

3904 - OPTIMITZACIÓ D'UNA APLICACIÓ BIOINFORMÀTICA
D'ALINEAMENT DE SEQÜÈNCIES EXECUTADA EN PROCESSADORS

MULTI-CORE I MANY-CORE (GPUS)

Memòria del Projecte Fi de Carrera

d'Enginyeria en Informàtica

realitzat per

Carles Figuera Penedo

i dirigit per

Juan Carlos Moure López

Bellaterra, 21 de Juny de 2011

El sotasignat, Juan Carlos Moure López,

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota
la seva direcció per en Carles Figuera Penedo.

I per tal que consti firma la present.

Signat:

Bellaterra, 21 de Juny de 2011

Índice de contenido
1. Introducción...7

1.1 Objetivos del proyecto...8
1.2 Planificación temporal del trabajo ...8
1.3 Organización de la presente memoria..10

2. Conceptos previos..13
2.1 Marco Teórico ...13

2.1.1 Procesador clásico...13
2.1.2 Procesamiento Segmentado (pipelined)..14
2.1.3 Procesador superescalar ..15
2.1.4 Limitaciones del procesador single-thread..16
2.1.5 Multi-threading..17
2.1.6 Procesadores Multicore ...19
2.1.7 Factores en el rendimiento multi-core/multi-thread..20
2.1.8 CUDA (Compute Unified Device Architecture)...21

2.2 Bioinformática..22
2.2.1 Fundamentos teóricos de las proteínas...22
 2.2.2 Búsqueda de homología en proteínas..23

2.3 BLAST..28
2.3.1 Versiones y variantes de BLAST..28
2.3.2 Input..29
2.3.3 Output...30
2.3.4 Algoritmo de BLASTP...32
2.3.5 Lookup Table..36

3. Análisis de rendimiento..37
3.1 Análisis de los datos de entrada y parámetros..37

3.1.1 Queries...37
3.1.2 Base de datos (NR)..39
3.1.3 Número de threads...39

3.2 Entorno experimental y metodología...40
3.2.1 Descripción del H/W y del S.O...40
3.2.2 Métodos para tomar las medidas...41

3.3 Experimentos...41
3.3.1 Estimación empírica del tiempo de lectura de la database...............................42
3.3.2 Efecto de la longitud en el rendimiento..43
3.3.3 Efecto de la información proteínica en el rendimiento.......................................48
3.3.4 Efecto del número de queries en el rendimiento...49
3.3.5 Efecto del número de threads en el rendimiento...52

4. Optimizaciones..61
4.1 Optimizando la aplicación para un procesador...61

4.1.1 Experimentos con las optimizaciones implementadas......................................65
4.2 Optimizando la aplicación para varias CPUs..67

4.2.1 Experimentos con las mejoras implementadas para multi-core........................68
5. Conclusiones y líneas futuras..71

5.1 Conclusiones...71
5.2 Líneas futuras..72

6. Bibliografía...73
7. Resumen...76

Capítulo 1

Introducción

Las aplicaciones bioinformáticas de búsqueda de homología entre secuencias están
relacionadas con el estudio de los seres vivos. Todo organismo vivo contiene un código genético
formado por largas secuencias de caracteres de ADN. Una de las tareas más importantes de las
aplicaciones de alineamiento de secuencias es estudiar la homología de estas secuencias, que se
refiere a la situación en la que las secuencias (tanto de ADN como de proteínas) son similares entre
sí debido a que presentan un mismo origen evolutivo.

Para encontrar las similitudes de una secuencia hay que compararla con una base de datos de
secuencias conocidas llamadas bancos de secuencias. Estos bancos son actualizados cada pocas
semanas y una de las principales problemáticas que presentan es su importante crecimiento durante
las últimas décadas (figura 1.1), trayendo consigo la necesidad de disponer de sistemas
computacionales que logren procesar este gran volumen de datos y generar resultados de la forma
más rápida posible.

BLAST (Basic Local Alignment Search Tool) es un conjunto de aplicaciones informáticos de
alineamiento y homología de secuencias, ya sea de ADN o de proteínas. Solo la versión web de
BLAST tiene más de 100.000 consultas sobre ADN cada día. El programa es capaz de comparar

7

Fig. 1.1: Crecimiento de los datos del banco GenBank

una secuencia problema (también denominada query) contra una gran cantidad de secuencias que se
encuentren en una base de datos. El programa encuentra las secuencias de la base de datos que
tienen mayor parecido a la secuencia problema. Uno de los problemas que presenta el uso de este
tipo de aplicaciones es la gran cantidad recursos computacionales que consumen (volumen de datos
a procesar, volumen de datos a leer de disco, etc.) que provoca que el tiempo de respuesta de estas
aplicaciones sea muy grande.

Para hacer frente a esta gran cantidad de cómputo, estas aplicaciones hacen uso de sistemas de
cómputo paralelo como los procesadores multi-core, que combinan dos o más núcleos, y que
gracias a ellos se pueden ejecutar estas aplicaciones en múltiples hilos de ejecución independientes,
de forma que es posible la concurrencia. Es decir, se pueden ejecutar al mismo tiempo en paralelo.

Pero además, hay que estudiar la posibilidad de usar tecnologías como CUDA. Se trata de una
plataforma software que intenta explotar las ventajas de las GPUs de propósito general utilizando el
paralelismo que ofrecen sus múltiples núcleos, que permiten el lanzamiento de un altísimo número
de hilos simultáneos.

1.1 Objetivos del proyecto

Los objetivos de este proyecto son:

• Analizar el algoritmo de una aplicación BLAST existente: blastp, versión BLAST para
proteínas.

• Analizar el comportamiento del programa según los parámetros de entrada usados.

• Detectar las partes del código que consumen más tiempo de ejecución, tanto en su versión
para un procesador como en la versión multi-core.

• Identificar los problemas de rendimiento en las partes del código que consumen más tiempo
de ejecución.

• Estudiar los problemas de rendimiento encontrados y optimizarlos, tanto en la versión para
un procesador como en la versión multi-core.

• Encontrar líneas futuras de investigación para aportar más conocimiento al análisis de
rendimiento o bien para la optimización de la aplicación.

1.2 Planificación temporal del trabajo

A continuación se muestran tanto la planificación temporal inicial como la final de este
proyecto.

La planificación del proyecto inicial del proyecto presentaba 5 fases que se mencionan a
continuación:

8

• Conocimientos previos: adquisición de conocimientos biológicos necesarios para la correcta
realización del proyecto.

• Análisis del rendimiento: estudio del rendimiento de Blastp (tiempo, ciclos,
instrucciones, ...) y análisis del efecto de los parámetros de entrada en dicho rendimiento.

• Optimización para versión multi-core: diseño e implementación de las optimizaciones
estudiadas para el uso de procesadores multi-core. Además, análisis del rendimiento de la
optimizaciones.

• Implementación many-core (CUDA): estudio del modelo y arquitectura CUDA. Diseño e
implementación del código para el uso con CUDA. Análisis del nuevo rendimiento.

• Documentación: realización de informe previo y de una memoria final de proyecto.

A continuación, se muestra un diagrama de Gantt de la planificación temporal inicial que se
estableció para el proyecto:

Además de un análisis de rendimiento y de la implementación de optimizaciones en un sistema
multi-core, la planificación inicial también presentaba la implementación y el análisis de la
aplicación usando una arquitectura CUDA. A causa del tiempo dedicado de más a la complejidad
del análisis y a la optimización de blastp, se ha tenido que suprimir esta fase quedando la
planificación de la siguiente manera:

• Conocimientos previos: adquisición de conocimientos biológicos necesarios para la correcta
realización del proyecto.

• Análisis del rendimiento: estudio del rendimiento de Blastp (tiempos de respuesta, número
de ciclos, número de instrucciones, fallos de caché,...) y análisis del efecto de los parámetros
de entrada en dicho rendimiento.

9

Fig. 1.2: Daigrama de Gantt de la planificación temporal inicial

• Optimización para un solo procesador: diseño e implementación de las optimizaciones
estudiadas para el uso de sistemas con un solo procesador. Además, realización de un
análisis del rendimiento de dichas optimizaciones.

• Optimización para versión multi-core: diseño e implementación de las optimizaciones
estudiadas para el uso de procesadores multi-core. También realización de un análisis del
rendimiento de dichas optimizaciones.

• Documentación: realización de informe previo y de una memoria final de proyecto.

A continuación, se muestra un diagrama de Gantt de la planificación temporal final para el
proyecto:

1.3 Organización de la presente memoria

El siguiente esquema muestra la estructura del presente documento, dividiéndose en los
siguientes capítulos:

• Capítulo 2. Conceptos previos: introducción a conceptos necesarios para la realización del
proyecto. Se centra tanto en la descripción de conceptos previos de la biología (proteínas,
aminoácidos,...) como en el funcionamiento del conjunto de aplicaciones BLAST.

• Capítulo 3. Análisis de rendimiento: análisis de rendimiento de la aplicación blastp. Para
encontrar las causas de un rendimiento bajo en una aplicación es necesario estudiar y
entender cómo se estructura y cómo funciona.

10

Fig. 1.3: Daigrama de Gantt de la planificación temporal final

• Capítulo 4. Optimizaciones: incluye las distintas optimizaciones que han sido estudiadas e
implementadas y sus resultados obtenidos. Estas optimizaciones se pueden clasificar en dos
tipos: para sistemas con un único procesador y para sistemas multi-core.

• Capítulo 5. Conclusiones y líneas futuras: incluye las conclusiones y las líneas futuras de
investigación, donde se nombran algunas otras propuestas de optimización.

• Capítulo 6. Bibliografía: enumera la bibliografía usada para llevar a cabo el proyecto.

11

Capítulo 2

Conceptos previos

El objetivo de este capítulo es introducir los conceptos previos necesarios para la realización
y comprensión del proyecto. Se centra tanto en la descripción del marco teórico, de conceptos
previos de la biología (proteínas, aminoácidos,...) como en el funcionamiento del conjunto de
aplicaciones BLAST. También se describen las diferentes herramientas usadas en la búsqueda de
homología de secuencias, centrándonos en Blastp, caso de estudio en este proyecto.

2.1 Marco Teórico

Se describen el procesador clásico y conceptos asociados, para explicar posteriormente los
procesadores multi-core y multi-thread, así como los problemas para conseguir alto rendimiento en
estos sistemas.

2.1.1 Procesador clásico

El proceso de ejecución de una instrucción se puede dividir en cinco etapas:

1. Búsqueda de la instrucción (fetch)
2. Decodificación de la instrucción (decode)
3. Ejecución de la instrucción (execute)
4. Acceso a memoria (memory)
5. Escritura del resultado (writeback)

En la siguiente imagen (figura 2.1) se muestra la ejecución secuencial de dos instrucciones en un
procesador clásico. Se puede apreciar que hasta que la primera instrucción no finaliza, no se puede
comenzar la búsqueda de la segunda instrucción.

De este modo, el tiempo de ejecución de un programa se puede expresar con la siguiente ecuación:

13

Fig. 2.1: Ejemplo ejecución en un procesador clásico

donde :
• N = número de instrucciones de un programa.
• CPI = número medio de ciclos por instrucción.
• t = tiempo de un ciclo de instrucción.

Para reducir el tiempo de ejecución en esta ecuación independientemente del nivel de integración,
existen dos alternativas: reducir el número de instrucciones y/o reducir el CPI. Existen dos tipos de
filosofías en las arquitecturas de procesadores que atacan este problema:

• RISC (Computadoras con un conjunto de instrucciones reducido): Implementación H/W
más simple, por tanto más rápida y eficiente. Se basa en disponer de un repertorio de
instrucciones reducido, permitiendo su implementación por hardware. Los programas
tendrán un número elevado de instrucciones pero prácticamente la totalidad de ellas se
ejecutarán en un ciclo de reloj.

• CISC (Computadoras con un conjunto de instrucciones complejo): Implementación H/W
más compleja y por tanto más lenta e ineficiente. Se basa en disponer de un repertorio de
instrucciones amplio y complejo. El número de instrucciones de un programa es menor que
en el RISC, pero el CPI suele ser mayor.

2.1.2 Procesamiento Segmentado (pipelined)

En el procesamiento segmentado se adopta una nueva estrategia con el objetivo de disminuir
el tiempo medio de ejecución por instrucción de una aplicación. Se divide internamente el
computador en segmentos individuales, cada uno especializado en una de las etapas.

A diferencia del procesador clásico donde todas las etapas tenían que completarse antes de buscar la
instrucción siguiente, ahora la existencia de segmentos especializados permite el solapamiento en la
ejecución de las instrucciones. Así, un segmento puede empezar a trabajar con una nueva
instrucción sin la necesidad de que la instrucción anterior haya finalizado todas las etapas.

El resultado es un aumento del número de instrucciones ejecutadas por ciclo. Como muestra la
figura 2.2, con la ejecución segmentada de instrucciones, se puede llegar a ejecutar una instrucción
por ciclo.

14

Fig. 2.2: Ejemplo ejecución en procesador pipelined

2.1.3 Procesador superescalar

Un procesador superescalar es capaz de ejecutar más de una instrucción en cada etapa del
pipeline del procesador. El número máximo de instrucciones en cada etapa depende del número y
del tipo de las unidades funcionales de que disponga el procesador.

Sin embargo, un procesador superescalar sólo es capaz de ejecutar más de una instrucción
simultáneamente si las instrucciones no presentan ningún tipo de dependencia. Las dependencias
que pueden aparecer son:

• Dependencias estructurales: cuando dos instrucciones requieren el mismo tipo de unidad
funcional pero su número no es suficiente.

• Dependencias de datos: situación en que las instrucciones de un programa se refieren a los
resultados de otras anteriores que aún no han sido completadas. Se clasifican en:

◦ RAW (Read After Read): situación donde se necesita un dato que aún no ha sido
calculado.

◦ WAR (Write After Read): una instrucción necesita escribir en un registro sobre el que
otra instrucción previamente debe leer.

◦ WAW (Write After Write): una instrucción necesita escribir en un registro sobre el que
otra instrucción previamente debe escribir.

• Dependencias de control: cuando existe una instrucción de salto que puede variar la
ejecución de la aplicación.

Podemos distinguir diferentes tipos de procesadores por la forma de actuar ante una dependencia
estructural o de datos:

• Procesador con ejecución en orden: las instrucciones quedarán paradas a la espera de que se
resuelva la dependencia.

• Procesador con ejecución fuera de orden: las instrucciones dependientes quedarán paradas
pero será posible solapar parte de la espera con la ejecución de otras instrucciones
independientes que vayan detrás.

15

Fig. 2.3: Ejemplo de ejecución superescalar

En el caso de las dependencias de control, se conoce como ejecución especulativa de instrucciones a
la ejecución de instrucciones posteriores a la instrucción de salto (antes de que el PC llegue a la
instrucción de salto).

2.1.4 Limitaciones del procesador single-thread

A continuación describiremos una serie de factores que limitan el rendimiento de la ejecución de
una aplicación en un procesador single-thread.

• Problema de la memoria

La diferencia de velocidad entre procesador y memoria, limita el rendimiento del procesador. Las
operaciones de memoria son lentas comparadas con la velocidad del procesador. Los accesos a
memoria, por ejemplo en un fallo de cache, pueden consumir de 100 a 1000 ciclos de reloj, durante
los cuales el procesador debe esperar a que el acceso a memoria finalice. Por tanto, un aumento de
la frecuencia de reloj del procesador sin incrementar la velocidad de la memoria solamente
mejoraría el rendimiento en un pequeño porcentaje. Los ciclos de cómputo se realizarían más rápido
pero el tiempo de acceso a memoria continuaría siendo el mismo. Esto se puede apreciar en la
siguiente imagen (figura 2.4) que representan las fases de ejecución de un programa single-thread
en dos procesadores con distinta frecuencia de reloj.

Además hay que tener en cuenta que a los cientos de ciclos que se consumen en cada acceso a
memoria hay que sumarle decenas de ciclos extra, por cada acceso a nuevos niveles de cache
(provocados por fallos en el nivel anterior). La solución para aprovechar los ciclos en los que el
procesador esta esperando a que finalice la operación de memoria es el multi-threading por
hardware. El multi-threading por hardware es una propiedad que permite al procesador alternar de
un thread a otro thread cuando el thread que esta ocupando el procesador queda parado. Esta
solución se analizará en profundidad más adelante.

• Calor y coste asociado

El incremento de la frecuencia de reloj del procesador implica un aumento de la potencia
consumida y del calor generado. En la actualidad los altos valores de frecuencia de reloj de los
procesadores suponen un problema, tanto económico (consumo eléctrico, y gasto dedicado a la

16

Fig. 2.4: Ejemplo de fases de ejecución de un programa en dos
procesadores de distinta frecuencia

disipación del calor y refrigeración), como tecnológico (dificultad para disipar la gran cantidad de
calor generado en la superficie de un procesador). Por estos motivos, se abandona la idea de
aumentar la frecuencia de reloj del procesador para aumentar el rendimiento, y se opta por añadir
más procesadores en el mismo chip. Con esta solución el calor se incrementa de forma lineal y no
exponencial como ocurre con el aumento de frecuencia de reloj.

2.1.5 Multi-threading

Para entender conceptos como el multi-threading por software, por hardware y las ventajas de
los procesadores multi-thread es necesario conocer la diferencia entre thread y proceso.

Threads y Procesos

Un proceso es secuencia de código ejecutable en ejecución. Cada proceso posee un espacio de
direccionamiento propio para almacenar sus estructuras de datos asociados. Un proceso esta
formado por uno o más threads o hilos de ejecución.

Un hilo es la unidad mínima de procesamiento. Los hilos existen dentro de un proceso y comparten
recursos como el espacio de memoria, la pila de ejecución y el estado de la CPU. Un proceso con
múltiples hilos tiene tantos flujos de control como hilos. Cada hilo se ejecuta con su propia
secuencia de instrucciones de forma concurrente e independiente.

Las ventajas de realizar la concurrencia a nivel de hilo en lugar de a nivel de proceso son varias.
Los hilos se encuentran todos dentro de un mismo proceso y por lo tanto pueden compartir los datos
globales. Además, una petición bloqueante de un hilo no parará la ejecución de otro hilo. Por
último, si el procesador lo soporta, los diferentes hilos están asociados a diferentes conjuntos de
registros, por lo que el cambio de contexto del procesador podrá realizase de forma eficiente.

Multi-threading por Software

El multi-threading por software posibilita la realización de aplicaciones paralelas. Es un
nuevo modelo de programación que permite a múltiples hilos existir dentro de un proceso. Los
hilos comparten los recursos del proceso pero se ejecutan de forma independiente. El hecho de que
sean independientes permite la concurrencia (es decir su ejecución simultanea), y si el procesador lo
soporta se podrán ejecutar en paralelo.

Multithreading por Hardware

El multi-threading por hardware es una técnica que incrementa la utilización de los recursos

del procesador. A continuación se analizan diferentes tipos:

• Coarse-grained Multithreading

El procesador ejecuta el hilo de forma habitual y solamente realiza un cambio de contexto cuando
ocurre un evento de larga duración (como un fallo de caché). Para que el cambio de contexto sea
eficiente es necesario que exista una copia del estado de la arquitectura (PC, registros visibles) para
cada hilo. Este método tiene la ventaja de ser sencillo de implementar.

17

• Fine-grained Multithreading

Se basa en un cambio “rápido” entre hilos, ejecutando en cada ciclo un hilo diferente. Es un
mecanismo que tiene como base una planificación de la ejecución de las instrucciones en orden.
Con el fin de evitar largas latencias por hilos bloqueados, se ejecutan instrucciones de diferentes
hilos. Este enfoque tiene la ventaja de eliminar las dependencias de datos que paran el procesador.
Al pertenecer las instrucciones a diferentes hilos, las dependencias de datos y de control
desaparecen.

• Simultaneous Multithreading

Consiste en poder ejecutar instrucciones de diferentes hilos, en cualquier momento y en
cualquier unidad de ejecución. Desarrollar esta tecnología requiere un hardware adicional para
toda la lógica. Como consecuencia, su realización para un gran número de hilos aumentaría la
complejidad y, por tanto el coste. Por este motivo en las implementaciones SMT se opta por reducir
el número de hilos.

SMT muestra a un procesador físico como dos o más procesadores lógicos. Los recursos físicos son
compartidos y el estado de la arquitectura es copiada para cada uno de los dos procesadores lógicos.
El estado de la arquitectura está formado por un conjunto de registros: registros de propósito
general, registros de control, registros del controlador de interrupciones y registros de estado.

Los programas verán a los procesadores lógicos como si se tratara de dos o más procesadores
físicos diferentes. Sin embargo, desde el punto de vista de la microarquitectura, las instrucciones de
los procesadores lógicos se ejecutarán simultáneamente compartiendo los recursos físicos.

18

Fig. 2.5: Comparativa entre procesador single-thread
y hardware multi-thread

2.1.6 Procesadores Multicore

Los procesadores multi-core combinan dos o más procesadores (a los que nos referiremos
como núcleos o cores) en un mismo chip. Estos procesadores mejoran el rendimiento de las
aplicaciones paralelas.

Las aplicaciones paralelas están compuestas por múltiples threads independientes, de forma que es
posible la concurrencia. Es decir, los threads se pueden ejecutar al mismo tiempo y en paralelo.
Como consecuencia el rendimiento de las aplicaciones paralelas puede teóricamente escalar
linealmente con el número de procesadores.

En la práctica existen factores que lo impiden, como los overheads por creación/eliminación de
threads, las comunicaciones entre las memorias de los procesadores, y el posible desbalanceo (en
las aplicaciones) de volumen de cómputo por thread (threads esperando a que otros threads
finalicen). Describiremos estos factores con más detalle, más adelante.

Arquitectura

Los procesadores de una arquitectura multi-core comparten la memoria principal. Existen
dos alternativas para esta compartición:

• UMA (Acceso uniforme a memoria): los procesadores del sistema tienen el mismo tiempo
de acceso a memoria.

• NUMA (Acceso no uniforme a memoria): el acceso a la memoria es controlado por un único
procesador, lo que provoca que este procesador tenga un tiempo de acceso menor, a la
memoria controlada por él, que el resto de procesadores. El resto de procesadores debe
interactuar con el procesador que controla la memoria para acceder a ella.

En cuanto a la organización de las caches de un sistema multi-core hay varias opciones. En algunas
arquitecturas se opta por mantener todos los niveles de cache privados a cada core, mientras que en
otras arquitecturas se comparte el último nivel de cache.

19

Fig. 2.6: Comparativa de una arquitectura NUMA (izquierda) y una arquitectura UMA (derecha)

2.1.7 Factores en el rendimiento multi-core/multi-thread

Como hemos visto hasta el momento podría parecer que el aumento paulatino del número de

núcleos de un procesador parece la solución a la necesidad de aumentar la capacidad de
procesamiento en los procesadores, pero no es así. El rendimiento de las aplicaciones en entornos
multi-núcleo y multi-hilo no escala linealmente, y al aumentar el número de hilos con los que se
ejecuta la aplicación no se reduce linealmente el tiempo de cómputo de manera transparente al
programador. A continuación enunciaremos los principales factores que impiden esta escalabilidad
lineal en los entornos de programación multi-núcleo y multi-hilo:

• Overheads por creación/eliminación de hilos

Uno de los factores que impiden la escalabilidad lineal en sistemas multi-núcleo/multi-hilo, es

el proceso de creación y eliminación de hilos (fork y join) que trabajan en dicho sistema paralelo,
que supone un coste de tiempo extra (overhead) sobre el total del tiempo de ejecución. Este
overhead ha de ser mucho menor al tiempo total de ejecución para que sea práctico paralelizar una
aplicación.

• Desbalanceo de cómputo

Otro de los factores que impiden la escalabilidad lineal en sistemas multi-núcleo/multi-hilo es

la incorrecta distribución del volumen de cómputo por hilo, que implica que algunos hilos finalicen
sus tareas antes que el resto y por tanto tendrán que esperar a que el resto acabe para proseguir la
ejecución.

Esta espera supone un coste en ciclos de reloj del procesador desaprovechados y por lo tanto un
overhead. En el diseño de aplicaciones paralelas es muy importante una óptima asignación del
trabajo a realizar a cada uno de los hilos. A la hora de programar una aplicación paralela uno de los
puntos a tener en cuenta es como de bien se reparte el cómputo entre los diferentes hilos
(computation load balance).

Este overhead se puede reducir aunque no eliminar totalmente, asignando el trabajo dinámicamente
entre los diferentes hilos que participan en la ejecución. Por contrapartida se genera otro pequeño
overhead asociado al cómputo necesario para gestionar la asignación dinámica.

20

Fig. 2.7: El proceso de creación y eliminación de threads supone un coste
extra de tiempo al total de la ejecución.

• Las comunicaciones entre hilos de ejecución

Otro de los factores que impiden la escalabilidad lineal en sistemas multi-núcleo/multi-hilo es

la comunicación entre los hilos. En una región paralela los hilos de una ejecución multi-hilo
trabajan de manera independiente y con datos independientes, pero por las características de las
aplicaciones, en algún momento necesitarán intercambiar estos datos entre ellos. Este intercambio
de datos se realiza de manera transparente al hilo ya que éste únicamente accederá a unas posiciones
de memoria que previamente otro hilo habrá modificado. Esto aunque es transparente para el hilo
no esta libre de coste en tiempo. Los datos que hayan sido modificados en la cache de un hilo
tendrán que ser copiados a la cache del hilo que los necesita en ese momento.

Hay que tener en cuenta que el coste de comunicar datos modificados por hilos que se ejecutan
dentro de un mismo procesador es muy inferior al coste de comunicar datos entre hilos que se
ejecutan en núcleos de diferentes procesadores.

2.1.8 CUDA (Compute Unified Device Architecture)

Se trata de una plataforma software que intenta explotar las ventajas de las GPUs de propósito
general utilizando el paralelismo que ofrecen sus múltiples núcleos, que permiten el lanzamiento de
un altísimo número de hilos simultáneos.

Por ello, si una aplicación está diseñada utilizando numerosos hilos que realizan tareas
independientes, una GPU puede ayudar a la CPU en la ejecución de funciones específicas
ofreciendo un rendimiento mayor. Así que se podría usar una GPU para la ejecución de algunas
funciones de BLAST, por ejemplo en la comparación y extensión de las semillas de las secuencias.

Seria necesario que el sistema usado disponga de una tarjeta gráfica Nvidia compatible. Son
compatibles con CUDA todas las GPUs Nvidia de la series GeForce 8000, Quadro y Tesla.

La tecnología CUDA invoca el trabajo a realizar mediante kernels. Los threads se organizan en
bloques (blocks), los bloques están organizados en mallas (grids) y cada grid solo puede ejecutar un
kernel.

21

Fig. 2.8: Esquema de la arquitectura CPU y GPU

No todo algoritmo puede ser implementado con CUDA, debe hacer frente a las siguientes
limitaciones:

• No se puede utilizar recursividad, punteros a funciones, variables estáticas dentro
de funciones o funciones con número de parámetros variable.

• Puede existir un cuello de botella entre la CPU y la GPU por los anchos de banda
de los buses y sus latencias.

• Los threads, por razones de eficiencia, deben lanzarse en grupos de al menos 32,
con miles de hilos en total.

2.2 Bioinformática

La bioinformática es la aplicación de tecnología informática en la gestión y análisis de datos
biológicos. Su finalidad puede ser muy variada pero los principales esfuerzos se centran en:

• El alineamiento de secuencias
• La predicción de genes
• El montaje del genoma
• La predicción de la estructura de proteínas
• El alineamiento estructural de proteínas
• La predicción de la expresión génica
• Las interacciones proteína-proteína
• El modelado de la evolución.

2.2.1 Fundamentos teóricos de las proteínas

Las proteínas son macromoléculas biológicas que se componen de aminoácidos de los
cuales hay veinte distintos. Desempeñan un papel fundamental para la vida y son las biomoléculas
más versátiles y más diversas. Son imprescindibles para el crecimiento del organismo. Realizan una
enorme cantidad de funciones diferentes, entre las que destacan: estructurales, inmunológicas,
transportadoras, protectoras, etc.

La estructura principal de la proteína es la de una secuencia lineal de aminoácidos. Sin embargo, los
aminoácidos que forman una proteína interactúan para producir estructuras más complejas. La
estructura secundaria se refiere a la disposición espacial de los aminoácidos que se encuentran cerca
unos de otros en la secuencia lineal. Algunas de estas estructuras contienen subestructuras, como
hélices y hojas. La estructura terciaria se refiere a la disposición espacial de los residuos de
aminoácidos que están alejados en la secuencia lineal, que es la conformación tridimensional de la
proteína en toda su longitud, que incluye las regiones de estructura secundaria. Otro nivel de la
estructura es la estructura cuaternaria que se refiere a la disposición espacial de dos o más proteínas
que interactúan (véase figura 2.9).

22

La estructura terciaria de una proteína implica la funcionalidad de la proteína. Es la interacción
entre los aminoácidos de la proteína tanto a nivel local y global la que proporciona su integridad
estructural necesaria para llevar a cabo su función biológica. La información para especificar la
compleja estructura tridimensional de una proteína está contenida en su secuencia de aminoácidos.

Dos proteínas son homólogas si comparten un ancestro común, es decir, están relacionadas en un
contexto evolutivo. Las proteínas homólogas siempre comparten una estructura plegable común de
tres dimensiones.

2.2.2 Búsqueda de homología en proteínas

La comparación de una proteína con otra es una de las actividades de cómputo más
importantes en la bioinformática. La comparación de secuencias se utiliza como un método para
inferir homología y es más informativa cuando detecta proteínas homólogas. La información sobre
la estructura secundaria y terciaria de una proteína de la que sólo se conoce la secuencia principal se
puede deducir encontrando un homólogo del que se conozca esa información. Dos secuencias cuyas

23

Fig. 2.9: Estructura de las proteínas

estructuras principales son similares dentro de un cierto nivel se puede inferir que son homologas.
Esta inferencia puede ser posteriormente reforzada por técnicas de comparación que van más allá de
la estructura primaria y así ofrecer medidas de similitud basadas en la estructura secundaria y
terciaria.

La forma de representar las secuencias de proteinas es mediante una cadena de caracteres, donde
cada letra representa un aminoácido. Existen 20 aminoácidos distintos y cada uno de ellos tiene
asociado un solo carácter. Aunque existen caracteres especiales para representar aminoácidos
desconocidos o un grupo de aminoácidos que son casi idénticos entre si.

Por ejemplo, la proteína B3HSG4_ECOLX perteneciente a la bacteria Escherichia coli se representa
con la siguiente secuencia de 39 aminoácidos:

“MRFTLPGGTAIPEMIDIDHISAFKLLTFLFHPMKLFIFK”

El proceso de obtener homología consta de varias etapas sucesivas. En primer lugar la
representación de una proteína desconocida se compara con las bases de datos de secuencias para
encontrar un conjunto de secuencias similares. BLAST o FastA son las herramientas apropiadas
para este paso, ya que realizan búsquedas rápidamente con un compromiso aceptable de
sensibilidad, es decir, con una capacidad aceptable para evitar falsos positivos.

Siempre que se usa un algoritmo de búsqueda de homología con un par de secuencias se obtiene un
alineamiento, incluso aunque las secuencias estén compuestas por letras al azar y no se parezcan
nada entre sí. Por lo tanto además hay que estimar la significación estadística de cada homología.
Por esta razón tanto BLAST como FastA proporcionan una medida estadística de la significación de
cada coincidencia denominada e-value, que nos proporciona información sobre si el alineamiento
de estas dos secuencias es real o creada por azar.

24

Fig. 2.10: Ejemplo de homología de las extremidades anteriores. La homología es
una característica común entre las especies, que también estuvo presente en su

antepasado común.

El uso de las herramientas como BLAST es el primer paso de este proceso en el que una proteína
desconocida se compara con una base de datos de secuencias conocidas. Los problemas en este paso
son: (1) la elección de un método de puntuación (2) la elección de una base de datos de secuencia
de búsqueda (3) la elección de un algoritmo de búsqueda y (4) la evaluación de la significación de
los resultados (e-value).

Los biólogos moleculares suelen pensar en la homología de aminoácidos en términos de similitud
química. La Figura 2.11 muestra una breve clasificación química de los aminoácidos. Desde un
punto de vista evolutivo no se espera que las mutaciones cambien radicalmente las propiedades
químicas de las proteínas, ya que pueden llegar a destruir sus estructuras tridimensionales. En
cambio, las mutaciones entre aminoácidos similares debería ocurrir con relativa frecuencia.

En los años 60 y principios de los 70, Margaret Dayholl fue pionera en técnicas cuantitativas para
medir la similitud de aminoácidos. Usando las secuencias de las que se disponía en ese momento,
construyó alineamientos múltiples de proteínas relacionadas y comparó las frecuencias de
sustituciones de aminoácidos. Como era de esperar, se encontraron pocas variaciones en la
frecuencia de sustitución de aminoácidos, y los patrones son generalmente los esperados según las
propiedades químicas.

Por ejemplo, la fenilalanina (F) se encuentra con relativa frecuencia sustituida por la tirosina (Y) y
triptófano (W), que comparten las estructuras del anillo aromático (véase la figura 2.11). Y en
menor medida con los ácidos hidrofóbicos (V, I y L).

Gracias al estudio de estos patrones que siguen las mutaciones en las proteínas se puede determinar
la probabilidad de que una sustitución entre dos aminoácidos ocurra. Hoy en día se usan las
matrices de puntuación para estudiar posibles mutaciones proteínicas.

Matrices de puntuación

Son una matriz bidimensional que contienen puntuaciones que representan las tasas relativas
a sustituciones evolutivas de la proteína, es decir, describe el ritmo al que un aminoácido en una
secuencia cambia a otro aminoácido con el tiempo. Las matrices de puntuación son la evolución en
pocas palabras. Si observamos las figuras 2.11 y 2.12 podemos observar que las puntuaciones y las
propiedades químicas de los aminoácidos a sustituir mantienen cierta relación.

25

Fig. 2.11: Relación química entre los aminoácidos

Para mayor precisión los resultados se multiplican por un factor de escala antes de convertirlos en
enteros. Por ejemplo, una puntuación de -1.609 nats (medida usada para estas puntuaciones) puede
ser escalado por un factor de dos y luego redondeado a un valor entero de -3. Las puntuaciones que
se han reducido y escalado a números enteros tienen una cantidad sin unidades y se llaman puntajes
brutos.

Existen dos tipos de matrices de puntuación: PAM (Point-Accepted Mutation) y BLOSUM
(BLOcks of Amino Acid SUbstitution Matrix). Las matrices PAM fueron creadas por el equipo
científico de Margaret Dayhoff, por lo que a veces se llaman matrices Dayhoff. Estas matrices de
puntuación tienen un componente teórico fuerte y hacen uso de algunas hipótesis evolutivas. En
cambio, las matrices BLOSUM son más empíricas y derivan de un conjunto de datos mayor. La
mayoría de los investigadores prefieren utilizar matrices BLOSUM ya que en los experimentos
demuestran mayor sensibilidad.

Bases de datos (databases)

Las bases de datos contienen una colección de todas las secuencias conocidas que son
públicamente accesibles. Cada una de las entradas de estas bases de datos es una secuencia, de ADN
o proteínas, que contiene una serie de anotaciones en las que se especifican sus características.

Para una utilización más racional de toda la información almacenada en las bases de datos, las
distintas secuencias se han agrupado en diferentes categorías que se denominan divisiones, algunas
de las cuales reflejan un origen filogenético y otras se basan en la aproximación técnica que se usó
para generarlas (por ejemplo: hongos, bacterias, mamíferos, virus, etc.). Independientemente de las
divisiones en que se agrupen las secuencias, todas ellas se obtienen de los datos enviados por los
investigadores, que voluntariamente hacen accesibles sus datos a toda la comunidad científica.

26

Fig. 2.12: Matriz de puntuación BLOSUM62

Además de la secuencia en sí, en las databases se almacena mucha más información para cada
secuencia. Por ejemplo, en la database de proteínas Swiss-Prot se dispone de los siguientes campos
para cada secuencia conocida (figura 2.13):

Aunque desde el punto de vista histórico y científico las bases de datos tradicionalmente se han
separado en secuencias de ácidos nucleicos y de proteínas, mantenidas de forma independiente y
con poca relación entre unas y otras, en la actualidad se está imponiendo la tendencia contraria, es
decir, una mayor relación entre ambas que facilite el obtener toda la información disponible lo más
fácilmente posible.

Las bases de datos crecen a un ritmo exponencial: la database Swiss-Prot se duplica cada 40 meses
y las bases de datos de ADN lo hacen cada 14 meses. Esta tendencia se ha visto incrementada desde
que las secuencias EST comenzaron a añadirse (1994) y se mantendrá probablemente hasta que se
completen los proyectos de secuenciación del genoma humano y del ratón. Por entonces las bases
de datos tendrán entre 50 y 200 GB de información. Con esta complejidad, las búsquedas en las
bases de datos necesitarán computadores de mayor prestaciones, por lo que cada vez son menos las
organizaciones que guardan copias locales de las bases de datos.

Algoritmos de búsqueda de homología

Los algoritmos de búsqueda de homología se clasifican según el tipo (programación
dinámica o heurística) y según la alineación (global o local) (figura 2.14). Los algoritmos de
programación dinámica son más costosos computacionalmente, pero son menos propensos a pasar
por alto una coincidencia significativa. Son los métodos usados cuando es necesaria una
comparación rigurosa.

27

Fig. 2.13: Registros en la database Swiss-Prot

Fig. 2.14: Clasificación de algoritmos para la comparación de secuencias de proteínas.

Los algoritmos heurísticos tienen un coste computacional menor, pero pueden pasar por alto
regiones de similitud interesantes, es decir, regiones en las que la medida de similitud supera un
valor preestablecido. Son los métodos más usados debido a sus requisitos computacionales
relativamente bajos. Pero el tipo de alineamiento que produce es también un factor importante. El
alineamiento local es capaz de reconocer mejor posibles regiones de gran similitud entre dos
secuencias, mientras que el alineamiento global es perjudicado por los espacios entre estas regiones.
Los algoritmos de alineación global son a menudo la elección si dos secuencias son conocidas y a
priori relacionadas. Sin embargo, las proteínas lejanamente relacionadas son más propensas a ser
similares en las subregiones y es recomendable usar algoritmos de alineación local.

Los algoritmos de programación dinámica no son prácticos para las búsquedas en bases de datos
por su elevado coste en tiempo. Por lo que se apuesta por un desarrollo de algoritmos heurísticos
que sacrifican la sensibilidad de los resultados por la velocidad. El más popular de estos son FastA,
para el cálculo de alineamientos globales, y BLAST, para el cálculo de alineamientos locales.

2.3 BLAST

BLAST (Basic Local Alignment Search Tool) es un software libre de búsqueda de similitud
de secuencias que puede ser usado para buscar una secuencia desconocida (query) en una base de
datos de secuencias (database). Se trata de uno de los instrumentos bioinformáticos más populares.

El conjunto de aplicaciones BLAST está desarrollado por el NCBI (National Center for
Biotechnology Information). La versión actual está diseñada en C++, pero al estar creada a partir de
la versión escrita en C del año 1997 las aplicaciones BLAST están compuestas tanto por código C
como C++.

A pesar de que BLAST es un programa muy poderoso y casi siempre podemos confiar en sus
resultados, puede que no encuentre la solución óptima ya que se trata de un programa heurístico. No
garantiza que las secuencias que alinea sean homólogas y mucho menos que tengan la misma
función, simplemente provee posibles candidatos. Se necesitan más análisis para anotar
correctamente una secuencia.

2.3.1 Versiones y variantes de BLAST

BLAST contiene muchas versiones distintas ya que las secuencias con las que trabaja pueden ser de
distintos tipos: nucleótidos (ADN), proteínas, de ADN traducidas a proteínas o a la inversa.

• Blastn: es de los más comúnmente usados. Compara una secuencia de nucleótidos (ADN)
contra una base de datos que contenga también secuencias nucleotídicas.

• Blastp: es el otro tipo de BLAST más usado. Es un BLAST con huecos (o gaps) que
compara una secuencia de aminoácidos contra una base de datos del mismo tipo.

• BlastX: este programa usa como entrada una secuencia de nucléotidos. Traduce la secuencia
y la compara contra una base de datos de proteínas. Se usa cuando se tiene sospecha de que
la secuencia de entrada codifica para una proteína.

28

• Tblastn: compara una proteína con una base de datos de nucléotidos. Se usa cuando el
análisis con Blastp no ha sido exitoso con dicha proteína.

• TblastX: es la combinación del TBlastn y BlastX. Compara una secuencia de nucleótidos
contra una base de datos de nucleótidos, pero primero traduce tanto la secuencia problema
como la base de datos a proteínas.

• Bl2seq: compara dos secuencias entre ellas, en vez de comparar una secuencia con una base
de datos.

Además, se pueden encontrar diferentes variantes de BLAST:

• Gapped Blast o BLAST 2.0: esta es una mejora al algoritmo original del BLAST.
Actualmente es la forma usual de BLAST que se usa. Se trata de un BLAST que contempla
la existencia de pequeñas inserciones o eliminaciones en las secuencias que se están
comparando, permitiendo así alinear uno o varios nucléotidos o aminoácidos con huecos
vacíos llamados gaps. El uso de este nuevo enfoque, agrega dos parámetros al algoritmo,
uno es la penalización que se da en la puntuación por alinear un nucleótido o aminoácido
con un gap y el otro es una penalización por extender un gap preexistente. Siempre se
considera más costoso abrir un nuevo gap que expandir uno existente.

• PsiBlast: esta variante de BLAST se usa para buscar posibles homólogos en organismos
muy lejanos entre ellos, filogenéticamente hablando. Está disponible sólo para secuencias de
aminoácidos. Se trata de un programa iterativo que va calculando su propia matriz de
sustitución en cada iteración. Al inicio, hace un Blastp normal, usando una matriz estándar
para calificar los alineamientos. De las secuencias obtenidas en este alineamiento, el
programa genera una nueva matriz de sustitución, basándose en los alineamientos obtenidos.
Usa esta nueva matriz para realizar otro alineamiento. Esto permite en general encontrar
nuevos alineamientos, que son usados para calcular una nueva matriz. El proceso se repite
tantas veces como el usuario lo indique, o hasta que ya no se encuentran nuevos
alineamientos.

• WUBlast: es el algoritmo de BLAST implementado por bioinformáticos de la Universidad
de Washington. Según sus creadores, es un algoritmo mucho más rápido y eficiente que el
BLAST de NCBI, e igual de sensible. Es ideal si se quieren realizar análisis masivos de
BLAST. Otra diferencia es la licencia, WU BLAST es software propietario y es gratuito solo
para uso académico.

2.3.2 Input

Para la ejecución de BLAST solo se necesitan dos parámetros de entrada obligatorios:

• Query o queries: secuencias desconocidas sobre las que se va a realizar la búsqueda de
similitud. Deben estar escritas en un fichero en formato FASTA. Este formato basado en
texto es utilizado para representar secuencias bien de ácidos nucleicos o proteínas, y en el
que los pares de bases o aminoácidos se representan usando códigos de una única letra. El
formato también permite incluir nombres de secuencias y comentarios que preceden a las

29

secuencias en sí. La simplicidad del formato FASTA hace fácil el manipular y analizar
secuencias usando herramientas de procesado de textos y scripts.

• Database: se debe especificar con qué base de datos se quiere realizar la búsqueda. Es
importante usar la database correcta. No podemos hacer una búsqueda con Blastp con una
query proteínica y una database de ADN.

2.3.3 Output

La salida de una ejecución de BLAST puede ser por pantalla o por fichero. En ambos casos,
todos los programas de BLAST proporcionan información en más o menos el mismo formato.
Primero viene una introducción al programa, una serie de descripciones de las secuencias
homólogas encontradas (nombre, e-value, score, etc.), las alineaciones de estas secuencias y,
finalmente, los parámetros y otros datos estadísticos recopilados durante la búsqueda.

• Introducción del programa: proporciona el nombre del programa, el número de versión, la
fecha en que el código fuente fue cambiado sustancialmente, la fecha en que se construyó el
programa y una descripción de la secuencia de consulta y base de datos que desea buscar
(figura 2.16).

• Secuencias homólogas: son las descripciones de las secuencias obtenidas (en una línea). A
menos que se solicite lo contrario, las secuencias homólogas se ordenan mediante el valor de
probabilidad e-value, es decir, se ordenan de mayor a menor significación (figura 2.17).

30

Fig. 2.15: Ejemplo de secuencia escrita en formato FASTA

Fig. 2.16: Fragmento inicial del output de Blastp

• Alineaciones: Alineaciones de las secuencias homólogas encontradas (figura 2.18).

• Parámetros y estadísticas: parámetros y otras estadísticas recogidas durante la búsqueda en
la base de datos (figura 2.19).

31

Fig. 2.19: Fragmento sobre parámetros y estadísticas

Fig. 2.18: Ejemplo de alineación en el output

Fig. 2.17: Fragmento del listado de secuencias obtenidas (ordenadas por
probabilidad)

2.3.4 Algoritmo de BLASTP

Blastp es una de las versiones más usadas y más rápidas aunque utilice alineaciones con
huecos (gaps), que son más costosas. Compara una o varias secuencias de aminoácidos (proteínas)
con secuencias del mismo tipo almacenadas en una base de datos (database) para encontrar
secuencias homólogas ya conocidas.

Usando un método heurístico, Blastp encuentra
secuencias homólogas, pero no mediante la
comparación de la secuencia en su totalidad, sino
por la localización de pequeñas coincidencias entre
las dos secuencias.

Para encontrar estas pequeñas coincidencias se hace
un proceso inicial llamado seeding que realiza una
búsqueda de palabras o words, que son tripletas de
aminoácidos, en la secuencia de interés (query). Es
decir, la secuencia de aminoácidos de entrada se
divide en tripletas y se almacenan.

Esta lista de tripletas almacenadas son utilizadas
para construir una alineación con las tripletas
resultantes de las secuencias conocidas (subjects).

Utilizando una matriz de puntuación, cada
alineación debe obtener una puntuación superior a
un umbral T para ser considerada como
significativa. Una vez las alineaciones han sido
evaluadas se extienden en ambas direcciones. Cada
extensión afecta en la puntuación de la alineación,
ya sea aumentando o disminuyendo la misma.

Si esta puntuación es superior a otro umbral T' determinado, la alineación se incluirá en los
resultados dados por Blastp. Sin embargo, si esta puntuación es inferior a ese umbral, la extensión
deja de aplicarse, evitando que se incluyan en los resultados áreas de una mala alineación.

El aumento del umbral T acelera el proceso de Blastp, pero también limita la búsqueda
disminuyendo el número de palabras coincidentes (figura 2.20).

De esta forma se puede dividir Blastp en tres módulos o fases (Figura 2.21). La fase de setup
establece la búsqueda. La fase de escaneo analiza cada secuencia conocida en busca de palabras
coincidentes que después extiende. Y por último, la fase de rastreo que produce una alineación total
de la secuencia con gaps con inserciones y eliminaciones.

32

Fig. 2.20: Efecto del umbral T. El
aumento de T acelera el proceso pero

disminuye el número de hits.

• Fase 1: SETUP

La fase de setup lee la secuencia de consulta y
construye una lookup table. La lookup table (LUT)
es una tabla hash que contiene las palabras o words
de la query y su posición o desplazamiento.

Las words son las tripletas de aminoácidos de las
que se compone la query. Es decir, la primera
tripleta corresponde a los aminoácidos de la
posición 1, 2 y 3, la siguiente a los de la posición 2,
3 y 4, …, hasta llegar a las posiciones n-2, n-1 y n,
dónde n corresponde a la longitud de query.

• Fase 2: SCANNING

La fase de escaneo explora la base de datos y realiza las extensiones. Cada secuencia
conocida se analiza en busca de palabras coincidentes (hits) con los de la lookup table (LUT). Las
coincidencias obtenidas se utilizan para iniciar una alineación extendida sin huecos (gaps). El
proceso de alineamiento sin huecos (ungapped alignment) extiende los hits en cada dirección en un
intento de incrementar su puntuación de alineación. Para calcular la puntuación de las alineaciones
se hace uso de las matrices de puntuación. Las inserciones y eliminaciones no son consideradas
durante esta etapa.

33

Fig. 2.22: Ejemplo de construcción
de la lista de words

Fig. 2.21: Diagrama de flujo del algoritmo BLAST

En el siguiente ejemplo gráfico (figura 2.23) podemos ver los hits encontrados después de analizar
dos secuencias. Se puede observar como hay coincidencias agrupadas representando pequeñas
diagonales. Estas diagonales son regiones que coinciden entre dos secuencias que la alineación sin
gaps va a detectar como alineaciones de mayor puntuación y va a intentar extender por ambos lados
(figura 2.23).

Aquellas alineaciones que superen un umbral de puntuación T, inician una alineación extendida con
gaps. La extensión mediante alineación con gaps se aplica mientras la puntuación de la alineación
sea superior a otro umbral T'. Cuando deja de superar este nuevo umbral se deja de aplicar la
extensión y la alineación se almacena para su posterior procesamiento.

En muchas ocasiones, es necesario introducir huecos (gaps) en el alineamiento para compensar las
inserciones y eliminaciones que afectan a las secuencias a lo largo de la evolución. Sin embargo, si
permitimos la inserción de numerosos gaps en el alineamiento, podríamos llegar a alinear dos
secuencias completamente divergentes. Para evitar que esto ocurra los programas de alineamiento
introducen una penalización en la puntuación del alineamiento por cada hueco que se abre (G o gap
opening penalty) y otra adicional en función de la longitud del hueco (L o gap extension penalty).

34

Fig. 2.23: Ejemplo de hits encontrados al comparar dos secuencias distintas, se pueden observar
regiones en común entre las dos secuencias.

Fig. 2.24: Ejemplo de extensión de los hits, al extender se intenta incrementar la puntuación de
alineación de cada coincidencia encontrando así alineaciones de mayor tamaño.

Estos dos parámetros pueden ser fijados por el usuario dependiendo de sus intereses, aunque lo
normal es utilizar un valor grande de G y bajo para L, asumiendo que en la naturaleza los
acontecimientos de inserción/eliminación son raros (G grande), pero una vez que ocurren pueden
afectar a varios residuos adyacentes (L pequeña).

La fase de escaneo cuenta con alguna optimización. La alineación gapped (con huecos) devuelve
sólo la puntuación y el alcance de la alineación. El número y posición de las inserciones,
eliminaciones y los aminoácidos coincidentes no se almacenan, reduciendo el tiempo de CPU y
memoria de las ejecuciones.

• Fase 3: TRACE-BACK

La fase final de la búsqueda BLAST es el rastreo o trace-back. También se conoce por la
fase de evaluación ya que en ella se obtiene la puntuación de la alineación final de la secuencia. Se
genera una alineación final con gaps usando las alineaciones obtenidas en la fase anterior. Al final
sólo se reportan los alineamientos que hayan obtenido una probabilidad mayor a E. El parámetro E
es conocido como valor de corte (e-value), y nos permite definir qué alineamientos queremos
obtener de acuerdo a su significación estadística. Cuanto menor sea el valor de E, más significativo
es un alineamiento. En la siguiente figura podemos ver un ejemplo gráfico de esta fase (figura
2.26):

35

Fig. 2.25: Ejemplo de alineaciones ungapped y alineación gapped.

Fig. 2.26: Ejemplo gráfico sobre el trace-back de Blastp. De las alineaciones
resultantes de la fase anterior (fase de escaneo) se produce una alineación con gaps

final para obtener la alineación con mejor puntuación.

2.3.5 Lookup Table

El primer paso de Blastp es aislar todas las
tripletas (W=3 aminoácidos) de la secuencia de
consulta y almacenar el desplazamiento en la que cada
palabra se produce. Estos desplazamientos representan
la tabulación de las words en la query. Esta
información se almacena en una tabla hash llamada
lookup table (LUT).

 Más tarde, con una secuencia conocida de una base de
datos (subject), el trabajo consiste en deslizarse a
través de cada word de la subject y encontrar hits, que
consistiría en recuperar de la LUT las palabras que
tienen una buena puntuación cuando se alinean con
dicha word.

El alfabeto de Blastp contiene 28 caracteres y las
words son de W=3 caracteres. Básicamente, cada una
de las posibles words se direcciona a una ubicación
única en la LUT. La función hash considera cada letra
como un número entre 0 y 27 que puede caber en 5
bits, así que para almacenar words de W=3
aminoácidos se necesitan 5·3=15 bits, dando un
tamaño a la LUT de 2¹ =32768 posibles entradas.⁵

Para mejorar el rendimiento de las operaciones de búsqueda, BLAST utiliza un array de bits
llamado PV (presence vector) que es consultado antes de acceder a la LUT. Este array tiene una
longitud igual al número de entradas de la LUT, y nos indica mediante un bit si una entrada está
vacía o no. Aprovechando que PV puede permanecer en caché por su pequeño tamaño podemos
evitar innecesarias y costosas búsquedas en la LUT cuando una entrada está vacía.

36

Fig. 2.27: Ejemplo de lookup table
para secuencias de ADN con alfabeto

de 4 caracteres (A,C,G,T) y W=3 bases

Capítulo 3

Análisis de rendimiento

Este capítulo está dedicado al análisis de rendimiento de la aplicación blastp descrita en el
capítulo anterior. Para encontrar los motivos de un bajo rendimiento en una aplicación es necesario
estudiar y entender cómo se estructura y cómo funciona. Por este motivo se ha hecho un estudio
para observar el comportamiento de la aplicación en distintos contextos. Hay que fijarse en aquellas
funciones llamadas por blastp en las que el ordenador dedica más tiempo de ejecución, tanto de
cómputo como de acceso a disco o memoria. De esta manera sabremos qué regiones de código se
necesita estudiar y de las cuales buscar soluciones para mejorar el rendimiento de la aplicación.

3.1 Análisis de los datos de entrada y parámetros

Tanto blastp como todas las variantes de BLAST disponen de una multitud de parámetros de
entrada, de los cuales sólo se van a comentar los que más efecto tienen en el rendimiento:

• Query o queries: es la secuencia o secuencias problema que queremos comparar con las
secuencias conocidas y almacenadas en una base de datos de proteínas.

• Database: especifica qué base de datos usaremos de las distintas de que dispone BLAST.

• Número de threads (opcional): especifica el número de threads que queremos lanzar para
ejecutar la versión multi-core de la aplicación. En un procesador multi-core podemos
aprovechar los diferentes núcleos para ejecutar diferentes threads en paralelo y así obtener
un rendimiento mayor.

3.1.1 Queries

Como se va a ver en este capítulo, las queries tienen una gran repercusión en el rendimiento
de la aplicación. Además, se debe tener en cuenta que los resultados del rendimiento son muy
distintos cuando solo tenemos una query o tenemos varias de ellas.

En concreto hay dos factores en las queries que son clave en el rendimiento de blastp:

• Longitud de la secuencia query: Cuanto mayor es el tamaño de la secuencia query, mayor es
la cantidad de instrucciones ejecutadas. Además, el tamaño que ocupará la LUT en memoria
depende también del tamaño de las secuencias de entrada. El tamaño de la LUT afecta al
rendimiento, ya que si tiene un tamaño excesivo puede hacer aumentar el número de accesos
(conflictos en la tabla hash) y fallos de caché. Así que la longitud de las query es un factor
muy importante que debe ser estudiado.

37

• Información proteica de la query : La información de la proteína o los aminoácidos que
aparecen en ella son también factores a tener en cuenta. Dependiendo de las words o
tripletas de aminoácidos por las que está compuesta una proteína, blastp tendrá que realizar
una carga de trabajo distinta. Es decir, la aparición de determinadas tripletas afectan al
rendimiento de la aplicación. Cuanta más diversificación en las words más words hay que
almacenar en la LUT provocando un aumento de su tamaño, y además, si se da el caso que
hay words muy comunes en la base de datos se tendrán que almacenar más hits en memoria.

Cuando solo disponemos de una query veremos cómo se comporta blastp al variar su longitud. Para
esto haremos uso de las siguientes queries distintas en tamaño y en información proteica, con
tamaños múltiples de 2 entre ellas (Figura 3.1).

Cuando dispongamos de varias queries a la vez usaremos 16 queries de distinta información
proteica pero de la misma longitud (Figura 3.2). Todas contienen 240 aminoácidos, un tamaño
bastante común en las ejecuciones con blastp.

38

Figura 3.1: Secuencias usadas para una query

Secuencia ID Especie Longitud
1 A4T9V0 Mycobacterium gilvum 64
2 Q2IJ63 Anaeromyxobacter dehalog. 128
3 P28484 Drosophila teissieri 256
4 Q1JLB7 Streptococcus pyogenes 512
5 P08715 Escherichia coli 1024
6 Q8IYD8 Homo sapiens 2048
7 Q06277 Adenosine monophosphate 4096

Figura 3.2: Secuencias usadas para varias queries

Secuencia ID Especie Longitud
1 P46969 Saccharomyces cerevisiae 240
2 Q9L0Z5 Streptomyces coelicolor 240
3 Q9CCP9 Mycobacterium leprae 240
4 P71676 Mycobacterium tuberculosis 240
5 O34557 Bacillus subtilis 240
6 P74061 Synechocystis sp. 240
7 P51012 Rhodobacter capsulatus 240
8 Q43843 Solanum tuberosum 240
9 P32661 Escherichia coli 240
10 Q9ZTP5 Oryza sativa Japonica 240
11 E1EQP8 Enterococcus TUSoD 240
12 E1L132 Atopobium vaginae 240
13 E0FZA3 Enterococcus TX4248 240
14 E1YJS2 Desulfobacterium 240
15 Q8GC94 Citrobacter freundii 240
16 E1Q8R2 Helicobacter pylori Cuz20 240

3.1.2 Base de datos (NR)

La base de datos escogida para el análisis de rendimiento es la NR. Se trata de una base de
datos (o database) que contiene 12.062.381 secuencias de proteínas ocupando unos 9.5 GB de
memoria en disco. Se trata de la base de datos disponible por el NCBI más grande y más usada,
aunque hay que mencionar que en el contexto científico no siempre la base de datos más grande es
la que da mejores resultados, pero para el análisis del rendimiento es interesante ver cómo se
comporta blastp trabajando con datos de gran volumen. La database NR incluye otras bases de
datos como la GenBank, RefSeq, EMBL (base de datos europea), DDBJ (base de datos japonesa) y
PDB (banco de datos de proteínas).

Cada proteína almacenada puede tener longitudes variables de aminoácidos. La proteína más corta
tiene una longitud de 6 aminoácidos mientras que la más larga contiene 36.805 aminoácidos. En
total la base de datos contiene 4.118.133.053 aminoácidos, lo que supone una media de 341
aminoácidos por proteína. En la siguiente gráfica (figura 3.3) se puede observar como la mayor
parte de las proteínas de la database NR tienen una longitud entre 100 y 500 aminoácidos.

3.1.3 Número de threads

También estudiaremos el comportamiento del programa cuando se usa el argumento
opcional -num_threads, con el cual podemos escoger el número de threads que se van a ejecutar en
blastp. De esta manera también podemos hacer un estudio comparativo para ver y estudiar como
funciona y qué mejoras presenta la versión multi-core creada por el NCBI.

La aplicación blastp puede lanzar varios hilos de trabajo paralelos durante la fase nº 2 comentada en
el capítulo anterior. Todos ellos realizan el mismo trabajo sólo que con distintos datos. La versión
multi-core divide la base de datos haciendo que cada thread acceda sólo a una parte de ella. De esta
manera se compara la secuencia query con las secuencias conocidas de forma paralela si se dispone
de un procesador multi-core.

39

Figura 3.3: Tamaño de las secuencias en la base de datos NR

L < 100

100 < L < 200

200 < L < 300

300 < L < 400

400 < L < 500

500 < L < 1000

L > 1000

0

500000

1000000

1500000

2000000

2500000

3000000

Longitud de las secuencias (L)

N
º

d
e

 s
e

cu
e

n
c i

a
s

3.2 Entorno experimental y metodología

3.2.1 Descripción del H/W y del S.O

Para el análisis de rendimiento que se detalla a continuación se ha hecho uso de un portátil
con un procesador Intel Core2 compuesto por 2 núcleos con una memoria RAM de 1 GB. Hay que
mencionar que para tomar las medidas de este capítulo no se ha hecho uso de la batería, sino que en
todo momento se ha usado la alimentación de red para evitar así la reducción de frecuencia de CPU
que ocurre al trabajar en modo batería para ahorrar en consumo.

Por otro lado, para analizar con más profundidad la versión multi-core de blastp se ha usado una
computadora con procesador Intel Core2 Quad con 4 núcleos y 4 GB de memoria RAM.

Las especificaciones de las computadoras se muestran a continuación:

40

Computadora 1

Computadora 2

Figura 3.4: Características de las computadoras usadas
para el análisis de rendimiento.

Hardware

 CPU Intel Core2 T5200 1.60Ghz (2 cores)
 Cache L1 64 KB
 Cache L2 2 MB
 RAM 1 GB

Sistema Operativo

 Ubuntu 10.10 (Maverick) (32 bits)
 Núcleo Linux 2.6.35-22-generic

Software

 BLAST+ 2.2.24 (lanzado en Agosto 2010)
 PAPI 4.4.1 (lanzado en Octubre 2010)

Hardware

 CPU Intel Core2Quad Q9400 2.66Ghz (4 cores)
 Cache L1 64 KB
 Cache L2 6 MB (2 x 3 MB, 1 caché L2 para 2 cores)
 RAM 4 GB

Sistema Operativo

 Debian GNU 5.0.4 (64 bits)
 Núcleo Linux 2.6.32-3-generic

Software

 BLAST+ 2.2.24 (lanzado en Agosto 2010)
 PAPI 3.7.1 (lanzado en Noviembre 2009)

3.2.2 Métodos para tomar las medidas

Las medidas tomadas sobre la aplicación han sido sobre la ejecución del programa en su
totalidad, es decir, sin excluir operaciones de entrada/salida, inicialización de datos, etc. Para esto se
ha hecho uso del comando time, de contadores hardware (PAPI) y de un profiler (gprof).

• Time: se trata de un comando de los sistemas operativos Unix mediante el cual se obtienen
estadísticas sobre el tiempo de ejecución de un proceso. Cuando dicho proceso termina su
ejecución, se muestra un informe con el tiempo total de respuesta, el tiempo de cómputo y el
tiempo de llamadas al sistema.

• PAPI (Performance Application Programming Interface): es una API para acceder a los
contadores hardware de rendimiento, disponibles en la mayoría de los procesadores actuales.
Estos contadores son un conjunto de registros que cuentan la ocurrencia de determinados
eventos en el procesador. Al incorporar PAPI a una sección de código, es posible pasar
(como parámetro) a la aplicación los nombres de los contadores hardware de los que se
quiere obtener información. Para realizar las medidas de este capítulo se ha usado la versión
más reciente (4.1.1) y se han usado los siguientes contadores:

◦ PAPI_TOT_CYC Número total de ciclos de la aplicación. Se usará para calcular el
tiempo de cómputo de las ejecuciones.

◦ PAPI_TOT_INS Número total de instrucciones ejecutadas. Se puede usar para
calcular CPI y TPI.

◦ PAPI_L2_TCA Número de accesos a la caché L2. Para estudiar el uso de la caché.
◦ PAPI_L2_TCM Número de fallos caché L2. Para calcular el porcentaje de fallos.
◦ PAPI_TLB_DM Número de fallos en TLB de datos.
◦ PAPI_TLB_IM Número de fallos en TLB de instrucciones.
◦ PAPI_BR_CN Número de instrucciones de salto ejecutadas.
◦ PAPI_BR_MSP Número de saltos mal predichos.

• Profiler: se ha hecho uso de la herramienta gprof, que permite realizar un análisis de
rendimiento midiendo el comportamiento del programa mientras está en ejecución,
particularmente la frecuencia y duración de las llamadas a funciones.

3.3 Experimentos

A continuación se muestran los experimentos realizados para observar el rendimiento de la
aplicación. Se ha realizado primero un estudio sobre el tiempo de lectura de la database, ya que se
espera que sea un factor importante en el rendimiento. Después se han realizado distintos
experimentos diferenciados en cuatro apartados según: la longitud de las queries, la información
proteica de las queries, el número de queries y el número de threads.

Las métricas usadas son varias:

• De los datos extraídos mediante PAPI se van a mostrar: ciclos de reloj, número de
instrucciones, número de saltos, accesos a L2, fallos de caché, fallos de TLB, etc.

41

• Para mostrar tiempos de respuesta de blastp se usan segundos. En algunas ocasiones se
mostraran los segundos de ejecución total de la aplicación (Tiempo) y en otras la suma del
tiempo de cómputo y de llamadas a sistema (Tc+Ts). Esta diferenciación se realiza para
observar si la lectura de la database provoca esperas de E/S que afecten en el rendimiento.
Además se va a mostrar la media de tiempo por aminoácido de la secuencia query, medida
en micro-segundos.

• De los datos obtenidos mediante el profiler gprof se van a mostrar la duración en segundos
de las funciones con mayor consumo.

3.3.1 Estimación empírica del tiempo de lectura de la database

 Se ha procedido a estudiar el tiempo de la lectura de la base de datos ya que se espera que
sea un factor importante en el rendimiento. En los computadores utilizados no se tiene memoria
suficiente para almacenar el tamaño de la database, así que durante la ejecución blastp se queda sin
datos en memoria y hay que esperar que se traigan nuevos datos del disco. De esta forma, cada vez
que se necesita traer datos de la database de disco a memoria, la CPU debe esperar por esos datos y
así poder seguir con la ejecución. Este hecho puede provocar importantes retrasos en la ejecución ya
que puede ocurrir que se tarde más en traer los datos a memoria que en realizar las operaciones con
estos datos.

A continuación se muestra un ejemplo gráfico de este problema (figura 3.5).

En este ejemplo se puede observar como la CPU realiza sus operaciones y hace una petición de
lectura a memoria. Como en memoria no hay los datos necesarios se debe realizar una lectura a
disco. Mientras se traen de disco a memoria los datos que necesita la CPU para continuar, esta se
encuentra en espera. Una vez la CPU retoma su trabajo el disco continua trayendo más datos a
memoria hasta que la CPU de nuevo se encuentra que debe esperar a que el disco traiga nuevos
datos para seguir trabajando.

Para estudiar el tiempo de lectura de la database se ha realizado un experimento en el que se ha
medido el tiempo de lectura de un fichero. Para ello se ha procedido a medir el tiempo de ejecución
de un pequeño programa escrito en C que abre un fichero y lee su contenido. Aprovechando que la
database está compuesto por diferentes ficheros, se ha medido el tiempo de lectura de uno de estos
ficheros. El fichero seleccionado ha sido “nr.00.phr”, se trata de un archivo de 1.302 MB.

Después de 5 pruebas en la computadora de 2 núcleos, el tiempo de lectura ha sido de 58 ± 2.74
segundos. Por lo que el sistema lee a un ritmo aproximado de 22 MB/s. De esta forma podemos

42

Figura 3.5: Ejemplo de tiempo de espera de CPU

Disco
CPU

P
et

ic
ió

n
Le

ct
.

T
ie

m
po

 E
sp

er
a

P
et

ic
ió

n
Le

ct
.

T
ie

m
po

 E
sp

er
a

P
et

ic
ió

n
Le

ct
.

T
ie

m
po

 E
sp

er
a

P
et

ic
ió

n
Le

ct
.

T
ie

m
po

 E
sp

er
a

calcular que la database que ocupa 9.5GB necesita sobre unos 442 segundos (7 minutos y 22
segundos) para ser leída completamente. En la computadora de 4 núcleos, al tener mejores
prestaciones, necesita sobre unos 84 segundos (1 minuto y 24 segundos) para realizar la lectura de
la database, con un ritmo aproximado de 118 MB/s. Este dato significa que cualquier ejecución de
blastp tendrá como tiempo de respuesta mínimo estos tiempos calculados antes.

En los siguientes apartados veremos cómo hay ejecuciones menores a este tiempo, por lo que
deducimos que blastp no usa toda la información almacenada en la database. La database contiene
información y atributos para cada secuencia que blastp no necesita para su ejecución como pueden
ser: número y fecha de patente, descripción de la secuencia, tipo de proteína, tipo de organismo a la
que pertenece, nombre del organismo, función, etc.

3.3.2 Efecto de la longitud en el rendimiento

En este apartado el objetivo es identificar los cambios en el rendimiento de blastp cuando
variamos la longitud de las queries. Cuanto mayor es el tamaño de la query, mayor es la cantidad de
instrucciones a ejecutar. Mediante este experimento podremos observar la forma en que se
incrementa la cantidad de cómputo de la aplicación al aumentar la longitud de la query.

A continuación se muestra una gráfica sobre el tiempo de ejecución de blastp con las distintas
queries antes mencionadas en la figura 3.1. En ella se puede ver el tiempo total de ejecución
(Tiempo) y la suma del tiempo de cómputo y de llamadas a sistema (Tc+Ts) (figura 3.6):

Al incrementar la longitud de las queries nos encontramos que el tiempo de ejecución, en general,
también se incrementa debido al incremento de trabajo a realizar. Se debe mencionar que los
incrementos de tiempo no son del todo lineales, debido al factor antes mencionado sobre la
información proteínica de cada query, hay que recordar que las secuencias usadas en este apartado
son todas distintas entre ellas y puede ser que algunas queries requieran de más cómputo que otras
sin tener en cuenta su tamaño.

43

Figura 3.6: Tiempos de ejecución con queries de distintos tamaños

64 128 256 512 1024 2048 4096

0

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

2500

3000
Computador 1: Core2

Tiempo
Tc+Ts

Longitud de la secuencia

S
e

g
u

n
d

o
s

En la gráfica se puede observar la diferencia entre el tiempo total de ejecución y el tiempo de
cómputo (ya sea de CPU o de llamadas al sistema). No se trata de una diferencia que aumente al
incrementar el tamaño de la query, se trata de una diferencia que parece ser constante. Es decir, no
tiene relación ninguna con la longitud de la secuencia de entrada.

Se trata del tiempo de espera al disco mencionado en el apartado anterior. Hay momentos en el que
la CPU se queda sin datos para procesar y tiene que esperar a que el disco traiga más datos a
memoria. Estas esperas a disco provocan un retraso en el tiempo de ejecución que observando la
gráfica podemos apreciar que no aumenta al incrementar la longitud de la query.

El hecho de que este tiempo de espera no aumente se debe a que cuanto mayor es el tamaño de la
query más cantidad de cómputo tiene que realizar la CPU dando una cierta ventaja al disco que hace
disminuir esta espera.

De esta forma podemos analizar que cuanto mayor es el tamaño de la query mayor es la reducción
del porcentaje de tiempo de espera. Así que para queries de pequeño tamaño tendremos mucho
tiempo de espera a disco, mientras que para queries de gran tamaño una mayor parte del tiempo de
acceso a disco queda oculto, ya que la CPU tarda más en procesar los datos.

También podemos ver este fenómeno si observamos el tiempo medio que se tarda por aminoácido
de la query de entrada (figura 3.7):

Se puede apreciar como en las queries de menor tamaño el tiempo medio por aminoácido es mucho
mayor. Pero a partir de queries de unos 2048 aminoácidos se observa como el tiempo por
aminoácido apenas se reduce, ya que el tiempo de espera a disco disminuye, quedando solapado por
el aumento de cómputo.

A continuación se muestra el CPI (ciclos por instrucción) de la aplicación según variamos la
longitud de las queries (figura 3.8). El CPI mostrado incluye la parte de cómputo de la ejecución
excluyendo los tiempos de espera por el disco.

44

Fig. 3.7: Segundos por aminoácido para queries de distinto tamaño

64 128 256 512 1024 2048 4096

0

1

2

3

4

5

6
Computador 1: Core2

Longitud de la secuencia

T
ie

m
p

o
 e

je
cu

c i
ó

n
 /

T
a

m
a

ñ
o

 q
u

e
ry

Se observa que el CPI ronda valores entre 0.8 y 0.9 ciclos por instrucción. Este valor no es muy
bueno ya que el mejor CPI teórico posible en los computadores usados en el análisis es de 0.333
ciclos por instrucción. Este hecho da a entender que existe algún factor que no permite ejecutar
varias instrucciones a la vez en cada ciclo. Este valor de CPI superior al valor ideal puede ser
provocado por dependencias de datos (especialmente accesos a memoria que fallan en caché),
dependencias de control (fallos de predicción de saltos) o saturación de ciertos recursos (unidades
de cómputo o de acceso a memoria).

Si se observa el porcentaje de accesos a L2 (o lo que es lo mismo, fallos de caché L1) por
instrucción (figura 3.9), se puede ver una posible correlación de la curva con la gráfica anterior.

Además, podemos observar el porcentaje de saltos mal predichos por instrucción (figura 3.10):

45

Fig. 3.8: Ciclos por instrucción según longitud de la query

64 128 256 512 1024 2048 4096
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
Computador 1: Core2

Longitud de la secuencia

C
ic

lo
s

p
o

r
in

st
ru

cc
ió

n
 (

C
P

I)

Fig. 3.9: Porcentaje de accesos a caché L2 por instrucción ejecutada

64 128 256 512 1024 2048 4096
0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

1,60%

1,80%

2,00%
Computador 1: Core2

Longitud de la secuencia

A
cc

e
so

s
a

 L
2

 p
o

r
in

st
ru

cc
ió

n

También se puede apreciar la posible correlación con el CPI. La penalización que asocia una
predicción incorrecta de salto afecta al rendimiento y a la vez a su CPI.

Si analizamos el número de fallos en la caché L2, o lo que es lo mismo, el número de accesos a
memoria, se observa un ligero aumento de fallos al incrementar el tamaño de la query (figura 3.11).
La mayoría de estos accesos a memoria corresponden a fallos a la hora de leer las secuencias de la
database.

Este hecho provoca el porcentaje de accesos a memoria por instrucción decrezca como se puede
observar en la siguiente gráfica (figura 3.12):

46

Fig. 3.10: Porcentaje de saltos mal predichos por instrucción

64 128 256 512 1024 2048 4096
0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%
Computador 1: Core2

Longitud de la secuencia

F
a

llo
s

d
e

 p
re

d
ic

ci
ó

n
 d

e
 s

a
lto

s
p

o
r

in
st

ru
cc

i ó
n

Fig. 3.11: Número de fallos en caché L2 usando queries de distinto tamaño (en millones)

64 128 256 512 1024 2048 4096
0

10

20

30

40

50

60

70

80

90
Computador 1: Core2

Longitud de la secuencia

N
ú

m
e

ro
 d

e
 fa

l lo
s

e
n

 c
a

ch
é

 L
2

 (
m

ill
o

n
e

s)

Finalmente, se estudia el consumo de recursos de cada fase de la que consta la aplicación. Se
obtiene que la fase con más peso o consumo en tiempo y recursos es la fase nº 2 (fase de scanning:
compara la query con las secuencias de la base de datos y realiza las extensiones). A continuación
podemos ver el porcentaje de tiempo que consumen las 3 fases de las que consta blastp en función
de la longitud de secuencia (figura 3.13):

Observando el gráfico se puede ver como la fase nº 1 (setup) es inapreciable y se trata de una fase
que podemos despeciar en el estudio. La fase nº 3 (trace-back) aunque no es despreciable, consume
poco tiempo y cuánto mayor es el tamaño de la query menor es su peso en el rendimiento. La fase
nº 2 (scanning) es la fase que más cómputo necesita y la fase a atacar en futuras optimizaciones. Se
trata de la fase más dominante en la ejecución y su peso e importancia aumenta a la vez que crece la
longitud de la secuencia query.

47

Fig. 3.13: Porcentaje de tiempo para cada fase de blastp

64

128

256

512

1024

2048

4096

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Computador 1: Core2

Fase 3
Fase 2
Fase 1

Porcentaje de tiempo por fase

L
o

n
g

itu
d

 d
e

 la
 s

e
cu

e
n

ci
a

Fig. 3.12: Porcentaje de accesos a memoria por instrucción ejecutada

64 128 256 512 1024 2048 4096
0,000%

0,005%

0,010%

0,015%

0,020%

0,025%

0,030%

0,035%
Computador 1: Core2

Longitud de la secuencia

P
o

rc
e

n
ta

je
 d

e
 fa

llo
s

e
n

 c
a

ch
é

 L
2

 p
o

r
in

st
ru

cc
ió

n

3.3.3 Efecto de la información proteínica en el rendimiento

Como ya se ha comentado en el apartado 3.1.1, el contenido de una secuencia repercute
tanto en el tiempo de cómputo como en el espacio de memoria usado. Se espera que el contenido de
cada query pueda hacer variar la cantidad de trabajo. Cuanta más diversificación en las words más
words hay que almacenar en la LUT provocando un aumento de su tamaño, y además, si da el caso
que hay words muy comunes en la base de datos se tendrán que almacenar más hits en memoria.
Ambos casos pueden provocar una tasa mayor de fallos de accesos tanto en caché como en memoria
(accesos a la tabla hash de la LUT). En los siguientes experimentos se analiza la variabilidad de los
tiempos de ejecución, número de ciclos, instrucciones, etc. con distintas queries del mismo tamaño.

Vamos a tomar las medidas del conjunto de 16 queries mostradas en la figura 3.2. Como todas
tienen la misma longitud, las diferencias encontradas se deberán únicamente a su contenido. En la
siguiente figura se muestran los tiempos de ejecución de las queries ordenado de menor a mayor
incluyendo los tiempos de E/S (figura 3.14):

Se puede apreciar como el contenido proteínico afecta al tiempo de ejecución. Los tiempos han sido
de 267 ± 20.3 segundos, desviación suficiente para comprobar este efecto. También se puede ver
como hay queries con un tiempo cercano a 200 segundos y otras cercanas a los 300 segundos.

Si observamos el número de ciclos y de instrucciones se puede apreciar mejor la variabilidad que
produce la información proteínica. En la siguiente figura se muestran ciclos e instrucciones de las
queries ordenadas por tiempo de ejecución (figura 3.15):

48

Figura 3.14: Tiempos (con E/S) de distintas queries del mismo tamaño ordenadas por tiempo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

50

100

150

200

250

300

350

Computador 1: Core2

Número de secuencia

S
e

g
u

n
d

o
s

Aunque en la gráfica anterior (figura 3.15 pueda parecer que hay mucha diferencia entre las query
en cuanto a la proporción de ciclos e instrucciones, podemos ver como el CPI es muy similar. A
continuación se muestra el CPI (figura 3.16):

Mientras que el CPI sin incluir los ciclos de E/S parece ser constante, el CPI incluyendo la E/S
demuestra que la información proteínica que contiene una secuencia es un factor a tener en cuenta
en el rendimiento. Si las subsecuencias o words de una query son muy o poco repetitivas a lo largo
de la secuencia afecta en el tamaño de la LUT, provocando una tasa mayor de fallos de acceso.
Además, al comparar con la database se almacenan distintas cantidades de hits dependiendo del
contenido de la query, hecho que afecta también al rendimiento.

3.3.4 Efecto del número de queries en el rendimiento

Como ya se ha comentado en este capítulo, al ejecutar blastp podemos pasar como
parámetro de entrada una sola query o varias de ellas. En este apartado se estudiará como repercute
en el rendimiento el número de queries. Se analizará si es mejor hacer N búsquedas de una query o
una búsqueda de N queries.

49

Figura 3.15: Número de ciclos e instrucciones de las queries ordenadas por tiempo
(en miles de millones)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

50

100

150

200

250

300

350

400

450
Computador 1: Core2

Ciclos
Instrucciones

Número de secuencia

C
ic

lo
s

e
 in

st
ru

cc
io

n
e

s
(m

ile
s

d
e

 m
ill

o
n

e
s)

Figura 3.16: Ciclos y tiempo por instrucción

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
Computador 1: Core2

Número de secuencia

C
ic

lo
s

p
o

r
in

st
ru

cc
ió

n

Se van a medir las 16 queries de la figura 3.2 por separado y, a continuación, se van a medir
agrupándolas en grupos de 2, 4 y 8, hasta hacer una ejecución con las 16 queries a la vez. Se espera
obtener un tiempo de ejecución menor al juntar distintas queries en una sola búsqueda ya que de
esta manera solo se accede una vez a la database y no una vez para cada query.

En la figura 3.12 ya tenemos las medidas tomadas de las queries por separado, es decir, una
ejecución de blastp por query. Así que ahora vamos a agrupar las queries en parejas y en orden de
rapidez de ejecución, es decir, se va a lanzar blastp con las queries 1-2 (las más rápidas), 3-4,... y
15-16 (las más lentas). Los resultados se muestran a continuación (figura 3.17):

Podemos observar cómo la aplicación tarda entre un 25-30% menos si trabajamos con dos queries a
la vez y no por separado. Este hecho se produce porque blastp, sin tener en cuenta el número de
queries que hay que tratar, solo hace una lectura de la database. Es decir, aprovecha cada dato que
se lee de la database para usarlo con todas las queries que se le han pasado como entrada. De esta
manera, se reducen las instrucciones a ejecutar en la aplicación (figura 3.18). Además, si tenemos
más queries tenemos más cómputo, y así no hay tanta espera en la CPU por lecturas a disco.

A continuación podemos ver que cuantas más queries se tienen, menor es el tiempo de ejecución
(figura 3.19):

50

Figura 3.17: Tiempos de ejecución con E/S en grupos de 2 queries e individualmente

1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16

0

100

200

300

400

500

600

700
Computador 1: Core2

Conjuntamente
Individualmente

Grupos de secuencias

S
e

g
u

n
d

o
s

Figura 3.18: Número de instrucciones en grupos de 2 e individualmente
(en miles de millones)

1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16

0

100

200

300

400

500

600

700

800
Computador 1: Core2

Conjuntamente
Individualmente

Grupos de secuencia

In
st

ru
cc

io
n

e
s

(e
n

 m
ile

s
d

e
 m

ill
o

n
e

s)

En la figura anterior se puede apreciar cómo al incrementar el número de queries, la aplicación
tiene un tiempo de ejecución menor, llegando a reducir entre un 55-60% el tiempo si se ejecuta la
aplicación con las 16 queries del conjunto de prueba a la vez.

51

Figura 3.19: Tiempos de ejecución en grupos de 4, 8 y 16 queries e individualmente

1-4 5-8 9-12 13-16

0
200
400
600
800

1000
1200
1400

Computador 1: Core2

Conjuntamente
Individualmente

Grupo de secuencias

S
e

g
u

n
d

o
s

1-8 5-12 9-16

0

1000

2000

3000

Conjuntamente
Individualmente

Grupo de secuencias

S
e

g
u

n
d

o
s

1-16

0
1000
2000
3000
4000
5000

Conjuntamente
Individualmente

Grupo de secuencias

S
e

g
u

n
d

o
s

Fig. 3.20: Segundos por aminoácido para conjuntos de queries del mismo tamaño

1 2 4 8 16

0

0,2

0,4

0,6

0,8

1

1,2
Computador 1: Core2

Número de queries agrupadas

T
ie

m
p

o
 d

e
 e

je
cu

ci
ó

n
 /

T
a

m
a

ñ
o

 q
u

e
ry

Si analizamos el tiempo medio que se tarda por aminoácido de las queries de entrada (figura 3.20),
podemos apreciar como el tiempo va disminuyendo al agrupar más queries. Es decir, el hecho de
agrupar las queries en una misma búsqueda resulta más efectivo que hacer varias búsquedas por la
razón de que el contenido de la database se lee menos veces en total.

El CPI (figura 3.21) se comporta de igual manera que en el apartado 3.3.2. No se trata de un buen
promedio ya que el CPI ideal es de 0,33 en las computadoras utilizadas. Puede ser provocado por
dependencias de datos (especialmente accesos a memoria que fallan en caché), dependencias de
control (fallos de predicción de saltos) o saturación de ciertos recursos (unidades de cómputo o de
acceso a memoria).

3.3.5 Efecto del número de threads en el rendimiento

Al lanzar blastp podemos especificar el número de threads que se van a ejecutar. De esta
manera se puede paralelizar parte del cómputo siempre que dispongamos de un procesador multi-
core. El objetivo de este apartado es analizar el comportamiento de esta versión multi-core para
encontrar posibles problemas de rendimiento.

De las tres fases de las que se compone la aplicación, cuando lanzamos blastp en su modo multi-
core sólo se ejecuta de forma paralela la fase nº 2. Las fases nº 1 y 3 siempre se ejecutan de forma
secuencial. La fase nº 2, comentada en el capítulo anterior, es la encargada de leer todas las
secuencias conocidas en la database y hacer las comparaciones con las queries, almacenando hits
que más tarde intentará expandir.

Blastp reparte el trabajo a los distintos threads lanzados, dándoles a cada thread distintos
datos para realizar el mismo trabajo. Es decir, se divide la database en varios bloques o porciones
que se reparten entre sus threads. De esta manera se puede paralelizar el cómputo
significativamente. Cada thread compara la query o queries con su propio bloque de datos de la
database. Cuando un thread termina de ejecutar un bloque pide el siguiente, mientras queden
bloques disponibles.

A continuación se van a estudiar dos escenarios particulares que se espera que sean de importancia
en el rendimiento de la versión multi-core creada por el NCBI: la forma en que se dividen los
bloques y la asignación de los threads en los cores. Además de la computadora de 2 núcleos (Intel
Core2), para analizar con más profundidad la versión multi-core de blastp también se ha hecho uso
de una computadora con 4 núcleos (Intel Core2 Quad).

52

Fig. 3.21: CPI agrupando las queries

1 4 8 16
0,00

0,20

0,40

0,60

0,80

1,00
Computador 1: Core2

Grupos de secuencias

C
ic

lo
s

p
o

r
in

st
ru

cc
ió

n
 (

C
P

I)

División de los datos

El hecho de tener la database almacenada en disco sin fragmentación es importante para la
ejecución de blastp. Tener la base de datos desfragmentada reduce el tiempo de movimiento y
rotación del cabezal del disco minimizando el tiempo de espera. Además se favorece la localidad
temporal, ya que al pedir una secuencia a la database, cada bloque leído de disco contiene la
secuencia que se ha pedido y varias secuencias más que se usarán en las siguientes iteraciones.

La forma en que la aplicación trata las secuencias de la database es mediante un bucle. El bucle
tiene tantas iteraciones como secuencias conocidas existen en la base de datos. Cada iteración pide a
la database la siguiente secuencia a tratar y la procesa, hasta que no quedan más secuencias a
procesar.

Si medimos mediante la librería time.h el tiempo de ejecución de la función que lee las secuencias a
procesar de la database, podemos observar importantes diferencias en el tiempo de lectura de las
secuencias. La siguiente figura muestra en pseudocódigo el bucle mencionado (figura 3.22).

Los tiempos tomados al leer una secuencia de la database en la versión secuencial se encuentran
entre dos rangos diferentes: de 1 a 500 micro-segundos y de 1000 a 50.000 micro-segundos. Si
estudiamos los tiempos superiores a 1000 micro-segundos, en la siguiente gráfica podemos observar
como la versión multi-core resulta tener muchos más accesos con tiempos superiores a 1 mili-
segundo que usando la versión secuencial (figura 3.23):

53

Fig. 3.22: Pseudocódigo de la lectura de secuencias de la database. En azul,
la función encargada de leer la secuencia, y en rojo, los lugares

 en el código donde se han tomado las medidas de tiempo.

Podemos observar cómo en la versión secuencial el número de esperas superiores a 1 ms son
constantes, sobre 30 ocasiones en cada ejecución. Mientras que en la versión multi-core (2 threads)
el número de esperas es más elevado y además se incrementa al aumentar la longitud de la query.

Estos incrementos son debidos a la mala división que hace blastp de la database en la versión
multi-core. De las más de 12 millones de secuencias que almacena la database usada en este
análisis, la aplicación divide las secuencias en rangos demasiado grandes. Es decir, que los distintos
threads piden datos que quizás se encuentran en diferentes sectores, hecho que provoca muchos
cambios de cabezal en una computadora con un solo disco.

Si se muestran los tiempos máximos de acceso, se puede ver con más claridad como en la versión
multi-core son mucho más grandes, llegando algunas veces a medio segundo (figura 3.24):

Una posible solución a este problema puede ser repartir las secuencias en rangos más pequeños o
quizás asignar en orden cada secuencia a un thread distinto. Otra posible solución a este problema
es el uso de sistemas con varios discos, o con RAIDs, con los que se podría aprovechar mejor esta
partición de la database.

54

Figura 3.23: Número de esperas superiores a 1 ms (secuencial y multi-core)

64 128 256 512 1024 2048 4096

0

20

40

60

80

100

120

140

160
Computador 1: Core2

1 thread
2 threads

Longitud de la query

N
º

e
sp

e
ra

s
m

a
yo

re
s

a
 1

 m
s

Figura 3.24: Tiempos máximos en mili-segundos de lectura de secuencias
(secuencial y multi-core)

64 128 256 512 1024 2048 4096

0

100

200

300

400

500

600

700
Computador 1: Core2

1 threads
2 threads

Longitud de la query

M
ili

-s
e

g
u

n
d

o
s

Si se observa el porcentaje del tiempo total de ejecución que blastp dedica a la E/S (figura 3.25) se
puede apreciar con más claridad este fenómeno:

Existe una relación entre el número de threads lanzados y el tiempo que dedica la aplicación a la
E/S. Así que hay que estudiar una manera de acceder a las secuencias en el modo multi-core de una
forma más óptima.

Pero éste no es el único problema que presenta la división de datos de blastp. Además de dividir la
database en bloques demasiado grandes que provocan mayores esperas a disco, estos bloques no
son equitativos ni en número de secuencias ni en número de aminoácidos. Podemos observar que el
número de ciclos consumidos por cada core del procesador no es equitativo en la fase nº 2 (figura
3.26):

55

Fig. 3.25: Porcentaje de tiempo de ejecución que blastp dedica a E/S

64 128 256 512 1024 2048 4096
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
Computador 2: Core2Quad

1 threads
2 threads
4 threads

Longitud de la secuencia

P
o

rc
e

n
ta

je
 d

e
 E

/S
 s

o
b

re
 e

l t
i e

m
p

o
 d

e
 e

je
cu

ci
ó

n

Fig. 3.26: Ciclos consumidos por core en la fase nº 2
 (en miles de millones). No incluye tiempo de E/S.

64 128 256 512 1024 2048 4096
0

100

200

300

400

500

600

700
Computador 2: Core2Quad

Core 1
Core 2
Core 3
Core 4

Longitud de la secuencia

C
ic

lo
s

co
n

su
m

id
o

s
p

o
r

co
re

 e
n

 la
 fa

se
 n

º
2

Este hecho provoca que los distintos cores tengan cargas de trabajo distintas, provocando que los
threads con menos carga de trabajo queden a la espera del thread más lento y con más carga de
trabajo. De esta manera, durante algunos instantes se tienen uno o varios cores desaprovechados.
Así que hay que estudiar cómo repartir de forma equitativa el trabajo a realizar entre los distintos
threads.

Asignación de threads en los cores

Cuando un proceso lanza varios threads, es interesante asignar cada thread a un core distinto
para aprovechar el paralelismo en los sistemas multi-core. Generalmente, el sistema operativo es el
encargado de asignar los threads en los cores. Así que, en una computadora con dos cores, si se
lanzan dos threads y los dos se empiezan a ejecutar en el mismo core, el sistema operativo se
encarga de hacer migrar uno de los dos al core que no se está usando o tiene menor carga de trabajo.

Pero a la hora de hacer el análisis en muchas ocasiones este hecho no sucedía así. Sólo en algunas
ocasiones el consumo de CPU era más o menos equivalente en cada core, en el resto de ocasiones
podríamos encontrarnos con un core con una carga de trabajo mucho mayor al otro. De esta manera,
en algunos casos era más o igual de eficiente la versión secuencial que la multi-core, como se puede
ver en la siguiente gráfica (figura 3.27):

Se puede observar como el speedup es la mayoría de veces peor con dos threads. Si se fuerza a cada
thread a ser ejecutado en un core distinto mediante la librería sched.h, el rendimiento mejora
mucho, como se puede apreciar en la siguiente gráfica (figura 3.28):

56

Figura 3.27: Comparación de tiempo con E/S en segundos (secuencial y con 2 threads)

64 128 256 512 1024 2048 4096

0

500

1000

1500

2000

2500

3000
Computador 1: Core2

1 threads
2 threads

Longitud de la secuencia

S
e

g
u

n
d

o
s

Así que para obtener mayor rendimiento aprovechando al máximo el paralelismo de los sistema
multi-core se puede forzar a cada thread a ser ejecutado en distinto core, siempre y cuando haya
cores disponibles.

Resultados de los experimentos multi-core

Usando la librería sched.h para forzar a cada core a ejecutar un thread, se dispone a mostrar
y comentar los resultados obtenidos al usar la versión multi-core de blastp.

En la siguiente gráfica podemos observar una comparativa de ciclos consumidos y instrucciones
ejecutadas entre la versión secuencial y la multi-core, cuando tenemos una sola query de distintos
tamaños (figuras 3.29 y 3.30):

57

Figura 3.28: Comparación de tiempo con E/S en segundos de la versión multi-core
forzando y sin forzar la ejecución de cada thread en un core

64 128 256 512 1024 2048 4096

0

500

1000

1500

2000

2500

3000
Computador 1: Core2

2 threads (sin forzar)
2 threads (forzado)

Longitud de la secuencia

S
e

g
u

n
d

o
s

Fig. 3.29: Ciclos con una query de distintos tamaños usando varios threads
(en miles de millones). No incluye tiempo de E/S.

64 128 256 512 1024 2048 4096
0

500

1000

1500

2000

2500

3000
Computador 2: Core2Quad

1 threads
2 threads
4 threads

Longitud de la secuencia

C
ic

lo
s

co
n

su
m

id
o

s
(e

n
 m

ile
s

d
e

 m
ill

o
n

e
s)

Observando las gráficas podemos ver que tanto en la versión secuencial como en la multi-core se
ejecuta el mismo número total de instrucciones, consumiendo menos ciclos de ejecución en la
versión multi-core. El speedup calculado por ciclos es una mejora interesante (ver figuras 3.31 y
3.32), pero hay que recordar que, como se ha hablado en los apartados anteriores, la versión multi-
core tiene un tiempo de espera a disco mayor. Esto provoca que el speedup de la versión multi-core
sea mucho menor del esperado, llegando a ser en algunas ocasiones más rápida la versión
secuencial.

58

Fig. 3.31: Speedup entre las versiones secuencial y con 2 threads

64 128 256 512 1024 2048 4096
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2
Computador 1: Core2

Por tiempo
Por ciclos

Longitud de la query

S
p

e
e

d
u

p

Figura 3.30: Total de instrucciones eejcutadas con una query usando varios threads
(en miles de millones)

64 128 256 512 1024 2048 4096
0

500

1000

1500

2000

2500

3000

3500

4000
Computador 2: Core2Quad

1 threads
2 threads
4 threads

Longitud de la secuencia

N
ú

m
e

ro
 d

e
 in

s t
ru

cc
io

n
e

s
(m

ile
s

d
e

 m
ill

o
n

e
s)

Podemos observar en las gráficas anteriores como las queries de menor longitud tienen un speedup
peor. Es decir, en la versión multi-core, aquellas queries con menor cómputo son más penalizadas
por los tiempos de espera a disco.

59

Fig. 3.32: Speedup entre las versiones secuencial y con 4 threads

64 128 256 512 1024 2048 4096
0

0,5

1

1,5

2

2,5

3

3,5

4
Computador 2: Core2Quad

Por tiempo
Por ciclos

Longitud de la query

S
p

e
e

d
u

p

Capítulo 4

Optimizaciones

En este capítulo se muestran las distintas optimizaciones que han sido implementadas en
blastp y los resultados obtenidos, que van a ser comparados con el rendimiento de la aplicación
original. Aunque se trata de una compleja aplicación, gracias al análisis de rendimiento realizado
anteriormente, podemos mejorar algunos aspectos que afectan de forma positiva en el rendimiento.
Estas optimizaciones se pueden clasificar en dos tipos: para sistemas con un único procesador y
para sistemas multi-core.

4.1 Optimizando la aplicación para un procesador

Al realizar el estudio de blastp, se puede apreciar a simple vista que se trata de una
aplicación compleja y de grandes dimensiones. Cuando hay que realizar optimizaciones es difícil
modificar una aplicación de estas magnitudes. Así que se deben estudiar aquellas partes del código
más significativas, analizar las funciones ejecutadas más veces, las que demoran más en su tiempo
de respuesta, etc. Se deben encontrar aquellas partes del programa que ralentizan el proceso, que
representan un cuello de botella y se debe analizar si pueden ser optimizadas.

Si ejecutamos blastp con las 7 queries usadas en el capítulo anterior (figura 3.1) por separado,
mediante el profiler gprof podemos obtener aquellas funciones del código de la aplicación que
acumulan un tiempo total de ejecución mayor. Las dos funciones que más tiempo de ejecución
consumen son s_BlastSmallAaScanSubject y s_BlastAaWordFinder_TwoHit, que llamaremos a
partir de ahora SCAN y FIND respectivamente. Sus porcentajes de tiempo de ejecución sobre la
ejecución total del proceso son los siguientes (figura 4.1 y figura 4.2):

61

Fig. 4.1: Porcentaje de tiempo de ejecución de la función
's_BlastSmallAaScanSubject' sobre la ejecución de blastp.

64 128 256 512 1024 2048 4096
0%

10%

20%

30%

40%

50%

60%
Computador 1: Core2

Función SCAN

Longitud de la secuencia

P
o

rc
e

n
ta

je
 d

e
 ti

e
m

p
o

 d
e

 e
je

cu
ci

ó
n

La función SCAN es la encargada de detectar y almacenar los hits entre una secuencia de la base de
datos y la query. Es la función más significativa para queries de tamaño pequeño. En cambio, la
función FIND se encarga de intentar extender los hits que la función anterior ha detectado y es la
más significativa para queries de gran tamaño.

Se puede apreciar cómo sólo la suma de estas dos funciones representan entre el 40% y el 70% de la
ejecución total del programa dependiendo de la información proteínica de la query aunque
sobretodo de su longitud. Además, se puede apreciar que, dependiendo de la longitud de la
secuencia, ambas funciones tienen un comportamiento inverso. Si se aumenta la longitud de la
query, el peso en la aplicación de la función SCAN disminuye mientras que el de la función FIND
aumenta (figura 4.3).

62

Fig. 4.2: Porcentaje de tiempo de ejecución de la función
's_BlastAaWordFinder_TwoHit' sobre la ejecución de blastp.

64 128 256 512 1024 2048 4096
0%

5%

10%

15%

20%

25%

30%

35%

40%
Computador 1: Core2

Función FIND

Longitud de la secuencia

P
o

rc
e

n
ta

je
 d

e
 ti

e
m

p
o

 d
e

 e
je

cu
ci

ó
n

Fig. 4.3: Comparación de porcentajes de tiempo de ejecución de las funciones
's_BlastSmallAaScanSubject' y 's_BlastAaWordFinder_TwoHit'

64 128 256 512 1024 2048 4096
0

10

20

30

40

50

60
Computador 1: Core2

 Función SCAN Función FIND

Longitud de la secuencia

P
o

rc
e

n
ta

je
 d

e
 ti

e
m

p
o

 d
e

 e
je

cu
ci

ó
n

El aumento de longitud proporciona un peso más importante en la ejecución a la función FIND
mientras que SCAN lo pierde, aunque para queries pequeñas tiene una gran importancia en el
rendimiento.

Ambas funciones contienen un bucle principal que es el que consume la mayor parte del tiempo de
ejecución de la función. Para la función SCAN, el bucle recorre las words (tripletas de aminoácidos)
de la secuencia de la base de datos para detectar hits con la query de entrada. Para la función FIND,
el bucle recorre cada hit que la función anterior ha detectado.

Como ejemplo, a continuación se muestra la estructura del bucle principal de la función SCAN
(figura 4.4). Este bucle se ejecuta una vez por cada secuencia almacenada en la database y tiene un
número de iteraciones igual a N-2, donde N es el número de aminoácidos que contiene cada
secuencia. Su funcionalidad es recorrer las tripletas de aminoácidos de la secuencia conocida y
comprobar si existe alguna tripleta igual en la secuencia query, si se da el caso se procesa un hit.

Para intentar optimizar la ejecución de las funciones SCAN y FIND comentadas anteriormente se
han implementado las siguientes optimizaciones:

• Funciones inline : el compilador inserta el código completo de una función en cada lugar
donde se llama, en vez de generar el código para llamar dicha función. De esta forma
podemos evitar llamadas múltiples a funciones de pequeño tamaño.

Por ejemplo, para el código descrito anteriormente (figura 4.4), se ha declarado la función
ComputeTableIndexIncremental como inline ya que contiene poco código y es llamada en
múltiples ocasiones (figura 4.5).

63

Fig. 4.4: Código del bucle principal de la función s_BlastSmallAaScanSubject (SCAN)

Fig. 4.5: Ejemplo de uso de funciones inline

• Expresiones condicionales: se han substituido los saltos condicionales por expresiones
condicionales que son evaluadas en tiempo de ejecución y no provocan ningún salto en el
flujo de la aplicación.

Por ejemplo, para el código descrito anteriormente (figura 4.5), el salto de la sentencia if
provoca un importante número de fallos de predicción de saltos ya que la condición es difícil
de predecir. Estos fallos se pueden solventar utilizando expresiones condicionales como se
muestra en el siguiente código (figura 4.6).

Como solo se deben procesar aquellas tripletas que cumplen la condición de la sentencia if,
primero podemos almacenar en un vector auxiliar (aux) aquellas tripletas que cumplen dicha
condición y más tarde se pueden procesar en otro bucle provocando menos fallos de
predicción de saltos ya que los saltos de un bucle for son más fáciles de predecir.

• Loop unrolling: aumenta la velocidad de los bucles al reducir el número de instrucciones
que controlan la iteración. De esta forma se minimizan las penalizaciones por saltos y
permite reordenar las instrucciones eliminando dependencias de datos. Como desventaja,
este tipo de optimización aumenta el tamaño del código fuente y dificulta su lectura.

Por ejemplo, para el código descrito anteriormente (figura 4.6), ambos bucles for pueden ser
desenrollados. En el siguiente código podemos ver como se implementa esta optimización
en el primer bucle para 2 iteraciones (figura 4.7).

Hay que tener en cuenta que al no saber el número de iteraciones en tiempo de compilación,
debemos implementar el loop unrolling tanto para el caso de que se ejecuta un número de
iteraciones par como impar. Además, si se renombran las variables temporales se favorece la
ejecución fuera de orden.

64

Fig. 4.6: Ejemplo de uso de expresiones condicionales

4.1.1 Experimentos con las optimizaciones implementadas

A continuación se va a realizar una comparativa del rendimiento de la aplicación original y
de la aplicación con las optimizaciones que se han mencionado en el apartado anterior. Para la
realización de dicha comparativa se va a usar la misma metodología que en el capítulo anterior (ver
apartado 3.2).

Si observamos los tiempos de respuesta de la versión de blastp original y la optimizada con queries
de diferentes longitudes, obtenemos un mejor rendimiento con la versión optimizada (figura 4.8):

65

Fig. 4.8: Tiempos de ejecución (con E/S) de la versión blastp original y de la optimizada

64 128 256 512 1024 2048 4096
0

500

1000

1500

2000

2500

3000
Computador 1: Core2

Original
Optimizada

Longitud de secuencia

T
ie

m
p

o
 d

e
 e

je
cu

ci
ó

n
 (

se
g

u
n

d
o

s)

Fig. 4.7: Ejemplo de implementación de loop unroll

Si comparamos el número de instrucciones dividido entre la longitud de la secuencia query de las
dos versiones podemos ver como la versión optimizada reduce el número de instrucciones
ejecutadas en un 5-8% (figura 4.9).

Si nos fijamos en la siguiente gráfica (figura 4.10) podemos apreciar como al aumentar la longitud
de la query también incrementa el speedup:

Este hecho se debe a que al aumentar el tamaño de las queries se incrementan también el número de
hits. Este aumento de hits provoca un aumento de iteraciones en el bucle principal de la función
s_BlastAaWordFinder_TwoHit, que a la vez provoca que las optimizaciones implementadas en
dicho bucle tengan cada vez más efecto.

Aunque dichas optimizaciones han sido pensadas para una ejecución secuencial de blastp, también
se han experimentado en una ejecución multi-core. Como se puede apreciar en la siguiente gráfica
(figura 4.11), también se obtiene un rendimiento mejor pero con un speedup no tan bueno:

66

Fig. 4.10: Speedup de la versión optimizada según la longitud de query

64 128 256 512 1024 2048 4096
0

0,2

0,4

0,6

0,8

1

1,2

1,4
Computador 1: Core2

Longitud de la secuencia

S
p

e
e

d
u

p

Fig. 4.9: Número de instrucciones ejecutadas dividido por la longitud de secuencia
para la versión de blastp original y optimizada

64 128 256 512 1024 2048 4096
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Computador 1: Core2

Original
Optimizada

Longitud de secuencia

N
ú

m
e

ro
 d

e
 i

n
st

ru
cc

io
n

e
s

(m
ill

o
n

e
s)

 /
a

m
in

o
á

ci
d

o

Se puede entender que al paralelizar la carga de trabajo, el speedup proporcionado por las
optimizaciones tiene menos efecto. Sólo se obtiene la mejora del thread que termina último, las
optimizaciones de los demás threads no tienen efecto en el tiempo total. Por ejemplo, con una query
de tan solo 64 aminoácidos se ha obtenido un rendimiento igual a la versión sin optimizar.

4.2 Optimizando la aplicación para varias CPUs

En el capítulo anterior, al realizar el análisis de rendimiento de la versión multi-core de
blastp, se encontraron dos aspectos a destacar que empeoraban el rendimiento: la asignación de los
threads en los cores y la asignación de secuencias de la database a cada thread.

El primer aspecto, como ya se comentó en el anterior capítulo, se puede solucionar mediante la
librería sched.h. Mediante la función CPU_SET de dicha librería se puede forzar a cada thread que
sea ejecutado en un core distinto, asegurando que dos threads no van a competir por los mismos
recursos y mejorando el rendimiento notablemente.

En cuanto a la repartición de las secuencias a procesar para cada thread, se vio en el capítulo
anterior que cada thread tenía una carga de trabajo distinta, cosa que provocaba que todos los
threads debían esperar al thread más lento para iniciar la fase nº 3. Además, el asignar a cada thread
bloques de secuencias de la database de gran tamaño, provocaba latencias mayores en la espera a
disco causados por movimientos de cabezal del disco. Como distintos threads pedían datos que se
encontraban en distintos sectores del disco, esto provocaba que los threads compitieran por el
acceso a disco.

Así que para reducir el efecto de este problema se deben repartir las secuencias a cada thread de una
forma:

• Equitativa: que cada thread procese la misma carga de trabajo, es decir, que procese el
mismo número de secuencias.

67

Fig. 4.11: Speedup de la versión optimizada según la longitud de query
 y en su versión multi-core (2 threads)

64 128 256 512 1024 2048 4096
0

0,2

0,4

0,6

0,8

1

1,2

1,4
Computador 1: Core2

Longitud de la secuencia

S
p

e
e

d
u

p

• Consecutiva: que cada thread se reparta de forma consecutiva las secuencias, que es como
están almacenadas en disco. De esta forma se evitan posibles movimientos de cabezal
innecesarios.

Para conseguir un método que cumpla los criterios anteriores se ha implementado una versión que
funciona de la siguiente manera. Si se ejecutan 4 threads, cada thread procesará las secuencias
siguientes (figura 4.12):

Mediante esta implementación se puede aprovechar que el disco cada vez que trae a memoria los
datos pedidos, trae también algunos datos más que son consecutivos. Además, de este modo
aseguramos que el número de secuencias procesadas por cada thread va a ser proporcional y
equitativa.

4.2.1 Experimentos con las mejoras implementadas para multi-core

A continuación podemos ver una comparación del número de ciclos consumidos por cada
core en la fase nº 2 con la versión original de blastp (figura 4.13) y la versión optimizada usando 2
threads (figura 4.14):

68

Fig. 4.12: Ejemplo de asignación de secuencias a cada thread

Fig. 4.13 Comparación del número de ciclos consumidos por core de la versión
original de blastp en la fase nº 2 (en miles de millones)

64 128 256 512 1024 2048 4096
0

200

400

600

800

1000

1200

1400
Computador 1: Core2

Longitud de la secuencia

C
ic

lo
s

co
n

 2
 th

re
a

d
s

(m
ile

s
d

e
 m

ill
o

n
e

s)

Podemos ver como para cada secuencia, los ciclos consumidos en cada core por la versión original
(figura 4.13) no son equitativos, en cambio los dos cores de la versión optimizada (figura 4.14)
tienen una carga de trabajo parecida, que hace disminuir el tiempo de ejecución de la fase.

Mediante esta optimización obtenemos el siguiente speedup (figura 4.15):

Se puede apreciar que la mejora es más importante para secuencias pequeñas que para secuencias
de gran longitud. Este hecho se debe a que las secuencias pequeñas tienen un tiempo de espera
mayor de E/S ya que tienen una carga menor de cómputo que las secuencias de mayor longitud. Por
esta razón las secuencias pequeñas obtienen una mejora más importante.

69

Fig. 4.15: Speedup de la versión optimizada para varias CPUs

64 128 256 512 1024 2048 4096
0

0,2

0,4

0,6

0,8

1

1,2

1,4
Computador 1: Core2

Longitud de la secuencia

S
p

e
e

d
u

p

Fig. 4.14: Comparación del número de ciclos consumidos por core de la versión
optimizada de blastp en la fase nº 2 (en miles de millones)

64 128 256 512 1024 2048 4096
0

200

400

600

800

1000

1200

1400
Computador 1: Core2

Longitud de la secuencia

C
ic

lo
s

co
n

 2
 th

re
a

d
s

(m
ile

s
d

e
 m

ill
o

n
e

s)

Capítulo 5

Conclusiones y líneas futuras

En este capítulo aparecen las conclusiones obtenidas al realizar la investigación. Además, se
incluyen alternativas o futuras líneas de investigación que pueden aportar aún más conocimiento al
análisis y optimización de blastp.

5.1 Conclusiones

Cada semana se importan a las databases importantes cantidades de secuencias nuevas. Este
hecho influye en el manejo de la entrada/salida, que como hemos visto en esta investigación
representa uno de los principales problemas en las aplicaciones de alineamiento de secuencias. La
gestión de la entrada/salida es el cuello de botella más importante que padece la aplicación,
sobretodo con el uso de múltiples cores. Se dispone de muy poca información sobre este manejo, lo
que dificulta su estudio para optimizarlo.

Se necesita profundizar más en el tema de la E/S, aunque se ha visto como las propuestas de mejora
implementadas afectan notablemente en el rendimiento, el speedup obtenido (una media de 1.09
dependiendo de la secuencia query) no es suficiente para tratar databases que cada vez adquieren
tamaños más grandes.

En cuanto a la parte de procesamiento, también se ha visto como con no muchas modificaciones en
el código se han obtenido speedups interesantes (una media de 1.14 dependiendo de la secuencia
query), aunque el CPI sigue siendo demasiado elevado (una media de 0.8 ciclos por instrucción) y
se debería estudiar con más detenimiento su causa.

Además, el aumento de tamaño de las databases provocan que herramientas como blastp tengan
que ser modificadas periódicamente. Las herramientas BLAST han sufrido desde su lanzamiento
diferentes mejoras y añadidos que han provocado que su código fuente sea extremadamente grande
y complicado. La primera versión se lanzó en el año 1990, pero la versión actual escrita está
compuesta por una serie de modificaciones y nuevas características añadidas a la versión del año
1997 que se diseño en lenguaje C. Por esta razón, blastp está diseñada en C y C++.

Como se ha podido ver en este proyecto, hay características que se pueden implementar más
eficazmente y que afectan muy positivamente en el rendimiento. Pero hay otras optimizaciones que
son muy difícil o ni siquiera se pueden implementar por la complejidad que ha sufrido el código por
causa de estas actualizaciones o modificaciones.

71

En conclusión, la aplicación blastp debe mejorar en dos aspectos que tras la investigación han sido
detectados como potencialmente problemáticos:

• La correcta gestión de la entrada/salida, sobretodo por el importante aumento de tamaño que
padecen las bases de datos.

• El correcto balanceo de la carga de trabajo en los cores al usar la versión multi-core.

5.2 Líneas futuras

Quedan algunas líneas de investigación abiertas para aportar más conocimiento al análisis de
rendimiento o bien para la optimización de blastp. A continuación se nombran algunas de ellas:

• Utilización de sistemas Multi-threading

Como se ha visto en este documento, las aplicaciones BLAST presentan problemas de
importantes latencias (a memoria, fallos de predicción de saltos, etc). Mediante experimentos con
multi-threading se podrían comparar los rendimientos de blastp usando el doble de threads que
cores dispone la computadora. De este modo se podría estudiar el grado de saturación de los
recursos que padece la computadora.

• Implementación con CUDA (Compute Unified Device Architecture)

Mediante esta tecnología se podría dividir el cómputo de la fase nº 2 de blastp en una gran
cantidad de threads, con lo que se paralelizaría mucho más la carga de trabajo obteniendo
rendimientos y speedups interesantes. Quizás se caería otra vez en el problema de la lectura de
secuencias de las database de gran tamaño, que se ha demostrado como un grave problema de
eficiencia. Aunque no dejaría de ser una solución a tener en cuenta.

• OpenMP

OpenMP es una interfaz de programación de aplicaciones para la programación
multiproceso de memoria compartida. Permite añadir concurrencia a los programas escritos en C y
C++ como blastp, usando el modelo de ejecución fork-join.

Al tratarse de un modelo de programación modulable y escalable que proporciona a los
programadores una interfaz simple y flexible para el desarrollo de aplicaciones paralelas, se puede
usar para rediseñar blastp, que después de diversas modificaciones en su código se ha convertido en
una aplicación compleja. Por esta razón se podría decir que para optimizar de una forma mucho más
eficiente blastp se tendría que realizar un nuevo diseño, pudiendo aprovechar las ideas ya
implementadas en las versiones actuales pero reescribiendo el código de nuevo usando OpenMP.

72

Bibliografía

➢ ALTSCHUL, GISH, MILLER, MYERS and LIPMAN. “Basic Local Alignment Search
Tool”. Journal of Molecular Biology.1990.

➢ CHAO, Kun-Mao y ZHANG, Louxin. “Sequence Comparison: Theory and Methods”.
Springer. 2009.

➢ CHURBANOV, A. “Pam matrix for Blast algorithm,” University of Nebraska. 2002.

➢ Desconocido. “BLAST Help Manual for Unix”. National Center for Biotechnology
Information (NCBI). 2008.

➢ Desconocido. “The GenBank Submissions Handbook”. National Center for Biotechnology
Information (NCBI). 2011.

➢ KOONIEN, Eugene y Galperin, Michael. “Computational Approaches in Comparative
Genomics”. Boston: Kluwer Academic. 2003.

➢ LOUKIDES, Mike y MASUMECI, Gian-Paolo. “System performance Tuning”. O'Reilly &
Associates. 2002.

➢ MC ENTYRE, Jo y Ostell, Jim. “The NCBI Handbook”. National Center for Biotechnology
Information (NCBI). 2002.

➢ MOUNT, David. “Bioinformatics: Sequence and Genome Analysis”. Cold Spring Harbor
Laboratory Press. 2001.

➢ MÜLLER, Matthias. “Tools for high performance computing”. Springer. 2009.

➢ POLANSKI, Andrzej y KIMMEL, Marek. “Bioinformatics”. Springer. 2007.

➢ SANDERS, Jason y KANDROT, Edward. “CUDA by Example: An Introduction to General-
Purpose GPU Programming”. Addison-Wesley Professional. 2010.

➢ SCHMIDT, Bertil. “Bioinformatics: High Performance Parallel Computer Architectures”.
CRC Press. 2010.

➢ VAKATOV, Denis. “The NCBI C++ Toolkit Book”. National Center for Biotechnology
Information (NCBI). 2004.

http://www.elsevier.com/wps/find/journaldescription.cws_home/622890/authorinstructions
http://www.elsevier.com/wps/find/journaldescription.cws_home/622890/authorinstructions

Signatura de l'alumne:

Carles Figuera Penedo

Bellaterra, 21 de Juny de 2011

Resumen

Las aplicaciones de alineamiento de secuencias son una herramienta importante para la comunidad
científica. Estas aplicaciones bioinformáticas son usadas en muchos campos distintos como pueden
ser la medicina, la biología, la farmacología, la genética, etc. A día de hoy los algoritmos de
alineamiento de secuencias tienen una complejidad elevada y cada día tienen que manejar un
volumen de datos más grande. Por esta razón se deben buscar alternativas para que estas
aplicaciones sean capaces de manejar el aumento de tamaño que los bancos de secuencias están
sufriendo día a día. En este proyecto se estudian y se investigan mejoras en este tipo de aplicaciones
como puede ser el uso de sistemas paralelos que pueden mejorar el rendimiento notablemente.

Resum

Les aplicacions d'alineament de seqüències són una eina important per a la comunitat científica.
Aquestes aplicacions bioinformàtiques són utilitzades en molts camps diferents com poden ser la
medicina, la biologia, la farmacologia, la genètica, etc. A dia d'avui els algorismes d'alineament de
seqüències tenen una complexitat elevada i cada dia han de gestionar un volum de dades més gran.
Per això s'han de buscar alternatives per a que aquestes aplicacions siguin capaces de gestionar
l'augment de mida que els bancs de seqüències estan patint dia a dia. En aquest projecte s'estudien i
s'investiguen millores en aquest tipus d'aplicacions com pot ser l'ús de sistemes paral·leles que
poden millorar el rendiment notablement.

Abstract

The sequence alignment applications are an important tool for the scientific community. These
bioinformatics applications are used in many different fields such as medicine, biology,
pharmacology, genetics, etc. Today the sequence alignment algorithms are highly complex and
every day have to handle a large volume of data. For this reason we must find alternatives for these
applications are able to handle the increased size of sequences that banks are suffering every day. In
this project we study and investigate improvements in these applications such as the use of parallel
systems that can improve performance significantly.

	Introducción
	1.1	Objetivos del proyecto
	1.2	Planificación temporal del trabajo
	1.3	Organización de la presente memoria

	Conceptos previos
	2.1	Marco Teórico	
	2.1.1	Procesador clásico
	2.1.2	Procesamiento Segmentado (pipelined)
	2.1.3	Procesador superescalar
	2.1.4	Limitaciones del procesador single-thread
	2.1.5	Multi-threading
	2.1.6	Procesadores Multicore
	2.1.7	Factores en el rendimiento multi-core/multi-thread
	2.1.8	CUDA (Compute Unified Device Architecture)

	2.2	Bioinformática
	2.2.1	Fundamentos teóricos de las proteínas
		2.2.2	Búsqueda de homología en proteínas

	2.3	BLAST
	2.3.1	Versiones y variantes de BLAST
	2.3.2	Input
	2.3.3	Output
	2.3.4	Algoritmo de BLASTP
	2.3.5	Lookup Table

	Análisis de rendimiento
	3.1	Análisis de los datos de entrada y parámetros
	3.1.1	Queries
	3.1.2	Base de datos (NR)
	3.1.3	Número de threads

	3.2	Entorno experimental y metodología
	3.2.1	Descripción del H/W y del S.O
	3.2.2	Métodos para tomar las medidas

	3.3	Experimentos
	3.3.1	Estimación empírica del tiempo de lectura de la database
	3.3.2	Efecto de la longitud en el rendimiento
	3.3.3	Efecto de la información proteínica en el rendimiento
	3.3.4	Efecto del número de queries en el rendimiento
	3.3.5	Efecto del número de threads en el rendimiento

	Optimizaciones
	4.1	Optimizando la aplicación para un procesador
	4.1.1	Experimentos con las optimizaciones implementadas

	4.2	Optimizando la aplicación para varias CPUs
	4.2.1	Experimentos con las mejoras implementadas para multi-core

	Conclusiones y líneas futuras
	5.1	Conclusiones
	5.2	Líneas futuras

	Bibliografía
	Resumen

