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Parte 1

Disipacién y Energia de los
Ciclones Tropicales: Ajustes y
Test de Bondad de Ajuste



1 Introduccidon

. Qué son los ciclones?

Los ciclones son sistemas tormentosos que circulan alrededor de un centro de
baja presién. La palabra ciclon proviene del griego kvrAwr (kyklon) que sig-
nifica circulo en movimiento, haciendo referencia a fenémenos meteorolégicos
caracterizados por ser un sistema de tormentas en circulacion cerrada alrede-
dor de un centro de baja presion. Pueden formarse en varias regiones del
planeta, distinguiendo entre los ciclones tropicales, ciclones extratropicales,
ciclones subtropicales y ciclones polares. El presente trabajo se centra en los
ciclones tropicales, que son aquellos que se forman en las regiones tropicales
del planeta y que se caracterizan por ser altamente devastadores.

Clasificacion de los ciclones tropicales

Segun la velocidad del viento los ciclones tropicales pueden denominarse de-
presion tropical, tormenta tropical y huracdn o tifon.

En el caso de las depresiones tropicales, la velocidad sostenida maxima del
viento (maximum sustained wind speed ) es inferior a los 34 nudos E] Para las
tormentas tropicales la velocidad sostenida maxima es supera los 33 nudos y
no alcanza los 63. Finalmente, los huracanes y los tifones poseen una veloci-
dad sostenida maxima del viento superior a los 62 nudos.

Esencialmente, los huracanes y los tifones son el mismo fenémeno, simple-
mente cambia su denominacion segin la regién geografica donde se forman.
Las zonas que se trataran en este trabajo son el norte del Océano Atlantico

11 nudo = 1852mh~! ~ 0.5144ms™!



Categoria VUpax

1 64 — 82 nudos
119 — 153 kmh~!
9 83 — 95 nudos
154 — 177 kmh™!
3 96 — 112 nudos
178 — 208 kmh ™!
4 113 — 136 nudos
209 — 251 kmh~!
5 > 137 nudos
> 252 kmh~!

Cuadro 1.1: Escala de Saffir-Simpson actualizada a febrero de 2012. La medi-
cion de la velocidad maxima del viento es sostenida durante un minuto, es
decir, se promedia la velocidad durante 60 segundos.

y el noreste del Océano Pacifico, que son zonas de huracanes.
Dentro de la categoria de huracanes, éstos pueden clasificarse[20] a su vez de
acuerdo a la Escala de Saffir-Simpson (ver cuadro [1.1]).

Influencia de los huracanes en la vida humana.
Importancia de su estudio.

Los huracanes son los fenémenos climatologicos terrestres mas devastadores,
razén por la que su estudio resulta de suma importancia. No es facil estu-
diar los fenémenos ciclonicos ya que no podemos ponerlos en un laboratorio.
Para poder estudiarlos son fundamentales las mediciones periédicas de sus
caracteristicas debido a que tales mediciones posibilitan un tratamiento es-
tadistico.

La influencia de los ciclones tropicales sobre la vida humana es tal, que
incluso se han realizado estudios para valorar el impacto que tienen en la
economia, por ejemplo en la tasa de crecimiento econémico local [23]. De
todos modos, cuando se toma consciencia de tal influencia es cuando se ven
los danos causados directamente sobre la poblacién, sus bienes y entorno. A
modo de ejemplos, en diciembre de 1974 el huracan Tracy arrasé la ciudad de
Darwin, en la costa septentrional australiana, dejando tras de si 71 muertos
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Figura 1.1: Imagen del Huracdn Danielle captada el 27 de agosto de 2010
desde la Estacion Espacial Internacional. Fuente: Douglas H. Wheelock,
Coronel del ejército de los EEUU. Formé parte de la tripulacién de la mision
Soyuz TMA-19 en la Estacién Espacial Internacional entre el 15 de junio y
el 25 de noviembre de 2010. http://twitter.com/Astro_Wheels

y 650 heridos. El 52% de las casas fue destruido y el 80 % de los edificios
residenciales fueron totalmente destrozados o quedaron inhabitables [6]. Mas
recientemente, en agosto de 2005, el huracan Katrina asolo el golfo de México
dejando tras de si mas de 1800 fallecidos, 250000 desplazados y unos danos
valorados en 125000 millones de délares [16]. El Tracy y el Katrina son ejem-
plos moderados en cuanto a los efectos de los ciclones. Registros histéricos
recogen estimaciones de hasta cientos de miles de personas fallecidas por los
efectos de huracanes:

Al huracén de Kyushuf|(Japén) en el afio 1281 se le atribuyen mds de 100000
victimas entre las que se encontraba gran parte de la flota mongola, que es-
taba en plena invasién de Japoén y perdié unos 13000 integrantes.

El huracén de Backerganj de 1976 (Bangladesh en la actualidad) dejé 200000
victimas mortales, tal y como hiciera otro huracan en la misma zona casi 300
anos antes. Aparte de las victimas directas por el huracan, se estima que
otras 100000 personas murieron por los efectos del hambre consecuencia de
la catastrofe.

El fenémeno ciclénico al que mayor nimero de victimas se atribuye tuvo
lugar en 1970 y se llamé huracan Bhola. Afecté a Bangladesh y al este de
la India causando aproximadamente medio millén de muertes. A pesar de

2Se le llamé Kamikaze que significa viento divino y supone el origen del mito segin el
cual Japén era el pais elegido por los dioses y por tanto estaba bajo su proteccion.


http://twitter.com/Astro_Wheels

Figura 1.2: No es factible introducir un huracin en un laborato-
rio, pero en una semiesfera definida por una burbuja de jabon se
pueden generar vértices aislados al calentar la zona del ecuador. Es-
tos vortices poseen algunas caracteristicas similares a las de los ci-
clones terrestres [21I]. Fuente: Centre national de la recherche scientifique.
http://www2.cnrs.fr/presse/communique/1322.htm

la devastacién que causo, el Bhola ’solamente’ alcanzé la categoria 3 de la
Escala de Saffir-Simpson de las 5 posibles (ver cuadro .

Con la intencién de mitigar el efecto destructivo de los ciclones tropicales,
el gobierno de los Estados Unidos de América puso en funcionamiento en el
ano 1962 el proyecto Stormfury [24]. El proyecto consistia en inyectar yo-
duro de plata en el niicleo del huracan de modo que éste aumentara su radio
y se debilitara. En un inicio parecia que el método era eficaz, pero tras la
disminucién momentanea de la velocidad del viento, el huracan volvia a ga-
nar intensidad. Ademads las conclusiones del proyecto indicaban que no era
seguro que las modificaciones de la intensidad de los huracanes se debieran
fundamentalmente a la inyeccién del yoduro de plata.

Segun parece, la manipulacién del clima no permite paliar significativamente
los efectos de los huracanes en la actualidad. El énfasis en el estudio de los
fenémenos ciclénicos puede ayudar a mejorar esta manipulacion asi como
nuestra capacidad predictiva.


http://www2.cnrs.fr/presse/communique/1322.htm

Calentamiento global y huracanes. ;Cémo se
relacionan?

La teoria de formacién de ciclones tropicales induce a pensar que un aumento
en la temperatura media global implica un aumento en la intensidad de éstos
(estableciendo una relacién directa entre la intensidad de tales fenémenos y el
calentamiento global), pero los estudios basados en la frecuencia de aparicién
de huracanes no mostraban ninguna tendencia. Por esta razén K. Emanuel
definié en 2005 el Power Dissipation Index (PDI), como medida de destruc-
tividad potencial de un huracan. Mediante la tendencia de aumento del PDI
a partir de 1970 Emanuel argumentaba una tendencia de aumento en la in-
tensidad de los huracanes [14].

La pregunta es, junos PDI crecientes a lo largo de esos anos implican real-
mente una tendencia de aumento?

La respuesta a esta pregunta nos indica si el calentamiento global afecta a la
génesis y destructividad de los huracanes tropicales. Para intentar encontrar
una respuesta, el objetivo del presente proyecto es la modelizacion de la dis-
tribucion probabilistica del PDI en las zonas del norte del Océano Atlantico
y del noreste del Océano Pacifico asi como de otros dos indices que serdan
definidos més adelante.

La intencion es poder establecer distribuciones probabilisticas de los valores
correspondientes a indices que midan la destructividad potencial de los ci-
clones tropicales a partir de los datos registrados de forma independiente a
cuando han tenido lugar. Asi pues este trabajo es un primer paso para pos-
teriormente estudiar la influencia del calentamiento global.

En caso de poder modelizar las distribuciones de probabilidad mencionadas,
se procederd a estudiar las relaciones que se puedan establecer entre los
indices tratados.



2 Material y métodos

2.1. Datos

Los datos utilizados en el presente proyecto corresponden a la base de datos
sobre ciclones tropicales del Océano Atlantico y del Nordeste del océano
Pacifico del Regional and Mesoscale Meteorology Branch (RAMMB)[I] que
pertenece al National Oceanic and Atmospheric Administration (NOAA)[2;
més concretamente corresponden al National Hurricane Center (NHC)[4],
y pueden ser consultados en la pagina web:

rammb.cira.colostate.edu/research /tropical _cyclones/tc_extended_best_track_dataset.

Los documentos que contienen toda la informacién poseen mediciones so-
bre posicién (ver figura , velocidad y tamano tomadas cada seis horas,
concretamente a las 00.00, 06.00, 12.00 y 18.00 horas UTC (Universal Time
Coordinated).

Los registros sobre ciclones tropicales del Atlantico datan de 1988 al 2010,
mientras que los del Pacifico comprenden el periodo de 2001 al 2010.

La base de datos referente al norte del Océano Atlantico consta de 9691
registros correspondientes a un total de 303 ciclones tropicales. La base de
datos con los registros del noreste del Océano Pacifico tiene 3791 entradas
pertenecientes a 140 ciclones.

De todos los campos que conforman las bases disponibles, son de especial
importancia la maxima velocidad del viento, el radio de maxima velocidad
del viento y el radio de la isobara cerrada exterior. La informacién de las
maximas velocidades es completa, pero respecto a los radios falta una can-
tidad relevante de informacién. Para paliar el efecto de la falta de datos se
procederd a completarlos mediante técnicas de interpolacion.

Para el tratamiento de los datos asi como para la programacion de las rutinas
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Figura 2.1: Trayectorias seguidas por los distintos ciclones tropicales que

conforman las bases de datos. .



informdticas desarrolladas se ha utilizado el entorno R [3]. (Ver anexo para
consultar el cédigo fuente)

2.2. Complecion de las bases de datos

Dado un ciclén concreto, se puede considerar que su radio de maxima ve-
locidad del viento (todo el desarrollo es andlogo para el radio de la isobara
cerrada exterior) es una funcién que depende del tiempo:

r: [To, T1

La situacién real es que la base de datos en la que se encuentra el ciclén
contiene puntos de esta funcién, asi pues si se supone que r(t) es continua,
parece natural interpolar tales puntos para obtener una expresion polinémica
7(t) que aproxime r(t) y que permita valorar r en abscisas t no registradas
en la base de datos.

Si se pretende interpolar la funcién r(¢) en los puntos disponibles mediante
una funcién polinémica, la naturaleza oscilatoria de los polinomios de grados
altos y la caracteristica de que una fluctuacién en una porciéon pequena del
intervalo de definicion puede inducir fluctuaciones muy grandes en todo el
intervalo, parecen desaconsejar este método. Para salvar esta problematica
se puede recurrir a la interpolacién polinémica fragmentaria, que consiste
en considerar una particion del intervalo de definiciéon a partir del conjunto
de abscisas de los puntos de interpolacion y aplicar interpolaciéon polindémica
utilizando polinomios de grados bajos a cada uno de estos intervalos.

El caso mas simple de interpolaciéon polinémica fragmentaria consiste en
considerar la particiéon obtenida mediante todas las abscisas disponibles y
construir el poligono que une sus imagenes, es decir, interpolar puntos con-
secutivos mediante segmentos. El problema de considerar esta interpolacion
es que no se garantiza la diferenciabilidad en cada uno de los extremos de
los subintervalos, propiedad que seria deseable en este contexto ya que las
funciones que modelizan fenémenos fisicos suelen gozar de ella.

Si se intenta unir los nodos mediante polinomios de segundo grado, tampoco
se puede asegurar tal diferenciabilidad debido a qué tales polinomios vienen
determinados por tres coeficientes. Al imponer las condiciones de interpo-
lacién y diferenciabilidad en uno de estos polinomios, se construye un sis-
tema lineal sobredeterminado (4 condiciones para determinar 3 coeficientes),
dando lugar a posibles sistemas incompatibles (o lo que es lo mismo, que no

12



existan tales polinomios).

La interpolacion fragmentaria mas comun y que garantiza de forma certera
la diferenciabilidad de la funcién 7(¢) en todo su dominio de definicién es
la interpolacion de trazador ciibico, consistente en considerar la misma par-
ticion que en el caso anterior pero uniendo puntos consecutivos mediante
polinomios cubicos. Aparte del grado de los polinomios se impone que la
derivada y la segunda derivada de los trazadores ctbicos coincidan en ex-
tremos comunes de los subintervalos donde se definen. Imponer igualdad de
las segundas derivadas en los nodos ademas de condiciones frontera permiten
obtener un sistema lineal compatible y determinado (y en consecuencia la
interpolacién es tnica):

Consideremos ti,...,t, abscisas de interpolacién y sea S;(t) el polinomio
cuibico interpolador en [t;,t;11] para cada j =1,...,n — 1. Se ha de cumplir
1. S;(t;) =r(t;) paracadaj=1,...,n— 1.
2. Sjt1(tjs1) = Sj(tj41) paracada j=1,...,n —2.
3. 8% (tj1) = Si(tj) paracada j =1,...,n — 2.
4. 8% 1 (tj1) = 87 (tj1) paracada j =1,...,n — 2.

Si ademas se satisface la siguiente condicion de frontera
5. S{(t1) =95 4(t,) =0

la funcién de interpolacién se llama adaptador natural [§]

Una vez determinados los trazadores ctubicos S;(t) con i = 1,...,n — 1, se
define la funcién de interpolacién o adaptador cibico natural mediante:

(S,(t) sit € [t1,t2)
So(t) sit € [ta,13)

Snfz(t) site [tn,Q, tn,1>
Sp_1(t) sit € [ty_1,tn]

\
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Ciclén Florence
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Figura 2.2: Interpolaciéon mediante trazadores ctibicos de las mediciones del
radio de de maxima velocidad del ciclén Florence tomadas entre las 18.00
horas del 10 de Septiembre del 2000 a las 18.00 horas del 19 de Septiembre
del mismo ano en el norte del Océano Atlantico. En el caso del ciclon Flo-
rence, la base de datos es completa pero, a modo de ejemplo, se han extraido
4 mediciones quedando el registro completo en un 82 % y se ha procedido
a completarlo. La funcién representada es la funciéon de interpolacion. Los
puntos azules y verdes corresponden a las medidas correctas de la base de
datos. Las equis rojas indican los valores interpolados que sustituyen a los

valores exactos marcados en verde.
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Determinada la funcién de interpolacién S(t) en I = [ti,t,], se define 7;(t) =
S(t).

Este proceso permite asignar valores bastante coherentes a cualquier abscisa
t dentro del intervalo I para la cual no se disponga de su radio en la base de
datos, pero puede ser que haya que completar valores fuera de ese intervalo,
es decir, extrapolar.

En caso de querer asignar valores a instantes ¢ fuera del intervalo I, conside-
raré las prolongaciénes de Sy (t) y de S,,_1(t) por la izquierda y por la derecha
respectivamente, por lo que defino

Sl(t) siTy <t<ty
St)=S8St)sity <t<t, (2.2)
Sn_l(t) sit, <t<1Ti

Finalmente, imponiendo que se respete el recorrido de la funcién r(t), puedo
definir la funcién 7(t) a utilizar para rellenar los datos faltantes:

#(t) = méx{4, S(t)} (2.3)

La razon de asignar a los radios un valor minimo de 4 millas natticas se debe
a que es el valor minimo registrado para un radio. Otra opcién seria asignar
un valor minimo de 0 millas natticas pero conceptualmente seria sinénimo
de la desapariciéon del ciclén.

Una vez determinado el método de complecion de la base de datos, hay que
tener en cuenta la fiabilidad de tal compleciéon. Claro esta que si un ciclén
posee una importante cantidad de registros, pongamos 20, y solamente falta
un dato (registro completo en un 95 %), se completa el registro y se acepta
sin reparos. En el otro extremo, si de los 20 datos se dispone sélo de 2 de
ellos (registro completo en un 10 %), parece natural rechazar este ciclén a
la hora de calcular indices en los que se utilice la informacién faltante ya
que la complecion no sera nada fiable al disponer de muy poca informacion
a interpolar. Para casos intermedios la decisién puede ser méas complicada y
discutible, razén por la que la forma de proceder serd imponer un limite de
aceptacion. En este caso el limite de aceptaciéon impuesto a un ciclon para
completar su registro serd estar completo en un 80 %.

Un aspecto importante a tener en cuenta al utilizar este método es que puede

generar un sesgo. (ver figura .
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2.3. Distribucién de probabilidad del PDI, IEI
y OEI

El PDI de un ciclén tropical que tiene lugar entre los instantes ¢y y t; se
define [14] como

max

t1
PDI:/ v dt (2.4)
to

pero a efectos de computacion, al tener registros discretos cada seis horas, su
calculo se realiza mediante

PDI =Y v} At (2.5)

Donde v,,,, es la méxima velocidad del viento (en ms™!) en cada instante de
tiempo.
Por otro lado defino el IEI (Inner Energy Index) entre to y t; como

max max

131
IEI = / vP R® dt (2.6)
to
pero, del mismo modo que en el caso del PDI, su célculo se realiza mediante
t1
IEI =~ o R2 At (2.7)
to

siendo R, el radio (m) de maxima velocidad del viento (ver anexo).
Asimismo defino el OEI (Quter Energy Indez) entre los instantes ty y t;
mediante

max iso

t1
OEI:/ v RZ dt (2.8)
to

que como anteriormente su calculo se realiza con la expresion

1s0

t1
OEI =~ v} Rl At (2.9)
to

con R, el radio (m) de la is6bara exterior cerrada.
La diferencia en su denominacién radica en la magnitud de los radios, siendo
los de maxima velocidad del viento menores que los de la isébara exterior.

16



Sea X la lista de los PDI correspondientes a una de las bases de datos. El
valor del PDI (también el valor del IEI y el del OEI) puede considerarse una
variable aleatoria, asi que sea D(x) su funcién de densidad (respectivamente
F(x) su funcién de distribucién). La densidad se puede definir en un valor y
considerando un intervalo [y, y 4+ dy) con dy — 0 mediante el cociente de la
probabilidad de que el PDI esté en el intervalo dividida por la longitud del

intervalo, es decir,
Ply<X<y+dy
D(y) = ( g ) (2.10)
Y
La probabilidad del numerador se puede estimar mediante el nimero de
valores contenidos en el intervalo, n(y) = #{zr € X| y < z < y + dy},

dividido por el ntimero total de valores, N, asi pues

D(y)dy =Py < X <y+dy) =~ % (2.11)

En la practica es necesario considerar dy > 0. Para representar gréfica-
mente la funcién densidad se utiliza el método conocido como logarithmic
binning|[17][18], consistente en considerar una particién en la que cada valor
se obtiene multiplicando el anterior por una constante ¢ obteniendo intervalos

I, = [m,cm), Iy = [em, ®m), Is = [*m, m), . ..

siendo m un valor inicial.

dy; es la longitud de I;. Obsérvese que dy; = ¢ 'm — ¢'m = ¢’(c — 1)m. En
este caso la constante escogida es ¢ = 10'/% y valor inicial m = 10®%. Una vez
construida la particién, como si de un histograma se tratase, se consideran
los vértices del poligono de frecuencias (ver figuras 2.32.4R.5)).

La representacion de las estimaciones correspondientes a las funciones de
densidad indican que en una parte de su dominio éstas pueden ajustar a una
recta, caracteristica propia de las funciones potenciales, es decir, funciones
de la forma f(z) = Ca=®, C' € R ya que log(f(x)) = log(C) — alog(x).

Las desviaciones a la ley de potencias para valores bajos y altos de la variable
pueden deberse, respectivamente, a datos incompletos y al tamano finito de
las cuencas.

Cabe destacar que las funciones de densidad de tipo potencial son muy uti-
lizadas en fenémenos criticos autoorganizados [7], asi como fenémenos fisicos,
biol6gicos, econémicos, demograficos [18],...

+1

Es inmediato ver que si una funcién densidad és de la forma f(z) = Ca™*y
estd definida en un intervalo [A, B], su distribucién es:

F(x):/ Cy “dy = ¢

l-a Al—a
A T )
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Oceano Pacifico
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Figura 2.3: Estimacién de la funcién densidad, D(z), del PDI para el norte

del Océano Atlantico y para el noreste del Pacifico.
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Oceano Atlantico Oceano Pacifico
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Figura 2.5: Estimaciéon de la funcién densidad del OEI para el norte del
Océano Atlantico y para el noreste del Pacifico.

y la funcién complementaria de la distribucién es:

B C
Gla) = [ cydy = LS -
. -«
La constante C' tiene efecto normalizador de la funcién D(x), por lo que
depende del intervalo de ajuste. Para determinar su valor simplemente hay
que imponer que la ley de potencias D(x) es una funcién de densidad definida
en el intervalo [A, B] y por tanto su integral en ese intervalo vale 1:

B 1-a1B l—a _ pAl—a _
1—/ Cxadx—{cx } _ B AT o l-a

A l—a], 1—a :Bl—a—Al—a

sea r = %. Se obtiene

O l—a (I—a)A*!  (a—1)A>"!
A @1

Se concluye que la funcién densidad es

D(x) = %xa (2.12)

y por lo tanto
xl—a o Al—a 1— (é)a_l
- Bl—a _ Al—a - 1— roz—l

F(z) (2.13)
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Figura 2.6: Aproximacion de la funcién de densidad del PDI para el norte
del Océano Atlantico considerando solamente aquellos ciclones que se utilizan
para el célculo del OEI (en la mayoria de ellos se ha completado el registro
de datos). Se puede observar que se reproduce la parte correspondiente a los
fendmenos con menor PDI (ver figura . La conclusién es que el método
de complecién y seleccion de casos para la estimacion de la distribucion del
OEI es sesgado. Esta conclusion es igualmente valida para el IEI ya que en la
estimacion de su distribucién participan practicamente los mismos ciclones.

B Bl _ pl-a B (%)O‘_l _ po-l
- Bl—a _ Al—a o 1— Ta—l

Tal y como pasa con la funciéon de densidad, la funcién de distribucién y su
complementaria han de estimarse a partir de los datos disponibles mediante

la funcién de distribucién empirica (ver férmula [2.20)).

G(z) (2.14)

2.4. Estimacién de la ley de potencias

Llegados a este punto, para determinar la ley de potencias hay que estimar el
exponente a. La estimacion de o depende de los datos comprendidos dentro
del intervalo de ajuste, asi que es natural buscar aquel exponente que sea el
mas plausible segin los datos, es decir, « se estima por maxima verosimili-
tud.

Téngase en cuenta que el procedimiento utilizado para estimar gaficamente
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las distribuciones no afecta a la estimacién de maxima verosimilitud, simple-
mente se ha utilizado como ilustracién visual.

Sea N4p el nimero de datos comprendidos en el intervalo de ajuste [A, B].
La funcién de maxima verosimilitud es

Nap Nap

V(T .o TN, Q) = H D(z;) = CNaB H x;
i=1 i=1

y su logaritmo es

Nap Nap
a
L(z1,...,2Nn,,; ) = Naplog(C)—a Z log(z;) o log(C)—ﬁ Z log(z;) =
i=1 B =1

= log (la_—;o}_l) + (a—1)log(A) — NjB Z log(z;)
Fijados A i B se estima « mediante oy cumpliendo
Vo, L(z1, ..., TN, Q) < L(T1, .o TN, )
La varianza del estimador [5] viene dada por la férmula
N 1 { 1 B rea—tlog(r)? }_1 (2.15)
Y Nap | (ag—1)2 (1 —roa—1)?

En el caso en que B — +00 (y equivalentemente  — 0) si a > 1, la funcién
de verosimilitud que se obtiene es

N> a
g . — _ — i @ 9 .
Iy £, i) = log (0= 1) + (@ = 1 log(4) — 5 ; log(x;)
(2.16)
cuyo maximo viene dado por
RREN B
ag =1+ log(x;) | —log(A
a N Z:; g(z;) g(4)
y la varianza queda
N 1)?
llir(l) 0o, = N, (2.17)

En este caso la ley potencial no estd truncada superiormente, aunque este
caso particular no se utilizara para el ajuste. El no truncamiento impide
encontrar el estimador analiticamente y el método deviene méas complicado.
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2.5. Determinacién del intervalo de ajuste

En la seccién previa se ha considerado fijo el intervalo de definicién [A, B],
pero tales valores A y B han de ser determinados de alguna forma en el
sentido de que la ley de potencias se ajuste “al maximo” en él. Es natural
intentar que el intervalo de ajuste de la ley sea lo méas extenso posible [10].

Para determinar el intervalo se ha considerado una particion S caracterizada

por la relacion
{‘v’si es, % 10}
Si—1

o dicho de otro modo, la particién divide cada década en 30 partes iguales.
Sean A,B € S con A < B. Como se ha comentado anteriormente, maxi-
mizando la funcién de verosimilitud se obtiene «y y mediante un contraste
de bondad de ajuste se puede valorar si el ajuste de la ley de potencias en el
intervalo propuesto es aceptable o no.

Finalmente, de entre todos los intervalos [4;, B;| aceptables, se escoge el in-
tervalo [A, B] que cumpla £ 1 = MmaxXy, Bes ﬁ

Un intervalo sera considerado aceptable en caso que el p-valor obtenido en
el contraste de bondad de ajuste no sea inferior al 30 %.

2.6. Contraste de Bondad de Ajuste de Kolmogorov-
Smirnov

El contraste de Bondad de ajuste utilizado para determinar el intervalo de
ajuste [A, B] es el contraste de Kolmogorov-Smirnov (KS) [13][19]:

T
|~
>

)adfl

Mo 1) = 55 (2.18)
- (3) '
H]_ . F(.’ﬂ) # l—Tad71
Donde el estadistico de Kolmogorov-Smirnov es
D= sup |Fy(x)— F(x)| (2.19)

A<z<B
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siendo Fy(z) la distribucién empirica de los datos, es decir, la aproximacion
a la funcién de distribucién definida a partir de los datos disponibles:

Osix<a
Fylz) =4 v—sixz; <x<xyypconi€{l,...,Nap— 1} (2.20)

Nap
Isizy,, <

y 1 <x9<---<xpn,, son los datos ordenados.

Para decidir la aceptacién del ajuste hay que recurrir al p-valor del estadistico
D ya que éste es la probabilidad de no aceptar la hipotesis nula siendo cierta,
o sea la probabilidad de cometer un error de tipo I . Si bien el p-valor puede
ser obtenido directamente en R mediante la instruccién ks.test [3], éste no se
puede utilizar ya que la distribucién sometida al contraste es precisamente la
que se ha construido a partir de los datos para que sea la que mejor se ajusta
a ellos. Para evitar este problema se calcula el p-valor mediante el Método
de Montecarlo [22]. La idea consiste en estimar la probabilidad de que el
estadistico D,;,, que se puede obtener de una muestra de la ley de potencias
que se ha ajustado sea mayor o igual que D, utilizando muestras aleatorias
de la ley de potencias.

2.7. Calculo del p-valor de KS

Sea X el conjunto total de datos, [A, B] el intervalo de ajuste de la ley de
potencias, Nap = #{z € X|A < x < B}, ay el exponente maximo verosimil
de la ley de potencias ajustada al intervalo [A, B] y D el estadistico asociado
al contraste de Kolmogorov-Smirnov. El célculo del p-valor del contraste [9]
mediante Montecarlo consiste en simular £ muestras aleatorias de longitud
N4 bajo la hipotesis nula y ajustar una ley de potencias a cada una de ellas
obteniendo a su vez un estadistico de Kolmogorov-Smirnov D,,,. El p-valor,
que se define como la probabilidad de que el estadistico sea mayor o igual
que D si la hipdtesis nula es cierta, se puede estimar mediante la expresion

Numero de simulaciones con D, > D
p =

2.21
Numero de simulaciones ( )

El niimero v de simulaciones cumpliendo D,,, > D es una variable aleatoria
binomial B(k,p) y por tanto tiene desviacién tipica o, = /kp(l — p). De

acuerdo a la ecuacién [2.21, p = 7 y por tanto o, = 9 = \/@ [11].
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o, permite concretar el nimero de simulaciones a realizar si se pretende limi-
tar la incertidumbre del p-valor siempre y cuando el valor de p sea intermedio.
En el presente trabajo, el cdlculo del p-valor y su desviacion se realiza me-
diante £ = 1000 simulaciones.

Sean uq,...,un,, los Nap valores simulados de una variable aleatoria uni-
forme en [0,1]. Cada muestra aleatoria Y = {yi,...,yn,,} Se construye
simulando la ley de potencias mediante la formula
A
(2.22)

y= [1— (1 — roa 1)y /(@D

que se puede deducir a partir de la funcién de distribucién F(z) imponiendo
F(y) = u siendo u el valor de una variable aleatoria uniforme en [0, 1]:

yl—ad _ Al—ad
Fly) == frmo ey = 0= ' = u( B0 AT A
1 A

v= [u(Bl~a — Al=aa) 4 Al-aa]l/(aa—1) - [u(rea=t — 1) 4 1]1/(@a=D)

2.8. Comparacion de las distribuciones de pro-
babilidad

Sean app;, Qop ¥V Qup l0os exponentes de las leyes de potencias para cada
indice en una de las zonas de estudio. Considero ahora el siguiente contraste
de hipotesis:

Hy : appr = Qopr = Qi
H; : No hay igualdad entre los 3 exponentes

Tal y como se muestra en [5], el exponente estimado de la ley de potencias
sigue una distribucién normal de media a4 y varianza aid.

Considero ahora los intervalos al 95 % de confianza de cada uno de los expo-
nentes de las distribuciones ajustadas a los PDI, los IEI y a los OEI en cada
una de las zonas (ver figura [3.4).

El contraste de hipdtesis puede llevarse a cabo a partir de la interseccién de
los intervalos de confianza: en caso de que el intervalo obtenido en la inter-
seccion de los tres intervalos de confianza para los exponentes sea no vacio,
se concluye la aceptacién de la hip6tesis nula (se acepta Hy). Si en cambio el
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intervalo de interseccién es vacio, no se acepta la hipdtesis nula.
En caso de no aceptar Hy, continuaré con la comparacién entre las distribu-
ciones de los indices pero de dos en dos. Dicho de otro modo consideraré los
constrastes de la forma

HO L] = O

Hl e % (0%}

siendo a1 y as los exponentes de las leyes de potencias comparadas.
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3 Resultados

Distribuciones de probabilidad ajustadas

Los resultados obtenidos en el ajuste de las leyes de potencias (ver cuadro
indican que el PDI (m?s72) en el norte del Atldntico se ajusta a

D(x) = 3.6920 1% si z € [1.08 - 10°,1.47 - 101 (3.1)
mientras que en el noreste del Pacifico,
D(x) = 79.0342~ %2 si 2 € [1.47 - 10°, 10""] (3.2)

Los resultados en los ajustes obtenidos para el ajuste del IEI (m°s~2) (cuadro

son
D(r) =1.34-10 227" si € [3.41-10'®,3.16 - 10*] (3.3)
en el caso del norte Atlantico, mientras que para el noreste del Pacifico:
D(z) =3.3-10"z " si z € [9.26 - 10", 2.15 - 10%] (3.4)

Finalmente, los resultados para los ajustes del OEI (m®s™2) (cuadro han
sido

D(z) = 1.3z " si x € [6.31 - 10" 4.64 - 10*?] (3.5)

D(z) = 1681z~ " si x € [5.41-10",1.71 - 10*?] (3.6)

para el norte del Océano Atlantico y noreste del Océano Pacifico respectiva-

mente.

Destaca el hecho de que las estimaciones de la distribucion del PDI son
consistentes con las obtenidas en [10] por Corral, Oss6 y Llebot, utilizando
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otras bases de datos. Un intervalo de confianza del 95 % para el exponente del
ajuste obtenido por Corral et al. en el norte del Atldntico es [1.0724,1.3076],
mientras que en el este del Pacifico el intervalo es [1.077,1.273]. Al compa-
rarlos con los obtenidos aqui (ver cuadro [3.4), acepto coincidencia.

Comparativamente, la ley de potencias estimada para el OEI se ajusta mejor
que la obtenida en el caso de IEI en el sentido que el rango de ajuste % es
mayor (ver figura . La similitud entre las expresiones que definen ambos
indices hace creer que su comportamiento sera similar, pero hay una dife-
rencia fundamental que afecta a la caracterizacién de estos indices asi como
al proceso de completacion de datos: se ha supuesto que las funciones que
definen los radios respecto del tiempo son funciones continuas.

En el caso del radio de la isobara exterior cerrada del huracan la evolu-
cion es ciertamente continua mientras que para el caso del radio de maxima
velocidad del viento, no necesariamente es asi. Puede sudecer que haya un
radio distinto del de velocidad maxima cuya velocidad del viento iguale a
la maxima velocidad en un determinado instante y a continuacién la supere
convirtiéndose en el nuevo radio de velocidad maxima. Si se produce este
fenémeno de discontinuidad en la funcién radio de velocidad maxima, su
comportamiento es mas impredecible que en el caso de la funcién radio de
isobara exterior cerrada. Como consecuencia, la complecién de los datos en
el caso de los radios de maxima velocidad serd, en general, menos eficiente
que la de los radios de isobara exterior cerrada.

Comparacion entre las distribuciones de prob-
abilidad

En el caso del Océano Atlantico la interseccion de los intervalos de confianza
(cuadro de cada uno de los exponentes de las leyes de potencias es el
intervalo [1.0425,1.0829], por tanto se puede aceptar la hipdtesis de que las
tres leyes de potencias tienen el mismo exponente. Dicho de otro modo, se
acepta equivalencia entre los distintos indices. Para el Océano Pacifico la
situacion es un poco distinta ya que la interseccion de los tres intervalos de
confianza es vacia. Si se intersecan los intervalos de confianza de dos en dos (o
lo que es lo mismo, se procede a decidir sobre los contrastes de hipdtesis que
comparan pares de distribuciones), se puede aceptar que todas las parejas de
exponentes son iguales excepto en el caso de D(OEI) y D(IEI).
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Figura 3.1: Representacion simultanea de las
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funciones complementarias a

las funciones de distribucion empiricas y las obtenidas a partir del ajuste de la
ley de potencias. La lineas verdes corresponden a la distancia de Kolmogorov-

Smirnov (el estadistico D).
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Océano Atlantico | Océano Pacifico
N 303 140
A 1.08 - 10° 1.47-10°
B 1.47 - 10" 1-10M
Nag 284 121
Qay 1.125 1.252
Oay 4.22-1072 7.67-1072
C 3.692 79.034
D 4.096 - 1072 6.393 - 102
P 0.341 0.311
op 1.499 - 1072 1.464 - 1072

Cuadro 3.1: Resultados obtenidos en el ajuste de sendas leyes de potencias
para los datos del norte del Océano Atlantico y del noreste del Pacifico. N
es el nimero total de ciclones con PDI calculado. A y B (en m?s™2) son los
extremos del intervalo de ajuste optimo. N,p es el nimero de ciclones cuyo
PDI esta comprendido entre Ay B. a4 es el exponente de la ley de potencias
ajustada, cuya desviacién tipica es o,, . C es la constante que normaliza la
ley de potencias en el intervalo [A, B]. D corresponde al valor del estadistico
de Kolmogorov-Smirnov del ajuste y p se refiere al p-valor para A y B fijados.

Finalmente, o, es la desviacién tipica del p-valor.

Cuadro 3.2: Del mismo modo que en el cuadro |3.1], en esta tabla se recogen

los resultados correspondientes al ajuste del IEIL. En este caso A y B en
5.2

m-s

Océano Atlantico | Océano Pacifico
N 120 57
A 3.41-10%® 9.26 - 108
B 3.16 - 10%° 2.15-10%
Nag 107 51
Qg 0.938 1.615
Oay 7.41-1072 1.68 - 1071
C 1.338 - 1072 3.3-101
D 6.628 - 1072 1.013 - 1071
P 0.328 0.305
op 1.485- 1072 1.456 - 1072
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Océano Atlantico | Océano Pacifico

N 128 62

A 6.31 - 10" 5.41 - 10"

B 4.64 - 10%? 1.71 - 10?2

Nap 121 60

oy 1.044 1.047

Tay 4.78 - 1072 7.78 - 1072
1.3 1.68

D 6.170 - 1072 8.511-1072

P 0.325 0.346

op 1.459 - 1072 1.504 - 1072

Cuadro 3.3: Resultados correspondientes al ajuste del OEI en cada una de

las dos zonas. Como con el IEI, Ay B en m°s~2.

Atlantico Pacifico

PDI | 1.0425 1.2081 | 1.1019 1.4026
OEI | 0.9503 1.1377 | 0.8945 1.1996
IEI | 0.7925 1.0829 | 1.2847 1.9450

Cuadro 3.4: Intervalos al 95 % de confianza de los exponentes de las leyes de
potencias ajustadas del PDI, el OEI y el IEI en las dos zonas de estudio.
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4 Conclusiones

La base de datos conteniendo la informacién del noreste del Océano Pacifico
es demasiado pequena como para obtener resultados fiables. De todos modos
es remarcable el acuerdo en los resultados con los obtenidos por Corral et al.
utilizando distintas bases de datos, datos correspondientes a anos distintos y
con nuevos programas que han sido desarrollados especificamente para este
proyecto.

El ajuste de las distribuciones de probabilidad del tipo ley de potencias del
PDI, el OEI y el IEI no basta para considerar la posibilidad de que no se
produzca una influencia significativa del calentamiento global en las intensi-
dades de los huracanes que se tienen lugar en el noreste del Océano Pacifico
y en el norte del Océano Atlantico. Para poder valorar esa posibilidad seria
conveniente realizar un estudio detallado por anos. Esta es una opcién de
estudio en un futuro inmediato.

La falta de certeza en la continuidad de la funcién radio de maxima ve-
locidad del viento hace que al aproximar los valores de los indices en tiempo
discreto sea aconsejable valorar la energia del huracdn mediante el OEI cuyos
resultados, junto con los del PDI, han sido satisfactorios (a pesar de aparente
sesgo en la seleccién de datos).

Al comparar la disipacién (PDI) con la energia (OEI) se puede aceptar que
ambas distribuciones de probabilidad tienen el mismo exponente y por tanto
se acepta equivalencia entre ambas.

El método de complecién de las bases de datos abre otra opcién de trabajo

futuro: un estudio sistemético que determine el porcentage de complecion
asumible para minimizar el sesgo en la seleccién de datos.
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1 Relacion entre el OEI el IEI
y la energia de un ciclén tropical

En un fenémeno ciclonico, la cantidad de energia cinética generada es igual
a la que se disipa por la friccién. La potencia disipada en cualquier instante
se estima por medio de la féormula [12] [15]

P(t) :/pCDV3d27”

donde t es el tiempo, r se refiere a las coordenadas sobre la superficie terres-
tre, p = p(r,t) es la densidad del aire, Cp = Cp(r,t) es el coefficiente de
friccion y v = v(r,t) corresponde al médulo de la velocidad del viento.
Esta férmula puede simplificarse. En [I5] Emanuel tomé como valores repre-
sentativos para la densidad del aire y el coeficiente de friccién, p = 1 Kg m™
y Cp = 2-1073. Ademds consider6 un sencillo perfil funcional para v:

v(r.t) = vm(t)f (%)

con vy, (t) como la maxima velocidad del viento dentro del fenémeno en el
instante ¢, R(t) algin tipo de radio caracteristico del ciclén y f una funcién
de escala comun para todos los ciclones.

Se tiene,
P(t) = /pC’Dy3d2r R~ ;)C'Dvgl(zf)/f3 <R€t)) d*r =
considérese ahora el cambio de variable u = %, obteniéndose

P(t) ~ P(t) = pCrpd (1) BA(1) / F3(u) du o b, (1) RA(2)
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se concluye pues que

A

B~ /P(t) dt o /vf’n(t)RQ(t) dt

y esta ultima expresion corresponde al IEI si R(t) es el radio de méxima
velocidad del viento y al OEI si es el radio de la isobara exterior.

Conviene destacar que la constante de proporcionalidad no es de interés para
el propésito del presente trabajo.
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2 (Cddigo fuente en R

» velocidad calcula la velocidad en m - s7! a partir de la velocidad en
nudos.

velocidad=function(kt){
return(0.5144444444xkt)}

= distancia calcula longitudes en metros a partir de las longitudes en
millas nauticas.

distancia=function(nm){
return(1852*nm) }

s MLF.eq devuelve el exponente maximo verosimil, su desviacion tipica
y su verosimilitud. A y B son los limites del intervalo de ajuste. [ es la
lista de valores del ajuste. ainf y asup son los limites entre los que se
determina el exponente a

MLF.eq=function(A,B,1,n,ainf,asup){
1=1[common (1>=A,1<=B)];
1=1[sort.list(1)];

N=length(1);

r=A/B;
M=maximization(A,B,1l,n,ainf,asup);
a=M[1];

ver=M[2];

s2=var.alpha(a,r,N);
return(c(a,sqrt(s2),ver))}

= var.alpha calcula la varianza del exponente a. r es la razén de los ex-
tremos del intervalo de ajuste y N es el nimero de datos utilizados
para estimar el exponente.
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var.alpha=function(a,r,N){
return((1/(1/(a-1)"2-
(r~(a-1))*(log(r)~2)/((1-r~(a-1))"2)))/N}

= mazimization maximiza el logaritmo de la funcién de verosimilitud. A
y B son los limites del intervalo de ajuste, [ es la lista de valores del
ajuste, ainf y asup son los limites entre los que se maximiza la funcion.
Esta funcion devuelve el maximo y su imagen para el logaritmo de la
funcién de verosimilitud.

maximization=function(A,B,1,ainf,asup){
r=A/B;

v=common (1<=B,1>=A) ;

1=1[v];

N=length(1);

F=function(x){
return(log((x-1)/(1-r~(x-1)))-

(x/N) *sum(log(1))+(x-1)*log(A))};
values=optimize(F,interval=c(ainf,asup) ,maximum=TRUE,
tol=1e-8);
return(c(values$maximum,values$objective))}

= common es una funciéon muy simple que devuelve un vector logico in-
dicando los elementos comunes de los vectores v y w.

common=function(v,w){
return(as.logical (v*w))}

= fit es la funcion principal y calcula el ajuste de la ley de potencias.
LISTA es la lista de valores a ajustar, ainf y asup son los valores entre
los que se busca el exponente de la ley de potencias, min.PV es el
valor minimo que ha de tener el p-valor de un ajuste para ser aceptado
y particion es el nimero de intervalos en que se divide cada década en
la particién para determinar el intervalo de ajuste.

fit=function(LISTA,ainf,asup,min.PV=0.3,particion=30){
LISTA=LISTA[sort.list(LISTA)];

I1=10"(floor (min(logl0(LISTA))));

I12=max (LISTA);

S.LISTA=c(I1);

while(S.LISTA[length(S.LISTA)]<I2){
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S.LISTA=C(S.LISTA,S.LISTA[length(S.LISTA)]*10”(1/particion))};
V=S.LISTA<=min(LISTA);
S.LISTA=S.LISTA[S.LISTA>=max(S.LISTA[V])];
D=1e10;

RANGE=0;

PV=-1;

P.sigma=0;

ListA=S.LISTA;

ListB=S.LISTA;

M=length(LISTA);

NewA=0;

NewB=0;

alpha=0;

sigma=0;

ver=0;

casos=0;

for(j in 1:(length(ListA)-1)){

A=ListA[j];

v2=LISTA>=A;

for(k in (j+1):length(ListB)){

B=ListB[k] ;

print(c(A,B,j,k));

v1=LISTA<=B;

v=common (v1,v2);

N=sum(v) ;

if (N>10){

R=B/A;
values=MLF.eq(A,B,LISTA[v],100,ainf,asup);
actual=values[1];

sigma.actual=values[2];
ver.actual=values[3];
D.actual=fit.ks.2(LISTA,A,B,actual);

if (R>RANGE) {

Nsim=1000;
PV.actual=MCsim(A,B,ainf,asup,actual ,LISTA,Nsim);
if (PV.actual>0){
P.sigma.actual=PV.actual*sqrt((1-PV.actual)/(PV.actual*Nsim))}
else{P.sigma.actual=0};

if (PV.actual>min.PV){

D=D.actual;

NewA=A;
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NewB=B;

PV=PV.actual;

P.sigma=P.sigma.actual;

alpha=actual;

sigma=sigma.actual;

ver=ver.actual;

casos=N;RANGE=R}}}}};
return(c(NewA,NewB,alpha,sigma,D,PV,P.sigma,casos))}

= fit.2 es una funcién auxiliar que calcula el ajuste de las muestras aleato-
rias generadas de la ley de potencias.
LISTA es el vector de valores a ajustar. ainf y asup son los limites entre
los que determinar el exponente del ajuste. A y B son los extremos del
intervalo de ajuste de la ley de potencias a partir de los datos empiricos.

fit.2=function(LISTA,ainf,asup,A,B){
LISTA=LISTA[sort.list(LISTA)];
D=1e10;

S=c(A,B);

ListA=S;

ListB=S;

M=length(LISTA);

for(j in 1:(length(ListA)-1)){
A=ListA[j];

v2=LISTA>=A;

for(k in j:length(ListB)){
B=ListB[k];

v1=LISTA<=B;

v=common (v1,v2);

N=sum(v) ;

if ((B/A)>20){
values=MLF.eq(A,B,LISTA[v],100,ainf,asup);
actual=values[1];
sigma.actual=values[2];
ver.actual=values[3];
D.actual=fit.ks.2(LISTA,A,B,actual);
if (D.actual<D){

D=D.actual;

NewA=A;

NewB=B;

alpha=actual;
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sigma=sigma.actual}}}};
return(D)}

= fit.ks.2 es otra funcién auxiliar. Esta calcula el estadistico de Kolmogorov-
Smirnov para las muestras aleatorias generadas de la ley de potencias.
LISTA es el vector de datos ajustados. A y B son los extremos del in-
tervalo de ajuste de la ley de potencias a partir de los datos empiricos.
a es el exponente estimado para el ajuste.

fit.ks.2=function(LISTA,A,B,a){

v1=LISTA<=B;

v2=LISTA>=A;

w=sum(LISTA<A) ;

N=length(LISTA);

v=common (vl,v2) ;
F=function(x){return((x~(1-a)-A~(1-a))/ (B~ (1-a)-A"(1-a)))};
test=ks.test (LISTA[v],F,alternative="two.sided");
D=test$statistic;

return(c(D))}

= power.law es una funcién que genera muestras aleatorias de la ley de
potencias de exponente a y definida entre A y B a partir de valores de
una variable aleatoria uniforme en [0,1].

power.law=function(A,B,a){
r=A/B;
return(A/(1-(1-r~(a-1) ) *runif (1))~ (1/(a-1)))}

» MCsim calcula el p-valor del ajuste de la ley de potencias en [A,B] con
exponente a mediante montecarlo. ainf y asup son los limites entre
los que determinar el exponente del ajuste de las muestras aleatorias.
LISTA es el vector de datos empiricos. n es el nimero de simulaciones
a efectuar.

MCsim=function(A,B,ainf,asup,a,LISTA,n){
N=length(LISTA);

v1=LISTA<=B;

v2=LISTA>=A;

v=common (v1l,v2);

NAB=sum(v) ;

dvalues=c();

42



D=fit.ks.2(LISTA,A,B,a);

m=0;
for(i in 1:n){
data=c();

for(j in 1:NAB){
data=c(data,power.law(A,B,a))};
dvalues=c(dvalues,fit.2(data,ainf,asup,A,B))};
return(sum(dvalues>=D)/n)}

constante calcula la constante de normalizacién de la ley de potencias
ajustada a [A,B] con exponente a.

constante=function(a,A,B){
r=A/B;
return(((a-1)*A~(a-1))/(1-r~(a-1)))}

splines interpola y extrapola utilizando trazadores ctibicos.

X1 es el vector de abscisas de los puntos a interpolar. Y1 es el vector
de ordenadas de los puntos a interpolar. Z1 es el vector de abscisas a
evaluar en la interpolacion.

splines=function(X1,Y1,Z1){
X=X1[sort.list(X1)];
Y=Y1[sort.list(X1)];

N=length(Y);

COEF=matrix(rep(0,4%*N) ,ncol=4);
COEF[,1]=Y[1:N];

H=c();

for(i in 1:(N-1)){H=c(H,X[i+1]1-X[i1)};
ALFA=c(0);

for(i in 2: (N-1)){
ALFA=c(ALFA,3*(Y[i+1]-Y[i]) /H[i]-3*(Y[i]l-Y[i-1])/H[i-11)};
1=c(1);

mu=c (0) ;

z=c(0);

for(i in 2: (N-1)){
1=c(1,2%(X[i+1]-X[i-1])-H[i-1]*mu[i-1]);
mu=c (mu,H[i]/1[i]);

z=c(z, (ALFA[i]-H[i-1]*z[i-1]1)/1[i1)};
1=c(1,1);

z=c(z,0);
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for(j in (N-1):1){

COEF[j,3]=z[j]-mu[j]*COEF[j+1,3];
COEF[j,2]1=(COEF[j+1,1]1-COEF[j,11)/H[j]-
H[j1*(COEF[j+1,3]+2*COEF[j,3])/3;
COEF[j,4]=(COEF[j+1,3]-COEF[j,3])/(3*H[j1)};
evaluacion=function(v,L,xj){

s=L[1];

for(i in 2:length(L)){s=s+L[i]l*(v-xj)~(i-1)};
return(s)};

R=c();

for(i in 1:length(Z1)){
if(Z1[i]<X[1]){R=c(R,evaluacion(Z1[i] ,COEF[1,],X[1]1))};
if (Z1[i1>X[N1){R=c(R,evaluacion(Z1[i],COEF[N-1,],X[N-11))};
if(Z1[i]>=X[1] && Z1[il<=X[N]){

A=max(which(X<=Z1[i]));

R=c(R,evaluacion(Z1[i] ,COEF[A,],X[A]))}};

return(R)}

unificar concatena los vectores contenidos en la lista de vectores L.

unificar=function(L){

R=c();

N=length(L);

for(i in 1:N){

for(j in 1:length(L[[i]11)){R=c(R,LL[11]1[j1)}};
return(R)}

grafico.densidad representa la estimacion de la funcién de densidad de
una lista de valores mediante logarithmic binning.

LISTA es la lista total de valores a tener en cuenta para aproximar la
funcién densidad. titulo, ejex y ejey son el titulo del grafico, el del eje
X y el del eje Y, respectivamente.

Si ajuste=TRUFE, se representa el ajuste de la ley de potencias entre A
y B con exponente a.

grafico.densidad=function(LISTA,titulo=" ",ejex=" ",
ejey=" ",ajuste=FALSE,A=0,B=0,2=0){

I1=10"(floor (min(loglO(LISTA))));

I12=max (LISTA);

W=c(I1);

while(W[length(W)]<I2){

44



W=c(W,W[length(W)]*10"(1/5))};

V=W<=min(LISTA) ;

W=W [W>=max (W[VI)];

W2=c();

D=c();

for(i in 2:length(W)){

W2=c(W2,sqrt (W[i-1]*W[il));

v=common (LISTA>W[i-1] ,LISTA<=W[i]);
D=c(D,sum(v)/(W[il-W[i-11))};

D=D/length(LISTA);

for(i in 1:length(D)){if (D[i]==0){D[i]=NA}};
X0=floor (min(log10(LISTA)));
XF=ceiling(max(logl0(LISTA)));

Y0=floor (min(logl0(D[is.na(D)==FALSE])));
YF=ceiling(max(log10(D[is.na(D)==FALSE])));

if (ajuste==FALSE){
grafico=plot(logl0(W2[is.na(D)==FALSE]),
log10(D[is.na(D)==FALSE]) ,main=titulo,
xlab=ejex,ylab=ejey,axes=FALSE,type="0",col="red",
pch=23,x1im=c (X0,XF) ,ylim=c(Y0,YF));
axis(1,at=c(X0:XF),labels=10"c(X0:XF));
axis(2,at=c(Y0:YF),labels=10"c(Y0:YF));
points(c(X0,X0,XF,XF,X0),c(Y0,YF,YF,Y0,Y0) ,type="1")};
if (ajuste==TRUE){
intercept=logl0(constante(a,A,B));
grafico=plot(logl0(W2[is.na(D)==FALSE]),
log10(D[is.na(D)==FALSE]) ,main=titulo,
xlab=ejex,ylab=ejey,axes=FALSE,type="0",col="red",
pch=23,x1im=c (X0,XF),ylim=c(Y0,YF));
axis(1,at=c(X0:XF),labels=10"c(X0:XF));
axis(2,at=c(Y0:YF),labels=10"c(Y0:YF));
points(c(X0,X0,XF,XF,X0),c(YO0,YF,YF,Y0,Y0) ,type="1");
lines(c(logl0(A),1logl0(B)),
c(intercept-a*xlogl0(A),intercept-a*logl0(B)))};
return(grafico)}

grafico.ajuste representa graficamente la funcion complementaria a la

funcion de distribucion empirica, asi como la ajustada.

LISTA es la lista total de valores a representar. [A,B] es el intervalo
de ajuste. a es el exponente obtenido en el ajuste. D es el estadistico
de Kolmogorov-Smirnov del ajuste. titulo, ejex y ejey son el titulo del
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grafico, el del eje X y el del eje Y, respectivamente.

grafico.ajuste=

function(LISTA,A,B,a,D,titulo=" ",ejex=" ",ejey=" "){
x=c(A,LISTA [common (LISTA<=B,LISTA>=A)],B);
N=length(LISTA);

y=1-c(1:N)/N;

k1=sum(LISTA<A) ;

k2=sum(LISTA>B) ;

F=function(x,A,B,a){

return(k1l/N+
((N-k1-k2)/N)*(x~(1-a)-A"(1-a))/(B"(1-a)-A~(1-a)))};
X0=floor (min(log10(LISTA)));
XF=ceiling(max(logl0(LISTA)));
grafico=plot(logl0(LISTA),y,col="red",main=titulo,
xlab=ejex,ylab=ejey,axes=FALSE,xlim=c(X0,XF),ylim=c(0,1));
axis(1,at=c(X0:XF),labels=10"c(X0:XF));
axis(2,at=c(0:10)/10,labels=c(0:10)/10);
points(c(X0,X0,XF,XF,X0),c(0,1,1,0,0) ,type="1");
lines(logl0(x),1-F(x,A,B,a),type="1",1wd=3);
lines(logl0(x),1-F(x,A,B,a)+D,col="green",1lwd=3);
lines(logl0(x),1-F(x,A,B,a)-D,col="green",1wd=3);
return(grafico)}

imputacion completa los radios que faltan en la base de datos indicada
en funcién de los criterios de restriccion que se indiquen.

TABLA es la base de datos (atlantico o pacifico) a usar. prop.mazx es
la proporcién maxima admitida en la imputacion de datos faltantes
para los radios de méaxima velocidad. prop.iso es la proporcién maxima
admitida en la imputacion de datos faltantes para los radios de las
isobaras exteriores.

Esta rutina devuelve los vectores con los nuevos radios asi como vectores
W y V indicando los huracanes imputados.

imputacion=function(TABLA,prop.max=0.2,prop.iso=0.2){
N=length(TABLA[,11)

Li=c(1);

k=1;

for(i in 2:NM){

if (TABLA$name [i] '=TABLA$name [i-1]){k=k+1};L1=c(L1,k)}
na=L1[length(L1)];
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RADIOS.MAX=1ist();

RADIOS.ISO0=1ist();

for(i in 1:na){
RADIOS.MAX[[i]]1=c(TABLA$rad.max.speed[L1==i]);
RADIOS.ISO[[i]]=c(TABLA$out.isobar.rad[L1==i])};
ratio.miss=c(rep(0,na));

for(i in 1:na){

ratio.miss[i]=
sum(RADIOS.MAX[[i]]1==-99)/1length(RADIOS.MAX[[i]])}
isobar.miss=c(rep(0,na));

for(i in 1:na){

isobar.miss[i]=
sum(RADIOS.ISO[[i]]1==-99)/1length(RADIOS.ISO[[i]]1)}
W2=ratio.miss<prop.max;

W=which (W2==TRUE) ;

V2=isobar.miss<prop.iso;

V=which(V2==TRUE) ;

SPLINES.RAD.MAX=RADIOS.MAX;
SPLINES.RAD.ISO=RADIOS.ISO;

for(j in 1:length(W)){
T=RADIOS.MAX[[W[j11]!=-99;
SPLINES.RAD.MAX[[W[j1]1]=

splines(which(T==TRUE),

RADIOS.MAX[[W[j]]] [which(T==TRUE)],
c(1:1length(RADIOS.MAX[[W[j111)))3}

for(j in 1:length(V)){
T=RADIOS.ISO[[V[j]]]!=-99;
SPLINES.RAD.ISO[[V([j11]=

splines(which(T==TRUE),

RADIOS.ISO[[V[j]1]1] [which(T==TRUE)],
c(1:1ength(RADIOS.ISOLLV[j111)))}

for(i in 1:na){

nl=length (SPLINES.RAD.MAX[[i]]);

n2=length (SPLINES.RAD.ISO[[i]1]);

for(j in 1:n1){

SPLINES.RAD.MAX[[i]] [j1=max(0,SPLINES.RAD.MAX[[i]][j1)};
for(j in 1:n2){

SPLINES.RAD.ISO[[i]] [j]=max(0,SPLINES.RAD.ISO[[i]][j1)}3};
R.MAX=unificar (SPLINES.RAD.MAX) ;

R.ISO=unificar (SPLINES.RAD.ISO);
return(list(R.MAX,R.ISO,W,V))}

47



= calculo.valores calcula el PDI, TEI y OEI de la base de datos indicada.
TABLA es la base de datos (atlantico o pacifico) a usar. R.MAX es
la lista de radios de maxima velocidad. R.ISO es la lista de radios de
la isobara exterior. W es el vector con los huracanes a considerar en
el célculo de TEIL. V es el vector con los huracanes a considerar en el
calculo de OEIL. R.MAX, R.ISO, W y V se pueden obtener a partir de
la funcién imputacion.
Esta rutina devuelve tres vectores; el primero contiene los PDI para
todos los huracanes, el segundo los IEI para los huracanes indicados en
Wy el tercero los OEI para los huracanes indicados en V.

calculo.valores=function(TABLA,R.MAX,R.IS0O,W,V){
N=length(TABLA[,1]);

Li=c(1);

k=1;

for(i in 2:N){

if (TABLA$name [i] !=TABLA$name [i-1]){k=k+1};L1=c(L1,k)}
na=L1[length(L1)];

PDI=c(rep(0,na));

IEI=c(rep(0,na));

OEI=c(rep(0,na));

for(i in 1:N){

PDI[L1[i]]=PDI[L1[i]]+
6*3600*velocidad (TABLA$max.speed[i]) "3;
IEI[L1[i]]=IEI[L1[1i]]+

(velocidad (TABLA$max.speed[i]) ~3)*
(distancia(R.MAX[i]) ~2)*6*3600;
OEI[L1[i]]=0EI[L1[i]]+

(velocidad (TABLA$max.speed[i]) "3)*
(distancia(R.ISO[i]) ~2)*6%x3600};
PDI=PDI[sort.list(PDI)];

IEI=IEI[W];

OEI=0EI[V];

IEI=IEI [sort.list(IEI)];

OEI=0EI [sort.list(0EI)];

return(list (PDI,IEI,QOEI))}
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