
                         

 

 

 

 

 

 

 

 

 

 

 

                                                                    

 

                                 

              

                                                                                                                                                                                                                    

 

 

 

 

 

 

 

 

 

                                                                  

 

      

 

C
R
M

 M
a
st

e
r 

R
e
se

a
rc

h
 P

ro
je

ct
s 

 

 

Disipación y Energía de los Ciclones 

Tropicales: Ajustes y Test de Bondad de 

Ajuste 

Author: Oliver Planes 

Advisor: Álvaro Corral 



 



Disipación y Enerǵıa de los Ciclones
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A mis compañeros y profesores por su humanidad y afecto.
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I Disipación y Enerǵıa de los Ciclones Tropicales:
Ajustes y Tests de Bondad de Ajuste 4

1. Introducción 5

2. Material y métodos 10

2.1. Datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Compleción de las bases de datos . . . . . . . . . . . . . . . . 12

2.3. Distribución de probabilidad del PDI, IEI y OEI . . . . . . . . 16

2.4. Estimación de la ley de potencias . . . . . . . . . . . . . . . . 20

2.5. Determinación del intervalo de ajuste . . . . . . . . . . . . . . 22

2.6. Contraste de Bondad de Ajuste de Kolmogorov-Smirnov . . . 22

2.7. Cálculo del p-valor de KS . . . . . . . . . . . . . . . . . . . . 23

2.8. Comparación de las distribuciones de probabilidad . . . . . . . 24

3. Resultados 26

2



4. Conclusiones 32

II Anexo 35

1. Relación entre el OEI, el IEI y la enerǵıa de un ciclón tropical 36
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Parte I

Disipación y Enerǵıa de los
Ciclones Tropicales: Ajustes y

Test de Bondad de Ajuste
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1 Introducción

¿Qué son los ciclones?

Los ciclones son sistemas tormentosos que circulan alrededor de un centro de
baja presión. La palabra ciclón proviene del griego κυκλων (kyklon) que sig-
nifica ćırculo en movimiento, haciendo referencia a fenómenos meteorológicos
caracterizados por ser un sistema de tormentas en circulación cerrada alrede-
dor de un centro de baja presión. Pueden formarse en varias regiones del
planeta, distinguiendo entre los ciclones tropicales, ciclones extratropicales,
ciclones subtropicales y ciclones polares. El presente trabajo se centra en los
ciclones tropicales, que son aquellos que se forman en las regiones tropicales
del planeta y que se caracterizan por ser altamente devastadores.

Clasificación de los ciclones tropicales

Según la velocidad del viento los ciclones tropicales pueden denominarse de-
presión tropical, tormenta tropical y huracán o tifón.
En el caso de las depresiones tropicales, la velocidad sostenida máxima del
viento (maximum sustained wind speed ) es inferior a los 34 nudos 1. Para las
tormentas tropicales la velocidad sostenida máxima es supera los 33 nudos y
no alcanza los 63. Finalmente, los huracanes y los tifones poseen una veloci-
dad sostenida máxima del viento superior a los 62 nudos.
Esencialmente, los huracanes y los tifones son el mismo fenómeno, simple-
mente cambia su denominación según la región geográfica donde se forman.
Las zonas que se tratarán en este trabajo son el norte del Océano Atlántico

11 nudo = 1852mh−1 ≈ 0.5144ms−1
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Categoria vmax

1
64− 82 nudos
119− 153 kmh−1

2
83− 95 nudos
154− 177 kmh−1

3
96− 112 nudos
178− 208 kmh−1

4
113− 136 nudos
209− 251 kmh−1

5
≥ 137 nudos
≥ 252 kmh−1

Cuadro 1.1: Escala de Saffir-Simpson actualizada a febrero de 2012. La medi-
ción de la velocidad máxima del viento es sostenida durante un minuto, es
decir, se promedia la velocidad durante 60 segundos.

y el noreste del Océano Paćıfico, que son zonas de huracanes.
Dentro de la categoŕıa de huracanes, éstos pueden clasificarse[20] a su vez de
acuerdo a la Escala de Saffir-Simpson (ver cuadro 1.1).

Influencia de los huracanes en la vida humana.

Importancia de su estudio.

Los huracanes son los fenómenos climatológicos terrestres más devastadores,
razón por la que su estudio resulta de suma importancia. No es fácil estu-
diar los fenómenos ciclónicos ya que no podemos ponerlos en un laboratorio.
Para poder estudiarlos son fundamentales las mediciones periódicas de sus
caracteŕısticas debido a que tales mediciones posibilitan un tratamiento es-
tad́ıstico.
La influencia de los ciclones tropicales sobre la vida humana es tal, que

incluso se han realizado estudios para valorar el impacto que tienen en la
economı́a, por ejemplo en la tasa de crecimiento económico local [23]. De
todos modos, cuando se toma consciencia de tal influencia es cuando se ven
los daños causados directamente sobre la población, sus bienes y entorno. A
modo de ejemplos, en diciembre de 1974 el huracán Tracy arrasó la ciudad de
Darwin, en la costa septentrional australiana, dejando tras de śı 71 muertos
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Figura 1.1: Imagen del Huracán Danielle captada el 27 de agosto de 2010
desde la Estación Espacial Internacional. Fuente: Douglas H. Wheelock,
Coronel del ejército de los EEUU. Formó parte de la tripulación de la misión
Soyuz TMA-19 en la Estación Espacial Internacional entre el 15 de junio y
el 25 de noviembre de 2010. http://twitter.com/Astro Wheels

y 650 heridos. El 52 % de las casas fue destruido y el 80 % de los edificios
residenciales fueron totalmente destrozados o quedaron inhabitables [6]. Más
recientemente, en agosto de 2005, el huracán Katrina asoló el golfo de México
dejando tras de śı más de 1800 fallecidos, 250000 desplazados y unos daños
valorados en 125000 millones de dólares [16]. El Tracy y el Katrina son ejem-
plos moderados en cuanto a los efectos de los ciclones. Registros históricos
recogen estimaciones de hasta cientos de miles de personas fallecidas por los
efectos de huracanes:
Al huracán de Kyushu 2 (Japón) en el año 1281 se le atribuyen más de 100000
v́ıctimas entre las que se encontraba gran parte de la flota mongola, que es-
taba en plena invasión de Japón y perdió unos 13000 integrantes.
El huracán de Backerganj de 1976 (Bangladesh en la actualidad) dejó 200000
v́ıctimas mortales, tal y como hiciera otro huracán en la misma zona casi 300
años antes. Aparte de las victimas directas por el huracán, se estima que
otras 100000 personas murieron por los efectos del hambre consecuencia de
la catástrofe.
El fenómeno ciclónico al que mayor número de v́ıctimas se atribuye tuvo
lugar en 1970 y se llamó huracán Bhola. Afectó a Bangladesh y al este de
la India causando aproximadamente medio millón de muertes. A pesar de

2Se le llamó Kamikaze que significa viento divino y supone el origen del mito según el
cual Japón era el páıs elegido por los dioses y por tanto estaba bajo su protección.
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Figura 1.2: No es factible introducir un huracán en un laborato-
rio, pero en una semiesfera definida por una burbuja de jabón se
pueden generar vórtices aislados al calentar la zona del ecuador. Es-
tos vórtices poseen algunas caracteŕısticas similares a las de los ci-
clones terrestres [21]. Fuente: Centre national de la recherche scientifique.
http://www2.cnrs.fr/presse/communique/1322.htm

la devastación que causó, el Bhola ’solamente’ alcanzó la categoŕıa 3 de la
Escala de Saffir-Simpson de las 5 posibles (ver cuadro 1.1).
Con la intención de mitigar el efecto destructivo de los ciclones tropicales,
el gobierno de los Estados Unidos de América puso en funcionamiento en el
año 1962 el proyecto Stormfury [24]. El proyecto consist́ıa en inyectar yo-
duro de plata en el núcleo del huracán de modo que éste aumentara su radio
y se debilitara. En un inicio parećıa que el método era eficaz, pero tras la
disminución momentánea de la velocidad del viento, el huracán volv́ıa a ga-
nar intensidad. Además las conclusiones del proyecto indicaban que no era
seguro que las modificaciones de la intensidad de los huracanes se debieran
fundamentalmente a la inyección del yoduro de plata.
Según parece, la manipulación del clima no permite paliar significativamente
los efectos de los huracanes en la actualidad. El énfasis en el estudio de los
fenómenos ciclónicos puede ayudar a mejorar esta manipulación aśı como
nuestra capacidad predictiva.
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Calentamiento global y huracanes. ¿Cómo se

relacionan?

La teoŕıa de formación de ciclones tropicales induce a pensar que un aumento
en la temperatura media global implica un aumento en la intensidad de éstos
(estableciendo una relación directa entre la intensidad de tales fenómenos y el
calentamiento global), pero los estudios basados en la frecuencia de aparición
de huracanes no mostraban ninguna tendencia. Por esta razón K. Emanuel
definió en 2005 el Power Dissipation Index (PDI), como medida de destruc-
tividad potencial de un huracán. Mediante la tendencia de aumento del PDI
a partir de 1970 Emanuel argumentaba una tendencia de aumento en la in-
tensidad de los huracanes [14].
La pregunta es, ¿unos PDI crecientes a lo largo de esos años implican real-
mente una tendencia de aumento?
La respuesta a esta pregunta nos indica si el calentamiento global afecta a la
génesis y destructividad de los huracanes tropicales. Para intentar encontrar
una respuesta, el objetivo del presente proyecto es la modelización de la dis-
tribución probabiĺıstica del PDI en las zonas del norte del Océano Atlántico
y del noreste del Océano Paćıfico aśı como de otros dos ı́ndices que serán
definidos más adelante.
La intención es poder establecer distribuciones probabiĺısticas de los valores
correspondientes a ı́ndices que midan la destructividad potencial de los ci-
clones tropicales a partir de los datos registrados de forma independiente a
cuándo han tenido lugar. Aśı pues este trabajo es un primer paso para pos-
teriormente estudiar la influencia del calentamiento global.
En caso de poder modelizar las distribuciones de probabilidad mencionadas,
se procederá a estudiar las relaciones que se puedan establecer entre los
ı́ndices tratados.
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2 Material y métodos

2.1. Datos

Los datos utilizados en el presente proyecto corresponden a la base de datos
sobre ciclones tropicales del Océano Atlántico y del Nordeste del océano
Paćıfico del Regional and Mesoscale Meteorology Branch (RAMMB)[1] que
pertenece al National Oceanic and Atmospheric Administration (NOAA)[2];
más concretamente corresponden al National Hurricane Center (NHC)[4],
y pueden ser consultados en la página web:

rammb.cira.colostate.edu/research/tropical cyclones/tc extended best track dataset.

Los documentos que contienen toda la información poseen mediciones so-
bre posición (ver figura 2.1), velocidad y tamaño tomadas cada seis horas,
concretamente a las 00.00, 06.00, 12.00 y 18.00 horas UTC (Universal Time
Coordinated).
Los registros sobre ciclones tropicales del Atlántico datan de 1988 al 2010,
mientras que los del Paćıfico comprenden el periodo de 2001 al 2010.
La base de datos referente al norte del Océano Atlántico consta de 9691
registros correspondientes a un total de 303 ciclones tropicales. La base de
datos con los registros del noreste del Océano Paćıfico tiene 3791 entradas
pertenecientes a 140 ciclones.
De todos los campos que conforman las bases disponibles, son de especial
importancia la máxima velocidad del viento, el radio de máxima velocidad
del viento y el radio de la isobara cerrada exterior. La información de las
máximas velocidades es completa, pero respecto a los radios falta una can-
tidad relevante de información. Para paliar el efecto de la falta de datos se
procederá a completarlos mediante técnicas de interpolación.
Para el tratamiento de los datos aśı como para la programación de las rutinas
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Figura 2.1: Trayectorias seguidas por los distintos ciclones tropicales que
conforman las bases de datos.
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informáticas desarrolladas se ha utilizado el entorno R [3]. (Ver anexo para
consultar el código fuente)

2.2. Compleción de las bases de datos

Dado un ciclón concreto, se puede considerar que su radio de máxima ve-
locidad del viento (todo el desarrollo es análogo para el radio de la isobara
cerrada exterior) es una función que depende del tiempo:

r : [T0, T1] → R+

t 7→ r(t)

La situación real es que la base de datos en la que se encuentra el ciclón
contiene puntos de esta función, aśı pues si se supone que r(t) es continua,
parece natural interpolar tales puntos para obtener una expresión polinómica
r̂(t) que aproxime r(t) y que permita valorar r en abscisas t no registradas
en la base de datos.
Si se pretende interpolar la función r(t) en los puntos disponibles mediante
una función polinómica, la naturaleza oscilatoria de los polinomios de grados
altos y la caracteŕıstica de que una fluctuación en una porción pequeña del
intervalo de definición puede inducir fluctuaciones muy grandes en todo el
intervalo, parecen desaconsejar este método. Para salvar esta problemática
se puede recurrir a la interpolación polinómica fragmentaria, que consiste
en considerar una partición del intervalo de definición a partir del conjunto
de abscisas de los puntos de interpolación y aplicar interpolación polinómica
utilizando polinomios de grados bajos a cada uno de estos intervalos.
El caso más simple de interpolación polinómica fragmentaria consiste en
considerar la partición obtenida mediante todas las abscisas disponibles y
construir el poĺıgono que une sus imágenes, es decir, interpolar puntos con-
secutivos mediante segmentos. El problema de considerar esta interpolación
es que no se garantiza la diferenciabilidad en cada uno de los extremos de
los subintervalos, propiedad que seŕıa deseable en este contexto ya que las
funciones que modelizan fenómenos f́ısicos suelen gozar de ella.
Si se intenta unir los nodos mediante polinomios de segundo grado, tampoco
se puede asegurar tal diferenciabilidad debido a qué tales polinomios vienen
determinados por tres coeficientes. Al imponer las condiciones de interpo-
lación y diferenciabilidad en uno de estos polinomios, se construye un sis-
tema lineal sobredeterminado (4 condiciones para determinar 3 coeficientes),
dando lugar a posibles sistemas incompatibles (o lo que es lo mismo, que no
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existan tales polinomios).
La interpolación fragmentaria más común y que garantiza de forma certera
la diferenciabilidad de la función r̂(t) en todo su dominio de definición es
la interpolación de trazador cúbico, consistente en considerar la misma par-
tición que en el caso anterior pero uniendo puntos consecutivos mediante
polinomios cúbicos. Aparte del grado de los polinomios se impone que la
derivada y la segunda derivada de los trazadores cúbicos coincidan en ex-
tremos comunes de los subintervalos donde se definen. Imponer igualdad de
las segundas derivadas en los nodos además de condiciones frontera permiten
obtener un sistema lineal compatible y determinado (y en consecuencia la
interpolación es única):

Consideremos t1, . . . , tn abscisas de interpolación y sea Sj(t) el polinomio
cúbico interpolador en [tj, tj+1] para cada j = 1, . . . , n− 1. Se ha de cumplir

1. Sj(tj) = r(tj) para cada j = 1, . . . , n− 1.

2. Sj+1(tj+1) = Sj(tj+1) para cada j = 1, . . . , n− 2.

3. S ′j+1(tj+1) = S ′j(tj+1) para cada j = 1, . . . , n− 2.

4. S ′′j+1(tj+1) = S ′′j (tj+1) para cada j = 1, . . . , n− 2.

Si además se satisface la siguiente condición de frontera

5. S ′′1 (t1) = S ′′n−1(tn) = 0

la función de interpolación se llama adaptador natural [8]

Una vez determinados los trazadores cúbicos Si(t) con i = 1, . . . , n − 1, se
define la función de interpolación o adaptador cúbico natural mediante:

S(t) =



S1(t) si t ∈ [t1, t2)

S2(t) si t ∈ [t2, t3)
...

Si(t) si t ∈ [ti, ti+1)
...

Sn−2(t) si t ∈ [tn−2, tn−1)

Sn−1(t) si t ∈ [tn−1, tn]

(2.1)
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Figura 2.2: Interpolación mediante trazadores cúbicos de las mediciones del
radio de de máxima velocidad del ciclón Florence tomadas entre las 18.00
horas del 10 de Septiembre del 2000 a las 18.00 horas del 19 de Septiembre
del mismo año en el norte del Océano Atlántico. En el caso del ciclón Flo-
rence, la base de datos es completa pero, a modo de ejemplo, se han extraido
4 mediciones quedando el registro completo en un 82 % y se ha procedido
a completarlo. La función representada es la función de interpolación. Los
puntos azules y verdes corresponden a las medidas correctas de la base de
datos. Las equis rojas indican los valores interpolados que sustituyen a los
valores exactos marcados en verde.
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Determinada la función de interpolación S(t) en I = [t1, tn], se define r̂|I(t) =
S(t).
Este proceso permite asignar valores bastante coherentes a cualquier abscisa
t dentro del intervalo I para la cual no se disponga de su radio en la base de
datos, pero puede ser que haya que completar valores fuera de ese intervalo,
es decir, extrapolar.
En caso de querer asignar valores a instantes t fuera del intervalo I, conside-
raré las prolongaciónes de S1(t) y de Sn−1(t) por la izquierda y por la derecha
respectivamente, por lo que defino

S(t) =


S1(t) si T0 ≤ t < t1

S(t) si t1 ≤ t ≤ tn

Sn−1(t) si tn < t ≤ T1

(2.2)

Finalmente, imponiendo que se respete el recorrido de la función r(t), puedo
definir la función r̂(t) a utilizar para rellenar los datos faltantes:

r̂(t) = máx{4, S(t)} (2.3)

La razón de asignar a los radios un valor mı́nimo de 4 millas naúticas se debe
a que es el valor mı́nimo registrado para un radio. Otra opción seŕıa asignar
un valor mı́nimo de 0 millas naúticas pero conceptualmente seŕıa sinónimo
de la desaparición del ciclón.
Una vez determinado el método de compleción de la base de datos, hay que
tener en cuenta la fiabilidad de tal compleción. Claro está que si un ciclón
posee una importante cantidad de registros, pongamos 20, y solamente falta
un dato (registro completo en un 95 %), se completa el registro y se acepta
sin reparos. En el otro extremo, si de los 20 datos se dispone sólo de 2 de
ellos (registro completo en un 10 %), parece natural rechazar este ciclón a
la hora de calcular ı́ndices en los que se utilice la información faltante ya
que la compleción no será nada fiable al disponer de muy poca información
a interpolar. Para casos intermedios la decisión puede ser más complicada y
discutible, razón por la que la forma de proceder será imponer un ĺımite de
aceptación. En este caso el ĺımite de aceptación impuesto a un ciclón para
completar su registro será estar completo en un 80 %.
Un aspecto importante a tener en cuenta al utilizar este método es que puede
generar un sesgo. (ver figura 2.6).
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2.3. Distribución de probabilidad del PDI, IEI

y OEI

El PDI de un ciclón tropical que tiene lugar entre los instantes t0 y t1 se
define [14] como

PDI =

∫ t1

t0

v3
max dt (2.4)

pero a efectos de computación, al tener registros discretos cada seis horas, su
cálculo se realiza mediante

PDI ≈
t1∑
t0

v3
max∆t (2.5)

Donde vmax es la máxima velocidad del viento (en ms−1) en cada instante de
tiempo.
Por otro lado defino el IEI (Inner Energy Index ) entre t0 y t1 como

IEI =

∫ t1

t0

v3
maxR

2
max dt (2.6)

pero, del mismo modo que en el caso del PDI, su cálculo se realiza mediante

IEI ≈
t1∑
t0

v3
maxR

2
max∆t (2.7)

siendo Rmax el radio (m) de máxima velocidad del viento (ver anexo).
Aśımismo defino el OEI (Outer Energy Index ) entre los instantes t0 y t1
mediante

OEI =

∫ t1

t0

v3
maxR

2
iso dt (2.8)

que como anteriormente su cálculo se realiza con la expresión

OEI ≈
t1∑
t0

v3
maxR

2
iso∆t (2.9)

con Riso el radio (m) de la isóbara exterior cerrada.
La diferencia en su denominación radica en la magnitud de los radios, siendo
los de máxima velocidad del viento menores que los de la isóbara exterior.
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Sea X la lista de los PDI correspondientes a una de las bases de datos. El
valor del PDI (también el valor del IEI y el del OEI) puede considerarse una
variable aleatoria, aśı que sea D(x) su función de densidad (respectivamente
F (x) su función de distribución). La densidad se puede definir en un valor y
considerando un intervalo [y, y+ dy) con dy → 0+ mediante el cociente de la
probabilidad de que el PDI esté en el intervalo dividida por la longitud del
intervalo, es decir,

D(y) ≡ P (y ≤ X < y + dy)

dy
(2.10)

La probabilidad del numerador se puede estimar mediante el número de
valores contenidos en el intervalo, n(y) = #{x ∈ X| y ≤ x < y + dy},
dividido por el número total de valores, N , aśı pues

D(y)dy = P (y ≤ X < y + dy) ≈ n(y)

N
(2.11)

En la práctica es necesario considerar dy > 0. Para representar gráfica-
mente la función densidad se utiliza el método conocido como logarithmic
binning [17][18], consistente en considerar una partición en la que cada valor
se obtiene multiplicando el anterior por una constante c obteniendo intervalos

I1 = [m, cm), I2 = [cm, c2m), I3 = [c2m, c3m), . . .

siendo m un valor inicial.
dyi es la longitud de Ii. Obsérvese que dyi = ci+1m − cim = ci(c − 1)m. En
este caso la constante escogida es c = 101/5 y valor inicial m = 108. Una vez
construida la partición, como si de un histograma se tratase, se consideran
los vértices del poĺıgono de frecuencias (ver figuras 2.32.42.5).
La representación de las estimaciones correspondientes a las funciones de
densidad indican que en una parte de su dominio éstas pueden ajustar a una
recta, caracteŕıstica propia de las funciones potenciales, es decir, funciones
de la forma f(x) = Cx−α, C ∈ R ya que log(f(x)) = log(C)− α log(x).
Las desviaciones a la ley de potencias para valores bajos y altos de la variable
pueden deberse, respectivamente, a datos incompletos y al tamaño finito de
las cuencas.
Cabe destacar que las funciones de densidad de tipo potencial son muy uti-
lizadas en fenómenos cŕıticos autoorganizados [7], aśı como fenómenos f́ısicos,
biológicos, económicos, demográficos [18],...

Es inmediato ver que si una función densidad és de la forma f(x) = Cx−α y
está definida en un intervalo [A,B], su distribución es:

F (x) =

∫ x

A

Cy−αdy =
C

1− α
(x1−α − A1−α)

17



Figura 2.3: Estimación de la función densidad, D(x), del PDI para el norte
del Océano Atlántico y para el noreste del Paćıfico.

Figura 2.4: Estimación de la función densidad del IEI para el norte del
Océano Atlántico y para el noreste del Paćıfico.
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Figura 2.5: Estimación de la función densidad del OEI para el norte del
Océano Atlántico y para el noreste del Paćıfico.

y la función complementaria de la distribución es:

G(x) =

∫ B

x

Cy−αdy =
C

1− α
(B1−α − x1−α)

La constante C tiene efecto normalizador de la función D(x), por lo que
depende del intervalo de ajuste. Para determinar su valor simplemente hay
que imponer que la ley de potencias D(x) es una función de densidad definida
en el intervalo [A,B] y por tanto su integral en ese intervalo vale 1:

1 =

∫ B

A

Cx−αdx =

[
Cx1−α

1− α

]B
A

= C
B1−α − A1−α

1− α
⇒ C =

1− α
B1−α − A1−α

sea r = A
B

. Se obtiene

C =
1− α

1
Bα−1 − 1

Aα−1

=
(1− α)Aα−1(
A
B

)α−1 − 1
=

(α− 1)Aα−1

1− rα−1

Se concluye que la función densidad es

D(x) =
(α− 1)Aα−1

1− rα−1
x−α (2.12)

y por lo tanto

F (x) =
x1−α − A1−α

B1−α − A1−α =
1−

(
A
x

)α−1

1− rα−1
(2.13)
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Figura 2.6: Aproximación de la función de densidad del PDI para el norte
del Océano Atlántico considerando solamente aquellos ciclones que se utilizan
para el cálculo del OEI (en la mayoŕıa de ellos se ha completado el registro
de datos). Se puede observar que se reproduce la parte correspondiente a los
fenómenos con menor PDI (ver figura 2.3). La conclusión es que el método
de compleción y selección de casos para la estimación de la distribución del
OEI es sesgado. Esta conclusión es igualmente válida para el IEI ya que en la
estimación de su distribución participan practicamente los mismos ciclones.

G(x) =
B1−α − x1−α

B1−α − A1−α =

(
A
x

)α−1 − rα−1

1− rα−1
(2.14)

Tal y como pasa con la función de densidad, la función de distribución y su
complementaria han de estimarse a partir de los datos disponibles mediante
la función de distribución emṕırica (ver fórmula 2.20).

2.4. Estimación de la ley de potencias

Llegados a este punto, para determinar la ley de potencias hay que estimar el
exponente α. La estimación de α depende de los datos comprendidos dentro
del intervalo de ajuste, aśı que es natural buscar aquel exponente que sea el
más plausible según los datos, es decir, α se estima por máxima verosimili-
tud.
Téngase en cuenta que el procedimiento utilizado para estimar gáficamente
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las distribuciones no afecta a la estimación de máxima verosimilitud, simple-
mente se ha utilizado como ilustración visual.
Sea NAB el número de datos comprendidos en el intervalo de ajuste [A,B].
La función de máxima verosimilitud es

V (x1, . . . , xNAB ;α) =

NAB∏
i=1

D(xi) = CNAB

NAB∏
i=1

x−αi

y su logaritmo es

L(x1, . . . , xNAB ;α) = NAB log(C)−α
NAB∑
i=1

log(xi) ∝ log(C)− α

NAB

NAB∑
i=1

log(xi) =

= log

(
(α− 1)Aα−1

1− rα−1

)
− α

NAB

NAB∑
i=1

log(xi) =

= log

(
α− 1

1− rα−1

)
+ (α− 1) log(A)− α

NAB

NAB∑
i=1

log(xi)

Fijados A i B se estima α mediante αd cumpliendo

∀α,L(x1, . . . , xNAB ;α) ≤ L(x1, . . . , xNAB ;αd)

La varianza del estimador [5] viene dada por la fórmula

σ2
αd

=
1

NAB

{
1

(αd − 1)2
− rαd−1 log(r)2

(1− rαd−1)2

}−1

(2.15)

En el caso en que B → +∞ (y equivalentemente r → 0) si α > 1, la función
de verosimilitud que se obtiene es

ĺım
r→0
L(x1, . . . , xNAB ;α) = log (α− 1) + (α− 1) log(A)− α

N≥A

N≥A∑
i=1

log(xi)

(2.16)
cuyo máximo viene dado por

αd = 1 +


 1

N≥A

N≥A∑
i=1

log(xi)

− log(A)


−1

y la varianza queda

ĺım
r→0

σ2
αd

=
(αd − 1)2

N≥A
(2.17)

En este caso la ley potencial no está truncada superiormente, aunque este
caso particular no se utilizará para el ajuste. El no truncamiento impide
encontrar el estimador anaĺıticamente y el método deviene más complicado.
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2.5. Determinación del intervalo de ajuste

En la sección previa se ha considerado fijo el intervalo de definición [A,B],
pero tales valores A y B han de ser determinados de alguna forma en el
sentido de que la ley de potencias se ajuste “al máximo” en él. Es natural
intentar que el intervalo de ajuste de la ley sea lo más extenso posible [10].
Para determinar el intervalo se ha considerado una partición S caracterizada
por la relación {

∀si ∈ S,
si
si−1

=
30
√

10

}
o dicho de otro modo, la partición divide cada década en 30 partes iguales.
Sean A,B ∈ S con A < B. Como se ha comentado anteriormente, maxi-
mizando la función de verosimilitud se obtiene αd y mediante un contraste
de bondad de ajuste se puede valorar si el ajuste de la ley de potencias en el
intervalo propuesto es aceptable o no.
Finalmente, de entre todos los intervalos [Ai, Bi] aceptables, se escoge el in-
tervalo [A,B] que cumpla B

A
= máxAi,Bi∈S

Bi
Ai

.
Un intervalo será considerado aceptable en caso que el p-valor obtenido en
el contraste de bondad de ajuste no sea inferior al 30 %.

2.6. Contraste de Bondad de Ajuste de Kolmogorov-

Smirnov

El contraste de Bondad de ajuste utilizado para determinar el intervalo de
ajuste [A,B] es el contraste de Kolmogorov-Smirnov (KS) [13][19]:H0 : F (x) =

1−(Ax )
αd−1

1−rαd−1

H1 : F (x) 6= 1−(Ax )
αd−1

1−rαd−1

(2.18)

Donde el estad́ıstico de Kolmogorov-Smirnov es

D ≡ sup
A≤x≤B

|Fd(x)− F (x)| (2.19)
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siendo Fd(x) la distribución emṕırica de los datos, es decir, la aproximación
a la función de distribución definida a partir de los datos disponibles:

Fd(x) =


0 si x < x1

i
NAB

si xi ≤ x < xi+1 con i ∈ {1, . . . , NAB − 1}
1 si xNAB ≤ x

(2.20)

y x1 < x2 < · · · < xNAB son los datos ordenados.

Para decidir la aceptación del ajuste hay que recurrir al p-valor del estad́ıstico
D ya que éste es la probabilidad de no aceptar la hipótesis nula siendo cierta,
o sea la probabilidad de cometer un error de tipo I . Si bien el p-valor puede
ser obtenido directamente en R mediante la instrucción ks.test [3], éste no se
puede utilizar ya que la distribución sometida al contraste es precisamente la
que se ha construido a partir de los datos para que sea la que mejor se ajusta
a ellos. Para evitar este problema se calcula el p-valor mediante el Método
de Montecarlo [22]. La idea consiste en estimar la probabilidad de que el
estad́ıstico Dsim que se puede obtener de una muestra de la ley de potencias
que se ha ajustado sea mayor o igual que D, utilizando muestras aleatorias
de la ley de potencias.

2.7. Cálculo del p-valor de KS

Sea X el conjunto total de datos, [A,B] el intervalo de ajuste de la ley de
potencias, NAB = #{x ∈ X|A ≤ x ≤ B}, αd el exponente máximo verośımil
de la ley de potencias ajustada al intervalo [A,B] y D el estad́ıstico asociado
al contraste de Kolmogorov-Smirnov. El cálculo del p-valor del contraste [9]
mediante Montecarlo consiste en simular k muestras aleatorias de longitud
NAB bajo la hipótesis nula y ajustar una ley de potencias a cada una de ellas
obteniendo a su vez un estad́ıstico de Kolmogorov-Smirnov Dsim. El p-valor,
que se define como la probabilidad de que el estad́ıstico sea mayor o igual
que D si la hipótesis nula es cierta, se puede estimar mediante la expresión

p =
Número de simulaciones con Dsim ≥ D

Número de simulaciones
(2.21)

El número v de simulaciones cumpliendo Dsim ≥ D es una variable aleatoria
binomial B(k, p) y por tanto tiene desviación t́ıpica σv =

√
kp(1− p). De

acuerdo a la ecuación 2.21, p = v
k

y por tanto σp = σv
k

=
√

p(1−p)
k

[11].
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σp permite concretar el número de simulaciones a realizar si se pretende limi-
tar la incertidumbre del p-valor siempre y cuando el valor de p sea intermedio.
En el presente trabajo, el cálculo del p-valor y su desviación se realiza me-
diante k = 1000 simulaciones.
Sean u1, . . . , uNAB los NAB valores simulados de una variable aleatoria uni-
forme en [0, 1]. Cada muestra aleatoria Y = {y1, . . . , yNAB} se construye
simulando la ley de potencias mediante la fórmula

y =
A

[1− (1− rαd−1)u]1/(αd−1)
(2.22)

que se puede deducir a partir de la función de distribución F (x) imponiendo
F (y) = u siendo u el valor de una variable aleatoria uniforme en [0, 1]:

F (y) = u⇒ y1−αd − A1−αd

B1−αd − A1−αd
= u⇒ y1−αd = u(B1−αd − A1−αd) + A1−αd ⇒

y =
1

[u(B1−αd − A1−αd) + A1−αd ]1/(αd−1)
=

A

[u(rαd−1 − 1) + 1]1/(αd−1)

2.8. Comparación de las distribuciones de pro-

babilidad

Sean αPDI, αOEI y αIEI los exponentes de las leyes de potencias para cada
ı́ndice en una de las zonas de estudio. Considero ahora el siguiente contraste
de hipótesis: {

H0 : αPDI = αOEI = αIEI

H1 : No hay igualdad entre los 3 exponentes

Tal y como se muestra en [5], el exponente estimado de la ley de potencias
sigue una distribución normal de media αd y varianza σ2

αd
.

Considero ahora los intervalos al 95 % de confianza de cada uno de los expo-
nentes de las distribuciones ajustadas a los PDI, los IEI y a los OEI en cada
una de las zonas (ver figura 3.4).
El contraste de hipótesis puede llevarse a cabo a partir de la intersección de
los intervalos de confianza: en caso de que el intervalo obtenido en la inter-
sección de los tres intervalos de confianza para los exponentes sea no vaćıo,
se concluye la aceptación de la hipótesis nula (se acepta H0). Si en cambio el
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intervalo de intersección es vaćıo, no se acepta la hipótesis nula.
En caso de no aceptar H0, continuaré con la comparación entre las distribu-
ciones de los ı́ndices pero de dos en dos. Dicho de otro modo consideraré los
constrastes de la forma {

H0 : α1 = α2

H1 : α1 6= α2

siendo α1 y α2 los exponentes de las leyes de potencias comparadas.

25



3 Resultados

Distribuciones de probabilidad ajustadas

Los resultados obtenidos en el ajuste de las leyes de potencias (ver cuadro
3.1) indican que el PDI (m3s−2) en el norte del Atlántico se ajusta a

D(x) = 3.692x−1.125 si x ∈ [1.08 · 109, 1.47 · 1011] (3.1)

mientras que en el noreste del Paćıfico,

D(x) = 79.034x−1.252 si x ∈ [1.47 · 109, 1011] (3.2)

Los resultados en los ajustes obtenidos para el ajuste del IEI (m5s−2) (cuadro
3.2) son

D(x) = 1.34 · 10−2x−0.938 si x ∈ [3.41 · 1018, 3.16 · 1020] (3.3)

en el caso del norte Atlántico, mientras que para el noreste del Paćıfico:

D(x) = 3.3 · 1011x−1.615 si x ∈ [9.26 · 1018, 2.15 · 1020] (3.4)

Finalmente, los resultados para los ajustes del OEI (m5s−2) (cuadro 3.3) han
sido

D(x) = 1.3x−1.044 si x ∈ [6.31 · 1019, 4.64 · 1022] (3.5)

D(x) = 1.681x−1.047 si x ∈ [5.41 · 1019, 1.71 · 1022] (3.6)

para el norte del Océano Atlántico y noreste del Océano Paćıfico respectiva-
mente.

Destaca el hecho de que las estimaciones de la distribución del PDI son
consistentes con las obtenidas en [10] por Corral, Ossó y Llebot, utilizando
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otras bases de datos. Un intervalo de confianza del 95 % para el exponente del
ajuste obtenido por Corral et al. en el norte del Atlántico es [1.0724, 1.3076],
mientras que en el este del Paćıfico el intervalo es [1.077, 1.273]. Al compa-
rarlos con los obtenidos aqúı (ver cuadro 3.4), acepto coincidencia.

Comparativamente, la ley de potencias estimada para el OEI se ajusta mejor
que la obtenida en el caso de IEI en el sentido que el rango de ajuste B

A
es

mayor (ver figura 3.2). La similitud entre las expresiones que definen ambos
ı́ndices hace creer que su comportamiento será similar, pero hay una dife-
rencia fundamental que afecta a la caracterización de estos ı́ndices aśı como
al proceso de completación de datos: se ha supuesto que las funciones que
definen los radios respecto del tiempo son funciones continuas.
En el caso del radio de la isobara exterior cerrada del huracán la evolu-
ción es ciertamente continua mientras que para el caso del radio de máxima
velocidad del viento, no necesariamente es aśı. Puede sudecer que haya un
radio distinto del de velocidad máxima cuya velocidad del viento iguale a
la máxima velocidad en un determinado instante y a continuación la supere
convirtiéndose en el nuevo radio de velocidad máxima. Si se produce este
fenómeno de discontinuidad en la función radio de velocidad máxima, su
comportamiento es más impredecible que en el caso de la función radio de
isobara exterior cerrada. Como consecuencia, la compleción de los datos en
el caso de los radios de máxima velocidad será, en general, menos eficiente
que la de los radios de isobara exterior cerrada.

Comparación entre las distribuciones de prob-

abilidad

En el caso del Océano Atlántico la intersección de los intervalos de confianza
(cuadro 3.4) de cada uno de los exponentes de las leyes de potencias es el
intervalo [1.0425, 1.0829], por tanto se puede aceptar la hipótesis de que las
tres leyes de potencias tienen el mismo exponente. Dicho de otro modo, se
acepta equivalencia entre los distintos ı́ndices. Para el Océano Paćıfico la
situación es un poco distinta ya que la intersección de los tres intervalos de
confianza es vaćıa. Si se intersecan los intervalos de confianza de dos en dos (o
lo que es lo mismo, se procede a decidir sobre los contrastes de hipótesis que
comparan pares de distribuciones), se puede aceptar que todas las parejas de
exponentes son iguales excepto en el caso de D(OEI) y D(IEI).
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Figura 3.1: Representación simultánea de las funciones complementarias a
las funciones de distribución emṕıricas y las obtenidas a partir del ajuste de la
ley de potencias. La ĺıneas verdes corresponden a la distancia de Kolmogorov-
Smirnov (el estad́ıstico D).
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Figura 3.2: Representación simultánea de las funciones de densidad emṕıricas
aproximadas y las obtenidas a partir del ajuste de la ley de potencias.
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Océano Atlántico Océano Paćıfico
N 303 140
A 1.08 · 109 1.47 · 109

B 1.47 · 1011 1 · 1011

NAB 284 121
αd 1.125 1.252
σαd 4.22 · 10−2 7.67 · 10−2

C 3.692 79.034
D 4.096 · 10−2 6.393 · 10−2

p 0.341 0.311
σp 1.499 · 10−2 1.464 · 10−2

Cuadro 3.1: Resultados obtenidos en el ajuste de sendas leyes de potencias
para los datos del norte del Océano Atlántico y del noreste del Paćıfico. N
es el número total de ciclones con PDI calculado. A y B (en m3s−2) son los
extremos del intervalo de ajuste óptimo. NAB es el número de ciclones cuyo
PDI está comprendido entre A y B. αd es el exponente de la ley de potencias
ajustada, cuya desviación t́ıpica es σαd . C es la constante que normaliza la
ley de potencias en el intervalo [A,B]. D corresponde al valor del estad́ıstico
de Kolmogorov-Smirnov del ajuste y p se refiere al p-valor para A y B fijados.
Finalmente, σp es la desviación t́ıpica del p-valor.

Océano Atlántico Océano Paćıfico
N 120 57
A 3.41 · 1018 9.26 · 1018

B 3.16 · 1020 2.15 · 1020

NAB 107 51
αd 0.938 1.615
σαd 7.41 · 10−2 1.68 · 10−1

C 1.338 · 10−2 3.3 · 1011

D 6.628 · 10−2 1.013 · 10−1

p 0.328 0.305
σp 1.485 · 10−2 1.456 · 10−2

Cuadro 3.2: Del mismo modo que en el cuadro 3.1, en esta tabla se recogen
los resultados correspondientes al ajuste del IEI. En este caso A y B en
m5s−2.
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Océano Atlántico Océano Paćıfico
N 128 62
A 6.31 · 1019 5.41 · 1019

B 4.64 · 1022 1.71 · 1022

NAB 121 60
αd 1.044 1.047
σαd 4.78 · 10−2 7.78 · 10−2

C 1.3 1.68
D 6.170 · 10−2 8.511 · 10−2

p 0.325 0.346
σp 1.459 · 10−2 1.504 · 10−2

Cuadro 3.3: Resultados correspondientes al ajuste del OEI en cada una de
las dos zonas. Como con el IEI, A y B en m5s−2.

Atlántico Paćıfico
PDI 1.0425 1.2081 1.1019 1.4026
OEI 0.9503 1.1377 0.8945 1.1996
IEI 0.7925 1.0829 1.2847 1.9450

Cuadro 3.4: Intervalos al 95 % de confianza de los exponentes de las leyes de
potencias ajustadas del PDI, el OEI y el IEI en las dos zonas de estudio.
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4 Conclusiones

La base de datos conteniendo la información del noreste del Océano Paćıfico
es demasiado pequeña como para obtener resultados fiables. De todos modos
es remarcable el acuerdo en los resultados con los obtenidos por Corral et al.
utilizando distintas bases de datos, datos correspondientes a años distintos y
con nuevos programas que han sido desarrollados espećıficamente para este
proyecto.

El ajuste de las distribuciones de probabilidad del tipo ley de potencias del
PDI, el OEI y el IEI no basta para considerar la posibilidad de que no se
produzca una influencia significativa del calentamiento global en las intensi-
dades de los huracanes que se tienen lugar en el noreste del Océano Paćıfico
y en el norte del Océano Atlántico. Para poder valorar esa posibilidad seŕıa
conveniente realizar un estudio detallado por años. Esta es una opción de
estudio en un futuro inmediato.

La falta de certeza en la continuidad de la función radio de máxima ve-
locidad del viento hace que al aproximar los valores de los ı́ndices en tiempo
discreto sea aconsejable valorar la enerǵıa del huracán mediante el OEI cuyos
resultados, junto con los del PDI, han sido satisfactorios (a pesar de aparente
sesgo en la selección de datos).

Al comparar la disipación (PDI) con la enerǵıa (OEI) se puede aceptar que
ambas distribuciones de probabilidad tienen el mismo exponente y por tanto
se acepta equivalencia entre ambas.

El método de compleción de las bases de datos abre otra opción de trabajo
futuro: un estudio sistemático que determine el porcentage de compleción
asumible para minimizar el sesgo en la selección de datos.
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Editorial Iberoamérica, S.A. de C.V. (1996)

[9] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data.SIAM Rev., 51, 661-703 (2009)
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1 Relación entre el OEI, el IEI
y la enerǵıa de un ciclón tropical

En un fenómeno ciclónico, la cantidad de enerǵıa cinética generada es igual
a la que se disipa por la fricción. La potencia disipada en cualquier instante
se estima por medio de la fórmula [12] [15]

P (t) =

∫
ρCDν

3d2r

donde t es el tiempo, r se refiere a las coordenadas sobre la superf́ıcie terres-
tre, ρ = ρ(r, t) es la densidad del aire, CD = CD(r, t) es el coefficiente de
fricción y ν = ν(r, t) corresponde al módulo de la velocidad del viento.
Esta fórmula puede simplificarse. En [15] Emanuel tomó como valores repre-
sentativos para la densidad del aire y el coeficiente de fricción, ρ = 1 Kg m−3

y CD = 2 · 10−3. Además consideró un sencillo perfil funcional para ν:

ν(r, t) = vm(t)f

(
r

R(t)

)
con vm(t) como la máxima velocidad del viento dentro del fenómeno en el
instante t, R(t) algún tipo de radio caracteŕıstico del ciclón y f una función
de escala común para todos los ciclones.
Se tiene,

P (t) =

∫
ρCDν

3d2r ≈ ρCDv
3
m(t)

∫
f 3

(
r

R(t)

)
d2r =

considérese ahora el cambio de variable u = r
R(t)

, obteniéndose

P (t) ≈ P̂ (t) = ρCDv
3
m(t)R2(t)

∫
f 3(u) d2u ∝ v3

m(t)R2(t)

36



se concluye pues que

E ≈
∫
P̂ (t) dt ∝

∫
v3
m(t)R2(t) dt

y esta última expresión corresponde al IEI si R(t) es el radio de máxima
velocidad del viento y al OEI si es el radio de la isobara exterior.
Conviene destacar que la constante de proporcionalidad no es de interés para
el propósito del presente trabajo.

37



2 Código fuente en R

velocidad calcula la velocidad en m · s−1 a partir de la velocidad en
nudos.

velocidad=function(kt){

return(0.5144444444*kt)}

distancia calcula longitudes en metros a partir de las longitudes en
millas náuticas.

distancia=function(nm){

return(1852*nm)}

MLF.eq devuelve el exponente máximo verośımil, su desviación t́ıpica
y su verosimilitud. A y B son los ĺımites del intervalo de ajuste. l es la
lista de valores del ajuste. ainf y asup son los ĺımites entre los que se
determina el exponente a.

MLF.eq=function(A,B,l,n,ainf,asup){

l=l[common(l>=A,l<=B)];

l=l[sort.list(l)];

N=length(l);

r=A/B;

M=maximization(A,B,l,n,ainf,asup);

a=M[1];

ver=M[2];

s2=var.alpha(a,r,N);

return(c(a,sqrt(s2),ver))}

var.alpha calcula la varianza del exponente a. r es la razón de los ex-
tremos del intervalo de ajuste y N es el número de datos utilizados
para estimar el exponente.
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var.alpha=function(a,r,N){

return((1/(1/(a-1)^2-

(r^(a-1))*(log(r)^2)/((1-r^(a-1))^2)))/N)}

maximization maximiza el logaritmo de la función de verosimilitud. A
y B son los ĺımites del intervalo de ajuste, l es la lista de valores del
ajuste, ainf y asup son los ĺımites entre los que se maximiza la función.
Esta función devuelve el máximo y su imagen para el logaritmo de la
función de verosimilitud.

maximization=function(A,B,l,ainf,asup){

r=A/B;

v=common(l<=B,l>=A);

l=l[v];

N=length(l);

F=function(x){

return(log((x-1)/(1-r^(x-1)))-

(x/N)*sum(log(l))+(x-1)*log(A))};

values=optimize(F,interval=c(ainf,asup),maximum=TRUE,

tol=1e-8);

return(c(values$maximum,values$objective))}

common es una función muy simple que devuelve un vector lógico in-
dicando los elementos comunes de los vectores v y w.

common=function(v,w){

return(as.logical(v*w))}

fit es la función principal y calcula el ajuste de la ley de potencias.
LISTA es la lista de valores a ajustar, ainf y asup son los valores entre
los que se busca el exponente de la ley de potencias, min.PV es el
valor mı́nimo que ha de tener el p-valor de un ajuste para ser aceptado
y particion es el número de intervalos en que se divide cada década en
la partición para determinar el intervalo de ajuste.

fit=function(LISTA,ainf,asup,min.PV=0.3,particion=30){

LISTA=LISTA[sort.list(LISTA)];

I1=10^(floor(min(log10(LISTA))));

I2=max(LISTA);

S.LISTA=c(I1);

while(S.LISTA[length(S.LISTA)]<I2){
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S.LISTA=c(S.LISTA,S.LISTA[length(S.LISTA)]*10^(1/particion))};

V=S.LISTA<=min(LISTA);

S.LISTA=S.LISTA[S.LISTA>=max(S.LISTA[V])];

D=1e10;

RANGE=0;

PV=-1;

P.sigma=0;

ListA=S.LISTA;

ListB=S.LISTA;

M=length(LISTA);

NewA=0;

NewB=0;

alpha=0;

sigma=0;

ver=0;

casos=0;

for(j in 1:(length(ListA)-1)){

A=ListA[j];

v2=LISTA>=A;

for(k in (j+1):length(ListB)){

B=ListB[k];

print(c(A,B,j,k));

v1=LISTA<=B;

v=common(v1,v2);

N=sum(v);

if(N>10){

R=B/A;

values=MLF.eq(A,B,LISTA[v],100,ainf,asup);

actual=values[1];

sigma.actual=values[2];

ver.actual=values[3];

D.actual=fit.ks.2(LISTA,A,B,actual);

if(R>RANGE){

Nsim=1000;

PV.actual=MCsim(A,B,ainf,asup,actual,LISTA,Nsim);

if(PV.actual>0){

P.sigma.actual=PV.actual*sqrt((1-PV.actual)/(PV.actual*Nsim))}

else{P.sigma.actual=0};

if(PV.actual>min.PV){

D=D.actual;

NewA=A;
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NewB=B;

PV=PV.actual;

P.sigma=P.sigma.actual;

alpha=actual;

sigma=sigma.actual;

ver=ver.actual;

casos=N;RANGE=R}}}}};

return(c(NewA,NewB,alpha,sigma,D,PV,P.sigma,casos))}

fit.2 es una función auxiliar que calcula el ajuste de las muestras aleato-
rias generadas de la ley de potencias.
LISTA es el vector de valores a ajustar. ainf y asup son los ĺımites entre
los que determinar el exponente del ajuste. A y B son los extremos del
intervalo de ajuste de la ley de potencias a partir de los datos emṕıricos.

fit.2=function(LISTA,ainf,asup,A,B){

LISTA=LISTA[sort.list(LISTA)];

D=1e10;

S=c(A,B);

ListA=S;

ListB=S;

M=length(LISTA);

for(j in 1:(length(ListA)-1)){

A=ListA[j];

v2=LISTA>=A;

for(k in j:length(ListB)){

B=ListB[k];

v1=LISTA<=B;

v=common(v1,v2);

N=sum(v);

if((B/A)>20){

values=MLF.eq(A,B,LISTA[v],100,ainf,asup);

actual=values[1];

sigma.actual=values[2];

ver.actual=values[3];

D.actual=fit.ks.2(LISTA,A,B,actual);

if(D.actual<D){

D=D.actual;

NewA=A;

NewB=B;

alpha=actual;
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sigma=sigma.actual}}}};

return(D)}

fit.ks.2 es otra función auxiliar. Ésta calcula el estad́ıstico de Kolmogorov-
Smirnov para las muestras aleatorias generadas de la ley de potencias.
LISTA es el vector de datos ajustados. A y B son los extremos del in-
tervalo de ajuste de la ley de potencias a partir de los datos emṕıricos.
a es el exponente estimado para el ajuste.

fit.ks.2=function(LISTA,A,B,a){

v1=LISTA<=B;

v2=LISTA>=A;

w=sum(LISTA<A);

N=length(LISTA);

v=common(v1,v2);

F=function(x){return((x^(1-a)-A^(1-a))/(B^(1-a)-A^(1-a)))};

test=ks.test(LISTA[v],F,alternative="two.sided");

D=test$statistic;

return(c(D))}

power.law es una función que genera muestras aleatorias de la ley de
potencias de exponente a y definida entre A y B a partir de valores de
una variable aleatoria uniforme en [0,1].

power.law=function(A,B,a){

r=A/B;

return(A/(1-(1-r^(a-1))*runif(1))^(1/(a-1)))}

MCsim calcula el p-valor del ajuste de la ley de potencias en [A,B] con
exponente a mediante montecarlo. ainf y asup son los ĺımites entre
los que determinar el exponente del ajuste de las muestras aleatorias.
LISTA es el vector de datos emṕıricos. n es el número de simulaciones
a efectuar.

MCsim=function(A,B,ainf,asup,a,LISTA,n){

N=length(LISTA);

v1=LISTA<=B;

v2=LISTA>=A;

v=common(v1,v2);

NAB=sum(v);

dvalues=c();
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D=fit.ks.2(LISTA,A,B,a);

m=0;

for(i in 1:n){

data=c();

for(j in 1:NAB){

data=c(data,power.law(A,B,a))};

dvalues=c(dvalues,fit.2(data,ainf,asup,A,B))};

return(sum(dvalues>=D)/n)}

constante calcula la constante de normalización de la ley de potencias
ajustada a [A,B] con exponente a.

constante=function(a,A,B){

r=A/B;

return(((a-1)*A^(a-1))/(1-r^(a-1)))}

splines interpola y extrapola utilizando trazadores cúbicos.
X1 es el vector de abscisas de los puntos a interpolar. Y1 es el vector
de ordenadas de los puntos a interpolar. Z1 es el vector de abscisas a
evaluar en la interpolación.

splines=function(X1,Y1,Z1){

X=X1[sort.list(X1)];

Y=Y1[sort.list(X1)];

N=length(Y);

COEF=matrix(rep(0,4*N),ncol=4);

COEF[,1]=Y[1:N];

H=c();

for(i in 1:(N-1)){H=c(H,X[i+1]-X[i])};

ALFA=c(0);

for(i in 2:(N-1)){

ALFA=c(ALFA,3*(Y[i+1]-Y[i])/H[i]-3*(Y[i]-Y[i-1])/H[i-1])};

l=c(1);

mu=c(0);

z=c(0);

for(i in 2:(N-1)){

l=c(l,2*(X[i+1]-X[i-1])-H[i-1]*mu[i-1]);

mu=c(mu,H[i]/l[i]);

z=c(z,(ALFA[i]-H[i-1]*z[i-1])/l[i])};

l=c(l,1);

z=c(z,0);
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for(j in (N-1):1){

COEF[j,3]=z[j]-mu[j]*COEF[j+1,3];

COEF[j,2]=(COEF[j+1,1]-COEF[j,1])/H[j]-

H[j]*(COEF[j+1,3]+2*COEF[j,3])/3;

COEF[j,4]=(COEF[j+1,3]-COEF[j,3])/(3*H[j])};

evaluacion=function(v,L,xj){

s=L[1];

for(i in 2:length(L)){s=s+L[i]*(v-xj)^(i-1)};

return(s)};

R=c();

for(i in 1:length(Z1)){

if(Z1[i]<X[1]){R=c(R,evaluacion(Z1[i],COEF[1,],X[1]))};

if(Z1[i]>X[N]){R=c(R,evaluacion(Z1[i],COEF[N-1,],X[N-1]))};

if(Z1[i]>=X[1] && Z1[i]<=X[N]){

A=max(which(X<=Z1[i]));

R=c(R,evaluacion(Z1[i],COEF[A,],X[A]))}};

return(R)}

unificar concatena los vectores contenidos en la lista de vectores L.

unificar=function(L){

R=c();

N=length(L);

for(i in 1:N){

for(j in 1:length(L[[i]])){R=c(R,L[[i]][j])}};

return(R)}

grafico.densidad representa la estimación de la función de densidad de
una lista de valores mediante logarithmic binning.
LISTA es la lista total de valores a tener en cuenta para aproximar la
función densidad. titulo, ejex y ejey son el t́ıtulo del gráfico, el del eje
X y el del eje Y , respectivamente.
Si ajuste=TRUE, se representa el ajuste de la ley de potencias entre A
y B con exponente a.

grafico.densidad=function(LISTA,titulo=" ",ejex=" ",

ejey=" ",ajuste=FALSE,A=0,B=0,a=0){

I1=10^(floor(min(log10(LISTA))));

I2=max(LISTA);

W=c(I1);

while(W[length(W)]<I2){

44



W=c(W,W[length(W)]*10^(1/5))};

V=W<=min(LISTA);

W=W[W>=max(W[V])];

W2=c();

D=c();

for(i in 2:length(W)){

W2=c(W2,sqrt(W[i-1]*W[i]));

v=common(LISTA>W[i-1],LISTA<=W[i]);

D=c(D,sum(v)/(W[i]-W[i-1]))};

D=D/length(LISTA);

for(i in 1:length(D)){if(D[i]==0){D[i]=NA}};

X0=floor(min(log10(LISTA)));

XF=ceiling(max(log10(LISTA)));

Y0=floor(min(log10(D[is.na(D)==FALSE])));

YF=ceiling(max(log10(D[is.na(D)==FALSE])));

if(ajuste==FALSE){

grafico=plot(log10(W2[is.na(D)==FALSE]),

log10(D[is.na(D)==FALSE]),main=titulo,

xlab=ejex,ylab=ejey,axes=FALSE,type="o",col="red",

pch=23,xlim=c(X0,XF),ylim=c(Y0,YF));

axis(1,at=c(X0:XF),labels=10^c(X0:XF));

axis(2,at=c(Y0:YF),labels=10^c(Y0:YF));

points(c(X0,X0,XF,XF,X0),c(Y0,YF,YF,Y0,Y0),type="l")};

if(ajuste==TRUE){

intercept=log10(constante(a,A,B));

grafico=plot(log10(W2[is.na(D)==FALSE]),

log10(D[is.na(D)==FALSE]),main=titulo,

xlab=ejex,ylab=ejey,axes=FALSE,type="o",col="red",

pch=23,xlim=c(X0,XF),ylim=c(Y0,YF));

axis(1,at=c(X0:XF),labels=10^c(X0:XF));

axis(2,at=c(Y0:YF),labels=10^c(Y0:YF));

points(c(X0,X0,XF,XF,X0),c(Y0,YF,YF,Y0,Y0),type="l");

lines(c(log10(A),log10(B)),

c(intercept-a*log10(A),intercept-a*log10(B)))};

return(grafico)}

grafico.ajuste representa gráficamente la función complementaria a la
función de distribucion emṕırica, aśı como la ajustada.
LISTA es la lista total de valores a representar. [A,B] es el intervalo
de ajuste. a es el exponente obtenido en el ajuste. D es el estad́ıstico
de Kolmogorov-Smirnov del ajuste. titulo, ejex y ejey son el t́ıtulo del
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gráfico, el del eje X y el del eje Y, respectivamente.

grafico.ajuste=

function(LISTA,A,B,a,D,titulo=" ",ejex=" ",ejey=" "){

x=c(A,LISTA[common(LISTA<=B,LISTA>=A)],B);

N=length(LISTA);

y=1-c(1:N)/N;

k1=sum(LISTA<A);

k2=sum(LISTA>B);

F=function(x,A,B,a){

return(k1/N+

((N-k1-k2)/N)*(x^(1-a)-A^(1-a))/(B^(1-a)-A^(1-a)))};

X0=floor(min(log10(LISTA)));

XF=ceiling(max(log10(LISTA)));

grafico=plot(log10(LISTA),y,col="red",main=titulo,

xlab=ejex,ylab=ejey,axes=FALSE,xlim=c(X0,XF),ylim=c(0,1));

axis(1,at=c(X0:XF),labels=10^c(X0:XF));

axis(2,at=c(0:10)/10,labels=c(0:10)/10);

points(c(X0,X0,XF,XF,X0),c(0,1,1,0,0),type="l");

lines(log10(x),1-F(x,A,B,a),type="l",lwd=3);

lines(log10(x),1-F(x,A,B,a)+D,col="green",lwd=3);

lines(log10(x),1-F(x,A,B,a)-D,col="green",lwd=3);

return(grafico)}

imputacion completa los radios que faltan en la base de datos indicada
en función de los criterios de restricción que se indiquen.
TABLA es la base de datos (atlantico o pacifico) a usar. prop.max es
la proporción máxima admitida en la imputación de datos faltantes
para los radios de máxima velocidad. prop.iso es la proporción máxima
admitida en la imputación de datos faltantes para los radios de las
isobaras exteriores.
Esta rutina devuelve los vectores con los nuevos radios aśı como vectores
W y V indicando los huracanes imputados.

imputacion=function(TABLA,prop.max=0.2,prop.iso=0.2){

N=length(TABLA[,1])

L1=c(1);

k=1;

for(i in 2:N){

if(TABLA$name[i]!=TABLA$name[i-1]){k=k+1};L1=c(L1,k)}

na=L1[length(L1)];
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RADIOS.MAX=list();

RADIOS.ISO=list();

for(i in 1:na){

RADIOS.MAX[[i]]=c(TABLA$rad.max.speed[L1==i]);

RADIOS.ISO[[i]]=c(TABLA$out.isobar.rad[L1==i])};

ratio.miss=c(rep(0,na));

for(i in 1:na){

ratio.miss[i]=

sum(RADIOS.MAX[[i]]==-99)/length(RADIOS.MAX[[i]])}

isobar.miss=c(rep(0,na));

for(i in 1:na){

isobar.miss[i]=

sum(RADIOS.ISO[[i]]==-99)/length(RADIOS.ISO[[i]])}

W2=ratio.miss<prop.max;

W=which(W2==TRUE);

V2=isobar.miss<prop.iso;

V=which(V2==TRUE);

SPLINES.RAD.MAX=RADIOS.MAX;

SPLINES.RAD.ISO=RADIOS.ISO;

for(j in 1:length(W)){

T=RADIOS.MAX[[W[j]]]!=-99;

SPLINES.RAD.MAX[[W[j]]]=

splines(which(T==TRUE),

RADIOS.MAX[[W[j]]][which(T==TRUE)],

c(1:length(RADIOS.MAX[[W[j]]])))}

for(j in 1:length(V)){

T=RADIOS.ISO[[V[j]]]!=-99;

SPLINES.RAD.ISO[[V[j]]]=

splines(which(T==TRUE),

RADIOS.ISO[[V[j]]][which(T==TRUE)],

c(1:length(RADIOS.ISO[[V[j]]])))}

for(i in 1:na){

n1=length(SPLINES.RAD.MAX[[i]]);

n2=length(SPLINES.RAD.ISO[[i]]);

for(j in 1:n1){

SPLINES.RAD.MAX[[i]][j]=max(0,SPLINES.RAD.MAX[[i]][j])};

for(j in 1:n2){

SPLINES.RAD.ISO[[i]][j]=max(0,SPLINES.RAD.ISO[[i]][j])}};

R.MAX=unificar(SPLINES.RAD.MAX);

R.ISO=unificar(SPLINES.RAD.ISO);

return(list(R.MAX,R.ISO,W,V))}
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calculo.valores calcula el PDI, IEI y OEI de la base de datos indicada.
TABLA es la base de datos (atlantico o pacifico) a usar. R.MAX es
la lista de radios de máxima velocidad. R.ISO es la lista de radios de
la isobara exterior. W es el vector con los huracanes a considerar en
el cálculo de IEI. V es el vector con los huracanes a considerar en el
cálculo de OEI. R.MAX, R.ISO, W y V se pueden obtener a partir de
la función imputacion.
Esta rutina devuelve tres vectores; el primero contiene los PDI para
todos los huracanes, el segundo los IEI para los huracanes indicados en
W y el tercero los OEI para los huracanes indicados en V.

calculo.valores=function(TABLA,R.MAX,R.ISO,W,V){

N=length(TABLA[,1]);

L1=c(1);

k=1;

for(i in 2:N){

if(TABLA$name[i]!=TABLA$name[i-1]){k=k+1};L1=c(L1,k)}

na=L1[length(L1)];

PDI=c(rep(0,na));

IEI=c(rep(0,na));

OEI=c(rep(0,na));

for(i in 1:N){

PDI[L1[i]]=PDI[L1[i]]+

6*3600*velocidad(TABLA$max.speed[i])^3;

IEI[L1[i]]=IEI[L1[i]]+

(velocidad(TABLA$max.speed[i])^3)*

(distancia(R.MAX[i])^2)*6*3600;

OEI[L1[i]]=OEI[L1[i]]+

(velocidad(TABLA$max.speed[i])^3)*

(distancia(R.ISO[i])^2)*6*3600};

PDI=PDI[sort.list(PDI)];

IEI=IEI[W];

OEI=OEI[V];

IEI=IEI[sort.list(IEI)];

OEI=OEI[sort.list(OEI)];

return(list(PDI,IEI,OEI))}
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