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RESUM 
 

 

El projecte en el qual s’emmarca aquest treball de recerca es centra en el 

desenvolupament d’interruptors moleculars basats en el sistema MAG (Figura 1), que 

permeten el control del funcionament d’un canal iònic de les cèl�lules del sistema 

nerviós central governat pel receptor iGluR. En aquest treball de Màster en 

Experimentació Química, s’ha treballat, més concretament, en la síntesi del derivat del 

glutamat, 3, precursor adient de la unitat de glutamat present a la molècula MAG.   

 
 

Figura 1: Estructura de l’interruptor molecular MAG. 

 

En aquest treball de recerca s’ha dissenyat i desenvolupat una ruta sintètica del 

fragment de glutamat en 8 passos amb un 7% de rendiment global.  

 
Esquema 1: Resum de la ruta sintètica realitzada en aquest treball. 

 

La síntesi d’aquesta molècula parteix de l’àcid L-piroglutàmic com a esquelet 

del fragment glutàmic, que, després de varies reaccions, condueix al compost 1, que 

ha esdevingut l’intermedi clau degut a la seva dificultat per obtenir-lo. A partir de 

l’intermedi 1, l’obertura de l’anell i la protecció de tots els grups funcionals, condueix al 

dièster 2, que, després d’una sèrie de reaccions, ha permès obtenir el compost 3, 

objectiu d’aquest treball de recerca (Esquema 1). 
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1. INTRODUCCIÓ 
La nanociència i la nanotecnologia són disciplines que es proposen l’anàlisi i la 

manipulació de la matèria a escala atòmica i molecular amb l’objectiu de dissenyar i 

construir dispositius funcionals de mida nanomètrica.  

Els interruptors moleculars constitueixen un dels casos més senzills d’aquest 

tipus de dispositius. Tot i així, s’hi han proposat aplicacions en camps tan diversos com 

la química, la ciència de materials o la biomedicina.1 En aquest treball de Màster en 

Experimentació Química s’ha portat a terme la síntesi i caracterització d’una part d’un 

interruptor molecular tipus azobenzè que incorpora un fragment derivat del glutamat. 

És per aquest motiu que en la introducció d’aquesta memòria es tractarà, en primer 

terme, el funcionament dels receptors de glutamat  i, a continuació, els interruptors 

moleculars plantejats i les seves aplicacions en el camp de les biociències. 

 

1.1. Receptors de glutamat 

 

L’L-glutamat és un dels 20 aminoàcids que formen les proteïnes. A més a més, 

fa la funció de neurotransmissor i és majoritari en el sistema nerviós central dels 

vertebrats.2 Forma part del 90 % de les sinapsis del cervell humà i té una influencia 

essencial en totes les formes del comportament, incloent-hi la percepció sensorial, el 

control motriu i l’estat d’ànim. La seva forma d’actuar és mitjançant els receptors 

glutàmics, que poden ser dos tipus: (i) receptors ionotròpics (iGluR), lligats a un canal 

iònic; (ii) receptors metabotròpics, acoblats a les proteïnes G. El projecte que inclou 

aquest treball estudia interruptors moleculars que permetin controlar òpticament el 

receptor ionotròpic de glutamat. 3 

 

1.1.1. Receptors de glutamat ionotròpics (iGluR) 

 

Els receptors de glutamat ionotròpics són complexes proteics formats per 

quatre subunitats, les quals comparteixen una estructura bàsica comuna, així com 

quatre regions hidrofòbiques dins la seqüència central (TMI-IV; Figura 2).  

                                            
1   Balzani, V.; Venturi, M.; Credi, A. Molecular Devices and Machines. VCH: Weinhem, Germany, 2003. 
2   Brun, M. A.; Tan, K. T.; Griss, R.; Kielkowska, A.; Reymond, L.; Johnsson, K. J Am Chem Soc. 2012,134, 7676-

7678. 
3   MRC Centre for Synaptic Plasticity [Bristol]: University of Bristol, 2002. http://www.bristol.ac.uk/synaptic/receptors/  

[consulta: maig 2012]. 
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Figura 2:  Estructura general d’una subunitat del receptor de glutamat ionotròpic. La llarga cadena N-

terminal és extracel�lular mentre que la cadena curta C-terminal és intracel�lular.  

 

Els receptors de glutamat juguen un paper vital en la mediació de la 

transmissió sinàptica excitatòria, és a dir, en la comunicació entre neurones dins del 

cervell. Un impuls nerviós dins d’una cèl�lula provoca l’entrada d’ions calci i, 

posteriorment, l’alliberament del neurotransmissor químic (en aquest cas el glutamat). 

El transmissor es difon a través d’un petit espai entre dues molècules, conegut com a 

espai sinàptic, estimulant o inhibint la següent cèl�lula de la cadena mitjançant la 

interacció amb les proteïnes receptores. Tot aquest procés és duu a terme en la 

sinapsi.  

 
Figura 3: Dibuix esquemàtic d’una sinapsi on les neurones formen circuits dins el sistema nerviós central. 
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 On                Off 

Els receptors ionotròpics en si mateixos són canals iònics tancats i només 

s’obren quan s’uneixen a una molècula de lligand. Un cop el lligand s’uneix al receptor, 

ions com K+ o Ca2+ passen a través d’un canal fins al centre del complex. Aquest flux 

d’ions provoca la despolarització de la membrana plasmàtica i la generació de corrent 

elèctric que es propaga al llarg dels següents processos dins la neurona 

Existeix la possibilitat que altres molècules s’uneixin a aquests receptors i que 

no desencadenin rutes de senyalització d’una manera eficient. Aquests compostos 

s’anomenen antagonistes i en molts aspectes tenen un efecte inhibidor.4  

 

1.2. Interruptors moleculars 

 

Els interruptors moleculars són compostos que es caracteritzen per tenir dos o 

més estats diferenciats i estables, entre els quals el sistema pot evolucionar de 

manera reversible. A aquests estats se’ls acostuma a anomenar “On” i “Off” i la 

interconversió entre ells es produeix per aplicació d’un estímul extern, tal i com es 

mostra en la figura 4a.  

 

(a) 

    

(b) 

  

N
N

                                    
           trans-azo                     cis-azo   o-DTE                              c-DTE 

 

Figura 4: (a) Dibuix esquemàtic de la interconversió entre els estats “On” i “Off” d’un interruptor molecular 

induïda per l’aplicació d’un estímul extern. (b) Interconversió entre els estats trans i cis de 

l’azobenzè i els estats obert i tancat del ditieniletilè. 
 

Normalment, els dos estats d’un interruptor molecular presenten una relació 

d’estereoisomeria o d’isomeria constitucional. A la Figura 4b es mostra un exemple de 

cadascuna d’aquestes dues situacions: (i) la interconversió entre les formes 

estereoisomèriques trans i cis d’interruptors moleculars de tipus azobenzènic;5 (ii) la 

                                            
4    Stryer, L.; Tymoczko, J.L.; Berg, J.M. Bioquímica. Editorial Reverté. 2007. 
5    Halabieh, R.; Mermut, O.; Barrett, C. Pure Appl. Chem. 2004, 76, 1445-1465. 

Estímul 

hν1 
 

∆ (o hν2) 
 

hν1 
 

hν2 
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interconversió entre els isòmers constitucionals obert i tancat dels derivats de 

ditieniletilè.6 En qualsevol d’aquests dos casos, i com a resultat de les seves diferents 

estructures moleculars, els dos estats d’un interruptor molecular difereixen en les 

seves propietats físico-químiques. Aquest fet permet detectar selectivament cadascun 

d’aquests estats mitjançant una àmplia varietat de tècniques basades en mesures 

elèctriques,7 magnètiques8 o òptiques,9 entre d’altres. 

A més a més, els interruptors moleculars també poden respondre a un gran 

ventall d’estímuls externs. Els estímuls utilitzats més habitualment són de tipus químic 

(per exemple, variació del pH10 o complexació d’ions metàl�lics11), tèrmic,12 

fotoquímic13 i electroquímic.14 Cal destacar que, en funció de l’estímul al qual sigui 

sensible el sistema desenvolupat, així com de les condicions a les quals hagi de ser 

utilitzat,  s’obtindran interruptors moleculars amb diferents aplicacions. D’especial 

interès és l’ús d’estímuls fotoquímics, ja que a més de no ser invasius, permeten 

controlar l’activitat de l’interruptor a distància. El grup de compostos més important que 

és capaç de respondre a aquest tipus d’estímuls són els fotocroms. 

Per altra banda, el fotocromisme és defineix com una transformació reversible 

entre dues formes, A i B, amb diferents espectres d’absorció, induïda en una o 

ambdues direccions per la radiació electromagnètica, tal i com es mostra en la Figura 

5. El canvi produït és típicament espectral, tot i que pot venir acompanyat de 

diferències en altres propietats físico-químiques.  
 

A              B 

 

Figura 5: Esquema de la interconversió entre els dos estats d’un compost fotocròmic. 

 

En un fotocrom, la forma termodinàmicament estable A es transforma per 

irradiació en la B i aquesta pot retornar a l’estat inicial o bé tèrmicament (fotocromisme 

de tipus T) o bé fotoquímicament (fotocromisme de tipus P). En la Figura 4b es donen 

dos exemples d’aquests dos tipus de fotocromisme: la isomerització cis�trans de 

l’azobenzè està induïda tèrmicament (tot i que també es pot produir fotoquímicament), 

                                            
6
    Naoto, T.;  Hiroshi, M. Chem. Rev. 2000, 100, 1875-1890. 

7    Henzl, J.; Mehlhorn, M.; Gawronski, H.; Rieder, K. H.; Morgenstern, K. Angew. Chem. Int. Ed. 2006, 45, 603-606. 
8
    Murria, M.; Teat, S. J.; Stoeckli-Evans, H.; Gudel, H. V. Angew. Chem. Int. Ed. 2003, 42, 4653-4653. 

9   (a) Irie, M. Chem. Rev. 2000, 100, 1683-1684. (b) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlausson, T.; Huxley, A.     
J. M.; McCoy, C. P.; Rodemacher, J. T.; Rice T. E. Chem. Rev. 1997, 97, 1515-1566. 

10  Callan, J. D.; de Silva, A. P.; McClehaghan, N. D. Chem. Commun. 2004, 2048-2049.  
11  Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551-8588. 
12

   Van Delden, R. A.; Hurenkamp, J. H.; Feringa, B. L. Chem. Eur. J. 2003, 9, 2845-2853. 
13

   Coulston, R. J.; Onagi, H.; Lincoln, S. F.; Easton, C. J. J. Am. Chem. Soc. 2006, 128, 14750-14751. 
14

   Deans, R.; Niemz, A.; Breinlinger, E. C.; Rotello, V. M. J. Am. Chem. Soc. 1997, 119, 10863-10864. 

hν1 
 

hν2 o ∆ 
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mentre que la isomerització c�o del DTE només es produeix fotoquímicament. Per 

tant, el tipus de fotocromisme que adopti una molècula influirà, entre d’altres coses, en 

les aplicacions que aquesta pugui tenir. 

Els interruptors moleculars s’utilitzen en diverses àrees. Per exemple, en el 

camp de la ciència de materials s’han proposat per ser utilitzats com a memòries 

moleculars capaces d’emmagatzemar informació i com a vàlvules i màquines 

moleculars.15 D’altra banda, els interruptors moleculars també poden ser utilitzats com 

a sensors sensibles a protons,16 ions metàl�lics17 o variacions de la temperatura.18 

Finalment, un dels àmbits en què els interruptors moleculars han trobat una major 

aplicació en els darrers anys és en el camp de les biociències. En aquesta àrea, els 

interruptors moleculars poden jugar un doble paper: (i) com a sensors per a 

monitoritzar espècies biològiques19 i, fins i tot, el desenvolupament de malalties;20 (ii) 

com a eines per a controlar i modificar l’estructura de biomolècules21,22 i l’activitat 

cel�lular normal.23,24 En aquest treball de Màster en Experimentació Química s’han 

investigat interruptors moleculars que puguin tenir aplicació en el control de l’activitat 

neuronal. 

 

1.2.1. Interruptors moleculars per al control de l’activitat neuronal 

 

Durant les darreres dècades, el treball conjunt de bioquímics, químics i biofísics 

ha fet possible el somni de controlar i manipular externament l’activitat cel�lular. Tot i 

que la major part de la recerca en aquest camp encara està enfocada cap a 

l’elucidació dels processos cel�lulars, el seu objectiu final no és un altre que el 

                                            
15    (a) Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F. Nature 1994, 369, 133-137. (b) Badjic, J. D.; Balzani, 

V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845-1849. 
16

    (a) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Chem. Commun. 1996, 2399-2400. (b) Cao, Y. D.; Zheng, 
Q. Y.; Chen, C. F.; Huang, Z. T. Tetrahedron Lett. 2003, 44, 4751-4755. 

17
    (a) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. J. Am. Chem. Soc. 1997, 119, 7891-7892. (b) de Silva, S. 

A.; Amorelli, B.; Isidor, D. C.; Loo, K. C.; Crooker, K. E.; Pena, Y. E. Chem. Commun. 2002, 1360-1361. 
18   Uchiyama, S.; Kawai, N.; de Silva, A. P.; Iwai, K. J. Am. Chem. Soc. 2004, 126,   3032-3033. 
19

    Folling, J.; Betov, V.; Kunetsky, R.; Medda, R.; Schonle, A.; Eggeling, C.; Bossi, M.; Hell, S. W. Angew. Chem. Int. 
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24   Bortolus P.; Monti S. J. Phys. Chem. 1979, 83, 648-652. 
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d’incorporar sistemes moleculars artificials dins dels teixits biològics per tal de regular 

la seva activitat mitjançant l’aplicació d’estímuls externs.25 

Una de les estratègies més simples per assolir aquest objectiu consisteix en 

modificar el material biològic (per exemple, una proteïna) de tal manera que sigui 

sensible a la llum.26 Aquesta modificació es podria aconseguir afegint-hi un compost 

fotocròmic sintètic que pogués activar (“On”) o desactivar (“Off”) el sistema biològic en 

aplicar un estímul lumínic. 

Els avantatges de la manipulació òptica de l’activitat biològica són molt 

diversos. Per una banda, es tracta d’una tècnica no invasiva i selectiva que es pot 

activar a distància. A més a més, l’elevada resolució amb què la llum pot ser 

manipulada tant temporalment com espacialment fa possible investigar processos 

biològics ràpids que estiguin confinats en zones de mida sub-micromètrica d’un teixit. 

Una de les aplicacions més rellevants del control òptic de l’activitat cel�lular es 

produeix en el camp de la neurotransmissió i del control de l’activitat neuronal. Els 

neurotransmissors són molècules que utilitzen els sistemes biològics per transmetre, 

amplificar i modular senyals entre una neurona i una altra cèl�lula. Per tant, assolir el 

control de la seva activitat mitjançant l’aplicació d’estímuls externs lumínics no només 

permetria l’estimulació neuronal a voluntat, sinó també l’estudi del paper que juguen 

les diferents cèl�lules que constitueixen el sistema nerviós. 

Un primer exemple de control òptic de l’activitat neuronal es va descriure l’any 

1980. Aquest exemple va consistir en la modificació del receptor d’acetilcolina nicotínic 

de cèl�lules del sistema nerviós central de tal forma que pogués ser fotoactivat al ser 

irradiat amb llum de diferents longituds d’ona.27 

A l’hora de dur a terme el control òptic de l’activitat neuronal s’acostumen a 

seguir dos tipus d’estratègies diferents: (i) modificar químicament els compostos que 

actuen com a neurotransmissors, de manera que es pugui activar o desactivar la seva 

capacitat per a interaccionar amb els llocs d’unió neuronal sota irradiació;28 (ii) 

modificar químicament els receptors neuronals, de forma que es permeti o s’inhabiliti la 

seva interacció amb els neurotransmissors en aplicar un estímul lumínic.29 En concret, 

el nostre interès s’ha centrat en interruptors moleculars que permetin controlar 

òpticament el receptor ionotròpic de glutamat (iGluR), seguint la primera estratègia 

anteriorment esmentada. 

                                            
25   Gorostiza, P.; Isacoff, E. Y. Science 2008, 322, 395-399. 
26    Gorostiza, P.; Isacoff, E. Y.  Mol. Biosyst. 2007, 3, 686-704. 
27   Lester, H. A.; Krouse, M. E.; Nass, M. M., Wassermann, N.H.; Erlanger, B. F. J. Gen. Physiol. 1980, 75, 207-232. 
28   Szobota, S.; Gorostiza, P.; Del Bene, F.; Wyart, C.; Fortin, D. L.; Kolstad, K. D.; Tulyathan, O.; Volgraf, M.; 

Numano, R.; Aaron, H.L.; Scott, E. K.; Trauner, D.; Isacoff, E. Y. Neuron 2007, 54, 535-545. 
29  Harada, T.; Harada, C.; Nakayama, N.; Okuyama, S.; Yoshida, K.; Kohsaka, S.; Matsuda, H.; Wada, K. Neuron 

2000, 2, 285-286 
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Els grups dels Profs. Pau Gorostiza (Institut de Bioenginyeria de Catalunya, 

Barcelona), Dirk Trauner (Universitat de Munich, Alemanya) i Ehud Y. Isacoff 

(Universitat de Califòrnia, Estats Units) han desenvolupat una família d’interruptors 

moleculars que controlen el funcionament del receptor iGluR.30 La molècula MAG 

(maleïmida-azobenzè-glutamat) és el cas més paradigmàtic d’aquesta família 

d’interruptors.31 Aquest compost conté tres unitats bàsiques tal i com es mostra a la 

Figura 6: (i) un grup maleïmida que permet ancorar l’interruptor MAG a una unitat de 

cisteïna en l’exterior del domini de la unió del lligand; (ii) un grup azobenzè 

fotoisomeritzable; i (iii) una unitat de glutamat que controla l’obertura i el tancament del 

canal iònic en unir-se al receptor iGluR. La síntesi d’un precursor adient d’aquesta 

unitat de glutamat serà l’objectiu principal d’aquest treball de recerca. 

 

 
 

Figura 6: Estructura de l’interruptor molecular MAG.32 

 

 A la Figura 7 es mostra una representació esquemàtica de com es desenvolupa 

el control de l’activitat del canal iònic de potassi governat pel receptor iGluR mitjançant 

l’interruptor molecular tipus MAG.  

 

 
Figura 7: Mecanisme d’obertura i tancament del canal iònic controlat pel receptor iGluR mitjançant la 

interconversió fotoquímica entre els dos estats de l’interruptor molecular MAG. 33 

 
                                            

30   Volgraf, M.; Gorostiza, P.; Numano, R.; Kramer, R. H.; Isacoff, E. Y.; Trauner, D. Nat. Chem. Biol. 2006, 2, 47-52. 
31  Gorostiza, P.; Isacoff, E. Y. Physiology 2008, 23, 238-247. 
32  Gorostiza, P.; Volgraf, M.; Numano, R.; Szobota, S.; Trauner, D.; Isacoff, E.Y. Proc. Nat. Acad. Sci. USA 2007, 

104, 10865-10870. 
33  Numano, R.; Szobota, S.; Lau, A. Y.; Gorostiza, P.; Volgraf, M.; Roux, B.; Trauner, D.; Isacoff, E. Y. Proc. Nat.   

Acad. Sci. USA 2009, 106, 6814-6819. 

hν2 o ∆ 
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 En primer terme, aquest compost ha de ser unit covalentment a una regió de l’espai 

propera al centre actiu del receptor mitjançant l’acoblament entre el seu grup 

maleïmida i el grup tiol d’un residu de cisteïna del sistema iGluR. Un cop unit al 

receptor, i en absència d’irradiació, l’interruptor MAG es troba en la seva forma estesa 

trans afavorida termodinàmicament. Tal i com s’indica a la Figura 7, en aquesta 

configuració, el grup terminal glutamat de MAG es troba allunyat del lloc d’unió del 

receptor, per la qual cosa no hi interacciona i el canal iònic es manté tancat. Ara bé, en 

irradiar amb llum de freqüència adient (ν1~360 nm), la unitat central azobenzènica de 

MAG s’interconverteix a la seva forma isomèrica plegada cis. Això permet 

l’apropament entre la seva unitat de glutamat i el lloc d’unió del receptor, la qual cosa 

facilita la interacció entre tots dos i condueix finalment a l’obertura del canal iònic. 

Finalment, aquest procés es pot revertir o bé de forma espontània un cop la forma cis 

de MAG es relaxi tèrmicament al seu estat trans, o bé per irradiació amb llum de 

freqüència adient (ν2~450 nm) per a fotoinduir la transformació cis�trans. La capacitat 

per a controlar el procés d’obertura-tancament del canal iònic governat pel receptor 

iGluR mitjançant l’estimulació òptica de l’interruptor molecular MAG, així com la 

reversibilitat i reproduibilitat d’aquest funcionament ha estat demostrada mitjançant 

mesures electroquímiques.34 

L’activitat òptica dels interruptors moleculars pot ser estudiada mitjançant les 

propietats intrínseques de les unitats fotoactives. Aquestes propietats més rellevants 

són: (i) l’espectre d’acció de fotoisomerització, que indica el rendiment de la reacció en 

funció de la longitud d’ona; (ii) l’eficiència de la fotoisomerització, que és, 

fonamentalment, el que governa la velocitat de la reacció; (iii) el temps de relaxació, és 

a dir, la cinètica del procés reversible de isomerització per recuperar el seu estat trans.  

La caracterització de totes aquestes propietats és crucial alhora d’optimitzar les 

condicions d’irradiació en la nostra molècula. Aquests paràmetres poden variar 

substancialment per estructures fotocròmiques estructuralment semblants, ja que són 

molt sensibles a les modificacions químiques dels seus substituents.35, 36 

L’optimització de les propietats fotoactives dels interruptors moleculars esdevé 

molt important en tot aquest procés. Particularment, es centrarà l’atenció en les 

següents propietats: 

(i) Temps de relaxació: Disminuir l’estabilitat tèrmica de l’estat cis de l’interruptor, 

de tal manera que el tancament del canal es produeixi de manera immediata i 

espontània un cop s’aturi la irradiació que fotoindueix la transició trans�cis. D’aquesta 
                                            

34  Volgraf, M.; Gorostiza, P.; Szobota, S.; Helix, M. R.; Isacoff, E. Y.; Trauner, D. J. Am. Chem. Soc. 2007, 129, 260-
261. 

35  Zollinger, H. Colour Chemistry. Synthesis, Properties, and Applications of Organic Dyes; VCH, 1987, Weinhem. 
36  Kwole, S.; Morgan, P.; Schaefgen, J. Encyclopedia of Polymer Science and Engineering; New York, 1989. 
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manera s’evitaria la necessitat d’utilitzar dues fonts d’irradiació diferents per a controlar 

el procés d’obertura i tancament del canal. 

(ii) Rendiment quàntic d’isomerització: augmentar la conversió trans�cis de 

l’interruptor molecular utilitzant una menor potència i un menor temps d’irradiació. 

(iii) Excitació multifotònica: com ja s’ha esmentat, els interruptors moleculars amb 

els quals es treballa estan formats per azobenzens fotocròmics, que absorbeixen llum 

UV i visible. Per tal d’aconseguir una millor penetració en teixits biològics i minimitzar 

la fotodegradació que pugui provocar, seria convenient treballar en un espectre 

d’absorció desplaçat cap al roig, mitjançant l’absorció multifotònica entre els dos estats 

de l’interruptor. 

L’optimització d’aquestes propietats es podria aconseguir mitjançant la correcta 

funcionalització del grup azobenzè, que és la unitat fotocròmica i, a la vegada, és 

isomeritzable en les molècules tipus MAG. 

 

1.3. Precedents en la síntesi de fragments de glutamat en el 

nostre grup. 

 

Fins el moment d’iniciar-se el present treball de recerca, el fragment precursor 

de la funcionalitat glutamat s’havia introduït en les molècules tipus MAG emmascarat 

en forma de lactam 4 (Esquema 2). 

 
Esquema 2:   Esquema on es mostra la  introducció del fragment precursor del derivat del glutamat en el 

procés de síntesi de la molècula MAG 30. 

 

Posteriorment, la seqüència sintètica continuava amb la hidròlisi en medi bàsic 

de l’anell de lactam per generar la funcionalitat glutamat i la introducció de la 

funcionalitat maleïmida. Desafortunadament, aquesta estratègia sintètica no va resultar 
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vàlida en casos on, per tal d’obtenir els derivats desitjats tipus MAG, la introducció de 

l’anell de maleïmida s’havia d’efectuar prèviament a la hidròlisi de l’anell de lactam, ja 

que l’esmentada maleïmida és inestable en les condicions bàsiques necessàries per la 

hidròlisi. 

Per aquest motiu, es feia necessari desenvolupar i utilitzar un altre fragment 

precursor de la unitat glutamat que es pogués donar en condicions àcides, sota les 

quals la unitat maleïmida sí que resulta estable. 
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Com s’ha discutit al llarg de la introducció, pel correcte desenvolupament de la 

nostra línia d’investigació sobre fotointerruptors moleculars azobenzènics, es feia 

necessari obtenir un nou precursor de la unitat glutamat que pogués generar aquest 

mitjançant un tractament àcid, condicions en les que la funcionalitat maleïmida resta 

estable.  

El fragment escollit va ser el compost 3 (Figura 8), amb la funcionalitat amina 

protegida en forma de carbamat de tert-butil i dos dels tres àcids carboxílics 

derivatitzats com a èsters tert-butílitcs. En medi àcid aquest precursor hauria d’alliberar 

sense problemes l’amina i els àcids carboxílics característics de la unitat glutamat. 
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Figura 8: Unitat glutamat objectiu d’aquest treball. 
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3. RESULTATS I DISCUSSIÓ 
En l’Esquema 3 es recull l’anàlisi retrosintètica plantejada per obtenir el 

fragment precursor del tipus glutamat 3.  
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Esquema 3: Anàlisi retrosintètica per la preparació del fragment precursor del glutamat 3. 

 

La molècula objectiu 3 provindria de la hidrogenació de la olefina de l’àcid 

carboxílic 5, el qual es podria obtenir per oxidació de l’aldehid 6. La desconnexió de la 

molècula 6 a través d’una reacció de metàtesi d’olefines ens portaria a la molècula 

intermedi 2, que alhora provindria de l’esterificació de l’àcid carboxílic 7 en forma 

d’ester tert-butílic, que s’obtindria mitjançant una hidròlisi bàsica del lactam 1.  

L’intermedi clau d’aquesta síntesi és l’1, que provindria de l’al�lilació de la posició α de 

l’amida protegida 8. Per últim, l’intermedi 8 s’obtindria a partir de les proteccions dels 

grups funcionals de l’àcid L-piroglutàmic, que és un producte comercial. 
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3.1. Obtenció d’(S)-5-oxopirrolidina-1,2-dicarboxilat de di-tert-butil, 8. 

 

La síntesi comença a partir de l’àcid L-piroglutàmic amb les derivatitzacions de 

l’àcid carboxílic i del nitrogen de l’amida, en forma de d’èster tert-butílic i de carbamat 

de tert-butil, respectivament.  

El primer pas d’esterificació es va dur a terme basant-nos en el procés descrit 

per Gross et al., 37 que treballava exactament amb aquesta mateixa molècula però 

amb la particularitat que en el nostre cas s’ha emprat H2SO4 enlloc de HClO4, obtenint-

se un rendiment similar. Per tal de garantir un millor rendiment, la quantitat 

d’equivalents d’ H2SO4 utilitzats és més gran així com el temps de reacció, que és de 

16 h, el doble del descrit, tal i com es mostra en l’Esquema 4. 

 

 
Esquema 4: Reacció d’esterificació de l’àcid carboxílic en forma de tert-butil 9. 

 

Tot i que la reacció s’ha seguit mitjançant cromatografia de capa prima, mai 

s’ha observat que el substrat de partida s’acabi. Un canvi necessari respecte la 

metodologia descrita és la utilització d’un dissolvent diferent per fer les extraccions. 

Així doncs, esdevé important extreure el producte amb AcOEt enlloc d’èter dietílic, 

arribant a obtenir l’intermedi 9 amb un rendiment del 56 % sense poder-ne recuperar el 

reactiu de partida. El mateix cru de reacció es pot utilitzar per al següent pas sense 

necessitat de purificació. 

L’espectre de ressonància magnètica nuclear de protó del producte obtingut 

presenta un senyal a δ 1.45 en forma de singlet i que integra 9 protons, confirmant així 

que ha tingut lloc la formació de l’èster tert-butílic desitjat. 

El següent pas en la síntesi correspon a la protecció del nitrogen del lactam en 

forma de carbamat de tert-butil, seguint la metodologia descrita per Gross et al.37 per 

aquesta mateixa molècula, tal com s’indica en l’Esquema 5.  

 

 

                                            
37  Gross, U.; Nieger, M.; Bräse, S. Org. Lett. 2009, 11, 4740-4742. 
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Esquema 5: Protecció del nitrogen del lactam en forma de carbamat de tert-butil. 

 

La reacció s’ha seguit mitjançant cromatografia de capa prima fins a observar 

la desaparició del substrat de partida. La posterior purificació del cru de reacció 

obtingut mitjançant cromatografia de gel de sílice, va permetre aïllar el compost 8 amb 

un 96% de rendiment.  

L’espectre de ressonància magnètica nuclear de protó del producte sintetitzat 

mostra un nou singlet al voltant de δ 1.45 que també integra 9 protons, confirmant la 

formació del carbamat de tert-butil. A més a més, el senyal del protó α-carboxílic a δ 

4.47 que abans era un multiplet, passa ara a ser un doblet de doblets. Això és degut a 

que ara aquest protó només s’acobla amb els protons H-3, tal com es pot observar en 

la Figura 9.  
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Figura 9: Espectre de 1H RMN (250 MHz, CDCl3) de 8. 
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3.2. Obtenció de (2S,4R)-4-al�lil-5-oxopirrolidina-1,2-dicarboxilat de di-tert-butil 

(2S,4R)-1. 

 

El següent pas d’aquesta ruta sintètica d’obtenció de la molècula objectiu 3 

planteja la introducció del grup al�lil en la posició α respecte el lactam 8. L’obtenció 

d’aquest intermedi s’ha convertit en l’etapa clau d’aquesta síntesi, degut als baixos 

rendiments obtinguts, tot i ser un compost descrit a la bibliografia. 38,39,40 

Com es pot veure en l’Esquema 6, la metodologia descrita per obtenir el 

compost 1 es basa en generar l’enolat lactàmic de 8 utilitzant LiHMDS com a base per 

després fer-lo reaccionar amb una molècula electròfila com és el bromur d’al�lil. El 

resultat és l’obtenció dels dos diastereoisòmers (2S,4R)-1 i (2S,4S)-1. A més, a més, 

depenent de les condicions utilitzades s’ha observat el producte dial�lilat com a 

subproducte de la reacció.  

Esquema 6: Reacció d’al�lilació de 8. 

 

Així doncs, les primeres condicions provades van ser les descrites per Pedregal 

et al. 38, on s’utilitzaven 1.2 equivalents de LiHDMS i 4 equivalents de bromur d’al�lil. El 

procés es va dur a terme addicionant l’enolat sobre l’electròfil. Finalment, després de 

purificar el cru de reacció per cromatografia en columna de sílice, es van obtenir 

(2S,4R)-1 i (2S,4S)-1 amb un rendiment global del 38 % i amb una proporció de 2.7:1 

respecte (Entrada 1, Taula 1).  

Posteriorment, es van provar unes noves condicions descrites per Ezquerra et 

al. 39 i per Steger et al. 40, les quals consistien en utilitzar 1.1 equivalents de LiHMDS i 

1.5 equivalents de bromur d’al�lil. A més a més, en aquest cas es va canviar l’ordre 

d’addició, afegint l’electròfil sobre l’enolat. Tot i així, després de purificar el cru de 

reacció mitjançant cromatogràfica en columna de gel de sílice, els resultats no van ser 

millors, obtenint-se un 21 % de rendiment global i una proporció de 1.3:1 del 

diastereoisòmer (2S,4R)-1 respecte el (2S,4S)-1. (Entrada 2, Taula 1).  

                                            
38  Pedregal, C.; Collado, I.; Escribano, A.; Ezquerra, J.; Domínguez, C.; Mateo, AI.; Rubio, A.; Baker, S.R.; 

Goldsworthy, J.; Kamboj, R.K.; Ballyk, B.A.; Hoo, K.; Bleakman, D. J. Med. Chem.  2000, 43, 1958-1968. 
39  Ezquerra, J. ; Pedregal, C. ; Rubio, A. ; Yruretagoyena, B. ; Escribano, A. ; Sanchez-Ferrando, F. Tetrahedron 

1993, 49, 8665-8678. 
40  Steger M.; Young, D.W.; Tetrahedron 1999, 55, 7935-7956. 
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Un cop observat que la disminució d’equivalents de bromur d’al�lil no va resultar 

satisfactòria, es van tornar a utilitzar 4 equivalents d’aquest. Novament, es va dur a 

terme la mateixa metodologia en quant a l’ordre d’addició (electròfil sobre enolat) fet 

que va esdevenir clau, ja que, després de purificar el cru de reacció mitjançant 

cromatografia en columna de sílice, es va obtenir un rendiment global d’un 48 % i una 

proporció de 3.3:1, els millors resultats obtinguts fins ara (Entrada 3, Taula 1). 

Finalment, doncs, el diastereoisòmer (2S,4R)-1 es va aconseguir amb un rendiment 

del 36%. 

 

Entrada Eq. LiHMDS 
Eq. Bromur 

d’al�lil 

Rendiment  

global (%) 

Rendiment  

(2S,4R)-1 (%) 

Ràtio 

(4R:4S) 

1a 1.2 4 38 21 2.7:1 

2b 1.1 1.5 21 11 1.3:1 

3b 1.1 4 48 36 3.3:1 

 

Taula 1: Condicions provades per a la reacció d’al�lilació de 8. a Addició de l’ enolat sobre electròfil. 

  b Addició de l’ electròfil sobre enolat. 

 

D’altra banda, es va provar l’obtenció del compost (2S,4R)-1 i a partir de 

l’epimerització del seu diastereoisòmer.41,42 Les reaccions assajades, utilitzant una 

base com a catalitzador (TBAF i DBU) per tal d’establir un equilibri entre ambdós 

isòmers, no van donar els resultats desitjats, obtenint-se amb uns rendiments del 35 % 

i 17 %, respectivament, el diastereoisòmer (2S,4R)-1 i sense recuperar-ne l’isòmer de 

partida, tal com es pot veure en l’Esquema 7. Cal destacar que l’anió fluorur és més 

eficaç que l’amidina del DBU.43 

 

 
Esquema 7: Reaccions d’epimerització de (2S,4S)-1. 

                                            
41   Charrier, J. D; Hadfield, D. S.; Hitchcock, P.B.; Young, D.W. Org Biomol Chem.  2004, 2, 474-482. 
42   Tarver, J.E.; Terranova, K.M.;  Joullie, M.M. Tetrahedron 2004, 60,  10277–10284. 
43    Clark, J.H. Chem. Rev. 1980, 80, 429-452. 



                                                                                                   3. Resultats i discussió 

 17 

 

 

N
Boc

2
O

O
Ot-Bu

3

Ha

HS
HR

 

 

Cal remarcar en aquest punt que no s’ha observat epimerització en el carboni 

C-2, degut probablement a la poca accessibilitat del seu protó. L’assignació i 

caracterització dels dos diastereoisòmers s’ha basat en la comparació amb les seves 

dades de RMN descrites a la bibliografia. Com es pot comprovar en la Figura 10, els 

dos isòmers es poden diferenciar per el senyal corresponent al protó H-2, al voltants 

de δ 4.40 ja que les seves constants d’acoblament amb els dos protons H-3 són 

diferents per a (2S,4R)-1 (J2,3S= 9.6 Hz, J2,3R=1,6 Hz) i per a (2S,4S)-1 (J2,3S= 9.3 Hz, 

J2,3R=5,7 Hz).  

 

 
Figura 10: Comparació dels espectres d’1H RMN de les molècules (2S,4R)-1 i (2S,4S)-1. 

 

A més a més, es va enregistrar un espectre nOe selectiu per cadascun dels  

dos compostos irradiant el senyal corresponent al protó H-2 (Figura 11).  

 

 

 

 

 

 

 

-2 
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Figura 11: Espectres nOe enregistrats per (2S,4R)-1 i (2S,4S)-1. 

 

Tot i que la resolució dels pics no és la millor possible, es va poder comprovar 

que pel diastereoisòmer (2S,4R)-1, en irradiar sobre el senyal d’H-2, s’observava  nOe 

sobre el protó H-1’ a δ 2.15 i sobre el protó H-3 a δ 1.96. D’aquesta manera es va 

deduir que H-2 es troba pròxim en l’espai amb el protó H-1’, és a dir, disposat en cis 

respecte la cadena al�lílica. En canvi, irradiant el senyal del protó H-2 del 

 

H-4, H-1’ 

H-3 
H-1’ N

Boc
15

4 3

2

9

O
O

Ot-Bu

1'2'

3'

 

H-1’ 

H-3 

H-4, H-1’ 

(2S,4R)-1 

(2S,4S)-1 



                                                                                                   3. Resultats i discussió 

 19 

diastereoisòmer (2S,4S)-1, s’observa nOe sobre un dels protons H-3 a δ 2.61 i sobre 

el protó H-4 a δ 2.43, el que ens permetria suposar que H-2 està en la mateixa direcció 

en l’espai que el protó H-4 i, per tant, en trans respecte la cadena al�lílica. Per 

entendre millor aquesta assignació, cal veure’n una perspectiva en 3D, com la que 

mostra la Figura 12. 

 

 

     

 

 

 

 

 

 

Figura 12: Imatges en 3D dels dos diastereoisòmers als que s’ha enregistrat un nOe selectiu.44 

 

3.3. Obtenció de l’ àcid (2R)-2-{(2S)-3-tert-butoxi-2-[(tert-butoxicarbonil)amino]-3-

oxopropil}-4-pentenoic, 7. 

 

El següent pas sintètic plantejat per la ruta d’obtenció de la unitat glutamat 3 

suposava l’obertura de l’anell de (2S,4R)-1 per a obtenir l’estructura tipus glutamat. 

L’obertura del lactam mitjançant la hidròlisi bàsica de l’amida va ser descrita per 

Avent et al.,45 que utilitzen LiOH com a base. Tot i que en el cas descrit en la 

bibliografia l’anell piroglutàmic no tenia cap substituient al�lil en la posició α carbonílica 

del lactam, la reacció s’ha dut a terme en les mateixes condicions descrites en el 

mencionat precedent, tal i com es pot veure en l’Esquema 8. Després del tractament 

                                            
44  Dibuixos optimitzats generats mitjançant el programa Chem3D de ChemBioDraw Ultra. 
45   Avent, A.G. ;  Duggan, H.M.E. ; Young, D.W.  Org. Biomol. Chem. 2005, 3, 2327-2332 
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del cru de reacció i la seva purificació mitjançant cromatografia en columna de gel de 

sílice, permet d’obtenir l’àcid 7 amb un rendiment del 93 %. 

 

 
Esquema 8. Hidròlisi del lactam (2S,4R)-1. 

 

L’espectre de ressonància magnètica nuclear de protó del l’intermedi 7 mostra 

l’aparició d’un nou senyal corresponent a l’hidrogen enllaçat al nitrogen carbàmic, en 

forma de doblet a δ 5.39, tal i com es mostra a la Figura 12. D’altra banda, en  

l’espectre de RMN de carboni, s’observa l’aparició del senyal del carboni de l’àcid 

carboxílic a δ 178.6 així com la desaparició del carboni lactàmic a δ 174.9. 

 
Figura 12. Espectre de H1 RMN (250 MHz, CDCl3) de 7. 

 

3.4. Obtenció de (2R,4S)-2-al�lil-4-[(tert-butoxicarbonil)amino]pentanodiodat de 

di-tert-butil, 2. 

 

El següent pas a ser plantejat en la nostra ruta sintètica consistia en la 

derivatització de l’àcid carboxílic de 7 en forma del corresponent èster tert-butílic.  

Malauradament, en aquest cas es necessitaven unes condiciones més suaus 

que les utilitzades en la protecció de l’àcid L-piroglutàmic, a l’inici de la síntesi. La 

reacció es va dur a terme utilitzant unes condicions semblants a les descrites per 

-NHCOO- 
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Hefziba et al.,46 per a un altre molècula, que utilitzaven 2,2,2-tricloroacetimidat de tert-

butil i un àcid de Lewis com el BF3�OEt2 dissolts en diclorometà i ciclohexà. En el 

nostre cas, però, només es va utilitzar diclorometà com a dissolvent. Després del 

tractament del cru de reacció i la seva purificació mitjançant cromatografia en columna 

de gel de sílice, es va obtenir 2 amb un rendiment del 56 % (Esquema 9). 

 

 
Esquema 9: Reacció d’obtenció de l’intermedi 2 

 

L’espectre de ressonància magnètica nuclear de protó del producte obtingut 

presenta un nou senyal a δ 1.40 en forma de singlet i que integra 9 protons, confirmant 

així la formació de l’èster tert-butílic. Esdevé fonamental l’espectre de ressonància 

magnètica nuclear de carboni, ja que s’observa l’aparició d’un nou senyal en la zona 

dels carbonis quaternaris del tert-butil, al voltant dels δ 80.0,  així com la disminució en 

el desplaçament químic del carboni carbonílic que passa de ser àcid a èster, de δ 

178.6 a δ 173.9. 

 

3.5. Obtenció de (2S,4R)-2-[(tert-butoxicarbonil)amino]-4-[(E)-4-oxobut-2-en-1-il] 

pentanodioat de di-tert-butil, 6.  

 

Després de la derivatització de 7, calia introduir un grup àcid carboxílic terminal 

a la cadena alquílica. Per aquest motiu, el següent pas en la síntesi plantejada va ser 

una reacció de metàtesi del doble enllaç. El mètode triat va ser la metàtesi d’olefines 

de Grubbs. El catalitzador utilitzat va ser el de Hoveyda-Grubbs de 2a generació 10 

(Figura 13). 47, 48 

 

                                            
46   Ten Brink, H. T.; Rijkers, D. T. S.; Liskamp, R. M. J. J. Org. Chem. 2006, 71,1817. 
47   Schrock, R. R.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42 , 4592–4633. 
48    Chen, J.R.; Li, C.F.; An, X.L.; Zhang J.J.; Zhu, X.Y.; Xiao, W.J. Angew. Chem. Int. Ed. 2008, 47, 2489-2492. 
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10 

Figura 13: Catalitzador de Hoveyda-Grubbs de 2a generació, 10. 

 

La reacció utilitzant com a segona olefina l’àcid crotònic per tal d’introduir 

directament l’àcid carboxílic desitjat no va funcionar amb bons rendiments. Per aquest 

motiu, es va assajar la reacció de 2 i el crotonaldehid (Esquema 10). Donat l’alt preu 

del catalitzador de Hoveyda-Grubbs de 2a generació, es va optimitzar aquesta reacció 

utilitzant la menor quantitat de 10.  

 
Esquema 10: Metàtesi d’olefines sobre el compost 2. 

 

D’aquesta manera, després del tractament del cru de reacció i la seva 

purificació mitjançant cromatografia en columna de gel de sílice, es va observar que 

utilitzant un 1% de 10 en relació molar respecte 2  s’obtenia un rendiment del 77 %, 

mentre que utilitzant-ne un 1.5%, es va assolir un rendiment del 89%, tal com es 

mostra a la Taula 2.  

 

Relació molar de 10 respecte 2 Rendiment % 

1% 77% 

1.5% 89% 

 

Taula 2: Condicions provades per optimitzar la utilització del catalitzador de Hoveyda-Grubbs, 10, 

respecte 2 en la reacció de metàtesi d’olefines. 

 

L’espectre de ressonància magnètica nuclear de protó del producte 6 presenta 

l’aparició d’un nou senyal en forma de doblet a δ 9.51, integrant un protó, característica 
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dels aldehids, tal com es pot observar en la Figura 14. Aquest nou senyal s’acobla 

amb el senyal del protó H-3’, amb una constant de  J3’,4’=7.8 Hz. 

 

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5
(ppm)  

Figura 14: Espectre 1H RMN (360 MHz, CDCl3) de 6. 

 

D’altra banda, si ens fixem en l’espectre de ressonància magnètica nuclear 

de carboni d’aquest mateix producte 6, observem l’aparició d’un nou senyal a δ 193.6 

característica dels aldehids. A més a més, s’observa un augment en el desplaçaments 

químics dels carboni C-3’, de δ 117.2  a δ 134.7, i C-2’, de δ 135.0 a δ 154.4, pel fet 

d’haver passat de formar part d’una olefina terminal a una substituïda amb un grup 

electroatraïent, tal com observem en la Figura 15. 
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Figura 15: Espectre 1C RMN (91 MHz, CDCl3) de 6. 

 

 

3.6. Obtenció de l’àcid (2E,5R,7S)-8-tert-butoxi-5-(tert-butoxicarbonil)-7-[(tert-

butoxicarbonil)amino-8-oxo-2-octenoic, 5. 

 

El següent pas de la ruta sintètica plantejada requeria l’oxidació de l’aldehid  a 

àcid carboxílic. Aquesta reacció ha estat àmpliament estudiada al llarg dels anys.49 En 

aquest cas, però, s’ha centrat l’atenció en l’oxidació de Pinnick,50 que té l’origen en 

l’oxidació de Lindgren. 51 

L’oxidació de Pinnick és especialment útil per a aldehids α,β-insaturats, com és 

el nostre cas, i utilitza com a oxidant el clorit sòdic (Esquema 11).  

                                            
49  a) McKillop, A.; Kemp, D. Tetrahedron 1989, 45, 3299-3306. b) Travis, B. R.; Sivakumar, M.; Hollist, G. O.; 

Borhan, B. Org. Lett. 2003, 5, 1031-1034. c) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 2860-2861. 
50   Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091-2096. 
51

  Lindgren, B.O.; Nilsson, T.; Husebye, S.; Mikalsen, Ø.d; Leander, K.; Swahn, C-G. Acta Chem. Scand. 1973, 27, 
888-890. 

C-4’ 
C-3’ 

C-3’ 
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 Esquema 11: Mecanisme de la reacció de Pinnick. 

 

 Durant la reacció, part de l’oxidant es perd per reacció amb HOCl-, un 

subproducte de la reacció. És per aquest motiu que s’afegeix un atrapador, que és 

l’encarregat de reaccionar amb aquest subproducte que fa consumir el clorit. Aquest 

atrapador és el 2-metil-2-butè, que s’addiciona al HOCl-, impedint així que aquest 

redueixi el clorit sòdic, tal i com es pot veure en l’Esquema 12. 

 

 
Esquema 12: Reacció paral�lela a la reacció de Pinnick i reacció d’atrapament per part del 2-metil-2-butè. 

 

Així doncs, la reacció d’obtenció de l’àcid carboxílic 5 es va dur a terme amb la 

metodologia proposada per Pinnick i després del tractament del cru de reacció i la 

seva purificació mitjançant cromatografia en columna de gel de sílice, es va obtenir 

l’àcid amb un rendiment del 77%, tal com es mostra en l’esquema 13. 

 

 
Esquema 13: Oxidació de l’aldehid 6 per a l’obtenció de l’àcid carboxílic α,β-insaturat 5. 

 

L’espectre de ressonància magnètica nuclear de protó del producte obtingut  

mostra la desaparició del senyal de l’aldehid a δ 9.51. Novament, però, esdevé 
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imprescindible l’espectre de ressonància magnètica nuclear de carboni per observar 

l’aparició d’un nou senyal a δ 174.5, confirmant la formació d’un nou carboni carboxílic. 

A més a més, observem la desaparició del senyal a δ 193.6 característica dels 

aldehids, tal com es pot observar a la Figura 16. 

30405060708090100110120130140150160170180190200
ppm  

Figura 16: Espectre 13C RMN (360 MHz, CD3OD) de 5. 

 

 

3.7. Obtenció de l’àcid (5R,7S)-8-(tert-butoxi)-5-(tert-butoxicarbonil)-7-((tert-

butoxicarbonil)amino)-8-oxooctanoic, 3. 

 

El darrer pas d’aquesta ruta sintètica consistia en la reducció del doble enllaç 

de 5. La hidrogenació de dobles enllaços és una de les reaccions de reducció més 

estudiades i és molt utilitzada per a l’obtenció d’enllaços simples carboni-carboni.52 

D’aquesta manera, amb l’objectiu de reduir l’insaturació de 5 s’han utilitzat 

unes condicions d’hidrogenació suaus a pressió atmosfèrica amb pal�ladi sobre 

carboni com a catalitzador, tal com s’observa en l’Esquema 14. La reacció va durar 

tota la nit. Un cop purificat el cru de reacció, el rendiment obtingut va ser quantitatiu.  

 

                                            
52   Clayden, J. Organic Chemistry. Oxford University Press: Oxford. 2001. 

Nou carboni 

carboxílic format 
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Esquema 14: Reducció del doble enllaç de l’intermedi 5 per a l’obtenció del producte final 3. 

 

L’espectre de ressonància magnètica nuclear de protó del producte final 

obtingut mostra la desaparició dels senyals corresponents al doble enllaç de l’intermedi 

5, a δ 6.86 i 5.84. A més a més, apareix un triplet de doblets a δ 2.30, que integra a 2 

protons i que, gràcies als espectres HSQC i COSY enregistrats, es pot assegurar que 

corresponen a la posició α-carbonílica (H-2), tal i com es mostra a la Figura 17.  A més 

a més, en l’espectre de ressonància magnètica nuclear de carboni, s’observa la 

desaparició dels dos carbonis que formaven la insaturació de la molècula 5 a δ 146.7 i 

124.4. 

 

 

 

1.52.02.53.03.54.04.55.05.56.06.57.0
ppm  
 

Figura 17: Espectre 1H RMN (360 MHz, CD3OD) de 3. 

 

H-2 
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A més a més, en l’espectre de ressonància magnètica nuclear de carboni, 

s’observa l’absència dels dos carbonis que formaven la insaturació de la molècula 5 a 

δ 146.7 i 124.4. 
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4. CONCLUSIONS 

En aquest treball de recerca s’ha sintetitzat un nou fragment tipus glutamat per 

a la posterior utilització com a part de diversos interruptors moleculars per a controlar 

el funcionament del receptor iGluR de canals iònics cel�lulars. En l’Esquema 14 es 

mostra el resum de la seqüència sintètica desenvolupada. 

Aquest fragment s’ha generat a partir d’un compost comercial com és l’àcid L-

piroglutàmic mitjançant una ruta sintètica de 8 passos i amb un rendiment global del 

7%. Ha estat clau l’obtenció de l’intermedi (2S,4R)-1, en escala multigram i amb 

rendiments reproduibles.  

 

 

Esquema 14: Resum de la seqüència sintètica realitzada. 

 

El procés desenvolupat permet la síntesi de fragments de glutamat amb tots els 

grups funcionals protegits, per tal de facilitar la seva introducció en l’interruptor 

molecular.  
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5. PART EXPERIMENTAL 

5.1. Materials i mètodes de caracterització estructural 

 

Espectroscòpia 

 

Els espectres de Ressonància Magnètica Nuclear (RMN) han estat enregistrats al 

Servei de Ressonància Magnètica Nuclear de la Universitat Autònoma de Barcelona. 

Els espectres de protó de 250 MHz han estat enregistrats amb un aparell Bruker 

DPX250, els espectres de protó de 360 MHz amb un aparell Bruker DPX-360 i els 

espectres de protó de 400 MHz, fluor de 400 MHz i carboni de 100.6 MHz amb  un 

aparell Bruker AVANCEIII-400. Tots ells han estat enregistrats a una temperatura de 

298 K. 

Els desplaçaments es donen en δ (ppm), utilitzant com a referència interna el 

propi dissolvent residual no deuterat. Les abreviatures utilitzades per descriure la 

multiplicitat dels senyals observats són les següents: s (singlet), d (doblet), dd (doble 

doblet), t (triplet), tt (triple triplet), m (multiplet). L’abreviatura J s’utilitza per indicar les 

constants d’acoblament. 

Els espectres d’infraroig (IR) han estat enregistrats en un espectrofotòmetre 

model Tensor 27 (Bruker) equipat amb un accessori ATR model MKII Golden Gate 

(Specac) amb finestra de diamant amb una sola reflexió. 

 Els espectres d’absorció electrònica ultraviolat visible (UV-Vis) s’han enregistrat 

al Servei d’Anàlisi Química de la Universitat Autònoma de Barcelona, utilitzant un 

espectròmetre model 8453 de la marca Hewlett-Packard. En tots els casos, les 

mostres es van mesurar en dissolució, utilitzant cubetes de quars d’un centímetre de 

camí òptic i dissolvents de qualitat espectroscòpica. 

 

Cromatografia 

 

 Les cromatografies en capa fina han estat efectuades sobre cromofolis 

Alugram Sil G/UV254 de 0.25 mm de gruix. El revelat de les mateixes s’ha realitzat sota 

una làmpada de llum ultraviolada de 254 nm i/o amb una dissolució saturada de 

molibdat de ceri (IV) amb posterior escalfament. 

 Les cromatografies en columna s’han realitzat seguint la tècnica flaix, emprant 

gel de sílice de 230-400 mesh o gel de sílice tipus Baker de 40 µm com a fase 
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estacionària. La fase mòbil s’indica en cada cas. La fase mòbil es troba indicada en 

cada cas. 

 

Punts de fusió 

 

 Els punts de fusió s’han determinat en un bloc kofler de la marca Reichert i no 

han estat corregits. 

 

Dissolvents anhidres 

 

Per a les reaccions sensibles a la presència d’aigua, els dissolvents han estat 

prèviament anhidritzats. 

 

Espectrometria de masses 

 

Els espectres de masses d’alta resolució (HRMS) han estat enregistrats al 

Servei d’Anàlisi Química de la Universitat Autònoma de Barcelona, utilitzant tècniques 

d’ionització per electroesprai (ESI). 

 

5.2. Síntesi del fragment de glutamat 

5.2.1. Síntesi (S)-5-oxopirrolidina-2-carboxilat de tert-butil, 9. 

 

 

 

En un matràs de fons rodó de 250 ml de capacitat, proveït d’agitació magnètica, es 

dissolen 5.77 g (43.9 mmol) l’àcid L-piroglutàmic, en 70 ml d’acetat de tert-butil. Es 

deixa agitar la solució durant 15 minuts i s’afegeixen 3.7 ml (95% en aigua, 73.1 mmol) 

d’H2SO4. La mescla de reacció s’agita durant 16 h més a temperatura ambient.  

Transcorregut aquest temps la solució s’addiciona lentament sobre 250 ml de solució 

saturada de NaHCO3, fins arribar a pH= 5-6. El producte s’extreu amb AcOEt (4 x 150 

ml). Es combinen les fases orgàniques i aquestes s’assequen amb Na2SO4 anhidre. 

Tot seguit es filtra i s’evapora el dissolvent sota pressió reduïda, obtenint 4.56 g (24.6 
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mmol, 56%) d’un sòlid blanc identificat com a (S)-5-oxopirrolidina-2-carboxilat de tert-

butil, 9. 37 

Dades espectroscòpiques de 9:  

1H NMR (250 MHz, CDCl3) δ 6.97 (s, 1H, H-1), 4.14 (m, 1H, H-2), 2.39 (m, 3H, H-3, H-

4), 2.17 (m, 1H, H-4’), 1.47 (s, 9H, -C(CH3)3). 

 

 

5.2.2. Síntesi de (S)-5-oxopirrolidina-1,2-dicarboxilat de di-tert-butil, 8. 

 

 

 

En un Schlenck de 250 ml de capacitat, proveït d’agitació magnètica i sota atmosfera 

d’argó, es dissolen 3.60 (19.4 mmol) de (S)-5-oxopirrolidina-2-carboxilat de tert-butil, 9, 

en 90 ml d’acetonitril i es refreda a 0 ºC. Seguidament, s’addicionen 0.48 g (3.89 mmol) 

de DMAP i 6.36 g (29.2 mmol) de carbonat de di-tert-butil. La solució es deixa agitant 

durant 30 min a 0 ºC i durant 2 h a temperatura ambient. L’evolució de la reacció es 

segueix per cromatografia en capa prima (hexà/ AcOEt 2:1). 

Transcorregut aquest temps, s’evapora el dissolvent del fins a sequedat per obtenir un 

oli ataronjat. Es purifica el cru amb una cromatografia en columna de gel de sílice (2:1 

hexà/AcOEt) obtenint-se 5.30 g (18.6 mmol, 96%) d’un sòlid blanc identificat com (S)-

5-oxopirrolidina-1,2-dicarboxilat de di-tert-butil, 8. 37 

 

Dades espectroscòpiques de 8: 

1H NMR (250 MHz, CDCl3) δ 4.47 (dd, J = 9.3, 2.7 Hz, 1H, H-1), 2.43 (m, 3H, H-3, H- 

4), 1.99 (m, 1H, H-4’), 1.53 (s, 9H, -C(CH3)3), 1.45 (s, 9H, -C(CH3)3). 
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5.2.3. Síntesi de (2S,4R)-4-al�lil-5-oxopirrolidina-1,2-dicarboxilat de di-tert-butil, 

(2S,4R)-1 i de (2S,4S)-4-al�lil-5-oxopirrolidina-1,2-dicarboxilat de di-tert-butil, 

(2S,4S)-1.  

 

 

En un Schlenck de 250 ml de capacitat, proveït d’agitació magnètica, i sota atmosfera 

de nitrogen, es dissolen 3.10 g (10.9 mmol) de (S)-5-oxopirrolidina-1,2-carboxilat de di-

tert-butil, 8, en 40 ml de THF anhidre. S’addicionen, en un interval de 25 min, 11.90 ml 

(11.94 mmol) de  LiHMDS en THF 1 M i es deixa agitar durant una hora a -78 ºC.   

 

Per una altra banda, en un Schlenck de 100 ml proveït d’agitació magnètica, i sota 

atmosfera de nitrogen, es dissolen 2.4 ml (43.43 mmol) de bromur d’al�lil en 30 ml de 

THF anhidre a -78 ºC. Transcorreguda una hora, aquesta solució s’addiciona via 

cànula a l’anterior en un interval de 15 minuts, es deixa agitar durant 4 hores a -78 ºC. 

L’evolució de la reacció es segueix per cromatografia en capa prima (hexà/ AcOEt 3:1). 

 

Transcorregut aquest temps, s’afegeixen 30 ml d’ una solució aquosa saturada de 

NH4Cl. El producte s’extreu amb èter dietílic (3 x 50 ml). Es combinen les fases 

orgàniques i aquestes s’assequen amb Na2SO4 anhidre. Tot seguit es filtra i s’evapora 

el dissolvent sota pressió reduïda, obtenint un oli ataronjat. Es purifica el cru amb una 

cromatografia en columna de gel de sílice (gradient d’elució 20:1 a 4:1 hexà/ AcOEt) 

obtenint-se 1.30 g (3.96 mmol, 36%) d’un sòlid de color marró identificat com a 

(2S,4R)-4-al�lil-5-oxopirrolidina-1,2-dicarboxilat de di-tert-butil, (2S,4R)-1 i 0.39 g (0.34 

mmol, 11%) de (2S,4S)-4-al�lil-5-oxopirrolidina-1,2-dicarboxilat de di-tert-butil, (2S,4S)-

1.  

 

Dades espectroscòpiques de (2S,4R)-1: 

1H NMR (360 MHz, CDCl3) δ 5.74 (ddt, J = 17.0, 10.1, 6.9 Hz, 1H, H-2’), 5.08 (m, 2H, 

H-3’), 4.41 (dd, J= 9.6, 1.6 Hz, 1H, H-2), 2.66 (m, 2H, H-1’, H-4), 2.15 (m, 2H, H-1’, H-

3), 1.97 (ddd, J= 13.4, 11.4, 9.6 Hz, 1H, H-3), 1.52 (s, 9H, -C(CH3)3), 1.48 (s, 9H, -

C(CH3)3). Es va registrar un espectre nOe selectiu irradiant la senyal al protó H-2 a δ 
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4.41 observant nOe a δ 2.15 corresponent a un dels protons H-1’ i a δ 1.96 

corresponent a un dels protons H-3. 

 

13C NMR (91 MHz, CDCl3) δ 174.6 (C-5), 170.5 (C-9), 149.5 (-NHCOO-), 134.5 (C-2’), 

117.7 (C-3’), 83.4 (-C(CH3)3), 82.4 (-C(CH3)3), 57.9 (C-2), 41.2 (C-4), 34.6 (C-1’), 28.04 

(-C(CH3)3), 28.0 (C-3). 

[α]D
20= -20.4 (c 0.97, CH2Cl2) 

 

 

Dades espectroscòpiques de (2S,4S)-1: 

1H NMR (360 MHz, CDCl3) δ 5.72 (dddd, J = 16.5, 10.5, 7.7, 5.9 Hz, 1H, H-2’), 5.06 (m, 

2H, H-3’), 4.39 (dd, J= 9.3, 5.7 Hz, 1H, H-2), 2.61 (m, 2H, H-1’, H-4), 2.43 (dt, J = 13.4, 

9.4 Hz, 1H, H-3A), 2.21 (m, 1H, H-1’), 1.70 (dt, J = 13.5, 5.7 Hz, 1H, H-3B), 1.49 (s, 9H, 

-C(CH3)3), 1.47 (s, 9H, -C(CH3)3). Es va registrar un espectre nOe selectiu irradiant la 

senyal al protó H-2 a δ 4.39 observant nOe a δ 2.61 corresponent al protó H-3 i a δ 

2.43 corresponent al protó H-4. 

13C NMR (91 MHz, CDCl3) δ 174.9 (C-5), 170.7 (C-9), 149.6 (-NHCOO-), 134.9 (C-2’), 

117.7 (C-3’), 83.5 (-C(CH3)3), 82.2 (-C(CH3)3), 58.2 (C-2), 42.2 (C-4), 35.5 (C-1’), 28.0 

(-C(CH3)3), 26.4 (C-3). 

 

[α]D
20= -4.1(c 2.96, CH2Cl2) 

 

5.2.4. Epimerització de (2S,4S)-4-al�lil-5-oxopirrolidina-1,2-dicarboxilat de di-tert-

butil, (2S,4S)-1. 

 

 

 

En un matràs de fons rodó de 10 ml de capacitat, proveït d’agitació magnètica es 

dissolen 110 mg (0.34 mmol) de (2S,4S)-4-al�lil-5-oxopirrolidina-1,2-dicarboxilat de di-

tert-butil, (2S,4S)-1, en 3 ml de CH2Cl2 a 0 ºC. S’addicionen lentament 0.20 ml (1.35 

mmol) de 1,8-diazabiciclo[5.4.0]undec-7-en, DBU. Es deixa la mescla de reacció 

agitant durant 2 dies.  
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Transcorregut aquest temps, es dilueix la mescla de reacció afegint 5 ml de CH2Cl2. Es 

fan rentades amb HCl 10% (2 x 10 ml), H2O (10 ml) i solució saturada de NaCl (10 ml). 

S’asseca la fase aquosa amb Mg2SO4 anhidre. Tot seguit es filtra i s’evapora el 

dissolvent sota pressió reduïda, obtenint un oli marró. Es purifica el cru amb una 

cromatografia en columna de gel de sílice (10:1 hexà/AcOEt) obtenint-se 15 mg (0.046  

mmol, 15%) d’un sòlid de color marró identificat com de (2R,4S)-4-al�lil-5-

oxopirrolidina-1,2-dicarboxilat di-tert-butil, (2S,4R)-1.  

 

 

En un matràs de fons rodó de 25 ml de capacitat, proveït d’agitació magnètica es 

dissolen 200 mg 0.61 mmol) de (2S,4S)-4-al�lil-5-oxopirrolidina-1,2-dicarboxilat de di-

tert-butil, (2S,4S)-1, en 3 ml de CH2Cl2 a 0 ºC. S’addicionen 0.65 ml (0.65 mmol) de 

fluorur de tetrabutilamoni, TBAF, i es deixa refluint durant 1.5 h. L’evolució de la 

reacció es segueix per cromatografia en capa prima (hexà/ AcOEt 3:1). 

Transcorregut aquest temps, s’afegeixen 10 ml d’una solució aquosa saturada de 

NH4Cl. El producte s’extreu amb AcOEt (2 x 10 ml). Es combinen les fases orgàniques 

i aquestes s’assequen amb Mg2SO4 anhidre. Tot seguit es filtra i s’evapora el 

dissolvent sota pressió reduïda, obtenint un oli marró. Es purifica el cru amb una 

cromatografia en columna de gel de sílice (10:1 hexà/AcOEt) obtenint-se 69 mg (0.21 

mmol, 35%) d’un sòlid de color marró identificat com de (2R,4S)-4-al�lil-5-

oxopirrolidina-1,2-dicarboxilat di-tert-butil, (2S,4R)-1. 

 

5.2.5. Síntesi de l’àcid (2R)-2-{(2S)-3-tert-butoxicarbonil-2-[(tert-butoxicarbonil) 

amino]-3-oxopropil}-4-pentenoic, 7. 
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En un matràs de fons rodó de 250 ml de capacitat, proveït d’agitació magnètica es 

dissolen 1.80 g (5.53 mmol) de (2R,4S)-4-al�lil-5-oxopirrolidina-1,2-dicarboxilat di-tert-

butil, (2S,4R)-1, en 40 ml de THF i 32 ml d’H2O. Es refreda la solució a 0 ºC i 

s’addicionen 8 ml de LiOH 1N (8 mmol). Es deixa la reacció agitant durant 1 h a 0 ºC. 

L’evolució de la reacció es segueix per cromatografia en capa prima (hexà/ AcOEt 2:1). 

 

Transcorregut aquest temps, s’afegeix una solució d’HCl 5% fins arribar a pH 2-3.  El 

producte s’extreu amb AcOEt (3 x 50 ml). Es combinen les fases orgàniques i 

aquestes s’assequen amb Mg2SO4 anhidre. Tot seguit es filtra i s’evapora el dissolvent 

sota pressió reduïda, obtenint un oli groc. Es purifica el cru amb una cromatografia en 

columna de gel de sílice (3:1 hexà/AcOEt) obtenint-se 1.78 g (5.18 mmol, 93%) d’un 

sòlid de color groc identificat com a àcid (2R)-2-{(2S)-3-tert-butoxi-2-[(tert-

butoxicarbonil)amino]-3-oxopropil}-4-pentenoic, 7. 

 

Dades físiques i espectroscòpiques de 7: 

1H NMR (360 MHz, CDCl3) δ 5.74 (m, 1H, H-4), 5.39 (d, J = 7.6 Hz, 1H, -NHCOO-), 5.1 

(m, 2H, H-5), 4.22 (m, 1H, H-2’), 2.50 (m, 2H, H-2, H-3), 2.17 (m, 2H, H-1’B, H-3), 1.67 

(t, J= 13.4 Hz, H-1’A), 1.45 (s, 9H, -C(CH3)3), 1.45 (s, 9H, -C(CH3)3).  

13C NMR (91 MHz, CDCl3) δ 178.6 (C-1), 171.3 (C-3’), 156.2 (-NHCOO-), 134.9 (C-4), 

117.8 (C-5), 82.7 (-C(CH3)3), 80.7 (-C(CH3)3), 52.7 (C-2’), 41.8 (C-2), 36.4 (C-1’), 35.2 

(C-3), 28.4 (-C(CH3)3), 28.1 (-C(CH3)3). 

 

[α]D
20= -0.8 (c 1.4, CH2Cl2) 

 

 

IR (ATR) =2978 (νCH3), 1707(νC=O), 1366(νCH3), 1149(νC=O), 754(νNHC=O). 

 

HMRS m/z (ESI+) C17H29NO6 

Calculada: 366.1887 (MNa+) 

Experimental: 366.1893 (MNa+) 

 

P.F.: 59-65 ºC 

 

S’ha enregistrat espectre HSQC. 
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5.2.6. Síntesi de (2R,4S)-2-al�lil-4-[(tert-butoxicarbonil)amino] pentanodiodat de 

di-tert-butil, 2. 

 

 

 

En un Schlenck de 250 ml de capacitat, proveït d’agitació magnètica i sota atmosfera 

d’argó, es dissolen 3.50 g (7.28 mmol) de àcid (2R)-2-{(2S)-3-tert-butoxi-2-[(tert-

butoxicarbonil)amino]-3-oxopropil}-4-pentenoic, 7, en 90 ml de CH2Cl2 anhidre, 2.61 ml 

(14.6 mmol) de 2,2,2- tricloroacetimidat de tert-butil i 370 µl (2.96 mmol) de BF3OEt2. 

Es deixa la reacció agitant durant 3 h. L’evolució de la reacció es segueix per 

cromatografia en capa prima (hexà/ AcOEt 3:1). 

 

Transcorregut aquest temps, s’afegeixen 20 ml d’una solució de saturada 

NaHCO3/H2O (1:1). El producte s’extreu amb CH2Cl2 (3 x 50 ml). Es combinen les 

fases orgàniques i aquestes s’assequen amb Mg2SO4 anhidre. Tot seguit es filtra i 

s’evapora el dissolvent sota pressió reduïda, obtenint un oli groc. Es purifica el cru amb 

una cromatografia en columna de gel de sílice (3:1 hexà/AcOEt) obtenint-se 1.64 g 

(4.10 mmol, 56%) d’un sòlid de color groc identificat com a (2R,4S)-2-al�lil-4-[(tert-

butoxicarbonil)amino] pentanodiodat de di-tert-butil, 2. 

 

 

 

Dades físiques i espectroscòpiques de 2: 

1H NMR (250 MHz, CDCl3) δ 5.67 (m, 1H, H-4), 4.99 (m, 1H, H-5, N-H), 4.19(m, 1H, H-

2’), 2.33 (m, 2H, H-2, H-3A), 2.12 (m, 2H, H-1, H-3B), 1.63 (m, 1H, H-1’), 1.41 (s, 9H,   

-C(CH3)3), 1.41 (s, 9H, -C(CH3)3), 1.39 (s, 9H, -C(CH3)3). 

 

13C NMR (63 MHz, CDCl3) δ 173.9 (C-1), 171.7 (C-3’), 155.3 (-NHCOO-), 135.0 (C-4), 

117.2 (C-5), 81.8 (-C(CH3)3), 80.7 (-C(CH3)3), 79.5 (-C(CH3)3), 52.7 (C-2’), 42.2 (C-2), 

36.9 (C-1’), 34.0 (C-3), 28.3 (-C(CH3)3), 28.1 (-C(CH3)3), 28.0 (-C(CH3)3). 

 

[α]D
20= 10.7 (c 0.59, CH2Cl2) 
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IR (ATR) = 3382 (νN-H), 2978(νCH3), 1702(νC=O), 1149(νC=O) cm-1. 

 

HMRS m/z (ESI+) C21H37NO6 

Calculada: 422.2513 (MNa+) 

Experimental: 422.2520 (MNa+) 

 

P.F.: 86-89 ºC 

 

S’ha enregistrat l’espectre COSY. 

 

5.2.7. Síntesi de (2S,4R-2-[(tert-butoxicarbonil)amino]-4-((E)-4-oxobut-2-en-1-

il)pentanodioat) de di-tert-butil, 6. 

 

 

 

En un baló de dues boques de  ml de capacitat, proveït d’agitació magnètica i sota 

atmosfera d’argó, es dissolen 2.30 g (5.75 mmol) de (2R,4S)-2-al�lil-4-[(tert-

butoxicarbonil)amino] pentanodiodat di-tert-butil, 2, en 36 ml de CH2Cl2 anhidre, 2.40 

ml (28.78 mmol) de crotonaldehid i 56 mg (0.089 mmol) de catalitzador de Grubbs de 

2a generació, 10, i es deixa refluint durant 2.5 h. L’evolució de la reacció es segueix 

per cromatografia en capa prima (hexà/ AcOEt 3:1). 

Transcorregut aquest temps, s’evapora el dissolvent sota pressió reduïda i es purifica 

el cru amb una cromatografia en columna de gel de sílice (gradient d’elució 3:1 a 1:1 

hexà/ AcOEt) obtenint-se 2.19 g (5.12 mmol, 89%) d’un oli de color groc identificat com 

a (2S,4R) 2-[(tert-butoxicarbonil)amino]-4-[ (E)-4-oxobut-2-en-1-il] pentanodioat de di-

tert-butil, 6.  

 

Dades físiques i espectroscòpiques de 6: 

1H NMR (360 MHz, CDCl3) δ 9.51 (d, J= 7.8 Hz, 1H, H-4’), 6.77 (dt, J = 15.9, 6.5 Hz, 

1H, H-2’), 6.14 (dd, J= 15.7, 7.8 Hz, 1H, H-3’), 4.24 (m, 1H, H-2), 2.61 (m, 3H, H-1’, H-

4), 2.19 (m, 2H, H-3), 1.68 (m, 1H, H-3), 1.45 (s, 9H, -C(CH3)3), 1.42 (s, 9H, -C(CH3)3), 

1.41 (s, 9H, -C(CH3)3).  
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13C NMR (91 MHz, CDCl3) δ 193.6 (C-4’), 173.0(C-5), 171.4 (C-1), 155.3 (-NHCOO-), 

154.4 (C-2’), 134.7 (C-3’), 82.6 (-C(CH3)3), 81.9 (-C(CH3)3), 80.2 (-C(CH3)3), 52.8 (C-2), 

41.9 (C-4), 35.6 (C-1’), 34.9 (C-3), 28.6 (-C(CH3)3), 28.3 (-C(CH3)3), 28.3 (-C(CH3)3). 

 

[α]D
20= 88.4 (c 0.48, CH2Cl2) 

 

HMRS m/z (ESI+) C22H37NO7 

Calculada: 450.2462 (MNa+) 

Experimental: 450.2460 (MNa+) 

 

IR (ATR) = 2977 (νCH3), 1698(νC=O), 1367, 1251(νN-CO-O), 1150(νC=O) cm-1. 

 

S’ha enregistrat l’ espectre HSQC. 

 

5.2.8. Síntesi de l’ àcid (2E,5R,7S)-8-tert-butoxi-5-(tert-butoxicarbonil)-7-[(tert-

butoxicarbonil)amino-8-oxo-2-octenoic, 5. 

 

 

 

En un matràs de fons rodó de 500 ml de capacitat proveït d’agitació magnètica, es 

dissolen 2.5 g (5.85 mmol) de (2S,4R) 2-[(tert-butoxicarbonil)amino]-4-[ (E)-4-oxobut-2-

en-1-il] pentanodioat de di-tert-butil, 6, en 200 ml de tBuOH i 40 ml d’H2O, i es refreda 

a 0 ºC. S’afegeixen, per aquest ordre, 6.20 ml (58.5 mmol) de 2-metil-2-butè, 4.60 g 

(29.2 mmol) de NaH2PO4 i 3.17 g (35.1 mmol) NaClO2. Es deixa agitant durant 1 h a 0 

ºC. Seguidament, es refreda a temperatura ambient i es deixa agitant la mescla de 

reacció durant 16 h. 

Transcorregut aquest temps, s’afegeixen 30 ml d’H2O i una solució saturada de 

NaHCO3 fins a tenir un pH 7-8. El producte s’extreu amb AcOEt (3 x 50 ml). Es 

combinen les fases orgàniques i aquestes s’assequen amb Mg2SO4 anhidre. Tot seguit 

es filtra i s’evapora el dissolvent sota pressió reduïda, obtenint un oli groc. Es purifica 

el cru amb una cromatografia en columna de gel de sílice (4:1 hexà/AcOEt + 1% d’àcid 
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acètic) obtenint-se 2.00 g (4.51 mmol, 77%) d’un oli de color groc identificat com a àcid 

(2E,5R,7S)-8-tert-butoxi-5-(tert-butoxicarbonil)-7-[(tert-butoxicarbonil)amino-8-oxo-2-

octenoic, 5. 

 

Dades físiques i espectroscòpiques de 5: 

1H NMR (250 MHz, CD3OD) δ 6.86 (dt, J = 14.3, 7.1 Hz, 1H, H-3), 5.84 (dt, J = 15.4, 

1.4 Hz, 1H, H-2), 4.03 (m, 1H, H-7), 2.59 (m, 1H, H-5), 2.40 (m, 2H, H-4), 2.07 (m, 1H, 

H-6B), 1.65 (m, 1H, H-6A), 1.46 (s, 9H, -C(CH3)3), 1.45 (s, 9H, -C(CH3)3), 1.43 (s, 9H, -

C(CH3)3). 

 

13C NMR (63 MHz, CD3OD) δ 174.5 (C-1), 172.8 (C-1’), 169.0 (C-8), 157.3 (-NHCOO-), 

146.7 (C-6), 124.4 (C-7), 82.4 (-C(CH3)3), 82.1 (-C(CH3)3), 80.2 (-C(CH3)3), 53.6 (C-2), 

42.9 (C-4), 35.9 (C-5), 34.4 (C-3), 28.8 (-C(CH3)3), 28.4 (-C(CH3)3), 28.3 (-C(CH3)3). 

[α]D
20= 59.8 (c 1.16, CH2Cl2) 

 

IR (ATR) = 2977 (νCH3), 1703(νC=O), 1366(νCH3), 1247(νN-CO-O),  1147(νC=O), 844, 

753(νNHC=O) cm-1. 

 

HMRS m/z (ESI+) C22H37NO8 

Calculada: 466.2411 (MNa+) 

Experimental: 466.2417 (MNa+) 

 

S’ha enregistrat els espectres COSY i HSQC. 

 

5.2.9. Síntesi de l’ àcid (5R,7S)-8-(tert-butoxi)-5-(tert-butoxicarbonil)-7-((tert-

butoxicarbonil)amino)-8-oxooctanoic, 3. 

 

 

 

En un matràs de fons rodó de 250 ml de capacitat proveït d’agitació magnètica es 

dissolen 1.50 g (3.38 mmol) de àcid (2E,5R,7S)-8-tert-butoxi-5-(tert-butoxicarbonil)-7-

[(tert-butoxicarbonil)amino-8-oxo-2-octenoic, 5, i 0.15 g  (10% en pes) de Pd/C en 60 
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ml d’AcOEt. S’addiciona H2 mitjançant globus a pressió atmosfèrica. Es deixa la 

mescla de reacció agitant durant 16 h. 

Transcorregut aquest temps, es filtra el cru sobre celite i s’evapora el dissolvent sota 

pressió reduïda, obtenint un oli groc. Es purifica el cru amb una cromatografia en 

columna de gel de sílice (5:4 hexà/AcOEt + 1% d’àcid acètic) obtenint-se 1.50g (3.36 

mmol, quantitatiu) d’un oli de color verd identificat com a àcid (5R,7S)-8-(tert-butoxi)-5-

(tert-butoxicarbonil)-7-((tert-butoxicarbonil)amino) -8-oxooctanoic, 3. 

 

 

Dades físiques i espectroscòpiques de 3: 

 

1H NMR (250 MHz, CD3OD) δ 4.98 (dd, J = 11.2, 3.7 Hz, 1H, H-2), 2.42 (m, 1H, H-4), 

2.30 (m, 2H, H-7), 2.05 (ddd, J = 14.3, 11.3, 3.7 Hz, 1H, H-3A), 1.59 (m, 5H, H-3, H-5, 

H-6), 1.47 (s, 9H, -C(CH3)3), 1.46 (s, 9H, -C(CH3)3), 1.45 (s, 9H, -C(CH3)3). 

 

13C NMR (91 MHz, CD3OD) δ 176.8 (C-8), 175.9 (C-1), 173.3 (C-9), 157.8 (-NHCOO-), 

82.5 (-C(CH3)3), 81.9 (-C(CH3)3), 80.3 (-C(CH3)3), 54.0 (C-2), 43.9 (C-4), 35.0 (C-3), 

34.5 (C-7), 33.4 (C-5), 28.8 (-C(CH3)3), 28.4 (-C(CH3)3), 28.3 (-C(CH3)3), 23.6 (C-6). 

 

[α]D
20= 66 (c 0.3, CH2Cl2) 

 

IR (ATR) = 2976 (νCH3), 1709(νC=O), 1366(νCH3), 1248(νN-CO-O),  1146(νC=O), 845 cm-1. 

 

HMRS m/z (ESI+) C22H39NO8 

Calculada: 468.2568 (MNa+) 

Experimental: 468.2570 (MNa+) 

 

S’ha enregistrat els espectres COSY i HSQC. 
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