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Capitulo 1

Introduccion

Las aplicaciones bioinformaticas de busqueda de homologia entre secuencias estan
relacionadas con el estudio de los seres vivos. Todo organismo vivo contiene un codigo genético
formado por largas secuencias de caracteres de ADN. Una de las tareas mas importantes de las
aplicaciones de alincamiento de secuencias es estudiar la homologia de estas secuencias, que se
refiere a la situacion en la que las secuencias (tanto de ADN como de proteinas) son similares entre
si debido a que presentan un mismo origen evolutivo.

Para encontrar las similitudes de una secuencia hay que compararla con una base de datos de
secuencias conocidas llamadas bancos de secuencias. Estos bancos son actualizados cada pocas
semanas y una de las principales problemadticas que presentan es su importante crecimiento durante
las ultimas décadas (figura 1.1), trayendo consigo la necesidad de disponer de sistemas
computacionales que logren procesar este gran volumen de datos y generar resultados de la forma
mas rapida posible.

Growth of GenBank
(1982 - 2008)
100 100

90 -

80 -

70 -

60 -

40 -

Sequences (millions)

30

Base Pairs of DNA (billions)

20
s Base Pairs

—e—Sequences
10 A

1982 1986 1990 1994 1998 2002 2006

Fig. 1.1: Crecimiento de los datos del banco GenBank

BLAST (Basic Local Alignment Search Tool) es un conjunto de aplicaciones informadticos de
alineamiento y homologia de secuencias, ya sea de ADN o de proteinas. Solo la version web de
BLAST tiene mas de 100.000 consultas sobre ADN cada dia. El programa es capaz de comparar



una secuencia problema (también denominada query) contra una gran cantidad de secuencias que se
encuentren en una base de datos. El programa encuentra las secuencias de la base de datos que
tienen mayor parecido a la secuencia problema. Uno de los problemas que presenta el uso de este
tipo de aplicaciones es la gran cantidad recursos computacionales que consumen (volumen de datos
a procesar, volumen de datos a leer de disco, etc.) que provoca que el tiempo de respuesta de estas
aplicaciones sea muy grande.

Para hacer frente a esta gran cantidad de computo, estas aplicaciones hacen uso de sistemas de
computo paralelo como los procesadores multi-core, que combinan dos o mas nucleos, y que
gracias a ellos se pueden ejecutar estas aplicaciones en multiples hilos de ejecucion independientes,
de forma que es posible la concurrencia. Es decir, se pueden ejecutar al mismo tiempo en paralelo.

Pero ademas, hay que estudiar la posibilidad de usar tecnologias como CUDA. Se trata de una
plataforma software que intenta explotar las ventajas de las GPUs de proposito general utilizando el

paralelismo que ofrecen sus multiples nucleos, que permiten el lanzamiento de un altisimo niimero
de hilos simultaneos.

1.1 Objetivos del proyecto

Los objetivos de este proyecto son:

* Analizar el algoritmo de una aplicacion BLAST existente: blastp, version BLAST para
proteinas.

* Analizar el comportamiento del programa segin los parametros de entrada usados.

* Detectar las partes del coédigo que consumen mas tiempo de ejecucion, tanto en su version
para un procesador como en la version multi-core.

* Identificar los problemas de rendimiento en las partes del cddigo que consumen mas tiempo
de ejecucion.

* Estudiar los problemas de rendimiento encontrados y optimizarlos, tanto en la version para
un procesador como en la version multi-core.

* Encontrar lineas futuras de investigacion para aportar mas conocimiento al andlisis de
rendimiento o bien para la optimizacion de la aplicacion.

1.2 Planificacion temporal del trabajo

A continuacion se muestran tanto la planificacion temporal inicial como la final de este
proyecto.

La planificacion del proyecto inicial del proyecto presentaba 5 fases que se mencionan a
continuacion:



Conocimientos previos: adquisicién de conocimientos bioldgicos necesarios para la correcta
realizacion del proyecto.

Andlisis del rendimiento: estudio del rendimiento de Blastp (tiempo, ciclos,
instrucciones, ...) y andlisis del efecto de los parametros de entrada en dicho rendimiento.

Optimizacion para version multi-core: disefio e implementacion de las optimizaciones
estudiadas para el uso de procesadores multi-core. Ademas, andlisis del rendimiento de la
optimizaciones.

Implementaciéon many-core (CUDA): estudio del modelo y arquitectura CUDA. Disefio ¢

implementacion del codigo para el uso con CUDA. Analisis del nuevo rendimiento.

* Documentacion: realizacién de informe previo y de una memoria final de proyecto.

A continuacion, se muestra un diagrama de Gantt de la planificacion temporal inicial que se
estableci6 para el proyecto:
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Documentacion
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Memoria del proyecto

120d
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Fig. 1.2: Daigrama de Gantt de la planificacion temporal inicial

Ademas de un anélisis de rendimiento y de la implementacion de optimizaciones en un sistema
multi-core, la planificacion inicial también presentaba la implementacion y el analisis de la
aplicacion usando una arquitectura CUDA. A causa del tiempo dedicado de mas a la complejidad
del andlisis y a la optimizacion de blastp, se ha tenido que suprimir esta fase quedando la
planificacion de la siguiente manera:

Conocimientos previos: adquisiciéon de conocimientos bioldgicos necesarios para la correcta
realizacion del proyecto.

Analisis del rendimiento: estudio del rendimiento de Blastp (tiempos de respuesta, nimero
de ciclos, numero de instrucciones, fallos de caché,...) y andlisis del efecto de los parametros
de entrada en dicho rendimiento.



* Optimizacidén para un solo procesador: disefio e implementacion de las optimizaciones
estudiadas para el uso de sistemas con un solo procesador. Ademas, realizacion de un
analisis del rendimiento de dichas optimizaciones.

* Optimizacidén para version multi-core: disefio e implementacion de las optimizaciones
estudiadas para el uso de procesadores multi-core. También realizacion de un analisis del
rendimiento de dichas optimizaciones.

* Documentacion: realizacién de informe previo y de una memoria final de proyecto.

A continuacion, se muestra un diagrama de Gantt de la planificacion temporal final para el

proyecto:

Nom

Feina

2011, H1

|nuv 2010 ‘ des 2010 gen 2011 feb 2011 mar 2011 abr 2011 mai 2011 jun 2011
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35d

Conocimientos bioldgicos del proyecto
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Fig. 1.3: Daigrama de Gantt de la planificacion temporal final

1.3 Organizacion de la presente memoria

El siguiente esquema muestra la estructura del presente documento, dividiéndose en los

siguientes capitulos:

» Capitulo 2. Conceptos previos: introduccion a conceptos necesarios para la realizacion del

proyecto. Se centra tanto en la descripcion de conceptos previos de la biologia (proteinas,
aminoacidos,...) como en el funcionamiento del conjunto de aplicaciones BLAST.

* Capitulo 3. Andlisis de rendimiento: analisis de rendimiento de la aplicacion blastp. Para
encontrar las causas de un rendimiento bajo en una aplicacion es necesario estudiar y
entender como se estructura y como funciona.
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» Capitulo 4. Optimizaciones: incluye las distintas optimizaciones que han sido estudiadas e
implementadas y sus resultados obtenidos. Estas optimizaciones se pueden clasificar en dos
tipos: para sistemas con un unico procesador y para sistemas multi-core.

» Capitulo 5. Conclusiones y lineas futuras: incluye las conclusiones y las lineas futuras de
investigacion, donde se nombran algunas otras propuestas de optimizacion.

» Capitulo 6. Bibliografia: enumera la bibliografia usada para llevar a cabo el proyecto.
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Capitulo 2

Conceptos previos

El objetivo de este capitulo es introducir los conceptos previos necesarios para la realizacion
y comprension del proyecto. Se centra tanto en la descripcion del marco tedrico, de conceptos
previos de la biologia (proteinas, aminodcidos,...) como en el funcionamiento del conjunto de
aplicaciones BLAST. También se describen las diferentes herramientas usadas en la busqueda de
homologia de secuencias, centrdndonos en Blastp, caso de estudio en este proyecto.

2.1 Marco Teodrico

Se describen el procesador clasico y conceptos asociados, para explicar posteriormente los
procesadores multi-core y multi-thread, asi como los problemas para conseguir alto rendimiento en
estos sistemas.

2.1.1 Procesador clasico

El proceso de ejecucion de una instruccion se puede dividir en cinco etapas:

Busqueda de la instruccion (fetch)
Decodificacion de la instruccion (decode)
Ejecucion de la instruccion (execute)
Acceso a memoria (memory)

Escritura del resultado (writeback)

Nk v

En la siguiente imagen (figura 2.1) se muestra la ejecucion secuencial de dos instrucciones en un
procesador clasico. Se puede apreciar que hasta que la primera instruccion no finaliza, no se puede
comenzar la busqueda de la segunda instruccion.

IF [ ID MEM | WB
l’f IF 1D EX| MEM | WB

IF|ID|EX|MEM | WB

Fig. 2.1: Ejemplo ejecucion en un procesador clasico

De este modo, el tiempo de ejecucion de un programa se puede expresar con la siguiente ecuacion:
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donde :

* N =numero de instrucciones de un programa.
e CPI = numero medio de ciclos por instruccion.

T=N-CPI-t

* t=tiempo de un ciclo de instruccion.

Para reducir el tiempo de ejecucion en esta ecuacion independientemente del nivel de integracion,
existen dos alternativas: reducir el nimero de instrucciones y/o reducir el CPI. Existen dos tipos de
filosofias en las arquitecturas de procesadores que atacan este problema:

* RISC (Computadoras con un conjunto de instrucciones reducido): Implementacion H/W
mas simple, por tanto mas rdpida y eficiente. Se basa en disponer de un repertorio de
instrucciones reducido, permitiendo su implementacion por hardware. Los programas
tendran un numero elevado de instrucciones pero practicamente la totalidad de ellas se
ejecutaran en un ciclo de reloj.

* CISC (Computadoras con un conjunto de instrucciones complejo): Implementacion H/W
mas compleja y por tanto mas lenta e ineficiente. Se basa en disponer de un repertorio de
instrucciones amplio y complejo. El nimero de instrucciones de un programa es menor que
en el RISC, pero el CPI suele ser mayor.

2.1.2 Procesamiento Segmentado (pipelined)

En el procesamiento segmentado se adopta una nueva estrategia con el objetivo de disminuir
el tiempo medio de ejecucion por instruccion de una aplicacion. Se divide internamente el

computador en segmentos individuales, cada uno especializado en una de las etapas.

A diferencia del procesador clasico donde todas las etapas tenian que completarse antes de buscar la
instruccion siguiente, ahora la existencia de segmentos especializados permite el solapamiento en la
ejecucion de las instrucciones. Asi, un segmento puede empezar a trabajar con una nueva
instruccion sin la necesidad de que la instruccion anterior haya finalizado todas las etapas.

El resultado es un aumento del nimero de instrucciones ejecutadas por ciclo. Como muestra la
figura 2.2, con la ejecucion segmentada de instrucciones, se puede llegar a ejecutar una instruccion

por ciclo.
IF D EX |MEM
l;‘ IF 1D EX WB
o IF 1D MEM| WB
IF EX |[MEM| WB
ID EX [MEM| WB

Fig. 2.2: Ejemplo ejecucion en procesador pipelined




2.1.3 Procesador superescalar

Un procesador superescalar es capaz de ejecutar mas de una instruccidon en cada etapa del
pipeline del procesador. El nimero méaximo de instrucciones en cada etapa depende del nimero y
del tipo de las unidades funcionales de que disponga el procesador.

Sin embargo, un procesador superescalar s6lo es capaz de ejecutar mas de una instruccion
simultdneamente si las instrucciones no presentan ningun tipo de dependencia. Las dependencias
que pueden aparecer son:

* Dependencias estructurales: cuando dos instrucciones requieren el mismo tipo de unidad
funcional pero su numero no es suficiente.

* Dependencias de datos: situacion en que las instrucciones de un programa se refieren a los
resultados de otras anteriores que atin no han sido completadas. Se clasifican en:

o RAW (Read After Read): situacion donde se necesita un dato que ain no ha sido
calculado.

o WAR (Write After Read): una instruccion necesita escribir en un registro sobre el que
otra instruccion previamente debe leer.

o WAW (Write After Write): una instruccidon necesita escribir en un registro sobre el que
otra instruccion previamente debe escribir.

* Dependencias de control: cuando existe una instruccion de salto que puede variar la
ejecucion de la aplicacion.

IF | ID | EX |[MEM
IF | ID | EX |MEM
| IF | ID | EX WB
' IF | ID | EX WB
IF | ID MEM| WB
IF | ID MEM| WB
IF EX |MEM| wB
IF EX |MEM| wWB
ID | EX |[MEM| wB
D | EX |MEM| wB

Fig. 2.3: Ejemplo de ejecucion superescalar

Podemos distinguir diferentes tipos de procesadores por la forma de actuar ante una dependencia
estructural o de datos:

* Procesador con ejecucion en orden: las instrucciones quedaran paradas a la espera de que se
resuelva la dependencia.

* Procesador con ejecucion fuera de orden: las instrucciones dependientes quedaran paradas
pero sera posible solapar parte de la espera con la ejecucion de otras instrucciones
independientes que vayan detras.
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En el caso de las dependencias de control, se conoce como ejecucion especulativa de instrucciones a
la ejecucion de instrucciones posteriores a la instruccion de salto (antes de que el PC llegue a la
instruccion de salto).

2.1.4 Limitaciones del procesador single-thread

A continuacion describiremos una serie de factores que limitan el rendimiento de la ejecucion de
una aplicacion en un procesador single-thread.

e Problema de la memoria

La diferencia de velocidad entre procesador y memoria, limita el rendimiento del procesador. Las
operaciones de memoria son lentas comparadas con la velocidad del procesador. Los accesos a
memoria, por ejemplo en un fallo de cache, pueden consumir de 100 a 1000 ciclos de reloj, durante
los cuales el procesador debe esperar a que el acceso a memoria finalice. Por tanto, un aumento de
la frecuencia de reloj del procesador sin incrementar la velocidad de la memoria solamente
mejoraria el rendimiento en un pequefio porcentaje. Los ciclos de computo se realizarian mas rapido
pero el tiempo de acceso a memoria continuaria siendo el mismo. Esto se puede apreciar en la
siguiente imagen (figura 2.4) que representan las fases de ejecucion de un programa single-thread
en dos procesadores con distinta frecuencia de reloj.

|:| ciclos de computo procesador 1
|:| ciclos de coémputo procesador 2

|:| ciclos consumidos acceso a memoria

Fig. 2.4: Ejemplo de fases de ejecucion de un programa en dos
procesadores de distinta frecuencia

Ademas hay que tener en cuenta que a los cientos de ciclos que se consumen en cada acceso a
memoria hay que sumarle decenas de ciclos extra, por cada acceso a nuevos niveles de cache
(provocados por fallos en el nivel anterior). La solucion para aprovechar los ciclos en los que el
procesador esta esperando a que finalice la operacion de memoria es el multi-threading por
hardware. El multi-threading por hardware es una propiedad que permite al procesador alternar de
un thread a otro thread cuando el thread que esta ocupando el procesador queda parado. Esta
solucion se analizard en profundidad més adelante.

* Calory coste asociado
El incremento de la frecuencia de reloj del procesador implica un aumento de la potencia

consumida y del calor generado. En la actualidad los altos valores de frecuencia de reloj de los
procesadores suponen un problema, tanto econdomico (consumo eléctrico, y gasto dedicado a la
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disipacion del calor y refrigeracion), como tecnologico (dificultad para disipar la gran cantidad de
calor generado en la superficie de un procesador). Por estos motivos, se abandona la idea de
aumentar la frecuencia de reloj del procesador para aumentar el rendimiento, y se opta por afiadir
mas procesadores en el mismo chip. Con esta solucion el calor se incrementa de forma lineal y no
exponencial como ocurre con el aumento de frecuencia de reloj.

2.1.5 Multi-threading

Para entender conceptos como el multi-threading por software, por hardware y las ventajas de
los procesadores multi-thread es necesario conocer la diferencia entre thread y proceso.

Threads y Procesos

Un proceso es secuencia de codigo ejecutable en ejecucion. Cada proceso posee un espacio de
direccionamiento propio para almacenar sus estructuras de datos asociados. Un proceso esta
formado por uno o mas threads o hilos de ejecucion.

Un hilo es la unidad minima de procesamiento. Los hilos existen dentro de un proceso y comparten
recursos como el espacio de memoria, la pila de ejecucion y el estado de la CPU. Un proceso con
multiples hilos tiene tantos flujos de control como hilos. Cada hilo se ejecuta con su propia
secuencia de instrucciones de forma concurrente e independiente.

Las ventajas de realizar la concurrencia a nivel de hilo en lugar de a nivel de proceso son varias.
Los hilos se encuentran todos dentro de un mismo proceso y por lo tanto pueden compartir los datos
globales. Ademas, una peticion bloqueante de un hilo no parard la ejecucion de otro hilo. Por
ultimo, si el procesador lo soporta, los diferentes hilos estan asociados a diferentes conjuntos de
registros, por lo que el cambio de contexto del procesador podra realizase de forma eficiente.

Multi-threading por Software

El multi-threading por software posibilita la realizacion de aplicaciones paralelas. Es un
nuevo modelo de programacion que permite a multiples hilos existir dentro de un proceso. Los
hilos comparten los recursos del proceso pero se ejecutan de forma independiente. El hecho de que
sean independientes permite la concurrencia (es decir su ejecucion simultanea), y si el procesador lo
soporta se podran ejecutar en paralelo.

Multithreading por Hardware

El multi-threading por hardware es una técnica que incrementa la utilizacion de los recursos
del procesador. A continuacion se analizan diferentes tipos:

* Coarse-grained Multithreading
El procesador ejecuta el hilo de forma habitual y solamente realiza un cambio de contexto cuando
ocurre un evento de larga duracion (como un fallo de cach¢). Para que el cambio de contexto sea

eficiente es necesario que exista una copia del estado de la arquitectura (PC, registros visibles) para
cada hilo. Este método tiene la ventaja de ser sencillo de implementar.
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* Fine-grained Multithreading

Se basa en un cambio “rapido” entre hilos, ejecutando en cada ciclo un hilo diferente. Es un
mecanismo que tiene como base una planificacién de la ejecucion de las instrucciones en orden.
Con el fin de evitar largas latencias por hilos bloqueados, se ejecutan instrucciones de diferentes
hilos. Este enfoque tiene la ventaja de eliminar las dependencias de datos que paran el procesador.
Al pertenecer las instrucciones a diferentes hilos, las dependencias de datos y de control
desaparecen.

* Simultaneous Multithreading

Consiste en poder ejecutar instrucciones de diferentes hilos, en cualquier momento y en
cualquier unidad de ejecucion. Desarrollar esta tecnologia requiere un hardware adicional para
toda la logica. Como consecuencia, su realizacion para un gran numero de hilos aumentaria la
complejidad y, por tanto el coste. Por este motivo en las implementaciones SMT se opta por reducir
el numero de hilos.

SMT muestra a un procesador fisico como dos 0 mas procesadores 16gicos. Los recursos fisicos son
compartidos y el estado de la arquitectura es copiada para cada uno de los dos procesadores 16gicos.
El estado de la arquitectura estd formado por un conjunto de registros: registros de proposito
general, registros de control, registros del controlador de interrupciones y registros de estado.

Los programas veran a los procesadores logicos como si se tratara de dos o mas procesadores
fisicos diferentes. Sin embargo, desde el punto de vista de la microarquitectura, las instrucciones de
los procesadores logicos se ejecutaran simultdineamente compartiendo los recursos fisicos.

No multi-threading Fine- and coarse-grain Simultaneous
(single threaded) multi-threading multi-threading
Execution units are
Execution units in a Execution units can be simultaneously available
processor are made available to more to two instruction
dedicated to a single than one instruction streams during the
instruction stream stream during different same cycle
cycles
t 1 t
Pipe to instruction unit Pipe to instruction unit Pipe to instruction unit
Fxo I __ FX0 - Fxo L1 BN
, X1 I o X1 |1 el | |
g Lso gsol |l ] 5 wso [ ]
c Ls1[ /M c st |l O g1/
5 FPO | s Fro ] s FPo[]l /L]
o o
drei I S DR ¢re1 I
Y BRX Y BRX “erx [ ] )
CRL [ CRL [ ] crL | N 5
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Processor cycles Praocessor cycles Processor cycles
L

Fig. 2.5: Comparativa entre procesador single-thread
v hardware multi-thread
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2.1.6 Procesadores Multicore

Los procesadores multi-core combinan dos o mas procesadores (a los que nos referiremos
como nucleos o cores) en un mismo chip. Estos procesadores mejoran el rendimiento de las
aplicaciones paralelas.

Las aplicaciones paralelas estan compuestas por multiples threads independientes, de forma que es
posible la concurrencia. Es decir, los threads se pueden ejecutar al mismo tiempo y en paralelo.
Como consecuencia el rendimiento de las aplicaciones paralelas puede tedricamente escalar
linealmente con el namero de procesadores.

En la practica existen factores que lo impiden, como los overheads por creacion/eliminacion de
threads, las comunicaciones entre las memorias de los procesadores, y el posible desbalanceo (en
las aplicaciones) de volumen de cémputo por thread (threads esperando a que otros threads
finalicen). Describiremos estos factores con mas detalle, mas adelante.

Arquitectura

Los procesadores de una arquitectura multi-core comparten la memoria principal. Existen
dos alternativas para esta comparticion:

* UMA (Acceso uniforme a memoria): los procesadores del sistema tienen el mismo tiempo
de acceso a memoria.

* NUMA (Acceso no uniforme a memoria): el acceso a la memoria es controlado por un tinico
procesador, lo que provoca que este procesador tenga un tiempo de acceso menor, a la
memoria controlada por ¢€l, que el resto de procesadores. El resto de procesadores debe
interactuar con el procesador que controla la memoria para acceder a ella.

Memoria principal Memoria principal Memoria principal

cPU | cpu | cPu | cPu
CPU CPU CPU CPU
L1 D|L1I L1 D|L1IL1D|L1I L1 D|L1I
L1D[L11]L1D[L11 m L1D[L11[L1D[L1
Cache L2 |Cache L2|Cache L2 |Cache L2
Cache L2 Cache L2
Cache L3
Procesador 0 Procesador 1 Procesador

Fig. 2.6: Comparativa de una arquitectura NUMA (izquierda) y una arquitectura UMA (derecha)

En cuanto a la organizacion de las caches de un sistema multi-core hay varias opciones. En algunas
arquitecturas se opta por mantener todos los niveles de cache privados a cada core, mientras que en
otras arquitecturas se comparte el ultimo nivel de cache.

19



2.1.7 Factores en el rendimiento multi-core/multi-thread

Como hemos visto hasta el momento podria parecer que el aumento paulatino del nimero de
nucleos de un procesador parece la soluciéon a la necesidad de aumentar la capacidad de
procesamiento en los procesadores, pero no es asi. El rendimiento de las aplicaciones en entornos
multi-nacleo y multi-hilo no escala linealmente, y al aumentar el nimero de hilos con los que se
ejecuta la aplicacion no se reduce linealmente el tiempo de computo de manera transparente al
programador. A continuacion enunciaremos los principales factores que impiden esta escalabilidad
lineal en los entornos de programacion multi-nticleo y multi-hilo:

*  Overheads por creacion/eliminacion de hilos

Uno de los factores que impiden la escalabilidad lineal en sistemas multi-nicleo/multi-hilo, es
el proceso de creacion y eliminacion de hilos (fork y join) que trabajan en dicho sistema paralelo,
que supone un coste de tiempo extra (overhead) sobre el total del tiempo de ejecucion. Este
overhead ha de ser mucho menor al tiempo total de ejecucion para que sea practico paralelizar una
aplicacion.

———

master
thread

{ parallel region } { parallel region }

Fig. 2.7: El proceso de creacion y eliminacion de threads supone un coste
extra de tiempo al total de la ejecucion.

* Desbalanceo de computo

Otro de los factores que impiden la escalabilidad lineal en sistemas multi-nicleo/multi-hilo es
la incorrecta distribucion del volumen de computo por hilo, que implica que algunos hilos finalicen
sus tareas antes que el resto y por tanto tendrdn que esperar a que el resto acabe para proseguir la
ejecucion.

Esta espera supone un coste en ciclos de reloj del procesador desaprovechados y por lo tanto un
overhead. En el disefio de aplicaciones paralelas es muy importante una Optima asignacion del
trabajo a realizar a cada uno de los hilos. A la hora de programar una aplicacion paralela uno de los
puntos a tener en cuenta es como de bien se reparte el computo entre los diferentes hilos
(computation load balance).

Este overhead se puede reducir aunque no eliminar totalmente, asignando el trabajo dindmicamente

entre los diferentes hilos que participan en la ejecucion. Por contrapartida se genera otro pequefio
overhead asociado al computo necesario para gestionar la asignacion dinamica.
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* Las comunicaciones entre hilos de ejecucion

Otro de los factores que impiden la escalabilidad lineal en sistemas multi-nicleo/multi-hilo es
la comunicacion entre los hilos. En una regién paralela los hilos de una ejecucion multi-hilo
trabajan de manera independiente y con datos independientes, pero por las caracteristicas de las
aplicaciones, en alglin momento necesitaran intercambiar estos datos entre ellos. Este intercambio
de datos se realiza de manera transparente al hilo ya que éste inicamente accedera a unas posiciones
de memoria que previamente otro hilo habra modificado. Esto aunque es transparente para el hilo
no esta libre de coste en tiempo. Los datos que hayan sido modificados en la cache de un hilo
tendran que ser copiados a la cache del hilo que los necesita en ese momento.

Hay que tener en cuenta que el coste de comunicar datos modificados por hilos que se ejecutan
dentro de un mismo procesador es muy inferior al coste de comunicar datos entre hilos que se
ejecutan en nucleos de diferentes procesadores.

2.1.8 CUDA (Compute Unified Device Architecture)

Se trata de una plataforma software que intenta explotar las ventajas de las GPUs de propdsito
general utilizando el paralelismo que ofrecen sus multiples nucleos, que permiten el lanzamiento de
un altisimo niimero de hilos simultaneos.

Por ello, si una aplicacion estd disefiada utilizando numerosos hilos que realizan tareas
independientes, una GPU puede ayudar a la CPU en la ejecucion de funciones especificas
ofreciendo un rendimiento mayor. Asi que se podria usar una GPU para la ejecucion de algunas
funciones de BLAST, por ejemplo en la comparacion y extension de las semillas de las secuencias.

Seria necesario que el sistema usado disponga de una tarjeta grafica Nvidia compatible. Son
compatibles con CUDA todas las GPUs Nvidia de la series GeForce 8000, Quadro y Tesla.

ALU ALU
ALU ALU

CPU GPU

Fig. 2.8: Esquema de la arquitectura CPU y GPU

La tecnologia CUDA invoca el trabajo a realizar mediante kernels. Los threads se organizan en
bloques (blocks), los bloques estan organizados en mallas (grids) y cada grid solo puede ejecutar un
kernel.
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No todo algoritmo puede ser implementado con CUDA, debe hacer frente a las siguientes
limitaciones:

* No se puede utilizar recursividad, punteros a funciones, variables estaticas dentro
de funciones o funciones con nimero de parametros variable.

* Puede existir un cuello de botella entre la CPU y la GPU por los anchos de banda
de los buses y sus latencias.

* Los threads, por razones de eficiencia, deben lanzarse en grupos de al menos 32,
con miles de hilos en total.

2.2 Bioinformatica

La bioinformatica es la aplicacion de tecnologia informatica en la gestion y analisis de datos
bioldgicos. Su finalidad puede ser muy variada pero los principales esfuerzos se centran en:

* El alineamiento de secuencias

* Laprediccion de genes

* El montaje del genoma

* La prediccion de la estructura de proteinas
* El alineamiento estructural de proteinas

* La prediccion de la expresion génica

* Las interacciones proteina-proteina

* El modelado de la evolucion.

2.2.1 Fundamentos teoricos de las proteinas

Las proteinas son macromoléculas bioldgicas que se componen de aminoacidos de los
cuales hay veinte distintos. Desempefian un papel fundamental para la vida y son las biomoléculas
mas versatiles y mas diversas. Son imprescindibles para el crecimiento del organismo. Realizan una
enorme cantidad de funciones diferentes, entre las que destacan: estructurales, inmunologicas,
transportadoras, protectoras, etc.

La estructura principal de la proteina es la de una secuencia lineal de aminoacidos. Sin embargo, los
aminoacidos que forman una proteina interactian para producir estructuras mas complejas. La
estructura secundaria se refiere a la disposicion espacial de los aminoacidos que se encuentran cerca
unos de otros en la secuencia lineal. Algunas de estas estructuras contienen subestructuras, como
hélices y hojas. La estructura terciaria se refiere a la disposicion espacial de los residuos de
aminoacidos que estan alejados en la secuencia lineal, que es la conformacion tridimensional de la
proteina en toda su longitud, que incluye las regiones de estructura secundaria. Otro nivel de la
estructura es la estructura cuaternaria que se refiere a la disposicion espacial de dos o mas proteinas
que interactiian (véase figura 2.9).
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La estructura terciaria de una proteina implica la funcionalidad de la proteina. Es la interaccion
entre los aminoacidos de la proteina tanto a nivel local y global la que proporciona su integridad
estructural necesaria para llevar a cabo su funcidon bioldgica. La informacion para especificar la
compleja estructura tridimensional de una proteina estd contenida en su secuencia de aminoacidos.

Dos proteinas son homdlogas si comparten un ancestro comun, es decir, estan relacionadas en un

contexto evolutivo. Las proteinas homdlogas siempre comparten una estructura plegable comun de
tres dimensiones.

Miveles de organizacion de las proteinas

Estructura primaria de las proteinas
Es la sequencia de una cadena de aminodcidos

Haoja plegada Hélice alfa

Estructura secundaria de las proteinas
ocurre cuando los aminodcidos en la secuancia
interactian a través de enlaces de hidrégeno

Hoja plegada
Estructura terciaria de las proteinas
ocurre cuando ciertas atracciones estan presentes
entre hélices alfa y hojas plegadas

Estructura cuaternaria de las proteinas
es una proteina que consiste de mas de
una cadena de aminoacidos

Fig. 2.9: Estructura de las proteinas

2.2.2 Busqueda de homologia en proteinas

La comparacion de una proteina con otra es una de las actividades de coémputo mads
importantes en la bioinformatica. La comparacion de secuencias se utiliza como un método para
inferir homologia y es mas informativa cuando detecta proteinas homdlogas. La informacion sobre
la estructura secundaria y terciaria de una proteina de la que s6lo se conoce la secuencia principal se
puede deducir encontrando un homoélogo del que se conozca esa informacion. Dos secuencias cuyas
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estructuras principales son similares dentro de un cierto nivel se puede inferir que son homologas.
Esta inferencia puede ser posteriormente reforzada por técnicas de comparacion que van mas alla de
la estructura primaria y asi ofrecer medidas de similitud basadas en la estructura secundaria y
terciaria.

GEMERAL FORELIMBS
FORELIMBS AS WINGS FORELIMES AS FLIPPERS

[t S

Fig. 2.10: Ejemplo de homologia de las extremidades anteriores. La homologia es
una caracteristica comun entre las especies, que también estuvo presente en su
antepasado comun.

La forma de representar las secuencias de proteinas es mediante una cadena de caracteres, donde
cada letra representa un aminoacido. Existen 20 aminodcidos distintos y cada uno de ellos tiene
asociado un solo cardcter. Aunque existen caracteres especiales para representar aminoacidos
desconocidos o un grupo de aminoacidos que son casi idénticos entre si.

Por ejemplo, la proteina B3HSG4 ECOLX perteneciente a la bacteria Escherichia coli se representa
con la siguiente secuencia de 39 aminodcidos:

“MRFTLPGGTAIPEMIDIDHISAFKLLTFLFHPMKLFIFK”

El proceso de obtener homologia consta de varias etapas sucesivas. En primer lugar la
representacion de una proteina desconocida se compara con las bases de datos de secuencias para
encontrar un conjunto de secuencias similares. BLAST o FastA son las herramientas apropiadas
para este paso, ya que realizan busquedas rdpidamente con un compromiso aceptable de
sensibilidad, es decir, con una capacidad aceptable para evitar falsos positivos.

Siempre que se usa un algoritmo de busqueda de homologia con un par de secuencias se obtiene un
alineamiento, incluso aunque las secuencias estén compuestas por letras al azar y no se parezcan
nada entre si. Por lo tanto ademas hay que estimar la significacion estadistica de cada homologia.
Por esta razon tanto BLAST como FastA proporcionan una medida estadistica de la significacion de
cada coincidencia denominada e-value, que nos proporciona informacion sobre si el alineamiento
de estas dos secuencias es real o creada por azar.
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El uso de las herramientas como BLAST es el primer paso de este proceso en el que una proteina
desconocida se compara con una base de datos de secuencias conocidas. Los problemas en este paso
son: (1) la eleccion de un método de puntuacion (2) la eleccion de una base de datos de secuencia
de busqueda (3) la eleccion de un algoritmo de busqueda y (4) la evaluacion de la significacion de
los resultados (e-value).

Los bidlogos moleculares suelen pensar en la homologia de aminoécidos en términos de similitud
quimica. La Figura 2.11 muestra una breve clasificacion quimica de los aminoéacidos. Desde un
punto de vista evolutivo no se espera que las mutaciones cambien radicalmente las propiedades
quimicas de las proteinas, ya que pueden llegar a destruir sus estructuras tridimensionales. En
cambio, las mutaciones entre aminoacidos similares deberia ocurrir con relativa frecuencia.

En los afios 60 y principios de los 70, Margaret Dayholl fue pionera en técnicas cuantitativas para
medir la similitud de aminoacidos. Usando las secuencias de las que se disponia en ese momento,
construyd alineamientos multiples de proteinas relacionadas y compard las frecuencias de
sustituciones de aminodcidos. Como era de esperar, se encontraron pocas variaciones en la
frecuencia de sustitucion de aminoacidos, y los patrones son generalmente los esperados segun las
propiedades quimicas.

Poiltie heegatnee (hamed

Fig. 2.11: Relacion quimica entre los aminodcidos

Por ejemplo, la fenilalanina (F) se encuentra con relativa frecuencia sustituida por la tirosina (Y) y
triptofano (W), que comparten las estructuras del anillo aromatico (véase la figura 2.11). Y en
menor medida con los &cidos hidrofébicos (V, [ y L).

Gracias al estudio de estos patrones que siguen las mutaciones en las proteinas se puede determinar
la probabilidad de que una sustituciéon entre dos aminodcidos ocurra. Hoy en dia se usan las
matrices de puntuacion para estudiar posibles mutaciones proteinicas.

Matrices de puntuacion

Son una matriz bidimensional que contienen puntuaciones que representan las tasas relativas
a sustituciones evolutivas de la proteina, es decir, describe el ritmo al que un aminoacido en una
secuencia cambia a otro aminoéacido con el tiempo. Las matrices de puntuacion son la evolucion en
pocas palabras. Si observamos las figuras 2.11 y 2.12 podemos observar que las puntuaciones y las
propiedades quimicas de los aminoécidos a sustituir mantienen cierta relacion.
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C/S| T|IP/A|IGIN/ID|IE|Q|IHIR|K|M|]I |[L |V |F|Y|W
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S[-1]4 S
T[1]1]5 T
P|-3|1|1]|7 P
A0 |1 ]0 1|4 A
G([-3|/0 |-2|-2[0 |6 G
N|-3|1 |0 |-2|-2|0 |6 N
D|-3/0 |1|1|-2|-1[1 (6 D
E |40 | 1]|1]|1][-2]0 |2 |5 E
Q(-3|/0 |1]|1]|1[-2]0]0 |2 |5 Q
H|-3|1|-2|-2|-2|-2[1 [-1]/0 |0 |8 H
R|3|4|1|-2|1|-2|0 2|0 |1 [0 |5 R
K[-3[0 |41 ]|1]-2]0 1|1 ([1[1]2]5 K
mMmi4/4/1|-2|1|-3[-2[-3[-2|0 ([-2[-1]-1]5 M
I |12/ 1]-3|1[-4]-3|-3[-3[-3[-3[-3|[-3[1 |4 |
L1213 |1|-4[-3|-4|-3|[-2|-3[-2|-2|2 |2 |4 L
vVi-<4[(-2]0 2|0 |-3|-3|-3|-2|-2|-3|-3|-2|1 (3 |1 |4 \
F|2|-2|-2|-4|-2|-3[-3[-3[-3[-3[-1[-3[-3[0 |0 |0 1|6 F
Y|-2|-2|[-2|-3|-2|-3|-2[-3|-2|1]|2 |-2[2|1|1[1[1]3 |7 Y
w232 4|-3/-2-4|-4|-3|-2|-2|-3|3|1|-3|-2[-3|1 ]2 |11|W

Fig. 2.12: Matriz de puntuacion BLOSUM62

Para mayor precision los resultados se multiplican por un factor de escala antes de convertirlos en
enteros. Por ejemplo, una puntuacion de -1.609 nats (medida usada para estas puntuaciones) puede
ser escalado por un factor de dos y luego redondeado a un valor entero de -3. Las puntuaciones que
se han reducido y escalado a nimeros enteros tienen una cantidad sin unidades y se llaman puntajes
brutos.

Existen dos tipos de matrices de puntuacion: PAM (Point-Accepted Mutation) y BLOSUM
(BLOcks of Amino Acid SUbstitution Matrix). Las matrices PAM fueron creadas por el equipo
cientifico de Margaret Dayhoff, por lo que a veces se llaman matrices Dayhoft. Estas matrices de
puntuacion tienen un componente tedrico fuerte y hacen uso de algunas hipotesis evolutivas. En
cambio, las matrices BLOSUM son mas empiricas y derivan de un conjunto de datos mayor. La
mayoria de los investigadores prefieren utilizar matrices BLOSUM ya que en los experimentos
demuestran mayor sensibilidad.

Bases de datos (databases)

Las bases de datos contienen una coleccion de todas las secuencias conocidas que son
publicamente accesibles. Cada una de las entradas de estas bases de datos es una secuencia, de ADN
o proteinas, que contiene una serie de anotaciones en las que se especifican sus caracteristicas.

Para una utilizacion mas racional de toda la informacion almacenada en las bases de datos, las
distintas secuencias se han agrupado en diferentes categorias que se denominan divisiones, algunas
de las cuales reflejan un origen filogenético y otras se basan en la aproximacion técnica que se uso
para generarlas (por ejemplo: hongos, bacterias, mamiferos, virus, etc.). Independientemente de las
divisiones en que se agrupen las secuencias, todas ellas se obtienen de los datos enviados por los
investigadores, que voluntariamente hacen accesibles sus datos a toda la comunidad cientifica.
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Ademas de la secuencia en si, en las databases se almacena mucha mas informacidon para cada
secuencia. Por ejemplo, en la database de proteinas Swiss-Prot se dispone de los siguientes campos
para cada secuencia conocida (figura 2.13):

Line code Content Line code Caontent
1D ldentification RC Reference comment(s)
AC Accession number(s) RX Reference cross-reference(s)
DT Date RA Reference authors
DE Description RT Reference title
GN Gene name(s) RL Reference location
03 Organism species cC Comments or notes
0G Organelle DR Database cross-references
OC Organism classification KW Keywords
OX Taxonomy cross-reference] s) FT Feature table data
RN Reference number S0 Sequence header
RP Reference position (no code) ( blanks) sequence data

Fig. 2.13: Registros en la database Swiss-Prot

Aunque desde el punto de vista historico y cientifico las bases de datos tradicionalmente se han
separado en secuencias de acidos nucleicos y de proteinas, mantenidas de forma independiente y
con poca relacion entre unas y otras, en la actualidad se esta imponiendo la tendencia contraria, es
decir, una mayor relacion entre ambas que facilite el obtener toda la informacion disponible lo mas
facilmente posible.

Las bases de datos crecen a un ritmo exponencial: la database Swiss-Prot se duplica cada 40 meses
y las bases de datos de ADN lo hacen cada 14 meses. Esta tendencia se ha visto incrementada desde
que las secuencias EST comenzaron a afiadirse (1994) y se mantendra probablemente hasta que se
completen los proyectos de secuenciacion del genoma humano y del raton. Por entonces las bases
de datos tendran entre 50 y 200 GB de informacién. Con esta complejidad, las bisquedas en las
bases de datos necesitardn computadores de mayor prestaciones, por lo que cada vez son menos las
organizaciones que guardan copias locales de las bases de datos.

Algoritmos de busqueda de homologia

Los algoritmos de busqueda de homologia se clasifican segin el tipo (programaciéon
dindmica o heuristica) y segin la alineacion (global o local) (figura 2.14). Los algoritmos de
programacion dindmica son mas costosos computacionalmente, pero son menos propensos a pasar
por alto una coincidencia significativa. Son los métodos usados cuando es necesaria una
comparacion rigurosa.

) Alignment Type
Algorithm Type Global Local
Dynamic Programming Needleman-Wunsch Smith-Waterman
Heuristic FASTA BLAST

Fig. 2.14: Clasificacion de algoritmos para la comparacion de secuencias de proteinas.
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Los algoritmos heuristicos tienen un coste computacional menor, pero pueden pasar por alto
regiones de similitud interesantes, es decir, regiones en las que la medida de similitud supera un
valor preestablecido. Son los métodos mas usados debido a sus requisitos computacionales
relativamente bajos. Pero el tipo de alineamiento que produce es también un factor importante. El
alineamiento local es capaz de reconocer mejor posibles regiones de gran similitud entre dos
secuencias, mientras que el alineamiento global es perjudicado por los espacios entre estas regiones.
Los algoritmos de alineacion global son a menudo la eleccion si dos secuencias son conocidas y a
priori relacionadas. Sin embargo, las proteinas lejanamente relacionadas son mas propensas a ser
similares en las subregiones y es recomendable usar algoritmos de alineacion local.

Los algoritmos de programacion dindmica no son practicos para las busquedas en bases de datos
por su elevado coste en tiempo. Por lo que se apuesta por un desarrollo de algoritmos heuristicos
que sacrifican la sensibilidad de los resultados por la velocidad. El mas popular de estos son FastA,
para el calculo de alineamientos globales, y BLAST, para el calculo de alineamientos locales.

2.3 BLAST

BLAST (Basic Local Alignment Search Tool) es un software libre de busqueda de similitud
de secuencias que puede ser usado para buscar una secuencia desconocida (query) en una base de
datos de secuencias (database). Se trata de uno de los instrumentos bioinformaticos mas populares.

El conjunto de aplicaciones BLAST estd desarrollado por el NCBI (National Center for
Biotechnology Information). La version actual esta disefiada en C++, pero al estar creada a partir de
la version escrita en C del afio 1997 las aplicaciones BLAST estan compuestas tanto por codigo C
como C++.

A pesar de que BLAST es un programa muy poderoso y casi siempre podemos confiar en sus
resultados, puede que no encuentre la soluciéon Optima ya que se trata de un programa heuristico. No
garantiza que las secuencias que alinea sean homologas y mucho menos que tengan la misma
funcion, simplemente provee posibles candidatos. Se necesitan mas analisis para anotar
correctamente una secuencia.

2.3.1 Versiones y variantes de BLAST

BLAST contiene muchas versiones distintas ya que las secuencias con las que trabaja pueden ser de
distintos tipos: nucleétidos (ADN), proteinas, de ADN traducidas a proteinas o a la inversa.

* Blastn: es de los mds comunmente usados. Compara una secuencia de nucledtidos (ADN)
contra una base de datos que contenga también secuencias nucleotidicas.

* Blastp: es el otro tipo de BLAST mas usado. Es un BLAST con huecos (o gaps) que
compara una secuencia de aminoacidos contra una base de datos del mismo tipo.

* BlastX: este programa usa como entrada una secuencia de nucléotidos. Traduce la secuencia

y la compara contra una base de datos de proteinas. Se usa cuando se tiene sospecha de que
la secuencia de entrada codifica para una proteina.
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Tblastn: compara una proteina con una base de datos de nucléotidos. Se usa cuando el
analisis con Blastp no ha sido exitoso con dicha proteina.

TblastX: es la combinacion del TBlastn y BlastX. Compara una secuencia de nucledtidos
contra una base de datos de nucledtidos, pero primero traduce tanto la secuencia problema
como la base de datos a proteinas.

Bl2seq: compara dos secuencias entre ellas, en vez de comparar una secuencia con una base
de datos.

Ademas, se pueden encontrar diferentes variantes de BLAST:

Gapped Blast o BLAST 2.0: esta es una mejora al algoritmo original del BLAST.
Actualmente es la forma usual de BLAST que se usa. Se trata de un BLAST que contempla
la existencia de pequefias inserciones o eliminaciones en las secuencias que se estan
comparando, permitiendo asi alinear uno o varios nucléotidos o aminoacidos con huecos
vacios llamados gaps. El uso de este nuevo enfoque, agrega dos parametros al algoritmo,
uno es la penalizacion que se da en la puntuacion por alinear un nucleétido o aminoacido
con un gap y el otro es una penalizacién por extender un gap preexistente. Siempre se
considera mas costoso abrir un nuevo gap que expandir uno existente.

PsiBlast: esta variante de BLAST se usa para buscar posibles homo6logos en organismos
muy lejanos entre ellos, filogenéticamente hablando. Esta disponible s6lo para secuencias de
aminoacidos. Se trata de un programa iterativo que va calculando su propia matriz de
sustitucion en cada iteracion. Al inicio, hace un Blastp normal, usando una matriz estandar
para calificar los alineamientos. De las secuencias obtenidas en este alineamiento, el
programa genera una nueva matriz de sustitucion, basandose en los alineamientos obtenidos.
Usa esta nueva matriz para realizar otro alineamiento. Esto permite en general encontrar
nuevos alineamientos, que son usados para calcular una nueva matriz. El proceso se repite
tantas veces como el usuario lo indique, o hasta que ya no se encuentran nuevos
alineamientos.

WUBIast: es el algoritmo de BLAST implementado por bioinformaticos de la Universidad
de Washington. Segtin sus creadores, es un algoritmo mucho maés rapido y eficiente que el
BLAST de NCBI, e igual de sensible. Es ideal si se quieren realizar analisis masivos de
BLAST. Otra diferencia es la licencia, WU BLAST es software propietario y es gratuito solo
para uso académico.

2.3.2 Input

Para la ejecucion de BLAST solo se necesitan dos parametros de entrada obligatorios:

Query o queries: secuencias desconocidas sobre las que se va a realizar la busqueda de
similitud. Deben estar escritas en un fichero en formato FASTA. Este formato basado en
texto es utilizado para representar secuencias bien de 4cidos nucleicos o proteinas, y en el
que los pares de bases o aminoacidos se representan usando codigos de una Unica letra. El
formato también permite incluir nombres de secuencias y comentarios que preceden a las
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secuencias en si. La simplicidad del formato FASTA hace fécil el manipular y analizar
secuencias usando herramientas de procesado de textos y scripts.

| = =

>gil5324211|gblaaD44166.1| cytochrome b [Elephas maximus maximus]
LCLYTHIGRNIYYGESY LY SETWNTGIMLLLITMATAFMGYVLPHNGOMSFNGATVITHNLFSATPYIGTNLY
EWIWGGEFSVDEATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDEIPFHPYYTIEDELG
LLILILLLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWYFLFAYATLRSVPNELGGVLALFLSIVIL
GLMPFLHT SKHRSMMLRPLSOALFWTLTMDLLTLTWIGSQPVEYPY TIIGOMASTLYFSITLAFLPIAGK

IENY

Fig. 2.15: Ejemplo de secuencia escrita en formato FASTA

* Database: se debe especificar con qué base de datos se quiere realizar la busqueda. Es
importante usar la database correcta. No podemos hacer una busqueda con Blastp con una
query proteinica y una database de ADN.

2.3.3 Output

La salida de una ejecucion de BLAST puede ser por pantalla o por fichero. En ambos casos,
todos los programas de BLAST proporcionan informacion en mas o menos el mismo formato.
Primero viene una introduccion al programa, una serie de descripciones de las secuencias
homologas encontradas (nombre, e-value, score, etc.), las alineaciones de estas secuencias vy,
finalmente, los parametros y otros datos estadisticos recopilados durante la busqueda.

* Introduccién del programa: proporciona el nombre del programa, el nimero de version, la
fecha en que el codigo fuente fue cambiado sustancialmente, la fecha en que se construyo el

programa y una descripcion de la secuencia de consulta y base de datos que desea buscar
(figura 2.16).

BLASTP 2.2.24+

Database: All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF
excluding environmental samples from WGS projects
12,061,831 sequences; 4,118,133,053 total letters

Query= AATHM RABIT P12345 Aspartate aminotransferase, mitochondrial (EC
2.6.1.1) (Transaminase A) (Glutamate oxaloacetate transaminase-2)
(Fragment) .

Length=30

Fig. 2.16: Fragmento inicial del output de Blastp

* Secuencias homdlogas: son las descripciones de las secuencias obtenidas (en una linea). A
menos que se solicite lo contrario, las secuencias homodlogas se ordenan mediante el valor de
probabilidad e-value, es decir, se ordenan de mayor a menor significacion (figura 2.17).
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Sequences producing significant alignments: (Bits) Value

ref|XP ©801495474.1| PREDICTED: similar to Aspartate aminotransfe... 68.6 2e-10
ref|XP 802711597.1| PREDICTED: Aspartate aminotransferase, mitoc... 68.6 2e-10
sp|PO8907.1|AATM HORSE RecName: Full=Aspartate aminotransferase,... 68.6 3e-10
prf||1883180A aminotransferase,Asp 68.6 3e-18
ref|[NP_881016933.1| aspartate aminotransferase, mitochondrial pr... &7.8 4e-18
prf||e308236A aminotransferase,Asp 67.0 6e-10
prf||e410468A aminotransferase,Asp 66.2 le-09
pdb|1AKA|A Chain A, Structural Basis For The Catalytic Activity ... 66.2 le-09
pdb | 7AAT|A Chain A, X-Ray Structure Refinement And Comparison Of... 66.2 le-89
ref|NP_801088255.1| aspartate aminotransferase 2 [Xenopus laevis... 65.9 le-09
ref|XP ©02187671.1| PREDICTED: similar to aspartate aminotransfe... 65.9 2e-09
sp|P12345.1|AATM RABIT RecName: Full=Aspartate aminotransferase,... 65.9 2e-09

Fig. 2.17: Fragmento del listado de secuencias obtenidas (ordenadas por
probabilidad)

» Alineaciones: Alineaciones de las secuencias homologas encontradas (figura 2.18).

>ref|XP 881495474.1| PREDICTED: similar to Aspartate aminotransferase, mitochondrial
precursor (Transaminase A) (Glutamate oxaloacetate transaminase

2) (mAspAT) (Fatty acid-binding protein) (FABP-1) (FABPpm)

[Equus caballus]

Length=430

Score = 68.6 bits (166), Expect = 2e-10, Method: Compositional matrix adjust.
Identities = 30/30 (100%), Positives = 30/30 (108%), Gaps = 0/30 (0%)

Query 1 SSWWAHVEMGPPDPILGVTEAYKRDTNSKK 30

SSWWAHVEMGPPDPILGVTEAYKRDTNSKK
Sbjct 38 SSWWAHVEMGPPDPILGVTEAYKRDTNSKK 59

Fig. 2.18: Ejemplo de alineacion en el output

* Parametros y estadisticas: pardmetros y otras estadisticas recogidas durante la bisqueda en
la base de datos (figura 2.19).

Lambda K H

0.3180 0.128 0.427
Gapped
Lambda K H

0.267 g.04180 0.140
Effective search space used: 181445597450
Matrix: BLOSUM&2
Gap Penalties: Existence: 11, Extension: 1

MNeighboring words threshold: 11
Window for multiple hits: 48

Fig. 2.19: Fragmento sobre parametros y estadisticas
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2.3.4 Algoritmo de BLASTP

Blastp es una de las versiones mas usadas y mas rapidas aunque utilice alineaciones con
huecos (gaps), que son mas costosas. Compara una o varias secuencias de aminoacidos (proteinas)
con secuencias del mismo tipo almacenadas en una base de datos (database) para encontrar
secuencias homologas ya conocidas.

Sequence 1
Usando un método heuristico, Blastp encuentra T=12
secuencias homologas, pero no mediante la ) . .
comparacion de la secuencia en su totalidad, sino
por la localizacion de pequefias coincidencias entre
las dos secuencias. . O (8

Sequence 2

Para encontrar estas pequefias coincidencias se hace
un proceso inicial llamado seeding que realiza una o, o =14
busqueda de palabras o words, que son tripletas de . : :
aminoacidos, en la secuencia de interés (query). Es
decir, la secuencia de aminoacidos de entrada se
divide en tripletas y se almacenan. . P

Sequence 2

Esta lista de tripletas almacenadas son utilizadas
para construir una alineacion con las tripletas o °
resultantes de las secuencias conocidas (subjects). o

Utilizando una matriz de puntuacion, cada
alineacion debe obtener una puntuacion superior a o
un umbral T para ser considerada como .
significativa. Una vez las alineaciones han sido
evaluadas se extienden en ambas direcciones. Cada
extension afecta en la puntuacion de la alineacion,
ya sea aumentando o disminuyendo la misma.

Sequence 2

Fig. 2.20: Efecto del umbral T. El
aumento de T acelera el proceso pero
disminuye el numero de hits.

Si esta puntuacién es superior a otro umbral T' determinado, la alineacién se incluird en los
resultados dados por Blastp. Sin embargo, si esta puntuacion es inferior a ese umbral, la extension
deja de aplicarse, evitando que se incluyan en los resultados areas de una mala alineacion.

El aumento del umbral T acelera el proceso de Blastp, pero también limita la busqueda
disminuyendo el nimero de palabras coincidentes (figura 2.20).

De esta forma se puede dividir Blastp en tres modulos o fases (Figura 2.21). La fase de setup
establece la busqueda. La fase de escaneo analiza cada secuencia conocida en busca de palabras
coincidentes que después extiende. Y por ultimo, la fase de rastreo que produce una alineacion total
de la secuencia con gaps con inserciones y eliminaciones.
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Setup

Scanning

Read query

'

Read options

'

Mask query

'

Build lookup
table

Fase 1: SETUP

Fase 2: SCANNING

> »
3

More
sequence?

} Y

Find word
maiches

'

Gap free
extensions

Trace-back

‘

Gapped
extensions

¥

Calculate improved
score and
insertions/deletions

Save hits

La fase de setup lee la secuencia de consulta y
construye una lookup table. La lookup table (LUT)
es una tabla hash que contiene las palabras o words
de la query y su posicion o desplazamiento.

Las words son las tripletas de aminoécidos de las
que se compone la query. Es decir, la primera
tripleta corresponde a los aminoacidos de la
posicion 1, 2 y 3, la siguiente a los de la posicion 2,
3 y 4, ..., hasta llegar a las posiciones n-2, n-1 y n,
doénde n corresponde a la longitud de query.

33

Fig. 2.21: Diagrama de flujo del algoritmo BLAST

Query sequence: PQGEFG

Word 1: PQG
Word 2: QGE
Word 3: GEF
Word 4: EFG

Fig. 2.22: Ejemplo de construccion
de la lista de words

La fase de escaneo explora la base de datos y realiza las extensiones. Cada secuencia
conocida se analiza en busca de palabras coincidentes (kits) con los de la lookup table (LUT). Las
coincidencias obtenidas se utilizan para iniciar una alineacion extendida sin huecos (gaps). El
proceso de alineamiento sin huecos (ungapped alignment) extiende los hits en cada direccion en un
intento de incrementar su puntuacion de alineacion. Para calcular la puntuacion de las alineaciones
se hace uso de las matrices de puntuacion. Las inserciones y eliminaciones no son consideradas
durante esta etapa.




En el siguiente ejemplo grafico (figura 2.23) podemos ver los hits encontrados después de analizar
dos secuencias. Se puede observar como hay coincidencias agrupadas representando pequefas
diagonales. Estas diagonales son regiones que coinciden entre dos secuencias que la alineacion sin

gaps va a detectar como alineaciones de mayor puntuacion y va a intentar extender por ambos lados
(figura 2.23).
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Fig. 2.23: Ejemplo de hits encontrados al comparar dos secuencias distintas, se pueden observar
regiones en comun entre las dos secuencias.
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Fig. 2.24: Ejemplo de extension de los hits, al extender se intenta incrementar la puntuacion de
alineacion de cada coincidencia encontrando asi alineaciones de mayor tamaro.

Aquellas alineaciones que superen un umbral de puntuacién T, inician una alineacioén extendida con
gaps. La extension mediante alineacion con gaps se aplica mientras la puntuacion de la alineacion
sea superior a otro umbral T'. Cuando deja de superar este nuevo umbral se deja de aplicar la
extension y la alineacion se almacena para su posterior procesamiento.

En muchas ocasiones, es necesario introducir huecos (gaps) en el alineamiento para compensar las
inserciones y eliminaciones que afectan a las secuencias a lo largo de la evoluciéon. Sin embargo, si
permitimos la insercion de numerosos gaps en el alineamiento, podriamos llegar a alinear dos
secuencias completamente divergentes. Para evitar que esto ocurra los programas de alineamiento
introducen una penalizacion en la puntuacion del alineamiento por cada hueco que se abre (G o gap
opening penalty) y otra adicional en funcion de la longitud del hueco (L o gap extension penalty).
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Estos dos parametros pueden ser fijados por el usuario dependiendo de sus intereses, aunque lo
normal es utilizar un valor grande de G y bajo para L, asumiendo que en la naturaleza los
acontecimientos de insercion/eliminacion son raros (G grande), pero una vez que ocurren pueden
afectar a varios residuos adyacentes (L pequena).

Search Space

Sequence 2
\/

N\

Gapped alignment \

Sequence 1

Fig. 2.25: Ejemplo de alineaciones ungapped y alineacion gapped.

La fase de escaneo cuenta con alguna optimizacion. La alineacion gapped (con huecos) devuelve
solo la puntuacion y el alcance de la alineacion. El numero y posicion de las inserciones,
eliminaciones y los aminoécidos coincidentes no se almacenan, reduciendo el tiempo de CPU y
memoria de las ejecuciones.

* Fase 3: TRACE-BACK

La fase final de la busqueda BLAST es el rastreo o trace-back. También se conoce por la
fase de evaluacion ya que en ella se obtiene la puntuacion de la alineacion final de la secuencia. Se
genera una alineacion final con gaps usando las alineaciones obtenidas en la fase anterior. Al final
solo se reportan los alineamientos que hayan obtenido una probabilidad mayor a E. El parametro E
es conocido como valor de corte (e-value), y nos permite definir qué alineamientos queremos
obtener de acuerdo a su significacion estadistica. Cuanto menor sea el valor de E, mas significativo
es un alineamiento. En la siguiente figura podemos ver un ejemplo grafico de esta fase (figura
2.26):

Sequence B — Sequence B —

\\\\
I RN
L =
@ N 2
g1 N s 5
=

-\
l\‘\ l

N

Fig. 2.26: Ejemplo grafico sobre el trace-back de Blastp. De las alineaciones
resultantes de la fase anterior (fase de escaneo) se produce una alineacion con gaps
final para obtener la alineacion con mejor puntuacion.
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2.3.5 Lookup Table

123 465

6 7 8 910
GATCCATCTT

1000000 (0) | AAA |

(001101 (13) | ATC [>{Z}>[6_
1010011 (19) | CAT |>[5]
1010100 (20) | CCA |»[4]
(011111 (31) | CTT [>{8]

| 100011 (35) | GAT (—>{1]
110101 (53) | TCC >3]
1110110 (54) | TCG

110111 (55) | TCT (—>{7]
111111 (63) | TTT |

Fig. 2.27: Ejemplo de lookup table
para secuencias de ADN con alfabeto
de 4 caracteres (A,C,G,T) y W=3 bases

El primer paso de Blastp es aislar todas las
tripletas (W=3 aminodcidos) de la secuencia de
consulta y almacenar el desplazamiento en la que cada
palabra se produce. Estos desplazamientos representan
la tabulacion de las words en la query. Esta
informacion se almacena en una tabla hash llamada
lookup table (LUT).

Mas tarde, con una secuencia conocida de una base de

datos (subject), el trabajo consiste en deslizarse a
través de cada word de la subject y encontrar hits, que
consistiria en recuperar de la LUT las palabras que
tienen una buena puntuaciéon cuando se alinean con
dicha word.

El alfabeto de Blastp contiene 28 caracteres y las
words son de W=3 caracteres. Basicamente, cada una
de las posibles words se direcciona a una ubicacion
unica en la LUT. La funcion hash considera cada letra
como un numero entre 0 y 27 que puede caber en 5
bits, asi que para almacenar words de W=3
aminoacidos se necesitan 5-3=15 bits, dando un
tamafio a la LUT de 2'5=32768 posibles entradas.

Para mejorar el rendimiento de las operaciones de busqueda, BLAST utiliza un array de bits
llamado PV (presence vector) que es consultado antes de acceder a la LUT. Este array tiene una
longitud igual al nimero de entradas de la LUT, y nos indica mediante un bit si una entrada esta
vacia o no. Aprovechando que PV puede permanecer en caché por su pequefio tamafio podemos
evitar innecesarias y costosas busquedas en la LUT cuando una entrada esta vacia.
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Capitulo 3

Analisis de rendimiento

Este capitulo estd dedicado al andlisis de rendimiento de la aplicacion blastp descrita en el

capitulo anterior. Para encontrar los motivos de un bajo rendimiento en una aplicacion es necesario
estudiar y entender como se estructura y como funciona. Por este motivo se ha hecho un estudio
para observar el comportamiento de la aplicacion en distintos contextos. Hay que fijarse en aquellas
funciones llamadas por blastp en las que el ordenador dedica mas tiempo de ejecucion, tanto de
computo como de acceso a disco o memoria. De esta manera sabremos qué regiones de codigo se
necesita estudiar y de las cuales buscar soluciones para mejorar el rendimiento de la aplicacion.

3.1 Analisis de los datos de entrada y parametros

Tanto blastp como todas las variantes de BLAST disponen de una multitud de pardmetros de

entrada, de los cuales solo se van a comentar los que mas efecto tienen en el rendimiento:

Query o queries: es la secuencia o secuencias problema que queremos comparar con las
secuencias conocidas y almacenadas en una base de datos de proteinas.

Database: especifica qué base de datos usaremos de las distintas de que dispone BLAST.

Numero de threads (opcional): especifica el nimero de threads que queremos lanzar para
ejecutar la version multi-core de la aplicacion. En un procesador multi-core podemos
aprovechar los diferentes nucleos para ejecutar diferentes threads en paralelo y asi obtener
un rendimiento mayor.

3.1.1 Queries

Como se va a ver en este capitulo, las queries tienen una gran repercusion en el rendimiento

de la aplicacion. Ademas, se debe tener en cuenta que los resultados del rendimiento son muy
distintos cuando solo tenemos una query o tenemos varias de ellas.

En concreto hay dos factores en las gueries que son clave en el rendimiento de blastp:

Longitud de la secuencia query: Cuanto mayor es el tamafio de la secuencia query, mayor es
la cantidad de instrucciones ejecutadas. Ademas, el tamafio que ocupard la LUT en memoria
depende también del tamafio de las secuencias de entrada. El tamafio de la LUT afecta al
rendimiento, ya que si tiene un tamafio excesivo puede hacer aumentar el nimero de accesos
(conflictos en la tabla hash) y fallos de caché. Asi que la longitud de las query es un factor
muy importante que debe ser estudiado.
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* Informacién proteica de la guery: La informacion de la proteina o los aminodcidos que
aparecen en ella son también factores a tener en cuenta. Dependiendo de las words o
tripletas de aminoacidos por las que estd compuesta una proteina, blastp tendra que realizar
una carga de trabajo distinta. Es decir, la aparicion de determinadas tripletas afectan al
rendimiento de la aplicacion. Cuanta mas diversificacion en las words mas words hay que
almacenar en la LUT provocando un aumento de su tamafo, y ademads, si se da el caso que
hay words muy comunes en la base de datos se tendran que almacenar mas Aits en memoria.

Cuando solo disponemos de una guery veremos coémo se comporta blastp al variar su longitud. Para
esto haremos uso de las siguientes queries distintas en tamafio y en informacion proteica, con
tamafios multiples de 2 entre ellas (Figura 3.1).

Secuencia ID Especie Longitud

1 A4T9V0  Mycobacterium gilvum 64

2 Q21463  Anaeromyxobacter dehalog. 128

3 P28484  Drosophila teissieri 256

4 Q1JLB7  Streptococcus pyogenes 512

5 P08715  Escherichia coli 1024

6 Q8lYD8 Homo sapiens 2048

7 Q06277  Adenosine monophosphate 4096

Figura 3.1: Secuencias usadas para una query

Cuando dispongamos de varias queries a la vez usaremos 16 queries de distinta informacion
proteica pero de la misma longitud (Figura 3.2). Todas contienen 240 aminoacidos, un tamafio
bastante comun en las ejecuciones con blastp.

Secuencia ID Especie Longitud
1 P46969  Saccharomyces cerevisiae 240
2 Q9L0Z5  Streptomyces coelicolor 240
3 Q9CCP9  Mycobacterium leprae 240
4 P71676  Mycobacterium tuberculosis 240
5 034557  Bacillus subtilis 240
6 P74061  Synechocystis sp. 240
7 P51012  Rhodobacter capsulatus 240
8 Q43843  Solanum tuberosum 240
9 P32661 Escherichia coli 240
10 Q9ZTP5  Oryza sativa Japonica 240
11 E1EQP8 Enterococcus TUSoD 240
12 E1L132  Atopobium vaginae 240
13 EOFZA3 Enterococcus TX4248 240
14 E1YJS2 Desulfobacterium 240
15 Q8GC94  Citrobacter freundii 240
16 E1Q8R2 Helicobacter pylori Cuz20 240

Figura 3.2: Secuencias usadas para varias queries
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3.1.2 Base de datos (NR)

La base de datos escogida para el analisis de rendimiento es la NR. Se trata de una base de
datos (o database) que contiene 12.062.381 secuencias de proteinas ocupando unos 9.5 GB de
memoria en disco. Se trata de la base de datos disponible por el NCBI mas grande y més usada,
aunque hay que mencionar que en el contexto cientifico no siempre la base de datos més grande es
la que da mejores resultados, pero para el andlisis del rendimiento es interesante ver como se
comporta blastp trabajando con datos de gran volumen. La database NR incluye otras bases de
datos como la GenBank, RefSeq, EMBL (base de datos europea), DDBJ (base de datos japonesa) y
PDB (banco de datos de proteinas).

Cada proteina almacenada puede tener longitudes variables de aminoacidos. La proteina mas corta
tiene una longitud de 6 aminoacidos mientras que la mas larga contiene 36.805 aminoacidos. En
total la base de datos contiene 4.118.133.053 aminodcidos, lo que supone una media de 341
aminoacidos por proteina. En la siguiente grafica (figura 3.3) se puede observar como la mayor
parte de las proteinas de la database NR tienen una longitud entre 100 y 500 aminoacidos.
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Figura 3.3: Tamario de las secuencias en la base de datos NR

3.1.3 Numero de threads

También estudiaremos el comportamiento del programa cuando se usa el argumento
opcional -num_threads, con el cual podemos escoger el nimero de threads que se van a ejecutar en
blastp. De esta manera también podemos hacer un estudio comparativo para ver y estudiar como
funciona y qué mejoras presenta la version multi-core creada por el NCBIL

La aplicacion blastp puede lanzar varios hilos de trabajo paralelos durante la fase n® 2 comentada en
el capitulo anterior. Todos ellos realizan el mismo trabajo s6lo que con distintos datos. La version
multi-core divide la base de datos haciendo que cada thread acceda s6lo a una parte de ella. De esta
manera se compara la secuencia query con las secuencias conocidas de forma paralela si se dispone
de un procesador multi-core.
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3.2 Entorno experimental y metodologia
3.2.1 Descripcion del H/'W y del S.O

Para el analisis de rendimiento que se detalla a continuacion se ha hecho uso de un portatil
con un procesador Intel Core2 compuesto por 2 nucleos con una memoria RAM de 1 GB. Hay que
mencionar que para tomar las medidas de este capitulo no se ha hecho uso de la bateria, sino que en
todo momento se ha usado la alimentacion de red para evitar asi la reduccion de frecuencia de CPU
que ocurre al trabajar en modo bateria para ahorrar en consumo.

Por otro lado, para analizar con mas profundidad la versién multi-core de blastp se ha usado una
computadora con procesador Intel Core2 Quad con 4 ntcleos y 4 GB de memoria RAM.

Las especificaciones de las computadoras se muestran a continuacion:

Computadora 1

Hardware

CPU Intel Core2 T5200 1.60Ghz (2 cores)
Cache L1 64 KB

Cache L2 2 MB

RAM 1GB

'Sistema Operativo

Ubuntu 10.10 (Maverick) (32 bits)
Nucleo Linux 2.6.35-22-generic

'Software

BLAST+ 2.2.24 (lanzado en Agosto 2010)
PAPI 4.4.1 (lanzado en Octubre 2010)

Computadora 2
Hardware \

CPU Intel Core2Quad Q9400 2.66Ghz (4 cores)
Cache L1 64 KB

Cache L2 6 MB (2 x 3 MB, 1 caché L2 para 2 cores)
RAM 4 GB

'Sistema Operativo

Debian GNU 5.0.4 (64 bits)
Nucleo Linux 2.6.32-3-generic

'Software

BLAST+ 2.2.24 (lanzado en Agosto 2010)
PAPI 3.7.1 (lanzado en Noviembre 2009)

Figura 3.4: Caracteristicas de las computadoras usadas
para el andlisis de rendimiento.
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3.2.2 Métodos para tomar las medidas

Las medidas tomadas sobre la aplicacion han sido sobre la ejecucion del programa en su
totalidad, es decir, sin excluir operaciones de entrada/salida, inicializacion de datos, etc. Para esto se
ha hecho uso del comando time, de contadores hardware (PAPI) y de un profiler (gprof).

* Time: se trata de un comando de los sistemas operativos Unix mediante el cual se obtienen
estadisticas sobre el tiempo de ejecucion de un proceso. Cuando dicho proceso termina su
ejecucion, se muestra un informe con el tiempo total de respuesta, el tiempo de computo y el
tiempo de llamadas al sistema.

* PAPI (Performance Application Programming Interface): es una API para acceder a los

contadores hardware de rendimiento, disponibles en la mayoria de los procesadores actuales.
Estos contadores son un conjunto de registros que cuentan la ocurrencia de determinados
eventos en el procesador. Al incorporar PAPI a una seccion de codigo, es posible pasar
(como parametro) a la aplicacion los nombres de los contadores hardware de los que se
quiere obtener informacion. Para realizar las medidas de este capitulo se ha usado la version
mas reciente (4.1.1) y se han usado los siguientes contadores:

o

PAPI TOT CYC  Numero total de ciclos de la aplicacion. Se usara para calcular el
tiempo de computo de las ejecuciones.

o PAPI TOT INS Numero total de instrucciones ejecutadas. Se puede usar para
calcular CP1y TPL
o PAPI L2 TCA Numero de accesos a la caché L2. Para estudiar el uso de la caché.

o PAPI L2 TCM Numero de fallos caché L2. Para calcular el porcentaje de fallos.
o PAPI TLB DM Numero de fallos en TLB de datos.

o PAPI TLB IM Numero de fallos en TLB de instrucciones.

o PAPI BR CN Numero de instrucciones de salto ejecutadas.

o PAPI BR _MSP Numero de saltos mal predichos.

* Profiler: se ha hecho uso de la herramienta gprof, que permite realizar un analisis de
rendimiento midiendo el comportamiento del programa mientras estd en ejecucion,
particularmente la frecuencia y duracion de las llamadas a funciones.

3.3 Experimentos

A continuaciéon se muestran los experimentos realizados para observar el rendimiento de la
aplicacion. Se ha realizado primero un estudio sobre el tiempo de lectura de la database, ya que se
espera que sea un factor importante en el rendimiento. Después se han realizado distintos
experimentos diferenciados en cuatro apartados seglin: la longitud de las gueries, la informacion
proteica de las gueries, el nimero de gueries y el nimero de threads.

Las métricas usadas son varias:

* De los datos extraidos mediante PAPI se van a mostrar: ciclos de reloj, nimero de
instrucciones, numero de saltos, accesos a 1.2, fallos de caché, fallos de TLB, etc.
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* Para mostrar tiempos de respuesta de blastp se usan segundos. En algunas ocasiones se
mostraran los segundos de ejecucion total de la aplicacion (Tiempo) y en otras la suma del
tiempo de computo y de llamadas a sistema (Tc+Ts). Esta diferenciacion se realiza para
observar si la lectura de la database provoca esperas de E/S que afecten en el rendimiento.
Ademas se va a mostrar la media de tiempo por aminoacido de la secuencia query, medida
en micro-segundos.

* De los datos obtenidos mediante el profiler gprof se van a mostrar la duracion en segundos
de las funciones con mayor consumo.

3.3.1 Estimacion empirica del tiempo de lectura de la database

Se ha procedido a estudiar el tiempo de la lectura de la base de datos ya que se espera que
sea un factor importante en el rendimiento. En los computadores utilizados no se tiene memoria
suficiente para almacenar el tamano de la database, asi que durante la ejecucion blastp se queda sin
datos en memoria y hay que esperar que se traigan nuevos datos del disco. De esta forma, cada vez
que se necesita traer datos de la database de disco a memoria, la CPU debe esperar por esos datos y
asi poder seguir con la ejecucion. Este hecho puede provocar importantes retrasos en la ejecucion ya
que puede ocurrir que se tarde mas en traer los datos a memoria que en realizar las operaciones con
estos datos.

A continuacidn se muestra un ejemplo grafico de este problema (figura 3.5).

Disco
CPU

Peticion Lect.
Tiempo Espera
Peticion Lect.
Tiempo Espera
Peticion Lect.
Tiempo Espera
Peticion Lect.
Tiempo Espera

Figura 3.5: Ejemplo de tiempo de espera de CPU

En este ejemplo se puede observar como la CPU realiza sus operaciones y hace una peticion de
lectura a memoria. Como en memoria no hay los datos necesarios se debe realizar una lectura a
disco. Mientras se traen de disco a memoria los datos que necesita la CPU para continuar, esta se
encuentra en espera. Una vez la CPU retoma su trabajo el disco continua trayendo mas datos a
memoria hasta que la CPU de nuevo se encuentra que debe esperar a que el disco traiga nuevos
datos para seguir trabajando.

Para estudiar el tiempo de lectura de la database se ha realizado un experimento en el que se ha
medido el tiempo de lectura de un fichero. Para ello se ha procedido a medir el tiempo de ejecucion
de un pequenio programa escrito en C que abre un fichero y lee su contenido. Aprovechando que la
database esta compuesto por diferentes ficheros, se ha medido el tiempo de lectura de uno de estos
ficheros. El fichero seleccionado ha sido “nr.00.phr”, se trata de un archivo de 1.302 MB.

Después de 5 pruebas en la computadora de 2 ntcleos, el tiempo de lectura ha sido de 58 + 2.74
segundos. Por lo que el sistema lee a un ritmo aproximado de 22 MB/s. De esta forma podemos
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calcular que la database que ocupa 9.5GB necesita sobre unos 442 segundos (7 minutos y 22
segundos) para ser leida completamente. En la computadora de 4 nucleos, al tener mejores
prestaciones, necesita sobre unos 84 segundos (1 minuto y 24 segundos) para realizar la lectura de
la database, con un ritmo aproximado de 118 MB/s. Este dato significa que cualquier ejecucion de
blastp tendra como tiempo de respuesta minimo estos tiempos calculados antes.

En los siguientes apartados veremos coOmo hay ejecuciones menores a este tiempo, por lo que
deducimos que blastp no usa toda la informacion almacenada en la database. La database contiene
informacion y atributos para cada secuencia que blastp no necesita para su ejecucion como pueden
ser: nimero y fecha de patente, descripcion de la secuencia, tipo de proteina, tipo de organismo a la
que pertenece, nombre del organismo, funcion, etc.

3.3.2 Efecto de la longitud en el rendimiento

En este apartado el objetivo es identificar los cambios en el rendimiento de blastp cuando
variamos la longitud de las gueries. Cuanto mayor es el tamafo de la guery, mayor es la cantidad de
instrucciones a ejecutar. Mediante este experimento podremos observar la forma en que se
incrementa la cantidad de computo de la aplicacion al aumentar la longitud de la guery.

A continuacién se muestra una grafica sobre el tiempo de ejecucion de blastp con las distintas

queries antes mencionadas en la figura 3.1. En ella se puede ver el tiempo total de ejecucion
(Tiempo) y la suma del tiempo de computo y de llamadas a sistema (Tc+Ts) (figura 3.6):

Computador 1: Core2

3000 3000
2500 2500
2000 2000
[72]
[e]
T 1500 1500
g) B Tiempo
Q B Tc+Ts
? 1000 1000
500 . 500
= me B D 0
64 128 256 512 1024 2048 4096

Longitud de la secuencia

Figura 3.6: Tiempos de ejecucion con queries de distintos tamanos

Al incrementar la longitud de las queries nos encontramos que el tiempo de ejecucion, en general,
también se incrementa debido al incremento de trabajo a realizar. Se debe mencionar que los
incrementos de tiempo no son del todo lineales, debido al factor antes mencionado sobre la
informacion proteinica de cada query, hay que recordar que las secuencias usadas en este apartado
son todas distintas entre ellas y puede ser que algunas gueries requieran de mas computo que otras
sin tener en cuenta su tamaiio.

43



En la grafica se puede observar la diferencia entre el tiempo total de ejecucion y el tiempo de
computo (ya sea de CPU o de llamadas al sistema). No se trata de una diferencia que aumente al
incrementar el tamafio de la query, se trata de una diferencia que parece ser constante. Es decir, no
tiene relacion ninguna con la longitud de la secuencia de entrada.

Se trata del tiempo de espera al disco mencionado en el apartado anterior. Hay momentos en el que
la CPU se queda sin datos para procesar y tiene que esperar a que el disco traiga mas datos a
memoria. Estas esperas a disco provocan un retraso en el tiempo de ejecucion que observando la
grafica podemos apreciar que no aumenta al incrementar la longitud de la query.

El hecho de que este tiempo de espera no aumente se debe a que cuanto mayor es el tamafio de la
query mas cantidad de computo tiene que realizar la CPU dando una cierta ventaja al disco que hace
disminuir esta espera.

De esta forma podemos analizar que cuanto mayor es el tamafio de la query mayor es la reduccion
del porcentaje de tiempo de espera. Asi que para queries de pequeio tamano tendremos mucho
tiempo de espera a disco, mientras que para queries de gran tamafio una mayor parte del tiempo de
acceso a disco queda oculto, ya que la CPU tarda mas en procesar los datos.

También podemos ver este fendmeno si observamos el tiempo medio que se tarda por aminoacido
de la query de entrada (figura 3.7):
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Fig. 3.7: Segundos por aminoacido para queries de distinto tamaro

Se puede apreciar como en las gueries de menor tamafio el tiempo medio por aminoacido es mucho
mayor. Pero a partir de queries de unos 2048 aminoacidos se observa como el tiempo por
aminoacido apenas se reduce, ya que el tiempo de espera a disco disminuye, quedando solapado por
el aumento de computo.

A continuacion se muestra el CPI (ciclos por instruccion) de la aplicacion segun variamos la

longitud de las queries (figura 3.8). El CPI mostrado incluye la parte de computo de la ejecucion
excluyendo los tiempos de espera por el disco.
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Fig. 3.8: Ciclos por instruccion segun longitud de la query

Se observa que el CPI ronda valores entre 0.8 y 0.9 ciclos por instruccion. Este valor no es muy
bueno ya que el mejor CPI tedrico posible en los computadores usados en el andlisis es de 0.333
ciclos por instruccion. Este hecho da a entender que existe algin factor que no permite ejecutar
varias instrucciones a la vez en cada ciclo. Este valor de CPI superior al valor ideal puede ser
provocado por dependencias de datos (especialmente accesos a memoria que fallan en caché),
dependencias de control (fallos de prediccion de saltos) o saturacidon de ciertos recursos (unidades
de computo o de acceso a memoria).

Si se observa el porcentaje de accesos a L2 (o lo que es lo mismo, fallos de caché L1) por
instruccion (figura 3.9), se puede ver una posible correlacion de la curva con la grafica anterior.

Computador 1: Core2
2,00%

1,80%
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1,20%
1,00%
0,80%
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0,40%
0,20%
0,00%
64 128 256 512

1024 2048 4096

Accesos a L2 por instruccién

Longitud de la secuencia

Fig. 3.9: Porcentaje de accesos a caché L2 por instruccion ejecutada

Ademas, podemos observar el porcentaje de saltos mal predichos por instruccion (figura 3.10):
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Fig. 3.10: Porcentaje de saltos mal predichos por instruccion

También se puede apreciar la posible correlacion con el CPI. La penalizaciéon que asocia una
prediccion incorrecta de salto afecta al rendimiento y a la vez a su CPIL.

Si analizamos el nimero de fallos en la caché L2, o lo que es lo mismo, el numero de accesos a
memoria, se observa un ligero aumento de fallos al incrementar el tamafio de la query (figura 3.11).
La mayoria de estos accesos a memoria corresponden a fallos a la hora de leer las secuencias de la
database.
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Fig. 3.11: Numero de fallos en caché L2 usando queries de distinto tamanio (en millones)

Este hecho provoca el porcentaje de accesos a memoria por instruccion decrezca como se puede
observar en la siguiente grafica (figura 3.12):

46



[

S Computador 1: Core2

S 0,035%

2 0,030%

&  0,025%

N

-

©  0,020%

2

S 0,015%

&

2 0,010% I|||I

T

< 0,005% .
o b

©

= 64 128 256 512 1024 2048 4096
§ Longitud de la secuencia

Fig. 3.12: Porcentaje de accesos a memoria por instruccion ejecutada

Finalmente, se estudia el consumo de recursos de cada fase de la que consta la aplicacion. Se
obtiene que la fase con mas peso o consumo en tiempo y recursos es la fase n® 2 (fase de scanning:
compara la query con las secuencias de la base de datos y realiza las extensiones). A continuacion
podemos ver el porcentaje de tiempo que consumen las 3 fases de las que consta blastp en funcion
de la longitud de secuencia (figura 3.13):

Computador 1: Core2
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Fig. 3.13: Porcentaje de tiempo para cada fase de blastp

Observando el grafico se puede ver como la fase n° 1 (setup) es inapreciable y se trata de una fase
que podemos despeciar en el estudio. La fase n° 3 (trace-back) aunque no es despreciable, consume
poco tiempo y cuanto mayor es el tamafio de la guery menor es su peso en el rendimiento. La fase
n° 2 (scanning) es la fase que mas computo necesita y la fase a atacar en futuras optimizaciones. Se
trata de la fase mas dominante en la ejecucion y su peso e importancia aumenta a la vez que crece la
longitud de la secuencia query.
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3.3.3 Efecto de la informacion proteinica en el rendimiento

Como ya se ha comentado en el apartado 3.1.1, el contenido de una secuencia repercute
tanto en el tiempo de computo como en el espacio de memoria usado. Se espera que el contenido de
cada query pueda hacer variar la cantidad de trabajo. Cuanta mas diversificacion en las words mas
words hay que almacenar en la LUT provocando un aumento de su tamafio, y ademads, si da el caso
que hay words muy comunes en la base de datos se tendran que almacenar mas hits en memoria.
Ambos casos pueden provocar una tasa mayor de fallos de accesos tanto en caché como en memoria
(accesos a la tabla hash de la LUT). En los siguientes experimentos se analiza la variabilidad de los
tiempos de ejecucion, numero de ciclos, instrucciones, etc. con distintas queries del mismo tamafio.

Vamos a tomar las medidas del conjunto de 16 queries mostradas en la figura 3.2. Como todas
tienen la misma longitud, las diferencias encontradas se deberdn unicamente a su contenido. En la
siguiente figura se muestran los tiempos de ejecucion de las queries ordenado de menor a mayor
incluyendo los tiempos de E/S (figura 3.14):
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Figura 3.14: Tiempos (con E/S) de distintas queries del mismo tamario ordenadas por tiempo

Se puede apreciar como el contenido proteinico afecta al tiempo de ejecucion. Los tiempos han sido
de 267 + 20.3 segundos, desviacion suficiente para comprobar este efecto. También se puede ver
como hay queries con un tiempo cercano a 200 segundos y otras cercanas a los 300 segundos.

Si observamos el nimero de ciclos y de instrucciones se puede apreciar mejor la variabilidad que

produce la informacion proteinica. En la siguiente figura se muestran ciclos e instrucciones de las
queries ordenadas por tiempo de ejecucion (figura 3.15):
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Figura 3.15: Numero de ciclos e instrucciones de las queries ordenadas por tiempo
(en miles de millones)

Aunque en la grafica anterior (figura 3.15 pueda parecer que hay mucha diferencia entre las query
en cuanto a la proporcion de ciclos e instrucciones, podemos ver como el CPI es muy similar. A
continuacion se muestra el CPI (figura 3.16):
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Figura 3.16: Ciclos y tiempo por instruccion

Mientras que el CPI sin incluir los ciclos de E/S parece ser constante, el CPI incluyendo la E/S
demuestra que la informacion proteinica que contiene una secuencia es un factor a tener en cuenta
en el rendimiento. Si las subsecuencias o words de una query son muy o poco repetitivas a lo largo
de la secuencia afecta en el tamafio de la LUT, provocando una tasa mayor de fallos de acceso.
Ademas, al comparar con la database se almacenan distintas cantidades de hits dependiendo del
contenido de la query, hecho que afecta también al rendimiento.

3.3.4 Efecto del numero de queries en el rendimiento

Como ya se ha comentado en este capitulo, al ejecutar blastp podemos pasar como
parametro de entrada una sola guery o varias de ellas. En este apartado se estudiard como repercute
en el rendimiento el nimero de gueries. Se analizara si es mejor hacer N busquedas de una query o
una busqueda de N queries.
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Se van a medir las 16 queries de la figura 3.2 por separado y, a continuacidon, se van a medir
agrupandolas en grupos de 2, 4 y 8, hasta hacer una ejecucion con las 16 queries ala vez. Se espera
obtener un tiempo de ejecucion menor al juntar distintas queries en una sola bisqueda ya que de
esta manera solo se accede una vez a la database y no una vez para cada query.

En la figura 3.12 ya tenemos las medidas tomadas de las queries por separado, es decir, una
ejecucion de blastp por query. Asi que ahora vamos a agrupar las qgueries en parejas y en orden de
rapidez de ejecuciodn, es decir, se va a lanzar blastp con las queries 1-2 (las més rapidas), 3-4,... y
15-16 (las mas lentas). Los resultados se muestran a continuacion (figura 3.17):
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Figura 3.17: Tiempos de ejecucion con E/S en grupos de 2 queries e individualmente

Podemos observar como la aplicacion tarda entre un 25-30% menos si trabajamos con dos gueries a
la vez y no por separado. Este hecho se produce porque blastp, sin tener en cuenta el nimero de
queries que hay que tratar, solo hace una lectura de la database. Es decir, aprovecha cada dato que
se lee de la database para usarlo con todas las queries que se le han pasado como entrada. De esta
manera, se reducen las instrucciones a ejecutar en la aplicacion (figura 3.18). Ademas, si tenemos
mas queries tenemos mas computo, y asi no hay tanta espera en la CPU por lecturas a disco.

Computador 1: Core2

B Conjuntamente
B Individualmente

9-10 11-12 13-14 15-16

800
70
60
50
40
30
20
10

O O O O o o o

0

Instrucciones (en miles de millones)

Grupos de secuencia

Figura 3.18: Numero de instrucciones en grupos de 2 e individualmente
(en miles de millones)

A continuaciéon podemos ver que cuantas mas queries se tienen, menor es el tiempo de ejecucion
(figura 3.19):
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Figura 3.19: Tiempos de ejecucion en grupos de 4, 8 y 16 queries e individualmente

En la figura anterior se puede apreciar como al incrementar el nimero de queries, la aplicacion
tiene un tiempo de ejecucion menor, llegando a reducir entre un 55-60% el tiempo si se ejecuta la
aplicacion con las 16 queries del conjunto de prueba a la vez.
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Fig. 3.20: Segundos por aminodcido para conjuntos de queries del mismo tamario
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Si analizamos el tiempo medio que se tarda por aminoéacido de las queries de entrada (figura 3.20),
podemos apreciar como el tiempo va disminuyendo al agrupar més queries. Es decir, el hecho de
agrupar las queries en una misma busqueda resulta mas efectivo que hacer varias busquedas por la
razon de que el contenido de la database se lee menos veces en total.

El CPI (figura 3.21) se comporta de igual manera que en el apartado 3.3.2. No se trata de un buen
promedio ya que el CPI ideal es de 0,33 en las computadoras utilizadas. Puede ser provocado por
dependencias de datos (especialmente accesos a memoria que fallan en caché), dependencias de
control (fallos de prediccion de saltos) o saturacion de ciertos recursos (unidades de computo o de
acceso a memoria).
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Fig. 3.21: CPI agrupando las queries

3.3.5 Efecto del numero de threads en el rendimiento

Al lanzar blastp podemos especificar el nimero de threads que se van a ejecutar. De esta
manera se puede paralelizar parte del computo siempre que dispongamos de un procesador multi-
core. El objetivo de este apartado es analizar el comportamiento de esta versidon multi-core para
encontrar posibles problemas de rendimiento.

De las tres fases de las que se compone la aplicacion, cuando lanzamos blastp en su modo multi-
core solo se ejecuta de forma paralela la fase n® 2. Las fases n° 1 y 3 siempre se ejecutan de forma
secuencial. La fase n® 2, comentada en el capitulo anterior, es la encargada de leer todas las
secuencias conocidas en la database y hacer las comparaciones con las queries, almacenando hits
que mas tarde intentara expandir.

Blastp reparte el trabajo a los distintos threads lanzados, dandoles a cada thread distintos
datos para realizar el mismo trabajo. Es decir, se divide la database en varios bloques o porciones
que se reparten entre sus threads. De esta manera se puede paralelizar el computo
significativamente. Cada thread compara la query o queries con su propio bloque de datos de la
database. Cuando un thread termina de ejecutar un bloque pide el siguiente, mientras queden
bloques disponibles.

A continuacion se van a estudiar dos escenarios particulares que se espera que sean de importancia
en el rendimiento de la versiéon multi-core creada por el NCBI: la forma en que se dividen los
bloques y la asignacion de los threads en los cores. Ademas de la computadora de 2 nticleos (Intel
Core2), para analizar con mas profundidad la version multi-core de blastp también se ha hecho uso
de una computadora con 4 nucleos (Intel Core2 Quad).
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Division de los datos

El hecho de tener la database almacenada en disco sin fragmentacion es importante para la
ejecucion de blastp. Tener la base de datos desfragmentada reduce el tiempo de movimiento y
rotacion del cabezal del disco minimizando el tiempo de espera. Ademas se favorece la localidad
temporal, ya que al pedir una secuencia a la database, cada bloque leido de disco contiene la
secuencia que se ha pedido y varias secuencias mas que se usardn en las siguientes iteraciones.

La forma en que la aplicacion trata las secuencias de la database es mediante un bucle. El bucle
tiene tantas iteraciones como secuencias conocidas existen en la base de datos. Cada iteracion pide a
la database la siguiente secuencia a tratar y la procesa, hasta que no quedan mas secuencias a
procesar.

Si medimos mediante la libreria time.h el tiempo de ejecucion de la funcion que lee las secuencias a
procesar de la database, podemos observar importantes diferencias en el tiempo de lectura de las
secuencias. La siguiente figura muestra en pseudocodigo el bucle mencionado (figura 3.22).

indice = siguienteSecuencia ( database ) ;

Mientras ( indice <= FIN )

[t1 = clock () ;|

|5ecuencia = leerSecuencia ( indice , database ) ;|

[t2 = clock () ;|

procesarSecuencia ( secuencia ) ;
indice = siguienteSecuencia ( database ) ;

Fin Mientras

Fig. 3.22: Pseudocodigo de la lectura de secuencias de la database. En azul,
la funcion encargada de leer la secuencia, y en rojo, los lugares
en el codigo donde se han tomado las medidas de tiempo.

Los tiempos tomados al leer una secuencia de la database en la version secuencial se encuentran
entre dos rangos diferentes: de 1 a 500 micro-segundos y de 1000 a 50.000 micro-segundos. Si
estudiamos los tiempos superiores a 1000 micro-segundos, en la siguiente grafica podemos observar
como la version multi-core resulta tener muchos mas accesos con tiempos superiores a 1 mili-
segundo que usando la version secuencial (figura 3.23):
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Figura 3.23: Numero de esperas superiores a 1 ms (secuencial y multi-core)

Podemos observar como en la version secuencial el nimero de esperas superiores a 1 ms son
constantes, sobre 30 ocasiones en cada ejecucion. Mientras que en la version multi-core (2 threads)
el nimero de esperas es mas elevado y ademas se incrementa al aumentar la longitud de la query.

Estos incrementos son debidos a la mala divisiéon que hace blastp de la database en la version
multi-core. De las mas de 12 millones de secuencias que almacena la database usada en este
analisis, la aplicacion divide las secuencias en rangos demasiado grandes. Es decir, que los distintos
threads piden datos que quizéds se encuentran en diferentes sectores, hecho que provoca muchos
cambios de cabezal en una computadora con un solo disco.

Si se muestran los tiempos méaximos de acceso, se puede ver con mas claridad como en la version
multi-core son mucho mas grandes, llegando algunas veces a medio segundo (figura 3.24):
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Figura 3.24: Tiempos maximos en mili-segundos de lectura de secuencias
(secuencial y multi-core)

Una posible solucion a este problema puede ser repartir las secuencias en rangos mas pequefios o
quizas asignar en orden cada secuencia a un thread distinto. Otra posible solucion a este problema
es el uso de sistemas con varios discos, o con RAIDs, con los que se podria aprovechar mejor esta
particion de la database.
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Si se observa el porcentaje del tiempo total de ejecucion que blastp dedica a la E/S (figura 3.25) se
puede apreciar con mas claridad este fendbmeno:

90% Computador 2: Core2Quad
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o W 1 threads
40% M 2 threads
30% 4 threads
20%

d a

0%

512 1024 2048 4096

Longitud de la secuencia

Porcentaje de E/S sobre el tiempo de ejecucion

Fig. 3.25: Porcentaje de tiempo de ejecucion que blastp dedica a E/S

Existe una relacion entre el numero de threads lanzados y el tiempo que dedica la aplicacion a la
E/S. Asi que hay que estudiar una manera de acceder a las secuencias en el modo multi-core de una
forma mas Optima.

Pero éste no es el unico problema que presenta la division de datos de blastp. Ademas de dividir la
database en bloques demasiado grandes que provocan mayores esperas a disco, estos bloques no
son equitativos ni en nimero de secuencias ni en numero de aminoacidos. Podemos observar que el

nimero de ciclos consumidos por cada core del procesador no es equitativo en la fase n° 2 (figura
3.26):
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Fig. 3.26: Ciclos consumidos por core en la fase n°2
(en miles de millones). No incluye tiempo de E/S.
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Este hecho provoca que los distintos cores tengan cargas de trabajo distintas, provocando que los
threads con menos carga de trabajo queden a la espera del thread mas lento y con mas carga de
trabajo. De esta manera, durante algunos instantes se tienen uno o varios cores desaprovechados.
Asi que hay que estudiar como repartir de forma equitativa el trabajo a realizar entre los distintos
threads.

Asignacion de threads en los cores

Cuando un proceso lanza varios threads, es interesante asignar cada thread a un core distinto
para aprovechar el paralelismo en los sistemas multi-core. Generalmente, el sistema operativo es el
encargado de asignar los threads en los cores. Asi que, en una computadora con dos cores, si se
lanzan dos threads y los dos se empiezan a ejecutar en el mismo core, el sistema operativo se
encarga de hacer migrar uno de los dos al core que no se estd usando o tiene menor carga de trabajo.

Pero a la hora de hacer el andlisis en muchas ocasiones este hecho no sucedia asi. S6lo en algunas
ocasiones el consumo de CPU era més o menos equivalente en cada core, en el resto de ocasiones
podriamos encontrarnos con un core con una carga de trabajo mucho mayor al otro. De esta manera,
en algunos casos era mas o igual de eficiente la version secuencial que la multi-core, como se puede
ver en la siguiente grafica (figura 3.27):
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Figura 3.27: Comparacion de tiempo con E/S en segundos (secuencial y con 2 threads)

Se puede observar como el speedup es la mayoria de veces peor con dos threads. Si se fuerza a cada
thread a ser ejecutado en un core distinto mediante la libreria sched.h, el rendimiento mejora
mucho, como se puede apreciar en la siguiente grafica (figura 3.28):
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Figura 3.28: Comparacion de tiempo con E/S en segundos de la version multi-core
forzando y sin forzar la ejecucion de cada thread en un core

Asi que para obtener mayor rendimiento aprovechando al maximo el paralelismo de los sistema
multi-core se puede forzar a cada thread a ser ejecutado en distinto core, siempre y cuando haya
cores disponibles.

Resultados de los experimentos multi-core

Usando la libreria sched.h para forzar a cada core a ejecutar un thread, se dispone a mostrar
y comentar los resultados obtenidos al usar la version multi-core de blastp.

En la siguiente grafica podemos observar una comparativa de ciclos consumidos y instrucciones

ejecutadas entre la version secuencial y la multi-core, cuando tenemos una sola guery de distintos
tamanos (figuras 3.29 y 3.30):
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Fig. 3.29: Ciclos con una query de distintos tamarios usando varios threads
(en miles de millones). No incluye tiempo de E/S.
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Figura 3.30: Total de instrucciones eejcutadas con una query usando varios threads

Observando las graficas podemos ver que tanto en la version secuencial como en la multi-core se
ejecuta el mismo numero total de instrucciones, consumiendo menos ciclos de ejecucion en la
version multi-core. El speedup calculado por ciclos es una mejora interesante (ver figuras 3.31 y
3.32), pero hay que recordar que, como se ha hablado en los apartados anteriores, la version multi-
core tiene un tiempo de espera a disco mayor. Esto provoca que el speedup de la version multi-core
sea mucho menor del esperado, llegando a ser en algunas ocasiones mas rapida la version

(en miles de millones)

secuencial.
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Fig. 3.31: Speedup entre las versiones secuencial y con 2 threads
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Fig. 3.32: Speedup entre las versiones secuencial y con 4 threads

Podemos observar en las graficas anteriores como las gueries de menor longitud tienen un speedup
peor. Es decir, en la version multi-core, aquellas gueries con menor computo son mas penalizadas

por los tiempos de espera a disco.
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Capitulo 4

Optimizaciones

En este capitulo se muestran las distintas optimizaciones que han sido implementadas en
blastp y los resultados obtenidos, que van a ser comparados con el rendimiento de la aplicacion
original. Aunque se trata de una compleja aplicacion, gracias al analisis de rendimiento realizado
anteriormente, podemos mejorar algunos aspectos que afectan de forma positiva en el rendimiento.
Estas optimizaciones se pueden clasificar en dos tipos: para sistemas con un Unico procesador y
para sistemas multi-core.

4.1 Optimizando la aplicacion para un procesador

Al realizar el estudio de blastp, se puede apreciar a simple vista que se trata de una
aplicacion compleja y de grandes dimensiones. Cuando hay que realizar optimizaciones es dificil
modificar una aplicacion de estas magnitudes. Asi que se deben estudiar aquellas partes del codigo
mas significativas, analizar las funciones ejecutadas mas veces, las que demoran mas en su tiempo
de respuesta, etc. Se deben encontrar aquellas partes del programa que ralentizan el proceso, que
representan un cuello de botella y se debe analizar si pueden ser optimizadas.

Si ejecutamos blastp con las 7 queries usadas en el capitulo anterior (figura 3.1) por separado,
mediante el profiler gprof podemos obtener aquellas funciones del codigo de la aplicacion que
acumulan un tiempo total de ejecuciéon mayor. Las dos funciones que mas tiempo de ejecucion
consumen son s BlastSmallAaScanSubject y s BlastAaWordFinder TwoHit, que llamaremos a
partir de ahora SCAN y FIND respectivamente. Sus porcentajes de tiempo de ejecucion sobre la
ejecucion total del proceso son los siguientes (figura 4.1 y figura 4.2):
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Fig. 4.1: Porcentaje de tiempo de ejecucion de la funcion
's BlastSmallAaScanSubject' sobre la ejecucion de blastp.
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Fig. 4.2: Porcentaje de tiempo de ejecucion de la funcion
's_BlastAaWordFinder TwoHit' sobre la ejecucion de blastp.

La funcién SCAN es la encargada de detectar y almacenar los /its entre una secuencia de la base de
datos y la query. Es la funcién mas significativa para queries de tamafno pequeiio. En cambio, la
funcion FIND se encarga de intentar extender los Aits que la funcion anterior ha detectado y es la
mas significativa para queries de gran tamano.

Se puede apreciar como s6lo la suma de estas dos funciones representan entre el 40% y el 70% de la
ejecucion total del programa dependiendo de la informacion proteinica de la query aunque
sobretodo de su longitud. Ademas, se puede apreciar que, dependiendo de la longitud de la
secuencia, ambas funciones tienen un comportamiento inverso. Si se aumenta la longitud de la
query, el peso en la aplicacion de la funcion SCAN disminuye mientras que el de la funcion FIND
aumenta (figura 4.3).
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Fig. 4.3: Comparacion de porcentajes de tiempo de ejecucion de las funciones
's_BlastSmallAaScanSubject' y 's_BlastAaWordFinder TwoHit'
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El aumento de longitud proporciona un peso mas importante en la ejecucion a la funcion FIND
mientras que SCAN lo pierde, aunque para queries pequefias tiene una gran importancia en el
rendimiento.

Ambas funciones contienen un bucle principal que es el que consume la mayor parte del tiempo de
ejecucion de la funcion. Para la funcion SCAN, el bucle recorre las words (tripletas de aminoacidos)
de la secuencia de la base de datos para detectar kits con la query de entrada. Para la funcion FIND,
el bucle recorre cada Ait que la funcion anterior ha detectado.

Como ejemplo, a continuacion se muestra la estructura del bucle principal de la funcion SCAN
(figura 4.4). Este bucle se ejecuta una vez por cada secuencia almacenada en la database y tiene un
nimero de iteraciones igual a N-2, donde N es el nimero de aminoacidos que contiene cada
secuencia. Su funcionalidad es recorrer las tripletas de aminoacidos de la secuencia conocida y
comprobar si existe alguna tripleta igual en la secuencia query, si se da el caso se procesa un Ait.

for (s = s first; s <= s last; s++) {
index = ComputeTableIndexIncremental(word length, csize, mask, s, index);
if (PV TEST(pv, index, PV ARRAY BTS)) {

/* PROCESAR HIT */

Fig. 4.4: Codigo del bucle principal de la funcion s_BlastSmallAaScanSubject (SCAN)

Para intentar optimizar la ejecucion de las funciones SCAN y FIND comentadas anteriormente se
han implementado las siguientes optimizaciones:

* Funciones inline: el compilador inserta el codigo completo de una funcion en cada lugar
donde se llama, en vez de generar el cddigo para llamar dicha funcion. De esta forma
podemos evitar llamadas multiples a funciones de pequefio tamano.

Por ejemplo, para el codigo descrito anteriormente (figura 4.4), se ha declarado la funcién
ComputeTablelndexincremental como inline ya que contiene poco codigo y es llamada en
multiples ocasiones (figura 4.5).

for (s = s first; s <= s last; s++) {
index = ((index << csize) | s[word length-1]) & mask;
if (PV TEST(pv, index, PV ARRAY BTS)) {

/* PROCESAR HIT */

Fig. 4.5: Ejemplo de uso de funciones inline
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Expresiones condicionales: se han substituido los saltos condicionales por expresiones
condicionales que son evaluadas en tiempo de ejecucion y no provocan ningun salto en el
flujo de la aplicacion.

Por ejemplo, para el codigo descrito anteriormente (figura 4.5), el salto de la sentencia if’
provoca un importante numero de fallos de prediccion de saltos ya que la condicion es dificil
de predecir. Estos fallos se pueden solventar utilizando expresiones condicionales como se
muestra en el siguiente codigo (figura 4.6).

Como solo se deben procesar aquellas tripletas que cumplen la condicion de la sentencia if,
primero podemos almacenar en un vector auxiliar (aux) aquellas tripletas que cumplen dicha
condicion y mas tarde se pueden procesar en otro bucle provocando menos fallos de
prediccion de saltos ya que los saltos de un bucle for son mas faciles de predecir.

for (s = s first; s <= s last; s++) {
index = ((index << csize) | s[word length-1]) & mask;

aux[jl.s = s;
aux[jl.index = index;

j = (PV TEST(pv, index, PV ARRAY BTS))? j+1 : j;
}

for (k=0; k<j; k++) {

/* PROCESAR HIT */

Fig. 4.6: Ejemplo de uso de expresiones condicionales

Loop unrolling: aumenta la velocidad de los bucles al reducir el nimero de instrucciones
que controlan la iteracion. De esta forma se minimizan las penalizaciones por saltos y
permite reordenar las instrucciones eliminando dependencias de datos. Como desventaja,
este tipo de optimizacion aumenta el tamafio del codigo fuente y dificulta su lectura.

Por ejemplo, para el codigo descrito anteriormente (figura 4.6), ambos bucles for pueden ser
desenrollados. En el siguiente cddigo podemos ver como se implementa esta optimizacion
en el primer bucle para 2 iteraciones (figura 4.7).

Hay que tener en cuenta que al no saber el numero de iteraciones en tiempo de compilacion,
debemos implementar el loop unrolling tanto para el caso de que se ejecuta un nimero de
iteraciones par como impar. Ademas, si se renombran las variables temporales se favorece la
ejecucion fuera de orden.
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for (s=s first; s < s last; s+=2) {

((index2 << csize) | s[word length-1]) & mask;
((index << csize) | s[word length] |} & mask;

index
index2

aux[jl.s = s;
aux[j].index = index;

j = (PV_TEST(pv, index, PV _ARRAY BTS))? j+1 : j;

aux[jl.s = s+1;
aux[j].index = index2;

j = (PV_TEST(pv, index2, PV ARRAY BTS))? j+1 : j;
}

if (s == s last) {
index = ((index2 << csize) | s[word length-1]) & mask;

aux[jl.s = s;
aux[j].index = index;

j = (PV_TEST(pv, index, PV ARRAY BTS))? j+1 : j;

Fig. 4.7: Ejemplo de implementacion de loop unroll

4.1.1 Experimentos con las optimizaciones implementadas

A continuacion se va a realizar una comparativa del rendimiento de la aplicacion original y
de la aplicacion con las optimizaciones que se han mencionado en el apartado anterior. Para la
realizacion de dicha comparativa se va a usar la misma metodologia que en el capitulo anterior (ver
apartado 3.2).

Si observamos los tiempos de respuesta de la version de blastp original y la optimizada con queries
de diferentes longitudes, obtenemos un mejor rendimiento con la version optimizada (figura 4.8):
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Fig. 4.8: Tiempos de ejecucion (con E/S) de la version blastp original y de la optimizada
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Si comparamos el nimero de instrucciones dividido entre la longitud de la secuencia guery de las
dos versiones podemos ver como la version optimizada reduce el niumero de instrucciones
ejecutadas en un 5-8% (figura 4.9).
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Fig. 4.9: Numero de instrucciones ejecutadas dividido por la longitud de secuencia
para la version de blastp original y optimizada

Si nos fijamos en la siguiente grafica (figura 4.10) podemos apreciar como al aumentar la longitud
de la query también incrementa el speedup:

Computador 1: Core2

+++ﬂ/.

1,4
1,2
1 B——
0,8
0,6
0,4
0,2

0
64 128 256 512 1024 2048 4096

Longitud de la secuencia

Speedup

Fig. 4.10: Speedup de la version optimizada segun la longitud de query

Este hecho se debe a que al aumentar el tamafio de las gueries se incrementan también el nimero de
hits. Este aumento de hits provoca un aumento de iteraciones en el bucle principal de la funcion
s _BlastAaWordFinder TwoHit, que a la vez provoca que las optimizaciones implementadas en
dicho bucle tengan cada vez mas efecto.

Aunque dichas optimizaciones han sido pensadas para una ejecucion secuencial de blastp, también

se han experimentado en una ejecucion multi-core. Como se puede apreciar en la siguiente grafica
(figura 4.11), también se obtiene un rendimiento mejor pero con un speedup no tan bueno:
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Fig. 4.11: Speedup de la version optimizada segun la longitud de query
y en su version multi-core (2 threads)

Se puede entender que al paralelizar la carga de trabajo, el speedup proporcionado por las
optimizaciones tiene menos efecto. S6lo se obtiene la mejora del thread que termina ultimo, las
optimizaciones de los demads threads no tienen efecto en el tiempo total. Por ejemplo, con una query
de tan solo 64 aminoacidos se ha obtenido un rendimiento igual a la version sin optimizar.

4.2 Optimizando la aplicacion para varias CPUs

En el capitulo anterior, al realizar el analisis de rendimiento de la version multi-core de
blastp, se encontraron dos aspectos a destacar que empeoraban el rendimiento: la asignacion de los
threads en los cores y la asignacion de secuencias de la database a cada thread.

El primer aspecto, como ya se coment6 en el anterior capitulo, se puede solucionar mediante la
libreria sched.h. Mediante la funcion CPU_SET de dicha libreria se puede forzar a cada thread que
sea ejecutado en un core distinto, asegurando que dos threads no van a competir por los mismos
recursos y mejorando el rendimiento notablemente.

En cuanto a la reparticion de las secuencias a procesar para cada thread, se vio en el capitulo
anterior que cada thread tenia una carga de trabajo distinta, cosa que provocaba que todos los
threads debian esperar al thread mas lento para iniciar la fase n® 3. Ademas, el asignar a cada thread
bloques de secuencias de la database de gran tamafio, provocaba latencias mayores en la espera a
disco causados por movimientos de cabezal del disco. Como distintos threads pedian datos que se
encontraban en distintos sectores del disco, esto provocaba que los threads compitieran por el
acceso a disco.

Asi que para reducir el efecto de este problema se deben repartir las secuencias a cada thread de una
forma:

* Equitativa: que cada thread procese la misma carga de trabajo, es decir, que procese el
mismo numero de secuencias.
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* Consecutiva: que cada thread se reparta de forma consecutiva las secuencias, que es como
estan almacenadas en disco. De esta forma se evitan posibles movimientos de cabezal
innecesarios.

Para conseguir un método que cumpla los criterios anteriores se ha implementado una versién que
funciona de la siguiente manera. Si se ejecutan 4 threads, cada thread procesara las secuencias
siguientes (figura 4.12):

Thread Secuencias procesadas
0 1,5,9, ..., N-3
1 2,0,10,..., N-2
2 3,7, 11, ..., N-1
3 4,812, .., N

Fig. 4.12: Ejemplo de asignacion de secuencias a cada thread

Mediante esta implementacion se puede aprovechar que el disco cada vez que trae a memoria los
datos pedidos, trae también algunos datos mas que son consecutivos. Ademas, de este modo
aseguramos que el numero de secuencias procesadas por cada thread va a ser proporcional y
equitativa.

4.2.1 Experimentos con las mejoras implementadas para multi-core

A continuacion podemos ver una comparacion del namero de ciclos consumidos por cada
core en la fase n° 2 con la version original de blastp (figura 4.13) y la version optimizada usando 2
threads (figura 4.14):

Computador 1: Core2
1400

1200
1000
800
B Core n? 1
600 B Coren® 2
400
0 em— | | -
256 512

64 128 1024 2048 4096

Ciclos con 2 threads (miles de millones)

Longitud de la secuencia

Fig. 4.13 Comparacion del numero de ciclos consumidos por core de la version
original de blastp en la fase n°2 (en miles de millones)
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Computador 1: Core2
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Fig. 4.14: Comparacion del numero de ciclos consumidos por core de la version
optimizada de blastp en la fase n° 2 (en miles de millones)

Podemos ver como para cada secuencia, los ciclos consumidos en cada core por la version original
(figura 4.13) no son equitativos, en cambio los dos cores de la version optimizada (figura 4.14)
tienen una carga de trabajo parecida, que hace disminuir el tiempo de ejecucion de la fase.

Mediante esta optimizacion obtenemos el siguiente speedup (figura 4.15):

Computador 1: Core2

Speedup
o
o

64 128 256 512 1024 2048 4096

Longitud de la secuencia
Fig. 4.15: Speedup de la version optimizada para varias CPUs
Se puede apreciar que la mejora es mas importante para secuencias pequefias que para secuencias
de gran longitud. Este hecho se debe a que las secuencias pequefias tienen un tiempo de espera

mayor de E/S ya que tienen una carga menor de computo que las secuencias de mayor longitud. Por
esta razon las secuencias pequefias obtienen una mejora mas importante.
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Capitulo 5

Conclusiones y lineas futuras

En este capitulo aparecen las conclusiones obtenidas al realizar la investigacion. Ademas, se
incluyen alternativas o futuras lineas de investigacion que pueden aportar ain mas conocimiento al
analisis y optimizacion de blastp.

5.1 Conclusiones

Cada semana se importan a las databases importantes cantidades de secuencias nuevas. Este
hecho influye en el manejo de la entrada/salida, que como hemos visto en esta investigacion
representa uno de los principales problemas en las aplicaciones de alineamiento de secuencias. La
gestion de la entrada/salida es el cuello de botella mas importante que padece la aplicacion,
sobretodo con el uso de multiples cores. Se dispone de muy poca informacidn sobre este manejo, lo
que dificulta su estudio para optimizarlo.

Se necesita profundizar mas en el tema de la E/S, aunque se ha visto como las propuestas de mejora
implementadas afectan notablemente en el rendimiento, el speedup obtenido (una media de 1.09
dependiendo de la secuencia query) no es suficiente para tratar databases que cada vez adquieren
tamafios mas grandes.

En cuanto a la parte de procesamiento, también se ha visto como con no muchas modificaciones en
el codigo se han obtenido speedups interesantes (una media de 1.14 dependiendo de la secuencia
query), aunque el CPI sigue siendo demasiado elevado (una media de 0.8 ciclos por instruccion) y
se deberia estudiar con mas detenimiento su causa.

Ademas, el aumento de tamafio de las databases provocan que herramientas como blastp tengan
que ser modificadas periddicamente. Las herramientas BLAST han sufrido desde su lanzamiento
diferentes mejoras y afiadidos que han provocado que su codigo fuente sea extremadamente grande
y complicado. La primera version se lanz6 en el afio 1990, pero la version actual escrita esta
compuesta por una serie de modificaciones y nuevas caracteristicas anadidas a la version del afio
1997 que se diseno en lenguaje C. Por esta razon, blastp estad disenada en C y C++.

Como se ha podido ver en este proyecto, hay caracteristicas que se pueden implementar mas
eficazmente y que afectan muy positivamente en el rendimiento. Pero hay otras optimizaciones que
son muy dificil o ni siquiera se pueden implementar por la complejidad que ha sufrido el codigo por
causa de estas actualizaciones o modificaciones.

71



En conclusion, la aplicacion blastp debe mejorar en dos aspectos que tras la investigacion han sido
detectados como potencialmente problematicos:

* La correcta gestion de la entrada/salida, sobretodo por el importante aumento de tamafio que
padecen las bases de datos.

* El correcto balanceo de la carga de trabajo en los cores al usar la version multi-core.

5.2 Lineas futuras

Quedan algunas lineas de investigacion abiertas para aportar mas conocimiento al andlisis de
rendimiento o bien para la optimizacion de blastp. A continuacion se nombran algunas de ellas:

e Utilizacion de sistemas Multi-threading

Como se ha visto en este documento, las aplicaciones BLAST presentan problemas de
importantes latencias (a memoria, fallos de prediccion de saltos, etc). Mediante experimentos con
multi-threading se podrian comparar los rendimientos de blastp usando el doble de threads que
cores dispone la computadora. De este modo se podria estudiar el grado de saturacion de los
recursos que padece la computadora.

* Implementacion con CUDA (Compute Unified Device Architecture)

Mediante esta tecnologia se podria dividir el computo de la fase n® 2 de blastp en una gran
cantidad de threads, con lo que se paralelizaria mucho mas la carga de trabajo obteniendo
rendimientos y speedups interesantes. Quizds se caeria otra vez en el problema de la lectura de
secuencias de las database de gran tamafio, que se ha demostrado como un grave problema de
eficiencia. Aunque no dejaria de ser una solucion a tener en cuenta.

*  OpenMP

OpenMP es una interfaz de programacion de aplicaciones para la programacion
multiproceso de memoria compartida. Permite afiadir concurrencia a los programas escritos en C y
C++ como blastp, usando el modelo de ejecucion fork-join.

Al tratarse de un modelo de programacion modulable y escalable que proporciona a los
programadores una interfaz simple y flexible para el desarrollo de aplicaciones paralelas, se puede
usar para redisefar blastp, que después de diversas modificaciones en su codigo se ha convertido en
una aplicacion compleja. Por esta razon se podria decir que para optimizar de una forma mucho mas
eficiente blastp se tendria que realizar un nuevo disefo, pudiendo aprovechar las ideas ya
implementadas en las versiones actuales pero reescribiendo el codigo de nuevo usando OpenMP.
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Resumen

Las aplicaciones de alineamiento de secuencias son una herramienta importante para la comunidad
cientifica. Estas aplicaciones bioinformaticas son usadas en muchos campos distintos como pueden
ser la medicina, la biologia, la farmacologia, la genética, etc. A dia de hoy los algoritmos de
alineamiento de secuencias tienen una complejidad elevada y cada dia tienen que manejar un
volumen de datos més grande. Por esta razon se deben buscar alternativas para que estas
aplicaciones sean capaces de manejar el aumento de tamano que los bancos de secuencias estan
sufriendo dia a dia. En este proyecto se estudian y se investigan mejoras en este tipo de aplicaciones
como puede ser el uso de sistemas paralelos que pueden mejorar el rendimiento notablemente.

Resum

Les aplicacions d'alincament de seqiiéncies son una eina important per a la comunitat cientifica.
Aquestes aplicacions bioinformatiques son utilitzades en molts camps diferents com poden ser la
medicina, la biologia, la farmacologia, la genctica, etc. A dia d'avui els algorismes d'alineament de
seqiiéncies tenen una complexitat elevada i cada dia han de gestionar un volum de dades més gran.
Per aix0 s'han de buscar alternatives per a que aquestes aplicacions siguin capaces de gestionar
I'augment de mida que els bancs de seqiiéncies estan patint dia a dia. En aquest projecte s'estudien i
s'investiguen millores en aquest tipus d'aplicacions com pot ser I'is de sistemes paral-leles que
poden millorar el rendiment notablement.

Abstract

The sequence alignment applications are an important tool for the scientific community. These
bioinformatics applications are used in many different fields such as medicine, biology,
pharmacology, genetics, etc. Today the sequence alignment algorithms are highly complex and
every day have to handle a large volume of data. For this reason we must find alternatives for these
applications are able to handle the increased size of sequences that banks are suffering every day. In
this project we study and investigate improvements in these applications such as the use of parallel
systems that can improve performance significantly.
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