
 

Treball de Recerca 

 

Estudi de les propietats com a dissolvents dels 

líquids iònics per a la seva utilització en 

electroquímica  

 

Marta Sànchez Sala 

 

Directors: 

Iluminada Gallardo 

Gonzalo Guirado 

 

 

 

 

 

 

 

Màster en experimentació Química 

Departament de Química 

Facultat de Ciències 

2012 



 

 

 

Memòria presentada per aspirar al títol de 

“Màster en Experimentació en Química” 

 

Marta Sànchez Sala 

 

 

 

Vist i plau: 

 

 

 

 

Iluminada Gallardo                                                                             Gonzalo Guirado 

 

 

Bellaterra, 3 de Setembre de 2012 

 

 

 

 

 

 

 

 

  



AGRAÏMENTS 

Primer expressar el meu agraïment a la Catedràtica Iluminada Gallardo per la 

oportunitat de incorporar-me al seu grup de investigació, així com la confiança dipositada en 

mi, el recolzament mostrat durant aquest període en que m’ha format com a investigador i 

també com a persona. També al Dr. Gonzalo Guirado per la seva ajuda des de la meva 

incorporació, en forma de consells i en forma de coneixements.  

Agrair també al projecte LIQUION ja que gràcies a la seva financiació he 

pogut realitzar aquest treball. 

La meva família, papa, mama i els meus dos nens. Sense vosaltres no seria el que 

sóc, m’heu recolzat en tot moment, tant per donar-me ànims com per dir que parés de fer 

feina. Papa, tan semblant a mi, m’has ensenyat molt, cada tonteria que fas em recordes que 

fer-se gran no tot és tant negatiu i que sempre hem de tenir algun motiu per somriure. 

Mama, la meva mama, sempre has estat per escoltar-me i donar-me ànims, gràcies per ser 

com ets ja que és així com et necessito. Isma, hem crescut junts, no tinc cap record en que 

no apareguis tu, des de petits quan jugàvem fins ara, tot i que ara es diferent se que tot i 

veure’ns poc podem estar un junt de l’altre. I ara et toca tu, si, el meu petitó, el nen al que 

li he posat el nom i l’estic veient créixer a marxes forçades. Com dir-te el que penso de tu... 

saps que no puc estar més de dos dies sense saber de tu, m’encanta com ets, no canviïs 

mai i creix, creix i fes-te gran, que sempre em tindràs al teu costat, per riure i fer el tonto 

(mmmmm, me gusta tu pelo, me gusta tu cara, me gusta tu..... jajajaj), padrins, tiets, 

cosins gràcies per tot família, sóc molt afortunada de formar part de les vostres vides. 

Gerxudes de Manresa; sempre us poso d’exemple. Cada una tenim un cosa, no se 

que, que fa que cada setmana ens veiem, riem, plorem, ballem, caminem i ens escoltem 

una a l’altre. El que m’agrada més és, simplement, veure com passa el temps i tenir clar que 

sempre estarem unides. Nina, estàs lluny de nosaltres però sempre hi ha les ganes de 

veure’ns. Pili sempre amb ganes de festa i amb unes bones orelles per escoltar. Roser, has 

sigut un model per mi, simplement no canviïs!!. Gigi, gràcies per tot maca, sempre amb un 

somriure per fer-me veure que aquesta vida el més important és ser un mateix! Elisa, ets un 

pet.... jajaja, ara en serio, només et diré que moltes gràcies per com ets (també David, un 

plaer compartir amb tu part del meu tot) i Mariona, la noia que porta tant de temps 

aguantant-me i ara, a sobre, compartim pis. Ets de lo millor que tinc en aquesta vida, no 

canviïs mai, sempre tu i gràcies, gràcies per tot, perquè dos anys fora no ha servit per 

trencar la nostra amistat. Ets un dels fonaments de la meva vida i vull tenir-te sempre al 

meu costat!  

Lemeros, quins grans moments al vostre costat. Huguito, tot i no ser-hi, sempre et 

tenim present. Que sàpigues que se’t troba molt a faltar i moltes gràcies pels consells, 

gràfiques i paper... jaja. Gemmeta, tot i ser una mica boor.... jajajaj es broma, ets genial, 

gràcies per tot, sempre escoltant quan ho necessitava i  si.. sempre tens raó jajajaj .... 

saaaaalssaaaa (ànims amb la Tesis). Belen, buah es que només en venen al cap moments 

de fer el tonto, realment em fa treure la part més boja de mi tot i que moltes vegades em 

superes, gràcies per ser com ets. I tu Irene, que dir-te que no t’hagi dit, moltes gràcies per 

tot =). 



I ara, vosaltres, amb molts de vosaltres fa poc que compartim una part de la meva 

vida, una part que ha sigut unes de les millors coses que he viscut mai. Tots heu aportat 

coses molt bones. Heu sigut els que sabíeu en tot moment com portava aquest treball i heu 

estat per animar-me i no deixar que m’enfonses. Marc, que dir de tu, moltes gràcies per tot, 

per formar-me com a persona i ajudar-me a poder realitzar aquest treball (casi totes les 

figures son teves i la portada també) les nenes loques: Mónica, Lorena i Silvia, moltes 

gràcies per tot boniques! Isma, sempre, aquesta és una paraula que ho defineix tot entre 

nosaltres, moltes gràcies per donar-me ànims, ja sigui de paraula o en correcions (mira que 

llegir-te això sense tenir-ne ni idea.. jaja). I la resta de monitors sempre us tinc presents, us 

trobaré molt a faltar, no canvieu mai! :) 

I ja per acabar em sento molt orgullosa de tothom a qui he nombrat, i gràcies, 

moltes gràcies!! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ABSTRACT 

S’ha caracteritzat un conjunt de catorze líquids iònics (ILs) (tres d’ells sòlid a 

temperatura ambient)  per la seva conductivitat i rang de potencial útil. La seva utilització 

com a dissolvents en reaccions on la primera etapa és una transferència electrònica, depèn 

de la composició dels ILs. Així per estudiar oxidacions monoelectròniques, com per exemple 

el ferrocè, els ILs útils són : BMIMBF4, BMIMPF6, BMIMTFSI, EMIMOTf i EMIMTFSI. Mentre 

que per les reduccions monoelectròniques, com per exemple el p-nitrotoluè, els ILs més 

adequats són: EMIMTFSI i BMIMTFSI. L’ús dels ILs de tercera generació, està molt més 

restringit degut a la naturalesa de l’anió. Així doncs, la utilització dels ILs ha de ser 

dissenyada segons el procés a estudiar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABREVIATURES 

ΔEp: amplada de pic 

ACN : acetronitril 

c : concentració 

DMF : dimetrilformamida 

E0 : potencial estàndard 

EF : electòlit de fons  

E : potencial (V) 

Eox : potencial d’oxidació 

Epa : potencial anòdic 

Epc : potencial catòdic 

Ered : potencial de reducció 

FeCp2 : ferrocè 

ILs : Líquids iònics 

I : intensitat (mA) 

Ip: intensitat de pic 

  

   
  : funció de corrent 

Ipa : intensitat de pic anòdic 

Ipc : intensitat de pic catòdic 

PC : propilencarbonat 

RuL3
2+:  

SCE : elèctrode de referència de 

calomelans 

SEA : substància electroactiva 

TBABF4 : tretrafluoroborat de 

tretrabutilamoni 

v: velocitat d’escombrat  
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1. INTRODUCCIÓ I OBJECTIUS 

L’electroquímica és particularment interessant per l’estudi de reaccions que 

presenten etapes successives de transferència electrònica. [1] Aquest comportament és molt 

comú en compostos orgànics. El desplaçament del potencial condueix a espècies cada 

vegada més reduïdes (o oxidades) i el mateix efecte només es podria obtenir per via 

química, fent servir una sèrie de reductors ( o oxidants) cada vegada de major força. Aquest 

efecte progressiu ve potenciat per la possibilitat de la utilització de dissolvents apròtics com 

per exemple; acetonitril (ACN), cloroform, toluè, propilencarbonat (PC) ,hexà, toluè, 

dimetilformamida (DMF)... 

Així, en reducció, un dissolvent poc àcid i poc electròfil permet una millor estabilitat 

de les espècies aniòniques formades en l’elèctrode. Per exemple el benzaldehid comença la 

seva reducció en l’elèctrode formant un anió-radical que dimeritza en un medi apròtic 

mentres que en aigua, la protonació condueix a reduccions plurielectròniques i productes 

diferents (l’alcohol benzílic, en aquest cas).  

H
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O

+ 2H2O

- 2OH-

+ 1e-

1/2

O

O

CH2OH

 

Figura 1.1. Reducció catòdica del benzaldehid, en medi apròtic i medi pròtic . 

 

En l’oxidació, la utilització de dissolvents poc nucleòfils i poc bàsics permeten la 

major estabilitat de les espècies catòdiques formades en l’elèctrode. 

Aquests dissolvents orgànics apròtics són bons dissolvents per la seva utilització en 

l’electroquímica, no només pel seu poc caràcter àcid-base (o electròfil – nuclòfil) sinó també, 

per presentar un alt rang de potencial del ordre de quatre volts [2] (recordar a efectes 

comparatius que per l’aigua la finestra de potencial és de 1.23 V). Altrament dit, aquests 

dissolvents no presenten cap reacció electroquímica en aquest marge de potencial. No 
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obstant, la seva conductivitat és baixa, i per a que puguin ser utilitzades en electroquímica – 

que es necessiten de medis conductors- s’ha d’afegir una concentració elevada d’un 

electròlit inert o electròlit de fons (EF) que no reaccioni electroquímicament en un ampli 

rang de potencial. Aquests electròlits són normalment sals d’amoni quaternari (R4N
+ X-) on R 

representa  grups alquílics i X  a halògens,     
     

       
   L’adició d’aquest EF permet a 

més que la substància electroactiva (SEA) només arribi a l’elèctrode per difusió i convecció, 

mai per migració, degut a l’excés de concentració d’ EF (unes 100 vegades superior a la 

concentració de SEA). Així segons la parella dissolvent + EF utilitzada junt amb la naturalesa 

de l’elèctrode de treball, el rang de potencial varia entre 1.5 V i 4 V, figura 1.2. 

 

Figura 1.2. Rangs de potencial per diferents dissolvents en diferents EF i elèctrodes de treball. [2] 

 

Finalment, tot i que l’EF soluciona els problemes de la conductivitat i la migració de la 

SEA, el procés d’eliminació d’aquest EF és costos i ha de ser separat després de l’electròlisi 

del medi de reacció. 

Actualment s’està utilitzant un nou concepte de dissolvent, els líquids iònics (ILs). 

Estan constituïts per un anió i un catió i són líquids a temperatura ambient. Les seves 

conductivitats elevades fan que no s’hagi d’utilitzar un EF. A continuació es mostra la taula 

1.1 on es comparen les diferents característiques entre el dissolvents orgànics clàssics i els 

ILs. [3]    
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Taula 1.1. Taula comparativa entre dissolvent orgànics i ILs.* Dissolvent orgànic + EF. 

Analitzant la taula anterior, es comprova que la utilització dels ILs (no volàtils i 

conductors) com a dissolvents en electroquímica pot ser una alternativa. 

 

1.1 ILs història 

La primera evidència d’un IL es troba al segle XX, a la reacció de Friedel – Crafts, 

que va separar una fase líquida i aquesta es va anomenar “oli vermell” ( “red oil”), es va 

poder identificar i caracteritzar com una sal formada per un catió d’un intermedi estable de 

la reacció de Friedel - Crafts i l’anió       
  (figura 1.3). [4] 

R

Al2Cl7
-
 

 

Figura 1.3. Primera evidència d’un IL. 

Propietats Dissolvent orgànic Líquids iònics 

Número de dissolvents Aprox. 1.000 Aprox. 1.000.000 

Aplicacions Funció única Multifunció 

Inflamable Si No 

Solvatació Dèbil Fort 

Cost Baix Fins a 100 vegades més alt 

Reciclatge Si Si 

Viscositat (cP) 0.2-100 22-40.000 

Densitat (g/cm3) 0.6-1.6 1.5-2.2 

Conductivitats Uns 10 µS/cm  Uns 5000 µS/cm 

Rang de potencial *1.5 a 4 V 2.8 a 5 V 
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En aquest mateix segle es quan es van realitzar els majors avanços amb LI i que 

segueixen en l’actualitat. [5]  

Primer, es va obrir la investigació de la utilització industrial dels ILs. Es va publicar 

una patent [6] que explicava que quan es barrejaven la sal de clorur de 1-benzilpiridina i 

una sal de 1-etilpiridini amb la cel·lulosa, a temperatures superiors a 100 ºC, la cel·lulosa es 

dissolia en aquest medi i les dissolucions formades presentaven una viscositat diferent. 

Aquesta patent va ser el punt de partida de la utilització dels ILs dins de les aplicacions que 

avui en dia s’estan desenvolupant en els camps de la biomassa i dels combustibles. 

En segon lloc, els ILs van ser utilitzats en les forces aèries dels Estat Units d’Amèrica 

(com a electròlit en les bateries) i gràcies això van rebre una forta empenta en temes 

d’investigació. D’altra banda, en un estudi de conductivitat iònica de mescles d’      i de 

bromur de 1-etilpiridina, [7] es van utilitzar els ILs per a l’electrodeposició d’alumini. En els 

anys posteriors s’han utilitzat diferents ILs per tal d’anar perfeccionant la darrera tècnica. 

Els ILs es descomposaven molt fàcilment a l’aire i eren bastant sensibles a la 

humitat. Al 1992 van sortir noves investigacions de Wilkes i Zaworotko, [8]  on van 

descriure la preparació i la caracterització d’una sèrie de ILs que són menys sensibles a la 

humitat i, per tant, molt més estables. Aquest tipus de ILs contenen un catió que és del 

tipus 1-etil 3-metilimidiazoni         i un anió del tipus      
 ,      

 . Les propietats 

d’aquests nous ILs fan que tinguin una bona estabilitat a l’aire i a l’aigua, baixos punts de 

fusió i baixa volatilitat. Posteriorment, van anar canviant l’anió per altres anions com per 

exemple el sulfat i l’hidrogensulfat. Tot i les modificacions estructurals que tenien envers als 

ILs anteriors, aquests últims continuaven sent sensibles tant a l’oxigen com a la humitat de 

l’aire. Uns estudis posteriors realitzats per Gratzel i col·laboradors, [9] es van basar en 

anions més hidrofòbics com ara el trisfluorometilsulfat, bis[(trifluorometil)sulfonil]imidur 

conegut com         i el tris[(trifluorometil)silfonil]metilur. 

Així doncs, partint de la base que per formar un IL es necessita un catió i un anió, és 

evident que és fàcil dissenyar un nombre elevat de ILs. 

  

1.2 ILs classificació 

Els ILs es divideixen en tres categories: ILs de primera generació, ILs de segona 

generació  i ILs de tercera generació.  
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La primera generació de ILs són líquids que tenen uns cations voluminosos. En  

general presenten cations orgànics heterocíclics derivats de 1,3-dialquilimidazoli o 1-

alquilpiridina i anions del tipus     
 . El gran avantatge d’aquesta primera generació és que 

es pot modificar el seu comportament i poden actuar com a àcid de Lewis. El seu 

inconvenient és la seva alta sensibilitat a l’aigua. Per tant, tenen poca utilització a la 

indústria ja que han de ser utilitzats en ambients totalment anhidres. 

La segona generació està formada pels ILs que poden ser manipulats a l’aire. És per 

això que tenen l’avantatge  que no s'ha de treballar amb ells dins d’una caixa de guants, a 

diferència dels ILs de primera generació en que sí que és necessari. Per tant, la síntesis  dels 

ILs de segona generació consisteix amb la substitució dels anions del tipus     
  per anions 

més hidrofòbics com ara    
  i    

 . També inclouen els següents anions: el 

bis[(trifluorometil)sulfonil]imidur (        ) , el perfluoroalquilfosfat         , el clorur, el 

dimetilsulfat,  el trifat (OTf-) entre d’altres. Tanmateix, tot i ser compostos estables a la 

humitat atmosfèrica no vol dir que no absorbeixin aigua. 

La tercera generació de ILs també és coneguda com “task specific”. La incorporació 

de grups funcionals a l’estructura dels ILs, com ara l’acetat, aconsegueix una alta 

especificitat. En l’actualitat, l’obtenció de ILs iònics específics és un camp d’elevada 

importància. Els anions utilitzats per a la síntesis d’aquests són inerts, no fluorats i de baixa 

capacitat coordinant com poden ser els carbonats. Són compostos que es poden sintetitzar 

fàcilment i amb els que es pot treballar a temperatura ambient. El fet de poder controlar les 

propietats d’aquests dissolvents en funció de la seva composició, fa que el disseny d’un 

determinat IL per a una aplicació concreta sigui un repte. [10] 

 

1.3 ILs propietats [3] 

Els ILs són les sals que tenen la temperatura de fusió més baixa. Han tingut una 

gran rebuda en el món científic per les seves inusuals propietats com a líquid. Aquestes 

propietats que els fa únics estan descrites a continuació: 

 El punt de fusió és una de les propietats més importants per avaluar els ILs ja que  

ha de ser  inferior a 100ºC. Per tant la majoria de ILs són líquids a temperatura ambient. Els 

cations són els principals responsables de la temperatura de fusió d’aquests dissolvents. La 
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temperatura del punt de fusió disminueix quan el tamany i asimetria del catió augmenta, en 

canvi, l’increment de les ramificacions de les cadenes alquíliques laterals provoquen un 

augment en el punt de fusió. L’anió també juga un paper important, ja que els ILs que 

tenen els anions amb baixa capacitat per formar pont d’hidrogen són els que tenen el punt 

de fusió més baix.  

 

 La naturalesa iònica del ILs i la seva elevada estabilitat tèrmica i química fan que la 

seva pressió de vapor sigui baixa. Aquestes propietats fan que gairebé no hi hagi perill de 

corrosió del material que els conté. Els ILs faciliten els processos de separació dels 

productes obtinguts, una vegada que la separació dels productes engloba quasi sempre una 

etapa d’evaporació o destil·lació. 

 

 La densitat dels ILs és en general superior a la de l’aigua (entre 1.1 i 1.6 g/cm3). La 

densitat disminueix de forma genèrica amb l’augment de les cadenes alquíliques presents en 

els cations. Els anions també influeixen de forma important en aquesta propietat ja que la 

massa molecular d’aquests implica una variació en la densitat final dels ILs.  

 

 La viscositat dels ILs està compresa entre 10 i 500 mP a temperatura ambient de 

manera que solen ser molt més viscosos que la majoria dels dissolvents orgànics. Aquesta 

propietat ve determinada per la tendència dels dissolvents a formar tant enllaços d’hidrogen 

com interaccions de Van der Waals. En el cas dels ILs formats per cations del tipus 

d’imidiazoli, la seva viscositat depèn de la longitud de la cadena alquílica i de la naturalesa 

de l’anió. A mesura que augmenta la longitud de la cadena, augmenten les interaccions de 

Van der Waals entre els cations. La simetria dels cations i la seva capacitat per formar 

enllaços d’hidrogen són d’altres factors que també influeixen en la viscositat d’aquests 

dissolvents. Finalment, la presència d’anions amb càrrega negativa no localitzada, redueix 

de forma efectiva la formació de ponts d’hidrogen i permet a la vegada la disminució en la 

simetria estructural dels mateixos, el que implica una disminució de la viscositat. El fet que 

els ILs siguin dissolvents moderadament viscosos implica una disminució de la velocitat de 

difusió, i per tant de les velocitats de les reaccions químiques. 

 

 La conductivitat dels ILs és generalment més elevada que en qualsevol dissolució 

electroquímica formada per un dissolvent i un EF i està compresa entre 2 i 10 mS/cm. Per 

exemple, una dissolució formada per dimetilformamida amb 0.1 M de la sal de tetraetilamoni 
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tetrafluoroborat (TBABF4) té una conductivitat de 2.5 mS/cm, en canvi, només un IL sol com 

ara el EMIMTFSI té una conductivitat de 4 mS/cm. [11] 

 

 El rang de potencial és una propietat fonamental pel disseny de sistemes i dispositius 

electroquímics. Es necessita que tinguin una gran finestra de potencial, per tal de poder dur 

a terme reaccions d’oxidació i de reducció. En general els rangs de potencial són molt més 

amplis en els ILs que en els sistemes electroquímics habituals. El límit anòdic en els ILs ve 

determinat per la dificultat dels diferents anions que els formen a ser oxidats. Un exemple 

clar és l’ús d’anions fluorats, que són difícilment oxidables i això fa que ens permeti treballar 

a potencials més negatius. Amb els cations passa al mateix, a l’utilitzar cations que són 

difícilment reduïts fa que el rang de potencial sigui molt més gran (o ampli).  

 

 

 

Figura 1.4. Rangs de potencial d’alguns ILs fent servir el ferrocè com a patró intern com a referència. Línia 

sòlida: sistema no cloroaluminat; línia puntejada: sistema cloroaluminat. Elèctrode de treball: C (carboni vítri); W  

(tungstè); Pt (platí).  

 

 L’estabilitat tèrmica i l’estabilitat química dels ILs és un factor limitant a l’hora 

d’escollir una  aplicació en concret. En l’actualitat no hi ha massa coneixement pel que fa a 

la inestabilitat d’aquests dissolvents. Aquests ILs són termodinàmicament estables fins a 

temperatures de 400-500 ºC. 
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En resum, la utilització de ILs s’ha extès a diverses àrees de investigació com són la 

síntesis de compostos orgànics i inorgànics, [12] polimerització, [13] catàlisi, [14] separació 

de gasos, [15] aplicacions electroquímiques en bateries, [16 a,b] combustible, [16b] 

aplicacions electroquímiques en condensadors, [16c] aplicacions electroquímiques en cel·les 

solars, [16d] i en processos electrosíntesis orgànics com la reducció del grup nitro a nitrós i 

hidroxilamina [17], la reducció dels benzaldehids a alcohols corresponents [18] i les 

oxidacions d’alcohols als corresponents aldehids i cetones [19]. 

En electroquímica fonamental i utilitzant ILs s’han determinat: coeficients de difusió 

[20,21,22] constants de transferència electrònica, [23] i rang de potencial en els ILs. [17, 

20, 23] Estudis previs, en particular, Fry [24] demostra que compostos com els 

dinitrobenzens en ACN + 0.1 EF presenten dos ones de reducció monoelectròniques 

reversibles. En canvi en el IL EMIMBF4 aquesta mateixa reacció, dóna una ona bielectrònica 

reversible.  

En el nostre laboratori [24] s’ha realitzat estudis electroquímics amb ILs a 

temperatura ambient, en particular la família dels ILs amb catió 1,3-butilmetilimidiazoli 

(BMIM+) i amb anions    
      

                Aquests estudis han permès posar apunt 

tècniques electroquímiques (voltametria cíclica, VC i electròlisi) en aquest medi i en 

conseqüència determinar el comportament de compostos orgànics capaços de ser oxidats o 

reduïts i comparar-los amb el comportament que presenten en un medi orgànic clàssic 

(dissolvent apròtic més electròlit de fons) . També ha permès obtenir – via electrosíntesis – 

productes de la reacció SNAr amb rendiment i selectivitat anàlegs o superiors que en els 

mateixes reaccions realitzades en medis orgànics clàssics. 
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1.5 Objectius 

En el nostre grup, es vol estudiar i modificar la reactivitat d’anions-radicals, dianions, 

cations radicals i dications formats per transferència electrònica utilitzant ILs i barreges de 

ILs en dissolvents orgànics clàssics i verds.  

Es per això que, l’objectiu d’aquest treball de investigació és continuar amb l’estudi 

fonamental de les propietats d’una amplia llista de ILs en electroquímica determinant el seu 

rang de potencial útil, la seva conductivitat i comparant el seu comportament amb 

dissolvents orgànics clàssics per diferents substàncies electroquímiques patrons.   
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2. RESULTATS I DISCUSSIÓ 

La secció de resultats i discussió està dividida en quatre apartats. Al primer apartat 

s’exposa una descripció de les propietats físico-químiques dels diferents ILs estudiats. El 

segon apartat conté l’estudi de diferent sondes redox de reducció i oxidació en dissolvents 

orgànics clàssics i finalment els dos apartats següents tracten de  l’estudi d’aquestes sondes 

redox de reducció i oxidació en els ILs estudiats. 

Els ILs que es mostren a la taula 2.1 són els que s’han estudiat en aquest treball. En 

aquesta taula s’ha abreujat el nom dels ILs. A la taula 2.2 es mostra el nom del catió i de 

l’anió abreujats acompanyats de la fórmula corresponent. Dins d’aquest apartat s’han 

estudiat tres propietats que fa que cada uns dels ILs siguin útils per una aplicació o per una 

altra. Aquestes propietats fisico-químiques són: el punt de fusió, la conductivitat i el rang de 

potencial.  

 

 

 

 

 

                   Taula 2.1.  ILs estudiats. 

 

2.1  Propietats físico-químiques dels ILs emprats 

2.1.1 Punt de fusió 

No tots els ILs estudiats en aquest treball són líquids a temperatura ambient. Tres 

d’ells es troben en estat sòlid i són els que es mostren a la taula 2.3. El punt de fusió es va 

determinar escalfant el IL sòlid fins que va canviar de fase i en aquest punt es va anotar la 

temperatura. 

 

 

A336BF4 BMIMAcO BMPMAcO EMIMAcO 

A336Cl BMIMBF4  EMIMCl 

A336TFSI BMIMPF6  EMIMDEP 

 BMIMTFSI  EMIMOTf 

   EMIMPF6 

   EMIMTFSI 
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                  Cations  Anions 

 

 

 A336+ 

 

 

CH3 - N -   CH2  6 CH3  3 
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O

O

 

 

 

 Etilmetilimidazoli  Bis(trifluorometasulfoxic)imida 

 

Taula 2.2. Representació dels diferents cations i anions que formen els ILs estudiats. 
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Líquid iònic Punt de fusió (0C) 

BMPMAcO 97.0±0.1 

EMIMCl 105.0±0.1 

EMIMPF6 107.0±0.1 

 

Taula 2.3. Valors del punt de fusió dels ILs que es troben en estat sòlid a temperatura ambient. 

El fet que aquests ILs siguin sòlids és degut a la naturalesa del catió i de l’anió.[1] 

Com ja s’ha mencionat a la introducció del treball, el punt de fusió és més elevat quan els 

cations són més petits i més simètrics. Amb aquestes premisses podem dir que de tots els 

cations que s’han estudiat, el catió EMIM+ és el catió més petit i el més simètric, com a 

conseqüència els ILs formats per aquest catió tenen el punt de fusió més elevat. L’altre IL 

que es troba sòlid a temperatura ambient està format per un catió, el BMPM+, que és també 

bastant simètric, però no tant com el EMIM+ per tant el punt de fusió és una mica més baix.    

 

2.1.2 Conductivitat 

Una altra propietat important en els ILs és la conductivitat (en µS/cm), a la taula 2.4 

es mostren els diferents valors mesurats. El valor de la conductivitat es mesura a 24.0 ºC, 

excepte els ILs que es troben en estat sòlid a temperatura ambient. En aquest últims, es va 

fer el canvi de fase de sòlid a líquid augmentant la temperatura i un cop ja es troben en 

estat líquid s’ha realitzat la mesura. 

 

Taula 2.4. Valors de la conductivitat dels ILs estudiants. 

Líquid iònic Conductivitat (µS/cm) Líquid iònic Conductivitat (µS/cm) 

A336BF4 39.7 BMPMAcO * 2430 

A336Cl 80   

A336TFSI 84 EMIMAcO 1870 

  EMIMCl * 6570 

BMIMAcO 434 EMIMDEP 566 

BMIMBF4 820 EMIMOTf 3480 

BMIMPF6 3920 EMIMPF6 * 9060 

BMIMTFSI 1327 EMIMTFSI 3890 
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La conductivitat, tal com mostra la taula 2.4 depèn del tamany dels ions. [1] Si ens 

fixem amb la grandària els cations, el catió més gran és el A336+ i per tant són els ILs que 

tenen una conductivitat més baixa, seguits pels BMIM+ i  EMIM+ que són d’igual valor.  

 

2.1.3 Rang de potencial 

La última propietat físico-química estudiada és el rang de potencial. Per tal de 

determinar aquesta propietat s’ha fet una voltametria cíclica a 5 ml de cadascun dels ILs. En 

tots els casos s’ha utilitzat com a elèctrode de treball un disc de carboni vítri amb un 

diàmetre de 0.9 mm i una velocitat d’ escombrat de 500 mV/s. Com a exemple es mostra la 

corba I-E pel IL EMIMAcO, figura 2.1. A partir de la corba I-E obtinguda es va determinar el 

rang de potencial del IL, es pot veure a la dreta la de la corba on el dissolvent es comença a 

oxidar (1.2 V) i a l’esquerra de la corba on el dissolvent es comença a reduir (-2.0 V).  

 

Figura 2.1. Corba I-E del IL EMIMAcO. Elèctrode de treball un disc de carboni vítri amb un diàmetre de 0.9 mm, 

velocitat d’escombrat 500mV/s i 24.0 ºC. El requadre en negreta representa el rang de potencial útil. 

 

A la taula 2.5 es resumeixen els valors del rang de potencial dels ILs estudiats. La 

primera columna és el valor del rang de potencial, la segona columna és el valor del 

potencial on el IL es comença a reduir i la última columna és el valor del potencial on el IL 

es comença a oxidar.  

 

40x10
-3

30

20

10

0

-10

-20

-30

I 
(m

A
)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

E (V) vs. SCE



 

16 
 

Líquid iònic E(V) Ered (V) Eoxi (V) 

A336BF4 3.6 -2.0 1.6 

A336Cl 3.0 -2.0 1.0 

A336TFSI 4.0 -2.0 2.0 

    

BMIMAcO 3.3 -2.2 1.1 

BMIMBF4 4.3 -2.1 2.2 

BMIMPF6 3.7 -2.0 1.7 

BMIMTFSI 4.6 -2.2 2.4 

    

BMPMAcO 3.7 -2.4 1.3 

    

EMIMAcO 3.2 -2.0 1.2 

EMIMCl 2.8 -2.0 0.8 

EMIMDEP 3.3 -2.0 1.3 

EMIMOTf 4.3 -2.2 2.1 

EMIMPF6 4.3 -2.0 2.3 

EMIMTFSI 4.0 -2.0 2.0 

 

Taula 2.5. Valors del rang de potencial dels ILs estudiats. 

Es pot observar que els valors de potencial del límit catòdic no varien molt d’un IL a 

un altre, tots són al voltant de -2 V, és a dir, la facilitat per reduir el catió és semblant en 

tots els casos estudiats. Els valors de potencial del límit aniònic estan compresos entre 0.8 V 

pel que fa l’anió Cl- i 2.4 V pel que fa l’anió TFSI-. Es pot observar que hi ha diferències en el 

comportament del mateix anió segons el IL.   

En conclusió, els ILs que millor s’adapten a les tècniques electroquímiques són líquids a 

temperatura ambient, són bons conductors i  tenen un ampli rang de potencial.  

 BMIMAcO, BMIMBF4, BMIMPF6 i BMIMTFSI són els que compleixen aquestes 

característiques. 

 

 A336BF4, A336Cl i A336TFSI tot i tenir un ampli rang de potencial i ser líquids a 

temperatura ambient tenen una conductivitat baixa. 
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 EMIMAcO, EMIMCl, EMIMDEP, EMIMOTf, EMIMPF6 i EMIMTFSI tenen un 

comportament divers; alguns d’ells es troben en estat sòlid però el rang de potencial 

i les conductivitats són similars als BMIMX. 

 

 BMPMAcO és sòlid a temperatura. 

Els ILs presenten un potencial de reducció que està relacionat amb la naturalesa del catió 

que el forma, essent el catió, BMPM+, el més difícilment reduïble. 

El límit anòdic depèn del potencial d’oxidació de l’anió que forma el IL, essent l’anió, Cl- el 

més fàcilment oxidable i els anions fluorats els més difícilment oxidables. Tenint en compte 

les observacions anteriors el IL ideal estaria format pel catió BMPM+ i l’anió TFSI-. 

 

2.2 Sondes electroquímiques en dissolvents orgànics apròtics 

S’han escollit com a sondes electroquímiques o substàncies patró el ferrocè (sonda 

d’oxidació): [2] 

E0

FeCp2     +1e-             FeCp2
 

 

i el p-nitrotoluè (sonda de reducció): [2]  

NO2 NO2

+ 1e-                                                    E0 = -1.06 V (vs. SCE) en DMF

E0

 

 

S’entén per sonda electroquímica o substància patró aquell compost que forma 

cations radicals estables - en cas de l’oxidació - i  anions radicals estables - en cas de la 

reducció- respectivament en el temps que dura la voltametria cíclica. És a dir, compostos 

que presenten una oxidació i una reducció monoelectronica ràpida. En permet determinar 
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pels diferents sistemes experimentals el valor del potencial estàndard, Eº, l’amplada de pic, 

ΔEp, i la funció de corrent, 
  

   
   corresponen a aquesta transferència monoelectrònica.  

Com a dissolvents orgànics apròtics s’han utilitzat la dimetilformamida (DMF) i 

l’acetonitril (ACN) que tenen una costant dielèctrica de 37 i propilencarbonat (PC) que el 

valor de la constant dielèctrica és 64.   

2.2.1  Ferrocè 

L’estudi mitjançant la tècnica de voltametria cíclica de 5 ml d’una dissolució 5 mM de 

ferrocè en DMF + 0.1 M tetraborofluorat de tetrabutilamoni (TBABF4), a diferent velocitats 

d’escombrat (v) permet obtenir els valors de  intensitat de pic Ip, potencial de pic anòdic, 

Epa, potencial de pic catòdic, Epc,, E
0, ΔEp i  

  

   
  . Els valors es mostren a la taula 2.6. 

v (V/s) Ip (µA) c(mM) Epa(V) Epc(V) Eº(V) ΔEp(mV)   

   
 

0.5 11.86 5.00 0.53 0.42 0.48 64 3.35 

0.1 5.58 5.00 0.52 0.43 0.48 64 3.53 

0.3 9.47 5.00 0.53 0.43 0.48 69 3.46 

0.5 11.71 5.00 0.53 0.42 0.48 73 3.31 

0.7 13.74 5.00 0.54 0.42 0.48 76 3.28 

1.0 16.22 5.00 0.54 0.41 0.48 77 3.24 

0.5 11.82 5.00 0.53 0.42 0.48 70 3.34 

 

Taula 2.6. Característiques electroquímiques d’una dissolució 5 mM de ferrocè en DMF + 0.1 M TBABF4. 

En el rang de velocitat estudiades, el ferrocè mostra una única ona d’oxidació amb E0 

de 0.48 V amb una amplada de pic de l’orde de 71 mV. L’ona és monoelectrònica [2] i el 

valor de 
  

   
  és 3.40 que correspon a un electró per l’elèctrode treball utilitzat en DMF + 0.1 

M TBABF4. 

Al realitzar un estudi sistemàtic per la tècnica de voltametria cíclica en ACN + 0.1 M 

TBABF4 i PC + 0.1 M TBABF4 per l’oxidació electroquímica del ferrocè, s’observa un 

comportament similar al que presenta la dissolució de ferrocè en DMF + 0.1 M TBABF4, 

figura 2.2. És a dir una única ona monoelectrònica corresponen a una transferència ràpida. 

Els valors, a 24ºC de  E0,  de ΔEp, i de 
  

   
 es mostren a la taula 2.7. 
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Figura 2.2. Corbes I-E de dissolucions  5 mM de ferrocè en els diferents dissolvents + 0.1 M TBABF4. Elèctrode 

de treball un disc de carboni vítri amb un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC. 

 

 

 

 

Taula 2.7. Valors de  E0 , ΔEp  i 
  

   
  una dissolució de 5 mM de ferrocè en els diferents dissolvents + 0.1 M 

TBABF4. 

Els valors de 
  

   
 mostrats a la taula 2.7 corresponen al procés monoelectrònic 

d’oxidació del ferrocè utilitzant sempre el mateix elèctrode de treball i diferents dissolvents. 

La diferència de valors es pot atribuir als valors del coeficient de difusió del ferrocè en els 

tres dissolvent utilitzats. 

La figura 2.3, representa les intensitats normalitzades pels dissolvent emprats 

respecte de la DMF. Aquesta normalització s’ha dut a terme fent els quocients: ( 
  

   
 DMF) /( 

  

   
 ACN) i (

  

   
 DMF) /( 

  

   
 PC) que són respectivament 0.73 i 1.86 per aconseguir una 

directe comparació entre les corbes I-E obtingudes.  
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ACN + 0.1 M TBABF4 0.39±0.01 59±1 4.67±0.08 

DMF + 0.1 M TBABF4 0.48±0.01 71±1 3.40±0.01 

PC + 0.1 M TBABF4 0.40±0.01 61±1 1.83±0.04 
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Figura 2.3. Corbes I-E de dissolucions 5 mM de ferrocè en els diferents dissolvents + 0.1 M TBABF4. Elèctrode 

de treball un disc de carboni vítri amb un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

  

2.2.2 p-nitrotoluè 

Un estudi mitjançant la tècnica de voltametria cíclica de 5ml d’una dissolució 13.17 

mM de p-nitrotoluè en DMF + 0.1 M TBABF4, a diferent velocitats d’escombrat (v) permet 

obtindre els valors de Ip, Epa, Epc, E
0, ΔEp i  

  

   
  . Els valors es mostren la taula 2.8. 

v (V/s) Ip(µA) c(mM) Epa(V) Epc(V) Eº(V) ΔEp(mV)   

   
 

0.5 31.65 13.17 -1.03 -1.10 -1.06 66 3.40 

0.1 12.99 13.17 -1.03 -1.10 -1.06 59 3.12 

0.3 22.22 13.17 -1.03 -1.10 -1.06 56 3.08 

0.5 28.97 13.17 -1.03 -1.10 -1.06 59 3.11 

0.7 34.51 13.17 -1.03 -1.10 -1.06 59 3.13 

1.0 41.97 13.17 -1.03 -1.10 -1.06 59 3.19 

0.5 28.22 13.17 -1.03 -1.10 -1.06 60 3.03 

 

Taula 2.8. Característiques electroquímiques d’una dissolució de 13.17 mM de p-nitrotoluè en DMF +0.1M 

TBABF4. Elèctrode de treball un disc de carboni vítri amb un diàmetre de 0.9 mm i 24.0 ºC 
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En el rang de velocitat estudiades, el p-nitrotoluè mostra una única ona de reducció 

amb E0 de -1.06 V i amb una amplada de pic de l’odre de 58 mV. L ‘ona és monoelectrònica 

[2] i el valor de 
  

   
  és 3.13 que correspon a un electró per l’eletrode treball utilitzat en DMF 

+ 0.1 M TBABF4. 

Al realitzar un estudi sistemàtic per la tècnica de voltametria cíclica en ACN + 0.1 M 

TBABF4 i PC + 0.1 M TBABF4 la reducció del p-nitrotoluè, mostra un comportament similar al 

que presenta la dissolució de p-nitrotoluè en DMF + 0.1 M TBABF4, figura 2.4. És a dir, una 

única ona monoelectrònica corresponen a una transferència ràpida. Els valors, a 24ºC,  E0 , 

ΔEp i  
  

   
 es mostren a la taula 2.9. 

 

 

Figura 2.4. Corbes I-E de dissolucions  13.17 mM de p-nitrotoluè en els diferents dissolvents + 0.1 M TBABF4. 

Elèctrode de treball un disc de carboni vítri amb un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 

ºC 

 

 

 

 

Taula 2.9. Valors de  E0 , ΔEp  i 
  

   
  una dissolució 13.17 mM de p-nitrotoluè en els diferents dissolvents + 0.1 

M TBABF4. 
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 PC +0.1M TBABF4

 Eº (V) ΔEp (mV)    

   
 

ACN + 0.1 M TBABF4 -1.10±0.01 55±3 4.41±0.01 

DMF + 0.1 M TBABF4 -1.06±0.01 58±2 3.13±0.08 

PC + 0.1 M TBABF4 -1.13±0.01 61±3 2.10 ±0.01 
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Els valors de 
  

   
 mostrats a la taula 2.9 corresponen al procés monoelectrònic de 

reducció del p-nitrotoluè utilitzant sempre el mateix elèctrode de treball i diferents 

dissolvents. La diferència de valors es pot atribuir als valors del coeficient de difusió del p-

nitrotoluè en els tres dissolvent utilitzats. 

La figura 2.5, representa les intensitats normalitzades pels dissolvents emprats 

respecte de la DMF. Aquesta normalització s’ha dut a terme fent els quocients: ( 
  

   
 DMF) /( 

  

   
 ACN) i (

  

   
 DMF) /( 

  

   
 PC) que són respectivament 0.71 i 1.62 per aconseguir una 

directe comparació entre les corbes I-E obtingudes.  

 

Figura 2.5. Corbes I-E de dissolucions  13.17 mM de p-nitrotoluè en els diferents dissolvents + 0.1 M TBABF4. 

Elèctrode de treball un disc de carboni vítri amb un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i      

24.0 ºC 

El ferrocè i p-nitrotoluè es comporten com a sondes electroquímiques d’oxidació i 

reducció respectivament en els dissolvents ACN, DMF i PC + 0.1 M TBABF4 aquest estudi ha 

permès la calibració de l’elèctrode de treball.  

 

2.3 Sondes electroquímiques en ILs de segona generació 

En els  ILs BMIMBF4, BMIMPF6 i BMIMTFSI s’ha estudiat el comportament com a 

sonda electroquímica del ferrocè i del p-nitrotoluè. [3] En els tres medis utilitzats les dos 

sondes es comporten de manera similar que en els dissolvents orgànics apròtics, és a dir, 

presenten ones monoelectròniques d’oxidació i reducció respectivament. No obstant, 
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s’observa tant un desplaçament en el valor de E0, que s’explica per la solvatació selectiva 

dels ions radicals formats, com una forta disminució de la funció de corrent degut a la 

viscositat del dissolvent i el coeficient de difusió del substrat. 

2.3.1 Ferrocè en ILs 

 Família A336+ 

 

Les corbes I-E de dissolucions 7.5 mM de ferrocè en A336BF4, A336Cl, A336TFSI a 

500 mV/s utilitzant un disc de carboni vítri (d=0.9 mm) com elèctrode de treball es 

representen a la figura 2.6. Aquestes corbes I-E no estan ben definides, la seva forma no 

permet fer mesures de les seves característiques electroquímiques. Una causa pot ser l’alta 

resistivitat del medi deguda a les baixes conductivitats d’aquests ILs. 

 

Figura 2.6. Corbes de I-E de dissolucions 7.5 mM de ferrocè. Elèctrode de treball un disc de carboni vítri amb 

un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

 

 Família BMIM+ 

Les corbes I-E de dissolucions 7.5 mM de ferrocè en BMIMBF4, BMIMPF6 i BMIMTFSI 

a 500 mV/s utilitzant un disc de carboni vítri (d=0.9 mm)  com elèctrode de treball es 

representen a la figura 2.7. Aquestes corbes I-E  estan ben definides i corresponen a una 

transferència monoelectrònica ràpida, per tant, és possible fer mesures de les seves 

característiques electroquímiques.  
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Figura 2.7. Corbes de I-E de dissolucions 7.5 mM de ferrocè. Elèctrode de treball un disc de carboni vítri amb 

un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

 

L’estudi mitjançant la tècnica de voltametria cíclica de 5 ml d’ una dissolució 7.5 mM 

de ferrocè en els BMIMBF4, BMIMPF6 i BMIMTFSI a diferents velocitats d’escombrat (v) 

permet obtindre els valors de Ip, Epa, Epc, E
0, ΔEp i  

  

   
  . La taula 2.10 resumeix a efectes 

comparatius els valors, a 24ºC, de E0, ΔEp  i de 
  

   
 en DMF + 0.1 M TBABF4 i els BMIMBF4, 

BMIMPF6 i BMIMTFSI.  

 

 

 

 

 

Taula 2.10. Valors de  per 24 ºC de E0  , de ΔEp i de 
  

   
 una dissolució de 7.5 mM de ferrocè en DMF +0.1 M 

TBABF4, BMIMBF4, BMIMPF6 i BMIMTFSI.  

 

La diferència entre els valors de la funció de corrent entre les ones 

monoelectròniques corresponen a l’oxidació del ferrocè en els diferents dissolvents, taula 
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 Eº (V) ΔEp (mV)    

   
 

DMF + 0.1 M TBABF4 0.48±0.01 71±1 3.40±0.01 

BMIMBF4 0.36±0.01 56±3 1.22±0.02 

BMIMPF6 0.25±0.01 51±3 0.34±0.01 

BMIMTFSI 0.28±0.01 61±4 0.32±0.02 
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2.10, està relacionada amb els diferents valors de coeficient de difusió del ferrocè en 

aquests dissolvents. Per tenir una comparació directe entre les ones d’oxidació s’ha 

normalitzat les intensitats en relació a la DMF de la següent manera;  (
  

   
 DMF) /( 

  

   
 BMIM 

BF4), (
  

   
 DMF) /( 

  

   
 BMIM PF6) i ( 

  

   
 DMF) /( 

  

   
 BMIM TFSI) que són respectivament, 

2.79, 10.00 i 10.63, figura 2.8. 

 

Figura 2.8. Corbes de I-E de dissolucions 7.5 mM de ferrocè. Elèctrode de treball un disc de carboni vítri amb 

un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

  

El desplaçament de E0 -corresponent a l’oxidació monoelectrònica del ferrocè- cap a 

valors menys positius al passar de DMF + 0.1 M TBABF4 als BMIMBF4, BMIMPF6 i BMIMTFSI, 

taula 2.11, es pot explicar per la solvatació de l’espècie formada a l’oxidació pels anions 

presents al medi. Els ILs estan formats per cations i anions, per tant la solvatació i la 

variació de E0 es pot explicar per la seva naturalesa. 

Dissolucions de ferrocè en DMF + 0.1 M TBABF4 i en BMIMBF4 es diferencien per la 

quantitat d’ anions BF4
- en dissolució. L’anió BF4

- és més petit que l’anió PF6
- així, degut el 

tamany del anió s’esperaria que el BF4
- solvates millor al que el PF6

- però el que s’observa 

experimentalment és just el contrari. Amb tot, s’ha de tenir en compte que l’anió BF4
- és un 

anió menys polaritzable i una base més forta que l’anió PF6
- així, es pot assumir que l’anió 

BF4
- té una tendència més gran a interaccionar amb l’hidrogen del catió imidazoli, és a dir, el 

medi hi ha una menor quantitat d’anions BF4
- lliures per estabilitzar el catió radical format 

electroquímicament. En canvi, el PF6
- actua com un anió lliure i per això solvata millor els 
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cations radicals electrogenerats. Aquests fets estan descrits en uns estudis de complexos de 

ruteni (II). [4] El comportament del anió TFSI- , similar al de PF6
-,es pot atribuir a la 

distribució de carga. 

 

 Família EMIM+ 

Les corbes I-E de dissolucions 7.5 mM de ferrocè en EMIMCl, EMIMDEP, EMIMOTf, 

EMIMPF6 i EMIMTFSI a 500 mV/s utilitzant un elèctrode de disc de carboni vítri (d=0.9 mm) 

es representen la figura 2.9. Hi ha corbes ben definides i que corresponen a una 

transferència monoelectrònica ràpida pels ILs EMIMOTf i EMIMTFSI. Les corbes I-E que 

corresponen a la utilització del ILs EMIMCl, EMIMDEP i EMIMPF6 no permeten fer mesures 

de les seves característiques electroquímiques.  

 

Figura 2.9. Corbes de I-E de dissolucions 7.5 mM de ferrocè. Elèctrode de treball un disc de carboni vítri amb 

un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

 

L’estudi mitjançant la tècnica de voltametria cíclica de 5 ml d’ una dissolució 7.5 mM 

de ferrocè en els EMIMOTf i EMIMTFSI, a diferents velocitats d’escombrat (v) permet 

obtindre els valors de  Ip, Epa, Epc, E0, ΔEp i  
  

   
  . La taula 2.11 resumeix a efectes 

comparatius els valors, a 24ºC, de E0 , de ΔEp i de 
  

   
 de DMF +0.1 M TBABF4 i els EMIMOTf 

i EMIMTFSI. 
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Taula 2.11. Valors de  per 24 ºC de E0  , de ΔEp i de 
  

   
 una dissolució de 7.5 mM de ferrocè en en DMF +0.1M 

TBABF4, EMIMOTf i EMIMTFSI. 

 

La diferència entre els valors de la funció de corrent en els diferents dissolvents, 

taula 2.11, està relacionada amb els diferents valors de coeficient de difusió del ferrocè en 

aquests dissolvents. Per tenir una comparació directe entre les ones d’oxidació s’ha 

normalitzat les intensitats en relació a la DMF de la següent manera;  ( 
  

   
 DMF) /( 

  

   
 EMIM 

OTf) i (
  

   
 DMF) /( 

  

   
 EMIM TFSI) que són respectivament 6.53 i 5.60. figura 2.10. 

 

Figura 2.10. Corbes de I-E de dissolucions 5 mM de ferrocè. Elèctrode de treball un disc de carboni vítri amb un 

diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

El desplaçament de E0 de l’oxidació monoelectrònica del ferrocè, cap a valors menys 

positius al passar de DMF + 0.1 M TBABF4 als EMIMOTf i EMIMTFSI, taula 2.11, es pot 

explicar per la solvatació de l’espècie formada a l’oxidació pels anions presents al medi. 
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 Eº(V) ΔEp (mV)    

   
 

DMF + 0.1 M TBABF4 0.48±0.01 71±1 3.40±0.01 

EMIMOTf 0.30±0.01 54±1 0.52±0.02 

EMIMTFSI 0.25±0.01 57±1 0.61±0.01 
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L’anió TFSI- presenta un comportament similar en l’oxidació electroquímica del ferrocè tant 

pel medi BMIM+, taula 2.10 com pel medi EMIM+ taula 2.11, és a dir, un desplaçament cap a 

valors menys positius d’ E0. L’anió OTf- presenta un comportament similar al TFSI- que es 

pot atribuir a la distribució de carga. 

En conclusió, els estudis realitzats han posat en manifest  un efecte de solvatació 

diferenciat de l’espècie formada en el procés d’oxidació segons la naturalesa del IL, és a dir, 

l’espècie amb carga positiva formada està solvatada pels anions presents al medi.   

 

2.3.2 p-nitrotoluè en ILs 

El p-nitrotoluè presenta una ona reversible monoelectrònica a potencials de -1.0 V 

relacionada amb la formació de l’anió radical estable del p-nitrotoluè.[2] Aquest 

comportament és el mateix tant en els dissolvents clàssics en electroquímica com en els IL 

estudiats. Els valors dels E0 varien per la diferent solvatació de l’anió radical format amb els 

cations presents en el medi. [3] Com la reducció del p-nitrotoluè dòna lloc a un aniò-radical 

estable, en aquest treball s’ha decidit escollir els tres ILs  del nostre estudi que tenen l’anió 

en comú.  Així s’ha pogut estudiar l’efecte del catió en els dissolvents en la formació de 

l’anió radical del p-nitrotoluè per reducció electroquímica. Els dissolvents escollits són 

A336TFSI, BMIMTFSI i EMIMTFSI.  

Les corbes I-E de dissolucions 7.5 mM de p-nitrotoluè en A336TFSI, BMIMTFSI i 

EMIMTFSI a 500 mV/s utilitzant un elèctrode de disc de carboni vítri (d=0.9 mm) es 

representa a la figura 2.11. Aquestes corbes I-E  estan ben definides i corresponen a una 

transferència monoelectrònica ràpida per tant es possible fer mesures de les seves 

característiques electroquímiques en el cas dels ILs BMIMTFSI i EMIMTFSI. La resposta 

electroquímica  corresponent a la reducció del p-nitrotoluè en  IL A336TFSI no es utilitzable.  

L’estudi mitjançant la tècnica de voltametria cíclica de 5 ml d’ una dissolució 7.5 mM 

de p- nitrotoluè  en BMIMTFSI i EMIMTFSI  a diferents velocitats d’escombrat (v) permet 

obtindre els valors de Ip, Epa, Epc, E0, ΔEp i  
  

   
  . La taula 2.12 resumeix a efectes 

comparatius els valors, a 24ºC, de E0, de ΔEp i de 
  

   
 de DMF + 0.1 M TBABF4 i els 

BMIMTFSI i EMIMTFSI.   
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Figura 2.11. Corbes de I-E de dissolucions 7.5mM de p-nitrotoluè. Elèctrode de treball un disc de carboni vítri 

amb un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

 

 

 

 

 

 

Taula 2.12. Valors a 24 ºC de E0  , de ΔEp i de 
  

   
 una dissolució de 7.5 mM de p-nitrotoluè  en DMF +0.1M 

TBABF4, BMIMTFSI i EMIMTFSI. 

 

La diferència entre els valors de la funció de corrent entre les ones 

monoelectròniques corresponent a la reducció del p-nitrotoluè en els diferents dissolvents, 

taula 2.12, està relacionada amb el diferents valors de coeficient de difusió del p-nitrotoluè 

en aquests dissolvents. Per tenir una comparació directe entre les ones de reducció s’han 

normalitzat les intensitats en relació a la DMF de la següent manera ( 
  

   
 DMF) /( 

  

   
 BMIM 

TFSI) i (
  

   
 DMF) /( 

  

   
 EMIM TFSI) que són respectivament 5.22 i 5.59. Figura 2.12. 
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 Eº (V) ΔEp (mV)    

   
 

DMF + 0.1 M TBABF4 -1.06±0.01 58±2 3.13±0.08 

BMIMTFSI -1.12±0.01 63±4 0.60±0.03 

EMIMTFSI -1.12±0.01 61±4 0.56±0.06 
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Figura 2.12. Corbes de I-E de dissolucions 7.5 mM de  p-nitrotoluè. Elèctrode de treball un disc de carboni vítri 

amb un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

 

El desplaçament de E0, corresponent a la reducció monoelectrònica del p-nitrotoluè, 

cap a valors més negatius al passar de DMF + 0.1 M TBABF4 als  BMIMTFSI i EMIMTFSI 

taula 2.12, es pot explicar per la solvatació de l’espècie formada a la reducció pels cations 

presents al medi. Els nostres resultats mostren que el catió TBA+ solvata millor que els 

cations EMIM+ i BMIM+. Aquest es un resultat en discussió a la literatura. [3] Els dos cations 

estudiats, presenten el mateix efecte per la solvatació del anió radical del p-nitrotoluè.  

En conclusió, els estudis realitzats han posat en manifest, un efecte de solvatació 

diferenciat de l’espècie formada en el procés de reducció segons la naturalesa del IL, és a 

dir, l’espècie amb carga negativa formada està solvatada pels cations presents al medi.   

  

2.4 Sondes electroquímiques en ILs de tercera generació 

Els ILs de tercera generació estudiats són, BMIMAcO, BMPMAcO, EMIMAcO. Al 

utilitzar ferrocè com a sonda electroquímica d’oxidació o el p-nitrotoluè com a sonda 

electroquímica de reducció, s’han obtingut corbes I-E que no corresponen a transferències 

monoelectròniques reversibles, i per tant, no permeten fer mesures de les seves 

característiques electroquímiques. En els dos casos, l’ona té la forma de la figura 2.13, és a 

dir una ona irreversible probablement degut a una reacció química associada. En el cas del 
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ferrocè la reacció possible és una reacció entre el ferrocini i l’anió acetat, mentre que en el 

cas del p-nitrotoluè la reacció possible és una reacció entre el reactiu i aquest mateix anió.   

 

Figura 2.13. Corba de I-E de una dissolució 5 mM de ferrocè. Elèctrode de treball un disc de carboni vítri amb 

un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

 

La sonda electroquímica escollida per aquest tipus de IL és el compost tris(2,2’ 

bipiridina)diclororuteni (II) (RuL3
+2). [5] L’estudi d’aquesta nova sonda s’ha iniciat ,com en 

els casos anteriors, pel seu comportament electroquímic en dissolvents orgànics apròtics i 

passant posteriorment als diferents ILs de tercera generació.  

En la figura 2.14 es mostra la corba de I-E d’una dissolució 4.10 mM de  RuL3
2+ en 

ACN + 0.1 M TBABF4, a 500 mV/s utilitzant un elèctrode de disc carboni vítri (d = 0.9 mm) 

com elèctrode de treball. En aquest voltagrama podem veure tres ones consecutives de 

reducció a potencials -1.34, -1.55  -1.82,  V  i una ona d’oxidació a 1.30 V. Pels ILs de 

tercera generació el valor límit de potencial anòdic es mou entre 1.1 i 1.3 V (taula 2.5) per 

tant ens centrarem en l’estudi en reducció de RuL3
2+ , figura 2.15. 
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Figura 2.14. Corbes de I-E de dissolucions 4.10 mM de RuL3
2+, a 24ºC. Elèctrode de treball un disc de carboni 

vítri amb un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

 

 

Figura 2.15. Corbes de I-E de dissolucions 5mM del RuL3
2+. Elèctrode de treball un disc de carboni vítri amb un 

diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC 

 

L’estudi mitjançant la tècnica de voltametria cíclica de 5 ml d’una dissolució 4.10 mM 

de  RuL3
+2 en ACN + 0.1 M TBABF4, a diferent velocitats d’escombrat (v) permet obtenir els 

valors de  Ip, Epa, , Epc, E
0, ΔEp i  

  

   
  . Els valors, corresponents a la primera ona de reducció, 

es mostren a la taula 2.13. 
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v(V/s) Ip(µA) c(mM) Epa(V) Epc(V) Eº(V) ΔE(mV)    

   
 

0.5 11.41 4.10 -1.30 -1.38 -1.34 59 3.94 

0.1 5.19 4.10 -1.30 -1.38 -1.34 58 4.01 

0.3 9.34 4.10 -1.30 -1.38 -1.34 63 4.16 

0.5 11.92 4.10 -1.30 -1.39 -1.34 67 4.12 

0.7 14.33 4.10 -1.30 -1.40 -1.35 75 4.18 

1.0 16.67 4.10 -1.30 -1.40 -1.35 71 4.07 

0.5 11.57 4.10 -1.30 -1.39 -1.35 68 4.00 

 

Taula 2.13. Taula de valors obtinguts del resultat de les corbes I-E d’una dissolució de 4.10 mM RuL3
2+

 amb 

0.1M TBABF4 en ACN. 

 

En el rang de velocitat estudiades, la primera ona de reducció del RuL3
2+ en ACN + 

0.1 M TBABF4 és monoelectrònica (la funció de corrent té el mateix valor que la funció de 

corrent que el ferrocè) i correspon una transferència electrònica ràpida (amb una amplada 

de pic 65 mV) i un E0 de -1.34 V. 

Al realitzar un estudi sistemàtic per la tècnica de voltametria cíclica en DMF + 0.1 M 

TBABF4 i PC + 0.1 M TBABF4 per la reducció electroquímica del RuL3
2+, s’observa un 

comportament similar al que presenta la dissolució de RuL3
2+ en ACN + 0.1 M TBABF4. És a 

dir, tres ones monoelectròniques successives . La taula 2.14 recull els valors, a 24ºC,  E0 , de 

ΔEp  , i 
  

   
 per la primer a ona de reducció del RuL3

2+. 

 

 

 

 

 

Taula 2.14. Valors de  una dissolució de  E0 , ΔEp  i 
  

   
  de RuL3

+2  2.25 mM, una dissolució de 4.10 mM ACN + 

0.1M TBABF4 , en DMF + 0.1M TBABF4 i una dissolució de 1.55 mM PC + 0.1M TBABF4. 

 

 Eº(V) ΔEp (mV)    

   
 

ACN + 0.1 M TBABF4 -1.38±0.01 65±6 4.10±0.12 

DMF+ 0.1 M TBABF4 -1.34±0.01 46±2 3.4±0.01 

PC + 0.1 M TBABF4 -1.39±0.01 72±4 1.16±0.07 
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Els valors de 
  

   
 mostrats a la taula 2.14 corresponen al procés monoelectrònic de 

reducció del RuL3
2+ utilitzant sempre el mateix elèctrode de treball i diferents dissolvents. La 

diferència de valors es pot atribuir als valors del coeficient de difusió del RuL3
2+ en els tres 

dissolvent utilitzats. En ACN, [6] els valors de coeficients dels difusió del RuL3
2+  i del ferrocè 

són 1.8·10-5  i 2·10-5 cm2/s-1 i ens ha permès -donat els idèntics valors de funció de corrent, 

en les mateixes condicions experimentals- afirmar que el procés és monoelectrònic. En 

conseqüència si coneixem el valor de la funció de corrent amb els altres dissolvents i donat 

que el procés és monoelectrònic podem establir la concentració real de la dissolució 

utilitzada.  

Les corbes I-E de dissolucions de RuL3
+2 BMIMAcO, BMPMAcO, EMIMAcO es mostren 

a la figura 2.16 a 500 mV/s utilitzant un elèctrode de disc de carboni vítri (d=0.9 mm). 

Aquestes corbes I-E estan ben definides i corresponen a tres transferències 

monoelectròniques ràpides, per tant és possible fer mesures dels seus potencials de pic 

catòdic. Taula 2.15. En aquesta taula es pot observar un desplaçament dels potencials de 

pic a valors menys negatius quan canviem els dissolvents orgànics apròtics a ILs de tercera 

generació. 

 

               Epc (V)   

 1a ona 2a ona 3a ona 

ACN + 0.1 M TBABF4 -1.38 -1.56 -1.81 

DMF + 0.1 M TBABF4 -1.34 -1.52 -1.80 

PC + 0.1 M TBABF4 -1.39 -1.57 -1.81 

BMIMAcO -1.22 -1.43 -1.65 

BMPMAcO -1.24 -1.44 -1.68 

EMIMAcO -1.24 -1.44 -1.67 

 

Taula 2.15. Valors de Epc de les tres ones monoelectròniques del compost RuL3
+2 en els diferents dissolvents 

estudiats.  

 

En conclusió, sembla correcte dir que l’anió acetat solvata millor el RuL3
+2  que els anions 

BF4
-. 
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Figura 2.16 Corbes de I-E de dissolucions del RuL3
+2 representant la reducció, a 24ºC. Elèctrode de treball un 

disc de carboni vítri amb un diàmetre de 0.9 mm, velocitat d’escombrat 500mV/s i 24.0 ºC a) en BMIMAcO b) 

BMPM AcO c) EMIMAcO. 
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3. CONCLUSIONS GENERALS I PERSPETIVES DE FUTUR 

1- Els ILs que millor s’adapten per ser utilitzats en les tècniques electroquímiques són 

líquids a temperatura ambient, són bons conductors i tenen un ampli rang de 

potencial.  

 

 BMIMAcO, BMIMBF4, BMIMPF6 i BMIMTFSI són els que compleixen aquestes 

característiques. 

 

 A336BF4, A336Cl i A336TFSI tot i tenir un ampli rang de potencial i ser líquids 

a temperatura ambient tenen una conductivitat baixa el que implica la 

obtenció d’unes corbes de I-E  on no es poden calcular les característiques 

electroquímiques. 

 

 EMIMAcO, EMIMCl, EMIMDEP, EMIMOTf, EMIMPF6 i EMIMTFSI tenen un 

comportament divers; alguns d’ells es troben en estat sòlid, el rang de 

potencial i les conductivitats són als BMIMX. 

 

 BMPMAcO és sòlid a temperatura ambient. 

 

2- Els ILs presenten un potencial de reducció que està relacionat amb la naturalesa del 

catió que el forma, essent el catió BMPM+, el més difícilment reduïble. 

El límit anòdic depèn del potencial d’oxidació de l’anió que forma el IL, essent l’anió, 

Cl- el més fàcilment oxidable i els anions fluorats els més difícilment oxidables. Tenint 

en compte les observacions anteriors el IL ideal estaria format pel catió BMPM+ i 

l’anió TFSI-. 

 

3- El ferrocè i p-nitrotoluè es comporten com a sondes electroquímiques d’oxidació o 

reducció respectivament en els dissolvents ACN, DMF i PC + 0.1 M TBABF4 aquest 

estudi ha permès la calibració de l’elèctrode de treball.  
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4- Els estudis realitzats han posat en manifest, un efecte de solvatació diferenciat de 

l’espècie formada en el procés d’oxidació o reducció segons la naturalesa del IL, és a 

dir, l’espècie amb carga positiva o negativa formada està solvatada majoritàriament 

pels anions o cations presents al medi, respectivament.    

5- En el cas dels ILs de tercera generació, la reactivitat específica de l’anió AcO- fa que 

únicament sigui possible utilitzar tris(2,2’ bipiridina)diclororuteni (II) com a sonda 

redox. L’anió AcO- solvata millor al RuL3
2+ que els anions BF4

-. 

 

3.1 Perspectives de futur 

1. Ampliar la llista de ILs amb anions i cations per poder modular tant les seves 

propietats físiques (punt de fusió, conductivitat, viscositat, densitat, estabilitat 

tèrmica) com les seves propietats electroquímiques (rang de potencial, corbes I-E 

per diverses sondes electroquímiques). 

 

2. Utilitzar mescles de ILs amb dissolvents orgànics clàssics i/o verds per intentar 

millorar els ILs descartats en aquest treball per la seva baixa conductivitat (en alguns 

casos degut a la seva viscositat). 

 

3. Controlar la reactivitat de diferents substàncies electroactives segons el medi 

utilitzat: dissolvent orgànics + 0.1 M EF, ILs i dissolvent orgànics + ILs  
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4. PART EXPERIMENTAL 

 

4.1  Reactius 

4.1.1 Dissolvents 

- Acetonitril (ACN), SDS, per anàlisis 

- N,N’-dimetilformamida (DMF), SDS, per anàlisis 

- Propilencarbonat (PC), Sigma – Aldrich, anhidre 99.7 

4.1.2 Líquids iònics 

- A336BF4 Tetrafluoroborat de triheptilmetilamoni 

- A336Cl Clorur de triheptilmetilamoni 

- A336TFSI Bis(trifluorometasulfòxic) de triheptilmetilamoni 

- BMIMAcO Acetat de 1-butil-3-metilimidazoli 

- BMIMBF4 Tetrafluoroborat de 1-butil-3-metilimidazoli 

- BMIMPF6 Hexafluorofosfat de 1-butil-3-metilimidazoli 

- BMIMTFSI Bis(trisfluorometasulfòxic) de 1-butil-3-metilimidazoli 

- BMPMAcO Acetat de 1-butil-1-metilpirrolidia 

- EMIMAcO Acetat de 1-etil-3-metilimidazoli 

- EMIMCl Clorur de 1-etil-3-metilimidazoli 

- EMIMDEP Dimetilfosfat de 1-etil-3-metilimidazoli 

- EMIMOTf Triflat de 1-etil-3-metilimidazoli 

- EMIMPF6 Hexafluorofosfat de 1-etil-3-metilimidazoli 

- EMIMTFSI Bis(trifluorometasulfòxic) de 1-etil-3-metilimidazoli 

4.1.3 Electròlit de fons 

- Tetrafluoroborat de tretrabutilamoni (TBABF4), Sigma – Aldrich, 99% 

4.1.4 Substancies electroactives (SEA) 

- Ferrocé, Fluka, purum > 98% 

- p-nitrotoluè ,Sigma –Aldrich, 99% 

- Tris(2,2’-bipiridina)diclororuteni (II) hexahidratat, Sigma- Aldrich  
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4.2 Instrumentació i metodologia  

4.2.1 Tècniques electroquímiques 

 Fonament teòric [1] 

 

La voltametria cíclica és una tècnica transitòria no destructiva de microelectròlisis, és 

a dir, la SEA arriba a la superfície de l’elèctrode només per difusió, en petites quantitats. 

S’utilitza per obtenir informació mecanística de les reaccions químiques associades als 

processos de transferència electrònica. La seva característica més important és la seva gran 

versatilitat, és a dir, permetre treballar amb una bona sensibilitat en un ampli rang de 

potencials. El senyal enviada és un senyal triangular (generador), és una rampa de potencial 

variable amb el temps, variació aquesta d’una forma lineal (Ei-EC-Ef), figura 3.1. El potencial 

s’aplica a l’elèctrode de treball vs. l’elèctrode de referència (SCE), en el nostre cas.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 4.1. a) funció de potencial que s’imposa en l’elèctrode de treball, és una funció lineal  de temps E = E1- 

vt; b) s’aplica una funció d’anar i una altre de tornada c) voltametria cíclica, s’aplica en funció de l’anada i una 

altre de tornada, resposta I-E típica amb control de difusió. 
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 El paràmetre característic és el pendent de la recta (rampa de potencial) que ens 

dóna la velocitat d’escombrat (v). La resposta obtinguda en aquesta tècnica és una resposta 

del tipus I-E, corbes que s’anomenen voltagrames. La VC ens permet determinar el potencial 

estàndard al que s’oxida o es redueix l’espècie (E0) i el potencial de pic al que s’oxida o el 

redueix l’espècie (Ep). El valor de la Ip depèn de la concentració de la SEA, de l’àrea de 

l’elèctrode de treball, del número d’electrons del procés de transferència electrònica i de la 

velocitat de la mateixa. La velocitat d’escombrat és un paràmetre determinant en aquesta 

tècnic, i pot variar de 0.05 a 1000 V.  

 

 Transferència electrònica ràpida: 

 

 Segons la reacció: 

 

O + 1 e-                R 

 

 Un procés de transferència electrònica és reversible quan el valor de la intensitat de 

pic anòdic és igual al de la intensitat de pic catòdic (Ipa = Ipc) i per la obtenció dels valors de 

potencial de pic anòdic i catòdic (Epa i Epc) constants en tot el rang de velocitats d’escombrat 

de potencial. La obtenció d’una corba totalment reversible, ens permet calcular el valor de 

potencial estàndard (E0) com la semisuma de Epc i Epa. Així, la obtenció d’una ona totalment 

reversible ens indica que no hi ha reaccions químiques associades al procés de transferència 

electrònica, és a dir, es genera una espècie radicalària estable.  

 

    
 

 
          

 

Resolvent el sistema d’equacions diferencials associades al estudi teòric de la concentració 

de les espècies O i R d’aquest procés s’arriba a la obtenció de les següents expressions 

teòriques pels valors dels paràmetres característics d’aquesta tècnica, obtenint d’aquesta 

manera una caracterització de la corba I-E, a partir de la seva altura Ip, amplada ΔEp i la 

seva posició Ep: 
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k1 

 

               
  

  
 

              
  

 
                                                             

                    
  

 
                                                  

              
 

 

Com es pot veure, el valor de la intensitat de pic és funció de la concentració (c), de 

l’arrel quadrada del coeficient de difusió (D) i de l’arrel quadrada de la velocitat (v). Es pot 

normalitzar el valor de la intensitat de pic dividint-la per la concentració i l’arrel quadrada de 

la velocitat. Els elèctrodes es calibren, mitjançant substàncies que tinguin coeficients de 

difusió similars en el medi estudiat, mitjançant l’estudi de sondes electroquímiques, és a dir, 

substàncies amb un parell redox reversible i una transferència electrònica ràpida. 

 

De les expressions anteriors, es pot deduir que per una substància que tingui una 

transferència electrònica ràpida,  
  

   
 , Ep o  Ep, no depèn de v.  

Suposant la reacció, 

 

                                                 O + 1 e-                 R P 

 

  

 Si la reacció electroquímica és molt ràpida, a velocitats d’escombrat molt altes, de 

forma que es no es dugui a terme la reacció química associada, la resposta I-E obtinguda és 

una corba reversible de reducció de O a R i l’oxidació de R a O. Si la velocitat aplicada 

disminueix, és a dir, la reacció química de R per donar P, té lloc, s’observa la reducció de O 

per donar directament P. 

 

 Instrumentació 

 

Els experiments de voltametria cíclica (VC) han estat realitzats amb un potenciostat 

model VSP100 BIOLOGIC controlat per PC utilitzant un software EC-Lab V9.51. 
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connexió elèctrica

element de referència

solució saturada

de KCl

membrana porosa

petit orifici

orifici per omplir

La cel·la electroquímica utilitzada en voltametria cíclica és una cel·la cònica de cinc 

boques amb una capacitat de 5 ml (Figura 4.2). 

 

 

 

 

 

 

 

 

 

 

 

Figura 4.2. Cel·la electroquímica 

 

En una boca es col·loca el bombollejador, que permet circular un gas inert, en aquest 

cas s’ha fet servir argó eliminant l’oxigen present. L’entrada del gas inert es regula 

mitjançant una clau de tres passos permeten el bombolleig de gas en la dissolució o en la 

superfície de la mateixa. De les cinc boques, tres d’elles estan ocupades pels elèctrodes, en 

una d’elles es col·loca l’elèctrode de treball, un elèctrode de disc de carboni vitri ( d = 0.9 

mm), en l’altre s’introdueix l’elèctrode auxiliar (CE), un elèctrode de carboni vitri ( d = 1 

mm) , mentre que la tercera boca es troba l’elèctrode de referència, un elèctrode saturat de 

calomelans (SCE), separant de la dissolució per un pont salí que conté o el dissolvent amb 

0.1 M TBABF4 o el IL. 

 

 Metodologia 

 

Pels dissolvents orgànics apròtics utilitzats s’ha treballat de la següent manera: En 

primer lloc es prepara una dissolució, de concentració coneguda (1.0 – 15.0 mM), en el 

dissolvent de la substància electroactiva (SEA) en el dissolvent que contingui una quantitat 

corresponent a 0.1M de l’electròlit de fons (EF), TBABF4. Una vegada la dissolució està dins 

de la cel·la es desoxigena amb un corrent de gas inert, Ar, procés que repetim entre 

mesures. L’elèctrode de treball es polit al principi de les mesures i després de cada sèrie o 

cada mesura depenent del tipus de SEA que s’estudiï.  
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Pels ILs la metodologia que s’ha seguit ha sigut; en primer lloc es prepara una 

dissolució, de concentració coneguda (1.0 – 15.0 mM), en de la substància electroactiva 

(SEA) el dissolvent. Una vegada la dissolució està dins de la cel·la es desoxigena amb un 

corrent de gas inert, Ar, procés que repetim entre mesures. L’elèctrode de treball es polit al 

principi de les mesures i després de cada sèrie o cada mesura depenent del tipus de SEA 

que s’estudiï.  

 

Els estudis de voltametria cíclica es duu a terme a diferents velocitats (0.1 a 1 V/s) i 

concentracions. Aquests estudis permeten registrar corbes de I-E, de les que posteriorment 

es determina les característiques electroquímiques ( Ep,  Ep o 
  

   
) de l’espècia estudiada.   

 

4.2.2 Tècniques químiques utilitzades 

 Mesures de conductivitat [2] 

 

Les mesures de conductivitat s’han determinat mitjançant un aparell de conductivitat 

de la marca Crison model GLP 31 (EC).  
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