera
s’aconseguia sempre transferir el minim nombre possible de fitxers.

31
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Aix0, de fet, no és una bona solucid, ja que la decisié de transferir el minim nombre
de fitxers no garanteix minimitzar a la vegada el temps de transferéncia. Pot succeir que
la mida de cada un d’aquests sigui gran i que, per tant, transferir el minim de fitxers no
aporti cap benefici sobre el temps de transferéncia, ja que pot resultar millor transferir 4
fitxers de 20KB (petits) que 1 d’1GB (gran).

Per aquest motiu es pensa a realitzar la segona extensid, que buscava solucionar aquesta
situaci6é permetent al planificador predir el temps que es trigaria a transferir el conjunt de
fitxers permetent escollir com a millor recurs el que minimitzés el temps de transferencia
entre la font dels fitxers i el Worker escollit.

D’altra banda, el planificador tampoc no era conscient del rendiment de cada un dels
recursos de que disposava, ja que treballava exclusivament amb el nombre de slots lliures
1. Demanava al principi del procés de planificacié totes les maquines que tenien com a
minim un slot lliure i que, per tant, podien executar la tasca. D’entre aquestes triava la
que ja tenia el maxim nombre de fitxers.

Per aquest motiu, es va pensar també en la forma de millorar la manera en que el
planificador gestionava els recursos per tal que no considerés tots els slots per igual i, per
tant, fos capac també de classificar les maquines segons el seu potencial.

Si recordem, COMPSs també implementava cert grau de tolerancia a fallades. Aquest
mecanisme també s’ha intentat millorar proposant, a més, mesurar la fiabilitat dels re-
cursos tenint-la en compte a ’hora de planificar i poder donar, aixi, més confianca als
Workers amb més grau de fiabilitat.

El desenvolupament d’aquestes tres propostes han marcat el rumb de treball d’aquest
projecte. Al llarg d’aquest capitol explicarem tant el disseny com la implementacié de
cada una de les extensions presentades.

3.2 Gestid de repliques

Com hem comentat en l'apartat anterior, una de les extensions proposa incorporar a
COMPSs la possibilitat de gestionar repliques dels fitxers generats durant les execucions
d’una aplicacié.

En aquesta seccié explicarem el disseny i la implementacié d’aquesta extensid, qui-
nes han estat les funcionalitats que s’han incorporat i com han estat acoblades dins el
component que gestiona els fitxers, el File Information Provider.

3.2.1 Disseny del sistema de gestié de repliques
Analisi del model

A COMPSs el component que manté tota la informacié relacionada amb els fitxers és el File
Information Provider 2. En la seva versi6 original, registra tots els accessos a fitxers que va
detectant el Task Analyzer. Quan es detecta el primer accés a un fitxer, el FIP li assigna
un identificador tnic (enter) anomenat fileld i un objecte de tipus FileInfo. Aquest sera
Iencarregat d’emmagatzemar tota la informacié relacionada amb el fitxer com: Locations

'Nombre de processadors desocupats del recurs.
2 Veure secci6 2.5.3
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3

o referéncies dels fitxers °, nom original, les multiples versions que el fitxer ha anat tenint,

etc...

D’altra banda, si I'accés detectat pel Task Analyzer no és el primer accés realitzat
sobre el fitxer, llavors comprova si el mode d’accés és READ, WRITE o READ/WRITE.
Si el mode és un d’aquests 2 ultims es genera automaticament una nova versié del fitxer.

Cada versié esta composta per un conjunt de locations que indiquen on hi ha repliques.
Cada vegada que es genera una nova versié del fitxer aquesta és totalment independent de
I’anterior, deixant les locations de la versié anterior com a obsoletes. D’aquesta manera,
les locations valides d’un fitxer seran sempre les de 1"iltima versié existent.

A més, l'objecte FileInfo mencionat anteriorment, conté objectes de tipus FileInstan-
celd. Aquests objectes permeten realitzar renaming ¢ a cada una de les versions dels fitxers,
de manera que a partir d’un identificador de fitxer fileld, la seva versié renanomenara el
fitxer de la segilient manera:

public FileInstanceId(int fileId, int versionId) {
this.fileld = fileld;
this.versionId = versionlId;
this.renaming = "f" + fileld + "v" + versionIld + "\_" + tStamp + ".IT";

Aquest procediment permet que en 'accés a un fitxer en mode READ o WRITE es
generin fisicament també les noves versions. Per tant, quan transferim o sollicitem el fitxer
demanarem al seu FileInfo I'ultima versio i el seu LastFileInstanceld per tal de transferir-
lo amb el nou nom, al qual podrem accedir a través del metode getRenaming de ’objecte
Filelnstanceld.

A la figura 3.1 i 3.2 podem veure les classes originals del component anteriorment
descrit.

Proposta de disseny - Requeriments funcionals

Una vegada detallada la forma en que COMPSs gestiona els fitxers, definirem 'estrategia
i funcionalitats que caldra implementar per tal de materialitzar ’extensié proposada. En
aquest apartat intentarem establir una llista de necessitats que caldra realitzar per tal de
satisfer el conjunt de funcionalitats proposades.

Tal i com es veu en 'apartat anterior, COMPSs reanomena els fitxers recolzant-se en
el benefici que aixo aporta a ’hora de gestionar multiples versions de fitxers. Aquesta
estrategia és bona, pero suposa alguns problemes de cara al nostre desenvolupament.

En finalitzar I’execucié d’una aplicacio, COMPSs recull les tltimes versions dels fitxers
de sortida o entrada/sortida, d’alla on indiquen les seves locations i les porta al Master,
recollint els resultats finals de ’aplicacié. Després, realitza el clean-up de cada Worker,
que consisteix a eliminar tots els fitxers reanomenats considerats com fitxers temporals o
intermedis.

3 Cadena de caracters que identifica inequivocament un fitxer, habitualment una URL
4 Reanomenament aplicat als fitxers.
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ElFileinfo [ElVversion
Aftributes Affribges
private int FIRST FILE D=1 private Set=Location= location
Qr!vate !ntFIRST VERSION D=1 T
pr!vate |ntﬁ|e|d _ public Version( )
pr!vate strlng DrllgName public Location[0..*] getLocations( )
rivate it nexitileld, public void addLocation( String host, String path)
private int currentVersionid : public void removeLocation( String host, String path
private Map <Integer Version= version public Set<Location= getLocation( )
private Location originalLacation public void setLocation( Set<Location> val)
Operations
public vaid init( }
public Filelnfo{ String orighlame, String origHost, String origPath )
public int getFileld{ )
public int getLastVersionld( )
public Filelnstanceld getlLastFilelnstanceld( ) E“‘Dcation
public String getOriginalName( ) ) ! Attributes
public Location getOriginalLocation( ) private String host
public int getNumberOfversions( ) private String path
public Location[0..*] getLocationsForversion( intversionld ) COperations
public void addVersion( ) public Location{ String host, String path )
public void addLocationForversion(intversionld, String host, String path ) public String getHost( )
public void removeVersion(intversionld ) public String getPath( )
public void removeLocationForversion( int versionld, String host, String path ) public void setHost( String host)
public Map<Integer Version= getVersion( ) public void setPath( String path )
public void setVersion( Map=Integer Version= val ) public int compareTof Object loc )
public void setOriginalLocation( Location val ) public String toString( )
Figura 3.1: Classes dels objectes FileInfo, Version i Location.
ElFileinstanceld
Aftributes

private String timeStamp = Long.toString(System.currentTimemillis ()

private int fileld

private int versionld

private String renaming

Operations

public Filelnstanceld( )

public Filelnstanceld{ intfileld, intversionid )

public int getFileld( )

public int getVersionld( )

public String getRenaming( )

public String toString( )

public int compareTof Objectfld )

Figura 3.2: Classe de 'objecte FileInstanceld.
Per tant, a ’hora d’implementar la millora caldra desenvolupar les segiients subfunci-
onalitats:

1. Caldra que dels fitxers d’entrada (en als que mai no s’escriura) no se’'n faci renaming,
d’aquesta manera, els podrem localitzar amb més facilitat, ja que el seu nom sera
sempre el mateix a tot arreu; aixi podrem evitar que el procés de neteja final aplicat

a cada Worker els elimini.

2. S’haura d’establir una sintaxi que permeti emmagatzemar les locations, de les quals
en voldrem guardar: el nom del fitxer, I'tltima data de modificacié d’aquest i el
conjunt de locations on es troba el fitxer en format URI.

3. Per que el funcionament sigui transparent I’asuari, caldra implementar també meto-

des per poder realitzar tant consultes sobre la mida dels fitxers

de modificacié d’aquests.

5 Es veurd a la seccié 3.4.1

5 com de les dates
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4. S’haura d’habilitar la possibilitat d’emmagatzemar, al final d’una execucio, les lo-
calitzacions d’un fitxer i també la possibilitat de carregar-les a I'inici. Aquestes es
guardaran al fitxer de configuraci6é project.xzml (que explicarem en detall a la secci6
3.7.1) que és propi de cada aplicacié.

5. Es desenvolupara la possibilitat de poder gestionar fitxers d’entrada que no estiguin
estrictament a la maquina Master, podent aixi treballar amb dades inicials externes
al Grid.

6. Per ultim, caldra modificar el component principal, el FIP, per tal que a I’hora de
registrar els primers accessos de cada fitxer de tipus READ, es busqui si aquest té
altres repliques a més de l'original i les incorpori a I’objecte FileInfo de cada fitxer.
A més, caldria incorporar-hi també la seva mida i data de modificacié. També es
comprovara que el fitxer no hagi estat modificat des de 1"iltima execucid, ja que en
cas de haver-ho estat no n’incorporariem les repliques a causa de la possibilitat que
no estiguin actualizades.

3.2.2 Implementacié del sistema de gestié de repliques

Un cop vist quins seran els requeriments funcionals que haura de complir I’extensi6, només
ens queda veure la implementacié de les funcions que desenvolupen les subfuncionalitats
esmentades. De totes maneres, no entrarem massa en detall en el codi, només en mostrarem
en aquells casos en que pugui resultar interessant veure certs detalls d’implementacié.

1. Eliminacié de renaming en fitxers de tipus IN:

Com hem dit, la primera de les modificacions anunciades era anullar el renaming
dels fitxers de tipus IN. Aixi doncs, s’ha hagut de focalitzar el treball principalment
en el File Transfer Manager.

Quan el Task Analyzer detecta en el graf I’accés a un fitxer, ho notifica al FIP perque
el registri. Un cop fet, el TA envia les tasques que sén lliures de dependencies al Task
Scheduler perque les planifiqui. Un cop el TS ha decidit a quin recurs s’executara la
tasca, envia aquesta decisié al Job Manager que crea un Job o feina. Llavors, el Job
Manager mira si s’ha de transferir algun fitxer al Worker seleccionat. Si és aixi, les
transferencies s’encarreguen al File Transfer Manager que a través del seu metode
transferFiles, en transfereix les copies al Worker.

En la versio original del FTM, és transferFiles qui transfereix la copia reanomenada.
Per tant, sera en aquest metode on haurem de realitzar les modificacions esmentades.

En el segiient exemple veiem part del codi que s’ha hagut d’afegit al FIP per tal
de poder accedir al nom original d’un fitxer des de fora del component. Aquest
metode accedeix a I'estructura ¢dToFile de tipus Map de Java que permet relacionar
I'identificador tnic del fitxer amb el seu objecte de tipus Filelnfo.

public String getOriginalName(FileInstanceId fId){
FileInfo info = idToFile.get(fId.getFileId());
return info.getOriginalName() ;

El segiient fragment és la funcié transferFiles anteriorment mencionada, on podem
veure la substitucié de codi realitzada respecte al metode original.



CAP{TOL 3. DISSENY I IMPLEMENTACIO

private int transferFiles(List< FileAccessld> fileAccesses, ...){
for (FileAccessld fald : fileAccesses) { //Per cada access a fitzer
if (fald instanceof RAccessld) {
rald = (RAccessld)fald;
sourceFile = rald.getReadFileInstance();
//targetName = sourceFile.getRenaming();
targetName = fileInformation.getOriginalName(sourceFile);

}

else {

if (fald instanceof WAccessld) {
//Es crea el fitzer reanomenat en al Worker.
}

else { //RW
//Es copia el fitver reanomenat i versionat.

}

//Les noves versions de fitver R i RW es reanomenaran.
targetName = targetFile.getRenaming();

2. La sintaxi de les locations:

Al segon item dels presentats en 'apartat de requeriments funcionals, es planteja
crear una sintaxi per tal de tenir una estructura on emmagatzemar les locations dels
fitxers. Aquesta estructura es trobara en un fitxer de tipus XML i, per tant, la
sintaxi adoptada sera la propia d’aquest tipus de documents.

El codi que veiem a continuacio és 'exemple de la implementacio final de 'etiqueta
que representara les repliques.

<Locations>
<File LastModDate=*1292137021000” Name=*"file1”>
<Path>file://hostl.foo.es/home/user/pathl/</Path>
<Path>file:/ /host2.foo.es/path2/< /Path>
< /File>
< /Locations>

Com veiem, esta format per: el nom del fitxer, I’iltima data de modificacio i
per cada una de les referéncies URI de cada una de les repliques. Aquesta etiqueta
s’incloura dins el fitxer project.zml gestionat pel ProjectManager, que s’explicara de
forma més detallada en la secci6 3.7.1.

3. Emmagatzemament del tamany dels fitxers:

El FIP emmagatzema en els objectes de tipus FileInfo (Figura 3.1) tota la informacié6
referent al fitxer. En aquest apartat s’han implementat les funcions auxiliars neces-
saries per tal de poder emmagatzemar-hi la mida i la data de modificacié. Com que
cada versio pot tenir diferents valors d’aquestes dades, ha calgut afegir a la classe
Versions, atributs i metodes per tal de poder guardar-les.
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Com hem dit, cada versi6 és dins 'objecte Filelnfo i a causa d’aixo ha calgut també
implementar metodes que, donada una versid, permetessin tant afegir com obtenir
mides i dates de modificacié dels fitxers.

Modificacions fetes en la classe FileInfo:

e getSizeForVersion(int versionld): donada una versid, retorna la mida del
fitxer.

e addSizeForVersion(Version v, long Size): donada una versid, afegeix la
mida del fitxer a 'objecte de tipus Version.

e getLastModForVersion(int versionld): donada una versi, retorna la data
de modificacié del fitxer.

e addLastModForVersion(Version v, long modDate): donada una versid,
afegeix la data de modificacié a l'objecte de tipus Version.

Modificacions fetes en la classe Version:

e addSize(long size): afegeix la mida del fitxer.

e getSize(): retorna la mida del fitxer.

e addLastMod(long size): afegeix la data de modificacié del fitxer.
e getLastMod(): retorna la data de modificacié del fitxer.

Modificacions del component File Information Provider:

En el component FIP és on s’han implementat gran part de les modificacions que
permeten gestionar les repliques. Per aquesta finalitat s’han implementat el segiient
conjunt de metodes:

Metodes afegits:

e addSize(FileInstanceld fId,List <Long> sizeModDate): afegeixen al’ob-
jecte Filelnfo del fitxer la seva mida i data de modificacio.

o getSize(FileInstanceld fId): retorna la mida del fitxer a partir del seu ob-
jecte Filelnstanceld.

e getFileSizeAndLastMod(String fileName,String host,String path): de-
mana la mida i la data de modificacié consultant directament el fitxer. Aquest
metode el veurem de forma detallada a la seccié 3.4.1

e storeLocations(): emmagatzema les locations dels fitxers al project.zml a
través del ProjectManager.

e getOriginalName(FileInstanceld fId): retorna el nom original d’un fitxer.
Explicada a I'apartat Eliminacid de renaming en fitzers IN.

Gran part de les modificacions fetes han estat realitzades a registerFileAccess, el
metode del FIP que registra els fitxers. Al segiient apartat desglossarem pas a pas
I’ampliacio realitzada a partint del metode original.
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public FileAccessld registerFileAccess(String fileName, ...){
Filelnfo fileInfo;
String locationKey = fileName + ”:”+ host + ”:7+ path;
Integer fileld = nameTold.get(locationKey);
//Primer access al fitzer
if (fileld == null){
//Actualitzem els mappings
fileInfo = new FileInfo(fileName, host, path);
fileld = fileInfo.getFileld();
nameTold.put(locationKey, fileld);
idToFile.put(fileld, fileInfo);
//Insercio del nou codi
//S’informa al File Transfer Manager sobre el nou fitzer

}//St ja s’ha accedit préviament al fitzer...
else {
fileInfo = idToFile.get(fileld);
}
}

El metode anterior crea una clau de localitzacié a partir del nom, maquina i ruta
on es troba el fitxer. Després intenta accedir al mapa nameTold que relaciona
I'identificador tnic de fitxer amb aquesta clau. Si no existeix és perque és el primer
accés que s’hi realitza. En aquest cas, es crea I'objecte FileInfo i s’actualitzen els
mapes de dades del component. Es just en aquest punt on incorporem el conjunt de
noves funcionalitats.

El segiient fragment sera l’encarregat de consultar la mida i data de modificacié
del fitxer, a la vegada que consulta també al fitxer project.zml 1'iltima data de
modificacid del fitxer.

//Consulta la mida actual de fitzer i la seva data de modificacio.

List< Long> sizeLastModSet = getFileSizeAndLastMod(fileInfo.getOriginalName(),...);
long size = sizeLastModSet.get(0);

long lastMod = sizeLastModSet.get(1);

//Data anterior de modificacio del fitzer

long prev_lastMod = projManager.getFileLocLastMod(fileInfo.getOriginalName());

Posteriorment, si el fitxer té locations extra (répliques) a banda de loriginal, llavors
si la data de modificacié del fitxer consultada és la mateixa que 'emmagatzemada
en l'ultima execucid, significa que el fitxer no ha estat modificat entre execucions.
Només llavors es permet afegir aquestes répliques a 'objecte fileInfo del fitxer. A
continuacié podem veure el codi d’aquesta part:

if(projManager.getFileLocations(fileInfo.getOriginalName()) = null
E€ (lastMod == prev_lastMod)){
//Afegim les locations de les répliques
String | = null;
List< String> locat = projManager.getFileLocations(fileInfo.getOriginalName());
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Iterator<String> i = locat.iterator();

while (i.hasNext()) {

| = i.next();

try
URI locURI = new URI(1);
locations.add(new Location(locURI getHost(),”/"+locURI. getPath()));
//Afegim al FIP cada location de tipus IN
fileInfo.addLocationForVersion(fileInfo.getLast Versionld(),
locURI.getHost(),”/”+locURI. getPath());

}
catch (...) {

}

Per tdltim, actualitzarem la mida i la data del fitxer a 'objecte fileInfo, afegint-los a
la seva ultima versid, que en aquest cas sera la primera, perque estem registrant el
primer accés d’un fitxer.

//Afegim al FIP la mida de la versid del fitzer
fileInfo.addSizeForVersion(fileInfo.getLast Versionld(),size);
//Afegim al FIP l’iltima data de modificacio de la versid del fitzer.
fileInfo.addLastModForVersion(fileInfo.getLast Versionld(),lastMod);

4. DataNodes:

Aquest dltim punt de I'extensié busca dotar a COMPSs de la possibilitat de gestionar
fitxers d’entrada que no es trobin inicialment a la maquina Master i que, per tant,
funcionin com a DataNodes. ©

La majoria de les vegades, els protocols de transferéncia de fitxers verifiquen 'accés
entre nodes a través d’un procés de login © que demana nom d’usuari i contrasenya.
Aquest és el cas de COMPSs, que utilitza per defecte SCP & com a protocol de
transferéncia a través de 'adaptador proporcionat per JavaGAT.

En aquest apartat definirem la sintaxi utilitzada per declarar un DataNode. Aquest
anira també inclos dins el fitxer project.xml a mode d’etiqueta. La sintaxi sera la
seglient:

<DataNode Name=*host1.foo.es”>
<User>username< /User>
< /DataNode>

La implementacié i utilitzacié d’aquesta funcionalitat dins el codi de COMPSs, es
troba al metode getFileSizeAndLastMod del FIP, que veurem en detall a la seccié
3.4.1.

5 Nodes que no sén Workers i d’on s’agafaran dades d’entrada.
7 Procés mitjancant el qual es controla ’accés individual a un sistema.
8 Secure Copy Protocol.
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3.3 Planificador

En aquesta secci6 presentarem les propostes per millorar el planificador original. Explica-
rem el nou planificador i en presentarem el disseny i la implementacié duta a terme. Per
acabar, analitzarem cada una de les funcionalitats auxiliars que ha calgut desenvolupar
per poder proporcionar la informacié necessaria perque pugui avaluar de forma correcta.

3.3.1 Analisi del planificador inicial

A la seccié 3.1 hem vist que el planificador original de COMPSs tenia certs punt millora-
bles. Entre d’altres, un d’ells era que analitzava per cada conjunt de fitxers d’entrada quin
era el recurs, d’entre els disponibles, que tenia el maxim nombre de fitxers. D’aquesta
forma en transferia el minim nombre possible, encara que aix0 no garantia transferir la
minima quantitat de dades i, per tant, minimitzar el temps de transferencia.

L’estrategia per trobar el millor recurs, es troba en el metode assignTaskToBestRe-
source del Task Scheduler. En la versié inicial d’aquest metode quedava separada en dues
fases: Scoring ° i cerca del recurs amb la puntuacié més alta.

Aquest metode busca per cada un dels parametres de la tasca que siguin de tipus
fitxer 10 i n’agafa el seu FileInstanceld corresponent, depenent de si és READ, WRITE
o READ/WRITE. A través d’aquest identificador fa una peticié per demanar totes les
seves locations al FIP utilitzant la funcié getLocations(FileInstanceld fId) publicada a la
interficie fileLocation.

Per cada una d’aquestes locations (URISs) es comprova el seu host, si coincideix amb
algun dels recursos dels quals es disposa, s’hi anota un punt. D’aquesta manera, al final del
procés obtindrem una puntuacié que indicara quants dels fitxers necessaris per executar la
tasca té cada un dels nostres recursos disponibles. A continuacié podem veure un exemple
del codi simplificat.

//Per cada parametre de la tasca
for (Parameter p : params) {
//Si p és un fitver
if (p instanceof FileParameter) {
FileParameter fp = (FileParameter)p;
FileInstanceld fld = null;
switch (fp.getDirection()) {
case IN:
fId = rald.getReadFileInstance();

}
//Si fld != null el fitzer és IN o INOUT

if (fld = null) {
Set< Location> locs = fileLocation.getLocations(fId);

9 Procés de puntuacié de recursos.
10 Gj sén de tipus basic no s’han de transferir.
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//Per cada location calculem la seva puntuacié
for (Location 1 : locs) {
String host = l.getHost();
if ((score = hostToScore.get(host)) == null) {
score = new Integer(0);
hostToScore.put(host, score);

}

hostToScore.put(host, score + 1);

La segona fase busca el valor més gran del mapa de puntuacions hostToScore trobant
el recurs que té el maxim nombre de fitxers i que, per tant, pot ser considerat com el millor
recurs per enviar-hi la tasca.

//Seleccionem el recurs amb més puntuacio
String bestResource = null;
it bestScore = 0;
for (Map.Entry< String,Integer> e : hostToScore.entrySet()) {
String host = e.getKey();
Integer score = e.getValue();
if (score > bestScore){
bestResource = host;
bestScore = score;

}
}

Després de veure que aquesta solucié no és del tot correcta, es va decidir desenvolupar
un planificador que avalués a partir de la informacié extreta directament del Grid, de la
forma més real i actualitzada possible.

3.3.2 Disseny i implementacié del planificador

Com hem vist, el planificador original de COMPSs és un planificador estatic i no és capag
de minimitzar el temps implicat en les transferéncies. Aix0 és a causa de no ser un
planificador retroalimentat amb dades directes del Grid.

Es per aquest motiu que es planteja desenvolupar un planificador que sigui capac de
trobar el millor recurs buscant quin d’ells minimitza el temps total d’execucié d’una tasca.
Aquest planificador treballard amb dades extretes del Grid, de la mateixa manera que ho
fa el proposat a l'article: Grid Superscalar and job mapping on the reliable grid resources
[17]. Per fer-ho, doncs, caldra definir quins seran els parametres que determinaran aquest
temps.

Temps de transferéncia

Hauria de ser possible poder realitzar la prediccié del temps que es trigaria a transferir tot el
conjunt de fitxers d’una tasca. Aquest parametre és important, ja que ens proporcionara
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la prediccié del temps que hauriem d’esperar per poder comencar l’execucié en el cas
d’escollir aquell node.

Per poder mesurar aquest temps de transferencia necessitarem saber:

e La velocitat de la xarxa entre 'origen de cada fitxer i el candidat a desti.

e La mida de cada fitxer.

Aquestes necessitats obligaran a desenvolupar, a més, algunes subfuncionalitats su-
plementaries: els metodes necessaris per calcular la mida dels fitxers i una forma per
representar i mantenir actualitzades les velocitats de la xarxa. A aquest temps ’ano-
menarem IrfPrediction, i el seu disseny i implementacié es veura als apartats 3.4.1 i
3.5.

Temps d’espera en cua

Per altra banda COMPSs, en la seva versié original, incorpora una funcionalitat anome-
nada prescheduling, que permet al planificador enviar tasques als recursos que en aquell
moment no tenen slots disponibles per poder executar.

Quan el TS envia la decisié al Job Manager aquest inicia, en el cas de ser necessari,
la transferencia dels fitxers de la tasca. Si en acabar encara no hi ha slots disponibles al
Worker, la feina queda esperant a una cua de tasques pendents del host anomenada pending
queue. D’aquesta manera, quan una tasca acaba, despertara un procés que mirara si n’hi
ha d’altres en espera pendents de disposar de processador.

Aixi doncs, al temps d’espera a causa de les transferéncies cap a un Worker, cal sumar-
hi també el temps d’espera en cua. Aquest temps sera el que haura d’esperar una tasca des
del moment en que entra a la cua d’espera per slot fins al moment en que se n’hi assigna
un. Aquest temps 'anomenarem WaitTimelnQueue i el seu disseny i implementacié
els veurem a la secci6 3.4.3.

Temps d’execucié

Finalment ens quedaria per definir I'altim parametre de la férmula que modela el planifi-
cador. Quan a una tasca se li ha assignat un slot, I'inic temps que queda saber per poder
calcular el temps total d’execucid, és el temps que trigara aquella tasca a alliberar el slot,
és a dir, en definitiva, el temps d’execucié d’aquella tasca. Aquest temps I’anomenarem
TypExecTime.

Per tal de poder-lo predir s’anira mesurant el temps d’execucié de cada un dels metodes
d’una aplicacié enviats a cada node del Grid i s’aniran emmagatzemant en un historic propi
de cada aplicacié. D’aquesta manera, a mesura que realitzem execucions, les prediccions
seran cada vegada més acurades. El disseny i la implementacié del calcul d’aquest temps
el veurem en 'apartat 3.4.2.

Per tant, tenint en compte tot aixo, la férmula del planificador aplicada a cada un dels
recursos seria:

Per cada tasca t
Per cada recurs r
ExecutionTime, = Tr f Predictions , + WaitTimelInQueue, + TypExecTimey
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Com podem veure, el tipus de tasca és necessari per poder calcular tant la prediccié
del temps de transferencia com la del temps d’execucié. Aix0 és perque cada tasca té el
seu conjunt de fitxers propi i també el seu temps d’execucié tipic, que pot ser diferent en
cada un dels recursos.

Fiabilitat dels recursos

Per altra banda es va voler que el planificador disposés també d’un parametre per tal
de poder tenir en compte les maquines més fiables a ’hora de planificar. Encara que el
calcul d’aquest parametre no el veurem en aquest apartat ', aqui en mostrarem la seva
utilitzacié.

Per poder ponderar la fiabilitat, es mantindra un coeficient associat a cada un dels no-
des, que s’emmagatzemara al llarg de les execucions en un historic propi de cada aplicacio.

Inicialment es pensa que el valor de fiabilitat, al qual anomenarem AwailRate, es
relacionés de forma directament proporcional a EzecutionTime; després es va veure que
relacionar-los de forma directa no era una bona solucio.

Aix0 venia provocat perque consideravem com a millor recurs el que tenia el valor més
petit de EzxecutionTime i, per tant, si es multiplicava un valor alt de temps d’execucid
(dolent), per un valor de fiabilitat baix, aquest temps disminuia i, com a conseqiiéncia,
I’analisi que en treia el planificador era que el temps millorava quan aixo no era cert.

Propostes de planificacié

Per tant, aixo resulta totalment incoherent i calia trobar una manera de poder incorporar
correctament el parametre de fiabilitat a la férmula original. A continuaci6 es presenta la
primera proposta plantejada.

Score, = ExecutionTime, * Avail Rate, on 0 < AvailRate, < 1 — Incorrecte

Una altra opcié va ser fer-ho de forma inversament proporcional tal i com s’exposa en
la segiient férmula, on els recursos amb temps més baixos donen puntuacions més altes:

1
FExecutionTime,

Score, = < > x AvailRate, on 0 < AvailRate, <1

Aquesta formula és correcta en la teoria, perd pot no resultar-ho a la practica, ja
que per temps d’execucié grans el quocient podria produir valors molt petits que podrien
acabar-se arrodonint a zero i generant falsos empats entre recursos.

Com a solucié final es va decidir abstraure dels recursos els valors d’EzecutionTime
sotmetent-los a un ranquing de classificacié ascendent 2. D’aquesta manera es podien
classificar els recursos de forma que el valor més baix del ranquing, 1’1, indiqués el pitjor
lloc i a partir d’aqui anés augmentant de forma ascendent.

1 Es veura a Papartat 3.6.1, tolerancia a fallades.
12 Classificacié per posicions ordenades de forma ascendent on el valor més gran és el millor element.
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Aix0 permetia evitar els problemes presentats en la segona féormula i aconseguia situar
tots els recursos en una equidistancia mutua. D’aquesta manera, quan s’apliqués el coe-
ficient de fiabilitat sobre la classificacié de recursos, aquesta podria variar segons el % de
fiabilitat de cada un d’ells.

A continuacié podem veure el disseny final del planificador:

Per cada tasca t
Per cada recurs r
ExecutionTime, = T'r f Prediction , + WaitTimelnQueue, + TypExecTimey ,
Fi Per
Ordenem de gran o petit ExecutionTime,
Per cada valor de ExecutionTime e
Rank, = S’assigna un rank a e
Fi Per
Per cada recurs r
Score, = Rank, * AvailRate,
Fi Per
Ordenem de gran o petit Score,
millor Recurs; = maz{Score}
Fi Per

En cas d’empat, s’assignaria a tots els recursos el mateix valor de ranquing i es des-
empataria triant-ne un aleatoriament. D’aquesta manera s’obliga al planificador a provar
entre els diferents recursos que es troben en igualtat de condicions.

Aix0 és molt beneficids, ja que fomenta ’execucié en quantes maquines millor i, per
tant, millora I’obtencié de dades per generar I'historic, millorant també la planificacié en
futures execucions.

A continuacié, a la figura 3.1 podem veure alguns exemples de com actuaria el plani-
ficador en cas de no disposar d’historic previ 13

Recursos | Methodld | TP | WT | ET | AvailRate | Rank | Score
host1 1 0.9s | Os Os 1.0 1 1
host2 1 0.9s Os Os 1.0 1 1
host3 1 0.9s Os Os 1.0 1 1
host4 1 0.9s Os Os 1.0 1 1

Taula 3.1: Exemple de planificacié sense historic.

Com podem veure en aquest cas, I'inic valor diferent a zero sera el temps de trans-
ferencia. Aix0 és a causa que 'usuari haura definit préviament les velocitats inicials de
xarxa per defecte de cada un dels recursos 4.

La resta de valors seran tots nuls, ja que no hi haura valors previs ni de temps d’execucio
ni de generacié de cues als recursos. Per tant, en cas de tenir, per exemple, un Grid amb una
xarxa homogenia, podria donar-se empat entre recursos durant les decisions inicials preses
pel planificador. A més, a base d’anar acumulant informaci, s’aniran obtenint valors dels
altres parametres restants que quedaran guardats a I’historic en finalitzar 'aplicacio.

13 0On TP = TrfPrediction | WT = WaitTimelnQueue | ET = TypExecTime.
1 Es veura a la seccié 3.7.2.
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A la figura 3.2 podem veure un exemple de planificacié partint, aquesta vegada, d’un
historic previ on els recursos ressaltats sén els finalment escollits pel planificador:

Recursos | Methodld | TP WwT ET | AvailRate | Rank | Score
host1 1 0.11s 1504.1484s Os 0.9 2 1.8
host2 1 0.10s | 1316.8849s | Os 1.0 3 3
host3 1 0.15s | 1254.6338s | Os 0.7 4 2.8
host4 1 0.09s 8451.267s 0s 1.0 1 1

Taula 3.2: Exemple de planificacié amb historic previ.

Implementacié del planificador

La implementacié del planificador s’ha realitzat, practicament en la seva totalitat, dins el
Task Scheduler. Tal com s’ha explicat a la secci6 3.3.1, aquest component allotja el metode
List assignTaskToBestResource(Task t, List<String> resources) que és 'encarregat de
realitzar ’avaluacio de recursos.

Aquest métode rep una tasca i un conjunt de recursos i retorna una llista de dos
elements: una cadena i una llista d’objectes FileInstanceld que contenen el nom del millor
recurs per enviar-hi la tasca i la llista de fitxers que s’hi haura de transferir.

Aquestes dades s’envien al Job Manager a través de la seva funcié sendJob publicada
a la seva interficie i és I’encarregada d’iniciar la transferencia dels fitxers, en el cas que
sigui necessari, i d’enviar la feina al Worker.

La figura 3.3 mostra la classe final modificada del Task Scheduler.

E TaskScheduler

Atributes
package float netSpeed = 0
private String excludedResources(0.."]

Operations
public TaskScheduler{ )
public void runActivity( Body body )
private void sendJob( Task task, String resource, Filelnstanceld filesToTransf[0.*] )
private void sendJobRescheduled( Task task, String resource, Filelnstanceld filesTaTransf[0..%] )
private List assignTaskToBestResource( Task t, String resources[0.*] )
private Task assignResourceToBestTask( String resourceMame )
private Task assignRescheduledTask( String hosthame )
private List triTimePredictor{ Task t, String trfChosenResource )

Dperations Redefined From Freparation

Operations Redefined From Schedule
public void scheduleTasks( Task tasks[0..*])
public void rescheduledob(int oldJohld )

Operations Redeffined From JobStatus

Operations Redefined From SehedF TAMUpdate

Operations Redeffined From Scheduferlipdate

Figura 3.3: Classe simplificada del component Task Scheduler.

A causa que la implementacié del metode assignTaskToBestResource conté gran quan-
titat de codi, s’ha preferit transmetre’n només la seva esséncia, que queda explicada a
I’apartat 3.3.2, propostes de planificacié.
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3.4 Extracciéo de dades necessaries per al planificador

Desenvolupar un planificador de les caracteristiques esmentades implica haver de mantenir
actualitzat en tot moment el conjunt de dades extretes del Grid per tal que les decisions
siguin preses de la forma més acurada possible; és per aquest motiu que aquest és un dels
punts critics del desenvolupament, ja que en dependra gran part del rendiment esperat del
planificador.

En aquesta seccié, doncs, veurem de forma detallada com s’ha realitzat l'extraccié i
mesura de les dades necessaries per alimentar el planificador.

3.4.1 Prediccié del temps de transferencia

Com hem vist, la predicci6 del temps de transferéncia és un dels elements clau. Com s’ex-
plica a la seccié 3.3.2, s’utilitza per obtenir el valor del parametre TrfPrediction, el temps
de transferencia estimat per enviar els fitxers d’una tasca al recurs determinat. Aquest
metode 'anomenarem trfTimePredictor i sera utilitzat en la funcié assignTaskToBestRe-
source, que sera ’encarregada d’avaluar les decisions del planificador. Per aquest motiu
anira implementada al Task Scheduler, tal i com indica la Figura 3.3.

La invocacié d’aquest metode es fara dins d’assign TaskToBestResource passant-hi com
a parametres: la tasca a planificar i el recurs candidat. Per a cada un dels parametes de
la tasca se’n consultara el tipus i es comprovara si és un fitxer, ja que només tindra sentit
realitzar la prediccid en cas que el parametre ho sigui.

Per tant, si és de tipus fitxer i és IN o INOUT llavors té una o més referéncies de
localitzacié (URI) que es demanaran al FIP, als fitxers de tipus sortida (OUT) tampoc
no tindra sentit fer-hi cap prediccid, ja que es generaran directament als Workers com a
resultat final d’una tasca. Per tant, a I'hora de realitzar la prediccid ens interessara fer-la
només dels fitxers de tipus IN i INOUT.

En Papartat de gestié de répliques, hem explicat que les de fitxers de tipus IN s’emma-
gatzemaran al project.xml 1°; per tant, si el fitxer és d’aquest tipus i té repliques definides,
(repliques que hagin estat definides manualment o que ja existeixin a causa d’execucions
previes de l'aplicacié) es comprovara per cada URI si el seu nom de host fa referéncia a la
maquina candidata. Si és aixi, significa que el fitxer ja existeix a la maquina i no caldra
transferir-lo.

En cas de no existir-hi I'afegirem a la llista de fitxers a transferir fitzersTransferir i
se’n fara la prediccié. Per fer-la, es demanara al FIP la mida del fitxer que, recordem,
s’emmagatzema gracies a ’extensié de la gestié de repliques. Per altra banda, es demanara
a la matriu de velocitats ' la velocitat de l’enllac entre 'origen del fitxer i el desti en el
qual es vol transferir que, en aquest cas, sera la maquina candidata chosenResource.

Llavors es realitzara la prediccié a partir de la segiient formula:

tamanyFitzer (bytes) = 8
velocitat Enllac (Mbits/s) * 1000000

Prediccié = Predicci6 + ( > (segons)

= »
15 Veure seccié 3.7.1
16 Veure secci6 3.5
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A continuacié podem veure la versio simplificada del codi del metode:

List trfTimePredictor(Task t, String chosenResource) {
Per cada parametre p de la tasca
Selector(p.Tipus){
cas FITXER:
Si (p !=0UT)
locs = fileLocation.obtenirLocations(...)
Fi Si
Si (p == IN) && Hi ha répliques definides
Per cada element 1 de locs
host = l.obtenirHost()
path = LobtenirPath()
Si (host == chosenResource) && (path == workingDir)
fitxerExisteix = true
sortir bucle
Fi Si
Fi Per
Fi Si
Si (MitxerExisteix) && (parametre |= OUT)
//Afegim fitxer a llista de fitxers a transferir
fitxersTransferir.afegir(...)
//Prediccié del temps de transferéncia
tamanyFitxer = fileLocation.getSize(...)
//S’agafa el host de la primera de les répliques
source = locs.get(0).obtenirHost()
velocitatEnllag = matriuVelocitats(source, chosenResource)
prediccié = prediccié 4+ (tamanyFitxer*8)/(velocitatEnllag*1000000)
Fi Si
Fi cas FITXER
cas DEFECTE:
//El parametre és de tipus basic, no es fa res
Fi cas DEFECTE
Fi Selector
Fi Per
llistaRetorn.afegir(0,prediccid)
llistaRetorn.afegir(1,fitxersTransferir)
retorn llistaRetorn

Com podem veure, la funcié retorna una llista anomenada [listaRetorn on s’afegeixen
la prediccié i la llista d’objectes Filelnstanceld corresponents a cada un dels fitxers que
hauran de ser transferits.

Ara, a la segiient seccié veurem com s’ha mesurat el temps mig d’execucié de les
tasques.
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3.4.2 Mesura del temps mig d’execucié

Tal i com s’ha explicat a la secci6 2.5.5, 'usuari és qui determina quines seran les funcions
de 'aplicacié que s’executaran al Grid. Cada una d’elles es definira a l'interficie i tindra
el seu identificador de métode tinic o methodld, consultable com a atribut en cada objecte
de tipus Task (tasca).

D’aquesta manera, per calcular el temps mig d’execuci6 de cada tipus de tasca i recurs,
calia capturar dos instants de temps. El primer, en iniciar la feina, és a dir, en el moment
on el Job Manager I'envia al recurs seleccionat previament pel Task Scheduler i el segon
en rebre la notificacio, a través de JavaGAT, que la feina ha acabat correctament. En cas
d’acabar amb errors, el temps no es tindra en compte.

Per fer-ho, es mantindra una relaci6 de feines comengades i es guardara en una estruc-
tura que relaciona 'identificador Jobld amb el temps d’inici de cada una d’elles. D’aquesta
manera, la notificacié o callback generada al final d’una feina retorna l’estat i identificador
d’aquesta. Si l’estat és correcte podem calcular llavors el temps d’execucié de la feina a
través de la segiient férmulas:

JobT'ime = JobTimeys + JobT'ime; (segons)

A mesura que es van aconseguint valors, van servint com a mostra per anar calculant i
afinant el temps mig d’execucié. Per fer-ho, s’ha implementat al Task Scheduler un metode
anomenat addHostExTimeMean Value, que pren com a parametres d’entrada la maquina
on s’ha executat la feina, el temps d’execuci6 i el seu identificador.

En la segiient figura podem veure la dinamica de funcionament del sistema.

Planificacio

Notificacio

No

Enviament de la feina
(mesura de JobTime inicial)

JavaGAT

Si
Feina Acabada OK?
JobTime = JobTimef — JobTimei

addHostExTimeMeanValue

Figura 3.4: Dinamica de la mesura del temps mig d’execucié.

Aixi doncs, el metode addHostExTimeMean Value recalcula el temps mig de cada tasca
i host, tal com van arribant noves mostres, a partir de la segiient férmula:

(Zf\il mostres;) + mostraActual
N+1

MitjanaActual = on N = #mostres
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Per acabar, en finalitzar ’execucié de I'aplicacid, aquestes dades quedaran emmagat-
zemades en el fitxer d’historic historical.zml propi de Paplicacié 17
de tipus XML com la segiient:

, mantenint una sintaxi

<MeanExecTime>
<TaskType Id=*1">
<Worker Name=*host1.foo.es”>10.5</Worker >
< /TaskType>
<TaskType Id=“2">
<Worker Name=*“host2.foo.es”>1.53</Worker>
< /TaskType>

</MeanExecTime>

3.4.3 Mesura del temps d’espera en cua

Per tal d’estimar el temps que s’haura d’esperar una feina per poder accedir al proces-
sador d’un recurs que en aquell moment no disposa de slots lliures, ha calgut dissenyar i
desenvolupar aquesta funcionalitat de la manera més eficient possible, ja que sera de vital
importancia que el calcul d’aquest valor es realitzi de forma rapida i pugui mantenir-se
actualitzat. Aixé és important perqué el planificador pugui decidir amb les dades més
reals possibles.

El temps d’espera en cua sera el temps previst d’execucio de cada una de les feines que
ja son a la cua del recurs, més el temps previst perque el recurs alliberi un slot.

Per tal de calcular el temps d’espera en cua, s’ha implementat al Task Scheduler un me-
tode anomenat update WT Counters, que pren com a parametres d’entrada la maquina on s’-
ha executat la feina, I'identificador de metode i el valor de I'incrementador /decrementador.

D’aquesta manera, cada vegada que una feina no es pot executar a causa que al recurs
on ha estat assignada no té slot lliure, entra a la cua d’espera del recurs i llavors es crida
al metode update WT Counters(host,methodld,(+1)).

Aquest incrementa el comptador que manté el registre del nombre de feines de cada un
dels tipus de metode que hi ha a la cua del recurs. D’aquesta manera es porta un recompte
de quantes feines hi ha de cada tipus de metode. La figura 3.5 n’illustra la dinamica de
funcionament.

D’altra banda, cada vegada que una feina surt de la cua per passar a executar-se a un
slot que hagi quedat lliure gracies a haver acabat alguna tasca, es crida de nou al metode,
pero aquesta vegada amb els segiients parametres update W T Counters(host,methodld, (-
1)), eliminant la feina de la cua i dels comptadors.

Aquest metode, a més de controlar els comptadors, actualitza els elements de la cua i
recalcula el temps d’espera. Aquest temps es calcula a partir del temps d’execucié tipic
de cada metode, vist en ’apartat anterior.

D’aquesta manera, multiplicant el nombre de feines de cada tipus pels seus temps
d’execucio tipics sabrem el temps aproximat que trigaran a executar-se cada un d’aquests
metodes i, per tant, sumant tots aquests temps, podrem saber el temps que haura d’esperar

17 Veure secci6 3.7.3
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Enviament de la feina

Planificacio al recurs

No

Recurs amb slots lliures?

UpdateWTCounters (+1)

Actualitzar WaitTime

Figura 3.5: Dinamica de la mesura del temps d’espera en cua.

a la cua una feina que just hi acaba d’entrar. L’algorisme seguit per aproximar aquest
valor és el segiient:

Per cada methodld m
Obtenim el comptador c de feines del métode m
WaitTime = WaitTime + (¢ * obtenirTEzec(recurs,m))
Fi Per

Com es pot veure, en aquest calcul no s’ha afegit el terme que calcula el temps pre-
vist perque el recurs alliberi un slot. Tot i que inicialment es planteja i teoricament és
correcte incloure’l; a la practica, implementar aquest calcul provocava un increment en la
complexitat del metode i ’alentia considerablement.

Per poder calcular aquest valor calia mantenir en tot moment un registre de les feines
que es trobaven en execucio a cada un dels recursos, registrar el temps d’inici de cada una
d’elles, fer la diferencia amb el temps d’execucio estimat de cada una i buscar el minim
d’aquests temps. Es per aquest motiu que la implementacié final s’ha realitzat tenint
només en compte el temps d’espera en cua.

3.5 DMesura i actualitzacio de la velocitat de xarxa

Tal i com s’ha presentat a la seccié 3.3.2, per poder predir el temps de transferéncia ens
cal saber, entre altres coses, la velocitat de xarxa entre l'origen de cada fitxer i el seu desti.
Ara bé, per poder disposar d’aquestes velocitats, abans cal tenir alguna manera per poder
representar-les. Aquest és 'aspecte que tractarem en aquesta seccio.

Per permetre al planificador disposar d’aquestes dades, ha calgut dissenyar una forma
perque l'usuari pogués indicar les velocitats inicials de xarxa de cada un dels nodes a
través del fitxer on es detallen les caracteristiques d’aquests, el resources.zml. Per fer-ho
s’ha aprofitat un dels camps no utilitzats d’aquest fitxer, el camp < NetworkAdaptor>, que
veurem més endavant a la seccié 3.7.2.
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De totes maneres, cada un dels recursos del Grid tindra en aquest fitxer una etiqueta
XML definida com la segiient, indicant la velocitat de I’adaptador de xarxa de cada node:

< NetworkAdaptor>
< NetworkSpeed>547.2< /NetworkSpeed>
< /NetworkAdaptor>

D’aquesta manera, a partir d’implementar metodes addicionals al ResourceManager
es permet carregar aquestes dades en una matriu que es troba al Task Scheduler i que
anomenarem Matriu de velocitat de xarxa. El metode que més hi haura d’accedir
sera el trfTimePredictor que, recordem, és ’encarregat de predir el temps de transferéncia
dels fitxers.

Un detall important a considerar és que a ’hora de carregar aquests valors, s’escull
com a velocitat de I’enllag la més petita d’entre els dos punts que connecta. Aquest detall
ha de ser considerat en motiu de la possiblitat de trobar nodes interconnectats a través
de xarxes asimetriques i que, per tant, mantenen diferents velocitats a ’hora de rebre i
enviar informacié cap a un node determinat.

D’aquesta manera i, a mode d’exemple, podriem trobar-nos amb una matriu inicial
definida per I'usuari com la segiient:

Recursos | hostl | host2
host1 91.2 91.2
host2 78.8 | 504.3

Taula 3.3: Exemple de matriu inicial de velocitat de xarxa (Mbps).

Com podem observar, aquesta primera solucié és realment basica, en tractar-se d’un
model estatic que no té en consideracié cap de les possibles fluctuacions en la velocitat de la
xarxa. Justament per aquest motiu es va decidir ampliar aquesta funcionalitat permetent
I’actualitzacié dinamica de la matriu a mesura que es transfereixen fitxers entre nodes.

3.5.1 Actualitzacio dinamica de la velocitat de xarxa

Com diem en l'apartat anterior, la segona fase de desenvolupament es planteja com un
model dinamic que sigui capac d’actualitzar les dades a mida que vagin sorgint transfe-
rencies entre nodes del Grid. D’aquesta manera s’espera obtenir un comportament més
realista del planificador permetent-lo disposar de dades com més real i actualitzades sigui
possible.

Tot i que aquest planteig era inicialment correcte, es veié que calia decidir el moment
en que s’actualitzarien les dades d’aquesta matriu. Cal tenir en compte la naturalesa de
components de COMPSs i que l'intercanvi d’informacié entre aquests requereix 'existéncia
d’interficies entre ells. A més, transferir dades entre components pot penalitzar forca el
rendiment global del sistema.

Recordem que, per altra banda, la maxima seguida durant el desenvolupament era
no modificar ’arquitectura inicial de COMPSs, intentant mantenir sempre les interficies
inicials el més intactes possible.

Es per aquest motiu que teniem un problema, les transferéncies es gestionen al FTM
i la matriu s’utilitza al T'S i entre ells no existia cap interficie definida.
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Per aquest motiu es va decidir que el Job Manager mantingués també la matriu en
memoria i que les actualitzacions de velocitats que fes el FTM, les fes sobre la matriu
del JM, que en finalitzar I’aplicacié quedaria actualitzada i s’emmagatzemaria al fitxer
historical.zml '8, que és on es guarden totes les dades d’historic referents a I’aplicacié.

D’aquesta manera s’aconsegueix cert grau de dinamisme entre execucions, perd no
durant la mateixa, ja que en llencar una aplicacid, el TS carrega inicialment la matriu
des del fitxer d’historic, que havia estat actualitzat al final de ’execucié anterior pel JM i
realitza tota ’execucié amb aquella matriu, que tornara a quedar actualitzada pel JM en
acabar ’execucio.

L’as d’aquest sistema presenta els seus avantatges i inconvenients, que veurem descrits
detalladament a I'apartat 3.5.1 d’aquesta seccié.

Calcul de la velocitat de xarxa

El calcul de la velocitat de xarxa és un dels punts en que més ha calgut treballar. Com
hem comentat en seccions anteriors, quan el TS déna 'ordre de crear una feina al JM,
aquest verifica a través del seu metode orderTransfers si s’ha de transferir algun fitxer
abans d’enviar a executar-la. Si és aixi, invoca el metode transferFiles, al qual li passa la
llista de fitxers a transferir i la localitzacié del desti de la transferencia.

Un cop el FTM executa aquesta funcid, no en comenca la copia immediatament, siné
que les colloca en una cua de peticions. Llavors, és I'objecte anomenat TransferDispatcher,
que es troba dins el mateix FTM, ’encarregat de desencuar-les i atendre-les utilitzant cinc
threads independents.

Inicialment, doncs, per calcular la velocitat de tranferéncia entre dos punts, s’idea
una primera solucié que consistia a realitzar una marca d’inici cada vegada que comencés
una transferencia. D’aquesta manera, com que cada transferéncia és tnica, en acabar,
es realitzaria una marca de temps final, i aixi, amb la diferéncia de temps final menys
inicial i la mida del fitxer transferit, podriem saber facilment la velocitat a la qual s’havia
transferit el fitxer.

Aquesta primera aproximacié no va funcionar, ja que no es tenia en compte la possi-
bilitat que mentre preniem la mesura de temps d’una transferéncia podia apareixe’n una
altra entre el mateix node d’origen i desti, provocada per un dels fils del TransferDispatc-
her que desencués una nova transferencia. Aixo dividia la capacitat de transferéncia de
I’enllag repartint-lo entre les dues transferéncies, que passaven a compartir 'enllag i, per
tant, a compartir la capacitat d’aquest.

Mesurar aquestes transferencies de la forma anteriorment explicada provocava errors en
les mesures, ja que sempre s’assumia la velocitat del canal com la d’una sola transferéncia.

Per tal de resoldre aquest problema es proposa una nova solucid, que té en compte la
utilitzacié global de I'enllac entre dos punts. El que s’ha realitzat és crear una estructura
que manté un registre dels enllagos sobre els que hi ha transferéncies en curs.

D’aquesta manera quan s’inicia una transferéncia entre dos punts, es registra 1'is d’a-
quest enlla¢ a través d’una estructura que emmagatzema l'instant de temps en que s’ha
comencat a utilitzar, el nombre de fitxers simultanis que s’hi estan transferint i el vo-
lum total de dades transferit a través de 'enllag. Aixi, si apareix una nova transferéncia,

18 Veure secci6 3.7.3
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s’incrementarad el nombre de fitxers simultanis en curs i també el volum total de dades
transferides per Ienllag.

La marca de temps final la posarem quan el nombre de fitxers simultanis d’un enllac
es redueixi a zero. Just en aquest moment tindrem disponibles el nombre total de dades
que s’han transferit i el temps en que s’ha fet, podent calcular aixi la velocitat mitjana de
Ienllag a partir de la segiient féormula:

volumDades x 8
locitat [ = Mb
VelocitatCana tempsTrf x 1000000 (Mbps)

Un cop aplicada la férmula, es veié que els valors de les mesures no eren sempre
correctes, concretament en el cas de transferencies de fitxers petits aquest calcul no sempre
donava bons resultats, a causa de les caracteristiques de les xarxes TCP /IP.

Aquest protocol presenta un sistema anomenat arrencada lenta (slow-start) !°. Com
que ni I’emissor ni el receptor tenen forma de saber quin és el volum de dades maxim que
poden arribar a transferir a la xarxa, per no saturar-la es comenca a enviar i rebre de
forma progressiva augmentant la velocitat de forma gradual fins que la xarxa arribi al seu
cabal maxim o se saturi. En aquest cas, TCP reduira la tasa d’enviament per disminuir-ne
la saturacié.

Per aquest motiu, necessitem mesurar fitxers suficientment grans perque la velocitat
de la xarxa hagi arribat a estabilitzar-se. Si no, pot passar que les velocitats dels enllagos
mesurades siguin més baixes del que ho sén en realitat. Aquest valor ha estat mesurat
empiricament fins obtenir valors estables i s’ha deixat com a parametre configurable del
sistema per tal de poder ser eliminat en cas d’utilitzar altres tipus de xarxes.

Dit aixo, la velocitat de xarxa s’actualitzara només en cas que el volum de dades
transferit pel canal sigui més gran que el del llindar establert per obtenir mesures estables.

A la segiient figura 3.6 podem veure, de forma illustrativa, com es realitza el calcul
explicat. Es registraria la marca d’inici de transferencies d’aquest enllag (segon 0) i I'iltima
transferencia, que és la que faria disminuir el nombre de transferéncies simultanies a zero
i generaria la marca final al cap de 45 segons.

g

™ I |

T3

Transferénces

0 E 10 15 20 23 30 3= 40 45 a0
Temps

Figura 3.6: Diagrama amb solapament de transferencies.

19 http://es.wikipedia.org/wiki/Slow-start
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Actualitzacioé de la matriu de velocitat de xarxa

Cada un d’aquests calculs anteriors actualitzen la matriu que es troba al Job Manager a
través del metode speedMatrizUpdate. Per fer-ho, rep com a parametre un node origen, un
node desti i el nou valor mesurat actualitzant la velocitat de ’enllac. De totes maneres,
aquest valor no és actualitzat reemplacant-se, siné que el valor que queda substituit a la
matriu és en un 50% el valor nou i en laltre 50% el valor anterior, tal i com indica la
férmula segiient:

Velocitat — VelocitatAnteriOTQ—i- Velocitat Actual (Mbps)

D’aquesta manera s’aconsegueix mantenir el resultat anterior, donant també una bona
adaptabilitat als canvis sobtats en la xarxa.

Finalment, en acabar I’execucié d’una aplicacid, aquesta matriu s’emmagatzemara al
fitxer d’historic a través del metode setSpeedMatriz implementat a I’HistoricalManager,
que guardara ’estructura de la matriu en format XML, tal i com es mostra a continuacio.

Per seguir amb ’exemple d’aquest apartat, s’ha utilitzat com a referencia la matriu de
la figura 3.3.

<NetSpeed >
<Link Src=*“hostl.foo.es”>
<Speed Dst=*“host2.foo.es”>91.2</Speed>
<Speed Dst=“host1.foo.es”>91.2</Speed>
< /Link>
<Link Src=*“host2.foo.es”>
<Speed Dst=*“host2.foo.es”>504.3</Speed>
<Speed Dst=*“host1.foo.es”>78.8</Speed>
< /Link>
< /NetSpeed>

Avantatges i inconvenients d’utilitzar aquest sistema

Tot sistema té els seus avantatges i els seus inconvenients i com és de suposar aquest
no intenta ser-ne cap excepcié. En aquest apartat tractarem d’analitzar quins sén els
principals avantatges i inconvenients d’utilitzar aquest sistema per mesurar la velocitat de
la xarxa.

Inicialment i abans de desenvolupar el sistema, es pensa a utilitzar algun sistema
de monitoritzacié i recolleccié d’informacié per a recursos distribuits (Grid Information
System), per exemple: Globus Toolkit o Ganglia [15] 2%, que és un sistema exclusiu per a
monitoritzacié de recursos distribuits.

Realment, a I’hora de buscar precisié en la mesura, un sistema de monitoritzacio és
possiblement el més adequat, ara bé, utilitzar-lo implicava una seérie de restriccions com,
per exemple, haver d’estar sempre lligat al sistema o haver de desplegar tot el sistema al
Grid utilitzat, cosa que podria provocar inconvenients sobretot si la persona que installa i

20 http://ganglia.sourceforge.net
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gestiona COMPSs, que habitualment és el propi usuari, no és I’administrador de la xarxa
del Grid.

Per aquest motiu es va decidir incorporar el sistema de mesura dins de COMPSs a
mode d’extensié; d’aquesta manera tota la gestié i mesura es realitza de forma transparent
encara que aixo suposi alguns inconvenients.

El fet de mesurar la velocitat dins el File Transfer Manager pot provocar algunes
desviacions en la mesura a causa de la carrega del propi component. Recordem que per
tal de gestionar les transferencies, el FTM es recolza en JavaGAT, que és qui ordena les
transferencies i les execucions de les feines als Workers, les quals en acabar generen una
notificacié. Si a causa de la carrega del FTM aquestes notificacions es processen més
lentament poden provocar variacions en els resultats dels calculs.

Bo i que és dificil que succeeixi, existeix la possibilitat i, per tant, ha de ser considerada.

3.6 Millora de la tolerancia a fallades

Com s’ha explicat a I’apartat 3.3.2, el planificador requereix del parametre AvailRate per
poder tenir en compte el % de fiabilitat dels recursos. D’aquesta manera, si un recurs és
menys fiable que altres, perdra credit i per tant el planificador ’escollira menys vegades.
En aquest apartat s’explicara quin ha estat el metode utilitzat per calcular aquest index.

3.6.1 Disseny de mecanismes de tolerancia a fallades

Quan el Job Manager envia una feina al Worker, aquesta pot acabar correcta o incorrec-
tament; aixo se sap a partir de la notificacié o callback generat per JavaGAT, que invoca
al metode jobStatusNotification del JM. Segons l'estat de finalitzacié de la tasca, aquest
metode entrara dins una etiqueta (case) OK o FAILED, executant diferents accions en
cadascun dels casos.

Aprofitant aquesta estructura, es van implementar al Task Scheduler dos métodes: un,
que comptabilitzava el nombre de feines correctament executades a cada un dels Workers
i Paltre, el nombre de feines que havien fallat. D’aquesta manera, en rebre una notificacié
es comptabilitzava la tasca en un dels dos anotadors.

Aixi el % de fiabilitat es calcula segons la segiient férmula:

e 1 FeinesOK,
RatioFiabilitat, = . il onr = recurs
FeinesEnviades,

D’aquesta manera, el metode addOkSubmit incrementara el nombre de FeinesOK i
FeinesEnviades d’un recurs determinat; en canvi addFailedSubmit n’incrementara només
el nombre de FeinesEnviades. D’aquesta manera, a mesura que van acabant feines s’obté
de forma no gaire costosa el % de fiabilitat de cada recurs.
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El codi simplificat corresponent a aquests metodes és el segiient:

void addOkSubmit(String r){
feinesEnviades = Obtenir el nombre de feines enviades del recurs r
feinesEnviades = feinesEnviades + 1

feinesOK = Obtenir el nombre de feines ok del recurs r

feinesOK = feinesOK + 1

fiabilitat = feinesOK /feinesEnviades
Guardar valor de fiabilitat a mapa: recurs -> fiabilitat

L’anica diferencia entre ambdues funcionalitats és que addOkSubmit incrementa el
nombre de feines que han acabat correctament i addFailedSubmit no.

void addFailedSubmit(String r){
feinesEnviades = Obtenir el nombre de feines enviades del recurs r
feinesEnviades = feinesEnviades + 1

feinesOK = Obtenir el nombre de feines ok del recurs r

fiabilitat = feinesOK /feinesEnviades
Guardar valor de fiabilitat a mapa: recurs -> fiabilitat

Per assegurar la propagacié d’aquests valors entre execucions, s’han implementat una
serie de funcionalitats que permeten guardar els valors de fiabilitat en format XML al
fitxer d’historic seguint la sintaxi segiient:

< Availability >
<Worker Name=*“host01.foo.es”>1.0</Worker>
<Worker Name=*host02.foo.es”>0.75< /Worker >
<Worker Name=*“host03.foo.es”>0.3</Worker>
< /Availability >

En iniciar una aplicacid, el planificador treballa amb les dades de disponibilitat de
I’historic. Si inicialment no se’n tinguessin, es generen automaticament a l’inici amb valors
de fiabilitat maxima per a cada un dels recursos.

Aquestes dades son sempre estatiques al llarg de I'execucié de I'aplicacio, ja que el
planificador treballa sempre amb les dades que ha carregat de I’historic anterior. Tal i
com es va planificant a partir de les dades d’execucions anteriors, també se’n van generant
de noves durant I’execucié actual. Aquestes, en acabar passaran a fusionar-se amb les del
nou historic fent servir una mitjana ponderada, de manera que estara format pel 60% dels
nous valors i el 40% dels antics. La configuracié d’aquests pesos ha estat determinada
empiricament i és facilment modificable.
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3.6.2 Recuperacié de fiabilitat

Com hem vist en I'apartat anterior, és possible que un recurs perdi la confianca del planifi-
cador, és a dir, que en fallar es redueixi el seu index de fiabilitat i, per tant, el planificador
I’esculli en menys ocasions.

Podria passar, en cas extrem, que alguns recursos patissin errors freqiients produits
per problemes de connectivitat. A causa d’aix0, obtindrien valors de fiabilitat tan baixos
que és possible que el planificador no el tornés a escollir més. Justament per aquest
motiu ha calgut desenvolupar un metode anomenat addConfidence que permeti als recursos
recuperar de forma progressiva la seva confianca.

El metode desenvolupat és anomenat “metode de confianca cega” i consisteix a donar,
al final de I’execucié, un petit % de confianca extra 2! als recursos que no tenen la fiabilitat
maxima i que no han estat escollits durant aquella execucié. D’aquesta manera és possible
que recursos que han perdut tota la fiabilitat, a poc a poc la vagin recuperant fins al
moment en que el planificador els torni a enviar feines. Si aquestes acaben correctament,
aniran recuperant els seus valors de fiabilitat; si segueix fallant, els valors tornaran a baixar
i el planificador els deixara novament de banda.

3.6.3 Limitacidé en el nombre de reintents

L’ dltima millora implementada en aquest apartat és limitar el nombre de vegades que es
permetra fallar a un recurs al llarg d’una execucié. D’aquesta manera si un recurs falla
tantes vegades com el limit especificat, quedara descartat d’aquella execucié. En cas que
la seva fiabilitat hagi quedat afectada, el metode de recuperacié anterior s’encarregara de
restablir-la.

Aquest valor és especificable al fitxer de configuracié de 'aplicacié project.zml a través
de la segiient sintaxi:

<MaxRetries>3</MaxRetries>

En cas de no especificar res, el nombre d’errors permesos per defecte sera de 5 per host
i execucio.

3.7 Gestio de recursos

A la versi6 de COMPSs desenvolupada pel projecte, tota la gestié dels recursos es fa a
través dels 3 gestors presentats a continuacié:

e ProjectManager: conté totes les dades necessaries per poder accedir als Workers
per executar-hi tasques i les localitzacions de fitxers.

e ResourceManager: conté les caracteristiques dels recursos i en defineix les seves
capacitats.

e HistoricalManager: manté ’historic d’informacié acumulada per poder subministrar-
la al planificador.

21 Tipicament en increments d’un 5%.
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Aquests gestors emmagatzemen la seva informacié en 3 fitxers que sén clau a ’hora de
realitzar la configuracié d’una aplicacié6 de COMPSs: el project.xml, resources.xml i
historical.xml, que explicarem a continuacio.

D’altra banda, cal mencionar que per poder obtenir una millor comprensié de l’es-
tructura d’aquests fitxers, s’han inclos a I'apendix exemples reals d’aquests fitxers de
configuracié.

3.7.1 Modificacions al ProjectManager

El ProjectManager és el gestor que permet obtenir la informacié continguda al fitxer de
configuracié de I'aplicacié project.xml, un document escrit en llenguatge XML que conté:

e La definicié de cada un dels workers que s’utilitzaran durant ’execucié de ’aplicacié
(obligatori), d’on se’n definira:
— WorkerName: el nom del worker.

— InstallDir: la ruta on es troben les classes Java o binaris dels codis de la part
worker de 'aplicacié.

— WorkingDir: la ruta de treball on es trobaran els fitxers amb els quals treba-
llara el Worker.

— User: el nom d’usuari amb el qual COMPSs realitzara el procés de login cap
a cada Worker.

e Els DataNodes que existeixin, en cas que n’hi hagi (opcional) 22.

e El nombre maxim de reintents abans d’excloure un Worker de ’execucié (opcional)
23

e Les localitzacions inicials dels fitxers, en cas de tenir-ne; si no, es generaran de
forma automatica al llarg de I'execucié (opcional).

El runtime de COMPSs realitzara consultes a aquest document per tal d’obtenir la
informacié per poder enviar feines als Workers o gestionar les funcionalitats anteriorment
explicades.

Per fer-ho, es val de xPath ?*, que permet construir expresions per processar dades en
format XML tenint en compte I'estructura jerarquica del document.

Per poder treballar amb les noves dades emmagatzemades en aquests fitxer, ha calgut
incorporar al gestor algunes funcions addicionals:

e getDataNodeProperty(String name): en especificar el nom d’un recurs, retorna
el nom d’usuari definit perqué COMPSs pugui accedir al node de dades.

e getFileLocations(String filename): en especificar el nom d’un fitxer, retorna
una llista amb les URI’s de les repliques d’aquell fitxer.

e getFileLocationsLastMod(String filename): en especificar el nom d’un fitxer,
retorna I'iltima data de modificacid del fitxer.

22 Veure apartat 3.2.2.
28 Veure apartat 3.6.3
2 http:/ /es.wikipedia.org/wiki/XPath
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e getFileLocationsSize(String filename): en especificar el nom d’un fitxer, retorna
la seva mida.

e getMaxRetries(): retorna el nombre maxim de reintents que es permetran a un
Worker abans de ser exclos de I'execucié.

e setFileLocations(...): permet guardar al fitxer project.zml cada una de les etique-
tes de localitzacio de fitxers definits a 'apartat 3.2.2

e hasLocations(): retorna un boolea amb el valor corresponent depenent de si hi ha
localitzacions addicionals definides al project.zml, o no.

3.7.2 Modificacions al ResourceManager

El ResourceManager és ’encarregat de gestionar totes les caracteristiques de la maquina
per saber si compleix amb les restriccions necessaries per poder executar una tasca. En el
codi original de COMPSs, el funcionament era semblant al del ProjectManager, ['usuari
introduia al fitxer resources.zml les caracteristiques que definien als seus recursos descrits
a partir de 'estandard Grid Information and Data Modelling de OGSA [1].

Aleshores, en iniciar ’execucié d’una aplicacié, el fitxer es carrega i s’hi fan consul-
tes amb xPath retornant aquelles maquines que compleixen les especificacions per poder
executar la tasca.

De totes maneres, bo i utilitzar aquest model de descripcid, la majoria de les vegades
a ’hora de definir els recursos no se solen utilitzar tots els seus camps; aquest és el cas
del camp que defineix ’adaptador de xarxa, que no era utilitzat a la versié original de
COMPSs, pero si a la nova. D’aquesta manera es facilita a 'usuari poder definir la
velocitat de la interficie de xarxa de cada un dels nodes.

Per fer-ho ha calgut implementar un metode que permet llegir aquest camp a partir
del nom d’un recurs. El metode getNetworkSpeed retorna la velocitat de 'adaptador de
xarxa definida al fitxer resources.xml.

3.7.3 Implementacié de I’HistoricalManager

L’HistoricalManager és ’encarregat de gestionar tot el conjunt de dades que s’emmagat-
zemen per poder mantenir I’historic necessari per al nou planificador. En aquest fitxer
anomenat historical.zml s’hi guardaran dades de: fiabilitat dels recursos, temps mig d’exe-
cucié de cada tipus de tasca i recurs disponible i la matriu de velocitat de xarxa, explicats
en apartats anteriors.

De totes maneres és habitual realitzar la primera execucié d’una aplicacié sense historic
previ; per tant, inicialment no tindrem dades en aquest fitxer. En aquests cas COMPSs
el generara automaticament i 'anira completant amb dades extretes de les execucions.

Per tal de poder gestionar aquestes dades ha calgut implementar els segiients metodes:

e getAvailability(): retorna una estructura de tipus mapa amb les dades de fiabilitat
de cada recurs.

e getMeanTimeStructure(String name): En especificar-hi el nom del recurs, re-
torna una estructura amb el temps mig d’execucié de cada tipus de tasca en cada
un dels recursos del Grid.
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e getSpeedMatrix(): retorna una estructura amb la matriu de velocitat guardada a
I’historic.
e setAvailability(...): permet guardar els coeficients de fiabilitat de cada un dels

recursos.

e setMeanExecTime(...): permet guardar els temps mig d’execucié de cada tipus
de tasca al fitxer d’historic.

e setSpeedMatrix(...): permet guardar la matriu de velocitat de xarxa al fitxer
d’historic.

Ara, en el segiient capitol posarem a prova cada una d’aquestes extensions realitzades.
Experimentarem i analitzarem els resultats per comprovar quines han estat les millores
obtingudes.



Capitol 4

Tests, Experiments i Resultats

Un cop presentat el desenvolupament del projecte, en aquest capitol presentarem el conjunt
de proves i experiments als quals s’ha sotmes el prototip, per verificar el bon funcionament
de les millores finals. En primer lloc presentarem l’entorn sobre el qual s’han realitzat el
seguit de proves, en segon lloc presentarem cada una de les aplicacions utilitzades en el
procés d’experimentacié. Finalment es presentara el conjunt de proves realitzades sobre
cada una de les extensions dissenyades.

4.1 Entorn de proves

Abans de presentar el conjunt de proves i experiments realitzats, introduirem ’entorn de
proves en que s’han realitzat els experiments que es mostraran al llarg d’aquest capitol.

El Grid utilitzat per realitzar les proves consta de 5 servidors. Les maquines: bsc-
grid02, bscgrid03, bscgrid04, bscgrid06 i tamariu.

En tots els experiments, la mateixa maquina que executa ’aplicacié principal sera la
que suportara tots els components del runtime. La maquina Master (bscgrid05) és un
servidor equipat amb un processador Intel Q9300 Core 2 Quad a 2.5GHz amb 3MB de
memoria caché, 4 GB de RAM i un disc de 220GB a 7200rpm.

La maquina bscgrid06 és exactament d’iguals caracteristiques a la bscgrid05, en canvi
les bscgrid02, 03 i 04 sén servidors inferiors, que van equipats amb processadors Intel
Pentium 4 Dual Core a 3.6Ghz, 2MB de memoria caché, 1 GB de RAM i un disc de 60GB
a 7200rpm.

D’altra banda, la maquina tamariu, que és la més potent, disposa de 4 processadors
Intel Xeon E7450 @ 2.40GHz de 6 nuclis amb 12MB de caché, 47 GB de RAM i dos discs,
un de 550GB i un de 320GB.

61
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A la segiient figura podem veure la configuracié d’aquest Grid.

bscgrid02 bscgrid03 bscgrido4

l 91.2 Mbps

ﬁ 547.2 Mbps

bscgrid05 bscgrid06 tamariu

bsc.es

Figura 4.1: Topologia del Grid de proves.

La connexié entre els diferents nodes es realitza a través de xarxes que disposen de
diferents velocitats. Les connexions entre les maquines bscgrid02, 03 i 04 disposen de 91.2
Mbps reals. En canvi, les connexions entre les bscgrid05, bscgrid06 i tamariu es realitzen
a 547.2 Mbps reals, tal i com especifica la segiient taula:

Recursos | bscgrid02 | bscgrid03 | bscgrid04 | bscgrid05 | bscgrid06 | tamariu
bscgrid02 loop 91.2 91.2 91.2 91.2 91.2
bscgrid03 91.2 loop 91.2 91.2 91.2 91.2
bscgrid04 91.2 91.2 loop 91.2 91.2 91.2
bscgrid05 91.2 91.2 91.2 loop 547.2 547.2
bscgrid06 91.2 91.2 91.2 547.2 loop 547.2
tamariu 91.2 91.2 91.2 547.2 547.2 loop

Taula 4.1: Velocitats de connexid entre els nodes del Grid.

4.2 Aplicacions

4.2.1 HMMER

HMMER és una suite d’aplicacions utilitzada en 1’ambit de la bioinformatica ! que su-
tilitza per analitzar models HMM (Hidden Markov Model) que representen families de
proteines. Una de les aplicacions més importants és HMMPfam, que llegeix un conjunt de
seqiiencies d’aminoacids i els compara contra una base de dades buscant altres seqiiencies
similars.

L’objectiu final de I'aplicacié és trobar, per cada seqiiencia, el conjunt de families de la
base de dades amb les que tenen més similituds. Aquest procés és anomenat alineament de
seqiiéncies proteiques. Aquest procés comporta un calcul intens, pero a la vegada altament
parallelitzable.

! http://hmmer.janelia.org
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Comparat amb altres suites com BLAST 2, que utilitza I’algorisme de Smith- Waterman
per realitzar els alineaments, o FASTA 3, HMMER genera resultats més acurats.

La parallelitzacié de 'aplicacié es divideix en 3 fases:

e Fragmentacio: els fitxers de seqiiencies i la base de dades es divideixen en funcid
del nombre de processadors i de memoria disponible, intentant generar fragments
que capiguen a la memoria del sistema, evitant aixi un accés intensiu a disc.

e Execucioé: s’executa el binari HMMPfam sobre cada parella de fragments de la base
de dades i seqiiencies.

e Reduccié: els resultats d’aquestes execucions s’uneixen de nou per generar el re-
sultat final.

L’execucié d’aquesta aplicacié genera un graf com el que mostra la figura 4.2. L’execucid
de la fase de segmentacio es realitza de forma seqiiencial al Master. El nivell més alt de
I’arbre correspon a la segona fase. Els nivells inferiors mostren com la fase de reduccié
uneix els fitxers resultants d’aplicar el binari a cada fragment de seqiiencia i base de dades.

DB fragment | DB fragment 2

| hmmplam | | |1|||||1|'|lk1|||.i| | |1|||.||||1L'u|||.-:| [ hmmpfam | !

- — — i — - - . - —

X ¥ A ) WY i

mege | I merge ! | merge | | merge

Figura 4.2: Graf de ’aplicacié HMMER.

De fet, a la implementacié existeixen 3 tipus de tasca de reduccié en funcié dels frag-
ments que s’haguin d’unir: Si s’uneixen fragments corresponents a la mateixa base de
dades s’utilitzara el metode mergeSameDB. En canvi, si s'uneixen fragments amb les ma-
teixes seqiiencies, s’utilitzara mergeSameSeq. En funcié d’aixo el temps de cada procés
d’unié sera més o menys gran. D’aquesta manera, l'aplicacié queda dividida en 3 tipus de
tasques diferents:

e hmmpfam: executa al Worker el binari HMMPfam amb un fragment de la base de
dades i un del conjunt de seqiiencies. Generara un resultat parcial.

e mergeSameDB: a partir de dos resultats parcials que provinguin del mateix frag-
ment de la base de dades, els uneix i genera un nou resultat parcial.

e mergeSameSeq: uneix dos resultats parcials que provinguin del mateix conjunt de
seqiiencies generant un nou resultat parcial.

2 http://ca.wikipedia.org/wiki/BLAST
3 http://en.wikipedia.org/wiki/FASTA



64 CAPITOL 4. TESTS, EXPERIMENTS | RESULTATS

La uni6 dels dos ultims resultats parcials es fa sempre al Master.

Tot el conjunt de proves es dura a terme utilitzant la base de dades SMART 4, que
conté 725 models de longituds d’entre 11 i 971. En cada prova es variara la mida del
fitxer de seqiiencies d’entrada, agafant-ne 2048, 4096 i 8192 d’entre una base de dades de
100.000 provinent d’UniParc °.

HMMER és una aplicacié que depen, en un alt grau, de la capacitat de calcul del
sistema, disposant de tasques de diferent duracié i d’un alt nivell de parallelisme a 'inici
de I'execucié que va decreixent a mida que avanca el graf.

Aquesta aplicacidé s’utilitzara per realitzar les proves del nou planificador. Indepen-
dentment del nombre de seqiiencies d’entrada, les proves es faran amb 2, 4, 6, 10, 14, 18
i 22 Workers, analitzant I’evolucié del temps final d’execucié de la nova versié de COMPSs
vs COMPSs original.

4.2.2 JRA4

JRA4 és una aplicacié que permet realitzar prediccions de temperatures de superficies i
treballa amb conjunts de models de temperatures anteriorment obtingudes sobre el ter-
reny. Per fer-ho utilitza el metode Multimodel Ensemble Mean Forecasting ©, que permet
realitzar prediccions d’estats futurs en sistemes canviants.

L’aplicacié treballa per mitja d’un binari anomenat CDO (Climate Data Operators)
que permet manipular, analitzar i aplicar més de 400 operadors a fitxers de dades de
prediccions climatiques.

En aquest cas CDO s’utilitza per computar la Multimodel Ensemble Mean. Per fer-ho
es realitzen 4 passos:

1. Seleccié temporal (T1): selecciona el mes i any dins el model agafant-ne un
subconjunt de mostres.

2. Normalitzacié del sistema de referéncia (T2): normalitza el sistema de refe-
rencia agafant-ne un de comu per a tots els models.

3. Computacié de la mitjana temporal (T3): realitza la mitjana temporal del
model a partir de la interpolacié bilineal ”.

4. Computacié de la mitjana del model (T4): aquesta etapa es realitza al Master
un cop s’han computat tots els passos anteriors; llavors, per cada un dels models
d’entrada en realitza I’ensemble mean o mitjana del model.

L’execucié d’aquesta aplicacié genera un graf com el que es mostra a la figura 4.3. L’e-
xecucio de la fase de seleccié temporal, normalitzacio del sistema de referéncia i computacié
de la mitjana temporal es realitzen al Grid, mentre que el procés final de la computacié
de la mitjana es realitza al Master, processant aixi tots els models de forma concurrent.

Aquesta aplicacié sera especialment adequada per experimentar amb ’extensié de ges-
ti6 de repliques, ja que els fitxers d’entrada sén especialment grans. Utilitza fitxers de

4 http://smart.embl-heidelberg.de

® http://www.ebi.ac.uk/uniparc

6 http://en.wikipedia.org/wiki/Ensemble_forecasting
" http://en.wikipedia.org/wiki/Bilinear_interpolation
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Figura 4.3: Graf de 'aplicacié JRAA4.

models de tipus netCDF (Network Common Data Form) ® d’1GB cada un. Per tant,
I’aplicacié s’utilitzara per realitzar les proves del sistema de gestié de repliques, on ob-
servarem com la nova versié6 de COMPSs redueix el volum de transferencies respecte a la
versio original agilitant-ne I’execucié.

4.2.3 SparseLU

SparseLU és una aplicaciéo que multiplica dues matrius mitjancant el metode de factorit-
zacié o descomposicié LU, que consisteix a factoritzar una matriu com el producte d’una

matriu triangular inferior i una superior °.

La matriu queda dividida en blocs de NxN sobre els quals es van aplicant 4 tipus d’ope-
racions que modifiquen cada un dels blocs: 1u0, fwd, bdiv i bmod. A la implementacid,
aquestes 4 operacions coincideixen amb les tasques que executaran els Workers.

for (int k = 0; k < NB; k++) {
0 (A k][k]);
for (int j = k+1; j < NB; j++) {
fwd(A[K][k], A[K][j]);

for (int i = k+1; 1 < NB; i++) {
bdiv(A[K] k], A[i][k]);
for (int j = k+1; j < NB; j++) {
} } } bmod(A[i][k], A[k][j], A[i][i]);

8 http://en.wikipedia.org/wiki/NetCDF
9 http://es.wikipedia.org/wiki/Factorizacion_LU
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La figura 4.4 mostra el graf de dependencies que genera el codi de I'aplicacio:

Figura 4.4: Graf de ’aplicacié SparseLU.

Tal com es pot veure, només una tasca del metode 1u0 pot ser executada a la vegada.
Les tasques bmod, fwd i bdiv de diverses iteracions poden solapar-se a mesura que les
dependencies se solucionen.

Aquesta aplicacié sera utilitzada per experimentar amb la millora implementada en
I’apartat de tolerancia a fallades, provocant diversos tipus de fallades amb 1’objectiu d’a-
nalitzar les reaccions del sistema i veient com varia el nombre final de tasques assignades
a cada Worker entre execucions.

4.3 Analisi del rendiment del planificador

4.3.1 Analisi del temps d’execucio

Com hem dit a I'apartat anterior, ’experiment que realitzarem determinara la millora de
rendiment del planificador de la nova versi6 de COMPSs respecte al de 'original.

Per fer-ho es planteja realitzar execucions de ’aplicacié HMMER, utilitzant 2048, 4096
i 8192 seqiiencies que permetran analitzar 1’evolucié dels dos runtimes treballant amb
diferents volums de tasques. Tindrem per a 2048 seqiiencies un total de 639 tasques ',
per a 4096 un total 1279 i per a 8192 un total de 2559. D’altra banda, anirem variant també
el nombre de Workers, cosa que permetra determinar, de forma grafica, 1’escalabilitat de

cada sistema.

A la segiient taula (Taula 4.2) podem veure comparat, els temps d’execucié de HMMER
aplicat a 4096 i 8192 seqiiencies i la millora aconseguida respecte al runtime original. Els
valors en verd representen els punts on s’ha obtingut millora respecte la versié original,
les files en vermell representen perdua de rendiment.

Hi ha alguns punts on la nova versi6 de COMPSs perd rendiment respecte a 1’original.
El nou planificador desenvolupat és, a fi de comptes, computacionalment més costds que
I’anterior, ja que cada vegada que aquest planifica sobre un recurs ha de realitzar més
etapes que a la versi6 original (si recordem, ha de calcular el temps de transferencia dels
fitxers per cada un del recursos disponibles i elaborar posteriorment el ranquing); per tant
aquest cost afegit comenca a ser justificable quan el temps perdut escollint el millor recurs,
beneficia pel fet de triar el millor disponible.

10 Cada tasca correspondra a cada node del graf creat per COMPSs a Dinici de Iexecucié.
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Ara bé, quan es disposa de pocs Workers sobre els que planificar, no hi ha massa on
triar i per tant no hi ha possibilitat de determinar quin és el recurs que minimitza el
temps de transferéncia, ja que, per exemple, només se’'n pot triar un. En aquests casos el
planificador original de COMPSs treu cert avantatge al nou.

D’altra banda, a mesura que augmenta el nombre de seqiiencies d’entrada augmenta
també el nombre de tasques i amb elles, el nombre de fitxers a transferir i la mida d’aquests.
Aixi que la mida del problema augmenta, el nou planificador treu més benefici de no haver
de moure, a l'inici de cada execucid, tot el conjunt de fitxers d’entrada al Grid i de moure
els fitxers intermitjos de forma més eficient que a la versié original.

4096 Seqiiencies | COMPSs | COMPSs v2.0 | Millora

10 Workers 1517.55 1481.44 2.38%
14 Workers 1395.19 1051.02 24.67%
18 Workers 1313.20 1021.93 22.18%
22 Workers 1250.30 1008.33 19.35%

8192 Seqiiencies | COMPSs | COMPSs v2.0 | Millora

6 Workers 5931.41 5891.61 0.67%
10 Workers 5105.58 2867.39 43.84%
14 Workers 5007.11 2255.92 54.94%
18 Workers 4843.51 2050.09 57.67%
22 Workers 4780.31 1844.27 61.42%

Taula 4.2: Comparativa de temps d’execucié de ’aplicaci6 HMMER.

A la segiient figura podem veure les grafiques on es mostra els temps d’execucié segons
el nombre de seqiiencies i Workers.
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Figura 4.5: Grafiques de temps d’execucié de 'aplicacié HMMER.

4.3.2 Analisi del balanceig de tasques

El segon experiment que realitzarem consisteix a analitzar com el nou planificador reparteix
el volum de tasques entre els recursos disponibles. Per fer-ho, s’ha partit de les dades
resultants de les execucions de ’apartat anterior.

La figura 4.7 mostra el comportament del sistema executant I’aplicaci6 HMMER amb
8192 seqiiencies d’entrada i 6, 10, 14 i 22 Workers.

Per interpretar els grafics s’utilitzara la llegenda que es mostra a continuacié:
bscgrid02
M bscgrid03
bscgrid04

bscgrid06
I tamariu

Figura 4.6: Llegenda dels grafics de balanceig de tasques.

Ay
10%

Figura 4.7: Grafics de balanceig de tasques en un HMMER. de 8192 seqiiéncies amb 6,
10, 14 i 22 Workers.
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La primera de les grafiques mostra que el repartiment de tasques és forca equitatiu, ja
que les maquines utilitzades, la bscgrid02, bscgrid03 i bscgrid04, sén d’iguals caracteristi-
ques i la velocitat de xarxa entre la maquina Master (bscgrid05) i cada una d’elles és igual
(91.2 Mbps).

La segona de les grafiques, en sentit horari, incorpora la maquina bscgrid06 al conjunt
de recursos, passant de tenir 6 Workers a 10. Com podem veure, en aquesta ocasié
s’assignen moltes més tasques a la nova maquina, que disposa de 4 CPUs i per tant és
capag d’absorbir una major quantitat de tasques; a més a més aquesta maquina disposa
d’una connexié amb el Master a una velocitat superior a la resta.

La tercera de les grafiques representa el cas que cal analitzar amb més detall. En
aquesta ocasio s’incorpora la maquina tamariu utilitzant-hi 4 de les 24 CPUs disponibles.
Aquesta maquina és molt semblant a bscgrid06, disposa de CPUs de rendiment similar i
d’una interconnexié de xarxa igual que la de bscgrid06, 547.2 Mbps. De totes maneres el
desequilibri que podem veure entre el % de tasques assignades a bscgrid06 i les de tamariu
és degut a la carrega habitual d’aquesta dltima.

La maquina bscgrid06 és una maquina exclusivament dedicada, per tant, en el moment
de 'execucié ningi més l'estava utilitzant. En canvi, tamariu és compartida per varis
usuaris de diferents departaments del BSC, per tant degut a la durada de les execucions,
va resultar impossible obtenir la maquina de forma exclusiva al llarg de les proves.

A la taula 4.3 podem veure algunes dades extretes de ’historic de ’execucid, concre-
tament es mostren els temps d’execucié de cada un dels metodes a cada un dels recursos
disponibles.

Recursos | CPUs | hmmpfam | mergeSameDB | mergeSameDB
bscgrid02 2 15.79 s 1.18 s 8.96 s
bscgrid03 2 20.08 s 1.01s 7.59 s
bscgrid04 2 21.05 s 1.04 s 9.91 s
bscgrid06 4 11.09 s 0.92 s 14.05 s
tamariu 4 1091 s 1.20 s 16.98 s

Taula 4.3: Temps d’execucié de cada tipus de tasca en un HMMER amb 14 Workers.

Com podem observar, tamariu triga més temps a completar els métodes mergeSameDB
i mergeSameDB que bscgrid06 al ser un recurs compartit. Al metode mergeSameDB perd
2.93 segons cada cop; per tant, com que la mesura del temps d’espera en cua es calcula a
partir del temps tipic d’execucié del metode en aquell recurs, el planificador assigna més
tasques a bscgrid06 per tal d’evitar que la cua de tamariu segueixi creixent.

A T'altima de les grafiques s’han incorporat 8 CPUs més a tamariu, cedint aixi un total
de 12 CPUs (sempre considerant que la maquina disposa de suficient memoria principal
per poder executar 12 Workers de forma simultanea sense haver de fer Swapping '!).
D’aquesta manera es converteix en la maquina capa¢ d’absorbir més tasques i, per tant,
sera la que tindra menys cua; per aixo el planificador hi assignara moltes més tasques que
en el cas anterior.

HRecorrer a lespai d’intercanvi del disc al no disposar de prou memoria principal per a poder allotjar
a tots els procesos del sistema.
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4.4 Analisi del sistema de gestié de repliques

Aquest experiment busca demostrar ’efectivitat del sistema de gestié de repliques compa-
rant el temps d’execucio final de I'aplicacié JRA4 entre la versi6 original de COMPSs i la
nova.

Per fer-ho es planteja un escenari de proves amb 12 Workers i utilitzant les maquines
bscgrid02, bscgrid03, bscgrid05 i bscgrid06 i 12 models d’entrada de 1GB cada un. D’a-
questa manera, com que els fitxes es trobaran inicialment al Master (bscgrid04), a I’hora
d’executar 'aplicacié els 12GB d’entrada hauran de ser transferits al Grid.

La versié original de COMPSs els transferira cada vegada al no disposar de cap me-
tode per representar l'existencia de repliques. En canvi, a la nova versié es transferiran
només una vegada ja que les localitzacions dels fitxers quedaran registrades al fitxer pro-
ject.xml. D’aquesta manera només caldra transferir-ne de nou en el cas que algun hagi
patit modificacions.

Per poder observar aquests resultats s’han realitzat dues execucions de I’aplicacié en
cada una de les versions de COMPSs. A la figura segiient podem veure’'n els resultats
observant que a COMPSs original les dues execucions amb 12 models triguen prop de
1150 segons, contra els 1133 i 39 segons de la nova versio.

Temps (5) COMPSs TemPs(s)  COMPSs v2.0
1400 1400
1200 1200
1000 1000

800 200

600 600

400 400

200 200

i} i] ===
Fur 1 Run 2 Run1 Fun 2

Figura 4.8: Comparativa de temps d’execucié entre versions de COMPSs.

Com es pot veure, aquest aplicacié te una carrega alta en transferéncia i baixa en
computacié. Per aquest motiu, minimitzar el temps de transferéncia li aporta beneficis.

A la taula 4.4 es desglossa el temps d’execucié d’un sol model, on podem veure el
temps invertit a cada tasca de ’aplicacié.

Les tres primeres files representen les tasques que s’executen al Grid, on s’observa que
el temps de computacié de 'aplicacié és baix. La quarta fila representa el temps invertit
en la transferencia de fitxers corresponent al 91.52% del temps total. La cinquena fila
representa el temps invertit pel runtime en la gestié de 'execucié.

Per altra banda, recordem que l'extensié havia de permetre detectar també si entre
execucions hi havia hagut algun canvi en el conjunt de fitxers d’entrada. Per tal de
verificar-ne el bon funcionament s’ha modificat un d’aquests fitxers i s’ha tornat a executar
I’aplicacié per comprovar que efectivament el fitxer modificat era transferit de nou.
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Tasca | Temps mig | % del total
T1 2.8 s 2.37 %
T2 0.86 s 0.73 %
T3 0.77 s 0.65 %
Trf 108 s 91.52 %

Runtime 5.57 s 4.72 %

Total 118 s 100 %

Taula 4.4: Temps mig d’execucié inicial per un sol model.

A la segiient figura podem observar-ne el funcionament: s’aprecia la transferéncia a la
primera execucio trigant un total de 125 segons, mentre que a la segona ja no hi ha cap
transferencia perque tots els fitxers han estat actualitzats. En aquest cas 'execucié triga

només 39 segons.
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Figura 4.9: Exemple amb actualitzacié dels models entre execucions.

4.5 Analisi de la tolerancia a fallades

El tercer experiment que realitzarem consisteix a analitzar com el planificador és capag de
variar l'assignacié de tasques segons el percentatge de fiabilitat dels recursos. Per fer-ho
s’executara ’aplicacié sparseLU amb 10 Workers i un total de 20 blocs de 4x4 valors que
formen una matriu quadrada de 320x320 valors.

4.5.1 Analisi sense limit de reintents

Per apreciar el funcionament del sistema, s’executara I'aplicacié amb tots els Workers amb
valors de fiabilitat maxima; després s’anira reduint la fiabilitat de la maquina bscgrid06
fins al 70%. Aquesta reduccié es fard en aquesta maquina pel fet de ser la més potent i la
que en perdre confianca perdra també més pes en I'execucié cedint part de les tasques a

nodes amb menys potencia.
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A la segiient taula podem veure els resultats d’aquest experiment:

Fiabilitat 100% | 90% 80% 75% 70%
bscgrid02 14% 13% 54% 5% 30%
bscgrid03 12% 10% 5% 32% 51%
bscgrid04 ™% 19% 3% 44% 19%
bscgrid06 67% | 58% | 38% | 20% 0%
Tasques Ok 890 791 692 643 594
Fallades 0 99 198 247 296
Temps exec. | 1011 s | 1094 s | 1512 s | 1592 s | 1610 s

Taula 4.5: Assignaci6 de tasques segons el % de fiabilitat de la maquina bscgrid06.

Com podem veure, a mesura que el nombre de fallades augmenta, la fiabilitat de la
maquina bscgrid06 va disminuint i, per tant, el planificador li assigna a la segiient execucid
un nombre menor de tasques, descartant-la per complet per sota del 70% de fiabilitat.

Cal recalcar que en aquesta prova la limitacié en el nombre de reintents ha estat
desactivada per poder detectar el percentatge d’error al qual el recurs era descartat pel
planificador de forma natural. Tal i com es veu a la taula 4.5 el planificador ha permes a
bscgrid06 un error maxim del 30%.

Per altra banda, el repartiment de tasques entre les maquines bscgrid02, 03 i 04 no ha
estat gaire equitatiu, bo i ser maquines de caracteristiques similars. Aixo és a causa que
els temps d’execucié de les tasques d’aquesta aplicacié sén molt baixos, entre 0.01s i 0.9s.

La mida dels fitxers és també reduida, al tractar-se de blocs de només 16 valors. Per
aquest motiu el temps de transferéncia és gairebé negligible, ja que la diferéncia en la
velocitat de xarxa entre els recursos és practicament irrellevant. Per aixo, el fet d’haver-hi
una lleugera variacié en els temps d’execucié dels metodes ha fet variar també de forma
considerable el repartiment de tasques.

4.5.2 Analisi amb limit de reintents

El segon experiment d’aquest apartat consisteix a comprovar el sistema de limitacié de
nombre maxim de reintents. Per fer-ho s’ha substituit la maquina bscgrid06 per una
ficticia (bscgrid07) amb l'objectiu d’aconseguir un domini que no retornés mai cap resposta.
D’aquesta manera es volia simular la fallada de la maquina al llarg de tota l’execucio,
tal i com podria succeir en el cas que, per exemple, una de les maquines quedés sense
connectivitat de forma temporal.

Per fer-ho, s’ha establert el limit a 3 reintents, aixi quan el runtime detecti que s’ha
assolit el nombre maxim, descartara el recurs de ’execucio.

Com veiem a la taula 4.6, el nombre de feines enviades a la maquina ficticia és de
21, aix0 és perque el Job Manager les ha enviat a executar abans de poder rebre les
3 notificacions d’error. De totes maneres, un cop rebudes s’elimina el recurs del Task
Scheduler aconseguint que no s’hi planifiquin més tasques, bo i tenir-ne 21 previament
planificades i que caldra replanificar.

Com veiem, tant el nombre de tasques que han acabat correctament com la seva
disponibilitat son zero, per tant, s’ha hagut de replanificar a altres recursos les 21 que
s’hi han enviat inicialment.



4.6. ANALISI DEL CONSUM DE RECURSOS 73

Recursos T.enviades | T.Ok | Replanificades | Disponibilitat
bscgrid02 183 183 0 100%
bscgrid03 442 442 0 100%
bscgrid04 265 265 0 100%
bscgrid07 (Inactiva) 21 0 21 0%

Taula 4.6: Eliminacié de bscgrid07 en excedir el nombre maxim d’errors permesos.

4.6 Analisi del consum de recursos

En aquest ultim apartat comprovarem quin ha estat I'impacte de les extensions realitzades,
quant a recursos consumits del Master. Per fer-ho ens centrarem principalment en 2
aspectes, el consum de CPU i el de memoria al llarg de I'execucié.

L’experiment constara a executar ’aplicaci6 HMMER amb 10 Workers aplicada a
8192 seqiiencies, tant al runtime original com al nou. El primer aspecte a analitzar sera
el consum de la CPU.

La figura 4.10 mostra 'execucié per les dues versions de runtime. FEl grafic de dalt
correspon al percentatge utilitzat per la versié original, el de sota correspon al de la nova
versié.

L’ocupacié de memoria, en canvi, és un punt complicat d’avaluar. Existeixen dos
problemes principals que en dificulten I'avaluacié: ProActive i ’alliberament d’espai al
heap.

Com s’explica a la seccié 2.4.1, per poder enviar una estructura de dades entre dos
components, ProActive necessita fer una copia de I’'objecte de manera que com més comuni-
cacions es generin entre components, més espai de memoria utilitzara. A Java I'encarregat
d’alliberar dades del heap és el Garbage Collector. Per poder netejar totes les estructures
que ha hagut de copiar ProActive en la comunicacié dels components, cal esperar la seva
actuacié periodica.

Com es pot veure, tant el consum de CPU com el de memoria és menor a la nova
versio. Al runtime original el consum de CPU es troba sobre un 20% al llarg de execucié
generant pics de demanda d’un 43% i donant un consum mig del 24% '2; en canvi, a la
nova versio el consum de CPU oscilla entre el 10% i el 39% donant un consum mig de
'11% que suposa un 54% menys.

En quant al consum de memoria (figura 4.11), la versié original consumeix entre 80
i 288MB donant un consum mig de 184MB, mentre que trobem el de la nova entre 63 i
218MB, generant un consum mig de 140.5MB que suposa un 24% menys.

Analitzant la desviacié dels valors extrems respecte la mitjana de cada parametre me-
surat, s’observa que el consum de CPU del runtime original pateix una desviacié respecte
la mitjana d’un 19% contra un 28% del nou, com es pot veure al grafic el consum de CPU
del runtime original és més constant donant un valor de mitjana superior.

Respecte al consum de memoria, el runtime original presenta una desviacié de 104MB
contra 77.5MB del nou, és a dir, el nou runtime a més de consumir menys memoria manté
el consum més constant al llarg de ’execucié.

12 Indicat a la figura 4.11 i 4.10 per la linia de color vermell.
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Capitol 5

Conclusions del projecte

5.1 Conclusions

L’objectiu d’aquest projecte era desenvolupar un conjunt d’extensions per COMPS Su-
perscalar amb 1’objectiu de millorar-ne la planificacié de recursos, habilitar un sistema de
gestid i localitzacié de repliques i millorar la gestié de fallades. Es pot afirmar que s’ha
assolit la meta definida inicialment, ja que tot el conjunt d’extensions proposades milloren
el rendiment global del sistema convertint COMPSs en un entorn encara més robust i
potent.

Tal i com mostra el capitol anterior, els resultats obtinguts sén forga positius. El
disseny del nou planificador ha aportat a COMPSs la capacitat de tenir més feedback del
Grid, capacitant-lo per decidir a partir de més parametres que el planificador original,
aconseguint aixi decisions més precises.

Per altra banda, s’ha demostrat també I’efectivitat del sistema de gestié de repliques,
que ha aportat a COMPSs la possibilitat de representar copies dels fitxers d’entrada que
es troben als nodes del Grid. D’aquesta manera s’evita haver de transferir cada vegada
aquests fitxers, movent-los només en cas d’haver patit modificacions. D’aquesta manera,
com més gran és la mida dels fitxers d’entrada, més beneficis aporta aquesta extensié.

A Dapartat de gestié de fallades s’ha mostrat com el sistema és capag de variar de
forma satisfactoria 1’assignacié de tasques segons el % de fiabilitat dels recursos retirant
de I'execucid, si cal, els recursos que superin el nombre maxim de fallades permes.

D’altra banda, I'altim aspecte a destacar és la reduccié del consum de recursos. Com
s’ha vist, tant el consum de CPU com el de memoria és menor en la nova versié. Aquesta,
bo i implementar noves funcionalitats, consumeix entre un 21% i 24% menys de memoria
gracies al conjunt d’optimitzacions realitzades, que han permes reduir substancialment el
nombre de transferencies entre components.

Finalment, deixant de banda els aspectes més practics, és important ressaltar el ca-
racter heterogeni del projecte, abordant diverses arees de l’enginyeria, des de metodes
d’obtencié d’informacio, gestié d’historics, analisi de rendiment, aplicant també conceptes
de diversos camps com sistemes operatius, enginyeria del software o la programacié en
diversos llenguatges. Tot plegat fa que el desenvolupament d’aquest projecte hagi resultat
molt enriquidor.

77



78 CAPITOL 5. CONCLUSIONS DEL PROJECTE

5.2 Treball futur

El prototip desenvolupat demostra que les millores plantejades inicialment funcionen i
efectivament milloren el rendiment global de la versié original de COMPSs. De totes
maneres, tot i haver superat els objectius, el prototip no és més que una versié preliminar,
quedant encara forga cami per explorar.

Aquestes sén algunes de les linies d’evolucié proposades per poder continuar el desen-
volupament d’aquesta nova versio:

Tal i com s’ha mencionat a la seccié 2.5, el runtime de COMPSs es troba implementat
sobre ProActive que, recordem, déna la possibilitat de distribuir els components a través
de diversos recursos per poder repartir la carrega de treball dels components.

Recordem també que la transferencia de fitxers es realitza través de JavaGAT, que es
val d'un adaptador per transferir-los a través de SSH. Si hi ha moltes transferencies, la
carrega del File Transfer Manager pot arribar a ser alta, podent saturar la maquina on es
troba el runtime, en cas de no trobar-se distribuit.

De totes maneres, la realitat és més aviat una altra. Poques vegades s’arriba a aquest
punt. Analitzant ProActive s’observa que consumeix una gran quantitat de recursos en
haver de copiar a memoria els objectes que transfereix entre els components, tal i com es
veu a 1"iltim apartat de Tests, experiments i resultats. Per aquest motiu caldria treballar
per desenvolupar un runtime que no utilitzés cap middleware de componentitzacié man-
tenint cada component diferenciat i fent que cada un s’executés en un thread independent
sobre una maquina amb 5 o 6 nuclis per poder tenir-ne almenys un per component.

Un altre pas a seguir seria prescindir de 'extensié de mesura i actualitzacié de la
velocitat de xarxa passant a utilitzar algun tipus de Grid Information Service com Gan-
glia i provar d’obtenir dades d’estat i velocitat de la xarxa a través d’ell, verificant-ne
posteriorment el resultat.

Per seguir afinant el model, caldria provar-lo també en un entorn més gran com per
exemple un supercomputador; aixi es podria observar l’escalabilitat del sistema en un
entorn més real.

A nivell d’optimitzacions, recordem que cada vegada que es planifica una tasca, abans
d’aplicar al conjunt de recursos la funcié d’avaluacié es fa una preseleccié dels recursos
que compleixen les caracteristiques per poder executar aquella aplicacié. L’avaluacié d’a-
questes caracteristiques es fa comparant la descripcié de cada recurs, especificada al fitxer
resources.xml, amb les restriccions programades per 'usuari a la interficie de definicié dels
metodes de 'aplicacié que s’executaran al Grid. Actualment aixo es fa comparant aquestes
restriccions contra ’arbre XML de definicié de cada recurs carregat en memoria en iniciar
el runtime.

Aquestes comparacions es fan utilitzant Xalan i el llenguatge XPath consumint bas-
tants recursos. La manera d’evitar-ho podria ser carregant, a ’inici, totes les dades propor-
cionades pels fitxers XML en una estructura de dades de més rapid accés per tal d’agilitar
la planificacié de tasques.

Com es veu, queda encara treball per fer, pero en aquest cas no era abarcable dins el
marc del projecte. De totes maneres, els resultats obtinguts sén més que satisfactoris i
superan tots els objectius inicialment plantejats.
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5.3 Analisi final de la planificacié

Al llarg de la realitzacié del projecte han anat sorgint tot un seguit d’inconvenients que
han fet variar-ne la planificacié inicial presentada en 'apartat 1.4.

L’apartat de familiaritzacié es va planificar per poder ser desenvolupat en 100 hores,
encara que només en van caldre 76. Aixo és perque 'apartat de comprensié inicial es veié
retallat en 4 dies per poder passar a treballar com més aviat millor en "apartat de gestié
de reépliques. Aquesta millora havia de servir també com a aportacié al projecte europeu
IS-ENES ! en el qual el BSC participa. Gracies a aixd es va poder avancar la planificaci6
del projecte 6 dies més.

El procés d’implementacio va ser elaborat dins els marges previstos. En un principi es
planificaren els temps de forma que no n’hagués de faltar. De totes maneres, en I'inica part
on es van trobar més problemes va ser en la gestié de I’historic. Es va haver de perdre més
temps del planificat fent proves per poder assegurar que els valors que s’hi guardaven eren
els correctes i necessaris per poder obtenir el millor rendiment del planificador. D’altra
banda i per aquest mateix motiu, es van aplicar més esforgos dels previstos per poder
implementar de la forma més acurada possible la mesura dels temps d’execucio i d’espera
en cua.

L’apartat optimitzacions va prendre finalment 8 dies quan s’havia planificat per durar-
ne 12. Aix0 és perque es va voler realitzar ’avaluacié de rendiment com més aviat possible
per saber com de lluny o a prop s’estava de la versié original de COMPSs. Per ordre
de prioritats es va decidir comprovar abans d’iniciar un procés d’optimitzacié que de ben
segur s’hagués pogut allargar molt.

A més, durant els tests d’avaluacié de rendiment es detectaren també alguns problemes
d’estabilitat que van haver de ser resolts consumint 2 dies més dels inicialment previstos.
De totes maneres, aquesta dilatacié temporal va poder ser mitigada sense problemes en
I’apartat de redaccié de la memoria, on inicialment es van preveure alguns dies més dels
necessaris, que han permes concloure el projecte en menys temps de I’esperat.

A la taula 5.1 es mostra la variacié d’hores finals, ressaltant en vermell aquelles etapes
en que s’ha trigat més temps del planificat i en verd aquelles que s’han pogut completar
en menys.

! https://is.enes.org
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Etapa Planificacié inicial | Planificacié real
Familiaritzacié 100 76
Definicié del projecte 12 12
Analisi i documentacié inicial 32 24
Comprensié de COMPSs 56 40
Implementacié 432 444
Gestié de repliques 56 52

Disseny del planficadlor

Tolerancia a fallades 52
Calcul de velocitat de xarxa 60

Test planificador 68
Optimitzacions 40 32
Avaluacié 120 100
Correcions finals 24 32
Memoria 244 200
Total 960 890

Taula 5.1: Hores finals dedicades a cada una de les etapes del projecte.
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Tal i com s’ha mencionat en 'apartat 3.7, Gestiéo de recursos, es mostren aqui al-
guns exemples reals dels fitxers de configuracié: project.xml, resources.xml i histori-
cal.xml.

El segiient exemple mostra el fitxer project.xml, on es pot apreciar la definicié dels
Workers de P’aplicacid, datanodes, el maxim de reintents permesos en cas de fallada i el
conjunt de localitzacié de repliques dels fitxers.

<?7xml version="1.0" encoding="UTF-8"7>

<Project>
<Worker Name="bscgrid02.bsc.es">
<InstallDir>/home/username/IT_worker/</InstallDir>
<WorkingDir>/home/username/IT_worker/files/</WorkingDir>
<User>username</User>
</Worker>

<Worker Name="bscgrid03.bsc.es">
<InstallDir>/home/username/IT_worker/</InstallDir>
<WorkingDir>/home/username/IT_worker/files/</WorkingDir>
<User>username</User>

</Worker>

<DataNode Name="bscgrid04.bsc.es">
<User>username</User>
</DataNode>

<MaxRetries>2</MaxRetries>

<Locations>

<File LastModDate="1292140891000" Name="dbFO0">
<Path>file://bscgrid05.bsc.es/home/username/appfiles/</Path>
<Path>file://bscgrid02.bsc.es/home/username/IT_worker/files/</Path>
<Path>file://bscgrid03.bsc.es/home/username/IT_worker/files/</Path>

</File>

<File LastModDate="1292140891000" Name="dbF1">
<Path>file://bscgrid05.bsc.es/home/username/appfiles/</Path>
<Path>file://bscgrid02.bsc.es/home/username/IT_worker/files/</Path>
<Path>file://bscgrid03.bsc.es/home/username/IT_worker/files/</Path>

</File>

<File LastModDate="1292140891000" Name="dbF10">
<Path>file://bscgrid05.bsc.es/home/username/appfiles/</Path>
<Path>file://bscgrid03.bsc.es/home/username/IT_worker/files/</Path>
<Path>file://bscgrid02.bsc.es/home/username/IT_worker/files/</Path>

</File>

</Locations>
</Project>
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El segiient exemple mostra el fitxer resources.xml, on es pot observar la definicié de
recursos seguint 'estandard d’OGSA anomenat Grid Information and Data Modelling.

<?xml version="1.0" encoding="UTF-8"7>

<Resourcelist>
<Resource Name="bscgrid02.bsc.es">
<Capabilities>
<Host>
<TaskCount>0</TaskCount>
<Queue>short</Queue>
<Queue/>
</Host>
<Processor>
<Architecture>Intel</Architecture>
<Speed>3.6</Speed>
<CPUCount>2</CPUCount>
</Processor>
<0S>
<0SType>Linux</0SType>
<MaxProcessesPerUser>32</MaxProcessesPerUser>
</0S>
<StorageElement>
<Size>60</Size>
</StorageElement>
<Memory>
<PhysicalSize>0.5</PhysicalSize>
<VirtualSize>8</VirtualSize>
</Memory>
<ApplicationSoftware>
<Software>Xerces</Software>
<Software>Xalan</Software>
</ApplicationSoftware>
<Service/>
<vo/>
<Cluster/>
<FileSystem/>
<NetworkAdaptor>
<NetworkSpeed>91.2</NetworkSpeed>
</NetworkAdaptor>
<JobPolicy/>
<AccessControlPolicy/>
</Capabilities>
<Requirements/>
</Resource>

</ResourcelList>
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Fl segiient exemple mostra el

fitxer historical.xml, on es poden apreciar les dades de

fiabilitat dels recursos, temps mig d’execucié de cada tipus de tasca i recurs, i la matriu

de velocitat de xarxa.

<?xml version="1.0" encoding="UTF-8"7>

<RunStatistics>
<Availability>

<Worker Name="bscgrid03.bsc.es">1.0</Worker>
<Worker Name="bscgrid02.bsc.es">1.0</Worker>

</Availability>

<MeanExecTime>
<TaskType Id="2">

<Worker Name="bscgrid03
<Worker Name="bscgrid02

</TaskType>
<TaskType Id="1">

<Worker Name="bscgrid03
<Worker Name="bscgrid02

</TaskType>
<TaskType Id="0">

<Worker Name="bscgrid03
<Worker Name="bscgrid02

</TaskType>
</MeanExecTime>

<NetSpeed>
<Link Src="bscgrid03.bsc.
<Speed Dst="bscgrid02.
<Speed Dst="bscgrid05.
<Speed Dst="bscgrid03.
</Link>
<Link Src="bscgrid05.bsc.
<Speed Dst="bscgrid02.
<Speed Dst="bscgrid05.
<Speed Dst="bscgrid03.
</Link>
<Link Src="bscgrid02.bsc.
<Speed Dst="bscgrid02.
<Speed Dst="bscgrid05.
<Speed Dst="bscgrid03.
</Link>
</NetSpeed>
</RunStatistics>

es">8.587157</Worker>
es">6.7536664</Worker>

.bsc.
.bsc.

.bsc.
.bsc.

es">0.9715135</Worker>
es">1.2075663</Worker>

es">19.917158</Worker>
es">20.031963</Worker>

.bsc.
.bsc.

es">
bsc.es">82.550415</Speed>
bsc.es">73.84643</Speed>
bsc.es">181.67133</Speed>

es">
bsc.es">91.2</Speed>
bsc.es">547.2</Speed>
bsc.es">91.2</Speed>

es">

bsc.es">91.2</Speed>
bsc.es">73.417908</Speed>
bsc.es">63.571274</Speed>
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Glossari

API Application Program Interface o interficie de programacié d’aplicacions.

Datacenter Es denomina Datacenter o centre de processament de dades a aquella ubica-
ci6 on es concentren tots els recursos necessaris per al processament de la informacié
d’una organitzacié determinada.

FIFO Es 'acronim en angles de First In, First Out (primer en entrar, primer en sortir).
Es un meétode utilitzat en estructures de dades i teoria de cues. Guarda analogia
amb les persones que esperen en una cua i que son ateses en l'ordre en que han
arribat, és a dir, la primera persona que hi entra és la primera que en surt.

Firewall Un firewall o tallafocs és la part de la xarxa dissenyada per bloquejar ’accés no
autoritzat permetent al mateix temps les comunicacions autoritzades.

Grid Sistema que coordina recursos que no estan subjectes a un control centralitzat,
utilitzant protocols estandards, oberts, de proposit general i interficies per donar
unes qualitats de serveis no trivials [2].

Runtime Es tracta habitualment de software dissenyat per donar suport i ajudar a com-
putadors en l'execucié d’aplicacions. Es el cas, per exemple, d’aplicacions paralleles.

Stream Fa referéncia a un flux continu de dades (sense interrupcio).

TCP/IP El model TCP/IP descriu un conjunt de guies de disseny i implementacions de
protocols de xarxa especifics que permeten a un computador comunicar-se en una
xarxa. TCP/IP proveeix de connectivitat extrem a extrem especificant com les dades
han de ser formatejades, direccionades, transferides i rebudes per part de I'origen i
el destinatari.

Thread Fil d’execucié d’una aplicacié. La unitat més petita que pot ser planificada pel
sistema operatiu.

URI Uniform Resource Identifier és una cadena curta de caracters que identifica inequi-
vocament un recurs (servei, pagina, document, adreca de correu electronic, etc...)
Normalment accessible a través de la xarxa o sistema.

VPN Una xarxa privada virtual o VPN (en anglés Virtual Private Network), és una

tecnologia de xarxa que permet estendre una xarxa local sobre una xarxa ptublica no
controlada, com per exemple Internet.
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Bellaterra, ........ de .ooeeiiiiiiiie, de 2010



Resums

Catala:

COMPS és un entorn de programacié parallela desenvolupat per BSC-CNS. Aquest pro-
jecte busca estendre aquest entorn per tal de dotar-lo de funcionalitats inicialment no
suportades. Aquest conjunt d’extensions radiquen principalment en la implementacié de
mecanismes que permetin incrementar la flexibilitat, robustesa i polivalencia del sistema.

Castellano:

COMPSs es un entorno de programacion paralela desarrollado por BSC-CNS. Este proyec-
to busca extender el entorno para dotarlo de funcionalidades inicialmente no soportadas.
Este conjunto de extensiones radican principalmente en la implementacion de mecanismos
que permitan incrementar la flexibilidad, robustez y polivalencia del sistema.

English:

COMPSs is a parallel programming environment developed by BSC-CNS. The project aim
is extend this environment giving it some features that were not initially supported. This
set of extensions lies mainly in the implementation of mechanisms that allow to increase
the flexibility, robustness and system versatility.
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