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Capítulo 1:  

Introducción al proyecto 

 
1.1 Motivación 
 

Este proyecto tiene como objeto el estudio, diseño, fabricación y medida de dos dipolos 

impresos de media onda para aplicaciones Wi-Fi y la posterior caracterización de sus 

ganancias. Para ello, se pretende inicialmente adquirir unos conocimientos básicos sobre 

teoría de antenas y dipolos de media onda en particular, que permitan desarrollar 

posteriormente la parte práctica del proyecto. Una vez adquiridos estos conocimientos, 

se procederá al diseño y simulación de un dipolo de media onda mediante el software 

CST Microwave Studio, cumpliendo con unas especificaciones técnicas que permitan 

fabricar dos dipolos operando satisfactoriamente en la banda de los 2.45 GHz. 

 

Dada la dificultad para realizar los estudios en una cámara anecoica por el elevado coste 

que supondría para el proyecto, se pretende utilizar dos métodos alternativos para 

caracterizar la ganancia de las antenas. El primer método consistirá en la utilización de 

un analizador de redes mediante un montaje que permita la observación del balance de 

enlace entre los dos dipolos, a partir del cual y mediante las ecuaciones desarrolladas en 

los primeros apartados del proyecto, se intentará extraer el valor de la ganancia en 

función de la distancia entre las antenas. El segundo método consistirá en la utilización 

de una celda TEM. A pesar de ser utilizada normalmente para realizar estudios de 

compatibilidad electromagnética, como la polarización de los campos eléctricos y 

magnéticos en su interior está bien definida y son homogéneos, es posible utilizarla para 

analizar la respuesta de dispositivos que operen en un rango inferior a los 3 GHz, tales 

como los dipolos objeto de este proyecto. La celda se alimentará con un generador de 

señales y se introducirán sucesivamente las antenas en su interior, sometiéndolas a la 

radiación electromagnética de la misma. La ganancia se podrá calcular a partir de la 

señal recibida en un analizador de espectro. 

 

1.2 Objetivos 
 

Los objetivos que se pretenden alcanzar con la realización de este proyecto son, en 

primer lugar, realizar un estudio sobre la geometría de un dipolo de media onda 

fabricado con tecnología planar, analizando como sus dimensiones afectan a los 

parámetros básicos del mismo. Se pretende diseñar dos dipolos impresos que trabajen 

en la banda de frecuencias de los 2.45 GHz para aplicaciones Wi-Fi, de tal forma que la 

potencia de señal entregada sea mayor del 90% de potencia máxima disponible. Para 

ello, las dos antenas deberán presentar adaptación a la frecuencia de 2.45 GHz menor de 
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-10 dB. Dado que los 12 canales especificados para aplicaciones Wi-fi ocupan un rango 

de frecuencias comprendidas entre los 2.41 GHz y 2.48 GHz, el ancho de banda que se 

obtenga debe ser mayor de 100 MHz. Teniendo en cuenta la tolerancia de fabricación y 

los posibles efectos que pueda introducir el entorno, se fijará como valor óptimo a 

conseguir un ancho de banda de 500 MHz, para evitar así posibles desplazamientos en 

frecuencia. 

 

En segundo lugar y tras la fabricación de los dos dipolos, se pretende cumplir con el 

objetivo principal del proyecto, que consiste en caracterizar la ganancia de cada una de 

las antenas utilizando dos instrumentos de medida distintos, un analizador de redes y 

una celda TEM.  

 

1.3 Estructura del proyecto 

 

La memoria de este proyecto se compone de 4 grandes bloques que recogen la 

caracterización de la ganancia de dos dipolos de media onda, partiendo del estudio de 

sus fundamentos básicos en los primeros capítulos, hasta el diseño, fabricación y 

posterior medida de sus parámetros mediante los equipos de medida mencionados 

anteriormente. En los dos primeros capítulos del documento, capítulos 2 y 3, se analiza 

la teoría básica de antenas y la teoría básica del dipolo de media onda respectivamente, 

permitiendo así familiarizarse con las bases teóricas en las que se fundamentará el resto 

del análisis. 

 

En el capítulo 4 se detalla el proceso de diseño seguido para crear el dipolo mediante la 

utilización del software CST Microwave Studio, así como las sucesivas simulaciones que 

han sido necesarias para ajustar los requisitos de adaptación y ancho de banda a los 

valores deseados. Se analiza, además, la dependencia observada entre estos parámetros 

y las dimensiones físicas de las antenas. 

 

En el capítulo 5 se muestran los resultados obtenidos durante la medida y análisis de la 

ganancia, así como las bases teóricas que fundamentan el procedimiento práctico 

seguido para realizarla. Se detalla previamente el proceso de fabricación utilizado y la 

tecnología implementada para la producción de las dos antenas para, posteriormente, 

mostrar los resultados de ganancia obtenidos mediante el montaje realizado en el 

analizador de redes, a partir del enlace entre las dos antenas. A continuación se 

muestran los resultados obtenidos durante la medida de la ganancia mediante la celda 

TEM. 

 

Finalmente el capítulo 6 expone las conclusiones observadas a partir de los resultados 

obtenidos durante la realización práctica del proyecto, mientras que en el capítulo 7 se 

recoge la documentación bibliográfica consultada.   
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Capítulo 2:  

Parámetros básicos de antenas 

 
 

2.1 Introducción 
 

Según la definición del Institute of Electrical and Electronics Engineers (IEE) [1] una 

antena es aquella parte de un sistema transmisor o receptor diseñada específicamente 

para radiar o recibir ondas electromagnéticas (IEE Std. 145 - 1983). En un sistema de 

comunicación radiado, las antenas constituyen la zona de transición entre una región con 

una onda electromagnética guiada, que puede representarse mediante voltajes y 

corrientes (hilos conductores y líneas de transmisión) y otra con una onda 

electromagnética en el espacio libre, que puede representarse mediante campos y tiene 

una cierta direccionalidad. Así, la antena transmisora transforma la onda guiada en ondas 

electromagnéticas que radiará al espacio libre con objeto de que la antena receptora las 

reciba y realice la acción inversa. Además, deberán transmitir y recibir cumpliendo unas 

características adecuadas a la aplicación para la que han sido diseñadas, por lo que ésta 

impondrá unas condiciones y restricciones sobre la región del espacio en la que se desea 

radiar, como por ejemplo la frecuencia de trabajo o la direccionalidad, entre otros [2].  

 

Por todo ello, en este capítulo, se pretende estudiar los parámetros que puedan verse 

afectados por las restricciones de diseño impuestas al inicio del proyecto, para los dipolos 

que se desea fabricar. Estas características dependen, como se podrá comprobar más 

adelante, de la relación entre sus dimensiones y la longitud de onda de la señal radiada. 

Si las dimensiones de la antena son mucho menores que su longitud de onda se 

denomina antena elemental, si las dimensiones son del orden de la mitad de la longitud 

de onda se consideran antenas resonantes y si su tamaño es mucho mayor que la 

longitud de onda son antenas directivas.  

 

Los parámetros de una antena pueden clasificarse en dos grupos dependiendo de si 

afectan a la transmisión o la recepción. A continuación, se introducirán conceptos básicos 

sobre algunos parámetros que resultarán importantes durante el diseño de los dipolos. 

 
 

2.2 Parámetros de antenas en transmisión 
 
Tal como se ha comentado anteriormente, una antena forma parte de un sistema más 

complejo de comunicación, por lo que resulta necesario definir una serie de parámetros 
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que permitan caracterizarla y evaluar el efecto que tendrá sobre el resto del sistema. A 

continuación, se detallarán las características más relevantes de los parámetros 

habituales en transmisión. 

 

 

2.2.1 Impedancia 

La función principal de una antena conectada a un transmisor es radiar la máxima 

potencia posible con un mínimo de pérdidas, es decir, produciendo una máxima 

transferencia de potencia. Para ello, la antena y el transmisor deben estar correctamente 

adaptados. Normalmente, el transmisor se encuentra lejos de la antena, conectándose a 

ésta mediante una línea de transmisión o guía de ondas, por lo que se deben considerar 

la impedancia característica, la atenuación y la longitud de dichas guías de onda. 

 

La impedancia de entrada �� de una antena puede definirse como la relación entre la 

tensión y la corriente de entrada en sus terminales. Es un número complejo formado por 

una componente real ��(�) o resistencia de antena y una componente imaginaria ��(�) 
o reactancia, dependientes de la frecuencia.  

 

 �� = ��(�) + 	���(�) (2.1) 

 

Si la impedancia de entrada �� no presenta una componente reactiva o reactancia ��(�)  
o ésta se anula, se dice que la antena es resonante. Debido a que la antena radia energía 

y se produce una pérdida neta de potencia hacia el espacio, la componente real de la 

impedancia ��(�) se puede descomponer en ��(�) = �� +		�
  donde �� es la 

resistencia de radiación y corresponde al valor de la resistencia que disiparía 

óhmicamente la misma potencia que la radiada por la antena, pudiendo expresarse ésta 

como 

 

 �������� = ���� (2.2) 

 

y �
 corresponde a las pérdidas óhmicas que se producen en la antena. Esto, permite 

expresar la potencia entregada a la antena como la suma de la potencia radiada y la 

potencia disipada por las pérdidas que se producen en ella 

 

 ���������� = �������� + ��é������ = ���� +	���
 (2.3) 
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2.2.2 Intensidad de radiación 

Se puede definir la intensidad de radiación como la potencia radiada por unidad de 

ángulo sólido en una determinada dirección y mide la capacidad que tiene una antena de 

concentrar su radiación en unas determinadas direcciones del espacio. A grandes 

distancias, la intensidad de radiación tiene la propiedad de ser independiente de la 

distancia a la que se encuentre la antena. Para caracterizarla, se emplea habitualmente 

como marco de referencia el sistema de coordenadas esféricas, que puede verse 

representado en la figura 2.1, ya que permite definir de forma sencilla una dirección del 

espacio utilizando dos ángulos, θ y φ y definiendo los vectores unitarios �̂, ��, ��,		 que 

forman una base ortogonal.  

 

 

Figura 2.1: Sistema de coordenadas polares [2] 

 

 

2.2.3 Diagrama de radiación 

El diagrama de radiación es una forma de representar gráficamente las características de 

radiación de una antena en función de las distintas direcciones del espacio, situando la 

antena en el origen de coordenadas y manteniendo constante la distancia. Así, es posible 

expresar el campo eléctrico en función de dos variables angulares θ, φ, a partir del cual 

se puede obtener directamente el campo magnético, por lo que la representación se 

podría realizar a partir de cualquiera de ellos, aunque habitualmente se acostumbra a 

utilizar el primero. Dado que la densidad de potencia es proporcional al cuadrado del 

módulo del campo eléctrico, tanto el diagrama de potencia como el diagrama de 

radiación de campo de la antena proporcionan la misma información.  

 

Si se observara una antena desde una gran distancia, se podría ver la radiación 

electromagnética como si se propagara hacia el exterior a partir de un punto o un 

conjunto de puntos, de forma que sus frentes de onda serían esféricos, siendo la fase de 
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la señal igual en cualquier punto de la esfera. Este punto se conoce como el centro de 

fase de la antena y corresponde al centro de curvatura de las superficies de fase 

constante. Esto significa que el valor de la fase es constante en un área angular 

determinada cuando se mide respecto a un sistema de coordenadas en el que el centro 

de fase está situado en el origen. Sin embargo, la posición exacta del centro de fase es 

ambigua para la mayoría de las antenas, ya que puede variar en función de diversos 

factores como la longitud de onda, la frecuencia o el ángulo de incidencia, por lo que 

normalmente el centro de fase no se encuentra en el origen del sistema de coordenadas.  

 

Los desplazamientos del centro de fase de las antenas pueden producir efectos no 

deseados, como acoplamiento mutuo o, debido a la adaptación, un diagrama de radiación 

que no sea constante. Sin embargo, si las dos antenas utilizadas son iguales, se cancelan 

los errores que éstas compartan, de forma que los desplazamientos no resultan ser un 

factor tan crítico. 

 

Según como se distribuya el diagrama de radiación en función de las distintas direcciones 

del espacio, las antenas pueden clasificarse en antenas isótropas, omnidireccionales o 

directivas, tal como se puede observar en la figura 2.2. Aunque no existe, la antena que 

radia de forma ideal una intensidad de radiación igual para todas las direcciones del 

espacio se denomina antena isótropa y se utiliza para definir los parámetros del resto de 

antenas en comparación a ella. Si su diagrama de radiación presenta simetría de 

revolución entorno a un eje, se dice que la antena es omnidireccional y es posible 

representar totalmente la información del diagrama en un único corte que contenga el 

eje. Si en el diagrama de radiación se observa que la radiación se concentra en unas 

determinadas direcciones del espacio, se dice que la antena es directiva. En este caso, 

dado que el campo de aplicación del proyecto es Wi-fi, se trabajará con antenas que 

radian al espacio de forma omnidireccional.   

 

 

Figura 2.2: Diagrama de radiación isótropo, omnidireccional y directivo [2] 

 

El diagrama de radiación de una antena puede representarse de forma tridimensional, 

mostrando los planos E y H tal como se puede observar en la figura 2.3 y expresando los 

niveles respecto al punto de máxima radiación en decibelios, o puede representarse 

utilizando cortes bidimensionales en forma polar o cartesiana, siguiendo los meridianos 
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en una hipotética esfera ( cortes para φ  constante) o los paralelos (cortes con θ 

constante), representando únicamente la información en los planos principales. Para 

antenas con polarización lineal, como las que serán de estudio en este proyecto, se 

puede definir el plano E como el que forman la dirección de máxima radiación y el campo 

eléctrico en dicha dirección y el campo H como el formado por la dirección de máxima 

radiación y el campo magnético en dicha dirección. Estos planos son perpendiculares y su 

intersección define una línea que representa la dirección de máxima radiación de la 

antena [3]. 

 

 
Figura 2.3: Diagrama de radiación tridimensional [2] 

 

En coordenadas polares, el ángulo representa la dirección del espacio, mientras que el 

radio representa la intensidad del campo eléctrico o la densidad de potencia radiada. En 

coordenadas cartesianas se representa el ángulo en abscisas y el campo o la densidad de 

potencia en ordenadas. Dado que las antenas que se pretenden estudiar son antenas 

omnidireccionales, se utilizará la representación del diagrama de radiación en forma 

polar, además de la tridimensional, ya que proporciona una información más general de 

cómo se distribuye la potencia en las distintas direcciones del espacio, mientras que la 

representación en coordenadas cartesianas aporta una información más detallada para 

antenas directivas. 

 

Suele ser habitual utilizar la escala en decibelios, correspondiendo los 0 decibelios al 

valor máximo del diagrama y los valores negativos al resto de direcciones del espacio. 

Utilizando esta escala, los diagramas de campo y de potencia son idénticos. Observando 

el diagrama de radiación, es posible diferenciar una zona en la que la radiación es 

máxima, denominada haz o lóbulo principal y otras zonas que rodean a los máximos y 

que son de menor amplitud denominadas lóbulos laterales, siendo denominado el lóbulo 

lateral de mayor amplitud lóbulo secundario.  
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2.2.4 Directividad, ganancia y eficiencia 

La directividad es la relación entre la densidad de potencia radiada en la dirección de 

máxima radiación de la antena, a una cierta distancia, y la densidad de potencia que 

radiaría una antena isótropa a la misma distancia, radiando con la misma potencia total, 

lo que puede definirse como 

 

  (θ,φ) = #(θ,φ)��/(4&��) = #'á)��/(4&��) (2.4) 

 

 

Figura 2.4: Representación de la directividad 

 

La directividad de una antena isótropa es igual a uno. La ganancia de una antena es la 

ganancia de potencia en la dirección de máxima radiación de la antena, producida al 

concentrarse la potencia en ciertas zonas del diagrama de radiación, por efecto de la 

directividad. Sus definiciones son parecidas, pero para el caso de la ganancia la relación 

se establece con la potencia entregada a la antena y no con la potencia radiada. Como no 

toda la potencia entregada por el transmisor es radiada al espacio, esto permite tener en 

cuenta las posibles pérdidas de la antena mediante un factor adimensional de 0 a 1 

denominado eficiencia (η), que permite relacionar la directividad con la ganancia tal 

como se observa en la ecuación (2.5). Si no se producen pérdidas en la antena, como 

ocurre habitualmente a altas frecuencias, la eficiencia es igual a la unidad y la 

directividad y la ganancia son equivalentes. 

 

 * = ������������������ =	+  (2.5) 

 

Así, la eficiencia es un parámetro que permite medir el rendimiento de la antena. De 

forma equivalente también se puede expresar como la relación entre la resistencia de la 

entrada de la antena si hubiera sido ideal (sin pérdidas) y la que presenta realmente 

como 
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 * = ������������������ =	 ���� +	�,	 (2.6) 

 

2.2.5 Polarización 

La polarización de una antena es un parámetro que indica como varía la orientación del 

vector de campo eléctrico 	E../	(r/, t), en un punto fijo del espacio a medida que transcurre el 

tiempo. Se usa para analizar la radiación de la antena en cada punto del espacio. La 

polarización de la antena en una dirección es igual a la polarización de la onda radiada 

por ella en esa misma dirección y se representa como la figura geométrica que describe 

el vector de campo eléctrico en un punto fijo con el transcurrir del tiempo, en el plano 

perpendicular a la dirección de propagación [2]. 

 

Existen tres tipos distintos de polarización, lineal, circular y elíptica. Si la figura que 

describe la variación temporal del campo eléctrico es un segmento, se dice que la onda 

tiene polarización lineal, si es un círculo su polarización se denomina circular, mientras 

que si tiene forma de elipse se denomina elíptica. Tanto para las ondas circularmente 

polarizadas como en las elípticas, si el sentido de giro del campo eléctrico avanza en la 

dirección de propagación o siguiendo el sentido de las agujas de un reloj se dice que la 

polarización es a derechas, mientras que si la rotación es en sentido contrario se dice que 

es a izquierdas.  

 

La polarización lineal, que es la que corresponde al tipo de antenas que se pretenden 

estudiar en capítulos posteriores, se produce cuando las dos componentes ortogonales 

del campo eléctrico tienen fases iguales o éstas difieren en un número entero de & 

radianes. Se conoce como polarización de referencia o copolar a la radiación 

electromagnética de una antena en una polarización especificada. La radiación en la 

polarización ortogonal a la polarización de referencia se denomina polarización cruzada o 

contrapolar (“crosspolar” en inglés). La discriminación de polarización cruzada es un 

parámetro que se utiliza para medir la pureza de la polarización y se puede definir como 

el cociente de las potencias contenidas en las dos polarizaciones [2]. 

 

2.2.6 Ancho de banda 

El ancho de banda (BW) se define como el rango o margen de frecuencias dentro del cual 

los parámetros de la antena satisfacen las características y requisitos de diseño 

impuestos por el sistema. Este se puede definir como la relación entre el rango de 

frecuencias en las que se cumplen las especificaciones deseadas 2'�) − 2'�� y la 

frecuencia central 24, pudiéndose expresar en forma de porcentaje como 
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 56 = 2'�) − 2'��24 · 100	 (2.7) 

 

El ancho de banda de la antena dependerá del sistema en el que esté integrada y 

afectará al parámetro más sensible. Es posible definir un ancho de banda en función de 

cada uno de los parámetros de la antena, obteniendo así, por ejemplo, el ancho de banda 

de impedancia, el de polarización o el de ganancia, entre otros. 

  

Para este caso en concreto, el ancho de banda resulta ser un parámetro fundamental a 

tener en cuenta durante la fase de diseño de las antenas, ya que determinará el rango de 

frecuencias en el que se asegure la adaptación de |S11|<-10 dB y que, debido a 

imposiciones iniciales de diseño, deberá ser como mínimo de 500MHz. 

 

2.3 Parámetros de antenas en recepción 
 

En recepción, las antenas captan parte de la potencia transportada por las ondas que 

inciden en ellas y la transfieren al receptor, dando lugar a una serie de parámetros 

relacionados con la conexión de circuitos al receptor y otra serie relacionada con la 

interacción electromagnética de la antena con la onda incidente.  

 

2.3.1 Adaptación 

En recepción, la antena se conecta a una línea de transmisión o directamente al receptor 

y su impedancia es la misma que en transmisión. La adaptación es un parámetro que 

mide la acomodación de las impedancias de entrada y salida del sistema, es decir, 

permite medir el emparejamiento existente entre la impedancia de salida de la antena y 

la impedancia de entrada al receptor, con el objetivo de conseguir una máxima 

transferencia de potencia entre ambos y disminuir así las pérdidas de potencia debidas a 

reflexiones en éste último. Para ello, las impedancias deben ser iguales y tanto la de la 

antena �� = �� + ��� como la de carga del receptor �
 = �
 + ��
 deben ser complejas 

conjugadas �
 = ��∗, de forma que la máxima potencia entregada a la carga pueda 

expresarse como 

 

 �
'�) = |<=�|�4�� 	 (2.8) 

 

En general si no se produce adaptación la potencia entregada a la carga se puede 

expresar como 
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 �
 = �
'�)>� = �
'�)(1 − |#|�)	 (2.9) 

  

donde >� corresponde al coeficiente de desadaptación, que puede calcularse como 

 

 >� = 4���
(�� + �
)� + (�� + �
)�	 (2.10) 

 

También es posible determinar la adaptación de las antenas a partir de la observación de 

la representación gráfica del coeficiente de reflexión (S11) de las mismas, que 

proporciona información sobre la transferencia de potencia. El coeficiente de reflexión de 

una antena respecto a la línea de transmisión o el receptor, es un parámetro que 

describe la amplitud o intensidad de la onda reflejada, que se produce cuando la onda 

incidente atraviesa dos medios con propiedades de propagación de onda distintas. Se 

puede expresar tal y como se describe en la ecuación (2.11) donde �� es la impedancia 

de entrada de la antena y �4 es la impedancia característica de la línea de transmisión, 

representándose habitualmente a escala logarítmica. Para considerar que la antena está 

adaptada, la gráfica debe presentar un valor inferior a -10 dB en la frecuencia o banda de 

frecuencias para la que se desea obtener adaptación, lo que indica que las pérdidas por 

reflexión son despreciables y se transmite un mínimo del 90% de la potencia máxima a 

la carga. 

 

 # = �� − �4�� +	�4	 (2.11) 

 

2.3.2 Área y longitud efectiva 

El área efectiva (?�@) de una antena receptora es el área del frente de onda incidente a 

partir de la cual la antena extrae la potencia. Esta se puede calcular mediante la ecuación 

(2.12) que la define como la relación entre la potencia que la antena entrega a su carga 

(que se supone sin pérdidas y adaptada) y la densidad de potencia que representa dicha 

porción del frente de onda. 

 

 ?�@ = �
# 	 (2.12) 

 

El área efectiva depende de la impedancia de la carga, la adaptación y la polarización de 

la onda. Teniendo en cuenta que # = |A|�/* y sustituyendo la ecuación (2.8) en la 

(2.12), se puede expresar el área efectiva como 
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 ?�@ = |<=�|�4��# = |<=�|�*|A|�4�� = B�@
� *4�� 	 (2.13) 

 

donde parámetro B�@, que también depende de la polarización de la onda, corresponde a 

la longitud efectiva de la antena [4], y se expresa como la relación entre el módulo de la 

tensión inducida en el circuito abierto en bornes de la antena y el módulo de la 

intensidad del campo incidente en la onda 

 

 B�@ = |<=�||A| 	 (2.14) 

 

La longitud efectiva es un indicador de la efectividad de la antena como radiador o como 

colector de la radiación electromagnética. Tanto el área efectiva como la longitud de 

onda se definen a partir de magnitudes eléctricas y no tienen por qué coincidir con las 

magnitudes físicas reales de la antena, aunque para algunos tipos de antenas puede 

existir una relación directa entre ellas. Éstas están definidas para la dirección de máxima 

recepción de señal y el área efectiva dependerá de la dirección angular en la que incidan 

las ondas, de forma similar a la directividad [2]. 

 

2.3.3 Ecuación de transmisión 

En un sistema de comunicaciones, la potencia mínima que se debe subministrar al 

transmisor depende del nivel mínimo de señal que detecte el receptor, por lo que resulta 

muy importante conocer el balance de potencia que se produce entre ellos. Considerando 

idealmente una antena transmisora isótropa radiando con una potencia �� en un medio 

de propagación libre de pérdidas y sin absorción de energía, ésta estaría radiando por 

igual en todas las direcciones del espacio y la potencia que atravesara cualquier 

superficie esférica con centro en la antena sería constante. La densidad de potencia es 

inversamente proporcional al cuadrado de la distancia r a la antena y se puede expresar 

como 

 

 # = ��4&��	 (2.15) 

 

Esto implica que al doblar la distancia a la antena la densidad de potencia se reduce a la 

cuarta parte o en 6 dB. Cerca del foco, la señal decae rápidamente con la distancia, 

mientras que en la lejanía lo hace lentamente. Es por ello que las pérdidas por kilómetro 

son reducidas lejos de la antena. La densidad de potencia es proporcional al cuadrado de 

la intensidad de campo, por lo que los campos radiados decrecerán inversamente con la 

distancia. Sin embargo, las antenas no son isótropas, sino que concentran energía en 
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ciertas direcciones del espacio, por lo que la densidad de potencia se calcula partiendo de 

la densidad que tendría si fuera realmente isótropa multiplicada por la directividad, y se 

expresa en función de la potencia radiada y la directividad o la potencia entregada a la 

carga y la ganancia resultando 

 

 #(�, �) = ��4&�� (�, �) = ��4&�� +(�, �)	 (2.16) 

 

Este producto se denomina potencia isótropa radiada equivalente o PIRE y normalmente 

se expresa en dBW  

 

 ���A = �� (�, �) = ��+(�, �)	 (2.17) 

 

Considerando dos antenas conectadas respectivamente al transmisor y al receptor del 

sistema, separadas entre sí por una distancia r, tal como se muestra en la figura 2.5, la 

Ecuación de Friis permite representar la potencia que la antena receptora entregará a su 

carga adaptada como 

 

 �
 = ��4&�� C?�@D	 (2.18) 

 

estableciendo la relación entre la potencia recibida y la radiada, que se denomina pérdida 

de transmisión entre las antenas, y habitualmente se indica en decibelios. 

 

 
Figura 2.5: Balance de potencia entre dos antenas [2] 

 

Entre la directividad y el área efectiva de toda antena, existe una relación que puede 

expresarse como 

 

 
?�@ = E�4&	 (2.19) 
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y que permite reescribir la ecuación (2.18) en función de la directividad que tendría la 

antena receptora si actuara como transmisora, resultando 

 

 
�
�� = F E4&�G

�  C D	 (2.20) 

 

El término H IJK�L� indica la pérdida de transmisión en el espacio libre (L0 ) [2], que se 

corresponde con la pérdida de transmisión entre antenas isótropas y toma un valor en 

decibelios de 

 

 

 
MN = 20 log F4&�E G = 22 + 20BST H�EL = 32,5 + 20BST2(WXY) + 20BST�(Z')	 (2.21) 

 

En general, la relación entre la potencia entregada a la carga y la potencia radiada se 

puede expresar en función L0 en decibelios como 

 

 
�
�� = −MN +  C +  D − M	([5)	 (2.22) 

 

donde L comprende todos los factores de desadaptación y pérdidas.  

 

En sistemas de comunicaciones, considerando el cómputo del balance de potencia, es 

conveniente describir el ratio entre la potencia recibida y la potencia transmitida, 

entendida como la entregada a la antena, de manera que se puede reescribir la ecuación 

de transmisión (2.22) en función de las ganancias de las antenas como 

 

 
�D�C = −MN + +C + +D − M′	([5)	 (2.23) 

 

donde el factor de pérdidas M′ no contempla las pérdidas en las antenas, puesto que 

éstas ya están incluidas en las ganancias. 
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Capítulo 3:  

Dipolo cilíndrico y dipolo de media onda 

 
3.1 Introducción. 

 

El dipolo elemental es la antena más básica que existe, formado por un hilo conductor de 

longitud L y alimentado en el centro por un generador o una línea de transmisión. Sus 

dimensiones son pequeñas comparadas con la longitud de onda (E) y la corriente que lo 

recorre es uniforme. Sin embargo, los dipolos que se pretenden desarrollar en este 

proyecto tienen unas dimensiones que no son pequeñas comparadas con su longitud de 

onda, por lo que se estudiarán los campos y parámetros de radiación de un elemento de 

corriente cuyas dimensiones son del orden de la longitud de onda (E) y en particular para M = E/2, correspondiente a la longitud de la antena de media onda, objeto de estudio. 

Con esta relación entre M y E no se puede considerar que la corriente sea uniforme, ya 

que se producen retardos e interacciones entre los elementos de la antena. En este 

capítulo, en primer lugar, se analizará el modelo de antena más sencillo, la antena 

cilíndrica, para posteriormente analizar las características de radiación el dipolo de media 

onda (E/2). 

 

3.2 Dipolo cilíndrico 

 

Un dipolo cilíndrico consiste en un hilo conductor fino y recto, de dimensión L y radio 

a<< E, alimentado con un generador en su centro, tal como se puede observar en la 

figura 3.1.  

 

 

Figura 3.1: Representación de una antena cilíndrica 
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La distribución de corriente en el dipolo se puede ilustrar considerando la antena como 

dos líneas de transmisión de longitud L/2 paralelas y sin pérdidas en circuito abierto, que 

se han abierto hacia los extremos hasta formar una fila perpendicular a la línea de 

transmisión. El movimiento de las cargas dentro de las líneas produce una onda de 

corriente de magnitud I0/2 que viaja a través de ellas hasta llegar al final de cada uno de 

los cables, donde se ve sometida a una reflexión completa de igual magnitud y 180º de 

inversión de fase. La onda reflejada combinada con la onda incidente y viajando dentro 

del cable, crean en cada uno de ellos un patrón de onda estacionaria sinusoidal pura que 

puede observarse en la figura 3.2 a), así como la inversión de fase de 180º indicada en 

la inversión de la dirección de la flecha [5]. 

 

 

Figura 3.2: Distribución de corriente en dos líneas de transmisión sin pérdidas, líneas de transmisión 

ensanchadas y dipolo elemental 
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Dada la simetría de las líneas, la corriente en un semiciclo de uno de los cables es igual 

en magnitud al semiciclo correspondiente al otro cable pero desfasada en 180º. Si 

además el espacio entre los dos cables es muy pequeño, del orden de s<<λ siendo s el 

espacio entre ellos, los campos radiados por la corriente de uno de los cables se cancelan 

con los campos radiados por el otro, dando como resultado una línea de transmisión 

prácticamente ideal que no irradia energía. 

 

A medida que el tramo entre 0 ≤ ^ ≤ B/2 empieza a separarse, tal como se puede observar 

en la figura 3.2 b), se puede seguir suponiendo que la distribución de corriente 

permanece sin cambio en cada uno de los cables. Sin embargo, debido a que los dos 

cables de la sección acampanada no tienen por qué estar necesariamente cerca el uno 

del otro, los campos radiados por cada uno de ellos no se cancelarán mutuamente, de tal 

forma que se producirá una radiación neta. 

 

Finalmente, cuando la sección ensanchada se sitúa perpendicularmente a la línea de 

transmisión como se muestra en la figura 3.2 c), se obtiene la geometría típica del 

dipolo. Si L < λ, la fase del patrón de onda de corriente estacionaria es la misma en toda 

la longitud del brazo y está orientada espacialmente en la misma dirección que la del otro 

brazo. Así, los campos radiados por los dos brazos del dipolo se reforzarán entre sí hacia 

la mayoría de direcciones de observación, produciendo una onda estacionaria de 

corriente con un valor nulo en cada extremo si el diámetro de cada cable es muy 

pequeño comparado con la longitud de onda (d<<λ). Sin embargo, su forma global 

depende de la longitud de cada brazo. El patrón de corriente del dipolo de media onda 

(λ/2) se puede ver representado en la figura 3.3. 

 

 

Figura 3.3: Distribución de corriente en un dipolo de media onda [5] 

 

Así, experimentalmente a través del desarrollo en [2] se ha podido observar que la 

distribución de corriente del dipolo es aproximadamente sinusoidal con un cero de 

corriente en sus extremos pudiéndose expresar como 
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 _/(�/′) = ^̂�(^`)a(b`)a(c′)	 (3.1) 

 

donde 

 �(^`) = �'def	g(h − |^`|) = i �'def	g(h − ^′)									0 ≤ ^′ ≤ h�'def	g(h + ^′) 					− h ≤ ^′ ≤ 0j	 (3.2) 

 

donde g = 2&/E y h = M/2 correspondiendo a la longitud de uno de los brazos de la 

antena. �' es el valor máximo de la distribución de corriente, que no tiene por qué 

coincidir necesariamente con el valor de corriente en la entrada de la antena o bornes del 

generador y se calcula como 

 

 �(0) = �'def	gh	 (3.3) 

 

A partir de la distribución de corriente se halla el vector de radiación y a partir de éste los 

campos radiados se pueden expresar como 

 

 k../ = l ^̂�(^`)emZ�̂,�/′X
nX [^` = ^̂l �'defg(h − |^′|)emZoY`X

nX [^` =	  

 = ^̂2�'l defg(h − ^′)pSdgY^′X
4 [^` =	 ^̂2	g	�' cos(gYh) − cos(gh)g� − gY� 	 (3.4) 

 

Su expresión en función de θ, teniendo en cuenta que gY = gpSd� , es 

 

 k../ = 	 ^̂2	�' cos(ghpSd�) − cos ghg	def�� 	 (3.5) 

 

Del vector de radiación se obtienen los campos radiados 

 

 As = � *2&� enmZ��' cos(ghpSd�) − cos ghdef	� ,						At = 0	 (3.6) 

       

 hs = 0	,						ht = As* 	 (3.7) 

 

La densidad de potencia radiada será 
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 # = 	�euAsht∗ v = *�'�4&��� wcos(ghpSd�) − cos ghdef� x�	 (3.8) 

 

A partir de la expresión anterior, integrando sobre una superficie esférica cerrada se 

obtiene la potencia total radiada 

 

 �� =	l l #��def�	[�	[� = �'� *2&l wcos(ghpSd�) − cos ghdef� x� [�K
4

K
4

�K
4 	 (3.9) 

 

Esta integral no tiene una solución analítica, aunque puede escribirse en función de senos 

y cosenos integrales, por lo que se suele resolver numéricamente para cada valor de H. A 

partir de la potencia total radiada se pueden obtener la directividad y la resistencia de 

radiación 

 

  = #'á)4&���� 	 (3.10) 

 

 	�� = ���(0)�	 (3.11) 

 

La figura 3.4 muestra la variación de la directividad de un dipolo en función de su 

longitud y la figura 3.5 la representación del dipolo en coordenadas cilíndricas. En la 

siguiente sección se particularizarán las expresiones anteriores para el caso de la antena 

en λ/2. 

  

Figura 3.4: Variación de la directividad en función de 

L/2 

Figura 3.5: Sistema de coordenadas cilíndricas 
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3.3 Dipolo de media onda (λ/2) 

 

A partir de la expresiones (3.5) y (3.6) y teniendo en cuenta que g = 2&/E y que h = M/2 = E/4, se pueden particularizar las expresiones del dipolo cilíndrico anteriores 

para el caso del dipolo de media onda como  

 

 k../ = ^̂�'2 pSd H&2 pSd�Lgdef�� 	 (3.12) 

 

 As = �60 enmZ�� �' pSd H&2 pSd�Ldef	� 	 (3.13) 

 

 # = 30�'�&�� zpSd H
&2 pSd�Ldef	� {

�
	 (3.14) 

 

 �� = 73}	 (3.15) 

 

 

 
 = 1,64	 (3.16) 

 

El diagrama de radiación es similar al del dipolo elemental, en forma de toroide, con 

simetría de revolución según el eje z y haz ligeramente más estrecho. En la figura 3.6 se 

puede observar un resumen del valor de los parámetros para un dipolo de media onda, 

en el que se representa la distribución de corriente, el diagrama de radiación en el plano 

E, el ancho de banda de haz a -3 dB (∆�n���), la directividad (D) y la resistencia de 

radiación (��). 
 

 

Figura 3.6: Parámetros para un dipolo de media onda 
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Como se puede observar a partir de la figura 3.6, la configuración del dipolo presenta 

simetría de revolución, lo que origina un diagrama de radiación toroidal. La impedancia 

de entrada del dipolo es generalmente compleja. Para el caso de un dipolo de media 

onda con una longitud de brazo M = E/2 , la reactancia de entrada es nula, por lo que la 

antena es resonante.  

 

La directividad en lineal para esta longitud del brazo es de 1.64, lo que equivale en 

decibelios a 2.14 dB y corresponde al valor más pequeño de todas las configuraciones 

posibles. Esto implica que la configuración con M = E/2 sea la que presenta un diagrama 

de radiación más omnidireccional. El ancho de haz a -3 dB es de 78º y su resistencia de 

radiación de 73 Ω. 
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Capítulo 4:  

Diseño del dipolo impreso 

 

 
4.1 Introducción 
 

Una vez estudiados los parámetros básicos que determinan el comportamiento de las 

antenas y del dipolo de media onda en particular, en este capítulo se procederá al diseño 

del mismo utilizando las estructuras definidas en los capítulos anteriores, pero aplicadas 

de forma planar, ya que por simplificación de diseño, su bajo coste y una mejor 

integración con otros dispositivos, se ha optado por usar la tecnología impresa para su 

fabricación. 

 

Las dimensiones de las antenas deben escogerse de tal forma que cumplan con las 

especificaciones de frecuencia de resonancia, pérdidas de retorno y ancho de banda 

impuestas al inicio del proyecto. Como ya se ha comentado anteriormente, se desea 

obtener una potencia de señal entregada mayor del 90%, por lo que la antena debe 

presentar adaptación a la frecuencia de 2.45 GHz inferior a -10 dB. Considerando que el 

rango de frecuencias Wi-fi se encuentra entre los 2.4 GHz y 2.5 GHz y teniendo en 

cuenta que normalmente, tras la fabricación, los valores de adaptación y ancho de banda 

pueden empeorar, se deberá intentar conseguir un margen de 500 MHz en el que la 

antena pueda considerarse adaptada, con el objetivo de que, una vez fabricados, los 

dipolos sigan cumpliendo con las especificaciones mencionadas. 

 

Para ello, se realiza un estudio de la dependencia existente entre los parámetros físicos y 

eléctricos del dipolo, mediante sucesivas simulaciones con la herramienta CST Microwave 

Studio. Antes de simular, se definen las dimensiones básicas de la antena para el caso de 

un dipolo en el vacío, especialmente la longitud de sus brazos y la expresión para 

calcularla, dado que, como se verá tras la simulación, es el parámetro que determinará la 

frecuencia de resonancia de la antena. Posteriormente y a partir de esta expresión, se 

encontrará la ecuación equivalente para el caso del dipolo impreso que se está 

estudiando.  

 

Una vez obtenidos unos parámetros de diseño óptimos, se procede a estudiar las 

características de distribución de corriente del dipolo, su diagrama de radiación y su 

ganancia, para compararlas con las teóricas presentadas en los capítulos anteriores.  

 

 

 



Diseño del dipolo impreso UAB - EE 

 

 

 

40 

4.1.1 Parámetros iniciales para un dipolo de media onda (λ/2) en el vacío 

La longitud de onda (λ) y la frecuencia (f) de una onda electromagnética están 

relacionadas por la velocidad de propagación en el vacío c=3·108 m/s, tal como se puede 

observar en la expresión (4.1).  

 

 E = p2 (4.1) 

 

La longitud total de los brazos del dipolo es el parámetro fundamental que se necesita 

conocer para definir la frecuencia de trabajo de la antena y empezar a diseñarla. 

Partiendo de la ecuación definida anteriormente para la longitud de onda y conociendo 

que la longitud total de los brazos ha de ser igual a λ/2, podemos obtener dicha longitud 

total como: 

 

 M = E2 =	 p22= 3 · 10�2 · 2,45 · 10� = 61.2	�� (4.2) 

 

por lo que la longitud de cada brazo vendrá dada por 

 

 

 
M2 = 61.22 = 30.61	�� (4.3) 

 

Una vez conocida la longitud de la antena, el resto de parámetros de diseño se pueden 

ver representados en la figura 4.1, donde L es la longitud total del dipolo, L/2 es la 

longitud de uno de sus brazos, W es el ancho del brazo, Lf y Wf son la longitud y el ancho 

de la línea de alimentación y t es el grosor de pista (thickness).  

 

 

  
Figura 4.1: Representación de las dimensiones iniciales para el dipolo en el vacío 
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Sin embargo, los valores encontrados para L y L/2 en el vacío no serán los utilizados 

durante la fase de diseño, ya que la antena que se pretende fabricar es un dipolo 

impreso. Esto implica que, partiendo de las ecuaciones encontradas en esta sección, se 

deberán desarrollar nuevas expresiones que contemplen la permitividad del sustrato. 

 
 

4.1.2 Parámetros iniciales para un dipolo de media onda (λ/2) impreso 

El dipolo impreso se fabricará sobre un sustrato dieléctrico Rogers RO3010, con 

constante dieléctrica εr = 10.2 y grosor de la lámina de 1.27 mm, por lo que partiendo de 

la expresión (4.2) desarrollada en el punto anterior para calcular la longitud total del 

brazo de la antena, se deberá incluir en la misma el factor de la permitividad del 

sustrato. En análisis anteriores realizados por el grupo de investigación con este mismo 

sustrato, se obtuvo empíricamente que incluyendo un factor raíz cuarta de la constante 

dieléctrica en la expresión (4.1) la longitud de onda de la antena impresa podía 

calcularse como 

 

 

 E = p2√��� 	 (4.4) 

 

 

de tal forma que la longitud total del dipolo se puede calcular como 

 

 

 M = E2 =	 p22√��� = 3 · 10�2 · 2,45 · 10�√10.2� = 34.25	�� (4.5) 

 

 

 
y la longitud de cada uno de sus brazos será  
 
 
 

 
M2 = 34.252 = 17.13	�� (4.6) 

 

 

En este caso, tal como se puede observar a partir de la representación en la figura 4.2, 

se debe incluir un parámetro más en el diseño de la antena, que corresponderá al grosor 

de la pista de soldadura Wp y se utilizará para soldar el conector SMA al dipolo impreso. 

Una vez conocida la longitud de los brazos de la antena, se escogen los valores iniciales 

para el resto de parámetros del dipolo que pueden observarse en la tabla 4.1. 
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PARÁMETROS DE DISEÑO 

L = 34,25 mm 

L/2 = 17,13 mm 

W = 2,3 mm 

Lf = 20 mm 

Wf = 1,15 mm 

Lp = 10 mm 

Wp = 1,5 mm 

t = 0,035 mm 
Feed = 10 

tanδ = 0,0023 

εr = 10.2 
 

Tabla 4.1: Dimensiones iniciales del dipolo Figura 4.2: Representación de las dimensiones iniciales para el 
dipolo impreso 

 

4.2 Simulación del dipolo 

 

Tras diseñar la antena con CST Microwave Studio, utilizando los parámetros calculados 

en el punto anterior, se simula la respuesta temporal del coeficiente de reflexión (S11). 

Como se puede observar a partir de la gráfica representada en la figura 4.3, partiendo de 

los valores iniciales, se obtiene una respuesta desplazada en frecuencia a 2.6 GHz y, a 

pesar de que las pérdidas de retorno de aproximadamente -20 dB podrían considerarse 

correctas, el ancho de banda obtenido de 394 MHz tampoco cumple con las 

especificaciones deseadas. 

 

 

Figura 4.3: Pérdidas de retorno, frecuencia y ancho de banda para la antena  con los parámetros iniciales 

 

Observando el diagrama de radiación de la antena, representado en coordenadas polares 

con cortes en los planos E y H en la figura 4.4 y tridimensionalmente en la figura 4.5, se 
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puede ver que éste no es totalmente omnidireccional, ya que presenta un valor mínimo 

de ganancia de 1.5 dB en la dirección de los brazos de la antena y un máximo de 2.9 dB 

en la dirección de la línea de alimentación.  

 

 
Figura 4.4: Diagramas polares que representan los cortes en el plano E, en el plano H y en el plano XZ 

 

 
Figura 4.5: Diagrama de radiación tridimensional para la antena con dimensiones iniciales 

 

La eficiencia de radiación de la antena se puede calcular a partir del valor obtenido en 

decibelios de -0.08420 dB como 

 

 *(%) = �10n4.4�J�4/�4� · 100 = 98.08% (4.7) 

 

Para obtener una respuesta que cumpla con las especificaciones deseadas, se realizará 

un barrido (sweep) de cada parámetro de la antena, para ajustar tanto el valor de la 

frecuencia de trabajo a los 2.45 GHz, como optimizar las pérdidas de retorno y el ancho 

de banda.  
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4.2.1 Dependencia con la longitud del brazo de la antena (L/2) 

Como la frecuencia obtenida a partir de los parámetros iniciales no es la adecuada, se 

realiza un barrido del valor de longitud de la antena (L/2) para ajustarlo el máximo 

posible a la frecuencia de trabajo deseada de 2.45 GHz, para lo que se realizan 10 

capturas entre 17 mm < L/2 < 20 mm, que pueden observarse en las gráficas de las 

figuras 4.6 y 4.7. Como se puede ver a partir de las mismas, la frecuencia de resonancia 

de la antena depende estrechamente de su longitud. Dado que la longitud del dipolo es 

igual a la mitad de la longitud de onda y ésta es a su vez inversamente proporcional a la 

frecuencia de trabajo de la antena, si se aumenta el valor de la longitud del brazo (L/2) 

disminuye la frecuencia y viceversa.  

 

El resto de parámetros, tanto las pérdidas de retorno como el ancho de banda, 

permanecen prácticamente constantes con la variación de L/2. Así, la longitud para este 

tipo de antena es equivalente a una línea de transmisión (LT) en la que la impedancia se 

mantiene constante y solo varía la longitud eléctrica del dipolo, que es proporcional a 

modificar la frecuencia. De los resultados obtenidos, el valor de L/2 que proporciona una 

frecuencia más próxima a 2.45 GHz es L/2=19 mm. 

 

 
Figura 4.6: Barrido del valor de longitud de la antena (L/2) entre 17 mm < L/2 <20 mm 

 

 
Figura 4.7: Detalle de la frecuencia y las pérdidas de retorno para el barrido entre 17 mm < L/2 < 20 mm 
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4.2.2 Dependencia con la longitud de la línea de alimentación (Lf) 

Una vez ajustado el valor de frecuencia con L/2 = 19 mm, se realiza un barrido del valor 

de longitud de la línea de alimentación (Lf) para optimizar el ancho de banda y las 

pérdidas de retorno, para lo que se realizan 10 capturas entre 15 mm < Lf < 25 mm, que 

pueden observarse en la figura 4.8. Como se puede ver, la variación de la longitud de la 

alimentación afecta a todos los parámetros de estudio, tanto a la frecuencia de 

resonancia del dipolo que aumenta a medida que disminuye Lf, al ancho de banda que 

disminuye obteniendo una respuesta más estrecha a medida que aumenta el valor de Lf 

y especialmente al valor de las pérdidas de retorno, que disminuyen a medida que 

aumenta Lf, hasta un valor aproximado de Lf=24 mm, a partir del cual las pérdidas 

vuelven a aumentar. 

 

 

Figura 4.8: Barrido del valor de longitud de la línea de alimentación (Lf) entre 15 mm < Lf < 25 mm 

 

Tal como se puede observar en la figura 4.8, el valor de Lf que proporciona un valor de 

pérdidas de retorno más reducido es Lf = 23.89 mm, pero su respuesta se ha hecho más 

estrecha y se ha vuelto a desplazar en frecuencia. Tras sustituir este valor, se realizan 

nuevas simulaciones de la longitud del brazo de la antena L/2, para reajustar el valor de 

la frecuencia a 2.45 GHz. De los diferentes barridos realizados entre 19 mm y 18 mm, el 

mejor resultado se obtiene con L/2 = 18.34 mm, como se puede observar en la figura 

4.9, ya que proporciona una frecuencia de trabajo exacta de 2.45GHz. Las pérdidas de 

retorno para estos valores de L/2 y Lf son de entorno a los -46 dB y el ancho de banda 

es de aproximadamente 423 MHz. Los resultados obtenidos con los parámetros 

simulados hasta ahora, proporcionan unos valores óptimos para la frecuencia de trabajo 

y las pérdidas de retorno pero, sin embargo, el ancho de banda no se obtiene dentro de 

las especificaciones requeridas. Este se puede calcular en porcentaje como 

 

 

 56(%) = 2'�) − 2'��2N · 100 = 17% (4.8) 
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Figura 4.9: Detalle del valor de pérdidas de retorno  y ancho de banda para L/2=18.34 mm 

 

4.2.3 Dependencia con el ancho del brazo de la antena (W) 

Para observar la dependencia que guarda el ancho del brazo de la antena (W) con los 

diferentes parámetros en estudio, se realiza un barrido de W con 5 capturas entre 

2.3 mm < W < 2.4 mm.  

 

 

Figura 4.10: Barrido del valor del ancho de la antena (W) entre 2.3 mm < W < 2.4 mm 

 

 

Figura 4.11: Detalle de la frecuencia y las pérdidas de retorno para el barrido entre 2.3 mm < W < 2.4 mm 
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Observando las gráficas 4.10 y 4.11 obtenidas durante la simulación, se puede ver que 

apenas se producen diferencias entre las distintas respuestas obtenidas, aunque sí se 

puede apreciar un aumento de la frecuencia a medida que aumenta el ancho del brazo de 

la antena, alejándose del valor deseado. Las pérdidas de retorno disminuyen 

considerablemente a medida que aumenta el ancho del brazo comparado con los 

resultados obtenidos hasta ahora, logrando alcanzar los -50 dB para los valores más 

altos de W. El ancho de banda se mantiene prácticamente constante con la variación del 

W alrededor de los 450 MHz, siendo W=2.32 mm el valor que proporciona una frecuencia 

de trabajo más próxima a los 2.45 GHz. 

 

 

4.2.4 Dependencia con el ancho de la línea de alimentación (Wf) 

De igual forma que en el apartado anterior, se realiza un barrido del ancho de la línea de 

alimentación (Wf) con 5 capturas entre 1.1 mm ≤ Wf ≤ 1.2 mm, para observar la 

dependencia que guarda con respecto a los parámetros en estudio. Observando las 

gráficas de las figuras 4.12 y 4.13, se puede ver que al aumentar el ancho de la línea de 

alimentación Wf, disminuye el valor de las pérdidas de retorno y aumenta al mismo 

tiempo el valor de la frecuencia de trabajo. El valor del ancho de banda permanece 

prácticamente igual al obtenido con la variación de W en el apartado anterior. La 

frecuencia de resonancia más cercana a los 2.45 GHz se obtiene con Wf=1.15 mm. 

 

 

Figura 4.12: Barrido del valor del ancho de la antena (Wf) entre 1.1 mm < Wf < 1.2 mm 

 

Figura 4.13: Detalle de la frecuencia y las pérdidas de retorno para el barrido entre 1.1 mm < Wf < 1.2 mm 
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4.2.5 Compromiso entre frecuencia de trabajo y ancho de banda 

Con los mejores valores encontrados en las simulaciones anteriores, se obtiene una 

antena trabajando a la frecuencia de 2.45 GHz, con unas pérdidas de retorno de 

aproximadamente -46 dB y un ancho de banda a -10 dB de 422.95 MHz. Como se puede 

ver, para la adaptación de la antena y su frecuencia de trabajo se obtienen unos valores 

óptimos que se encuentran dentro de las especificaciones deseadas, sin embargo, para el 

caso del ancho de banda y tal como se ha comentado anteriormente, se desea obtener 

un rango mayor, fijado en los 500 MHz, por lo que se realizan nuevas simulaciones para 

intentar ajustar este parámetro. Se realiza un barrido más acotado de Lf entre 24.5 mm 

<Lf < 25.5 mm, ya que es el parámetro que parece afectar en mayor grado al ancho de 

banda, cuyos resultados se pueden observar en la figura 4.14 y en la tabla 4.2. 

 

 

Figura 4.14: Barrido del valor de longitud de la línea de alimentación (Lf) entre 24.5 mm y 25.5 mm 

 

Lf (mm) f (GHz) BW (MHz) S11 (dB) 

24.5 2.46 446 -30.45 

24.61 2.45 462 -29.31 

24.72 2.45 473 -28.00 

24.83 2.45 481 -27.31 

24.94 2.45 504 -26.45 

25.05 2.44 516 -25.66 

25.16 2.44 503 -23.31 

25.27 2.44 559 -23.89 

25.38 2.44 587 -23.23 

25.5 2.43 562 -23.12 

Tabla 4.2: Frecuencia, pérdidas de retorno y ancho de banda obtenidos para los diferentes valores de Lf 
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Durante la simulación se ha podido constatar que, en el rango entre 24.5 mm < Lf < 

25.5 mm, al aumentar el valor de la longitud de la línea de alimentación aumenta 

también el ancho de banda a -10 dB, con lo que los resultados obtenidos para las 6 

últimas simulaciones proporcionan un rango de frecuencias que cumple con las 

especificaciones deseadas. De igual manera, las pérdidas de retorno también aumentan a 

medida que aumenta el valor de Lf. Sin embargo, si por el contrario se analiza qué 

ocurre con la frecuencia de trabajo, es posible ver que ésta se aleja un poco del valor 

deseado cuando se aumenta Lf, disminuyendo hasta los 2.43 GHz. Realizando este 

procedimiento a la inversa, es decir, disminuyendo la longitud de la línea de 

alimentación, es posible obtener una frecuencia de trabajo de 2.45 GHz, pero se pierde 

en ancho de banda, que vuelve a caer alrededor de los 450MHz, como se obtenía para 

los valores utilizados en las simulaciones anteriores y que pueden observarse en la figura 

4.9. Es necesario, por tanto, llegar a un compromiso entre la frecuencia de trabajo y el 

ancho de banda a -10dB que se desea conseguir, manteniendo el valor del parámetro 

más importante como restricción y adaptando el otro lo máximo posible al valor deseado. 

Para este caso, es preferible que la antena esté correctamente adaptada para un rango 

de frecuencias mayor aunque la frecuencia de trabajo no sea exactamente la deseada, 

por lo que, de los valores obtenidos en las gráficas de las simulaciones anteriores, se 

escoge Lf = 24.94 mm, dado que proporciona una mejor relación de frecuencia. 

 

 

4.2.6 Dependencia con el ancho de la pista de soldadura (Wp) 

Para poder soldar a la antena el puerto SMA durante el proceso de fabricación, se ha 

dibujado una pista de grosor Wp y longitud Lp fija de 10 mm, correspondiendo con la 

longitud del conector y que se pueden ver representadas en la figura 4.2. Para analizar el 

efecto del grosor de esta pista sobre los parámetros que se están estudiando, se realiza 

un barrido con 5 capturas entre 1mm < Wp < 3 mm cuyos resultados pueden observarse 

en la figura 4.15. Como se puede ver en dicha figura, todos los valores de Wp simulados 

se concentran alrededor de los 2.45 GHz de frecuencia y tienen un ancho de banda 

similar alrededor de los 500 MHz, siendo la variación más destacable la correspondiente 

a las pérdidas de retorno, que oscilan entre -24 dB y -26 dB aproximadamente. 

 

 

Figura 4.15: Barrido del valor del ancho de la pista de soldadura (Wp) entre 1 mm y 3 mm 
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Se escoge como mejor valor el proporcionado por el parámetro Wp=2.5 mm, ya que 

proporciona el valor de pérdidas de retorno más bajo situado en -25.72 dB. 

 

4.3 Parámetros de diseño finales 
 

Tras todas las simulaciones realizadas, la mejor respuesta obtenida se consigue con las 

dimensiones de la antena que pueden observarse en la tabla 4.3. Con estos valores se 

obtiene una antena con una frecuencia de resonancia de 2.45 GHz, un ancho de banda a 

-10 dB de 504MHz y unas pérdidas de retorno superiores a los -26 dB, cumpliendo con 

los requisitos de diseños planteados al inicio de esta sección tal como se puede ver en la 

gráfica de la figura 4.16. 

 

 

PARÁMETROS FINALES DE DISEÑO 

L = 36,68 mm 

L/2 = 18,34 mm 

W = 2,32 mm 

Lf = 24,94 mm 

Wf = 1,15 mm 

Lp = 10 mm 

Wp = 2,5 mm 

t = 0,035 mm 
Feed = 10 

tanδ = 0,0023 a 10GHz 

εr = 10,2 

Medidas sustrato: 40 mm x 40 mm x 1,27 mm 
Tabla 4.3: Dimensiones finales del dipolo 

 

 

 

Figura 4.16: Detalle del ancho de banda a -10 dB y de la frecuencia para los parámetros finales de diseño 
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El ancho de banda en porcentaje de la antena se puede calcular como 

 

 

 56(%) = 2'�) − 2'��2N · 100 = 20% (4.9) 

 

 
4.3.1 Distribución de corriente en el dipolo 

La tensión y la corriente en el dipolo se distribuyen tal y como se puede observar en la 

figura 4.17 [6]. En el centro de la antena la tensión es nula, mientras que la intensidad 

es máxima (I0). En los extremos, sin embargo, se produce justamente lo contrario, una 

tensión máxima y una intensidad nula. Es posible observar la misma distribución de 

corriente en la gráfica de la figura 4.18, para la corriente superficial del dipolo obtenida 

tras la simulación, donde dicha intensidad es elevada en el centro del brazo de la antena 

y va decreciendo a lo largo de cada uno de ellos, alcanzando una intensidad nula en sus 

extremos.  

 

 

 

Figura 4.17: Representación de la intensidad y la tensión en un dipolo clásico 

 

 

Figura 4.18: Corriente superficial del dipolo tras la simulación 
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4.3.2 Diagramas de radiación del dipolo 

La posición de la antena respecto al sistema de coordenadas tridimensionales, así como 

la de su respectivo diagrama de radiación, se pueden ver representados en la figura 

4.19. En ella se puede observar la geometría clásica toroidal de una antena 

omnidireccional ideal. La radiación en el espacio libre es exactamente igual en todas las 

direcciones para un plano vertical y perpendicular al hilo del dipolo, denominado plano H, 

definido mediante el corte en el plano YZ con φ=90º constante y θ variando entre 0 y 2&. Mientras que en el plano horizontal del dipolo, denominado plano E y definido por el 

corte en el plano XY con θ=90º constante y φ variando entre 0 y 2&, la antena radia con 

un máximo en la dirección perpendicular a la dirección del hilo y un mínimo en el hilo. 

 

    
Figura 4.19: Representación de la antena y su diagrama de radiación respecto al sistema de coordenadas 
tridimensional  

 

En los diagramas de radiación bidimensionales en coordenadas polares obtenidos tras la 

simulación del dipolo, se pueden ver representados el plano E en la figura 4.20 a), el 

plano H en la figura 4.20 b) y el plano XZ en la figura 4.20 c). Como se puede observar, 

el diagrama de radiación de la antena no es exactamente omnidireccional, ya que 

presenta un valor mínimo de ganancia de 1.5 dB en la dirección de los brazos del dipolo y 

un máximo de 2.9 dB en la dirección opuesta. Por tanto, el resultado obtenido no se 

corresponde con la ganancia teórica del dipolo convencional de 2.14 dB. Esta diferencia 

de ganancia, que se puede observar también a partir de las diferencias de color del 

diagrama tridimensional representado en la figura 4.21, se produce por efecto de las 

dimensiones del conjunto formado por la línea de transmisión y la línea para soldar. 

Normalmente, en un dipolo elemental las líneas de alimentación son cortas. Sin embargo 

en este caso, se desea fabricar el dipolo utilizando la tecnología impresa y colocando sus 

brazos de forma antipodal, con el objetivo de conseguir adaptación entra la línea de 

transmisión y la antena sin la necesidad de incorporar un balun al diseño [7].  
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Durante la fase de simulación, se ha podido comprobar que esto implica tener que 

diseñar la antena con unas líneas de alimentación suficientemente largas para acoplar la 

potencia y conseguir desfase, lo que a su vez repercute en la omnidireccionalidad del 

diagrama de radiación.  

 

Sin embargo, dado que la ganancia aumenta en 0.6 dB en una dirección y disminuye en 

la otra, se puede considerar que en promedio la ganancia del dipolo queda compensada. 

Por otra parte, en una antena omnidireccional ideal los cortes en XZ y XY son idénticos. 

Como se puede observar a partir de las figuras 4.20 a) y c), esto no se cumple 

exactamente en el caso del dipolo diseñado, ya que el valor de la ganancia en el plano 

XZ es de 1.7 dB tanto en la dirección de los brazos del dipolo como para la dirección 

opuesta, mientras que para el plano XY el valor de la ganancia en la dirección de los 

brazos del dipolo es de 1.5 dB y en la dirección opuesta es de 2.9 dB. 

 

 
Figura 4.20: a) representación en coordenadas polares del plano E del diagrama de radiación del dipolo b) 
Representación en coordenadas polares del plano H del diagrama de radiación del dipolo. c) Representación 
del plano XZ. 

 

 
Figura: 4.21: Diagrama de radiación tridimensional del dipolo 
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Comparando el diagrama de radiación de la figura 4.21 para la antena de dimensiones 

finales, con el obtenido para los parámetros iniciales de diseño de la figura 4.5, se puede 

observar que, tras el proceso de ajuste de las especificaciones, se ha logrado obtener un 

dipolo con los mismos valores de ganancia obtenidos al inicio. Sin embargo, en el nuevo 

diseño del dipolo se han logrado optimizar, además, los valores de adaptación, frecuencia 

de resonancia y ancho de banda, cumpliendo con los requisitos impuestos al inicio del 

proyecto. La eficiencia total de la antena es de -0.003445 dB, que en lineal se puede 

calcula como 

 

 *(%) = �10n4.44�JJ�/�4� · 100 = 99.92% (4.10) 

 

lo que permite afirmar que, al ser el valor de la eficiencia muy próximo a 1, la ganancia 

de la antena es igual a su directividad. 
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Capítulo 5:  

Fabricación y análisis 

 

 
5.1 Proceso de fabricación y medida de la adaptación 
 

Una vez obtenidos los parámetros de diseño óptimos del dipolo a partir de las 

simulaciones del capítulo anterior, se procede a la fabricación del mismo y al posterior 

análisis de su ganancia mediante dos metodologías distintas: primero, analizando el 

balance de enlace entre los dipolos mediante el uso de un analizador de redes y 

posteriormente mediante una celda TEM, como ya se ha mencionado en capítulos 

anteriores.  

 

Puesto que la medida de ganancia en el analizador de redes se pretende realizar a partir 

del balance de enlace entre dos antenas, es necesario fabricar dos dipolos que trabajen a 

la misma frecuencia de resonancia de 2.45 GHz. Inicialmente, para poder verificar que el 

dipolo que se obtiene tras la fabricación sigue cumpliendo con las especificaciones de 

adaptación, frecuencia de resonancia y ancho de banda deseados, se fabrica un primer 

dipolo y se analizan los parámetros mencionados para, una vez verificado que son 

correctos, proceder a la fabricación y medida del segundo dipolo. Para ello se ha utilizado 

una fresadora mecánica LPKF ProtoMat H100, sobre un sustrato Rogers RO3010 con 

constante dieléctrica εr = 10.2 y grosor de la lámina de 1.27 mm. Finalmente, se han 

soldado a las antenas los respectivos conectores SMA, obteniendo como resultado dos 

dipolos impresos de media onda que pueden observarse en la figura 5.1. 

 

 

 
Figura 5.1: Dipolos impresos obtenidos tras la fabricación 
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Tras calibrar el analizador de redes para una entrada, se conectan sucesivamente cada 

uno de los dipolos por separado, y se configura el instrumento para visualizar el 

coeficiente de reflexión (S11). A partir de la representación de este parámetro, que puede 

observarse en las gráficas de las figuras 5.2 y 5.3, es posible analizar la adaptación y 

ancho de banda de las antenas. Como se puede observar en las figuras mencionadas, los 

dipolos presentan, para la frecuencia de trabajo deseada de 2.45 GHz, unas pérdidas de 

retorno de aproximadamente -34 dB para el dipolo 1 y -24 dB, algo superiores, para el 

caso del dipolo 2. Los resultados obtenidos permiten constatar que, tal como ocurría 

durante la fase de diseño en la que se obtenían -26 dB, las antenas están correctamente 

adaptadas dado que todos los valores se encuentran por debajo de los -10 dB. En cuanto 

al ancho de banda, de 220 MHz para el dipolo 1 y 230 MHz para el dipolo 2, es posible 

ver, comparándolos con los 503 MHz obtenidos durante la simulación en CST, que se ha 

producido una pérdida de ancho de banda tras la fabricación, tal como se adelantó que 

ocurriría durante la fase de diseño. No obstante, el amplio margen de ancho de banda 

con el que se ha diseñado la antena asegura un valor tras la fabricación superior al 

mínimo requerido de 100 MHz. 

 

 
Figura 5.2: Representación del coeficiente de 

reflexión del dipolo 1. 

 
Figura 5.3: Representación del coeficiente de 

reflexión del dipolo 2. 

 

5.2 Medida de la ganancia mediante el balance de enlace 
 

En este primer análisis, se procede a conectar los dipolos fabricados al analizador de 

redes Agilent E8364B PNA Series siguiendo el montaje de la figura 5.4. El objetivo 

consiste en analizar el balance de enlace entre los dipolos a partir de la medida de la 

ganancia de transmisión (S21). Para calcular la ganancia de las antenas, se necesita 

encontrar una expresión que la relacione con los parámetros conocidos del sistema, es 

decir, que permita relacionar la ganancia de los dipolos con la distancia r que se aplicará 

entre ellos y la ganancia de transmisión S21 que se medirá a través del analizador de 

redes. 
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Para ello, es necesario que las antenas se encuentren funcionando dentro de la región de 

campo lejano o campos radiados, por lo que previamente se deberán establecer los 

límites teóricos de dicha región de funcionamiento, que determinan la distancia mínima a 

la que se debe situar una antena respecto a la otra. Para evitar efectos de reflexión no 

deseados que pueden afectan al diagrama de radiación y producir desplazamientos en la 

frecuencia de resonancia de la antena, se debe realizar el montaje lo más alejado posible 

del entorno del laboratorio, sujetando las antenas en el espacio libre y enfrentándolas 

paralelamente para evitar errores de polarización. Puesto que las antenas están 

adaptadas, no se consideran las pérdidas en el medio y se supone que existe adaptación 

de polarización, no se tendrán en cuenta los coeficientes de desadaptación Ca, pérdidas 

en el medio Cm y de desacoplo de polarización Cp. 

 

 

 

Figura 5.4: Representación del montaje de las antenas en el analizador de redes 

 

5.2.1 Configuración de la medida de ganancia 

En el campo de radiación electromagnética que emana de una antena típica, es posible 

definir tres regiones con características distintas, en función de la distancia a la que se 

encuentran de la fuente radiante y con respecto a la longitud de onda de la radiación. 

Estas tres regiones se denominan región de campo cercano o de campos inducidos, 

región de transición y región de campo lejano o de campos de radiación. 

 

La región de campo cercano también llamada región de Fresnel, se establece dentro de 

una distancia igual a la longitud de onda de la antena. Se trata de una región en la que 

actúan fuertes efectos inductivos y capacitivos provenientes de las corrientes y de las 

cargas en la antena. Estos efectos hacen que la potencia decaiga rápidamente con la 
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distancia. Además, la absorción de la potencia radiada en esta región tiene efectos que 

realimentan al transmisor. 

 

La región de campo lejano o región de Fraunhofer, se extiende desde una distancia igual 

a dos veces la longitud de onda de la antena hasta el infinito, y se caracteriza por ser 

una región donde el campo actúa como una radiación electromagnética con 

características típicas, con campos E y H ortogonales entre sí y dirección de propagación 

como la de una onda plana. En esta región el patrón de radiación no cambia con la 

distancia, aunque la potencia de radiación si decrece con el cuadrado de la misma (1/r2) 

y la absorción de la radiación no tiene ningún efecto en el transmisor. 

 

La región de transición entre las dos regiones anteriores, se encuentra comprendida 

entre una y dos veces la longitud de onda de la antena. En esta región tanto los efectos 

del campo cercano como los de campo lejano se producen simultáneamente y son 

importantes. 

 

A pesar de la dificultad para establecer límites exactos entre dichas regiones debido a la 

variabilidad que se produce en la caracterización del campo respecto de la distancia, sí se 

pueden establecer expresiones que proporcionen unos límites aproximados. Para este 

caso de estudio en concreto, en el que interesa caracterizar la ganancia de las antenas 

dentro de la región de campo lejano o región de Fraunhofer, se necesita establecer la 

frontera inferior entre esta región y la región de Fresnel. Para hallarla es posible aplicar 

el procedimiento que se seguiría en el caso de un problema unidimensional y que se 

desarrolla en detalle en [2], de tal forma que la región de Fraunhofer queda definida 

mediante 

 

 
2 �E ≤ r < ∞ (5.1) 

 

donde D corresponde a la dimensión lineal de la antena y λ a la longitud de onda en el 

espacio libre. Sustituyendo en la ecuación 5.1 los valores de los parámetros de diseño 

obtenidos, el límite inferior de la región se calcula como 

 

  = 2 ∙ M = 2 ∙ 18.34 = 36.68	�� (5.2) 

 

 E = p2 = 3 · 10�2.45 · 10� ≅ 0.12	� (5.3) 

 

 
2 ∙ 0.03668�0.12 ≤ r (5.4) 
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 0.02� ≤ r (5.5) 

 

Así, la región de Fraunhofer o de campos de radiación, para la antena en estudio, queda 

comprendida entre: 

 2p� ≤ r < ∞ (5.6) 

 

Establecido el límite inferior en 2 cm y utilizando el montaje de la figura 5.4, se realiza la 

medida de la ganancia de transmisión (S21) para diferentes distancias entre antenas, 

cuyos resultados pueden observarse en detalle en la sección 5.2.2. En ajustes iniciales 

del montaje se observó que para distancias menores a 10 cm se obtenían valores 

erróneos de ganancia, por lo que únicamente se han tomado en consideración los valores 

iguales o superiores a dicha distancia. 

 

Una vez obtenida la ganancia de transmisión (S21) para cada una de las distancias r 

utilizadas, se necesita encontrar una expresión que permita relacionar estos dos 

parámetros conocidos con la ganancia de los dipolos, para lo que se empezará 

considerando la ecuación de transmisión de Friis, que establece que para el caso de dos 

antenas separadas entre sí una distancia r conectadas a sus respectivos transmisor y 

receptor, la potencia recibida en la antena receptora puede expresarse como 

 

 �
 = ��4&�� C?�@D (5.7) 

 

La relación entre la potencia recibida y la potencia radiada se denomina pérdida de 

transmisión entre las antenas y suele expresarse en decibelios. Conociendo que la 

relación existente entre el área efectiva y la directividad de cualquier antena se puede 

expresar como 

 
?�@D = E�4& (5.8) 

es posible reescribir la ecuación 5.7 en términos de la directividad que tendría la antena 

receptora si actuara como la transmisora, de forma que 

 

 
�
�� = F E4&�G

�  C D (5.9) 

 

Teniendo en cuenta que la directividad de los dipolos es igual en transmisión que en 

recepción  C =  D =    
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�
�� = F E4&�G

�  � (5.10) 

 

Como además la eficiencia obtenida en simulación durante la fase de diseño es muy 

elevada, alrededor del 99.92%, es posible considerar que la directividad de las antenas 

es igual a su ganancia, lo que permite reescribir la ecuación anterior en términos de esta 

última como 

 
�
�� = F E4&�G

� +� (5.11) 

 

Finalmente, teniendo en cuenta que λ=c/f y aislando la ganancia en la ecuación anterior 

se puede obtener la siguiente expresión en decibelios para la ganancia 

 

 (�
 − ��)|�� = 20BST F E4&�G + 2 · 10BST+ = 20BST F E4&�G + 2+|�� (5.12) 

 

 +|�� = (�
 − ��)|�� − 20BST H E4&�L2  (5.13) 

 

donde (�
 − ��)|�� =	���, y S21 es la ganancia de transmisión, r es la distancia entre 

antenas y el término 20BST	(E/4&�) corresponde a las pérdidas de transmisión entre 

antenas en el espacio libre expresado en decibelios, por lo que la expresión final en 

función de la ganancia se puede expresar como 

 

 +|�� = ��� − 20BST H E4&�L2  (5.14) 

 

5.2.2 Resultados de la medida 

Siguiendo el procedimiento desarrollado en los apartados anteriores de este capítulo, tras 

calibrar el analizador de redes para las dos antenas y utilizando el montaje de la figura 

5.4 a diferentes distancias entre ellas, se obtienen los valores de ganancia de transmisión 

en inversa (S21) que pueden observarse en la tabla 5.1. A partir de la ecuación 5.14 

encontrada en el apartado 5.2.1, es posible hallar la ganancia de los dipolos sustituyendo 

los valores de la ganancia de transmisión (S21) medidos y de las distancias r aplicadas. 

Todos estos parámetros, así como los valores de ganancia calculados a partir de ellos 

quedan recogidos en la tabla 5.1. 
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r (cm) ��� (dB) Ganancia (dB) 

10 -18.22 1.00 

15 -20.37 1.69 

20 -23.16 1.54 

25 -24.81 1.69 

30 -26.99 1.39 

Tabla 5.1: Valores de ganancia obtenidos para cada una de las distancias entre las antenas 

 

Como se puede observar a partir de los resultados, el valor de ganancia para cada una 

de las distancias, a pesar de no ser constante, se mantiene cercano a los 1.5 dB para la 

mayoría de los casos. Este resultado se corresponde con el valor de ganancia observado 

anteriormente durante la fase de diseño del dipolo en el capítulo 4, en el que se obtenía 

un diagrama de radiación que no era exactamente omnidireccional y cuyo valor de 

ganancia para la dirección correspondiente al montaje realizado era de 1.5 dB. Tras este 

resultado es posible concluir que el procedimiento utilizado en este capítulo para la 

medida de la ganancia reporta resultados coherentes con los obtenidos en simulación 

durante la fase de diseño de los dipolos. 

 

No obstante, considerando que el valor de la ganancia debería ser constante para todas 

las distancias aplicadas entre las antenas, se puede decir que las diferencias o errores 

entre unas medidas y otras son debidos a la naturaleza del entorno del laboratorio en el 

que se ha realizado el montaje, en el que se producen reflexiones de la señal no 

deseadas. Los cálculos teóricos se han realizado considerando la radiación de la antena 

en un medio aislado, mientras que en la práctica, la presencia de obstáculos, 

especialmente si se  hallan cerca de la antena, puede alterar el diagrama de radiación de 

la misma o producir desplazamientos de la frecuencia de resonancia. La energía radiada 

por la antena en la dirección de estos obstáculos será reflejada en mayor o menor grado 

y dependerá de las características físicas de dichos obstáculos, en especial de la 

conductividad. Por otra parte, la imposibilidad de calcular el centro de fase de cada una 

de las antenas introduce un error en la medida de la distancia entre ellas.  

 

Idealmente, la caracterización de los parámetros de los dipolos debería realizarse en una 

cámara anecoica, una sala con un revestimiento especial en sus paredes, a manera de 

una jaula de Faraday, diseñada para aislar de las interferencias externas. En su interior 

se simulan las condiciones de espacio libre, absorbiendo las ondas y radiaciones que 

inciden sobre las paredes, el suelo y el techo, anulando los posibles efectos que las 
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reflexiones puedan introducir

laboratorio, sin embargo, se 

afecten y enmascaren el valor real de la medida.

 

5.3 Medida de la ganancia mediante
 

Una Celda Electromagnética 

cerrada, en la que se producen ondas que se propaga

electromagnético (modo TEM)

en ensayos de Compatibilidad Electromagnética (EMC) 

dado que la polarización de los campos eléctricos y magnéticos

bien definida y son homogéneos

proyecto, para la medida de

un ambiente de medida fiable

 

Para esta segunda medida de la ganancia, 

la celda cada dipolo por separado

consta de un generador de señales N5182A MXG Vector Signal Generator que 

proporciona a la celda TEM la señal

los que se exponen los dipolos

N9020A conectado a la antena

de calcular dicha potencia se deben tener en cuenta

así como medir el valor del campo eléctrico en el punto de 

dentro del rango de estudio, para lo que se utiliza una sonda

calcular la ganancia se debe encontrar una expresión que la relacione

recibida y el valor del campo eléctrico

cuenta además las pérdidas calculadas

 

Figura 5.5: Representación del montaje del dipolo en la celda TEM

introducir en la medida de la antena. En un ambiente com

 debe tener en cuenta que pueden producir

n el valor real de la medida. 

Medida de la ganancia mediante la celda TEM 

Electromagnética Transversal (TEM) es una guía de ondas TEM completamente 

cerrada, en la que se producen ondas que se propagan en el modo transversal 

tico (modo TEM) [8] y [9]. Son instalaciones que generalmente

ibilidad Electromagnética (EMC) y medida de radiaciones pero, 

de los campos eléctricos y magnéticos dentro de la celda

homogéneos, también pude utilizarse, como es objeto de este 

de antenas a un menor coste que en una sala anecoica y bajo 

fiable [10]. 

Para esta segunda medida de la ganancia, se procede a colocar sucesivamente dentro de 

cada dipolo por separado, siguiendo el montaje de la figura 5.5

consta de un generador de señales N5182A MXG Vector Signal Generator que 

la señal de entrada a partir de la que se crean los campos a 

os dipolos y de un analizador de espectro MXA Signal Analayzer 

20A conectado a la antena, con el que se mide la potencia de señal recibida.

se deben tener en cuenta las pérdidas existentes en los cables, 

del campo eléctrico en el punto de medida para cada

dentro del rango de estudio, para lo que se utiliza una sonda de campo eléctrico

calcular la ganancia se debe encontrar una expresión que la relacione

valor del campo eléctrico para cada una de las frecuencia

las pérdidas calculadas.  

: Representación del montaje del dipolo en la celda TEM

UAB - EE 

. En un ambiente como el del 

producirse reflexiones que 

Transversal (TEM) es una guía de ondas TEM completamente 

en el modo transversal 

generalmente se utilizan 

de radiaciones pero, 

dentro de la celda está 

también pude utilizarse, como es objeto de este 

una sala anecoica y bajo 

ivamente dentro de 

iendo el montaje de la figura 5.5. El sistema 

consta de un generador de señales N5182A MXG Vector Signal Generator que 

crean los campos a 

y de un analizador de espectro MXA Signal Analayzer 

con el que se mide la potencia de señal recibida. Antes 

las pérdidas existentes en los cables, 

para cada frecuencia 

de campo eléctrico. Para 

calcular la ganancia se debe encontrar una expresión que la relacione con la potencia 

cada una de las frecuencias, teniendo en 

 
: Representación del montaje del dipolo en la celda TEM 
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5.3.1 Configuración de la medida de ganancia 

Dado que dentro de la celda TEM las ondas se propagan en el modo TEM, la ganancia del 

dipolo se puede calcular tal como se desarrolla en [10] a partir de la ecuación: 

 

 ���= = �� ∙ ?�@ = A���4 ∙ E
�4& ∙ + (5.15) 

 

donde Prec es la potencia recibida en la antena para un campo eléctrico incidente Ei, Si es 

la densidad de potencia incidente, Aef es la apertura o área efectiva de la antena, Z0 es la 

impedancia de la onda en el espacio libre Z0 = 120	&Ω y λ es la longitud de onda. 

 
Aplicando a la ecuación 5.15 la relación entre la longitud de onda y la frecuencia dada 

por la ecuación p = E · 2 , donde c es la velocidad de la luz y f es la frecuencia de la 

señal, podemos expresar la ganancia como: 

 

 + = �4 ∙ 4&p� ∙ 2� · ���=A�� = 120& ∙ 4&(3 · 10�)� ∙ 2� · ���=A�� = 525.84 · 10n�� · 2� · ���=A��  (5.16) 

 

o en decibelios 

 

 +�[5�� = −132.8 + 20BST2 +	���=�[5� − A��[5</�� (5.17) 

 

A partir de la ecuación 5.17 y teniendo en cuenta que ���=�[5� = ����[5� + M=N�)�[5� 
donde PSA es la potencia medida en el analizador de espectro y Lcoax es el factor de la 

atenuación de los cables coaxiales, la expresión final para la ganancia queda definida 

como 

 

 +�[5�� = −132.8 + 20BST2 +	����[5� + M=N�)�[5� − A��[5</�� (5.18) 

 

Para realizar las medidas, tanto del campo eléctrico en el punto de medida como de 

potencia de señal recibida, se utiliza un rango de frecuencias entre 2.2 GHz y 2.7 GHz, 

con un paso de 50MHz, lo que proporciona 11 puntos de frecuencia en la banda 

especificada. Se realiza además un zoom entre 2.4 GHz y 2.5 GHz con un paso de 20MHz 

y por tanto 4 puntos más de frecuencia, para observar con más exactitud la respuesta 

obtenida en la banda de interés. 

 

Tras calcular las pérdidas de los cables, exceptuando el cable óptico de la sonda que se 

considera libre de pérdidas, se colocan los dipolos individualmente en el centro de la 

celda para realizar las medidas, sobre una espuma de poliestireno a la mitad de altura 
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del tabique realizando las funciones de soporte. En una primera medida, se coloca una 

sonda de campo eléctrico en el punto de medida donde posteriormente se colocaran las 

antenas, para conocer la magnitud del campo eléctrico que incidirá sobre ellas. 

Finalmente se realiza la medida de la potencia recibida para cada uno de los dipolos para 

los mismos puntos de frecuencia definidos. 

 

5.3.2 Resultados de la medida 

Como se ha comentado en la sección anterior, antes de realizar la medida se deben 

calcular las pérdidas en los cables coaxiales, para lo que se conectan al analizador de 

espectro y se mide la potencia recibida para las frecuencias 2.2 GHz, 2.45 GHz y 

2.7 GHz, considerando una señal de entrada de 15 dBm. Los valores obtenidos tras la 

medida se muestran en las tablas 5.2 y 5.3. El factor de pérdidas Lcoax se obtiene 

calculando la media de los valores de potencia medidos y sustituyéndolos en la expresión  

 

 M=N�) = �C − ��� (5.19) 

 

 

Frecuencia (GHz) PSA (dBm) 

2.2 14.51 

2.45 14.52 

2.7 14.53 

Tabla 5.2: Medida de potencia recibida en el cable  que conecta la antena  con la celda TEM 

 

 

 ���'���� = 14.51 + 14.52 + 14.533 = 14.52	[5 ≈ 14.5	[5 (5.20) 

 

 M=N�) = �C − ��� = 15 − 14.52 = 0.48	[5 ≈ 0.5	[5 (5.21) 

 

 

Frecuencia (GHz) PSA (dBm) 

2.2 14.29 

2.45 14.22 

2.7 14.27 

Tabla 5.3: Medida de potencia recibida en el cable que conecta la antena  con el analizador de espectro 
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 ���'���� = 14.29 + 14.22 + 14.273 = 14.26	[5 ≈ 14.3	[5 (5.22) 

 

 M=N�) = �C − ��� = 15 − 14.26 = 0.74	[5 ≈ 0.7	[5 (5.23) 

 
Una vez conocidas las pérdidas de los cables, se procede a medir el valor del campo 

eléctrico y la potencia de señal recibida, para el rango de frecuencias especificado 

anteriormente entre 2.2 GHz y 2.7 GHz, con un zoom entre 2.4 GHz y 2.5 GHz. 

 

Para calcular la ganancia en cada punto de frecuencia, es posible utilizar la expresión 

5.24 sustituyendo los valores correspondientes a las medidas de pérdidas, campo 

eléctrico y potencia recibida. Los resultados de ganancia obtenidos para cada dipolo se 

muestran a su vez en las tablas 5.4 y 5.5. 

 

 

 +�[5�� = −132.8 + 20BST2 +	����[5� + M=N�)�[5� − A��[5</�� (5.24) 

 

 +�[5�� = −132.8 + 20BST2 +	����[5� + 0.48	[5� + 0.74	[5� − A��[5</�� (5.25) 

 

 

Frecuencia (GHz) Campo Eléctrico (dBV/m) PSA (dBm) Ganancia (dB) 

2.2 5.89 -19.31 0.07 

2.25 10.37 -16.93 -1.84 

2.3 10.81 -15.85 -1 

2.35 11.60 -12.90 1.34 

2.4 12 -11.68 2.34 

2.42 12.67 -11.45 1.98 

2.44 12.61 -12.41 1.15 

2.45 12.04 -13.30 1.66 

2.46 11.62 -13.64 0.98 

2.48 12.23 -12.19 1.89 

2.5 12.38 -11.61 2.39 

2.55 12.40 -12.25 1.9 
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2.6 10.81 -12.99 2.92 

2.65 12.19 -11.32 3.37 

2.7 12.36 -12.91 1.78 

Tabla 5.4: Cálculo de la ganancia para cada punto de frecuencia de la antena 1. 

 

Frecuencia (GHz) Campo Eléctrico (dBV/m) PSA (dBm) Ganancia (dB) 

2.2 4.19 -22 -0.92 

2.25 10.58 -18.23 -3.35 

2.3 11.20 -15.82 -1.37 

2.35 11.36 -13.5 0.98 

2.4 12.23 -11.87 1.92 

2.42 13.03 -11.94 1.13 

2.44 13.20 -12.43 0.54 

2.45 12.59 -13 0.61 

2.46 12.26 -13.41 0.57 

2.48 12.51 -12.57 1.23 

2.5 12.42 -12.38 1.58 

2.55 12.65 -13.56 0.34 

2.6 10.66 -13.92 2.14 

2.65 11.43 -11.05 4.4 

2.7 12.02 -12.4 2.63 

Tabla 5.5: Cálculo de la ganancia para cada punto de frecuencia para la antena 2. 

 

Como se puede advertir a partir de los valores de las tablas mencionadas, el campo 

eléctrico medido en el punto donde se colocan los dipolos no es homogéneo, al contrario 

de como se había considerado al inicio de este capítulo. Sin embargo, las diferencias 

entre la mayoría de medidas son lo suficientemente pequeñas como para considerar que 

se satisface la demanda de homogeneidad de campo eléctrico. 

 

Analizando los resultados obtenidos para la medida de ganancia en la celda TEM, que 

también pueden observarse a partir de las gráficas representadas en la figura 5.6, se 
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puede ver que los valores de ganancia obtenidos para el rango de frecuencia entre los 

2.4 GHz y 2.5 GHz son cercanos a los 2.14 dB deseados. Exceptuando algunas medidas 

erróneas en puntos de frecuencia dentro de este rango, si se promedian el resto de los 

valores obtenidos, es posible afirmar que las antenas proporcionan una ganancia correcta 

en la banda de frecuencias deseada. Los valores obtenidos para la banda de los 2 GHz a 

los 2.35 GHz también son los esperados y decaen a medida que disminuye la frecuencia. 

Sin embargo, los obtenidos para las frecuencias superiores a 2.5 GHz son claramente 

erróneos, ya que proporcionan valores de ganancia bastante superiores a los 2.14 dB, 

cuando el valor de ganancia debería decaer con el aumento de la frecuencia. Esto 

evidencia que la celda TEM no trabaja adecuadamente a partir de los 2.5 GHz, por lo que 

no cumple los requisitos necesarios para realizar mediciones a partir de esta frecuencia. 

Además, algún elemento del setup podría estar ocasionando errores en la medida. 

 

 
Figura 5.6: Representación de la medida de ganancia de las antenas 1 y 2 en la celda TEM y en simulación. 

 

En cuanto a la orientación de los dipolos dentro de la celda TEM, éstos se han colocado 

de forma que se produzca adaptación de polarización con el campo eléctrico de la onda 

radiada. En el primer montaje realizado en la sección 5.2 mediante el analizador de 

redes, las antenas también se orientaron para conseguir adaptación de polarización entre 

ellas, pero posteriormente, comparando su posición con la que ocupan en el montaje 

dentro de la celda, se observó que ésta no fue exactamente igual para ambos casos. Esta 

diferencia también se puede advertir si se representan, en función de la orientación de 

los dipolos, los diagramas de radiación obtenidos en simulación. Como se puede ver a 

partir de la figura 5.7, en el primer montaje mediante el analizador de redes, las antenas 

se orientaron enfrentadas la una a la otra, de forma que la medida de la ganancia se 

realizó sobre la dirección de los brazos del dipolo, en la que el diagrama de radiación 

presenta un mínimo de ganancia de 1.5 dB. 
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Figura 5.7: Representación de los diagramas de radiación de las antenas en función de su orientación, para el montaje 
realizado en el analizador de redes  

 

En el segundo montaje, tal como se ha orientado la antena dentro de la celda TEM, el 

diagrama de radiación debería ser perpendicular a la dirección de propagación de la onda 

electromagnética radiada por la celda, tal como se puede observar en la figura 5.8. De 

esta forma la medida de la ganancia se realizaría sobre la dirección en la que el diagrama 

de radiación presenta un valor de ganancia de 1.7 dB. Sin embargo, en este caso, es 

difícil conseguir que el montaje real de los dipolos sea exactamente perpendicular al foco 

de radiación de la celda, debido a que ciertos elementos como los cables dificultan la 

colocación de las antenas. Así, observando los resultados de la tabla 5.4 obtenidos para 

el primer dipolo, se puede ver que debido a su orientación, la medida de ganancia se 

realizó sobre una dirección próxima a la dirección en la que el diagrama presenta un 

máximo de ganancia de 2.9 dB. 

 

           
Figura 5.8: Representación del diagrama de radiación del dipolo en función de su orientación para el montaje realizado 

dentro de la celda TEM 
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Para el caso de la segunda antena, cuyos resultados de ganancia se pueden observar a 

partir de la tabla 5.5, se consiguió una orientación más perpendicular, de forma que la 

medida de la ganancia se realizó sobre una dirección del diagrama de radiación que 

presenta una ganancia próxima a 1.7 dB. 

 

Para poder comparar los resultados de la medida de la ganancia obtenidos en la celda 

TEM, con los obtenidos en el primer montaje mediante el analizador de redes, se 

deberían colocar las antenas dentro de la celda con la misma orientación que se siguió en 

el primer caso, tal como se puede ver representado en la figura 5.9. 

 

      
Figura 5.9: Orientación del dipolo dentro de la celda para poder comparar la medida de ganancia con la 

obtenida mediante el analizador de redes. 
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Capítulo 6:  

Conclusiones 

 
Tras el análisis de los dos dipolos mediante el analizador de redes y la celda TEM es 

posible concluir que, tanto en el diseño como tras la fabricación del mismo, se han 

alcanzado los objetivos marcados al inicio del proyecto. Se ha conseguido cumplir 

satisfactoriamente con las especificaciones técnicas impuestas, diseñando dos antenas 

que presentan una adaptación menor de -10 dB, con un ancho de banda de 500 MHz 

suficiente para contener los canales Wi-fi situados entre los 2.41 GHz y 2.48 GHz, tal 

como se indicó al inicio del proyecto. En lo que se refiere a la parte específica de 

fabricación, se han podido mantener en gran medida las especificaciones teóricas del 

diseño en ambos dipolos, exceptuando el ancho de banda que tras la fabricación se ha 

visto reducido a la mitad. Esto ha comportado, a su vez, una disminución de las pérdidas 

de retorno respecto al valor obtenido en simulación. Se ha conseguido además, 

minimizar las diferencias que podían producirse en la respuesta proporcionada por cada 

uno de los dipolos, sin encontrar problemas de desplazamientos en la frecuencia de 

resonancia, por lo que se puede afirmar que ambos operan en condiciones muy similares. 

 

En cuanto a los métodos de análisis utilizados, se ha podido verificar que, tanto para el 

montaje en el analizador de redes como para la celda TEM, se han obtenido resultados 

que en promedio y para un rango entre los 2.4 GHz y los 2.5 GHz pueden considerarse 

óptimos y similares a los obtenidos durante la fase de diseño de la antena. 

 

Como línea futura de este proyecto, se podría optimizar el diseño de los dipolos para 

eliminar las diferencias de ganancia encontradas en el diagrama de radiación y mejorar 

así su omnidireccionalidad. Una primera opción, consistiría en realizar un estudio más 

exhaustivo de la dependencia entre el diagrama de radiación y las dimensiones físicas de 

la antena. Por otra parte, la antena fabricada cumple las especificaciones de diseño en 

unos márgenes bastante amplios. Reduciendo los requisitos de ancho de banda y 

adaptación, se obtendría una mayor flexibilidad a la hora de diseñar las dimensiones de 

la misma. 

 

Otra línea de mejora consistiría en realizar un nuevo setup de los dipolos dentro de la 

celda TEM, siguiendo la orientación aplicada en el primer sistema de medida mediante el 

analizador de redes, con el objetivo de poder comparar los valores de ganancia obtenidos 

en cada caso. Además, sería interesante poder medir el diagrama de radiación y la 

ganancia en una cámara anecoica, ya que, si bien los resultados obtenidos con los 

instrumentos utilizados pueden considerarse correctos en promedio para el ancho de 

banda especificado, no han demostrado ser métodos de medida muy precisos ya que no 

aportan valores válidos para todas las frecuencias. 
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A nivel personal, la realización de este proyecto me ha resultado muy gratificante, no 

sólo porque me ha permitido adquirir conocimientos básicos sobre antenas y en 

particular sobre el dipolo de media onda operando en la banda de los 2.45 GHz, 

completamente desconocidos para mi dada mi formación técnica en telecomunicaciones, 

sino también por la posibilidad de conocer y aprender a manejar una herramienta de 

diseño de antenas tan completa y avanzada como es CST Microwave Studio. Además, me 

ha ofrecido la posibilidad de completar todas las fases de un proyecto, desde su estudio 

analítico y diseño, hasta su fabricación y parametrización, dado que ésta no ha exigido 

una inversión elevada y se dispone de todos los equipos necesarios para realizarla. 
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Resumen 
 

Este trabajo recoge el estudio, diseño, fabricación y análisis de dos dipolos de media 

onda para aplicaciones Wi-fi, con objeto de caracterizar sus respectivas ganancias 

mediante el uso de dos sistemas de medida distintos, el primero basado en el análisis del 

balance de enlace entre antenas mediante un analizador de redes y el segundo mediante 

una celda TEM. 

 

Para obtener un correcto funcionamiento de los dipolos, resulta de vital importancia 

conseguir un buen ajuste de las dimensiones de los mismos durante el desarrollo práctico 

del proyecto, consiguiendo una máxima transferencia de potencia y un ancho de banda 

suficientemente amplio para asegurar que las antenas presenten una buena adaptación 

en la banda de los 2.4 GHz – 2.5 GHz. 

 

Resum 

 

Aquest treball recull l’estudi, disseny, fabricació i anàlisi de dos dipols de mitja ona per a 

aplicacions Wi-fi, amb la finalitat de caracteritzar els seus respectius guanys mitjançant 

l’ús de dos sistemes de mesura diferents, el primer basat en l’anàlisi del balanç d’enllaç 

entre antenes mitjançant un analitzador de xarxes i el segon mitjançant una cel·la TEM. 

 

Per a obtenir un correcte funcionament dels dipols, resulta de vital importància 

aconseguir un bon ajustament de les dimensions del mateixos durant el 

desenvolupament pràctic del projecte, aconseguint una màxima transferència de potencia 

i un ample de banda suficientment gran per a garantir que les antenes presentin una 

bona adaptació a la banda dels 2.4 GHz – 2.5 GHz,. 

 

Summary 
 

This project covers the research, design, manufacturing and analysis of two half-wave 

length dipoles for Wi-fi applications, to characterize their gains by using two different 

measuring setups, the first one based on the analysis of power budget between antennas 

using a network analyzer and the second one using a TEM cell. 

 

For proper operation of the dipoles, in order to achieve a maxim power transfer and a 

bandwidth wide enough to allow operation cover on range between 2.4 GHz – 2.5 GHz, a 

fine adjustment of the antennas dimensions is an important goal to achieve during the 

practical development of the project.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 


