

 Avaluació de la
tecnologia de les GPUs

d'Enginyeria Tècnica en

Informàtica de

Jordi Mitjana Trullàs

Gonzalo Vera

Escola d’Enginyeria

Avaluació de la
tecnologia de les GPUs

 Memòria del projecte

d'Enginyeria Tècnica en

Informàtica de sistemes

realitzat per

Jordi Mitjana Trullàs

i dirigit per

Gonzalo Vera Rodríguez

Escola d’Enginyeria

Sabadell, juny de 2011

Avaluació de la
tecnologia de les GPUs

Avaluació de la tecnologia de les GPUs UAB-2011

Avaluació de la tecnologia de les GPUs UAB-2011

El sotasignat, Gonzalo Vera Rodríguez

professor de l'Escola d’Enginyeria de la UAB,

CERTIFICA:

Que el treball al que correspon la present
memòria
ha estat realitzat sota la seva direcció per

Jordi Mitjana Trullàs

I per a que consti firma la present.
Sabadell, juny de 2011

--
Signat: Gonzalo Vera Rodríguez

Avaluació de la tecnologia de les GPUs UAB-2011

FULL DE RESUM – PROJECTE FI DE CARRERA DE L’ESCOLA D’ENGINYERIA

Títol del projecte: Avaluació de la tecnologia de les GPUs.

Autor: Jordi Mitjana Trullàs Data: juny 2011

Tutor: Gonzalo Vera Rodríguez

Titulació: Enginyeria informàtica de sistemes

Paraules clau

• GPU.

• GPGPU.

• CUDA.

Resum del projecte

• Català: En el projecte s’ha dut a terme un estudi sobre la tecnologia que

aporten les targetes gràfiques (GPU) dins l’àmbit de programació

d’aplicacions que tradicionalment eren executades en la CPU o altrament

conegut com a GPGPU.

S’ha fet un anàlisi profund del marc tecnològic actual explicant part del

maquinari de les targetes gràfiques i de què tracta el GPGPU. També

s’han estudiat les diferents opcions que existeixen per poder realitzar els

test de rendiment que permetran avaluar el programari, quin

programari està dissenyat per ser executat amb aquesta tecnologia i

quin és el procediment a seguir per poder utilitzar-los.

S’han efectuat diverses proves per avaluar el rendiment de programari

dissenyat o compatible d’executar en la GPU, realitzant taules

comparatives amb els temps de còmput.

Un cop finalitzades les diferents proves del programari, es pot concloure

que no tota aplicació processada en la GPU aporta un benefici. Per poder

veure millores és necessari que l’aplicació reuneixi una sèrie de requisits

com que disposi d’un elevat nombre d’operacions que es puguin realitzar

en paral�lel, que no existeixin condicionants per a l’execució de les

operacions i que sigui un procés amb càlcul aritmètic intensiu.

Avaluació de la tecnologia de les GPUs UAB-2011

• Castellà: En el proyecto se ha llevado a cabo un estudio sobre la

tecnología que aportan las tarjetas gráficas (GPU) dentro del ámbito de

programación de aplicaciones que tradicionalmente eran ejecutadas en

la CPU o también conocido como GPGPU.

Se ha realizado un análisis profundo del marco tecnológico actual

explicando parte del hardware de les tarjetas gráficas y de que trata el

GPGPU. También se han estudiado las diferentes opciones que existen

para poder realizar las pruebas de rendimiento que servirán para evaluar

el software, que software está diseñado para ser ejecutado con ésta

tecnología y cuál es el procedimiento a seguir para poder utilizarlos. Se

han efectuado diferentes pruebas para poder evaluar el rendimiento del

software diseñado o compatible de ejecutar en la GPU, realizando tablas

comparativas con los tiempos de cómputo.

Una vez realizadas las pruebas de software, se concluye que no todas las

aplicaciones procesadas en la GPU aportan beneficios. Para poder ver las

mejoras es necesario que la aplicación reúna una serie de requisitos

como disponer de un elevado número de operaciones que se puedan

realizar en paralelo, que no existan condicionantes para la ejecución de

las operaciones y que sea un proceso de cálculo intensivo.

• Anglès: This project has been carried out a study about the technology

that bring the graphics cards (GPU) within the scope of programming

applications which traditionally were executed in the CPU or also known

as GPGPU.

It has made a thorough analysis of the current technological framework

explaining the hardware side of the graphics cards and what GPGPU is. It

has also studied the different options available to performance testing

which will help to evaluate the software, decide which software is

designed to run with this technology and what is the procedure to use it.

It has been carried out various tests to evaluate performance or

compatible software designed to run on the GPU, making comparative

computation times tables.

Once concluded the software testing, it is concluded that not all

Avaluació de la tecnologia de les GPUs UAB-2011

applications processed on the GPU provide benefits. To see the

improvements it is necessary that the program satisfies certain

requirements such as having a high number of operations which can be

performed in parallel, there are no conditions for execution operations

and the process has to be a compute-intensive process.

Avaluació de la tecnologia de les GPUs UAB-2011

Agraïments

A la meva xicota Anna pels seus ànims i el seu ajut.

Als meus pares pel seu suport durant tota la carrera

Al meu tutor Gonzalo Vera Rodríguez per haver-me guiat durant tota

l’elaboració del projecte.

Avaluació de la tecnologia de les GPUs UAB-2011

ÍNDEX

CAPÍTOL I: INTRODUCCIÓ ... 1

1. MOTIVACIÓ .. 1
2. CONTEXT .. 2
3. SITUACIÓ ACTUAL .. 5
4. OBJECTIUS DEL PROJECTE ... 6
5. PROPOSTA DE SOLUCIÓ .. 6

CAPÍTOL II: ESTUDI DE VIABILITAT .. 9

1. INTRODUCCIÓ ... 9
2. TIPOLOGIA I PARAULES CLAU .. 10
3. DESCRIPCIÓ DEL CAS GENERAL ... 10
4. DESCRIPCIÓ DEL CAS PARTICULAR .. 11
5. OBJECTIUS DEL PROJECTE .. 12

5.1 Objectius Generals .. 12
5.2 Objectius Específics... 13
5.3 Prioritats ... 13

6. PARTS INTERESSADES .. 13
6.1 Investigadors del CRAG ... 13
6.2 Stakeholder ... 13
6.3 Supervisor ... 13

7. REFERÈNCIES .. 14
8. PRODUCTE I DOCUMENTACIÓ DEL PROJECTE .. 14
9. ESTUDI DEL CAS ESPECÍFIC .. 14

9.1 msms .. 15
9.2 Informació ... 16
9.3 Restriccions ... 16

10. LÒGICA DEL SISTEMA .. 16
11. DESCRIPCIÓ FÍSICA .. 17
12. USUARIS I/O PERSONAL DEL SISTEMA ... 17
13. DIAGNÒSTIC DEL SISTEMA .. 17

13.1 Deficiències .. 17
13.2 Millores .. 17

14. REQUISITS DEL SISTEMA .. 18
14.1 Requisits funcionals ... 18
14.2 Requisits no funcionals .. 18

15. RESTRICCIONS DEL SISTEMA ... 18
16. CATALOGACIÓ I PRIORITZACIÓ DELS REQUISITS 19
17. ALTERNATIVES AL CAS GENERAL I SELECCIÓ DE LA SOLUCIÓ 19

17.1 Alternativa 1 .. 19
17.2 Alternativa 2 .. 19
17.3 Alternativa 3 .. 19
17.4 Solució proposada ... 20

18. ALTERNATIVES AL CAS ESPECÍFIC I SELECCIÓ DE LA SOLUCIÓ 20

Avaluació de la tecnologia de les GPUs UAB-2011

18.1 Alternativa 1 .. 20
18.2 Alternativa 2 .. 20
18.3 Alternativa 3 .. 20

19. SOLUCIÓ PROPOSADA .. 21
20. PLANIFICACIÓ ... 21

20.1 Recursos del projecte .. 21
20.2 Fases i activitats del projecte ... 22
20.3 Calendari de recursos .. 22
20.4 Calendari del projecte: .. 23
20.5 Quadre de tasques del projecte .. 23
20.6 Dependències ... 24
20.7 Calendari temporal .. 24
20.8 Llista de riscos .. 25
20.9 Catalogació de riscos ... 26
20.10 Pla de contingència ... 27
20.11 Estimació del cost ... 27
20.12 Resum anàlisi cost – benefici .. 28

21. CONCLUSIONS DE L’ESTUDI DE VIABILITAT ... 28

CAPÍTOL III: ANÀLISI ... 29

1. MARC TECNOLÒGIC ... 29
1.1 El Maquinari ... 29
1.2 GPGPU .. 35

2. MODELS DE PROGRAMACIÓ GPGPU .. 37
2.1 OpenGL ... 37
2.2 CUDA .. 39

2.2.1 Model de programació en CUDA ... 42
2.3 ATI stream software ... 48

2.3.1 Model del sistema CAL (ATI Compute Abstraction Layer) 50
3. INFORMACIÓ PROGRAMARI GPGPU .. 55

3.1 Vreveal.. 56
3.2 Badaboom ... 57

4. REQUISITS ... 61
4.1 Funcionals ... 61
4.2 No funcionals ... 61

CAPÍTOL IV: DISSENY .. 63

1. REQUISITS FUNCIONALS .. 63
2. REQUISITS NO FUNCIONALS ... 64
3. PROVES ... 65

3.1 Movavi .. 67
3.2 vReveal ... 70
3.3 msms .. 73
3.4 Proves amb diferents entrades de dades 79
3.5 Examinar el codi font .. 82
3.6 Explicació bàsica de la perpectiva de chronon 84

Avaluació de la tecnologia de les GPUs UAB-2011

CAPÍTOL V: CONCLUSIONS .. 88

1. CONCLUSIÓ GENERAL ... 88
2. VALORACIÓ PERSONAL .. 92
3. MILLORES FUTURES ... 92

ANNEX ... 93

1. ABREVIACIONS ... 93
2. REFERÈNCIES .. 95

Avaluació de la tecnologia de les GPUs UAB-2011

ÍNDEX DE FIGURES

Figura 1. Comparativa GFLOPS entre GPU i CPU. 4
Figura 2. Esquema bàsic de l’arquitectura d’un computador. 5
Figura 3. Cicle respecte el temps. ... 11
Figura 4. Representació de l’arbre creat pel msms. 15
Figura 5. Representació de la lògica del sistema 16
Figura 6. Descripció física del procés. .. 17
Figura 7. Descripció de les tasques del projecte a realitzar. 23
Figura 8. Calendari temporal de les tasques del projecte a realitzar. 25
Figura 9. Esquema bàsic d’una targeta gràfica. 29
Figura 10. Esquema d’una targeta gràfica actual. 30
Figura 11. La GPU està formada per moltes més ALUs que una CPU. 30
Figura 12. Classificació sistemes segons Flynn. 31
Figura 13. Esquema SISD. ... 32
Figura 14. Esquema SIMD. ... 32
Figura 15. Esquema MISD. ... 33
Figura 16. Esquema MIMD. .. 33
Figura 17. Esquema genèric d’un ordinador. La fletxa indica on s’ubica la
targeta gràfica... 34
Figura 18. Ample de banda de les GPUs. .. 36
Figura 19. Esquema del pipeline de openGL ... 38
Figura 20. Esquema general d’OpenGL. ... 38
Figura 21. Jerarquia programari CUDA. ... 40
Figura 22. Operacions de memòria obtenir (Gather, literalment reunir) i
repartir (scatter, literalment dispersió). .. 41
Figura 23. La memòria compartida proporciona les dades més a prop de
les ALUs. .. 41
Figura 24. Estructura de reixeta (grid), blocs i fils (threads).Dins la GPU hi
poden haver-hi diversos grids. .. 43
Figura 25. Jerarquia de la memòria. .. 45
Figura 26. Exemple d’execució d’un programa. El codi s’executarà en sèrie
en el device mentre que en el host s’executarà en paral�lel. 46
Figura 27. Exemple de crida un kernel. .. 47
Figura 28. Sistema ATI stream software. ... 48
Figura 29. Es mostra com un array (T) entra en un processador stream i és
assignat a un processador (thread Processor k) basat en SIMD (conté
diversos stream cores). .. 49
Figura 30. Jerarquia software ATI stream... 50
Figura 31. Arquitectura sistema CAL.. 51
Figura 32. Esquema de l’ execució del kernel. 52
Figura 33. Execució del processador stream de l’exemple anterior. 53
Figura 34. Recordatori multiplicació de dos matrius. 53
Figura 35. Diagrama de seqüència que seguiria un programa per ser
executat amb processadors stream. ... 55

Avaluació de la tecnologia de les GPUs UAB-2011

Figura 36. Exemple Vreveal. .. 56
Figura 37. Exemple de codificació amb Badaboom. (Mentre que amb
Badaboom ja s’hauria completat la codificació en la GPU, la CPU continuaria
codificant el vídeo). .. 57
Figura 38. Aplicació Adobe Creative Suite. ... 58
Figura 39. Aplicació Cyberlink PowerDirector. 58
Figura 40. Comparació temps de conversió de un arxiu de vídeo. 59
Figura 41. Aplicació Nero Move It. ... 59
Figura 42. Aplicació Total Media Theatre. ... 59
Figura 43. Aplicació TMPGEnc 4.0 Express.. 60
Figura 44. Aplicació Movavi .. 60
Figura 45. Logo Seti@home. .. 61
Figura 46. Missatge on Movavi mostra l’habilitació de CUDA (només apareix
el primer cop que s’inicia l’aplicació). ... 67
Figura 47. Imatge menú superior aplicació Movavi. 67
Figura 50. Botó afegir arxiu. ... 68
Figura 48. Finestra de preferències on la GPU està deshabilitat 68
Figura 49. Finestra de preferències on la GPU està habilitada 68
Figura 53. Botó convertir. .. 69
Figura 51. Selector de formats amb la opció de CUDA deshabilitada. 69
Figura 52. Selector de formats amb la opció de CUDA habilitada. 69
Figura 54. Figura 54. Menú superior vReveal. 70
Figura 55. Vista de les opcions que ofereix vReveal per als arxius. 71
Figura 56. Millores que ofereix vReveal per als arxius importats. 71
Figura 57.Opcions per guardar el nou arxiu. ... 72
Figura 58. Inici del procés de millora d’un arxiu amb el suport GPU activat.
 ... 72
Figura 59. Fi del procés de millora d’un arxiu amb el suport GPU desactivat.
 ... 72
Figura 60. Logo eclipse Helios. ... 74
Figura 61. Icona eclipse.exe ... 74
Figura 62. Imatge menú superior eclipse per crear un nou projecte. 75
Figura 63. Finestra per la creació d’un nou projecte d’eclipse. 75
Figura 64. Imatge dels arxius importats amb errors. 76
Figura 65. Imatge de la selecció de propietats del projecte. 76
Figura 66. Finestra propietats del projecte (pestanya llibreries). 77
Figura 67. Botó afegir llibreries jar. ... 77
Figura 68. Llibreria msms.jar afegida al projecte................................... 78
Figura 69. Codi font importat correctament. ... 78
Figura 70. Símbol del sistema (Command prompt en anglès). 79
Figura 71. Contingut del fitxer “ms 20 10000000 –t 50.txt” 82
Figura 72. Logo chronon. ... 82
Figura 73. Botó per enregistrar l’execució. ... 83
Figura 74. Botó de càrrega d’execucions guardades. 83
Figura 75. Botó perspectiva chronon. .. 83

Avaluació de la tecnologia de les GPUs UAB-2011

Figura 76. Fletxes de la perspeciva chronon. .. 84
Figura 77. Barra de temps transcorregut. .. 84
Figura 78. Vista de la línea de codi que s’està executant 85
Figura 79. Arbre execució msms. .. 86
Figura 80. Exemple codi msms on es realitza una suma. 86
Figura 81. Exemple codi msms on es realitza una divisió. 87
Figura 82. Comparació de l’execució de un programa amb CUDA , utilitzant
una GPU de 2 nuclis (a l’esquerra) o una de 4 nuclis (a la dreta). 89
Figura 83. Descripció de les tasques realitzades durant el projecte. 90
Figura 84. Diagrama de Gannt al finalitzar el projecte. 91

Avaluació de la tecnologia de les GPUs UAB-2011

1

CAPÍTOL I: INTRODUCCIÓ

CAPÍTOL I: INTRODUCCIÓ

En els últims anys el maquinari i el programari han evolucionat molt

ràpidament, permetent crear i executar aplicacions que temps enrere eren

impensables. Cada cop s’estan utilitzant amb més freqüència programes

dedicats a estudis científics, alguns d’ells realment complexos i amb una

gran càrrega de còmput. Molts investigadors que executen aquest tipus de

programes busquen la manera de reduir el temps d’execució i com poder fer

anar l’aplicació més ràpid. En aquest projecte veurem una possible solució.

1. Motivació

La motivació de dur a terme aquest projecte es va iniciar des del CRAG

(Centre de Recerca en Agrigenòmica). Un grup d’investigadors del centre

utilitzen, en el seu àmbit laboral diari, un programa dedicat al càlcul de

simulacions coalescents de poblacions estructurades anomenat msms, el

qual dedica la major part de la seva execució a fer iteracions amb els valors

de les dades d’entrada per a poder generar, finalment com a valor de

sortida, un estadístic que el nostres investigadors faran servir per continuar

amb el seu treball.

Es defineix la coalescència com les relacions d’herència entre dos al�lels, on

cada un és cadascuna de les variants en que es pot trobar un gen dins d’un

cromosoma. Aquest model de genètica fa un seguiment de tots els al�lels

d’un gen compartit per tots els membres d’una població, a una còpia

ancestral, provocant així un gran cost computacional per poder realitzar

simulacions. Conseqüentment l’execució del programa per realitzar

simulacions a gran escala desemboca a temps d’execució molt elevats, per

tant existeix una necessitat de reduir aquest temps de càlcul i és aquí on

apareix per primer cop el terme de GPU, un processador gràfic que pot ser

utilitzat per intentar reduir el temps de còmput en càlculs massius.

La GPU (Graphics Processing Unit / Unitat de Processament Gràfic) és un

processador dedicat al processament de gràfics i operacions en coma

flotant, usat per alleujar la càrrega de treball del processador central en

aplicacions com videojocs o aplicacions 3D. Algunes de les seves

Avaluació de la tecnologia de les GPUs UAB-2011

2

CAPÍTOL I: INTRODUCCIÓ

característiques són el gran paral�lelisme que proporcionen les múltiples

unitats de còmput disponibles i l’optimització de càlculs en coma flotant, les

quals es consideren molt atractives per el seu ús en aplicacions fora de

l’àmbit gràfic, especialment en el àmbit científic i de simulació.

Dins de l’àmbit de les GPU han aparegut recentment noves solucions com

OpenCL, ATI Stream o CUDA, que són infraestructures compostes de

biblioteques, compiladors i llenguatges que permeten pensar en la

programació de propòsit general (no només en tema de gràfics) fent servir

les GPU en lloc de la CPU.

Fins no fa molt temps, abans de l’aparició d’aquestes solucions, l’objectiu de

les GPUs era facilitar la programació de petits blocs de codi que apliquen un

determinat procés als vèrtex de la geometria (vèrtex shaders) i als píxels

resultants (píxel shaders). Amb aquestes noves eines es pot aprofitar tota

la potència de la GPU ja que són capaces d’explotar el gran nivell de

paral�lelismes de què disposen els dispositius.

2. Context

Els microprocessadors basats en una única unitat de procés (CPU) han

incrementat el rendiment de les aplicacions durant dècades fins l’actualitat.

Aquests microprocessadors assolien varis GFLOPS (giga flops, FLoating

point OPerations per Second) de còmput en els equips domèstics i

centenars de GFLOPS en servidors en clúster.

Aquest incessant augment del rendiment ha permès que les aplicacions

desenvolupin moltes més funcionalitats i, al mateix temps, ha augmentat la

demanda de noves millores a mesura que els usuaris s’han anat acostumant

a les últimes tecnologies.

Durant aquesta etapa les millores de rendiment s’obtenien bàsicament

augmentant la rapidesa en que el maquinari podia executar el programari,

així cada nova generació de microprocessadors executava el mateix

programari més ràpid que el seu antecessor. No obstant, aquest model

d’evolució del maquinari es va veure frenat a principis del segle XXI ja que,

per diferents motius, la freqüència del rellotge de la CPU no es va poder

Avaluació de la tecnologia de les GPUs UAB-2011

3

CAPÍTOL I: INTRODUCCIÓ

continuar augmentant i com a conseqüència es va acabar en sec aquest

model d’evolució.

Aquest fet va motivar un canvi profund en el sistema del disseny dels

microprocessadors que tenien els fabricants, cosa que va causar l’aparició

de les CPU multi-core, les quals disposen de varies unitats de processament

dins del mateix xip.

Abans de l’aparició dels multi-core totes les aplicacions desenvolupades pels

programadors es basaven en un model seqüencial. El programa era

executat seqüencialment en un únic core i en cada nova generació de

processadors que apareixia al mercat, el programa s’executava més

ràpidament.

A partir de l’aparició dels multi-core els desenvolupadors de programari van

experimentar grans canvis en la programació, prioritzant així la

paralel�lització del codi intentat que diferents fils d’execució col�laborin

conjuntament per accelerar el programa. Tot això ha desembocat en el

massiu desenvolupament de programes en paral�lel, el que certes fonts

anomenen com la revolució del paral�lelisme.

Actualment, la gran majoria de microprocessadors es basen en

arquitectures paral�leles i les targetes gràfiques no en són una excepció. El

processador d’aquestes és anomenat GPU (Graphic Processing Unit) i

sempre ha estat lligat a les operacions de coma flotant. Justament les GPUs

van ser creades com a instrument per alliberar la CPU del renderitzat

(procés de complex càlcul que permet generar una imatge des d’un model),

però avui en dia ja s’estan utilitzant com a un coprocessador paral�lel per a

la CPU.

Una situació similar es va donar temps enrere amb el coprocessador

matemàtic, que tenia la funció d’alliberar al microprocessador de les

operacions matemàtiques. A principis de la dècada dels 80 els

microprocessadors de la família 8088 comptaven amb aquest coprocessador

com a un circuit de suport, però no va ser fins el 1989 amb l’aparició del

486 que no es va integrar el coprocessador dins del microprocessador.

Avaluació de la tecnologia de les GPUs UAB-2011

4

CAPÍTOL I: INTRODUCCIÓ

Figura 1. Comparativa GFLOPS entre GPU i CPU.

Com es pot apreciar en la figura 1, existeix una gran diferència de

rendiment entre les GPUs i les CPUs a l’hora de fer càlculs en coma flotant.

La diferència neix en que les GPUs estan dissenyades per a la computació

en paral�lel i per la computació intensiva, tema principal del renderitzat de

gràfics, a part de dedicar els transistors que componen el processador al

processament de dades en lloc de l’emmagatzematge de dades i el control

de flux que duen a terme les CPUs.

Les targetes gràfiques d’última generació s’han convertit en autèntics

supercomputadors a un preu relativament baix comparat amb una CPU.

Aprofitant els avantatges que ens ofereixen aquestes targetes, diversos

fabricants de processadors gràfics han optat per dissenyar alguns mètodes

per a poder programar sobre el seu maquinari. És el cas de nVidia, que ha

creat un conjunt d’eines de desenvolupament i una arquitectura basada en

el llenguatge C, anomenada CUDA (Compute Unified Device Architecture)

amb el propòsit de facilitar la programació de caràcter paral�lel per les

seves GPUs.

Aquestes tècniques de programar sobre la GPU aplicacions que fins ara es

destinaven a la CPU són anomenades GPGPU (General Purpose computation

on the GPU) i es basen en solucions com les que proporciona nVidia amb la

seva eina CUDA, que permeten transferir el codi que ha de ser executat al

processador principal cap a la GPU (figura 2).

Avaluació de la tecnologia de les GPUs UAB-2011

5

CAPÍTOL I: INTRODUCCIÓ

Tot això desemboca a la necessitat de re-inventar la forma de generar codi i

de re-interpretar el que ja està escrit, ja que ara s’ha de pensar en la

manera de paral�lelitzar l’execució per tal de que el codi convencional

esdevingui un codi en paral�lel i per a una execució concurrent.

3. Situació actual

Un dels programes que utilitzen els investigadors per a poder assolir els seu

objectius és el msms, un programa per a calcular estadístics a partir d’unes

certes dades introduïdes, que depenent del volum de dades introduïdes

augmenta exponencialment el seu temps d’execució.

El desig de qualsevol usuari final d’una aplicació és poder usar l’aplicació

fàcilment, que tingui una interfície amigable i que al demanar-li un resultat,

tardi el mínim temps possible. És evident que per fer un càlcul d’un

estadístic menor, el temps per assolir un resultat no és gaire elevat, però la

situació real és que per a poder fer un estadístic que s’aproximi a la realitat,

són necessàries moltes iteracions, per tant el temps en assolir el resultat

esperat es pot allargar molt.

Figura 2. Esquema bàsic de l’arquitectura d’un computador.

Avaluació de la tecnologia de les GPUs UAB-2011

6

CAPÍTOL I: INTRODUCCIÓ

4. Objectius del projecte

Per a la realització d’aquest projecte ens hem fixat un objectiu general per

indicar la finalitat i els punts que es pretenen assolir. El principal objectiu

del projecte és poder avaluar la recent tecnologia de les GPUs en l’àmbit

científic. D’aquesta manera podrem, un cop finalitzat el projecte, diferenciar

en quins casos podem aplicar aquesta tecnologia i ens quins no. També

podrem intuir el grau d’adaptació que podrien tenir diferents tipus

d’aplicacions i mostrar els beneficis d’utilitzar GPUs dins de l’àmbit científic.

Per poder assolir aquest objectiu hem seleccionat un conjunt d’eines de

desenvolupament que ens permetran codificar algoritmes en las GPUs del

fabricant nVidia. Aquest conjunt d’eines s’anomena CUDA (Compute Unified

Device Architecture) i intenta explotar tots els avantatges que tenen les

GPUs davant les CPUs utilitzant el paral�lelisme que ofereixen els múltiples

nuclis dels dispositius de nVidia.

Per altra banda, un altre objectiu de caire més particular és poder reduir el

temps d’execució de l’aplicació que fa servir el nostre investigador (msms)

utilitzant una GPU de nVidia i el conjunt de eines CUDA.

5. Proposta de solució

En el context actual tenim tot un ventall nou de possibilitats que ens

aporten les noves solucions per a les GPUs, les quals mitjançant diverses

eines permeten reduir el temps de còmput d’una execució enviant els

càlculs a la targeta gràfica en comptes del processador. Mitjançant aquestes

eines pretenem alliberar el processador de còmput, millorar en la mesura

del que sigui possible la velocitat d’execució dels programes basats en

càlculs en coma flotant i, a la vegada, poder assolir un nivell més alt de

paral�lelisme.

S’ha de tenir en compte que és molt costós generar una solució que aporti

beneficis generals a qualsevol aplicació. Algunes aplicacions estaran escrites

amb diferents llenguatges, cada aplicació tindrà moltes funcions diferents i

no totes les funcions són aptes per a ser executades en una GPU.

Avaluació de la tecnologia de les GPUs UAB-2011

7

CAPÍTOL I: INTRODUCCIÓ

Per generar una solució necessitem un cas més concret, necessitem trobar

una solució no tan general que ens permeti avaluar la tecnologia en

moments particulars, on aquesta desenvolupi les seves virtuts i tota la seva

potència i així poder extrapolar les nostres conclusions en casos similars.

Per això el nostre cas particular serà avaluar les noves tecnologies que

aporten les GPUs en el món de la ciència utilitzant el msms, ja que va ser

l’aplicació que va originar als investigadors la necessitat de buscar una

solució al seu problema.

Avaluació de la tecnologia de les GPUs UAB-2011

8

CAPÍTOL II: ESTUDI DE VIABILITAT

Avaluació de la tecnologia de les GPUs UAB-2011

9

CAPÍTOL II: ESTUDI DE VIABILITAT

CAPÍTOL II: ESTUDI DE VIABILITAT

L’estudi de viabilitat consta de les descripcions del cas general i el cas

específic que es tractarà els objectius del projecte, els requisits del sistema,

les seves restriccions i les diferents alternatives per donar solucions als

casos proposats. També trobarem la planificació del projecte i, finalment,

unes petites conclusions. L’objectiu d’estudiar aquests aspectes és per tant

determinar la viabilitat dels objectius descrits en el capítol de la

introducció.

1. Introducció

Per una banda, i com a cas més general, volem avaluar la tecnologia de

càlcul i de paral�lelisme basada en GPUs dins de l’àmbit científic, quins

beneficis aporta, si és aplicable en qualsevol àmbit i quines diferències

presenta la GPU de la CPU.

Per l’altre banda, i com a cas particular del projecte, es vol aplicar aquesta

tecnologia en un programa en concret, el msms, modificant el codi font i

fent les operacions que siguin necessàries per tal de que la part del

programa on hi hagi el major còmput de operacions, sigui executat per la

targeta gràfica en comptes de la CPU.

Per a poder entendre el que es vol dur a terme en aquest projecte, primer

recordarem i ampliarem què és el msms.

El msms és un programa de simulació coalescent. És capaç de modelar

l’estructura de la població i la demografia, i pot ser utilitzat per estudiar la

coalescència existent entre poblacions estructurades o adaptacions locals a

l’empremta genètica. Aquest procés el porta a terme construint un arbre

genealògic a partir de les fulles (o sigui construeix l’arbre al revés) i

mitjançant una sèrie de processos n’obté un estadístic.

Avaluació de la tecnologia de les GPUs UAB-2011

10

CAPÍTOL II: ESTUDI DE VIABILITAT

2. Tipologia i paraules clau

En la part principal del projecte es durà a terme un estudi sobre diferents

aplicacions que utilitzen les GPUs com a processador per realitzar la majoria

de còmput.

La part restant del projecte consisteix en adaptar un programa (el msms)

per a que aquest s’executi en la targeta gràfica, per tant el projecte té una

part de desenvolupament necessari per avaluar els sistemes. Per altra

banda, un cop el msms estigui adaptat per a aquesta nova funcionalitat, es

mostrarà la part de comparacions, comprovacions, i proves on s’hauran

d’avaluar els resultats obtinguts i l’eficàcia dels nous canvis. Aquesta part

del projecte serà de comparació.

Paraules clau escollides per a definir aquest projecte:

msms, GPU, CPU, CUDA, GPGPU.

Totes aquestes paraules estan explicades en l’apartat de definicions,

acrònims i abreviacions (annex I).

3. Descripció del cas general

La tècnica de fer servir les GPUs per a fer computació d’aplicacions

tradicionalment tractades per la CPU (GPGPU) ha anat en augment durant

els darrers anys.

La tecnologia GPGPU està prenent una gran importància en el món de la

programació degut a que incrementarà de manera significativa diversos

tipus de tasques que els usuaris utilitzen en el seu dia a dia, com per

exemple les conversions de àudio i vídeo, aplicacions gràfiques intensives o

en els jocs.

Encara que sigui un concepte relativament recent, ens centrarem en

estudiar les capacitats, avantatges i inconvenients que ofereixen les GPUs.

Avaluació de la tecnologia de les GPUs UAB-2011

11

CAPÍTOL II: ESTUDI DE VIABILITAT

4. Descripció del cas particular

El msms és un programa dedicat al càlcul a les simulacions coalescents de

poblacions estructurades. La funció que li donem en aquest projecte és la

de calcular un estadístic a partir d’unes mostres de DNA extretes de n

individus d’una mateixa espècie. La part d’investigació que duen a terme els

investigadors del CRAG es focalitza majoritàriament en l’obtenció

d’estadístics, per tant les mostres de DNA necessàries com a entrada de

dades del msms es creen automàticament. D’aquesta manera si es

necessita fer un estadístic de 1000 individus no farà falta tenir les mostres

d’aquests.

Mitjançant una sèrie d’iteracions es calcularà un estadístic sobre les

possibilitats que existeixen de que dos individus tinguin algun tipus de

llinatge.Com més aproximat a la realitat es vol aconseguir que sigui

l’estadístic, més iteracions requereix el msms per a poder calcular-lo.

Així doncs els investigadors per realitzar la seva feina han de fer el següent

cicle:

-Generar les mostres automàticament de DNA

-Esperar resultats

-Obtenir l’estadístic

Podem veure més gràficament en la següent figura 3 on cada color

representa una etapa d’aquest cicle respecte el temps.

-Generar les mostres al msms

-Esperar els resultats

-Obtenir el estadístic

Figura 3. Cicle respecte el temps.

Avaluació de la tecnologia de les GPUs UAB-2011

12

CAPÍTOL II: ESTUDI DE VIABILITAT

El problema principal que presenta és que per a poder fer un estadístic que

s’aproximi al màxim a la realitat és necessari fer moltes repeticions amb les

dades inicials de DNA que s’han generat automàticament. Si el nombre de

mostres és relativament gran i volem aproximar els resultats al màxim a la

realitat, el programa he de fer milions de iteracions i per tant, el temps

d’execució es dispara.

En definitiva, el problema que volem resoldre en aquest cas particular del

projecte és el de reduir el temps d’execució del programa msms quan hi ha

un gran nombre de iteracions a calcular.

5. Objectius del projecte

El que pretenem principalment amb aquest projecte és avaluar la tecnologia

que aporten les GPUs dins de l’àmbit científic mitjançant unes proves de

rendiment, les quals ens permetran valorar els beneficis, la dificultat, la

utilitat i ens quins casos ens surt a compte aplicar aquesta tecnologia. Dins

d’aquest objectiu, hi trobem un cas més específic, que es basarà en

traspassar l’execució del programa a la targeta gràfica utilitzant aquesta

tecnologia i al mateix temps minimitzant els costos per tal de que els

usuaris del msms vegin reduït el temps d’espera.

Tenim diferents alternatives per poder dur a terme aquesta tasca.

5.1 Objectius Generals

1. Estudiar la tecnologia GPGPU.

2. Estudiar les diferents possibilitats que existeixen per aplicar GPGPU.

3. Escollir una de les possibles opcions per realitzar les proves de

rendiment.

4. Realitzar les proves.

5. Avaluar els beneficis i inconvenients que apareixen.

Avaluació de la tecnologia de les GPUs UAB-2011

13

CAPÍTOL II: ESTUDI DE VIABILITAT

5.2 Objectius Específics

6. Familiarització amb el msms.

7. Calcular el temps que tarda el msms en fer x càlculs.

8. Estudiar com fer executar el programa en la targeta gràfica.

9. Familiarització amb la llibreria escollida.

10. Fer funcionar la llibreria seleccionada amb el msms.

11. Recalcular els temps d’execució del msms per x càlculs amb la llibreria

escollida i veure la millora.

12. Verificar que els resultats obtinguts són els esperats.

5.3 Prioritats

Objectius Crítics: 1,2,3,4

Objectius Prioritaris: 5,6,7,8

Objectius Secundaris: 9,10,11,12

6. Parts interessades

6.1 Investigadors del CRAG

Els investigadors són les persones que utilitzen el msms en el seu lloc de

treball.

6.2 Stakeholder

Jordi Mitjana: responsable del projecte. Supervisa la feina de l’analista, el

programador, el tècnic de proves i el director de projecte, a part de

marcar les pautes a seguir.

6.3 Supervisor

Gonzalo Vera: supervisarà el treball del responsable de projecte.

Avaluació de la tecnologia de les GPUs UAB-2011

14

CAPÍTOL II: ESTUDI DE VIABILITAT

7. Referències

Aquest projecte queda sota la normativa de projectes finals de carrera de la

UAB, la normativa de privacitat de dades.

1. Normativa de projectes d’enginyeria tècnica:

http://www.uab.cat/Document/639/153/normativaProjectesEEsabadell.pdf

2. LOPD:

https://www.agpd.es/portalweb/canaldocumentacion/legislacion/estatal/ind

ex-ides-idphp.php

3.nVidia:Normativa sobre les llicències de nVidia

http://www.nvidia.com/object/nv_swlicense.html

4.CUDA: Normativa sobre la llibreria i eines de CUDA

http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/cuda

prof_eula.pdf

8. Producte i documentació del projecte

El producte final serà la mateixa aplicació optimitzada de tal manera que, el

procés es calcularà en la GPU en comptes d’executar-se en la CPU.

Caldrà entregar una memòria on s’observi el canvi que s’ha produït en el

temps total de una mateixa execució, de tal manera que es puguin treure

unes conclusions que demostrin que el programa és més ràpid en la targeta

gràfica que en el processador.

9. Estudi del cas específic

El nostre investigador disposa d’un programari lliure (msms) que utilitza en

el seu àmbit professional diàriament. Aquest programari està dissenyat en

java i pot ser executat en un PC en qualsevol sistema operatiu que disposi

de una màquina virtual de java.

Avaluació de la tecnologia de les GPUs UAB-2011

15

CAPÍTOL II: ESTUDI DE VIABILITAT

9.1 msms

EL msms calcula estadístics que més tard l’usuari farà servir per continuar

amb el seu treball. Com més precisió i més aproximació a la realitat busca

l’usuari, més iteracions ha d’executar el programa i per tant serà necessari

més temps per donar els resultats (figura 4).

L’usuari busca reduir aquest temps d’espera de resultats, i al mateix temps

espera que la solució aportada no comporti una despesa econòmica molt

gran.

Aquest temps d’espera és degut a que el programa crea un arbre genealògic

a partir de les mostres generades de DNA. Aquestes mostres són el punt de

partida per començar a desenvolupar l’arbre, però no en són la base, sinó

les fulles.

Així doncs podem resumir que el msms crea un arbre genealògic a partir de

les mostres generades de DNA que seran les fulles d’aquest, i amb una

sèrie de iteracions el programa va recorrent generacions de l’arbre establint

llinatges, migracions i fins i tot mutacions entre els individus.

DNA DNA DNA DNA DNA DNA DNA DNA

Figura 4. Representació de l’arbre creat pel msms.

Avaluació de la tecnologia de les GPUs UAB-2011

16

CAPÍTOL II: ESTUDI DE VIABILITAT

9.2 Informació

Sabem que una GPU es capaç de realitzar càlculs sobre gràfics d’una forma

molt més ràpida que una CPU tot i tindre una menor freqüència de rellotge,

ja que està optimitzada per realitzar càlculs de valors en coma flotant

(usuals en entorns 3D) i tenen un alt nivell de paral�lelisme. Podem aplicar

aquestes funcionalitats de les GPUs per optimitzar la execució del msms.

9.3 Restriccions

L’aspecte econòmic és una de les principals restriccions. Busquem la millor

forma d’optimitzar el temps d’execució, però sense treure l’ull de sobre als

costos de la solució.

Una altre gran restricció és la disponibilitat dels recursos de maquinari de

que es disposin.

L’utilització d’alguna de les possibles llibreries (desenvolupades generalment

en llenguatge C) amb el programa msms (desenvolupada en llenguatge

Java) és una altre restricció important, on s’haurà de prestar atenció en la

comunicació que s’estableixi entre les dues parts.

10. Lògica del sistema

Figura 5. Representació de la lògica del sistema

Avaluació de la tecnologia de les GPUs UAB-2011

17

CAPÍTOL II: ESTUDI DE VIABILITAT

11. Descripció física

Figura 6. Descripció física del procés.

12. Usuaris i/o personal del sistema

El programa l’utilitzen els investigadors del CRAG, per tant són el usuari del

sistema, però podríem pensar que qualsevol persona que utilitzi aquest

programari podria ser un possible usuari.

El nostre usuari s’encarrega de la execució del programa, escollint totes les

variables inicials que necessiti per poder cercar el estadístic que li permetrà

continuar el desenvolupament del seu treball.

13. Diagnòstic del sistema

13.1 Deficiències

El principal inconvenient que presenta el msms, és el gran temps d’execució

del programa en el moment de cercar un estadístic que s’aproximi a la

realitat.

13.2 Millores

Intentar reduir el temps que l’usuari ha d’estar esperant els resultats.

Avaluació de la tecnologia de les GPUs UAB-2011

18

CAPÍTOL II: ESTUDI DE VIABILITAT

14. Requisits del sistema

14.1 Requisits funcionals

En aquest apartat llistarem els requisits que defineixen el comportament del

programari (càlculs, detall tècnics, manipulació de dades, i altres

funcionalitats que ens mostren com els casos d’ús es portaran a terme).

- Programació/adaptació del msms: S’haurà de buscar la manera d’adaptar

el msms a la tecnologia de les GPUs.

- Comunicació entre Java i C: Haurem de prestar atenció en el procés de

comunicació que s’establirà entre el programa msms (dissenyat en java) i la

llibreria decidida (dissenyada en C).

14.2 Requisits no funcionals

Els requisits no funcionals són tots els requisits que no descriuen les

funcions a realitzar (hi inclourem els requisits del maquinari).

- Necessitat d’un PC.

- Necessitat de que el PC disposi d’una GPU compatible amb alguna de les

llibreries que es poden utilitzar.

- Programari tant per l’avaluació de la tecnologia, com el de programació.

Més específicament aplicacions per a usuaris finals, llibreries i compiladors.

15. Restriccions del sistema

El nostre sistema ha d’estar adaptat a les següents restriccions:

- Els programes han de ser compatibles amb el sistema operatiu en què es

realitzaran les proves.

- La llibreria que utilitzarem està dissenyada en C, per tant s’haurà de

buscar la millor manera per poder establir una connexió entre el programa i

la targeta gràfica.

Avaluació de la tecnologia de les GPUs UAB-2011

19

CAPÍTOL II: ESTUDI DE VIABILITAT

- Per executar l’aplicació modificada i poder utilitzar la llibreria en C

escollida, necessitarem una targeta gràfica que sigui totalment compatible

amb aquesta.

16. Catalogació i priorització dels requisits

Requisits Funcional Essencial Condicional Opcional

Adaptació del msms Si x

Comunicació entre Java i C Si X

CPU amb targeta gràfica No X

Targeta gràfica compatible

amb la llibreria
No X

Programes compatibles SO No X

17. Alternatives al cas general i selecció de la solució

17.1 Alternativa 1

Una de les opcions per avaluar les GPUs per aplicacions d’àmbit general és

OpenCL, un estàndard obert i lliure per a la programació paral�lela de CPUs i

GPUs. Va ser creat inicialment per Apple qui encara posseeix els drets, però

actualment ho desenvolupa el grup Khronos.

17.2 Alternativa 2

CUDA és una altre possibilitat, està dissenyada per el fabricant nVidia per

donar un rendiment més òptim al seus productes.

17.3 Alternativa 3

El fabricant ATI (actualment fusionat amb AMD) també disposa de una

llibreria anomenada ATI Stream (o AMD Stream com es vol començar a dir

a partir d’ara), que també millora el rendiment de les seves GPUs

notablement.

Avaluació de la tecnologia de les GPUs UAB-2011

20

CAPÍTOL II: ESTUDI DE VIABILITAT

17.4 Solució proposada

La solució que es farà servir en aquest projecte, es durà a terme amb CUDA

a causa d’un requisit no funcional.

Es disposa de una targeta gràfica de la casa nVidia, concretament del model

GeForce 8400 GS totalment compatible amb CUDA, així doncs per una

restricció econòmica, s’utilitzarà el programari que proporciona nVidia per

les seves GPUs.

18. Alternatives al cas específic i selecció de la solució

18.1 Alternativa 1

Comprar ordinador amb més potencia. Aquesta solució és la més ràpida en

quant a temps per a obtenir una solució, però la més cara econòmicament.

Tenir una màquina el doble de potent, que ens costarà el doble o més que

la màquina de que disposem, tampoc ens dóna cap garantia de poder

executar el programa el doble de ràpid.

18.2 Alternativa 2

Modificar el codi per millorar els colls d’ampolla i intentar paral�lelitzar.

Aquesta solució és la més econòmica en quan a comprar maquinari nou es

refereix, però al mateix temps és la més costosa en temps ja que s’hauria

d’estudiar tot el codi per tal de trobar els colls d’ampolla i intentar eliminar-

ne tots els possibles. En el cas de tenir disponible un processador amb

doble nucli, s’hauria d’intentar paral�lelitzar totes les tasques que no tinguin

dependència entre elles.

18.3 Alternativa 3

Implantar una llibreria en C per tal de que l’execució del programa es faci

en la GPU. Aquesta solució no té un alt cost econòmic, però te un cost

moderat de programació. Afegint la llibreria CUDA podrem tenir un

processador de operacions en coma flotant amb molta més disponibilitat

Avaluació de la tecnologia de les GPUs UAB-2011

21

CAPÍTOL II: ESTUDI DE VIABILITAT

que la CPU per a fer els càlculs i poder paral�lelitzar tasques. La diferència

existent entre aquesta proposta i la anterior és el retorn de la inversió,

degut a que si arriba a funcionar la millora de rendiment podria ser molt

elevada.

19. Solució proposada

La solució més adient per el nostre cas és l’alternativa 3, implementar la

llibreria en C CUDA per executar el programa des de la GPU.

Aquesta és la solució escollida perquè a part del temps d’execució, hem de

tenir en compte el cost de la solució, i en aquest cas, comprant només una

targeta gràfica compatible amb la llibreria CUDA n’hi hauria prou.

En quant al temps, les GPUs estan dedicades als càlculs amb valors en

coma flotant, i al mateix temps, permeten una gran paral�lelització, cosa

que podria augmentar notablement el rendiment, més inclús que

optimitzant el codi.

Aquestes dues funcionalitats ens fan pensar que és la millor solució per a

resoldre el problema plantejat.

20. Planificació

En la planificació veurem els recursos humans i materials assignats a cada

tasca, les fases del projecte.

20.1 Recursos del projecte

Recursos humans Remuneració

Director de projecte 100 €/h

Cap de projecte 60 €/h

Analista 45 €/h

Programador 30 €/h

Avaluació de la tecnologia de les GPUs UAB-2011

22

CAPÍTOL II: ESTUDI DE VIABILITAT

El valor del programa msms és 0 € perquè és programari lliure, però encara

que en el apartat econòmic no faci variar el resultat és un recurs principal

del projecte i cal ser esmentat.

20.2 Fases i activitats del projecte

Fases Descripció

Iniciació
Fase d’iniciació del projecte. Inclou les activitats de

definició del projecte, assignació i matriculació.

Planificació Inclou l’estudi de viabilitat i el pla de projecte.

Anàlisis i disseny Anàlisis dels requisits funcionals i no funcionals.

Desenvolupament Fase de desenvolupament de l’aplicació.

Test i proves
Fase de proves del sistema. Inclou test unitaris i

d’integració del programa en el nou entorn de treball.

Implantació L’aplicació modificada s’instal�la en el entorn de treball.

Generació de documents
Fase de documentació del projecte. Inclou manuals i

memòria del projecte.

Tancament del projecte
El director del projecte signa l’acceptació i tancament

del projecte.

Defensa del projecte Defensa del projecte davant la comissió.

20.3 Calendari de recursos

En el calendari de recursos distribuïm els recursos humans per a poder

realitzar totes les fases del projecte.

- Cap de projecte: Planificació, generació de documents, tancament i

defensa. Punts de control.

Recursos materials Cost

Ordinador 1000 €

msms 0 €

Targeta gràfica nVidia 50 €

Avaluació de la tecnologia de les GPUs UAB-2011

23

CAPÍTOL II: ESTUDI DE VIABILITAT

- Analista: Anàlisi i disseny, implantació i punts de control d’anàlisi,

disseny i desenvolupament.

- Programador: Disseny, desenvolupament i test. Parcialment en

l’implantació.

- Tècnic de proves: Fase de test.

Els recursos materials s’utilitzaran principalment en les fases de

desenvolupament, test i implantació.

20.4 Calendari del projecte:

La data d’inici del projecte es va establir per el dia 1 de febrer del 2011.

Tots els recursos humans hi treballaran fins a complir amb totes les

tasques, i està previst que s’acabi el dia 28 juny de 2011 amb un total de

unes 190 hores invertides aproximadament.

20.5 Quadre de tasques del projecte

Figura 7. Descripció de les tasques del projecte a realitzar.

Avaluació de la tecnologia de les GPUs UAB-2011

24

CAPÍTOL II: ESTUDI DE VIABILITAT

20.6 Dependències

Aquest projecte és gairebé tot lineal, no podem solapar la majoria de

tasques perquè moltes depenen de les anteriors com podem comprovar en

apartat anterior. No seria lògic començar a desenvolupar el cas específic

sense abans haver estudiat els beneficis que aporta CUDA i com és la millor

forma d’implementar-los, per exemple. Però si que podem anar avançant

per una altra banda mentre es duen a terme les proves de rendiment dels

programes. Per tant, en general no podem iniciar una nova fase fins a no

tenir assegurada la que estem duent a terme, excepte en determinats

moments.

20.7 Calendari temporal

En aquest apartat podem observar el diagrama de Gantt, on podem

observar clarament les dependències que hi ha entre cadascuna de les

activitats, quin recurs humà té assignat i quin interval de temps necessita

per ser desenvolupada.

Avaluació de la tecnologia de les GPUs UAB-2011

25

CAPÍTOL II: ESTUDI DE VIABILITAT

Figura 8. Calendari temporal de les tasques del projecte a realitzar.

Avaluació de la tecnologia de les GPUs UAB-2011

26

CAPÍTOL II: ESTUDI DE VIABILITAT

20.8 Llista de riscos

1-Planificació temporal optimista: pla de projecte. No s’acaba en la data

prevista, augmenten els recursos.

2- Manca alguna tasca necessària: pla de projecte. No es compleixen els

objectius del projecte.

3- Canvi de requisits: estudi de viabilitat, anàlisi. Endarreriment en els

desenvolupament i resultat.

4- Equip del projecte massa reduït: pla de projecte. Endarreriment en la

finalització del projecte, no es compleixen els objectius del projecte.

5- No es fa correctament la fase de test: desenvolupament, implantació.

Manca de qualitat, deficiències en l’operativa, insatisfacció usuaris, pèrdua

econòmica.

6- Incompliment d’alguna norma, reglament o legislació: en qualsevol fase.

No es compleixen els objectius, repercussions legals.

7- Abandonament del projecte abans de la finalització: en qualsevol fase.

Pèrdues econòmiques, frustració.

20.9 Catalogació de riscos

 Probabilitat Impacte

1 Alta Crític

2 Baixa Crític

3 Mitjana Crític

4 Baixa Crític

5 Mitjana Crític

6 Baixa Crític

7 Baixa Catastròfic

Avaluació de la tecnologia de les GPUs UAB-2011

27

CAPÍTOL II: ESTUDI DE VIABILITAT

20.10 Pla de contingència

En el pla de contingència establirem les pautes a seguir si per algun motiu

ens trobéssim davant d’algun dels riscos anteriors.

 Solució que caldria adaptar davant dels possibles riscos

1
Ajornar alguna funcionalitat, afrontar possibles pèrdues, fer una

assegurança.

2
Revisar el Pla de Projecte, modificar la planificació.

3
Renegociar amb el client, ajornar funcionalitat, modificar planificació

i pressupost.

4
Demanar un ajornament, negociar amb el client, afrontar pèrdues.

5

Dissenyar els test amb antel�lació, realitzar tests automàtics,

negociar contracte de manteniment, donar garanties, afrontar

pèrdues econòmiques.

6
Revisar les normes i legislació, consultar un expert, afrontar

possibles repercussions penals.

7 No té solució.

20.11 Estimació del cost

Aquí especificarem el cost aproximat del projecte

En total el projecte sumaria doncs uns 8.639 €. Però al tractar-se de un

projecte final de carrera tots els recursos humans faran la feina sense

cobrar, per tant el cost real del projecte és 0€.

Recurs humà Preu

Director de Projecte 322,00 €

Cap de projecte 1.978,00 €

Analista 5.698,00 €

Programador 641,00 €

Avaluació de la tecnologia de les GPUs UAB-2011

28

CAPÍTOL II: ESTUDI DE VIABILITAT

20.12 Resum anàlisi cost – benefici

Un cop el projecte s’hagi realitzat, no farà falta abonar res econòmicament,

per tant en l’aspecte econòmic no ens fa falta amortitzar les despeses del

projecte.

Per altra banda els possibles beneficis que es poden obtenir poden ser de

gran utilitat per els investigadors del CRAG, sobretot si el temps d’execució

es veu reduït.

21. Conclusions de l’estudi de viabilitat

Després de decidir les solucions òptimes per al nostre projecte, i avaluar-ne

la seva implantació, el seu cost, i les necessitats del usuari, podem

assegurar que la proposta que oferim al problema és la més adequada.

Un cop tinguem tot el procés realitzat, serà l’hora d’observar els resultats

obtinguts, fixant-nos en els canvis que s’han produït en el temps d’execució,

i podrem avaluar d’una forma molt clara la relació que hi haurà entre els

temps CUDA i els normals.

D’altra banda l’aspecte econòmic no representarà cap conflicte a l’hora de

tirar el projecte endavant, per tant una vegada realitzat el projecte podrem

afirmar quin és el benefici que aporten als usuaris les aplicacions GPGPU i

ens quins casos val la pena o no traspassar el còmput a la GPU.

Per totes aquestes raons podem concloure que el projecte és viable.

Avaluació de la tecnologia de les GPUs UAB-2011

29

CAPÍTOL III: ANÀLISI

CAPÍTOL III: ANÀLISI

1. Marc tecnològic

1.1 El Maquinari

Les targetes gràfiques que existeixen actualment al mercat estan

constituïdes per un conjunt de multiprocessadors i una capacitat de

memòria amb un accés molt ràpid. Tant el nombre de processadors com la

capacitat de memòria canvien depenent de cada model.

Fins fa poc temps l’esquema bàsic de les targetes gràfiques estava

constituït d’una memòria DRAM, que utilitzava cada processador (ALU) per

a realitzar els seus càlculs com podem veure en la figura 9:

Figura 9. Esquema bàsic d’una targeta gràfica.

L’aparició de les targetes de nova generació combinades amb les eines de

CUDA va significar un canvi de maquinari molt important, introduint així una

memòria cau dins de la GPU (emulant així una CPU) que permetria

compartir dades d’un processador a un altre (figura 10).

Avaluació de la tecnologia de les GPUs UAB-2011

30

CAPÍTOL III: ANÀLISI

Figura 10. Esquema d’una targeta gràfica actual.

Cada un d’aquets microprocessadors s’encarrega de processar els threads

(fils). El disseny intern dels microprocessadors és bastant similar en molts

models i són capaços de realitzar operacions de coma flotant com SQRT,

LOG o EXP, apart de comptar també amb una unitat de suma i multiplicació

(MAD).

La GPU està adequada per executar el mateix programa amb moltes dades

en paral�lel, d’aquesta manera el mateix programa s’executa per a cada

element i per això requereix un control menor de flux respecte les CPU

(figura 11). A més a més, la latència dels accessos a memòria es camufla

dins la intensitat dels càlculs d’operacions aritmètiques possibilitant

l’eliminació de grans memòries cau pels accessos a memòria.

Figura 11. La GPU està formada per moltes més ALUs que una CPU.

Avaluació de la tecnologia de les GPUs UAB-2011

31

CAPÍTOL III: ANÀLISI

El gran canvi de cau que hi ha en les dues arquitectures és degut a que la

CPU situa els fitxers amb més nombre d’accessos a la CAU, millorant així el

temps d’accés a aquests (la memòria cau és molt més ràpida que la RAM),

mentre que les GPUs no requereixen accedir als mateixos arxius un elevat

nombre de vegades, ja que les dades no es reutilitzen, i a més el accés a la

memòria gràfica és molt ràpid.

Per poder veure amb més detall el flux de les dades i les instruccions sobre

aquestes dins de la GPU, podem utilitzar la Taxonomia de Flynn. Michael J.

Flynn va desenvolupar una classificació de l’arquitectura dels computadors

al 1966 que encara avui ens permet distingir els nous sistemes disponibles.

Va definir com a flux d’instruccions al conjunt d’instruccions seqüencials que

són executades per un únic processador, i també va definir flux de dades

com a flux seqüencial de dades requerits pel flux d’instruccions.

Amb aquesta base va poder establir una classificació dels sistemes segons

els flux (figura 12).

Figura 12. Classificació sistemes segons Flynn.

SISD (Single Instruction Single Data streams): un computador seqüencial

que no explota el paral�lelisme ja sigui en les instruccions o en el flux de

dades.

SIMD (Single Instruction Multiple Data streams): un computador que

explota fluxos de dades múltiples contra un flux simple d’instruccions per

realitzar operacions que poden ser paral�lelitzades.

MISD (Multiple Instruction Single Data stream): instruccions múltiples que

operen en un flux de dades simple.

MIMD (Multiple Instructions, Multiple Data stream):processador o

processadors múltiples que executen simultàniament instruccions diferents

amb dades diferents.

Avaluació de la tecnologia de les GPUs UAB-2011

32

CAPÍTOL III: ANÀLISI

Així doncs els SISD (figura 13) es caracteritzen per tenir un únic flux

d’instruccions sobre un únic flux de dades, per tant s’executa una instrucció

d’un flux darrera una altre d’un altre flux i en qualsevol moment només

s’està executant una instrucció.

Figura 13. Esquema SISD.

Els sistemes SIMD (figura 14) són els utilitzats en les GPU i es basen en un

únic flux de instruccions que opera sobre varis flux de dades. El

processament és síncron, l’execució de les instruccions continua sent

sequencial i tots els elements realitzen la mateixa instrucció però sobre un

gran quantitat de dades diferents. Aquesta classificació és el origen de les

máquines paral�leles.

El funcionament és el següent: La unitat de control envia la mateixa

instrucció a totes les unitats de procés (ALU), i cada unitat opera sobre

dades diferents utilitzant la mateixa instrucció.

Figura 14. Esquema SIMD.

Avaluació de la tecnologia de les GPUs UAB-2011

33

CAPÍTOL III: ANÀLISI

Els sistemes MISD (figura 15) tenen múltiples instruccions que operen sobre

un únic flux de dades, però aquesta arquitectura és poc freqüent.

Figura 15. Esquema MISD.

El MIMD (figura 16) és una tècnica per obtenir paral�lelisme. Aquests

sistemes permeten intercalar fluxos d’instruccions de memòria asíncrona,

per tant, qualsevol processador pot executar diferents instruccions en

diferents dades. Aquest sistema és el que utilitzen tots els

microprocessadors x86.

Figura 16. Esquema MIMD.

Avaluació de la tecnologia de les GPUs UAB-2011

34

CAPÍTOL III: ANÀLISI

Per poder situar globalment la GPU podem veure l’esquema genèric de

l’arquitectura d’un ordinador que consta d’una targeta gràfica dedicada en la

figura 17. La CPU es comunica a través del Northbridge de la placa base

amb la memòria principal del sistema (RAM) i amb la ranura de la targeta

gràfica (actualment amb la ranura PCI Express).

Figura 17. Esquema genèric d’un ordinador. La fletxa indica on s’ubica la targeta

gràfica.

La GPU té la possibilitat de comunicar-se amb la memòria local que té

integrada en la mateixa targeta sense haver de compartir la memòria RAM

del sistema. Aquest fet és molt important a l’hora de veure les diferències

que sorgeixen en l’ample de banda dels càlculs.

Amb tot això podem veure que les GPU estan especialment dissenyades per

executar problemes que poden ser expressats com a computació de dades

en paral�lel amb un gran nombre d’operacions aritmètiques.

Avaluació de la tecnologia de les GPUs UAB-2011

35

CAPÍTOL III: ANÀLISI

Però no ha estat fins l’aparició de CUDA que no s’ha pogut desenvolupar el

terme de GPGPU a un gran nivell a causa de:

- La GPU només podia ser programada a través d’una API (Application

Programming Interface) gràfica específica per a cada model, cosa que

provocava tenir un grau elevat de coneixements de l’arquitectura utilitzada

en cada cas per a poder adaptar la targeta gràfica a una aplicació científica.

- Els programes que estaven en la GPU no tenien el suficient control per

poder escriure a la DRAM de la targeta gràfica d’una manera eficient.

- Alguns programes veien influït el seu rendiment a causa dels colls

d’ampolla sorgits a causa de l’ample de banda de la memòria DRAM.

Totes aquestes limitacions van poder ser sobrepassades gràcies a la

utilització de CUDA i les noves arquitectures emprades en les targetes

gràfiques.

1.2 GPGPU

En els últims anys, les vies d’investigació i desenvolupament de les

arquitectures de computació han anat canviant. Les velocitats dels rellotges

de la CPU van veure frenat el seu increment degut, principalment, als

problemes de dissipació de calor i consum.

Aquest fet va desencadenar un canvi en els principals fabricants de

processadors que van haver de canviar el sistema d’evolució d’anar

augmentant el número de cicles per segon, que havia durat dues dècades, a

desenvolupar processadors amb varis nuclis on la velocitat passava a un

segon terme i apareixia el paral�lelisme.

Però abans de que aquest canvi es produís a les CPUs, les targetes

gràfiques ja contaven amb processadors de varis nuclis, les GPUs.

GPGPU és un mot que fa referència a l’ús de la GPU com a un processador

de propòsit general. Tot i que les GPUs van ser dissenyades inicialment com

a uns processadors de suport de la CPU per alliberar-la del processament

gràfic, poden arribar a ser molt útils per a altres aplicacions, ja que es

comporten com a coprocessadors paral�lels, a nivell de dades, per la CPU.

Avaluació de la tecnologia de les GPUs UAB-2011

36

CAPÍTOL III: ANÀLISI

En l’actualitat les GPUs ja no s’utilitzen només per al processament gràfic, i

això és degut a que:

- Són uns processadors massius que poden superar àmpliament el

rendiment de les CPUs en aplicacions on es requereixin

paral�lelismes.

- Suporten dades de 32 i 64 bits.

- A partir de l’aparició de CUDA (en el cas de les GPU nVidia), el

model de programació és relativament flexible.

- Disposen d’un gran ample de banda per accedir a la memòria

(figura 18).

Figura 18. Ample de banda de les GPUs.

Avaluació de la tecnologia de les GPUs UAB-2011

37

CAPÍTOL III: ANÀLISI

2. Models de programació GPGPU

2.1 OpenGL

OpenGL (Open Graphics Library) és una especificació estàndard que defineix

un conjunt de funcions i el comportament exacte que aquestes han de tenir

per poder escriure aplicacions que produeixin gràfics 2D o 3D, en altres

paraules, una API (Application Program Interface) combinada amb un

llenguatge propi basat en C99 (una especificació del C). Disposa d’una

interfície multi plataforma que consisteix en més de 250 funcions diferents

(C/C++) que es poden utilitzar per dibuixar escenes tridimensionals

complexes a partir d’unes primitives geomètriques simples, tals com punts,

línies o triangles. Es podria considerar que OpenGL té la comesa de

transformar les dades d’una aplicació en alguna cosa que pugui ser

visualitzat. Aquest procés rep el nom de rendering.

OpenGL té dos propòsits essencials:

- Proporcionar al programador una API única per intentar amagar la

complexitat de les interfícies amb les diferents targetes gràfiques.

- Ocultar les diferents capacitats de les diverses plataformes

hardware, requerint que totes les implementacions suportin la

funcionalitat completa de l’OpenGL.

El funcionament bàsic de l’OpenGL (figura 20) consisteix en acceptar

primitives com línies, punts o polígons i convertir-les en píxels. OpenGL és

una API basada en procediments de baix nivell que requereix que el

programador dicti els passos necessaris per renderitzar una escena. Aquest

disseny de baix nivell requereix que els programadors coneguin en

profunditat la pipeline gràfica (una màquina d’estats que té com a entrada

les primitives, les processa i dóna com a sortida els píxels), però a canvi

permet molta llibertat per poder implementar algoritmes gràfics nous

(figura 19).

Avaluació de la tecnologia de les GPUs UAB-2011

38

CAPÍTOL III: ANÀLISI

Figura 19. Esquema del pipeline de openGL

Després de tot, el conjunt de funcions estàndard de OpenGL s’ha quedat

enrere comparat amb la gran evolució que hi ha hagut en el maquinari

gràfic. Per aquest motiu alguns fabricants han optat per desenvolupar les

seves pròpies extensions i així poder aprofitar al màxim les prestacions de

les seves targetes. (figura 20)

Figura 20. Esquema general d’OpenGL.

Avaluació de la tecnologia de les GPUs UAB-2011

39

CAPÍTOL III: ANÀLISI

2.2 CUDA

Dins del context de les GPGPU apareix CUDA, amb l’objectiu d’aprofitar la

potència dels dispositius de nVidia i poder processar en temps real

operacions en una CPU no serien viables.

Compute Unified Device Architecture són les sigles d’aquesta solució que fa

referència tant a un compilador com un seguit d’eines de desenvolupament

creades per el fabricant de targetes gràfiques nVidia que permeten utilitzar

una variant del llenguatge C per codificar algoritmes en les GPUs de nVidia.

CUDA intenta explotar els avantatges de les GPUs davant les CPUs de

propòsit general utilitzant el paral�lelisme que ofereixen els seus múltiples

nuclis, que permeten el llançament d’un altíssim nombre de fils simultanis.

Per això mateix, si una aplicació està dissenyada per utilitzar nombrosos fils

on cada un d’ells realitza una tasca independent, una GPU podrà oferir un

millor rendiment.

CUDA també intenta aprofitar el gran paral�lelisme i el gran ample de banda

de la memòria de las GPUs, en aplicacions que tenen un gran cost aritmètic

en comptes de realitzar nombrosos accessos a memòria (possible cas de

coll d’ampolla).

Abans de profunditzar amb el model de programació de CUDA, veurem les

diferents capes que la componen (figura 21). Aquests programari està basat

en:

- Una capa de controlador de maquinari.

- Una API i el seu runtime. Aquesta API és una extensió del

llenguatge C, cosa que fa que la corba d’aprenentatge sigui mínima.

- Dos llibreries matemàtiques d’alt nivell com CUFFT i CUBLAS.*

*CUFFT és una llibreria per fer la transformada ràpida de Fourier (FFT) i

CUBLAS és una llibreria que conté bona part de les funcionalitats de la

Avaluació de la tecnologia de les GPUs UAB-2011

40

CAPÍTOL III: ANÀLISI

llibreria BLAS (Basic Linear Algebra Subprograms) utilitzada per realitzar

operacions lineals bàsiques com multiplicació de vectors o matrius.

Figura 21. Jerarquia programari CUDA.

Aquest programari també permet un adreçament de caràcter general per la

memòria DRAM, cosa que afavoreix a la flexibilitat de la programació, en el

sentit que permet tant l’operació de repartir dades com la d’obtenir-ne

(figura 22), dit d’una altre manera, permet llegir i escriure dades en

qualsevol lloc de la DRAM (figura 23), igual que si de una CPU es tractés.

Avaluació de la tecnologia de les GPUs UAB-2011

41

CAPÍTOL III: ANÀLISI

Figura 22. Operacions de memòria obtenir (Gather, literalment reunir) i repartir

(scatter, literalment dispersió).

Figura 23. La memòria compartida proporciona les dades més a prop de les ALUs.

GPU 1

GPU 2

GPU

GPU

Avaluació de la tecnologia de les GPUs UAB-2011

42

CAPÍTOL III: ANÀLISI

Les nVidia Quadro 5010M, 4000M, 3000M, 2000M i 1000M són alguns dels

models que es beneficien de la memòria compartida.

Podríem doncs entendre CUDA com a un enllaç que ens permet fer un ús

òptim de les característiques bàsiques de les GPUs comentades

anteriorment a partir d’un llenguatge de programació d’alt nivell com és C.

2.2.1 Model de programació en CUDA

El primer que hem de diferenciar quan treballem amb CUDA és el host (nom

que pertany al conjunt de la memòria principal i la CPU) i el device (GPU i

memòria gràfica). La GPU només té accés a les dades que hi ha al

dispositiu, per això CUDA proporciona les funcions cudaMalloc (utilitzada

per reservar espai en el dispositiu) i CudaMemcpy (utilitzada per copiar

informació entre el host i el device de forma bidireccional).

Per a crear codi amb el programari CUDA s’ha de tindre en compte que

existeix una part del codi que s’executarà en la CPU i una altre part que

s’executarà en la GPU. Normalment la part executada en la GPU seran

funcions que s’anomenen kernel, que inicien N threads que s’executen de

forma paral�lela en N fils diferents. Un kernel es defineix fent servir la

declaració _global_ previ a les declaracions convencionals de C (com void,

int...). En la crida a la funció es defineix l’estructura dels threads mitjançant

la sintaxis <<<Grid,Bloc>>> on es pot configurar el tamany dels grids i

els blocs.

L’arquitectura jeràrquica que segueix CUDA és bàsicament:

- En el primer nivell trobem el grid (reixeta). Un grid és un conjunt

de blocs de fils. Disposem d’una variable anomenada gridDim que ens

indica la dimensió del nostre grid en nombre de blocs. Exemple:

gridDim.x

- En un segon nivell hi ha els blocs. Els blocs són un conjunt de fils i

també disposem de les variables blockDim, que ens donen la

dimensió del bloc en nombre de threads. Existeix una altre variable

Avaluació de la tecnologia de les GPUs UAB-2011

43

CAPÍTOL III: ANÀLISI

que ens mostra el direccionament del block dins del grid anomenada

blockIdx. Exemple: blockDim.y, blockIdx.y.

- En l’últim nivell hi trobem els threads que són la unitat mínima

d’execució i que també es poden direccionar, amb la variable

threadIdx, dins del bloc on es troben. Exemple: threadIdx.z

Per entendre més bé aquesta sintaxi cal saber que al executar un kernel es

crea un grid (reixeta) de blocs, i que cada bloc conté diversos threads (fils)

com podem veure en la figura 24.

Figura 24. Estructura de reixeta (grid), blocs i fils (threads).Dins la GPU hi poden

haver-hi diversos grids.

Avaluació de la tecnologia de les GPUs UAB-2011

44

CAPÍTOL III: ANÀLISI

__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

vecAdd<<<1, N>>>(A, B, C); // invocació del Kernel

}

Cada bloc i cada fil tenen un únic ID i estan identificats dins de cada grid

per les variables predefinides blockIdx (que pot ser 1D o 2D) i threadIdx

(que pot ser 1D, 2D i 3D).

Al kernel cal passar-li una sèrie de paràmetres de tipus dim3, on aquest és

una estructura (struct) de tres camps, on cada camp és assignat a una

coordenada (x,y,z) i fan referència al nombre de blocs per cada grid i al

nombre de threads per cada bloc.

El següent codi ajudarà a acabar d’il�lustrar aquesta informació. És un

exemple de la suma de dos vectors A i B de mida N i acaba guardant el

resultat en el vector C.

També podem veure en el següent codi el mateix exercici però sumant

matrius per poder veure com s’utilitzen les variables dimBlock.

Cada fil pot accedir a les dades des de diferents espais de memòria durant

la seva execució i cada un té la seva memòria privada local. Cada bloc de

threads (fils) té una memòria compartida visible per a tots els fils d’aquest,

__global__ void matAdd(float A[N][N], float B[N][N],float C[N][N])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];

}

int main()

{

dim3 dimBlock(16, 16);
dim3 dimGrid((N + dimBlock.x – 1) / dimBlock.x,(N + dimBlock.y – 1) / dimBlock.y);

matAdd<<<dimGrid, dimBlock>>>(A, B, C); // invocació del Kernel

}

Avaluació de la tecnologia de les GPUs UAB-2011

45

CAPÍTOL III: ANÀLISI

i tots els threads tenen accés a la mateixa memòria global (la memòria

gràfica) com es pot observar en la figura 25.

Figura 25. Jerarquia de la memòria.

Tal i com es pot veure en la figura 26, CUDA executa els fils sobre un

dispositiu (device) físicament separat i que opera com a coprocessador

d’ajuda al host, que estarà executant el programa en C, entenent així, que

els kernels s’executaran en la GPU i la resta del programa en la CPU.

CUDA assumeix que tant el host com el device mantenen la seva pròpia

DRAM, anomenada host memory i device memory respectivament.

Avaluació de la tecnologia de les GPUs UAB-2011

46

CAPÍTOL III: ANÀLISI

Figura 26. Exemple d’execució d’un programa. El codi s’executarà en sèrie en el

device mentre que en el host s’executarà en paral�lel.

Cal tenir en compte que l’arxiu on hi ha el kernel ha de ser d’extensió .cu,

ja que el codi és compilat per un compilador propi de CUDA (nvcc) que

genera un codi concret per la GPU (codi amb extensió .cubin). Així doncs

s’ha de vincular l’arxiu .cu en el codi principal en C per tal de que la crida al

kernel tingui efecte (figura 27). Recordem que CUDA és una extensió de C i

per tant permet definir les funcions (Kernels) en C.

Avaluació de la tecnologia de les GPUs UAB-2011

47

CAPÍTOL III: ANÀLISI

Figura 27. Exemple de crida un kernel.

Un kernel però, mai podrà retornar cap tipus que no sigui void (no retorna

res), no podrà ser una crida recursiva ni podrà tenir un nombre variable

d’arguments. En canvi existeixen diferents tipus de kernels que es poden

identificar fàcilment per la capçalera de la funció i que ens especifiquen en

quin lloc s’executa la funció i des d’on l’han invocat.

- Global kernels (_global_): són funcions cridades des del host, però

executades en el device.

- Device kernels (_device_): són funcions cridades des d’un mètode

device, i executades en el mateix device. Aquest tipus mai pot ser

cridat des del codi host.

- Host kernels (_host_): són funcions típiques de C, es criden i

s’executen en el host.

També existeixen uns altres qualificadors que serveixen per especificar la

localització en memòria en el dispositiu d’una variable.

- (_device_): la variable està en el dispositiu. Ha d’anar acompanyat d’algun

altre qualificador que indiqui la mida que ocupa en la memòria. En cas

contrari, la veriable està localitzada en la memòria global, té el temps de

vida d’una aplicació i és accessible des de tots els fils del grid.

- (_constant_): la variable està localitzada en la memòria cau del dispositiu,

té el temps de vida d’una aplicació i és accessible des de tots els fils del

grid.

- (_shared_): la variable resideix en l’espai de memòria compartida d’un

bloc de fils, té el temps de vida del bloc i només és accessible pel bloc.

En resum, el model d’execució de CUDA és el següent:

- Comença el programa i es fa la crida als kernels.

- Els kernels inicien els grids.

Avaluació de la tecnologia de les GPUs UAB-2011

48

CAPÍTOL III: ANÀLISI

- Un bloc de threads s’executa en un multiprocessador.

- Diversos fils poden residir concurrentment en un multiprocessador.

- Els registres es reparteixen entre tots els fils residents.

- La memòria compartida es reparteix per a tots els blocs de fils residents.

2.3 ATI stream software

La plataforma de desenvolupament ATI stream proporciona a l’usuari final i

als desenvolupadors de programari una suite d’eines per aprofitar la

potència dels processadors stream de ATI. Aquest programari està format

per:

- Un compilador per els arxius amb extensió dels dispositius ATI.

- Els drivers per els processadors stream del dispositiu (ATI Compute

Abstraction Layer o CAL).

- Eines per el rendiment de profiling (serveix per analitzar kernels).

- Llibreries optimitzades per el rendiment dels processadors.

Figura 28. Sistema ATI stream software.

La última generació de processadors stream de ATI són programats amb un

model de programació unificat de shader (ombrejat). Un llenguatge

ombrejat (a partir d’ara shader) pot ser compilat independentment, i són

Avaluació de la tecnologia de les GPUs UAB-2011

49

CAPÍTOL III: ANÀLISI

utilitzats bàsicament en operacions com la creació de efectes especials i per

a la realització de transformacions.

Com que les GPU realitzen moltes operacions d’aquest tipus, els

programadors utilitzen els llenguatges shader per a la creació d’instruccions

que les realitzin, però per dur-ho a terme, aquests llenguatges necessiten

enllaçar-se mitjançant una API.

El llenguatge que s’utilitza per a ATI és el GLSL (OpenGL Shading

Language). És un llenguatge d’alt nivell basat en C i va ser creat per donar

als desenvolupadors de programari un control més directe sobre el pipeline

de OpenGL.

Amb el tipus de programació shader conegut amb el nom de stream

computing, el arrays de dades d’entrada emmagatzemats en la memòria

són assignats a un número de processadors determinats amb nuclis SIMD,

cadascun dels quals executarà un kernel que proporcionarà un array de

sortida amb les dades ja operades que es guardarà altre cop en la memòria.

Cada instància del kernel quan s’executa dins d’un nucli del processador és

el que s’anomena un thread (figura 29).

Figura 29. Es mostra com un array (T) entra en un processador stream i és

assignat a un processador (thread Processor k) basat en SIMD (conté diversos

stream cores).

Avaluació de la tecnologia de les GPUs UAB-2011

50

CAPÍTOL III: ANÀLISI

En resum la API de CAL és ideal per als desenvolupadors sensibles al

rendiment, ja que redueix al mínim la sobrecàrrega de programari i

proporciona un control total sobre les característiques específiques del

maquinari que podria no estar disponible amb eines de alt nivell.

Figura 30. Jerarquia software ATI stream.

2.3.1 Model del sistema CAL (ATI Compute Abstraction Layer)

La CAL és una llibreria per un dispositiu que tingui una interfície de

processadors stream ATI, que permet als desenvolupadors de programari

interactuar amb els nuclis d’aquest tipus de processadors al nivell més baix

per poder optimitzar el rendiment, mantenint al màxim la compatibilitat.

CAL incorpora:

- Generació de codi específic per a cada dispositiu.

- Gestió de diferents dispositius i recursos.

- Càrrega i execució de kernels.

- Suport multi dispositius.

- Interoperabilitat entre APIs gràfiques 3D.

Avaluació de la tecnologia de les GPUs UAB-2011

51

CAPÍTOL III: ANÀLISI

Una aplicació CAL està composta de dues part ben diferenciades:

- Un programa que s’executa en el host del CPU (escrit en C o C++)

que és l’aplicació principal.

- Un programa executant-se en el processador stream anomenat

kernel.

La CPU executa la CAL en el host i controla els processadors stream

mitjançant comandes enviades a través de l’API de CAL. El processador

stream executa el kernel especificat per l’aplicació (figura 31).

Figura 31. Arquitectura sistema CAL.

La API de CAL exposa els processadors stream com a una varietat de

processadors de còmput del tipus SIMD. Aquests processadors executen el

kernel prèviament carregat. El kernel llegeix les dades d’entrada d’un o més

recursos d’entrada, realitza els càlculs i escriu el resultat en un o més

recursos de sortida (figura 32). La computació paral�lela s’invoca mitjançant

la creació d’una o més sortides i especificant el domini de l’execució per

aquesta sortida. A més el dispositiu conté un planificador que distribueix la

càrrega de treball dels processadors SIMD.

Avaluació de la tecnologia de les GPUs UAB-2011

52

CAPÍTOL III: ANÀLISI

Figura 32. Esquema de l’ execució del kernel.

Per entendre millor les execucions dels kernels veurem alguns exemples. El

primer és una suma de dos matrius.

El codi de la CPU és:

Podríem reescriure el codi per donar èmfasis a les operacions paral�leles de

dades i executar una part del programa en la GPU (la part del kernel).

void sum(float A[], float B[], float C[])

{

for(int i=0; i<n; i++)

{

for(int j=0; j<m; j++)

{

float a0 = A[i][j];f

loat b0 = B[i][j];

C[i][j] = a0 + b0;

}

}

}

float sum_kernel(int y, int x, float M0[], float M1[])

{

float a0 = M0[y][x];

float b0 = M1[y][x];

return a0 + b0;

}

void sum(float A[], float B[], float C[])

{

for(int i=0; i<n; i++)

{

for(int j=0; j<m; j++)

{

C[i][j] = sum_kernel(i, j, A, B);

}

}
}

Avaluació de la tecnologia de les GPUs UAB-2011

53

CAPÍTOL III: ANÀLISI

Encara que es paral�lelitzin càlculs, la CPU executa el codi igualment en

sèrie calculant per exemple el C [0] [0] abans que el C [0] [1], però hi ha

elements de C que poden ser calculats independentment els uns dels altres

en qualsevol ordre. Podem veure-ho més gràficament en la figura 33.

Figura 33. Execució del processador stream de l’exemple anterior.

Aquest altre exemple és el de la multiplicació de dues matrius (veure figura

34).

Figura 34. Recordatori multiplicació de dos matrius.

Avaluació de la tecnologia de les GPUs UAB-2011

54

CAPÍTOL III: ANÀLISI

El codi de la CPU és el següent:

El codi que pot ser executat en el kernel és el indicat en negreta. Així doncs

el codi reescrit quedaria de la següent manera:

Els kernels per aquest programari porten la terminació “.br” com a extensió

d’arxiu. Aquests kernels són compilats amb un compilador específic

anomenat Brook+ i tradueix els arxius .br a codi per els dispositius amb

processadors stream (figura 35).

void matmult(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

float total = 0;
for(int c=0; c<k; c++)
total += A[i][c] * B[c][j];
C[i][j] = total;

}
}

}

float matmult_kernel(int y, int x, int k, float M0[], float M1[])
{

float total = 0;
for(int c=0; c<k; c++)
{

total += M0[y][c] * M1[c][x];
}
return total;

}

void matmult(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

launch_thread{C[i][j] = matmult_kernel(i, j, k, A, B);}
}

}
sync_threads{}

}

Avaluació de la tecnologia de les GPUs UAB-2011

55

CAPÍTOL III: ANÀLISI

Figura 35. Diagrama de seqüència que seguiria un programa per ser executat amb

processadors stream.

3. Informació programari GPGPU

Un cop situats dins de les diferents opcions que hi ha per utilitzar les GPUs

com un processador de propòsit general, veurem com aquesta tecnologia

pot influir en la programació de les aplicacions que un usuari pot arribar a

fer servir en la seva vida quotidiana.

Moltes empreses de desenvolupament de programari han apostat per

introduir la potència de càlcul que aporten les GPUs en les seves aplicacions

per poder beneficiar-se de les millores de rendiment. Però realment

funcionen millor aquests programes? Que aporta realitzar els càlculs en les

GPUs?

Bé doncs, per poder donar solucions a aquestes preguntes analitzarem

diversos programes i quin és exactament el benefici que dóna aquesta

tecnologia.

Avaluació de la tecnologia de les GPUs UAB-2011

56

CAPÍTOL III: ANÀLISI

3.1 Vreveal

Vreveal és un programari que permet fer algunes modificacions i

correccions a arxius de vídeo digitals. Aquesta aplicació està dissenyada per

estabilitzar, netejar i millorar les imatges dels vídeos, això sí, els arxius que

ja tinguin una bona qualitat no podran ser millorats. Vreveal serveix doncs

per a vídeo aficionats, ja que aquests usuaris no disposen d’equips

professionals per filmar i per tant la qualitats dels vídeos podrà ser gairebé

sempre millorat en algun sentit.

Vreveal pot millorar la imatge comparant cuidadosament cada fotograma

amb els dos fotogrames adjacents (figura 36). Si el marc anterior o

posterior és millor que el marc que s’està examinant, l’aplicació fa les

modificacions necessàries al marc original permetent així il�luminar zones

molt fosques, combatre amb èxit la difamació i les fotos mogudes, així com

ajustar la nitidesa i el contrast.

Aquesta aplicació pot ser executada en qualsevol ordinador, no obstant, els

usuaris que disposin d’una targeta gràfica que suporti la tecnologia CUDA,

obtindran una gran millora de rendiment. Durant les proves, els

desenvolupadors de l’aplicació van remarcar que l’ utilització de la GPU

GeForce GTX280 millorava el rendiment del producte 5 vegades en

comparació de un processador Intel Core Duo E6600.

Figura 36. Exemple Vreveal.

Avaluació de la tecnologia de les GPUs UAB-2011

57

CAPÍTOL III: ANÀLISI

3.2 Badaboom

Badaboom és una aplicació de conversió o transcodificació de formats

multimèdia que agilitza la codificació dels vídeos per poder ser reproduïts en

un dispositiu portàtil. El procés de conversió pot ser accelerat enormement

si el programa és utilitzat en un ordinador on hi hagi una targeta gràfica

nVidia compatible amb CUDA. La majoria de programes similars fan la

conversió en la CPU, quedant així massa atrafegada per a qualsevol altre

procés que requereixi còmput, però Badaboom al executar la conversió en

la GPU deixa la CPU lliure per poder seguir utilitzant el PC mentre es realitza

la transcodificació.

Com que la principal característica de l’aplicació és deixar la CPU lliure

mentre es fa la conversió, el programa només pot funcionar si el PC disposa

d’una targeta nVidia compatible amb CUDA (figura 37).

Figura 37. Exemple de codificació amb Badaboom. (Mentre que amb Badaboom ja

s’hauria completat la codificació en la GPU, la CPU continuaria codificant el vídeo).

També es beneficien d’aquesta tecnologia programes amb molt més renom

com són:

Avaluació de la tecnologia de les GPUs UAB-2011

58

CAPÍTOL III: ANÀLISI

- Adobe Creative Suite CS4, on l’aplicació estrella es Photoshop.

CUDA permet realitzar operacions de zoom, panoràmic d’imatge,

composicions d’imatges 2D i 3D, moviment de imatges 3D i

conversió de colors a temps real (figura 38).

Figura 38. Aplicació Adobe Creative Suite.

- Suite Cyberlink PowerDirector 7, on CUDA i ATI stream

proporcionen una millor velocitat de previsualització i de

renderitzat en l’aplicació powerDVD, acceleren el reconeixement

facial en el programa MediaShow y PowerProducer es beneficia

d’uns processos de producció més ràpids (figura 39).

Figura 39. Aplicació Cyberlink PowerDirector.

Avaluació de la tecnologia de les GPUs UAB-2011

59

CAPÍTOL III: ANÀLISI

- Nero Move It, redueix el temps de conversió de contingut

multimèdia de vídeo fins a 5 vegades gràcies a CUDA (figura 40).

Figura 40. Comparació temps de conversió de un arxiu de vídeo.

Figura 41. Aplicació Nero Move It.

- ArcSoft Total Media Theatre té com a principal característica la

tecnologia d’ampliació de l’escala de resolució, reproduint així

arxius multimèdia de qualitat estàndard a una resolució pròxima a

la alta definició utilitzant ATI stream (figura 42).

Figura 42. Aplicació Total Media Theatre.

Avaluació de la tecnologia de les GPUs UAB-2011

60

CAPÍTOL III: ANÀLISI

- TMPGEnc 4.0 XPress que és un programari de codificació de vídeo

multi format que ha demostrat que fent servir CUDA aconsegueix

un augment de rendiment de les seves tasques de fins a un

446%, o expressat d’una altre manera, utilitzant CUDA tarda

menys de una quarta part (figura 43).

Figura 43. Aplicació TMPGEnc 4.0 Express.

- Movavi és un altre eina molt completa de conversió d’arxius de

vídeo que compta amb una llarga llista de diferents tipus d’arxius

compatibles. A part d’aquesta característica principal, l’aplicació

permet unir arxius de vídeo, extreure l’àudio d’un clip, copiar el

contingut d’un DVD al disc dur o capturar instantànies d’un fitxer.

Utilitza la tecnologia CUDA per a realitzar les conversions arribant

a augmentar la velocitat fins a 8 vegades segons el model de

targeta gràfica nVidia utilitzat.(figura 44)

Figura 44. Aplicació Movavi

Avaluació de la tecnologia de les GPUs UAB-2011

61

CAPÍTOL III: ANÀLISI

I també trobem programes més peculiars com SETI@home, una aplicació

lliure que consisteix en el processament de senyals de radio per buscar una

proba de que existeix intel�ligència extraterrestre. Qualsevol usuari es pot

descarregar aquesta aplicació i entrarà a formar part de la xarxa de BOINC

(Berkeley Open Infrastructure for Network Computing) en la qual

SETI@home utilitzarà part de la potència del PC, espai del disc dur i ample

de banda format així el que es podria anomenar un supercomputador, que

amb els usuaris que hi ha actualment, té un rendiment mig de més de 2

petaFLOPS.

Figura 45. Logo Seti@home.

Després d’analitzar tots els avantatges que aporten les GPU al programari,

és el moment de veure quins requisits són necessaris per continuar amb el

projecte.

4. Requisits

4.1 Funcionals

Un requisit funcional és una característica requerida de la qual se sap que

serà satisfeta mitjançant una addició d’un subsistema o un bloc de codi en

el programari, en altres paraules, un requisit que denota la funcionalitat del

sistema.

- Avaluar el programari. El principal requisit funcional serà veure les

diferències entre el mateix programari executat en la CPU i

executat en la GPU.

4.2 No funcionals

Anomenarem requisit no funcional a totes les exigències de qualitats que

s’imposen al projecte, exigències com fer servir un cert llenguatge de

Avaluació de la tecnologia de les GPUs UAB-2011

62

CAPÍTOL III: ANÀLISI

programació o plataforma tecnològica, o dit en altres paraules és un requisit

que no podem satisfer afegint codi, per tant és una restricció.

Al tractar-se d’un projecte bastant específic, hi ha bastants restriccions.

- PC. El primer que necessitem és un PC per a poder testejar diferent

programari i poder avaluar el rendiment d’aquest.

- GPU. El PC ha de disposar d’una targeta gràfica per poder fer les

proves en la GPU, sinó no tindria sentit continuar el projecte.

- GPU compatible. La targeta gràfica ha de ser compatible amb la

tecnologia d’utilitzar la GPU per a GPGPU, ja sigui utilitzant CUDA de

nVidia o ATI stream d’ATI.

- Programari GPU de nVidia o ATI. Serà necessari disposar del

programari proporcionat per el fabricant de la GPU per poder

executar les proves en la targeta gràfica.

- Programari per programar. També es necessitarà un programa per

poder fer modificacions en el codi font dels programes.

- Programari per avaluar. Tots els requisits anteriors no servirien de

res si no hi hagués alguna aplicació a avaluar.

Avaluació de la tecnologia de les GPUs UAB-2011

63

CAPÍTOL IV: DISSENY

CAPÍTOL IV: DISSENY

Aquesta part del projecte està dedicada a la realització de les proves

d’avaluació. Primerament es descriurà el procediment que es durà a terme

fent un anàlisis dels requeriments funcionals i no funcionals. Més endavant

a l’apartat de proves, es realitzaran tests amb diferents programes per

veure les diferencies que existeixen entre utilitzar CUDA o no, els beneficis

que aporta i una petita conclusió de cada apartat.

1. Requisits funcionals

El requisit funcional principal és de quina manera es podrà realitzar la

connexió entre el codi en java del msms i la GPU, sabent que la interfície

que hem d’utilitzar és CUDA , i aquesta no té suport per a java.

Per solucionar aquesta tasca, necessitem fer un binding de la biblioteca

CUDA. Un binding és una lligadura o una referència a un altre símbol més

complicat i que ha de ser usat freqüentment. En aquest cas el binding que

hem de dur a terme serà una adaptació d’una biblioteca (CUDA, escrit en C)

per a que es pugui fer servir en un llenguatge de programació diferent al

que ha estat escrit (msms, escrit en java).

Existeixen eines que solucionen aquests problemes com JCUDA, JaCuda o

Jacuzzi, però nosaltres ens decantarem per JCUDA, ja que és la més

emprada per els desenvolupadors.

JCUDA és una llibreria de la biblioteca CUDA per poder ser usada en java.

Per exemple té la possibilitat de comunicar-se amb les llibreries CUBLAS i

CUFFT entre d’altres.

Per poder utilitzar JCUDA només ens hem de descarregar els fitxers des de

la seva pàgina web (http://www.jcuda.org/) i incloure’ls en el projecte. En

la web podem trobar ja fetes les implementacions d’algunes de les llibreries

més utilitzades de CUDA i bastant exemples per poder entendre el

funcionament d’aquestes.

Com que una de les coses que busquem és transferir les operacions de

molta càrrega de còmput a la GPU, no podem utilitzar aquestes llibreries ja

Avaluació de la tecnologia de les GPUs UAB-2011

64

CAPÍTOL IV: DISSENY

implementades, sinó que hem de crear un kernel propi que executi aquesta

càrrega en la GPU. Així doncs hem de localitzar en quines operacions el

programa requereix de més temps i crear un kernel que pugui ser enviat

mitjançant CUDA a la GPU.

Per l’operació que busquem el sin(cos(tang(x))) on x és el valor de cada

posició de un vector tindríem l’estructura següent:

Aquesta part del codi s’haurà de reescriure en un kernel com aquest, que

estarà en un fitxer apart amb extensió .cu.

__global__ void CalculsSolucio(float* input, float *output, int n)
{
 int i = threadIdx.x;
 output[i] = sin(cos(tan(input[i])));
}

I on hi havia el codi inicial, haurem de realitzar la crida al kernel que hem

escrit, i encara que no estigui escrit en java, gràcies a JCUDA la crida podrà

ser realitzada.

2. Requisits no funcionals

El primer pas és avaluar els requisits no funcionals per començar a

dissenyar un pla d’acció.

1. private void Solució (float input [] , float output [])
2. {
3. for (int i =0; i <input. length ; i ++)
4. {
5. output [i] = (float) Math . sin (Math . cos (Math . tan (input [i]))) ;
6. }
7. }

1. private void CalculsSolucioCUDA (float input [] , float output [])
2. {
3. copyMemoryToDevice () ;
4. computeSolutionKernelLauncher. call (deviceInput, deviceOutput, n) ;
5. copyMemoryToHost () ;
6. }

Avaluació de la tecnologia de les GPUs UAB-2011

65

CAPÍTOL IV: DISSENY

1- PC. Disposem d’un PC per realitzar tests al programari. El PC està

format per una CPU Intel Core 2 Quad 6600 a 2.4GHz i 2GB de RAM.

2- GPU .El PC disposa d’una targeta gràfica.

3- GPU compatible. Podem saber si la nostre gràfica és compatible

mirant si el model del que disposem està en la llista que hi ha en

l’ enllaç següent (http://www.nvidia.es/object/cuda_gpus_es.html) si

és nVidia, o fixant-nos si el nostre model de ATI és superior al model

HD 4000. Casualment es disposa d’una nVidia GeForce 8400GS que

apareix a la llista i és totalment compatible amb CUDA, així doncs

queda automàticament descartat utilitzar algun element de la casa

ATI en aquest projecte per un tema purament de cost.

La GeForce 8400GS disposa de 512 MB de memòria gràfica dedicada i

la freqüència del nucli és de 450 MHz.

4- Programari GPU. Programari necessari pel funcionament de CUDA

disponible gratuïtament a la web de nVidia.

5- Programari per programar recomanat per nVidia. Serà necessària

l’aplicació Microsoft Visual Studio 2008 per a la compilació de les

proves que es realitzin amb CUDA, i l’aplicació Eclipse, un entorn

integrat de desenvolupament de codi obert per desenvolupar

projectes.

6- Programari per avaluar. Es vol avaluar el rendiment i el benefici que

aporta CUDA en el mateix programa i intentar aplicar aquesta

tecnologia a algun programa que no ho incorpora. Realitzarem la

tasca d’avaluació amb algun dels programes esmentats en l’anàlisi, i

intentarem aportar aquesta tecnologia al msms.

Com que es compleixen tots els requisits no funcionals, podem continuar

endavant amb el projecte.

3. Proves

Per poder realitzar les proves, és necessari tenir instal�lat una sèrie de

programari per tal de que CUDA funcioni correctament.

La primera aplicació a instal�lar ha de ser Microsoft Visual Studio 2008.

Aquesta aplicació serà necessària per que un cop creat el fitxer que conté el

Avaluació de la tecnologia de les GPUs UAB-2011

66

CAPÍTOL IV: DISSENY

codi que no serà executat en la GPU, es compili amb el compilador que

porta incorporat el Visual i es creï un fitxer apte per ser executat en la CPU.

Al ser estudiant de la UAB podem accedir al repositori de Microsoft i

descarregar-nos l’aplicació amb la llicència d’estudiant.

El segon pas és instal�lar l’últim driver de nVidia. El driver és el que permet

accedir a totes les característiques de la targeta nVidia, inclòs el suport de

CUDA.

El tercer pas és instal�lar el CUDA toolkit, que és un conjunt d’eines de

desenvolupament, llibreries i documentació que es necessiten per crear

aplicacions per l’arquitectura CUDA i és el que més tard ens permetrà

compilar els programes CUDA (recordem: NomDelFitxer.cu). Aquest toolkit

inclou:

- Compilador CUDA C/C++.

- GPU Debugging i eines profiling.

- Llibreries matemàtiques accelerades per GPU.

- Primitives accelerades de rendiment per GPU.

El quart pas és totalment opcional, però molt recomanable. Es poden

descarregar una sèrie d’exemples anomenats SDK code examples que són

útils per veure des de codis senzills fins a més complexos, i així començar a

introduir-se en CUDA.

El cinquè pas és també opcional i requereix haver descarregat el paquet

SDK code examples, però també és força recomanable. Es tracta de

comprovar que tot el procés d’instal�lació ha anat correctament compilant

un exemple dels que hi ha al paquet SDK amb el Visual Studio. Si la

compilació no retorna cap error, la instal�lació és correcte.

Si s’ha seguit aquest ordre no ha d’haver sorgit cap problema a l’hora de

compilar un exemple del SDK amb el Visual Studio. Si estava instal�lat el

toolkit de CUDA abans que el Visual, serà necessari afegir l’arxiu

“cuda.rules” situat en la carpeta on s’ha instal�lat CUDA al path del projecte

Avaluació de la tecnologia de les GPUs UAB-2011

67

CAPÍTOL IV: DISSENY

que es vol compilar. Un cop realitzats els passos anteriors, ja ens podem

disposar a avaluar diversos programes.

3.1 Movavi

Per avaluar l’aplicació Movavi, s’han realitzar diverses proves de conversió

de format a partir de 5 arxius de vídeo de diferents mides.

Un cop realitzada la instal�lació, Movavi automàticament detecta si hi ha

alguna GPU compatible amb CUDA i l’habilita per defecte (figura 46).

Figura 46. Missatge on Movavi mostra l’habilitació de CUDA (només apareix el

primer cop que s’inicia l’aplicació).

Per poder realitzar les proves comparant els resultats de l’utilització de

CUDA, hem hagut de deshabilitar la opció d’acceleració de la GPU, accedint-

hi des de la pestanya “editar” del menú principal i entrant a “preferencias”

(figura 47).

Figura 47. Imatge menú superior aplicació Movavi.

Avaluació de la tecnologia de les GPUs UAB-2011

68

CAPÍTOL IV: DISSENY

En la finestra de “preferencias” hem desmarcat la opció “habilitar

acceleración de GPU nVidia” (figures 48 i 49).

Un cop establerta la forma per habilitar i deshabilitar CUDA, hem importat

un per un els vídeos per avaluar-los individualment mitjançant el botó

d’afegir arxius (figura 50).

Figura 50. Botó afegir arxiu.

Figura 48. Finestra de preferències on la GPU

està deshabilitat

Figura 49. Finestra de preferències on la GPU

està habilitada

Avaluació de la tecnologia de les GPUs UAB-2011

69

CAPÍTOL IV: DISSENY

Per seleccionar el format en que volem que transformi l’arxiu, ens hem de

dirigir a la part inferior del programa, on apareix un selector per poder

escollir quin format volem. El formats aptes per a la utilització de CUDA

estan especificats (figures 51 i 52).

Un cop seleccionat el format, ja podem iniciar la conversió amb el botó

“Convertir” (figura 53).

Figura 53. Botó convertir.

A partir de totes les conversions realitzades hem elaborat la següent taula

per observar els resultats.

Mida de

l’arxiu de

vídeo

Conversió GPU

CUDA

Conversió CPU % de

millora

4,04 GB 32 min 46 min 43,7

2,34 GB 20 min 33 min 65,0

Figura 52. Selector de formats amb la

opció de CUDA habilitada.

Figura 51. Selector de formats amb la

opció de CUDA deshabilitada.

Avaluació de la tecnologia de les GPUs UAB-2011

70

CAPÍTOL IV: DISSENY

1,47 GB 17 min 30min 76,5

533 Mb 5 min 7 min 40,0

140 Mb 2 min 2 min 0,0

Com mostren les dades obtingudes, executar el programa amb la tecnologia

CUDA habilitada, redueix de forma considerable el temps de còmput. Aquest

canvi de temps de càlcul es pot apreciar en els arxius més grans, degut a

que per mides petites, es consumeix més temps en transferir el arxiu fins la

targeta gràfica que fer el càlcul en si.

Una altre dada important és que al executar el programa en la CPU,

l’ordinador queda bastant saturat, deixant-nos bastant limitades les accions

que podem fer si no volem que augmenti el temps. En canvi si el programa

és executat en la GPU, el ordinador està més alliberat i es pot utilitzar d’una

manera més àgil.

3.2 vReveal

Per avaluar vReveal, seguirem els mateixos passos que hem utilitzat en el

cas anterior. Per defecte després de la instal�lació també queda habilitada la

utilització de CUDA, així doncs per habilitar i deshabilitar la GPU haurem de

dirigir-nos a la pestanya “Herramientas” del menú, i des d’alla mateix

podem seleccionar-la o desseleccionar-la (figura 54).

Figura 54. Figura 54. Menú superior vReveal.

Per afegir els vídeos cal anar al botó “importar” i en aquest cas si que ja els

podem importar tots de cop, ja que la millora només es realitzarà als arxius

seleccionats. Per seleccionar les millores, fem click amb el botó dret del

ratolí i premem “mejorar” (figura 55).

Avaluació de la tecnologia de les GPUs UAB-2011

71

CAPÍTOL IV: DISSENY

Figura 55. Vista de les opcions que ofereix vReveal per als arxius.

Ens situem al menú de millores bàsiques per seleccionar quines millores

volem efectuar. Per realitzar aquest test s’han seleccionat totes les millores

possibles.

Figura 56. Millores que ofereix vReveal

per als arxius importats.

Avaluació de la tecnologia de les GPUs UAB-2011

72

CAPÍTOL IV: DISSENY

Per últim, un cop seleccionades les millores, només cal especificar en quin

lloc es guardarà el nou arxiu de vídeo millorat (figura 57).

Figura 57.Opcions per guardar el nou arxiu.

Ja només caldrà esperar a que es realitzi tot el procés (figures 58 i 59) .

Figura 58. Inici del procés de millora d’un arxiu amb

el suport GPU activat.

Figura 59. Fi del procés de millora d’un arxiu amb el

suport GPU desactivat.

Avaluació de la tecnologia de les GPUs UAB-2011

73

CAPÍTOL IV: DISSENY

Com en el cas anterior, hem elaborat una taula utilitzant els mateixos arxius

de vídeo per avaluar els resultats obtinguts.

Mida de l’arxiu

de vídeo

GPU CUDA CPU % de

millora

4.04 GB 2h 47 min 6h 24min 129,9

2,34 GB 1h 32 min 3h 56 min 156,5

1,47 GB 1h 15 min 3h 5 min 146,7

533 mb 19 min 52 min 173,7

140 mb 5 min 14 min 180,0

Com en el cas anterior, en la taula observem que CUDA influeix

positivament en el temps de còmput. També hem comprovat que mentre

s’executa l’aplicació amb CUDA habilitada, es pot seguir utilitzant el PC a un

nivell raonable, mentre que si no s’utilitza la GPU, cada moviment que es

realitzi en el PC, fa enrederir el temps de finalització de la tasca.

A diferència de movavi, el canvi en l’utilització de la GPU o no es nota des

del arxiu més petit fins al més gran, comprovant que en la taula de movavi

el arxiu de 140 MB casi no aportava benefici, i en canvi en aquesta de

vReveal existeix una diferència notable.

3.3 msms

Un cop vistes les millores que presenten els programes de vídeo que

utilitzen CUDA, procedim a intentar aplicar aquesta tecnologia a un

programa totalment diferent. Per continuar, és necessari saber què fa

exactament el programa per veure què podem executar en la GPU i què no.

El criteri que seguirem per avaluar el msms serà, en línies molt generals, el
següent:

- Executarem el programa normalment amb diferents entrades de

dades i mesurarem el temps que tarda en cada una de elles.

- S’estudiarà el comportament del programa, diferenciant les parts i

intentant entendre al màxim el codi font.

- Es faran les modificacions necessàries per poder executar la part de

càlcul a la GPU.

Avaluació de la tecnologia de les GPUs UAB-2011

74

CAPÍTOL IV: DISSENY

- Es compilarà de nou el programa per que pugui ser executat part

del codi en la GPU.

- Executarem altra vegada les mateixes entrades de dades que en el

primer apartat mesurant el temps.

- Analitzarem els resultats.

El primer que es necessita per començar és el codi font del programa msms

que el podem trobar de forma totalment gratuïta a la seva web

(http://www.mabs.at/ewing/msms/index.shtml). Necessitem també un

programa per poder veure, executar, modificar i fer diferents proves a

aquest codi, i utilitzarem per tot això l’aplicació eclipse que també és

totalment gratuït. Com que el codi del msms és java, descarregarem la

versió “Eclipse IDE for java EE developers”. La versió que s’utilitzarà durant

aquest projecte és l’anomenada Helios (figura 60).

Figura 60. Logo eclipse Helios.

L’eclipse no necessita ser instal�lat, per la seva execució només cal

descomprimir l’arxiu descarregat de la web, i buscar la icona

“eclipse.exe”(figura 61)

Figura 61. Icona eclipse.exe

Per poder obrir el codi font del msms hem de seguir els següents passos:

- Creem un nou projecte java (figura 62).

Avaluació de la tecnologia de les GPUs UAB-2011

75

CAPÍTOL IV: DISSENY

Figura 62. Imatge menú superior eclipse per crear un nou projecte.

- Adjudiquem un nom, en aquest cas msms, i especifiquem la ruta on

hi ha el codi font del msms (figura 63).

Figura 63. Finestra per la creació d’un nou projecte d’eclipse.

Avaluació de la tecnologia de les GPUs UAB-2011

76

CAPÍTOL IV: DISSENY

- Un cop premut el botó finalitzar ja haurem importat el codi font

(figura 64).

Figura 64. Imatge dels arxius importats amb errors.

- Veiem però que hi ha errors (creuetes vermelles, figura 64). Això és

degut a que falta una llibreria pel funcionament del programa. Per

adjuntar la llibreria hem d’anar a les propietats del projecte (figura

65).

Figura 65. Imatge de la selecció de

propietats del projecte.

Avaluació de la tecnologia de les GPUs UAB-2011

77

CAPÍTOL IV: DISSENY

- I en el apartat java build path, seleccionar la pestanya llibreries

(figura 66).

Figura 66. Finestra propietats del projecte (pestanya llibreries).

- I prémer el botó “add external JARs” (figura 67).

Figura 67. Botó afegir llibreries jar.

- Busquem l’arxiu msms.jar i l’afegim a les nostres llibreries (figura

68).

Avaluació de la tecnologia de les GPUs UAB-2011

78

CAPÍTOL IV: DISSENY

Figura 68. Llibreria msms.jar afegida al projecte.

 Ara ja si que el codi font està preparat per poder ser compilat (figura 69).

Figura 69. Codi font importat correctament.

Com que ja tenim el codi font per poder-nos familiaritzar amb el programa i

anar fent proves, podem anar duent a terme execucions del msms amb

diferents entrades de dades, mentre anem estudiant el codi.

Avaluació de la tecnologia de les GPUs UAB-2011

79

CAPÍTOL IV: DISSENY

3.4 Proves amb diferents entrades de dades

El msms al tractar-se de un programa en java, el podem executar des del

símbol del sistema (figura 70)

Figura 70. Símbol del sistema (Command prompt en anglès).

Per executar-lo només és necessari situar-se dins de la carpeta on està

situat el fitxer msms.jar i executar la següent comanda:

Java –jar msms.jar –ms valor1 valor2 –t valor3

Recordem que l’execució:

Java –jar msms.jar –ms N r –t l

Denota que N és el número d’individus, r el número de repliques i l el
número de llinatges.

Per poder mesurar el temps d’execució s’ha creat un fitxer .bat des del qual

es crida l’execució del fitxer msms.jar amb els valors que es vulguin

introduir, i crea un fitxer amb el dia i l’hora d’inici i fi de l’execució. Aquest

fitxer l’anomenarem exec.bat i s’executarà des del símbol del sistema amb

la comanda “exec.bat valor1 valor2 valor3”. El exec.bat conté el següent

codi:

echo %date% > "ms %1 %2 -t %3".txt

echo %time% >> "ms %1 %2 -t %3".txt

echo.

java -jar msms.jar -ms %1 %2 -t %3 > dades.txt

echo.

echo %date% >> "ms %1 %2 -t %3".txt

echo %time% >> "ms %1 %2 -t %3".txt

Avaluació de la tecnologia de les GPUs UAB-2011

80

CAPÍTOL IV: DISSENY

La primera línia escriu el dia en que comença l’execució en un fitxer .txt que

s’anomenarà “ms primer_valor_introduït segon_valor_introduït –t

tercer_valor_introduït.txt”

La segona línia afegeix l’hora d’inici de l’execució al fitxer txt.

La tercera afegeix una línia en blanc al fitxer txt.

La quarta línea executa el msms.jar amb els valors introduïts i guarda el

resultat en un altre fitxer anomenat dades.txt que ens permetrà saber la

mida de les dades de sortida.

I les restant són iguals que les anteriors, la cinquena afegeix una línea en

blanc i la sisena i la setena afegeixen el dia i l’hora en que acaba l’execució.

Un exemple d’aquesta execució seria :

exec.bat 20 100 50

Aquesta execució crearia un fitxer anomenat “ms 20 100 –t50” amb l’hora i

el dia de l’inici i la fi de l’execució, i un fitxer dades.txt amb els valors de

sortida del msms.

Tot seguit es mostraran les taules que hem creat amb tots els resultats

obtinguts després de fer diverses execucions amb diferents valors

d’entrada.

 SIMPLE AUGMENTEM N
Comanda CPU GPU Tamany dades.txt

-ms 20 100 –t 50 1 seg - 0.5Mb
-ms 20 1000 –t 50 3 seg - 5MB
-ms 20 10000 –t 50 6 seg - 48 MB
-ms 20 100000 –t 50 35 seg - 479 MB
-ms 20 1000000 –t 50 15 min - 5,15 GB
-ms 20 10000000 –t 50 2h 27 min - 47 GB
-ms 20 100000000–t 50 43h 42min - 469 GB
-ms 20 1000000000–t 50 ---- ---- No cap en un HDD de 1TB

Avaluació de la tecnologia de les GPUs UAB-2011

81

CAPÍTOL IV: DISSENY

SIMPLE AUGMENTEM r
Comanda CPU GPU Tamany dades.txt

-ms 20 100 –t 50 43cs - 472 Kb
-ms 200 100 –t 50 80 cs - 5,98 Mb
-ms 2000 100 –t 50 6 seg - 77,6 Mb
-ms 20000 100 –t 50 1 min 45 seg - 0,99 GB
-ms 30000 100 –t 50 3 min 3 seg - 1,5 GB
-ms 40000 100 –t 50 “out of memory” - ---
-ms 200000 100 –t 50 “out of memory” - ---

SIMPLE AUGMENTEM l
Comanda CPU GPU Tamany dades.txt

-ms 20 100 –t 50 43 cs - 470 Kb
-ms 20 100 –t 500 1 seg 17 cs - 4,52 MB
-ms 20 100 –t 5000 9 seg 30 cs - 46,8 MB
-ms 20 100 –t 50000 1 min 33 seg - 473 MB
-ms 20 100 –t 100000 3 min 13 seg - 912 MB
-ms 20 100 –t 200000 5 min 45 seg - 1,79 GB
-ms 20 100 –t 300000 “Out of memory” - ---
-ms 20 100 –t 500000 “Out of memory” - ---

COMBINAT
Comanda CPU GPU Tamany dades.txt

-ms 200 100 –t 500 5 seg 70 cs - 55,9 MB
-ms 2000 1000 –t 5000 “out of memory” - ---
-ms 2000 1000 –t 500 9 min 35 seg - 7,64 GB
-ms 20000 1000 –t 500 “out of memory” - ---
-ms 2000 10000 -t 500 1h 54 min - 76,3 GB
-ms 2000 100000 -t 500 67h 13 min - 765 GB
-ms 2000 1000000 –t500 --- - No cap en 1TB

Com es pot observar en les anteriors taules, continuar fent execucions

requeria de molt espai lliure en el disc dur, però el principal problema és

que en tal quantitat de dades escrites en el disc dur, el temps real

d’execució es va distorsionant cada cop més (els càlculs es fan molt més

ràpid que l’escriptura de les dades en el disc dur), així que amb les dades

obtingudes en tindrem prou per més endavant poder acabar d’omplir les

mateixes taules amb els valor de les execucions en la GPU.

En algunes execucions, apareixia l’error “out of memory” (sense memòria).

L’hem pogut solucionat en alguns casos proporcionant més memòria al

programa amb comandes com per exemple java -Xmx1600m que

Avaluació de la tecnologia de les GPUs UAB-2011

82

CAPÍTOL IV: DISSENY

proporciona al programa 1,6 GB de memòria RAM (si canviem el 1600 per

1700 proporcionarem 1,7 GB de RAM). Però en altres casos el msms

requeria més de 2GB de memòria per crear el arbre i com que el PC només

compta amb 2 GB de RAM, no s’han pogut fer més execucions.

Podem veure com a exemple del contingut del fitxer “ms 20 10000000 –t

50.txt” en la figura 71 on es pot observar que el temps d’execució ha estat

aproximadament de dos hores i mitja.

Figura 71. Contingut del fitxer “ms 20 10000000 –t 50.txt”

3.5 Examinar el codi font

Com que el codi font del msms és molt complex amb múltiples fitxers font,

utilitzarem una eina que permet veure l’execució del programa pas a pas.

Chronon es una extensió per l’eclipse que permet enregistrar tota l’execució

del programa en el disc dur, i després reproduir-la pas a pas, marcant en

cada moment la línea de codi que s’està executant, els mètodes, les

excepcions i els valors de les variables entre algunes altres coses,

permetent així tenir un control lineal del que està executant l’aplicació.

Chronon és un programa de pagament, però tenim la opció de descarregar-

nos la versió de prova que és vàlida per 30 dies i la versió per estudiant que

dóna llicència durant tot un any. Chronon es pot aconseguir des de la web

http://www.chrononsystems.com/ on hi ha una petita demostració del que

pot fer aquesta eina. (figura 72)

Figura 72. Logo chronon.

Avaluació de la tecnologia de les GPUs UAB-2011

83

CAPÍTOL IV: DISSENY

Un cop instal�lada l’aplicació i aconseguida la llicència, ens apareixen tres

botons nous a la barra d’eines d’eclipse:

El botó d’enregistrar. Aquest és el botó que ens fa falta per poder

enregistrar l’execució del programa en el disc dur. (figura73)

Figura 73. Botó per enregistrar l’execució.

El botó de càrrega. Aquest botó és el que ens permet seleccionar quina de

les execucions guardades en el disc dur volem reproduir. Automàticament

quan carregem una execució guardada, apareix la perspectiva de Chronon

(figura 74).

Figura 74. Botó de càrrega d’execucions guardades.

El botó de la perspectiva Chronon. La perspectiva de chronon és el que ens

permetrà veure pas a pas l’execució (figura 75).

Figura 75. Botó perspectiva chronon.

Avaluació de la tecnologia de les GPUs UAB-2011

84

CAPÍTOL IV: DISSENY

3.6 Explicació bàsica de la perpectiva de chronon

Les fletxes ens permeten moure per cada línea de codi. Les dos del mig ens

porten a la seguent o a l’anterior línia, mentre que la primera ens permet

seguir les crides a altres funcions i la última tornar d’aquestes crides (figura

76).

Figura 76. Fletxes de la perspeciva chronon.

A la part dreta de la perspectiva chronon es mostra el temps transcorregut

respecte el temps total de l’aplicació. (figura 77)

Figura 77. Barra de temps transcorregut.

Al mig de la pantalla es mostra la línia de codi que s’està executant

remarcada en verd. La columna vertical també verda ens mostra les línies

de codi executades en la crida (figura 78).

Avaluació de la tecnologia de les GPUs UAB-2011

85

CAPÍTOL IV: DISSENY

Figura 78. Vista de la línea de codi que s’està executant

Amb la perspectiva de Chronon ens és molt més senzill veure en quins

punts el programa executa els càlculs i consumeix la major part del temps.

L’execució principal es porta a terme en el MSlike.java, on s’executa un

bucle de tantes repeticions com el segon paràmetre que s’ha introduït com

a valor d’entrada.

Aquest bucle, al mateix temps, crida a dues funcions situades en els arxius

coalescentEventCalculator.java i MSStats.java respectivament, que dins

seu executen un bucle i dos bucles més respectivament. Dins de la funció

situada en el coalescentEventCalculator.java, es crida a una altre funció

situada en l’arxiu LineageState.java, on de nou hi ha un altre bucle. Aquest

arbre es pot veure més clarament en la figura 79.

Avaluació de la tecnologia de les GPUs

Figura

En aquests quatre arxius és on es consumeix la major part del temps de

l’execució, per tant ens hem de centrar en aquest nuclis que són els que

haurem de transferir a la GPU per tal de que els calculi.

Si els anem desglosant mica en mica anem arribant a les fulles d’

arbre, i podem observar com

d’operacions es redueix a un munt de iteracions amb moviments de dades, i

operacions bàsiques, com per exemple sumar 1 al

acumulat, o fer una divisió entre 64.

Figura 80. Exemple codi msms on es realitza una suma.

CoalescentEventCalculator.java

ecnologia de les GPUs

86 CAPÍTOL IV: DISSENY

Figura 79. Arbre execució msms.

quatre arxius és on es consumeix la major part del temps de

l’execució, per tant ens hem de centrar en aquest nuclis que són els que

haurem de transferir a la GPU per tal de que els calculi.

Si els anem desglosant mica en mica anem arribant a les fulles d’

arbre, i podem observar com el que inicialment podria semblar una massa

operacions es redueix a un munt de iteracions amb moviments de dades, i

operacions bàsiques, com per exemple sumar 1 al total

acumulat, o fer una divisió entre 64. (figura 80 i figura 81 respectivament)

Exemple codi msms on es realitza una suma.

MSlike.java

CoalescentEventCalculator.java

LineageState.java

MSStats.java

UAB-2011

CAPÍTOL IV: DISSENY

quatre arxius és on es consumeix la major part del temps de

l’execució, per tant ens hem de centrar en aquest nuclis que són els que

Si els anem desglosant mica en mica anem arribant a les fulles d’aquest

ent podria semblar una massa

operacions es redueix a un munt de iteracions amb moviments de dades, i

total que portem

respectivament)

Exemple codi msms on es realitza una suma.

Avaluació de la tecnologia de les GPUs UAB-2011

87

CAPÍTOL IV: DISSENY

Figura 81. Exemple codi msms on es realitza una divisió.

Després d’analitzar profundament el msms no s’ha trobat el què s’esperava,

una massa de còmput intenssiu que pogués ser enviada a la GPU i aquesta

mitjançant els càlculs paral�lels retornés la resposta en un menor temps que

el quin s’havia mesurat anteriorment en la CPU. A més el fet de que el codi

inclogui molts condicionals (if) com és el cas, no permet la execució

síncrona de tots els threads, i aixó implica una pèrdua de rendiment molt

important. En aquest programa la implementació de CUDA no seria efectiva,

ja que per realitzar una operació de sumar una unitat, hauriem de copiar els

valors que tenim per sumar a la memòria principal, enviar-los a la memòria

gràfica, la GPU ho calcularia, i de la memòria gràfica es tornaria a copiar a

la memòria principal. Tot aquest procés surt a compte si el càlcul que s’ha

de dur a terme és intenssiu, però en aquest cas, el msms no milloraria al

ser executat en la GPU, tot el contrari, el temps d’execució augmentaria

molt més.

Seria el cas que s’ha vist anteriorment en l’avaluació de movavi, que per a

arxius més petits, CUDA no aportava un benefici de temps de còmput. En

aquest cas inclús podria tardar més del que tarda en la CPU.

Per tant amb el msms hem pogut comprovar que no tots els programes es

poden beneficiar de les noves tecnologies de les GPU. Crear o modificar una

aplicació per ser executada en la GPU, implica realitzar un gran estudi del

programa, tenir un gran coneixement de com treballa i com es té que fer

servir CUDA, ATI stream o OpenCL segons sigui el cas, i sobretot entendre

quins beneficis pot aportar aquesta tecnologia i quines són les seves

debilitats. Obviament no qualsevol aplicació millorarà el seu rendiment en

una GPU i fins i tot ens podem trobar el cas que sabent que en un

determinat tipus de còmput, una GPU és millor, el resultat no es millori

(com s’ha pogut comprovar en el cas de l’avaluació de l’aplicació movavi).

Avaluació de la tecnologia de les GPUs UAB-2011

88

CAPÍTOL V: CONCLUSIONS

CAPÍTOL V: CONCLUSIONS

1. Conclusió general

Després d’haver realitzat les proves pertinents amb CUDA, podem concloure

que la utilització de les GPUs en programes que anteriorment es

computaven en la CPU no és efectiva per totes les aplicacions, ja que només

ens aporta beneficis en casos concrets. Hem mostrat que CUDA accelera

notablement els processos de codificació, modificació i correcció en arxius

de vídeo, però al mateix temps no ha pogut ser útil per realitzar el còmput

d’un programa de coalescència.

L’augment de rendiment que experimenten les aplicacions en les targetes

gràfiques és degut a las diferències fonamentals que existeixen entre les

arquitectures de les CPUs i les GPUs. El problema més gran que sorgeix és

l’accés a memòria i mentre que les CPUs estan dissenyades per accedir

aleatòriament a memòria afavorint la creació d’estructures de dades

complexes amb els punters en posicions arbitràries en la memòria, les GPUs

tenen un accés a memòria molt més restringit, podent igualment llegir

varies posicions arbitràries però sempre escrivint en la mateixa posició

predeterminada.

Així doncs, el dissenyador de programes GPGPU té la tasca d’adaptar els

accessos a memòria i les estructures de dades a les característiques de la

GPGPU. La majoria d’algoritmes executats en una CPU es poden arribar a

implementar en una GPU, però això no sempre aportarà un augment

d’eficiència. És necessari que les aplicacions que es vulguin executar en la

GPU tinguin un elevat grau de paral�lelisme i una gran densitat aritmètica

per tal de que executar un programa en la targeta gràfica aporti beneficis.

Les GPUs aporten una sèrie d’avantatges, com són la ràpida evolució que

tenen (gairebé unes tres vegades més ràpid que el marcat per la llei de

Moore), el baix cost, la gran millora en la programabilitat que s’ha fet en els

últims anys i l’alliberació de tasques de la CPU. Però al mateix temps tenen

una sèrie d’inconvenients com per exemple que no sempre es pot generar

una solució factible o convenient, tenen unes certes limitacions del

Avaluació de la tecnologia de les GPUs UAB-2011

89

CAPÍTOL V: CONCLUSIONS

maquinari (cada model de targeta gràfica és diferent i té diferents

prestacions) i que el model de programació ha de seguir el SIMD, però té un

alt nivell de dificultat, ja que requereix de molts conceptes de baix nivell.

Així doncs tot el programari que tingui una gran quantitat de còmput

aritmètic que pugui ser executat de forma síncrona, en el qual no hi hagin

dependències ni condicionals i que tingui un gran nivell de paral�lelisme es

podrà aprofitar dels avantatges de ser executat en la targeta gràfica.

Conseqüentment existiran moltes aplicacions que no compliran part

d’aquests requeriments i mai s’executaran més ràpid en una GPU.

Actualment els programes que obtenen més benefici estan enfocats en el

tractament de imatges i de vídeo degut a que compleixen el tres principals

requisits esmentats.

La importància de la tecnologia GPGPU anirà creixent a la velocitat que

marquin els consumidors de programari que veuran incrementada la

velocitat de les seves tasques diàries utilitzant el tàndem que formen la CPU

i la GPU per als còmputs de propòsit general. Els principals fabricants de

GPUs saben que el futur passa per el GPGPU i per això cada vegada donen

més facilitats per a la utilització dels seus productes, així com treballen per

introduir més tecnologia en els seus dispositius.

Figura 82. Comparació de l’execució de un programa amb CUDA , utilitzant una

GPU de 2 nuclis (a l’esquerra) o una de 4 nuclis (a la dreta).

Avaluació de la tecnologia de les GPUs UAB-2011

90

CAPÍTOL V: CONCLUSIONS

Les motivacions que han vist els fabricants de programari per desenvolupar

aplicacions executades majoritàriament en la GPU, és que les targetes

gràfiques tenen un baix cost, experimenten una gran i ràpida evolució a

causa de la demanda del món dels videojocs, tenen una altes prestacions

amb els processadors stream que només estan aprofitades en videojocs i

aplicacions molt específiques, i tenen una bona capacitat de programació.

El cas particular del projecte ha demostrat que no tot programa pot ser

executat en una GPU i augmentar el seu rendiment. No ha fet falta

continuar desenvolupant aquest apartat per poder concloure que el temps

d’execució del msms en la GPU hagués estat més lent. A conseqüència

d’aquest fet, la planificació inicial que s’havia fet en l’estudi de viabilitat s’ha

vist lleugerament afectada, augmentant considerablement el temps destinat

a la tasca de proves amb CUDA intentant buscar una solució, i reduint

sensiblement el temps destinat a l’anàlisi de resultats degut a que s’han

produït menys comparacions.

Figura 83. Descripció de les tasques realitzades durant el projecte.

Com que la tasca de programació amb CUDA es realitzava mentre es duien

a terme les proves del programari, la data d’entrega del projecte no s’ha

Avaluació de la tecnologia de les GPUs UAB-2011

91

CAPÍTOL V: CONCLUSIONS

vist modificada. Així doncs un cop finalitzat el projecte el diagrama de

Gannt ha resultat ser el següent:

Figura 84. Diagrama de Gannt al finalitzar el projecte.

Avaluació de la tecnologia de les GPUs UAB-2011

92

CAPÍTOL V: CONCLUSIONS

En resum, podem assegurar que la tecnologia de la GPGPU ens assegura un

millor rendiment en els casos de còmput intensiu i aritmètic, on es puguin

processar elements en paral�lel i on hi aparegui un baix nivell de

dependències i condicionals.

2. Valoració personal

L’elecció d’aquest projecte va vindre motivada per la desconeixença total

sobre el ús de les targetes gràfiques per executar programes de propòsit

general. No coneixia gairebé res sobre aquest tema, però em va captivar

l’idea de que una GPU pogués alleujar la càrrega de còmput que suporten

les CPU.

Durant el desenvolupament del projecte he pogut comprovar que aquesta

tecnologia tot i ser relativament nova, està evolucionant molt ràpidament,

prova d’això és que CUDA per exemple ja ha tret quatre versions diferents

en els últims anys, i que té totes les possibilitats de ser la tecnologia que

s’imposarà en un futur no molt llunyà (AMD, un dels fabricants de CPUs més

importants, va comprar ATI en l’any 2006).

Per aquestes raons, crec que ha estat una bona experiència realitzar el

projecte sobre aquesta tecnologia que donarà un nou món de possibilitats

als programadors de programari, si es que ja no els hi dóna.

3. Millores futures

Seguint la línea d’investigació que s’ha portat a terme durant el projecte, un

treball futur es podria basar en portar aquest estudi un pas endavant,

comparant directament la mateixa aplicació amb diverses targetes gràfiques

d’nVidia i d’ATI utilitzant CUDA, ATI Stream i OpenCL.

Avaluació de la tecnologia de les GPUs UAB-2011

93

CAPÍTOL VI: ANNEX

ANNEX

1. Abreviacions

ALU: La Unitat Aritmètico Lògica (Aritmetic Logic Unit) és un circuit digital

que calcula operacions aritmètiques i lògiques entre dos nombres.

API: Application Programming Interface. Conjunt de crides a certes

biblioteques que ofereixen accés a certs serveis des dels processos i

representa un mètode d’abstracció en la programació.

CAL: Fa referència tant al compilador com a un conjunt de eines de

desenvolupament creades per ATI /AMD que permeten als programadors fer

servir una variació del llenguatge de programació C per codificar algoritmes

en GPUs de ATI/AMD.

CPU: Unitat Central de Processament. És el component del ordinador i

d’altres dispositius programables, que interpreta les instruccions

contingudes en els programes i processa les dades.

CUDA: Compute Unified Device Architecture. Fa referència tant al

compilador com a un conjunt de eines de desenvolupament creades per

nVidia que permeten als programadors fer servir una variació del llenguatge

de programació C per codificar algoritmes en GPUs de nVidia.

DNA: (ADN) L’àcid desoxiribonucleic és un àcid nucleic que conté les

instruccions genètiques utilitzades en el desenvolupament i funcionament

de tots els éssers vius conegut.

DRAM: Dynamic Random Access Memory és una memòria electrònica

d’accés aleatori que s’usa principalment en els mòduls de memòria RAM

com a memòria principal del sistema.

Avaluació de la tecnologia de les GPUs UAB-2011

94

CAPÍTOL VI: ANNEX

GFLOPS: GigaFLOPS és una unitat de mesura de rendiment de còmput,

especialment en càlculs científics que requereixen un gran ús d’operacions

en coma flotant.

GLSL: OpenGL Shading Language, és una part de l’API estàndard d’ OpenGL

que permet especificar segments de programes gràfics que seran executats

en una GPU.

GPGPU: General Purpose computing on Graphics Processing Units.

Computació de propòsit general sobre unitats de processament gràfic. És la

tècnica de fer servir GPUs per executar aplicacions tradicionalment

tractades per la CPU.

GPU: Unitat de Processament Gràfic. És un processador dedicat al

processament de gràfics o operacions de coma flotant.

HDD: Hard Disk Drive, Disc dur. És un dispositiu d’emmagatzemament no

volàtil.

MIMD: Multiple Instruction Multiple Data, qualsevol processador pot

executar diferents instruccions sobre diferents dades.

MISD: Multiple Instruction Single Data, diverses unitats funcionals realitzen

diferents operacions sobre les mateixes dades.

Msms: és un programa de simulació coalescent (unitari), que inclou

recombinació, estructura demogràfica i selecció en un sol llloc.

nVidia: Empresa multinacional especialitzada en desenvolupar unitats de

processament gràfic.

SIMD: Single Instruction Multiple Data, una sola instrucció i múltiples

dades. És una tècnica emprada per aconseguir paral�lelisme a nivell de

dades.

Avaluació de la tecnologia de les GPUs UAB-2011

95

CAPÍTOL VI: ANNEX

SISD: Single Instruction Single Data, una sola instrucció una sola dada. Un

únic processador executa una única dada.

SO: Sistema Operatiu.

OpenGL: És una especificació estàndard que defineix una API per escriure

aplicacions que produeixen gràfics 3D.

2. Referències

Arxius en format pdf obtinguts de www.amd.com

-AMD Compute Abstraction Layer (CAL) (2010).

-Technical overview ATI Stream Computing.

-Programming guide ATI Stream Computing OpenCL.

 Arxius en format pdf obtinguts de www.nvidia.com

-CUDA quickstart guide (2008).

-CUDA C best practices guide (2011).

-nVidia CUDA C programing guide (2011).

-nVidia CUDA reference manual (2010).

Pàgines web consultades en l’any 2011:

- www.khronos.org/opencl

- www.vreveal.com

- www.badaboomit.com

- www.adobe.com

- www.es.cyberlink.com

- www.nero.com

- www.arcsoft.com

Avaluació de la tecnologia de les GPUs UAB-2011

96

CAPÍTOL VI: ANNEX

- www.tmpgenc.net

- www.movavi.com

- www.setiathome.berkeley.edu

- www.jcuda.org

- http://www.mabs.at/ewing/msms/index.shtml

- www.eclipse.org

- www.chrononsystems.com

- www.wikipedia.org

Autor: Jordi Mitjana Trullàs

