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RESUMEN  

 

En el presente trabajo de máster sea llevado a cabo la síntesis esteroselectiva de los 

γ-aminoácidos modelo de cadena corta 15 y 17 protegidos ortogonalmente, a partir del 

intermedio común 12 (ácido (1R,3R)-3-((2ʹS)-1ʹ-(benciloxicarbonilamino)-4ʹ-terc-butoxi-

4ʹ-oxobutan-2ʹ-il)-2,2-dimetilciclobutancarboxílico). 

 
   
   
 
 
 
 
 

Así mismo se sintetizaron sus homólogos de  cadena larga (C16), 21 y 22. 

 

 

 

 

 

 

 

Posteriormente el compuesto 22, fue selectivamente desprotegido obteniendo la 

mezcla de compuestos 24 y 24 C, a la cual se le realizó el estudio fisicoquímico, 

utilizando técnicas como tensiometria, conductividad y potenciometría. La CMC 

detectada  para esta mezcla fue de 0.28 mmol∙Kg-1. 

 

 

 

   

 

 

 

15 17 

12 

21 

22 

24 

24 C 



TABLA DE CONTENIDOS 
 

1. INTRODUCCIÓN  1 

 1.1 Química de los surfactantes  1 

 1.2 Clasificación de los surfactantes 3 

 1.3 Clasificación de los surfactantes derivados de aminoácidos 6 

 1.4 Síntesis de surfactantes derivados de aminoácidos 6 

 1.5 Utilización de surfactantes quirales 8 

 1.6 Precedentes del grupo de investigación 9 

 

2. OBJETIVOS  

 

13 

3.  RESULTADOS Y DISCUSIÓN  15 

 3.1 Síntesis de los compuestos objetivo  16 

   3.1.1 Síntesis del intermedio clave 12 16 

  3.1.2 Síntesis de los aminoácidos 15 y 21 18 

  3.1.3 Síntesis de los compuestos 17 y 22 21 

 3.2 Estudio fisicoquímico del compuesto 24 21 

  3.2.1 Comportamiento en Resonancia Magnética Nuclear de protón 

(RMN 1H) 23 

  3.2.2 Tensiometría  por el método de la gota colgante 26 

  3.2.3 Conductividad 28 

  3.2.4 Medidas potenciométricas de pH 31 

  3.2.5 Valoración ácido – base 32 

  3.2.6 Espectrometría de masas de ión positivo y ión negativo 32 

  3.2.7 Análisis elemental 

 

34 

4. CONCLUSIONES 

 

37 

5. PARTE EXPERIMENTAL 39 

 5.1 Consideraciones generales sobre los procedimientos experimentales 39 

  5.1.1 Técnicas utilizadas 39 

  5.1.2 Cromatografía  40 

  5.1.3 Materiales generales de laboratorio 40 

 5.2 Descripción de los procesos experimentales y de los productos 40 

   



 

5.3 Descripción de los procesos experimentales de la evaluación de las 

propiedades fisicoquímicas 

 

58 

  5.3.1 Tensiometría  por el método de la gota colgante 58 

  5.3.2 Conductividad 59 

  5.3.3 Medidas potenciométricas de pH 

 

59 

6. ANEXO 61 

 6.1 Espectros de RMN 1H y 13C 61 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCCIÓN 
 
 
 
 
 
 
 
 
 
 



1. INTRODUCCIÓN  
 

 
1 

1. INTRODUCCIÓN: 

1.1 QUÍMICA DE LOS SURFACTANTES: 

Los surfactantes constituyen la más amplia gama de productos químicos utilizados a 

nivel industrial como agentes de limpieza en jabones y detergentes, así como en 

preparaciones de cosméticos, fármacos, productos alimentarios y en procesos 

industriales como la petroquímica, cromatografía, análisis de suelos, catálisis, etc. Su 

amplio uso es debido a su notable influencia en las propiedades de superficie e 

interfase.1 En la actualidad se estudian distintas clases de surfactantes para ser 

utilizados en áreas de alta tecnología como la microelectrónica y la biotecnología, 

entre otras. 

 

El termino surfactante es un neologismo adaptado de las palabras inglesas  “Surface 

active agent”. Este término se usa frecuentemente como sinónimo de tensioactivo, es 

decir, aquella sustancia que tiende a disminuir la tensión superficial  o  interfásica de 

una interfase (normalmente aire-agua o grasa-agua), al concentrarse en la superficie e 

interfase de una solución acuosa modificando las propiedades de la superficie. Este 

término es equivalente a surfactante sólo si se supone que la actividad superficial o 

interfacial se traduce necesariamente por un descenso de la tensión, lo cual es verdad 

en la mayor parte de los casos que tienen un interés práctico.2  

 

La tensión superficial se puede definir como “el conjunto de fuerzas que una superficie 

líquida ejerce en su contorno, perpendicularmente a él, tangenciales a la superficie y 

dirigidas hacia el seno de la misma”.3 Cuando un surfactante se absorbe desde una 

solución acuosa a una superficie hidrofóbica, este normalmente orienta su grupo 

hidrofóbico hacia la superficie y expone su grupo polar al agua. De este modo la 

superficie se vuelve hidrofílica y como resultado la tensión superficial entre la 

superficie y el agua es reducida.4 

 

Los surfactantes son compuestos que contienen grupos con solubilidad opuesta, por 

un lado una cadena hidrocarbonada soluble en disolventes no polares, normalmente 

                                                           
1
 L.L. Schramm, Surfactants: Fundamentals and Applications in the Petroleum, Ed. Cambridge University 

Press 2000. 
2
 J.L. Salager, Handbook of Detergents - part A: Properties, Ed. G. Broze 1999, 82, 253. 

3
 A.S. Frumento, Biofísica, Ed. Mosby-Doyma libros 1995.  

4
 W.F. Ramirez, I.S. Rondón, P.R. Eslava, Orinoquia 2005, 9, 45. 

5
 D. Myers, Adv. Mater 1991, 3, 515. 
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llamado grupo liofóbico (hidrófobo) y un grupo funcional que tiene una atracción fuerte 

hacia disolventes polares, este grupo es llamado liofílico (hidrófilo) (Figura 1).5  

 

 

Figura 1. Representación esquemática de un surfactante convencional  

  

A medida que aumenta la concentración de surfactante, aumenta el número de 

moléculas de surfactante en la superficie, disminuyendo la tensión superficial hasta 

alcanzar un valor crítico, llamado concentración micelar crítica (CMC), a partir de la 

cual, la tensión superficial se mantiene constante y se empieza a formar agregados 

moleculares de surfactante o micelas en solución,6 en equilibrio con los monómeros. 

(Figura 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2. Representación esquemática de la organización de las moléculas de surfactante 

alrededor de la concentración micelar crítica (CMC). I) Molécula de surfactante; II) Por debajo 

de la CMC, monómeros; III) Por encima de la CMC, el surfactante se encuentra formando 

micelas; IV) A concentraciones mucho mayores a la CMC se forman superestructuras  como 

organizaciones cilíndricas de micelas. Tomado de la referencia
7
. 

 

                                                           
 
6
 M.J. Rosen, Surfactants and Interfacial Phenomena, Ed. Wiley 2004 

7
 D. Jiménez, S.A. Medina,  J.N. Gracida, Rev. Int. Contam. Ambient.  2010, 26, 65. 
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La determinación de la CMC, se puede realizar utilizando cualquier propiedad que 

presente un cambio más o menos brusco frente a la concentración de surfactante. 

Algunas de las propiedades más utilizadas son: la tensión superficial, la conductividad 

y las propiedades ópticas y espectroscópicas tales como medidas de dispersión de la 

luz e índice de refracción o absorción.8 

 

1.2 CLASIFICACIÓN DE LOS SURFACTANTES: 

 

Desde el punto de vista comercial, los surfactantes se clasifican a menudo en función 

de su uso pero este tipo de clasificación no resulta muy adecuada y podría dar lugar a 

confusiones ya que muchos de ellos presentan diversas aplicaciones. La clasificación 

más aceptada científicamente se basa en su capacidad de disociación en agua ya que 

es el principal medio de aplicación de los surfactantes como se muestra a 

continuación:9, 10 

 

 Surfactante Aniónico: Se disocian en un anión anfifílico (responsable de la 

actividad superficial) y un contraión catiónico, que suele ser un metal alcalino 

(sodio, potasio, etc.) o un amonio cuaternario. Por ejemplo: Dodecil sulfato 

sódico (SDS). 

 

Dodecil sulfato sódico (SDS) 

 Surfactante Catiónico: Se disocian dando lugar a un catión anfifílico y un 

contraión aniónico, que suele ser un halogenuro. La mayoría de surfactantes 

catiónicos son compuestos nitrogenados tales como sales de amonio y sales de 

amonio cuaternario. Entre los más comunes se encuentra el cloruro de 

benzalconio y el bromuro de hexadecil trimetilamonio.  

 

 

 

 

Bromuro de hexadecil trimetilamonio   cloruro de benzalconio 

 

                                                           
8
 T.F. Tadros, Applied Surfactants: Principles and Applications, Ed. Wiley 2005. 

9
 Y. Moroi, Micelles, Theoretical and Applied Aspects, Ed. Springer 1992. 
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 Surfactante No iónico: Estos surfactantes no se ionizan en solución acuosa ya 

que su grupo hidrofílico (alcohol, fenol, éter, éster o amida) no se puede disociar 

y por tanto, no se ven afectados por el pH de la solución. Son ampliamente 

utilizados en preparaciones farmacéuticas, así como en la industria alimentaria y 

cosmética dada su baja toxicidad. Por ejemplo el octil glucósido.  

 

 

 

 

          Octil glucósido 

 Surfactante Anfotérico (o zwitteriónico): Estos surfactantes dan lugar tanto a 

disociaciones aniónicas como catiónicas en función del pH de la solución y 

pueden poseer las propiedades solubilizantes de los aniónicos y las 

desinfectantes de los catónicos. Productos sintéticos como las betaínas entre 

las que encontramos la N-dodeciltrimetilaminobetaína,  se utilizan ampliamente 

en sectores donde es primordial una elevada biocompatibilidad y baja toxicidad.  

 

 

 

 

 

N-dodeciltrimetilaminobetaína 

 

Una clasificación complementaria está surgiendo a la luz del desarrollo de nuevos 

surfactantes que poseen más de un grupo polar y más de una cola hidrofóbica. 

Dependiendo de la cantidad de colas hidrofóbicas y de su disposición geométrica, se 

clasifican en cuatro grupos de surfactantes:10 (Figura 3).  

 

 Surfactantes convencionales: Presentan una estructura clásica compuesta de 

un grupo iónico o polar y una cola hidrofóbica.10 

 

 Surfactantes bolaform: Compuestos por dos cabezas hidrofílicas unidas por una 

o varias cadenas hidrofóbicas. Presentan actividad biológica y son promotoras 

de la formación de membranas monocapa ultrafinas.11 

 

                                                           
10

 M.C. Murguía, L.M. Machuca, M.C. Lurá, M.I. Cabrera, R.J. Grau,  J Surfact Deterg 2008, 11, 223.  
11

 B. Schuur, A. Wagenaar, A. Heeres, E. Heeres, Carbohydr. Res. 2004, 339, 1147. 
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 Surfactantes gemini: Diméricos con dos colas hidrofóbicas y dos grupos iónicos 

unidos por un espaciador (rígido o flexible). Estos compuestos han mostrado 

tener una variedad única de propiedades activas de superficie y de agregación, 

se encuentran entre las sustancias químicas más versátiles, como potenciales 

vehículos para el transporte de moléculas bioactivas.12 

 

 Surfactantes multiarmados polivalentes: Su estructura no presenta la simetría 

de los gemini. Poseen múltiples cadenas hidrofóbicas y varios grupos 

hidrofílicos interconectados por un espaciador múltiple rígido o flexible.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3. Representación esquemática de los diversos grupos de surfactantes   

 

Actualmente, los surfactantes de los tres últimos grupos presentan la mayor 

importancia debido a sus notables propiedades de superficie, excelente 

biodegradabilidad y favorables datos toxicológicos. 

 

Teniendo en cuenta que los surfactantes según su composición pueden afectar 

negativamente al medio ambiente, cada vez es más importante sintetizar compuestos 

con una alta biodegradabilidad y biocompatibilidad y que paralelamente posean una 

alta eficacia.13 Por tal motivo los aminoácidos actualmente son considerados 

importantes materias primas para la preparación de surfactantes, con baja toxicidad y 

alta biodegradación, características importantes en la industria farmacéutica, 

cosmética y alimentaria. 

 

                                                           
12

 F.M. Menger, C.A. Littau, J. Am. Chem. Soc. 1991, 113, 1451. 
13

 M.R. Infante, L. Pérez, A. Pinazo, C. R. Chimie, 2004, 7, 583. 
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1.3 CLASIFICACIÓN DE LOS SURFACTANTES DERIVADOS DE AMINOÁCIDOS: 

 

La combinación de péptidos o aminoácidos polares en la región hidrofílica y de 

cadenas hidrocarbonadas de longitud variable (de 8 a 16 átomos de carbono) para 

formar compuestos con estructuras anfifílica ha dado lugar a moléculas con elevada 

capacidad tensioactiva.14 La amplia diversidad de estructuras con aminoácidos o 

péptidos y la variedad de residuos grasos presentes en su estructura explican su 

multiplicidad estructural y sus diferentes propiedades fisicoquímicas y biológicas.15 

 

Los principales tipos de surfactantes derivados de aminoácidos (Figura 4)13 son: 

1. 

 

 

2. 

 

 

3. 

  

 

4. 

 

 

Figura 4. Estructuras de los surfactantes derivados de aminoácidos: (1) Lineales, (2) De 

doble cadena, (3) Diméricos (Gemini), (4) Glicerolípidos. 

 

En función del tipo de aminoácido, cada uno de estos grupos a su vez se pueden 

clasificar en surfactantes aniónicos, catiónicos, anfóteros y no iónicos.  

 

1.4 SÍNTESIS DE SURFACTANTES DERIVADOS DE AMINOÁCIDOS:  

 

Los aminoácidos y los hidrolizados de proteínas son buenos candidatos para actuar 

como cabezas polares de surfactantes renovables. Después de su lipofilización, se 

transforman respectivamente en lipoaminoácidos y en lipoproteínas que presentan uno 

o varios grupos hidrófilos aniónicos de tipo carboxilato. Existen veinte aminoácidos 

                                                           
14

 P. Foley, A. Kermanshahi, E.S. Beach, J. B. Zimmerman, Chem. Soc. Rev. 2012, 41, 1499. 
15

 M.R. Infante, A. Pinazo, J. Seguer, Colloid Surf. A-Physicochem. Eng. Asp.1997, 49, 123. 
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naturales, agrupados en función de la naturaleza de su cadena lateral: A) cadena no 

polar neutra (fenilalanina, leucina, isoleucina, prolina, valina, etc.); B) cadena polar 

básica (arginina y lisina); y C) cadena polar ácida (ácidos glutámico y aspártico). 

Además de su extracción de productos naturales, existen diferentes métodos químicos 

y enzimáticos para su síntesis.16 

 

Una las características más importantes de este tipo de surfactantes es su quiralidad 

como se observa en la Figura 5. Este hecho explica la gran diversidad de surfactantes 

derivados de aminoácido y la variedad de sus propiedades fisicoquímicas y 

biológicas.17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 5. Diferentes tipos de surfactantes derivados de aminoácidos: (1) O-alquil ésteres, 

(2) N-alquil amidas, y (3) N-acil-aminoácidos.  

 

Los lipoaminoácidos, y más generalmente las lipoproteínas, se obtienen en las 

condiciones de Schotten-Baumann mediante acilación de uno o varios residuos de α-

aminoácidos con un cloruro de ácido en presencia de una base (Figura 6). Estas 

reacciones se producen en un medio acuoso o hidroorgánico (agua-alcohol, agua-

acetona) según sea la solubilidad inicial del derivado proteico de partida.16 

                                                           
16

 C. Gomez. Grasas y Aceites 2009, 60, 413. 
17

 A. Pinazo, R. Pons, L. Perez, M.R. Infante. Ind. Eng. Chem. Res. 2011, 50, 4805. 
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Figura 6. Lipoaminoácido 

 

1.5 UTILIZACIÓN DE SURFACTANTES QUIRALES: 

 

La mayoría de las moléculas biológicamente activas, como los aminoácidos naturales 

y sintéticos, que contienen uno o más centros quirales, dan lugar a esteroisómeros 

que pueden comportarse diferente según su entorno quiral. Generalmente sólo uno de 

los enantiómeros presenta la actividad biológica deseada, mientras que el otro 

enantiómero puede ser considerablemente menos activo o incluso mostrar efectos 

secundarios indeseables. 

 

Dentro de las aplicaciones de los surfactantes quirales, encontramos su utilización en 

la síntesis química, enfocada al desarrollo de fármacos quirales enantioméricamente 

puros, en el uso de herramientas analíticas como la cromatografía electrocinética 

micelar (MECK) donde se utilizan surfactantes naturales o sintéticos. MEKC es una 

modalidad de cromatografía electrocinética en la que se utiliza un surfactante, neutro o 

iónico, añadido al medio de separación por encima de su concentración micelar critica 

(CMC), para formar una pseudofase micelar estacionaria en disolución, de manera, 

que la separación de los solutos se produce por un proceso de reparto entre la 

pseudofase micelar estacionaria y el tampón.18 En MEKC, una separación quiral se 

puede llevar a cabo de dos maneras diferentes: utilizando un surfactante quiral o un 

surfactante aquiral más un selector quiral, aunque en algunos casos se utiliza un 

surfactante quiral más un selector quiral para poder aumentar el poder de resolución 

quiral.18 Los surfactantes quirales utilizados en MEKC se  encuentran resumidos en el 

Esquema 1. 

 

 

 

 

 

                                                           
18

 S. Morante, I. Sierra, I. Morales. Desarrollo de métodos analíticos para la separación quiral y su 
aplicación al estudio de procesos de síntesis asimétrica, Ed. Dykinson 2007. 
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Esquema 1. Surfactantes quirales utilizados en MECK 

 

Así mismo, los surfactantes quirales tienen aplicación en otros campos, como por 

ejemplo: Transformaciones enantioselectivas de agregados micelares, sistemas de 

liberación de fármacos, terapia génica, modelos para la investigación de la 

transferencia de quiralidad y building blocks para nanoestructuras supramoleculares, 

entre otros.  

 

1.6 PRECEDENTES DEL GRUPO DE INVESTIGACIÓN:  

 

En nuestro grupo de investigación existe una amplia experiencia en la síntesis y 

estudio estructural de aminoácidos y péptidos ciclobutánicos no naturales, utilizando el 

ciclobutano como un elemento de restricción en su cadena principal, con el objetivo de 

mejorar sus propiedades como fármacos y nuevos materiales.  

 

Partiendo de terpenos como la (-)-verbenona y el (-)-α-pineno se han preparado α, β, 

γ, y δ-aminoácidos ciclobutánicos enantioméricamente puros.19,20,21  De igual manera 

se han preparado derivados como los α-deshidroaminoácidos, α-péptidos,22,23,24,25,26  

así como isoxazolidinas, β-péptidos,27 y γ-lactamas.28 (Esquema 2). 

                                                           
19

 A. G. Moglioni,  E. García-Expósito, G.  Moltrasio, R.M. Ortuño, Tetrahedron Lett. 1998, 39,3593. 
20

 R. M. Ortuño, A.G .Moglioni, G. Moltrasio, Curr. Org. Chem. 2005, 9, 237. 
21

 P.D. Rouge, A.G. Moglioni, G.Y. Moltrasio, R.M. Ortuño, Tetrahedron: Asymmetry 2002, 14, 193. 
22

 A.G. Moglioni, E. García-Expósito, Á. Álvarez-Larena, V. Branchadell, G. Moltrasio, R.M. Ortuño, 
Tetrahedron: Asymmetry 2000, 11, 4903. 
23

 A. G. Moglioni,  E. García-Expósito, G.P. Aguado, T. Parella, V. Branchadell, G. Moltrasio, R.M. Ortuño,  
J. Org. Chem, 2000, 65, 3934. 
24

 G.P. Aguado, A. Álvarez-Larena, O. Illa, A.G. Moglioni, R.M. Ortuño, Tetrahedron: Asymmetry 2001, 12, 
25. 
25

 G.P. Aguado, A.G. Moglioni, R.M. Ortuño, Tetrahedron: Asymmetry 2003, 14, 217. 
26

 G.P. Aguado, A.G. Moglioni, B.N. Brousse, R.M. Ortuño, Tetrahedron: Asymmetry 2003, 14, 2445. 

  Sales biliares 

a) Surfactantes quirales naturales Digitonina 

 
 Saponina 

 

  N-alcanoilaminoácidos  

  N-dodecoxicarbonil-L- aminoácidos 

b) Surfactantes quirales sintéticos Alquilglucósidos 

  Derivados del acido tartárico 

c) Surfactantes quirales de alto peso molecular: polímeros 
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γ-lactama 
γ-aminoácido 

alquenoato de terc-butil  alquenoato de metilo 
  deshidro-α-aminoácido   α-aminoácido 

 

 

 

 

 

 

 

 

                                                                                                             

        

 

 

 

 

 

 

Esquema 2. Algunos productos sintetizados a partir de la (-) - verbenona 

 

 

Así mismo, en el caso de los β- aminoácidos y β-péptidos pequeños se ha establecido 

que el anillo ciclobutánico se comporta como un buen inductor de estructuras 

secundarias definidas.29,30 Algunas de estas moléculas se han incorporado en péptidos 

híbridos combinados con prolina (Figura 7), sintetizándose péptidos con capacidad de 

actuar como agentes de penetración celular,31,32 así mismo se ha incorporado γ-

aminoácidos a dendrímeros peptídicos con simetría C3.
33   

                                                                                                                                                                          
27 A.G. Moglioni, E. Muray, J.A. Castillo, A. Álvarez-Larena, G.Y. Moltrasio, V. Branchadell, R.M. Ortuño, 

J. Org. Chem. 2002, 67, 2402. 
28

 A.G. Moglioni, B.N. Brousse, A. Álvarez-Larena, G.Y. Moltrasio, R.M. Ortuño, Tetrahedron: Asymmetry 
2002, 13, 451. 
29

“Stereoselective synthesis of cyclobutyl gamma-lactyams, pyrrolidines ana gamma-peptides”, Tesis 
Doctoral, Jordi Aguilera Corrochano, Mayo 2010, UAB.  
30

 “Síntesis y estudio estructural de nuevos γ-péptidos ciclobutánicos”, Máster en Experimentación 
Química, Juan Antonio Cobos, Diciembre 2011, UAB.   
31

   R. Gutiérrez-Abad, D. Carbajo, P. Nolis, C. Acosta-Silva, J.A. Cobos, O. Illa, R.M. Ortuño, Amino Acids 
2011, 41, 673. 

  (-) – verbenona 
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Figura 7. γ-péptidos híbridos ciclobutano-prolina.                  

Por otro lado, la síntesis del compuesto proquiral 1,2-ciclobutandicarboxilato de 

dimetilo y sus posteriores transformaciones en aminoácidos ha llevado al grupo de 

investigación a la obtención de β-péptidos34 y ureas,35 con sus respectivos estudios 

estructurales36,37 y posibles aplicaciones.38 (Figura 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

 Figura 8. Estudios β-péptidos en nuestro grupo de investigación 

Actualmente y dada la experiencia de nuestro grupo de investigación en la síntesis de 

aminoácidos ciclobutánicos con una ruta sintética estereoselectiva, así como a la 

versatilidad de estas plataformas estructurales, se ha establecido una nueva línea de  

investigación enfocada al desarrollo de surfactantes quirales derivados de ciclobutanos 

1,2 y 1,3 - disubstituidos. 

                                                                                                                                                                          
32

 E. Gorrea, D. Carbajo, R. Gutiérrez-Abad, O. Illa, V. Branchadell, M. Royo, R.M. Ortuño, Org. Biomol 
Chem. 2012, 10, 4050. 
33

  R. Gutiérrez-Abad, O. Illa, R.M. Ortuño Org. Lett. 2010, 12, 3148. 
34

 E. Torres, C. Acosta-Silva, F. Rúa, Á. Álvarez-Larena, T. Parella, V. Branchadell, R.M. Ortuño, 
Tetrahedron 2009, 65, 5669.  
35

 E. Gorrea, P. Nolis, Á. Álvarez-Larena, E. Da Silva, V. Branchadell, R.M. Ortuño, Tetrahedron 
Asymmetry 2010, 21, 339.  
36

 E. Gorrea, P. Nolis, E. Torres, E. Da Silva, D.B. Amabilino, V. Branchadell, R.M. Ortuño, Chem. Eur. J. 
2011, 17, 4588. 
37

 E. Torres, E. Gorrea, K.K. Burusco, E. Da Silva, P. Nolis, F. Rúa, S. Boussert, I. Díez-Pérez, S. Dannenberg, 
S. Izquierdo, E Giralt, C. Jaime, V. Branchadell, R.M. Ortuño, Org. Biomol.Chem. 2010, 8, 564. 
38

 E. Torres, J. Puigmartí-Luis, A. Pérez del Pino, R.M. Ortuño, D.M. Amabilino, Org. Biomol. Chem. 2010, 
8, 1661. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. OBJETIVOS 
 
 
 
 
 
 
 
 
 
 



2. OBJETIVOS  
 

 
13 

2. OBJETIVOS: 

Los surfactantes derivados de aminoácidos son compuestos de elevado interés debido 

a su multifuncionalidad e inocuidad. Dada la importancia de estos compuestos en la 

industria alimentaria, cosmética y farmacéutica y con el propósito de contribuir en el 

desarrollo de nuevos surfactantes biodegradables y de baja toxicidad, este trabajo de 

investigación propone realizar el diseño, síntesis estereoselectiva y caracterización 

fisicoquímica de nuevos surfactantes anfóteros derivados de γ-aminoácidos, a partir de 

(-)-verbenona.  

 

El desarrollo del objetivo propuesto se inicia con la síntesis del γ-aminoácido protegido 

ortogonalmente  que se muestra  continuación (Figura 9). 

 

 
 
 

Figura 9.  γ-aminoácido objetivo ortogonalmente protegido; 

R = CH2OH o COOH  

 

Una vez sintetizado el γ-aminoácido protegido, el segundo objetivo propuesto es la 

funcionalización con una cadena de 16 átomos de carbono (C16) con el fin de modular 

el carácter hidrofóbico de la molécula, así como promover la formación de estructuras 

supramoleculares como micelas. Por otro lado, se realizará la respectiva 

desprotección selectiva para la obtención de los surfactantes objetivo, derivados de γ-

aminoácido (Figura 10). 

 

 

 

 

 

 

 

Figura 10.  Surfactantes anfotéricos objetivo derivado de γ-aminoácido  

 

Como último objetivo se propone la caracterización fisicoquímica de los surfactantes 

sintetizados, utilizando las principales técnicas de identificación como: RMN 1H, 

tensiometría, conductividad y potenciometría, para detectar la concentración micelar 

crítica (CMC) de estos compuestos. 
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3. RESULTADOS Y DISCUSIÓN: 

 

El objetivo principal de este trabajo de investigación es la síntesis y caracterización de 

un surfactante anfotérico derivado de un γ-aminoácido. Teniendo en cuenta este 

propósito, como primer objetivo se propone realizar un análisis retrosintético para 

elegir correctamente los grupos protectores a utilizar y establecer una secuencia 

sintética que considere la diferente reactividad de cada uno de estos grupos 

sintetizados.   

 

Dada la estructura de las moléculas objetivo 21 y 22 (Esquema 2), es importante 

realizar las respectivas protecciones ortogonales, ya que las mismas nos permitirán 

controlar la reactividad del surfactante a lo largo de su proceso de síntesis. Por tal 

motivo el grupo ácido será protegido en forma de éster de terc-butilo y el grupo amino 

en forma de carbamato de bencilo.   

 

Teniendo en cuenta la experiencia del grupo de investigación en la síntesis del 

compuesto 12 de manera enantioselectiva,39 la estrategia sintética propuesta consiste 

en la utilización de este intermedio, el cual mediante las transformaciones adecuadas  

debe permitir la síntesis de los compuestos 21 y 22, respectivamente. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Esquema 2. Análisis retrosintético realizado para los compuestos 21 y 22   

                                                           
39

 J. Aguilera, R. Gutiérrez-Abad, À. Mor, A. Moglioni, G. Moltrasio, R.M. Ortuño, Tetrahedron: 
Asymmetry 2008, 19, 2864. 

21 

12 

  1 

22 
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3.1. SÍNTESIS DE LOS COMPUESTOS OBJETIVO: 

 

3.1.1 Síntesis del intermedio clave 12: 

Para la síntesis de los compuestos objetivo 21 y 22 se plantean rutas sintéticas 

diferentes a partir del intermedio común: ácido (1R,3R)-3-((2ʹS)-1ʹ-

(benziloxicarbonilamino)-4ʹ-terc-butoxi-4ʹ-oxobutan-2ʹ-il)-2,2-dimetilciclobutan 

carboxílico, producto 12. (Esquema 3).  

 

 

  

   

 

 

  

 

 

 

  

  

 

 

 

 

 

 

a)  RuCl3, NaIO4 b) CH3I, Cs2CO3 c) Etilenglicol, PPTS, Tolueno d) LiBH4 / THF e) PDC f) 

Ph3P=CHCO2
t
Bu/Tolueno g) CH3NO2, TBAF h) H2 / Pd(OH)2/C 20% i) NaHCO3/Na2CO3, CbzCl  j) 

PPTS / H2O k) NaOBr, Dioxano/ Agua. 

 

Esquema 3. Ruta sintética para la obtención del producto intermedio 12. 

 

Como se observa en el Esquema 3, la síntesis del compuesto 12 se inicia con la 

ruptura oxidativa del doble enlace presente en (-)-verbenona utilizando RuO4 generado 

in situ a partir de una mezcla de RuCl3 y NaIO4. Esta oxidación da como resultado el 

ácido (-)-cis-pinonónico 2, sin epimerización y con un alto rendimiento. Una vez 

obtenido 2, se procede a esterificar la función ácido carboxílico empleando 

1 2 

8 

5 6 7 

3 

10 

11 
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condiciones suaves como CH3I y Cs2CO3 como base, en presencia de DMF, dada la 

presencia de centros epimerizables en la molécula. 

La siguiente transformación del compuesto 3 tiene como finalidad la reducción 

selectiva del carbonilo del éster en presencia del grupo metilcetona. Por este motivo es 

necesario proteger el grupo cetónico en forma de acetal utilizando p-toluensulfonato de 

piridina (PPTS). Una vez protegida la metilcetona, se procede a la  reducción del éster 

4 a aldehído. No obstante, la experiencia en el grupo de investigación muestra que la 

utilización de métodos directos de reducción a aldehído (tanto del ácido como del 

éster) no dan resultados satisfactorios. Por este motivo es necesario realizar la 

reducción del éster 4 con LiBH4 en THF anhidro hasta alcohol 62% de rdto. para 

posteriormente oxidarlo controladamente hasta el aldehído 6 utilizando dicromato de 

piridina (PDC) en diclorometano como oxidante, que es muy poco ácido y además 

permite detener la reacción al aldehído.  

 

Dada la inestabilidad del aldehído sintetizado, éste se usa directamente en la siguiente 

etapa sin purificación. Para la síntesis de las olefinas 7 se utiliza la reacción de Wittig 

entre el aldehído 6 y el Ph3P=CHCO2
tBu en tolueno la cual produce una mezcla de 

isómeros con un rendimiento global del 86%.  

 

Para obtener la estructura de γ-aminoácido propuesto falta adicionar un átomo de 

carbono y uno de nitrógeno. Por tal motivo, la siguiente reacción consiste en la adición 

de nitrometano al doble enlace, mediante una adición conjugada tipo Michael (el 

nucleófilo se genera in situ usando fluoruro de tetrabutilamonio como base). De esta 

manera se obtiene como único producto el compuesto 8, ópticamente puro, y se 

genera un nuevo centro estereogénico de configuración absoluta S, gracias a que en 

esta reacción el anillo ciclobutánico induce una diastereoselectividad facial total. De 

esta manera, el ataque nucleófilo del nitrometano está favorecido por una única cara 

de la olefina.40 

 

Una vez preparado el compuesto 8 se procede a la reducción del grupo nitro a amina 

utilizando H2, con catálisis de Pd, obteniéndose un 96% de rendimiento en la reacción. 

Para obtener el aminoácido protegido ortogonalmente, la amina 9 se protege en forma 

de carbamato de bencilo y a continuación se desprotege la metilcetona 11 utilizando 

H2O y PPTS como catalizador y sin observar epimerización. Finalmente el compuesto 

11 se oxida en las condiciones de la degradación de Lieben, para obtener el ácido 12 

                                                           
40

 “Síntesi enantioselectiva d’un tetrapèptid amb nucli ciclobutànic altament ramificat”, Màster Oficial 
en Ciencia i Tecnologia Químiques, Raquel Gutiérrez Abad, Septembre 2008, UAB.   
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Agente reductor 

con un rendimiento del 80%. Esta degradación oxidativa se llevó a cabo disolviendo la 

metilcetona 11 en dioxano/H2O y añadiendo una solución de hipobromito de sodio, 

generada in situ, a partir de una solución de NaOH con Br2. 

 

Una vez sintetizado el ácido (1R,3R)-3-((2ʹS)-1ʹ-(benciloxicarbonilamino)-4ʹ-terc-butoxi-

4ʹ-oxobutan-2ʹ-il)-2,2-dimetilciclobutan carboxílico 12, éste fue utilizado en la obtención 

de los compuestos modelo 15 y 17. La preparación de estos compuestos tiene como 

objetivo explorar la ruta sintética propuesta, para obtener información y luego aplicarla 

a la síntesis de los compuestos de cadena larga (C16) 21 y 22.  (Esquema 4).  

 

 

 

 

 

 

 

 

 

 

                                                                              R = (CH2)5CH3  17 

                                 (CH2)15CH3 22 

 

 

 

R = (CH2)5CH3  15 

               (CH2)15CH3 21 

 

  Esquema 4. Rutas sintéticas para los compuestos 15, 17, 21 y 22  

3.1.2. Síntesis de los aminoácidos 15 y 21:  

En la reducción del ácido 12 al alcohol 13 (Esquema 5), la presencia del éster terc-

butilico y del carbamato de bencilo, limita la utilización de agentes reductores como el 

LiAlH4. 

 

 

 

 

 

Esquema 5. Reducción propuesta para el compuesto 12.  

12 
13 

12 

12 13 

14 
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Por tal motivo fueron utilizados diferentes agentes activadores del ácido carboxílico, 

tales como el hexafluorofosfato de benzotriazol-1-il-N-oxi-tris-(dimetilamino) fosfonio 

(BOP) (Esquema 6), el hexafluorofosfato de benzotriazol-1-il-N-oxi-tri(pirrolidin) 

fosfonio (PYBOP) y el cloroformiato de etilo (ClCO2Et), los cuales en presencia de una 

base pueden convertir el carboxilato en una especie activada, para posteriormente ser 

reducida con un agente reductor especifico como el NaBH4.  

 

 

 

 

R (Agente activante) = BOP, PYBOP, ClCO2Et 

Esquema 6. Reducción propuesta para el compuesto 12. 

 

Sin embargo, a pesar de la variación en los tiempos de activación así como en el 

número de equivalentes utilizados, los rendimientos de reacción varían entre el 9 y 

30% como se indica en la Tabla 1. Por tal motivo se decidió evaluar el uso de diborano 

B2H6 que, por su rápida actuación y selectividad como agente reductor a temperatura 

ambiente, proporcionó el compuesto 13 con un rendimiento del 80%. Estos resultados 

pueden ser atribuidos a que el NaBH4 posee un carácter iónico  por lo que reacciona 

mejor con carbonilos más electrofílicos, mientras que el BH3 no es iónico y está 

dispuesto a aceptar un par de electrones en su orbital vacío p lo cual significa que 

reduce más rápidamente carbonilos ricos en electrones como los ácidos carboxílicos y 

amidas.  

 

Tabla 1. Rendimientos de la reacción en la obtención del compuesto 13, variando agentes 

activadores y reductores. 

Reducción Reactivos Equivalentes rdto. 

Activación con BOP. 2 

horas de activación 

BOP 1.3 
9% 

NaBH4 1.3 

Activación PyBOP. 2 

horas de activación 

PyBOP 1.3 
23% 

NaBH4 1.3 

Activación con PyBOP. 

30 min de activación  

PyBOP 1.3 
28% 

NaBH4 1.3 

Activación con 

cloroformiato de etilo.  

ClCO2Et 1.3 
30% 

NaBH4 1.3 

Activación con 

cloroformiato de etilo. 

ClCO2Et 3 
13 % 

LiBH4 1.3 

Reducción con BH3 BH3 1.5 80% 

 

12 13 
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Una vez sintetizado el alcohol 13, se preparó el compuesto derivado 14, con el objetivo 

de convertir el alcohol en un mejor grupo saliente como el mesilato, ya que dado su 

carácter poco básico contribuye a que su carga negativa se encuentre deslocalizada 

sobre tres átomos de  oxígeno y de esta manera se facilite la reacción de sustitución 

nucleofílica bimolecular (SN2). A continuación (Esquema 7) se realizó una evaluación 

preliminar utilizando la hexilamina como nucleófilo. La reacción se llevó a cabo en el 

seno de acetonitrilo a reflujo durante 24 horas, obteniendo así el γ-aminoácido 

protegido ortogonalmente con una cola hidrofóbica de 6 carbonos 15, con un 

rendimiento del 57%.  

 

 

 

 

Esquema 7. Síntesis  del compuesto 15 

 

Con la información de síntesis proporcionada por esta ruta, la siguiente transformación 

fue la sustitución nucleofílica bimolecular (SN2), del mesilato 14, utilizando una cadena 

carbonada larga como la hexadecilamina con el objetivo de modular la hidrofobicidad 

de la molécula, obteniendo el compuesto 21, sin embargo el rendimiento de la 

reacción fue del 30%. Este valor disminuyó considerablemente al compararlo con la 

obtención del compuesto 15, posiblemente por la larga cadena alifática que 

proporciona cierto grado de impedimento estérico que afecta el rendimiento de la 

reacción.  De aquí que en este momento nos propusiéramos la síntesis de este 

compuesto realizando primero una oxidación del alcohol 13 al aldehído 18, para 

posteriormente realizar una aminación reductora. Para ello se usó como agente 

oxidante el dicromato de piridinio  (PDC). Una vez el aldehído fue sintetizado se utilizó 

sin purificación adicional en la reacción con la hexadecilamina durante 1 hora bajo 

atmosfera de N2 y a continuación se redujo la imina intermedia con cianoborohidruro 

de sodio (NaCNBH3) dando como resultado el compuesto 21 con un 26% de 

rendimiento (Esquema 8).  

 

 

 

 

 

Esquema 8. Síntesis  del compuesto 21 

 

13 14 15 

13 18 21 
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3.1.3 Síntesis  de los compuestos 17 y 22: 

Para obtener la estructura del γ-aminoácido de cadena larga propuesto es necesario o 

bien realizar un acoplamiento peptídico usando un agente de acoplamiento o bien 

activar el ácido carboxílico para un posterior reacción con la amina. Teniendo en 

cuenta lo antes descrito, en nuestro caso se formó el cloruro de ácido. Una vez se 

formó el derivado de ácido más reactivo (el cloruro de ácido), procedimos a adicionar 

la hexilamina en exceso, durante 2 horas a temperatura ambiente, dando como 

resultado el compuesto 17 con un rendimiento del 73% (Esquema 9). Una vez 

preparado γ-aminoácido derivado de amida de 6 carbonos, procedimos a realizar las 

desprotecciones selectivas de los grupos protectores del ácido carboxílico y la amina 

respectivamente. Iniciamos con la desprotección del ácido carboxílico protegido en 

forma de éster terc-butilico utilizando ácido trifluoracético (TFA) y trietilsilano a 

temperatura ambiente obteniendo el compuesto 19, con un rendimiento cuantitativo. 

Finalmente se realizó la desprotección del grupo amino de este compuesto protegido 

en forma de carbamato de bencilo por medio de una hidrogenación, bajo 5 atmosferas 

de presión y a temperatura ambiente, obteniendo el compuesto 20 con un rendimiento 

cuantitativo.    

 

 

 

 

 

 

 

 

 

 

Esquema 9. Ruta sintética compuesto 20 

 

Estos resultados nos muestran la viabilidad de utilizar esta ruta sintética para la 

síntesis del surfactante objetivo, el γ-aminoácido 24 (Esquema 10). A continuación y 

de forma análoga a lo comentado ateriormente, por medio de la reacción del ácido 12 

y cloruro de tionilo, se preparó el respectivo cloruro de ácido que posteriormente 

reaccionó con la hexadecilamina formando la amida de cadena larga (C16) que 

contribuye a la modulación del carácter hidrofóbico de la molécula. Esta reacción 

presentó un rendimiento del 70%.  

 

12 
17 

19 20 
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Esquema 10. Ruta sintética compuesto 24 

 

Una vez preparado el compuesto 22 y después del proceso de purificación por 

cromatografía en columna (utilizando como fase móvil hexano-acetato de etilo 1:1), se 

realizaron las desprotecciones selectivas como se menciona en el apartado anterior. 

La primera reacción es con TFA, utilizada en la desprotección del ácido carboxílico 

protegido en forma de éster terc-butilo, dando como resultado el compuesto 23. 

Posteriormente, por medio de la reacción de hidrogenación, se realiza la desprotección 

de la amina protegida en forma de carbamato de bencilo, proporcionando el 

compuesto 24. Ambas reacciones tuvieron lugar con rendimientos cuantitativos.    

 

Por último, los rendimientos de las reacciones para la obtención de los compuestos 21 

(30% rdto.) y 22 (70% rdto.), nos llevaron a empezar el estudio fisicoquímico con el 

compuesto 24, del cual contamos con una mayor cantidad de muestra.  

12 

22 

23 

24 
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 3.2  Estudio fisicoquímico del compuesto 24:  

 

Tabla 2. Comportamiento de solubilidad del compuesto 24 

Concentración (M) Observación  

0.1 
Alta viscosidad de color blanco, no se observan sólidos en 

suspensión.  

7.5 x 10
-2

 
Alta viscosidad de color blanco, no se observan sólidos en 

suspensión. 

5.0 x 10
-2

 
Solución viscosa con mayor fluidez  de color blanco, no se 

observan sólidos en suspensión. 

1.0 x 10
-2

 

Solución viscosa con mayor fluidez de color blanco lechoso, no se 

observan sólidos en suspensión. Al sacarlo a temperatura 

ambiente se observa un aumento en la compactación. La solución 

se calentó con el decapador y se observó total fluidez y coloración 

transparente con pocas partículas sólidas suspendidas pero al 

disminuir la temperatura a 26 
o
C vuelve a tomar la textura original.   

7.5 x 10
-3

 

Solución viscosa con mayor fluidez  de color blanco, no se 

observan sólidos en suspensión. Al sacarlo a temperatura 

ambiente se observa un aumento en la compactación. 

5.0 x 10
-3

 
Disminuye la coloración blanca para ser un poco lechosa, no es 

totalmente transparente.  

3.3 x 10
-3

 

Disminuye la coloración blanca para ser un poco lechosa, no es 

totalmente transparente. Al agitar se observa la formación de 

espuma. (Figura 12).  

1.0 x 10
-3

 
Solución más transparente se observan pocas partículas sólidas 

dispersas.  

7.5 x 10
-4

 

Solución más transparente se observan pocas partículas sólidas 

dispersas. (Figura 13).  Al calentar se observa totalmente 

transparente. 

5.0 x 10
-4

 Solución totalmente transparente, no hay necesidad de calentar. 

2.5 x 10
-4

 
Solución totalmente transparente, no hay necesidad de calentar. Al 

agitar todavía se observa un halo de burbujas en la parte superior.  

 

 

Como ensayo preliminar de comportamiento se realizó 

una evaluación de solubilidad en medio acuoso del 

compuesto 24 en un baño termostatizado a 25 oC 

(Figura 11).   En un vial se pesaron 10 mg del ácido 

(3S)-4-amino-3-((1ʹR,3ʹR)-3ʹ- hexadecilcarbamoil)-2ʹ,2ʹ di- 

metilciclobutil) butanoico y se adicionó paulatinamente en 

agitación contínua el volumen necesario para obtener las 

concentraciones molares propuestas como se indica en 

la Tabla 2.  
 

Figura 11. Montaje para la 

evaluación de solubilidad. 
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El compuesto 24 se obtuvo inicialmente como un aceite incoloro que después de su  

liofilización se transformó en un sólido de color casi blanco. Este sólido se intentó 

cristalizar utilizando metanol caliente y un enfriamiento lento bajo atmosfera de 

hexano. Así mismo, se utilizó una variedad de solventes como se muestra en la Tabla 

3, para intentar su cristalización. 

Tabla 3. Pruebas de cristalización 

SOLVENTE  UTILIZADO OBSERVACIÓN 

Acetonitrilo (CH3CN) – caliente  

Forma un gel en caliente, que a temperatura 

ambiente precipita, obteniéndose un sólido 

de coloración blanca. A este sólido liofilizado 

se le realizó la caracterización fisicoquímica.   

Éter dietílico (CH3CH2)2O – caliente El surfactante es insoluble. 

Hexano (C6H14) – caliente El surfactante es insoluble. 

Acetato de etilo (C4H8O2) – caliente 

El surfactante es insoluble, pero a 

temperatura ambiente forma un sólido 

aglomerado de difícil manipulación. 

Tetrahidrofurano (C4H8O) – caliente 

Totalmente soluble en caliente, al enfriarlo 

hasta 0 
o
C, forma muy pocas partículas 

sólidas y al evaporar el solvente forma un 

sólido aglomerado de difícil manipulación  

3.2.1. Comportamiento en Resonancia Magnética Nuclear de protón (RMN 1H): 

En RMN 1H, la variación de los desplazamientos químicos, por ejemplo en los grupos 

metilo terminales, indica que las cadenas hidrófobas experimentan entornos diferentes 

antes de la CMC y después de la CMC, debido al proceso de micelización.41 

                                                           
41

 P. Goon, S. Das, C. Clemett, G. Tiddy, V. Kumar, Langmuir 1997, 13, 5577. 

Figura 12. Formación de espuma  
del compuesto 24 (c=3.3 x 10

-3
 mM). 

Figura 13. Solución transparente  

del compuesto 24 (c=7.5 x 10
-4

 mM) 



3. RESULTADOS Y DISCUSIÓN  
 

 
25 

Sin embargo, en nuestro caso, en el espectro de RMN 1H del producto 24, el carácter 

anfipático de este producto, posibilita la formación de agregados moleculares, que 

pueden limitar la relajación de los protones de este compuesto. En consecuencia, el 

espectro observado no es definido y  no es posible identificar claramente cada una de 

las señales esperadas.  

 

Por tal motivo, se propuso variar la temperatura de registro del espectro, buscando 

fragmentar dichos agregados. Los espectros se realizaron variando la temperatura 

desde 25 oC hasta 70 oC, a una concentración de 4.7 x 10-3 mM en D2O a 360 MHz y 

todos con la misma exposición de 80 scans. (Figura 14). En  los espectros se 

identifica la  cadena alifática y el metilo terminal de dicha cadena, sin embargo no fue 

posible identificar las demás señales características del producto. Por tal motivo, se 

propuso realizar el espectro en un equipo de 500 MHz, con una concentración 4 mM 

(Figura 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 14. Espectros de RMN 1H a 360 MHz en D2O variando la temperatura, a) 25 
o
C b) 

40 
o
C c) 50

 o
C d) 60 

o
C y e) 70 

o
C. 

 

 

a) 

b) 

c) 

d) 

e)  CH2, cadena alifática   CH3, metilo terminal  
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Figura 15. Espectro de RMN H1 a 500 MHz (D2O a 25 oC) 

 

Para la realización del espectro de RMN 1H a 500 MHz, se suprimió el agua (artefacto 

a 4.7 ppm). Aquí se identifican mejor las señales características del producto a 2 ppm 

y 3 ppm, sin embargo no es posible realizar una lectura clara del espectro, por lo que 

se confirmó la presencia de grandes microagredos que impiden su estudio. Dados 

estos resultados se propuso identificar el rango de concentración micelar crítica por 

tensiometría. 

 

Las otras técnicas realizadas para la caracterización del surfactante sintetizado como  

la tensiometría, conductividad y medidas potenciometrícas de pH, se realizaron en 

colaboración con el Doctor Ramón Pons del Departamento de química y tecnología de 

surfactantes del Consejo Superior de Investigaciones Científicas (CSIC) y el Doctor 

Alessandro Sorrenti de nuestro grupo de investigación.  

 

3.2.2 Tensiometría  por el método de la gota colgante: 

Una gota colgante es una gota que se encuentra suspendida de cualquier sólido, en 

nuestro caso, del extremo de un capilar. Ésta suele estirarse y desarrollarse en gran 

parte debido a la variación de la presión hidrostática, la cual llega a ser apreciable en 

comparación con aquella dada por la curvatura en el extremo de la gota. El método de 

la gota colgante permite la determinación de la tensión superficial a partir del cálculo 

de diversos parámetros geométricos, tales como: diámetro máximo o ecuatorial de la 

gota (DE), diámetro del cuello (DS) y radio de curvatura medio en el extremo de la 

gota (Ro), como se muestra en la Figura 16 a) y b).   
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                          a)                                          b) 

Figura 16.  a) Parámetros geométricos de la gota colgante  b) Gota colgante del compuesto 24 

 

Una vez obtenida la imagen capturada de la gota, se procede a limpiar la imagen y 

obtener el contorno de la misma, empleando un programa de edición de fotos. La 

tensión superficial es calculada a partir de ese contorno delineado de la gota.  

 

En nuestro caso, se utilizaron concentraciones dentro del rango de 7.57 a 0.0037 

milimolal, para las ocho celdas habilitadas en el equipo. Una vez preparadas dichas 

soluciones, la gota se formó dentro de la celda por medio de una aguja quirúrgica, la 

cual se introdujo por la parte superior de la celda. Se realizaron lecturas en el 

momento de hacer la gota y 50, 90, 150, 220, 300 y 390 minutos, hasta observar un 

equilibrio en la tensión superficial. 

 

Al día siguiente se realizaron réplicas a concentraciones intermedias buscando una 

mejor descripción de la tensión superficial. Con los valores obtenidos se efectuó una 

gráfica representando la tensión superficial vs el Log de la concentración (Figura 17), 

teniendo en cuenta el equilibrio observado después de los 150 min de evaluación. Se 

aprecia que la tensión superficial disminuye de forma brusca a medida que la 

concentración de tensioactivo aumenta, hasta un punto donde se estabiliza. Esto 

quiere decir que a medida que aumenta la concentración de soluto, éste se absorbe 

fuertemente en la interfase, hasta llegar a un punto (CMC), donde la interfase se 

satura de surfactante e inicia la formación de micelas.   

 

Para determinar el valor de CMC, se realizó una regresión lineal por el método de 

mínimos cuadrados y se identifico el punto de intersección por medio de las 

ecuaciones de las rectas obtenidas en la regresión lineal, con la que se identificó la 

CMC como 0.27 mmol∙Kg-1 (Figura 18). 
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Figura 17. Tensión superficial vs Log de la concentración mmolal 

 

 

 

 

 

 

 

 

 

 

Figura 18. Determinación de la concentración micelar critica 

 

3.2.3. Conductividad:   

La conductividad (k) de una solución es una medida de la facilidad con la cual la 

corriente eléctrica fluye a través de la solución. Para establecer una comparación 

correcta entre soluciones de diferentes concentraciones se necesita una propiedad en 

la cual se compense esta diferencia. Kohlrausch introdujo el concepto de 
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conductividad equivalente, o conductividad molal (Λm). Se define Λm como la razón 

entre la conductividad electrolítica (k) y la concentración molal (c) (mol∙Kg-1). 

 

Conductividad molal Λm = valor de la conductividad k / concentración mmolal c 

 

Los resultados obtenidos se muestran en la Tabla 4 y se representan en la Figura 19.  

 

Tabla 4. Valores experimentales   

Concentración  

Mmolal 

Conductividad μS∙cm
-1

 Conductividad mmolal 

μS∙cm
-1
∙mmol

-1
∙Kg 

0.840 210.59135 250.70398 

0.798 187.49423 234.95518 

0.399 79.48125 199.20113 

0.280 73.36731 262.0261 

0.199 42.25413 212.33233 

0.099 36.68365 370.54196 

0.096 32.60769 339.66346 

0.050 29.61865 592.37308 

0.032 17.6625 551.95313 

0.025 22.14606 885.84231 

0.0126 15.48865 1229.25824 

 

 

 

 

   

 

 

 

 

 

 

 

Figura 19. Comportamiento de la conductividad vs concentración del surfactante  

 

La representación de los datos de k vs c es una línea recta que muestra la relación 

entre la concentración del surfactante y la conductividad eléctrica determinada. Este 

comportamiento no es el esperado para la estructura anfóterica propuesta del 

compuesto 24, dados los valores anormalmente altos de conductividad. 

 

 

 

y = 11.97 + 220.88X 

 R2 = 0.9909 

24 
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En el caso de los electrolitos fuertes, donde la concentración de los iones en solución 

es proporcional a la concentración del electrolito, la conductividad molal disminuye 

ligeramente cuando aumenta la concentración, pero el efecto no es grande. 

 

Kohlrausch demostró que a bajas concentraciones las conductividades molales de los 

electrolitos fuertes están dadas por:  

Λm = Λo
m - A c       Ley de Kohlrausch 

 

donde Λm es la conductividad molal límite y A es un coeficiente que depende de la 

naturaleza del electrolito. 

  

 

 

 

 

 

 

Figura 20. Representación grafica de la ley de Kohlrausch 

 

Así mismo se deduce que los electrolitos débiles, como el ácido acético, entre otros, 

muestran valores máximos de  conductividad molar cuando  c  0 (dilución infinita), 

pero disminuyen rápidamente a valores bajos cuando aumenta la concentración. Este 

comportamiento se observa en los resultados experimentales obtenidos, como se 

muestra en la Figura 21, donde se representó Λm del compuesto 24 vs la c  (mmol 

∙Kg-1).  

 

 

 

 

 

 

 

 

 

 

 

Figura 21. Conductividad molal vs raíz cuadrada de la concentración molal del compuesto 24  
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La pronunciada dependencia entre la  conductividad molal y la concentración para los 

electrolitos débiles se debe al desplazamiento del equilibrio: 

                           MA(ac)                M
+

(ac) + A-
(ac) 

hacia la derecha cuando c0. La conductividad depende del número de iones 

presentes en disolución y por tanto del grado de disociación del electrolito. 

 

Teniendo en cuenta lo antes discutido y teniendo en cuenta la alta conductividad, los 

resultados obtenidos no concuerdan con la estructura zwiteriónica propuesta para el 

surfactante analizado. Estos resultados indican la presencia de un compuesto residual 

con comportamiento de electrolito débil, por ejemplo un ácido carboxílico, que 

contribuirían a la alta conductividad observada y concordarían con el comportamiento 

observado en la Figura 19. De aquí se propuso evaluar el comportamiento del pH a 

diferentes concentraciones, buscando resultados que ayudaran a entender mejor el 

comportamiento del compuesto 24. 

 

3.2.4 Medidas potenciometrícas de pH: 

Como se menciona en el apartado anterior, el surfactante sintetizado se propone como 

un compuestos zwiteriónico anfotérico, ya que posee dos grupos funcionales, uno 

aniónico y otro catiónico. Sin embargo el pH de la solución es quien determina el 

carácter dominante favoreciendo una u otra de las posibles disociaciones: aniónico a 

pH alcalino o catiónico a pH ácido. Sin embargo, experimentalmente, al determinar el 

pH de las soluciones en un rango de concentraciones que oscila desde 7.57 hasta 

0.0037 milimolal (preparadas en agua Mili – Q de pH 6.80) observamos una alta 

variación en el pH con una considerable tendencia ácida.  

 

Los valores determinados se muestran a continuación.  

 

 

 

 

 

 

 

 

 

 

     Figura 22. pH vs concentración mmolal 

Concentración 
mmolal 

pH  

7.53595 2.68 

2.63175 3.40 

0.72918 3.90 

0.24301 5.62 

0.08195 6.84 

0.02761 6.93 

0.00928 7.10 

0.00347 6.83 
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Al analizar los valores de pH en la Figura 22, se observó un fuerte descenso de pH 

con respecto al logaritmo de la concentración. A partir de estos resultados se identifica 

un comportamiento más ácido de lo esperado según la estructura propuesta, por tal 

motivo se reforzó la idea de la presencia de un compuesto residual, posiblemente de 

carácter ácido. Esta información nos llevó a proponer una valoración ácido-base 

buscando determinar un punto de equivalencia orientativo.   

 

3.2.5 Valoración ácido–base: 

La valoración se realizó utilizando 1 mL de surfactante 1.13 mmolal y adicionando 

paulatinamente volúmenes de 50 μl de NaOH 0.962 mmolal. 

 

Realizando esta valoración ácido – base se identificó que el punto de inflexión se 

encuentra a un pH de 6.8 y 3.84 x 10-4 moles de NaOH añadidos (Figura 23). Se 

confirmó la presencia de impurezas ácidas posiblemente solubles en agua por lo que 

se propuso realizar varios lavados del producto sólido 24, con agua Mili – Q y realizar 

una nueva liofilización, para continuar con su estudio por medio de un análisis 

elemental y espectrometría de masas para tener más datos acerca de su composición 

química y la posible impureza presente.  

 

 

 

 

 

 

 

 

 

 

 

 

Figura 23. Curva potenciométrica del compuesto 24.  

 

3.2.6 Espectrometría de masas de ión positivo y ión negativo: 

Se realizó la espectrometría de masas de ion positivo, donde se detectó únicamente el 

pico (M+H)+ del compuesto 24. Estos resultados nos indujeron a realizar el análisis de 

espectrometría de masas de ion negativo, buscando el ion que pudiera contribuir al 

Punto de Equivalencia 
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comportamiento ácido de nuestro compuesto sintetizado. Con los resultados aquí 

obtenidos se dedujo la presencia del ión trifluoroacetato (Figura 24), así como el 

compuesto 24, objeto de este estudio.  La presencia de este ion, puede ser debido al 

uso del ácido trifluoracético en la desprotección del ácido carboxílico protegido en 

forma de éster terc-butílico y que después del tratamiento de eliminación, quedaran 

restos de ácido en el momento de realizar la desprotección del carbamato de bencilo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 24. Espectro de masas ESI negativo alta resolución (barrido masas bajas) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 25. Espectro de masas ESI negativo alta resolución (barrido masas medias) 

 

 

 

 

24 A 

24 B 
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Al analizar el espectro de masas negativo en el barrido de masas medias, fue posible 

identificar la  presencia de la sal formada por el anión trifluoracetato con el catión 

derivado del surfactante 24 (Figura 25). Esto indica que nuestra muestra contiene una 

cierta proporción de la especie ácida 24 C, la cual presenta dentro de su estructura un 

ácido carboxílico. Ello explica en cierta medida la alta conductividad eléctrica 

observada y los valores bajos de pH.  

 

 

 

24 C 

 

3.2.7 Análisis elemental: 

Para el análisis elemental se realizaron 4 combustiones observando amplias 

variaciones en los resultados (Tabla 5), posiblemente debido a la dificultad de 

combustión de la sal formada. Sin embargo los promedios de porcentajes de carbono, 

hidrógeno y nitrógeno obtenidos por esta técnica, concuerdan, con los porcentajes 

teóricos determinados para la mezcla de los compuestos 24 y 24 C (Tabla 6), en las 

proporciones de 0.35 del compuesto 24 C y 0.65 del compuesto 18.  

 

Una vez identificada la presencia de la sal 24 C y analizando los resultados obtenidos 

en la valoración potenciométrica, proponemos que el punto de equivalencia obtenido 

es debido a la valoración del protón del ácido carboxílico en el compuesto 24 C. De 

aquí proponemos que existe una relación  del compuesto 24 C de 0.35 y del 

compuesto 24 de  0.65, lo que concuerda con el estudio realizado en el microanálisis. 

 

Tabla 5. Resultado experimentales del microanálisis  

Quema % Carbono % Hidrogeno % de Nitrógeno 

1 64,67 11,23 5,09 

2 64,37 10,77 5,15 

3 64,58 10,8 5,19 

4 65,13 10,41 5,07 

Promedio 64,68 10,80 5,12 

 

Tabla 6. Resultado teóricos del microanálisis según la proporción propuesta  

Proporción de compuesto 
% Carbono % Hidrogeno % de Nitrógeno 

24 C 24  

0.35 0.65 64,52 10,07 5,32 
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La detección del compuesto residual 24 C presente en la muestra analizada del 

compuesto 24,  fue posible gracias a la utilización y articulación de una variedad de 

técnicas analíticas, las cuales permitieron proponer la proporción en que se encuentra 

cada una de ellas dentro de la mezcla. Así mismo, los resultados obtenidos a lo largo 

de la investigación son asignados a la mezcla de los compuesto 24 y 24 C en 

proporciones de 0.65 y 0.35 respectivamente, no obstante, en un futuro se estudiarán 

ambos  componentes por separado. 
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4. CONCLUSIONES: 

 

En este trabajo de Máster se han sintetizado los compuestos anfipáticos de cadena 

corta 13 y 21 (Figura 26), de forma enantioselectiva y protegidos ortogonalmente, a 

partir del compuesto intermedio 12. 

 

 

 

   

   

 

 

 

 

 

 

Figura 26. Análisis retrosintético de los compuestos 15 y 17 

 

Por otro lado, se han sintetizado sus análogos de 16 carbonos, los compuestos 21 con 

30% rdto. y 22 con 70% de rdto. 

 

 

 

 

 

 

 

 

La síntesis del compuesto 22 presentó un mejor rendimiento, por tal motivo decidimos 

dirigir la investigación a la síntesis y caracterización del surfactante derivado 24. 

 

Una vez sintetizado el compuesto 22, se eliminaron selectivamente los dos grupos 

protectores, utilizando primero ácido trifluoracético para desproteger el ácido protegido 

en forma de éster terc-butilico y posteriormente  H2, Pd(OH)2/C para desproteger la 

amina protegida en forma de carbamato de bencilo . 

 

15 17 

12 

21 

22 
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Al finalizar las desprotecciones selectivas, se obtuvo el surfactante 24, al cual se le 

realizó el estudio fisicoquímico, utilizando técnicas como tensiometría, conductividad y 

potenciometría. Los resultados obtenidos revelan la presencia de otro compuesto (24 

C) formado al utilizar el ácido trifluoracético en el proceso de desprotección del ácido 

carboxílico. La CMC para esta mezcla es de 0.28 mmol∙Kg-1. 

 

 

 

 

 

 

 

 

       24 C 

Actualmente, se propone realizar una acidificación total, de la mezcla obtenida con 

TFA, para obtener un 100% de la sal y de esta manera evaluar sus propiedades 

fisicoquímicas y compararlas con los resultados obtenidos en este Máster. 

24 
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5.1 CONSIDERACIONES GENERALES SOBRE LOS PROCEDIMIENTOS 

EXPERIMENTALES: 

 

5.1.1 Técnicas utilizadas: 

Las técnicas utilizadas a lo largo del desarrollo la investigación se describen a 

continuación: 

 

 

 

                                                           
 

Los desplazamientos químicos se expresan en ppm, utilizando como referencia interna los siguientes 
valores: CDCl3: δ =7.26 y 77.2 para 

1
H y 

13
C, respectivamente; Metanol – d4: δ =3.31 y 49.0 para  

1
H y 

13
C, 

respectivamente.  

NOMBRE DE LA 
TÉCNICA 

EQUIPO LUGAR 

Resonancia 
magnética nuclear 

(RMN) 

 Brucker, modelo AC 250 y 
Avance 250, para los 
espectros de 1H a 250 MHz y 
de 13C a 62.5 MHz. 

 Brucker, model ARX 360, 
para los espectros de 1H a 
360 MHz y de 13C a 90 MHz. 

Universidad Autónoma 
de Barcelona (SeRMN). 

Espectrometría de 
Masas de alta 

Resolución (HRMS) 

 Bruker micrOTOFQ, usando 
ESI – MS (QTOF).  

Universidad Autónoma 
de Barcelona (SAQ). 

Espectroscopia 
infrarroja (IR)  

 Sapphire – ATR  
Universidad Autónoma 
de Barcelona (SAQ). 

Microanálisis 
(Análisis elemental)  

 Flash EA 2000 CHNS, 

Thermo Fisher Scientific. 

 EA 3010, EuroVector 

Universidad Autónoma 
de Barcelona (SAQ). 

Rotación óptica 
 Espectropolarímetro J-715, 

JASCO. 

Universidad Autónoma 
de Barcelona (SAQ). 

Micro-destilaciones  
 Destilador Buchi, modelo 

KRV65/30. 

Unidad de Química 
Orgánica (UAB) 

Tensiometría  

 Tensiómetro diseño del 

grupo de investigación (Gota 

suspendida) 

Departamento de 
química y tecnología de 

surfactantes (CSIC) 

Conductimetría 

 Conductímetro Orion Cond. 

Cell 011010A con electrodos 

de platino, integrado con un 

Thermo Orion 550A. 

Departamento de 
química y tecnología de 

surfactantes (CSIC) 

Potenciometría  
 Thermo Orion, model 

8102BN 

Departamento de 
química y tecnología de 

surfactantes (CSIC) 

Liofilización   Liofilizador modelo Telstar 
Unidad de Química 

Orgánica (UAB) 
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5.1.2 Cromatografía: 

La técnica de cromatografía en columna a presión se realizó utilizando como fase 

estacionaria gel de sílice Baker® de 0.04-0.06 nm, nitrógeno como gas impulsor y con 

la fase móvil indicada en cada caso. 

La cromatografía en capa fina (CFF), se ha realizado sobre placas de cromatografía 

Alugram SIL G/UV254 de 0.25 mm de grosor. Los métodos utilizados para revelar las 

manchas han sido: 

 Irradiación con lámpara de UV a una longitud de onda de 254 nm. 

 Pulverización del cromatofolio con una solución de 3-metoxi-4-hidroxi-

benzaldehido (vainillina) y H2SO4 en etanol. 

5.1.3 Materiales generales de laboratorio: 

Las hidrogenaciones a presión han sido realizadas con un hidrogenador modelo 

Chemipress 80, diseñado por Trallero & Schlee. 

Las balanzas utilizadas han sido: 

 Balanzas de precisión (hasta diez milésimas de gramo) de marca Mettler 

modelo Toledo AB54. 

 Balanza (hasta la centésima de gramo) de marca Chyo modelo MK200B. 

El reactivo (-)-verbenona (95% e.e.) es adquirido en Aldrich y se utiliza sin purificación 

adicional. Los disolventes han sido utilizados directamente debido a su grado de 

calidad. En los casos requeridos han sido purificados y/o anhidrizados mediantes 

metodologías estándar, descritas en: Vogel’s, Textbook of Practical Organic 

Chemistry. Ed. Longman Scientific & Technical. UK, 1989. 

5.2 DESCRIPCIÓN DE LOS PROCESOS EXPERIMENTALES Y DE LOS 

PRODUCTOS:   

Síntesis del ácido cis-pinonónico. 

                                

 

4.0 mL de (-)-(S)-verbenona (20.6 mmol) producto 1, son disueltos en 232 mL de una 

mezcla de CH2Cl2/CH3CN/H2O en una proporción de 2:2:3 la cual se encuentra  0ºC. 

1 2

2 
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Posteriormente, se añaden 4.2 g de NaIO4 (120.3 mmol, 4.2 eq.) y 162 mg de RuCl3 

(0.6 mmol, 0.021 eq.). Pasadas 3 horas se retira el baño de hielo y se deja agitando a 

temperatura ambiente toda la noche. 

 

Una vez transcurrido este tiempo, se añaden 200 mL de H2O y se realizan 

extracciones con CH2Cl2 (3x40 mL). La fase orgánica, se seca con MgSO4 anhidro, se 

filtra y se evapora el disolvente a presión reducida obteniéndose un rendimiento 

cuantitativo, 4.05 g (23.79 mmol) de ácido pinonónico, producto 2. Este ácido se utiliza 

directamente en la siguiente etapa, sin purificación adicional. 

 
1
H RMN (CDCl3): δ 1.00 (s, 3H, c-2-CH3), 1.48 (s, 3H, t-2-CH3), 1.92 (ddd, 

3
J4pro-S, 3=7.8 Hz, 

3
J4 

pro-S, 1= 7.7 Hz, 
2
J4 pro-S, 4 pro-R=11.5 Hz, 1H, H4 pro-S), 2.09 (s, 3H, CH3CO), 2.66 (ddd, 

3
J4 pro-R, 

3=10.7 Hz, 
3
J4 pro-R, 1=10.5 Hz, 

2
J4 pro-R, 4 pro-S=11.5 Hz, 1H, H4pro-R), 2.89 (dd, 

3
J3, 4 pro-R=10.7 Hz, 

3
J3, 4 pro-S=7.8 Hz, 1H, H3), 2.99 (dd, 

3
J1, 4 pro-R=10.5 Hz, 

3
J1, 4 pro-S=7.7 Hz, 1H, H1) 

 

Los datos espectroscópicos concuerdan con los previamente descritos en: 

K. Burgess, S. Li, J. Rebenspies, Tetrahedron Lett.  1997, 38, 1681-1684. 

 

Síntesis del (1S,3R)-3-acetil-2,2-dimetilciclobutancarboxilato de metilo 

 

                                                                       

 

Se disuelven 4.76 g (27.97 mmol) del ácido pinonónico 2 en 65 mL de DMF y se 

añaden 11 g de Cs2CO3 (33.76 mmol, 1.2 eq.). A continuación se adicionan 2.1 mL de 

CH3I (33.72 mmol, 1.2 eq.) y se deja agitando la mezcla durante toda la noche a 

temperatura ambiente.  

Pasado este tiempo se detiene la agitación, se añaden 50 mL de acetato de etilo y se 

hacen lavados con una disolución acuosa saturada de NaHCO3. Se seca la fase 

orgánica con MgSO4 anhidro y se evapora el disolvente a presión reducida. Se 

obtienen así 4.5 g (24.43 mmol, 90% rdto.) del producto 3 en forma de aceite de color 

amarillo.  

1
H RMN (CDCl3): δ 0.90 (s, 3H, trans-CH3), 1.44 (s, 3H, cis-CH3), 1.90 (ddd, 

2
JH- H= 11.3 Hz, 

 

3
JH-H= 

3
J’H-H= 7.8 Hz, 1H, H4a), 2.66 (ddd, 

2
JH-H= 11.3 Hz, 

3
JH-H= 10.8 Hz, 

3
JH-H= 10.3 Hz, 1H, 

H4b), 2.76 (dd, 
3
JH-H= 10.7 Hz, 

3
JH-H= 7.7 Hz, 1H, H1), 2.86 (dd, 

3
JH-H= 10.3 Hz, 

3
JH-H= 7.7 Hz, 

1H, H3), 3.67 (s, 3H, CO2CH3). 

2

2 

3

2 
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Los datos espectroscópicos concuerdan con los previamente descritos en: 

G.P. Aguado, A.G. Moglioni, B.N. Brousse, R.M. Ortuño, Tetrahedron: Asymmetry 2003, 14, 

2445. 

 

Síntesis del (1S,3R)-2,2-dimetil-3-(2ʹ-metil-1ʹ,3ʹ-dioxolan-2ʹ-

il)ciclobutancarboxilato de metilo 

                        

 

Se disuelven 4.5 g (24.40 mmol) del producto 3, en 70 mL de tolueno y se añaden 12 

mL (215.17 mmol, 8.8 eq.) de etilenglicol y 1.28 g de PPTS (5 mmol, 12.2 eq.). Esta 

mezcla de reacción se lleva a reflujo, con una trampa de Dean-Stark, durante 5 horas. 

Transcurrido este tiempo, se elimina el disolvente a presión reducida. Después, se 

añaden 200 mL de CH2Cl2 y se hacen lavados con una solución acuosa saturada de 

NaHCO3 (3x50 mL) y con una solución acuosa saturada de NaCl (1x50 mL). A 

continuación se seca la fase orgánica con MgSO4 anhidro, se filtra la solución y se 

elimina el disolvente a presión reducida. Se obtienen así, 5.57 g (24.40 mmol) del 

producto 4 como un aceite casi incoloro con un rendimiento cuantitativo. 

 

1H RMN (CDCl3): δ 1.05 (s, 3H, trans-CH3), 1.23 (s, 3H, cis-CH3), 1.25 (s, 3H, CH3 cetal), 1.82-

1.96 (m, 1H, H4a), 2.17-2.35 (m, 2H, H3, H4b), 2.58-2.68 (m, 1H, H1), 3.65 (s, 3H, CO2CH3), 3.78-

3.90 (m, 2H, -OCH2CH2O-), 3.93-4.02 (m, 2H, -OCH2CH2O-). 

Los datos espectroscópicos concuerdan con los previamente descritos en: 

A.G. Moglioni, E. Muray, J.A. Castillo, Á. Álvarez-Larena, G.Y. Moltrasio, V. Branchadell, R.M. 

Ortuño, J. Org. Chem. 2002, 67, 240. 

 

Síntesis del ((1S,3R)-2,2-dimetil-3-(2ʹ-metil-1ʹ,3ʹ-dioxolan-2ʹ-il)ciclobutil)metanol. 

   

 

En un balón de dos bocas, se disuelven 3.9 g del producto 4 (1.17 mmol) en 50 mL de 

THF anhidro. A continuación se adiciona, poco a poco, 24 mL de LiBH4 (solución 2 M 

en THF, 48 mmol, 2.8 eq.). Luego se lleva la mezcla a reflujo durante 6 horas (se 

observa un burbujeo en el seno de la solución como consecuencia del 

desprendimiento de hidrógeno). Transcurridas las 6 horas se procede a enfriar la 

3

2 

4

2 

4

2 
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mezcla para añadir cuidadosamente metanol (hasta que ya no se observa más 

burbujeo). A continuación se adicionan 100 mL de agua y se realizan 3 extracciones 

con 50 mL de acetato de etilo. Después, se seca la fase orgánica con MgSO4 anhidro, 

se filtra la mezcla y se elimina el disolvente a presión reducida. El crudo obtenido se 

purifica mediante cromatografía en columna, usando como eluyente una mezcla 

hexano: acetato de etilo 1:1. Se obtienen 2.1 g del producto 5 (1.49 mmol, 62% rdto.) 

en forma de aceite incoloro. 

 

1H RMN (CDCl3): δ 1.10 (s, 3H, trans-CH3), 1.18 (s, 3H, cis-CH3), 1.23 (s, 3H, CH3 cetal), 1.57 

(m, 1H, H4a), 1.78-1.95 (m, 1H, H4b), 1.95-2.07 (m, 1H, H3), 2.14 (dd, 
3
JH-H= 7.5 Hz, 

3
JH-H= 3.23 

Hz, 1H, H1), 3.49 (dd, 
2
JH-H= 10.7 Hz, 

3
JH-H= 6.3 Hz, 1H, H1’a), 3.71 (dd, 

2
JH-H= 10.7 Hz, 

3
JH-H= 

7.9 Hz, 1H, H1’b), 3.78-4.03 (a.c., 4H, -OCH2CH2O-). 

Los datos espectroscópicos concuerdan con los previamente descritos en: 

A.G. Moglioni, E. Muray, J.A. Castillo, Á.  Álvarez-Larena, G.Y. Moltrasio, V. Branchadell, R.M. 

Ortuño, J. Org. Chem. 2002, 67, 2402. 

. 

Síntesis del (1S,3R)-2,2-dimetil-3-(2ʹ-metil-1ʹ,3ʹ-dioxolan-2ʹ-

il)ciclobutancarbaldehido 

 

 

Se disuelven 2.1 g del producto 5 (10.5 mmol) en 25 mL de CH2Cl2 anhidro y se 

adicionan 8.48 g de PDC (22.6 mmol, 2.14 eq.). Esta mezcla se deja en reacción 

durante toda la noche. Una vez finalizada la reacción se adicionan 3 espátulas de 

Florisil®, con la finalidad de eliminar el exceso de oxidante y se deja agitar por 30 

minutos. Transcurrido este tiempo se adicionan 30 mL de CH2Cl2 y la solución se filtra 

sobre Celite®. Se lava la Celite® 3 veces con 10 mL de CH2Cl2 y se elimina el 

disolvente a presión reducida. Se obtiene un aceite de color café que se utiliza 

directamente en la siguiente etapa.  

 

1H RMN (CDCl3): δ 1.17 (s, 3H, trans-CH3), 1.23 (s, 3H, cis-CH3), 1.34 (s, 3H, CH3 cetal), 1.71-

1.91 (m, 1H, H4a), 2.02-2.14 (m, 1H, H4b), 2.21-2.40 (m, 1H, H3), 2.54-2.68 (m, 1H, H1), 3.74-

4.06 (a.c., 4H, -OCH2CH2O-), 9.73 (d, 
3
JH-H= 1.4 Hz, Haldehido). 

Los datos espectroscópicos concuerdan con los previamente descritos en:  

A.G. Moglioni, E. Muray, J.A. Castillo, Á.  Álvarez-Larena, G.Y. Moltrasio, V. Branchadell, R.M. 

Ortuño, J. Org. Chem. 2002, 67, 2402. 

5
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7-Z  + 7-E 

Síntesis del 3-((1ʹR,3ʹR)-2ʹ,2ʹ-dimetil-3ʹ-(2ʺ-metil-1ʺ,3ʺ-dioxolan-2ʺ-

il)ciclobutil)acrilato de terc-butilo 

 

 

 

7.51 g (37.88 mmol) del crudo del producto 6, con 8.35 g de Ph3PCHCO2tBu (14.90 

mmol, 1.2 eq.), se disuelven en 20 mL de tolueno anhidro bajo atmosfera de nitrógeno, 

a reflujo por 18 horas. Pasado este tiempo el solvente es evaporado bajo presión 

reducida. El crudo resultante es disuelto en dietil éter caliente y filtrado en un embudo 

de vidrio. El solvente es evaporado bajo presión reducida y el resultado del crudo es 

purificado por cromatografía en columna utilizando como fase móvil hexano: acetato 

de etilo 1:1. Se obtuvo 4.79 g (16.16 mmol) de una mezcla de olefinas 7-Z y 7-E en 

proporción 53:47 (45 % de rdto.). 

 
1
H NMR CDCl3: Para el isómero E  δ 1.04 (s, 3H, trans-CH3), 1.17 (s, 3H, cis-CH3), 1.26 (s, 3H, 

CH3 ketal), 1.50 (s, 9H, 
t
Bu), 1.72-1.83 (m, 1H, H4’a), 2.05-2.10 (m, 1H, H1’), 2.20-2.30 (m, 1H, 

H3’), 2.46-2.55 (m, 1H, H4’b), 3.82-4.05 (a.c., 4H, -OCH2CH2O-), 5.64-5.75 (m, 1H, H2), 6.84 (dd, 

3
JH-H=15.6 Hz, 

4
JH-H= 7.4 Hz).

  
1
H NMR CDCl3: Para el isómero Z  δ 1.08 (s, 3H, trans-CH3), 1.17 (s, 3H, cis-CH3), 1.26 (s, 3H, 

CH3 ketal), 1.50 (s, 9H, 
t
Bu), 1.93-1.98 (m, 1H, H4’a), 2.05-2.10 (m, 1H, H1’), 2.20-2.30, (m, 1H, 

H3’), 2.46-2.55 (m, 1H, H4’b), 3.82-4.05 (a.c., 4H, -OCH2CH2O-), 5.64-5.75 (m, 1H, H2), 6.06 (dd, 

3
JH-H= 11.6 Hz, 

4
J H-H=10.2 Hz, 1H). 

Los datos espectroscópicos concuerdan con los previamente descritos en: 

J. Aguilera, R. Gutiérrez-Abad, À. Mor, A. Moglioni, G. Moltrasio, R.M. Ortuño, Tetrahedron: 

Asymmetry 2008, 19, 2864. 

 

Síntesis del (3S)-3-((1ʹR,3ʹR)-2ʹ,2ʹ-dimetil-3ʹ-(2ʺ-metil-1ʺ,3ʺ-dioxolan-2ʺ-

il)ciclobutil)-4-nitrobutanoato de terc-butilo  

 

 

Se disuelven 3.48 g del producto 7 (11.72 mmol) en 125 mL de THF anhidro y se 

enfría la solución a 0 ºC con la ayuda de un baño de hielo. Una vez esta solución está 

a 0 ºC se añaden 0.76 mL de CH3NO2 (13.93 mmol, 1.19 eq.) y 13.92 mL de una 

6

2 

7

2 
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solución 1 M de TBAF en THF (13.93 mmol, 1.19 eq.). Esta reacción se deja 

evolucionar durante 18 horas a temperatura ambiente. 

 

Una vez transcurrido este tiempo, se elimina el disolvente y los subproductos de la 

reacción a presión reducida. El crudo resultante se redisuelve en acetato de etilo y se 

lava con una solución acuosa saturada de NaHCO3 (3x50 mL). La fase orgánica se 

seca sobre MgSO4 anhidro y se evapora el disolvente en el rotavapor; finalmente se 

obtiene un aceite oscuro el cual se purifica mediante cromatografía en columna con 

una fase móvil  de hexano-acetato de etilo 4:1. Se obtienen 3.33 g (9.32 mmol, 79% 

rdto.) del producto 8, en forma de aceite incoloro. 

 
1
H RMN (CDCl3): δ 1.13 (s, 3H, trans-CH3), 1.19 (s, 3H, cis-CH3), 1.24 (s, 3H, CH3 cetal), 1.47 (s, 

9H, 
t
Bu), 1.55-1.67 (m, 1H, H3), 1.73-1.84 (m, 1H, H4’a), 1.86-1.98 (m, 1H, H4’b), 2.06–2.20 (m, 

1H, H2a), 2.24–2.38 (a.c., 2H, H1’ and H2b), 2.38–2.58 (m, 1H, H3’), 3.77–3.91 (a.c., 4H, -

OCH2CH2O-), 4.39–4.54 (a.c., 2H, -CH2NO2). 

Los datos espectroscópicos concuerdan con los previamente descritos en: 

J. Aguilera, R. Gutiérrez-Abad, À. Mor, A. Moglioni, G. Moltrasio, R.M. Ortuño, Tetrahedron: 

Asymmetry 2008, 19, 2864. 

Síntesis del  (3S)-4-amino-3-((1ʹR,3ʹR)-2ʹ,2ʹ-dimetil-3ʹ-(2ʺ-metil-1ʺ,3ʺ-

dioxolan-2ʺ-il)ciclobutil)butanoato de terc-butilo 

 

 

 

 

En un recipiente de hidrogenador provisto de agitación magnética se disuelven 200 mg 

(0.34 mmol) del producto 8 en una cantidad mínima de metanol. Posteriormente se 

adicionan 60 mg de Pd(OH)2/C (30% en peso). Esta reacción se deja evolucionar a 

temperatura ambiente durante 12 horas a 5 atmosferas de presión de hidrógeno. 

Pasado este tiempo, el crudo de reacción se filtra sobre Celite® y se lava con 

abundante metanol (2x40 mL). Posteriormente se elimina el disolvente a presión 

reducida obteniéndose 120 mg (0.26 mmol, 96% rdto.) del producto 9, en forma de 

aceite de color amarillo.   

 
1
H RMN (CDCl3): δ 1.10 (s, 3H, trans-CH3), 1.21 (s, 3H, cis-CH3), 1.24 (s, 3H, CH3 cetal), 1.47 (s, 

9H, 
t
Bu), 1.55–1.80 (a.c., 2H, H4’a, H1’), 1.86–1.99 (a.c., 2H, H4’b, H3), 2.05–2.19 (a.c., 4H, H3’, 

8

2 

9
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10 

   11 

H2a, NH2), 2.28 (dd, JH-H = 14.5 Hz, JH-H = 3.6 Hz, 1H, H2b), 2.55 (dd, JH-H = 12.9 Hz, JH-H = 6.7 

Hz, 1H, H4a), 2.71 (dd, JH-H = 12.9 Hz, JH-H = 3.9 Hz, 1H, H4b), 3.77–4.04 (a.c. 4H,-OCH2CH2O-). 

Los datos espectroscópicos concuerdan con los previamente descritos en: 

J. Aguilera, R. Gutiérrez-Abad, À. Mor, A. Moglioni, G. Moltrasio, R.M. Ortuño, Tetrahedron: 

Asymmetry 2008, 19, 2864. 

Síntesis del  (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-2ʹ,2ʹ-dimetil-3ʹ-

(2ʺ-metil-1ʺ,3ʺ-dioxolan-2ʺ-il)ciclobutil)butanoato de terc-butilo  

 

100 mg (0.4 mmol) del producto 9  se disuelven en 6.9 mL de una mezcla agua-

acetona (8:1), posteriormente se adiciona Na2CO3 (90 mg, 0.8 mmol, 2.0 eq.), NaHCO3 

(20 mg, 0.4 mmol, 1.0 eq.) y CbzCl (0.16 mL, 1.1 mmol, 3.0 eq.). La mezcla resultante 

se deja en reacción durante 18 horas a temperatura ambiente. Una vez pasado este 

tiempo, la mezcla de reacción se extrae con diclorometano y la fase orgánica se seca 

sobre MgSO4 anhidro y se evapora el disolvente en el rotavapor; finalmente se obtiene 

un aceite el cual se purifica mediante cromatografía en columna con una fase móvil  de 

hexano-acetato de etilo 1:4. Se obtienen 140 mg (0.30 mmol, 65% rdto.) del producto 

10, en forma de aceite incoloro. 

 

1
H RMN (CDCl3): δ 1.11 (s, 3H, trans-CH3), 1.19 (s, 3H, cis-CH3), 1.25 (s, 3H, CH3 cetal), 1.45 (s, 

9H, 
t
Bu), 1.53–1.69 (a.c., 2H, H4’a, H1’), 1.82–2.12 (a.c., 4H, H4’b, H3, H3’, H2a), 2.25 (dd, JH-H  = 

18.5 Hz, JH-H  = 7.2 Hz, 1H, H2b), 2.95-3.10 (m, 1H, H4a), 3.32 (ddd, JH-H  = 12.7 Hz, JH-H  ′ = 5.7 

Hz, JH-H  = 3.2 Hz, 1H, H4b), 3.74–3.88 (a.c., 4H, -OCH2CH2O-), 5.07 (s, 2H, CH2Bn), 5.23 (dd, 

JH-H  = 5.7 Hz, JH-H  = 6.0 Hz, 1H,NH), 7.32–7.43 (a.c., 5H, HAr). 

Los datos espectroscópicos concuerdan con los previamente descritos en: 

J. Aguilera, R. Gutiérrez-Abad, À. Mor, A. Moglioni, G. Moltrasio, R.M. Ortuño, Tetrahedron: 

Asymmetry 2008, 19, 2864. 

. 

Síntesis del (3S)-3-((1ʹR,3ʹR)-3ʹ-acetil-2ʹ,2ʹ-dimetilciclobutil)-4-

(benciloxicarbonilamino)butanoato de terc-butilo 
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Una mezcla del producto 10 (750 mg, 2.54 mmol) con 270 mg de PPTS (2.2 mmol, 

0.85 eq.) se disuelve  en 60 mL de acetona. Esta mezcla de reacción se calienta a 

reflujo durante 2 horas. Pasado este tiempo, y después de enfriar la mezcla de 

reacción el solvente, se evaporó a presión reducida. Este crudo de reacción fue 

disuelto en acetato de etilo (30 mL) para posteriormente ser lavado con una solución 

acuosa saturada de NaHCO3 y secado sobre MgSO4 anhidro. El solvente fue 

evaporado bajo presión reducida  obteniendo 600 mg del producto 11 (rendimiento 

cuantitativo). 

 

1
H NMR (CDCl3): δ 0.92 (s, 3H, trans-CH3), 1.35 (s, 3H, cis-CH3), 1.44 (s, 9H, 

t
Bu), 1.69–2.25 

(a.c., 9H, H4’a, H1’, COCH3, H3’, H3, H4’b, H2a), 2.64–2.84 (m, 1H, H2b), 2.95–3.12 (m, 1H, H4a), 

3.19–3.32 (m, 1H, H4b), 5.03–5.21 (a.c., 3H, CH2Bn, NH), 7.29–7.42 (a.c., 5H, HAr). 

Los datos espectroscópicos concuerdan con los previamente descritos en: 

J. Aguilera, R. Gutiérrez-Abad, À. Mor, A. Moglioni, G. Moltrasio, R.M. Ortuño, Tetrahedron: 

Asymmetry 2008, 19, 2864. 

  

Síntesis del  ácido (1R,3R)-3-((2ʹS)-1ʹ-(benciloxicarbonilamino)-4ʹ-terc-

butoxi-4ʹ-oxobutan-2ʹ-il)-2,2-dimetilciclobutancarboxílico  

 

 

 

Se prepara una solución de hipobromito sódico a partir de 0.55 mL (7 mmol, 3.5 eq.) 

de bromo y 1.6 g de hidróxido de sodio (14 mmol, 7 eq.) en 40 mL  de agua. Esta 

solución se enfrió a 0 oC y posteriormente se adicionó a 500 mg (1.19 mmol) del 

producto 11 previamente disuelto en una mezcla dioxano:agua 3:1 (28 mL), 

previamente enfriada a -5 o C. La mezcla fue diluida con 15 mL más de dioxano y 

agitada por 5 h controlando la temperatura a -5 oC. Una vez pasado este tiempo de 

reacción la mezcla fue tratada con bisulfito de sodio hasta obtener una solución 

incolora y posteriormente se adicionó una solución acuosa de HCl al 5% hasta pH de 

2. La solución ácida se extrajo con diclorometano (3x20 mL). La fase orgánica se secó 

con MgSO4 anhidro y el solvente fue evaporado a presión reducida, obteniendo 420 

mg del producto 12 (1.00 mmol, 84% rdto.) en forma de aceite incoloro. 

 
1
H RMN (CDCl3): δ 1.07 (s, 3H, trans-CH3), 1.28 (s, 3H, cis-CH3), 1.44 (s, 9H, 

t
Bu), 1.74–1.89 

(m, 1H, H4’a), 1.90–2.19 (a.c., 4H, H4’b, H1’, H3, H2a), 2.19–2.32 (m, 1H, H2b), 2.63–2.81 (m, 1H, 

H3’), 3.01–3.15 (m, 1H, H4a), 3.19–3.35 (m, 1H, H4b), 5.03–5.24 (a.c., 3H, CH2Bn, NH), 7.30–

7.42 (a.c., 5H, HAr). 
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Los datos espectroscópicos concuerdan con los previamente descritos en: 

J. Aguilera, R. Gutiérrez-Abad, À. Mor, A. Moglioni, G. Moltrasio, R.M. Ortuño, Tetrahedron: 

Asymmetry 2008, 19, 2864. 

 

Síntesis del (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-3ʹ-(hidroximetil)-2ʹ,2ʹ-

dimetilciclobutil)butanoato de terc-butilo 

MÉTODO A: 

 

 

 

 

Se disuelven 480 mg (1.14 mmol) del producto 12 en 8 mL de THF anhidro, se 

adicionan 0.774 g (1.49 mmol, 1.3 eq.) de PyBOP y 0.24 mL de DIPEA destilada (1.37 

mmol, 1.2 eq.) lentamente. Esta solución se agita a temperatura ambiente por 3 horas. 

Pasado este tiempo se adicionan muy lentamente 56 mg (1.49 mmol, 1.3 eq.) de 

NaBH4 y se deja que la reacción progrese, a temperatura ambiente, durante toda la 

noche (18 horas). A continuación se elimina el disolvente a presión reducida. Después 

se adicionan 10 mL de CH2Cl2, se hacen lavados con HCl al 5% (1x2mL), después con 

una solución acuosa saturada de NaHCO3 (3x5 mL) y con una solución acuosa 

saturada de NaCl (1x5 mL). Finalmente se seca la fase orgánica con MgSO4 anhidro, 

se filtra la solución y se elimina el disolvente a presión reducida. El crudo se purifica 

mediante cromatografía en columna, usando como eluente una mezcla hexano: 

acetato de etilo 1:1. Se obtienen 100 mg del producto 13 (0.24 mmol, 21% rdto.), en 

forma de aceite de color amarillo. 

 

MÉTODO B: 

 

 

 

 

 

En un balón de 10 mL de capacidad, provisto de agitación magnética, refrigerante de 

reflujo y bajo atmosfera de nitrógeno, se disuelven 111 mg (1 eq., 0.26 mmol) del  

producto 12 en 0.5 mL de THF anhidro. A continuación se adicionan 0.53 mL de una 

solución 1 M en THF (1.5 eq., 0.4 mmol) y se calienta a reflujo, durante 24 horas. Una 

vez transcurrido el tiempo de reacción, se adiciona lentamente 1 mL de metanol. El 

12 13 

12 13 
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sistema se deja en agitación por 30 minutos. Pasado este tiempo, se elimina el 

disolvente a presión reducida, obteniendo el producto 13 (85.4 mg, 80% rdto.). 

 

Datos espectroscópicos y constantes físicas del compuesto 13: 

[α]D: -18.6 (c = 1.1, CH3Cl) 

IR (ATR): 3339, 2952, 1789, 1520, 1455, 1367 cm
-1

. 

1
H-RMN (250 MHz, CDCl3): δ 1.02 (s, 3H, CH3), 1.16 (s, 3H, CH3), 1.44 (s, 9H, 

t
Bu), 1.61–1.76 

(m, 1H), 1.78–1.90 (m, 1H), 1.96-2.09 (a.c., 4H), 2.19–2.30 (m, 1H), 2.90–3.05 (m, 1H), 3.18–

3.31 (m, 1H), 3.49–3.65 (a.c., 2H), 5.03–5.29 (a.c., 3H, CH2Bn, NH), 7.30–7.41 (a.c., 5H, HAr). 

13
C-RMN (62.5 MHz, CDCl3): δ 16.0 (CH3), 24.0, 25.37, 28.1 (C(CH3)3), 31.7, 37.3, 39.8, 42.7, 

43.9, 44.0, 63.3(CH2OH), 66.5 (CH2Bn), 80.9 (C(CH3)3), 128.1, 128.4, 136.7 (6C, CAr), 156.5 

(COcarbamato), 172.4 (CO2
t
Bu). 

Espectro de masas de alta resolución: Calculado para C23H35NNaO5 (M+Na)
+
:428.2407 

Experimental: 428.2418 

 

Síntesis del (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-2ʹ,2ʹ-dimetil-3ʹ-

((metilsulfoniloxi)metil)ciclobutil)butanoato de terc-butilo 

 

 

 

 

 

En un balón de 10 mL  de capacidad, provisto de agitación magnética y bajo atmosfera 

de nitrógeno a 0 oC, se disuelven 88 mg del producto 13 (0.22 mmol, 1 eq.) en 2 mL de 

CH2Cl2 anhidro. A esta solución se le adicionan 0.045 mL de Et3N (0.32 mmol, 1.5 eq.) 

y 0.022 mL de CH3SO2Cl (0.28 mmol, 1.3 eq.). El sistema se deja agitando durante 1 

hora a 0 oC. Una vez transcurrido el tiempo de reacción se adicionan 50 mL de agua y 

se realizan extracciones con CH2Cl2 (3x20 mL). La fase orgánica se seca con MgSO4 

anhidro, se filtra la solución y se elimina el disolvente a presión reducida. Se obtuvo 

100 mg del producto 14 (0.21 mmol, rdto. 95 %), en forma de un aceite de color 

amarillo.   

Datos espectroscópicos del compuesto 14:  
1
H NMR (CDCl3): δ 1.06 (s, 3H, CH3), 1.19 (s, 3H, CH3), 1.45 (s, 9H, 

t
Bu), 1.58–1.83 (a.c., 

2H),1.91-2.13 (a.c., 3H), 2.16-2.32 (a.c., 2H, H2), 2.96-3.07(a.c., 4H, H4a, SOCH3 ), 3.18-3.33 

(m, 1H), 4.08-4.42 (a.c.,2H), 5.05-5.21 (a.c., 3H, CH2Bn, NH), 7.31-7.44 (a.c., 5H, HAr). 
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Síntesis del (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-3ʹ ((hexilamino)metil)-

2ʹ,2ʹ-dimetilciclobutil)butanoato de terc-butilo 

 

 

 

 

 

En un balón de 10 mL  de capacidad, provisto de agitación magnética, refrigerante de 

reflujo y bajo atmosfera de nitrógeno, se disuelven 100 mg del producto 14 (0.21 

mmol, 1 eq.) en 4 mL de CH3CN anhidro. A continuación se adicionan 0.06 mL de 

hexilamina (0.3 mmol, 1.4 eq.) y 0.04 mL de Et3N destilada (0.32 mmol, 1.4 eq.) El 

sistema se calienta hasta reflujo por 24 horas. Se sigue la evolución de la reacción por 

cromatografía de capa fina. Pasado este tiempo de reacción, se deja enfriar y se 

elimina el disolvente a presión reducida.  

 

Después se adicionan 10 mL de una solución acuosa saturada de NaHCO3 y se extrae 

con CH2Cl2 (3x5 mL). Finalmente se seca la fase orgánica con MgSO4 anhidro, se filtra 

la solución y se elimina el disolvente a presión reducida. El crudo obtenido se purifica 

mediante cromatografía en columna, usando inicialmente como eluente una mezcla 

hexano: acetato de etilo 2:1 y aumentando la polaridad hasta hexano: acetato de etilo 

1:2. Se obtienen 57.7 mg (0.12 mmol, 57% rdto.) del producto 15, en forma de aceite 

de color amarillo. 

 

Datos espectroscópicos y constantes físicas del compuesto 15: 

[α]D: -14.4 (c = 1.2, CH3Cl) 

IR (ATR): 2925 y 2856 (NH), 1719 y 1514 (COcarbamato + COéster), 1455, 1366,1245 cm
-1

. 

1
H-RMN (250 MHz, CDCl3) = δ 0.87-0.90 (t, 3H, CH3 ), 0.98 (s, 3H), 1.14 (s, 3H), 1.19-1.36 

(a.c., 10H, -CH2-), 1.45 (s, 9H, 
t
Bu), 1.55–1.76 (m, 1H), 1.82-2.17 (a.c., 3H), 2.19-2.33 (m, 1H), 

2.38-2.72 (a.c., 4H), 2.90-3.07 (m, 1H), 3.16–3.37 (m, 1H), 5.03–5.26 (a.c., 3H, CH2Bn, NH), 

7.31– 7.43 (a.c., 5H, HAr). 

13
C-RMN (62.5 MHz, CDCl3) = 14.2, 16.5, 22.9, 27.4, 28.1, 28.5(C(CH3)3), 30.1, 31.7, 32.1, 

37.5, 40.3, 42.2, 43.1, 44.9, 50.5, 50.7(NH,CH2) 66.9 (CH2Bn), 81.2 (C(CH3)3), 128.5, 128.9, 

137.1 (6C, CAr), 156.9 (COcarbamato), 172.7 (CO2
t
Bu). 

Espectro de masas de alta resolución: Calculado para C29H48N2O4 (M+Na)
+
: 489.3687, 

Experimental: 489.3683 
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Síntesis del ácido (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-3ʹ-

((hexilamino)metil)-2ʹ,2ʹ-dimetilciclobutil)butanoico  

 

 

 

Se disuelven 27.6 mg del producto 15 (0.056 mmol), 0.06 mL de ácido trifluoroacético 

(0.78 mmol, 13 eq.) y 0.02 mL de trietilsilano (0.12 mmol, 2.5 eq.) en diclorometano 

anhidro (1 mL). La mezcla se agita a temperatura ambiente durante toda la noche. El 

solvente se evapora y el exceso de ácido trifluoroacético se elimina en el liofilizador 

obteniendo 20 mg (0.046 mmol, rendimiento cuantitativo) del producto 16, en forma de 

aceite incoloro.  

 

Datos espectroscópicos y constantes físicas del compuesto 16: 

[α]D: -12.2 (c = 1.0, CH3Cl) 

IR (ATR): 2925 y 2856 (NHst), 1668 y 1526 (bs, COcarbamato + COéster), 1455, 1366,1241, 

1117,1133. 

1
H-RMN (250 MHz, CDCl3): δ 0.80-0.96 (c.a., 6H), 1.12 (s, 3H, CH3), 1.15-1.38 (c.a., 9H, CH3, -

CH2-), 1.43–1.82 (c.a., 3H), 1.92-2.38 (m, 4H), 2.61-3.03 (m, 4H), 3.13–3.30 (m, 1H), 4.98–5.47 

(c.a., 3H, CH2Bn, NH), 7.28– 7.42 (c.a., 5H, HAr). 

13
C-RMN (62.5 MHz, CDCl3): 13.8, 16.1, 22.3, 25.7, 26.2, 29.7, 30.1, 31.1, 36.6, 38.5, 40.3, 

41.7, 43.9, 48.4, 66.9 (CH2Bn), 128.05, 128.5, 136.3 (6C, CAr), 157.1 (COcarbamate), 176.1 

(COOH). 

Espectro de masas de alta resolución: Calculado para C25H40N2O4 (M+Na)
+
: 433.3061, 

Experimental: 433.3064 

 

Síntesis del (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-3ʹ-

((hexadecilamino)metil)-2ʹ,2ʹ-dimetilciclobutil)butanoato de terc-butilo 

 

MÉTODO A: 

 

 

 

 

 

14 

15 
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18 21 

En un balón de 10 mL  de capacidad, provisto de agitación magnética, refrigerante de 

reflujo y bajo atmosfera de nitrógeno, se disuelven 65 mg del producto 14 (0.13 mmol, 

1 eq.) en 2 mL de CH3CN anhidro. A continuación se adicionan 47 mg de 

hexadecilamina (0.19 mmol, 1.4 eq.) y 0.03 mL de Et3N destilada (0.22 mmol, 1.4 eq.) 

El sistema se calienta hasta reflujo por 24 horas. Se sigue la evolución de la reacción 

por cromatografía de capa fina. Pasado este tiempo de reacción, se deja enfriar y se 

elimina el disolvente a presión reducida. Después se adicionan 10 mL de una solución 

acuosa saturada de NaHCO3 y se extrae con CH2Cl2 (3x5 mL). Finalmente se seca la 

fase orgánica con MgSO4 anhidro, se filtra la solución y se elimina el disolvente a 

presión reducida. El crudo obtenido se purifica mediante cromatografía de columna, 

usando inicialmente como eluente una mezcla hexano: acetato de etilo 4:1 y se 

aumenta la polaridad a hexano: acetato de etilo 1:1, hexano: acetato de etilo 1:2 hasta 

llegar a acetato de etilo. Se obtiene 25.1 mg (0.073 mmol, 30 % rdto.) del producto 21, 

en forma de aceite incoloro. 

 

MÉTODO B: 

 

 

 

 

 

 

Se disuelven 121 mg del producto 13 (0.3 mmol) en 1.5 mL de CH2Cl2 anhidro y se 

adiciona 500 mg de PDC (1.33 mmol, 2.14 eq.). La reacción se agita a temperatura 

ambiente durante toda la noche. Una vez a finalizado el tiempo de reacción se 

adiciona 1 espátula pequeña de Florisil®, con la finalidad de eliminar el exceso de 

oxidante y se deja agitando por 30 min. Transcurrido este tiempo se adiciona 5 mL de 

CH2Cl2 y la solución resultante se filtra sobre Celite®. Se lava la Celite® 3 veces con 

10 mL de CH2Cl2 y se elimina el disolvente a presión reducida. Se obtiene 135 mg del 

producto 18, el cual se usa en el siguiente paso sin purificación adicional.  

 

Posteriormente, 135 mg del producto 18 (0.33 mmol, 1 eq.), se disuelven en 20 mL de 

THF anhidro y se adicionan  460 mg de hexadecilamina (1.90 mmol, 5 eq.). La 

reacción se deja agitando bajo una atmosfera anhidra durante una hora. Transcurrido 

este tiempo, se adicionan sobre la mezcla de reacción 0.53 mL (0.53 mmol, 1.6 eq.) de 

agente reductor cianoborohidruro de sodio. La reacción se deja en agitación durante 

18 horas. Transcurrido el tiempo de reacción, se evapora el solvente a sequedad y al 
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residuo se adicionan 10 mL de CH2Cl2. Se lava con una solución saturada de 

bicarbonato sódico (3x10 mL). La fase orgánica se seca con sulfato de sodio anhidro y 

se evapora el solvente en el rotavapor obteniendo 1.2 g de un sólido oscuro el cual fue 

purificado por cromatografía en columna, utilizando como eluente un mezcla de 

hexano–acetato de etilo 2:1. Se  obtuvo 22.4 mg (0.14 mmol, 26% rdto.) del producto 

21, en forma de aceite incoloro. 

 

Datos espectroscópicos y constantes físicas del compuesto 21: 

1
H-RMN (250 MHz, CDCl3): δ 0.87-0.91 (t, 3H), 1.06 (s, 3H, CH3), 1.19-1.36 (c.a., 27H, -CH2-, 

3H, CH3), 1.36-1.54 (c.a., 11H, 
t
Bu, -CH2-), 1.88-2.11 (c.a., 5H), 2.23-2.36 (c.a., 1H), 2.48-2.69 

(c.a., 5H), 2.77-3.12 (c.a, 2H), 3.18-3.29 (c.a., 1H), 4.89–5.38 (c.a., 3H, CH2Bn, NH), 7.31–7.43 

(c.a., 5H, HAr). 

Espectro de masas de baja resolución: Calculado para C38H66N2NaO5 (M+Na)
+
:637.5 

Experimental: 637.1 

 

Síntesis del (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-3ʹ-

(hexilcarbamoil)-2ʹ,2ʹ-dimetilciclobutil)butanoato de terc-butilo 

 

  

 

 

En un balón de 10 mL se disuelven 370 mg (0.88 mmol, 1 eq.) del producto 12 en 20 

mL de CH2Cl2 anhidro. Posteriormente se adicionan 0.53 mL de cloruro de oxalilo 

(1.06 mmol, 1.2 eq.), 3 gotas de DMF y 0.15 mL (1.06 mmol, 1.2 eq.) de Et3N 

destilada. El sistema se deja en agitación por 2 horas a temperatura ambiente. Pasado 

este tiempo se adicionan muy lentamente 0.13 mL (0.97 mmol, 1.1 eq.) de hexilamina. 

El sistema se deja progresar a temperatura ambiente durante todo el día, siguiéndolo 

por cromatografía de capa fina.   

 

A continuación se elimina el disolvente a presión reducida. Después se adicionan 10 

mL de una solución acuosa saturada de NaHCO3 y se realizan extracciones con 

CH2Cl2 (3 x 10 mL). Finalmente se seca la fase orgánica con MgSO4 anhidro y se 

elimina el disolvente a presión reducida. El crudo obtenido se purifica mediante 

cromatografía en columna, usando como eluente inicialmente una mezcla hexano: 

acetato de etilo 2:1 y aumentando la polaridad de la mezcla eluente hasta hexano: 

acetato de etilo 1:2. Se obtienen 123.3 mg (0.64 mmol, 73% rdto.) del producto 17, en 

forma de un aceite incoloro.  
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Datos espectroscópicos y constantes físicas del compuesto 17: 

[α]D: +5.1 (c = 0.9, CH3Cl) 

IR (ATR): 3308 (NH), 2928 (CH), 1706 y 1647 (COcarbamato + COéster + COamida), 1528, 1455, 

1366 cm
-1

. 

1
H-RMN (250 MHz, CDCl3): δ 0.84-0.96 (t, 3H, CH3), 1.01 (s, 3H, CH3), 1.27 (s, 3H, CH3), 1.31-

1.38 (a.c.,-CH2-, 5H), 1.45 (s, 9H, 
t
Bu), 1.50–1.55 (m, 1H), 1.65-1.84 (m, 2H), 1.88-2.11 (a.c., 

4H), 2.16-2.31 (m, 1H), 2.38-2.55 (m, 1H), 2.98-3.14 (m, 1H), 3.18–3.38 (a.c., 3H), 5.04–5.33 

(a.c., 3H, CH2Bn, NH), 7.32– 7.42 (a.c., 5H, HAr). 

13
C-RMN (62.5 MHz, CDCl3): 14.2 (CH3), 17.0, 22.9, 24.5, 26.8, 28.5 (C(CH3)3), 30.1, 31.7, 

31.8, 37.6, 39.7, 42.8, 44.2, 47.6, 53.8, 67.0 (CH2Bn), 81.2 (C(CH3)3), 128.2, 128.9, 137.1 (6C, 

CAr), 156.9 (COcarbamato), 171.6(NHCO), 172.5 (CO2
t
Bu). 

Espectro de masas de alta resolución: Calculado para C29H46N2NaO5 (M+Na)
+
: 525.3299, 

Experimental: 525.3304. 

 

Síntesis del ácido (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-3ʹ 

(hexilcarbamoil)-2ʹ,2ʹ-dimetilciclobutil)butanoico  

 

  

 

 

Se disuelven 66.2 mg del producto 17 (0.13 mmol, 1 eq.), 0.13 mL de ácido 

trifluoracético (1.69 mmol, 13 eq.) y 0.05 mL de trietilsilano (0.31 mmol, 2.5 eq.) en 

diclorometano anhidro (2 mL). La mezcla se agita a temperatura ambiente durante 

toda la noche. El solvente se evapora y el exceso de ácido trifluoroacético se elimina 

en el liofilizador obteniendo 76 mg (0.17 mmol, rendimiento cuantitativo) del producto 

19, en forma de aceite de color amarillo. 

 

Datos espectroscópicos y constantes físicas del compuesto 19: 

[α]D: +15.4 (c = 1.3, CH3Cl). 

IR (ATR): 3322 (NH), 2928 (CH), 1703 y 1638 (COcarbamato+COamida), 1536, 1455, 1371 cm
-1

. 

1
H-RMN (250 MHz, CDCl3): δ 0.87-0.92 (t, 3H, CH3), 0.99 (s, 3H, CH3), 1.24 (s, 3H, CH3), 1.29-

135 (a.c., 6H,-CH2-,), 1.38–1.56 (a.c., 2H), 1.59-1.93 (m, 2H), 1.97-2.13 (a.c., 2H), 2.17-2.36 (m, 

1H), 2.37-2.56 (m, 1H), 2.81-3.43 (a.c., 4H), 5.00–5.57 (a.c., 4H, CH2Bn, NH), 7.28– 7.54 (a.c., 

5H, HAr). 

13
C-RMN (62.5 MHz, CDCl3): 14.4(CH3), 17.1, 22.9, 24.1, 26.9, 30.1, 31.6, 31.8, 35.9, 37.6, 

39.8, 42.8, 44.0, 47.6, 67.3 (CH2Bn), 128.7, 128.9, 136.7 (6C, CAr), 157.4 (COcarbamato), 

172.0(NHCO), 177.3 (COOH). 

Espectro de masas de alta resolución: Calculado para C29H38N2NaO5 (M+Na)
+
: 469.2673 

Experimental: 469.2674. 
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Síntesis del ácido (3S)-4-amino-3-((1ʹR,3ʹR)-3ʹ-(hexilcarbamoil)-2ʹ,2ʹ-

dimetilciclobutil)butanoico  

 

 

 

  

En un recipiente de hidrogenador provisto de agitación magnética se disuelven 44.8 

mg (0.10 mmol) del producto 19 en una cantidad mínima de metanol. Posteriormente 

se adicionan 13 mg de Pd(OH)2/C (30% en peso). Se deja la solución agitando a 

temperatura ambiente durante 12 horas a 5 atmosferas de presión de hidrógeno. 

Pasado este tiempo, se filtra el crudo de reacción a través de Celite® y se lava con 

abundante metanol. Posteriormente se evapora el solvente y se obtienen 24.4 mg 

(0.78 mmol, 78% rdto.) del producto 20, en forma de aceite incoloro.     

 

Datos espectroscópicos y constantes físicas del compuesto 20: 

[α]D: +5.3, (c = 1, CH3OH). 

1
H-RMN (250 MHz, CD3OD): δ 0.90-0.95 (t, 3H, CH3), 1.00 (s, 3H, CH3), 1.30 (s, 3H, CH3), 

1.33-135 (a.c.,-CH2-, 6H), 1.43–1.61 (a.c., 2H), 1.84-2.04 (a.c., 3H), 2.11-2.38 (m, 1H), 2.39-

2.65 (m, 1H), 2.66-3.01 (a.c., 2H), 3.03-3.27 (a.c., 2H), 3.29–3.34 (m, 1H). 

13
C-RMN (62.5 MHz, CD3OD):13.4, 16.3, 18.4, 22.6, 22.81, 26.7, 29.5, 30.6, 31.7, 35.9, 39.3, 

42.5, 44.2, 46.4, 50.5, 172.7(NHCO). 

Espectro de masas de alta resolución: Calculado para C17H32N2NaO3 (M+Na)
+
: 335.2305 

Experimental: 335.2310. 

 

Síntesis del (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-3ʹ-

(hexadecilcarbamoil)-2ʹ,2ʹ-dimetilciclobutil)butanoato de terc-butilo. 

 

  

 

 

 

En un balón de 10 mL se disuelven 310 mg (0.74 mmol, 1 eq.) del producto 12 en 15 

mL de CH2Cl2 anhidro. Posteriormente se adicionan 0.44 mL de cloruro de oxalilo 

(0.88 mmol, 1.2 eq.), 3 gotas de DMF y 0.15 mL (1.08 mmol, 1.2 eq.) de Et3N 

destilada. El sistema se deja en agitación por 2 horas a temperatura ambiente. Pasado 

este tiempo se adicionan muy lentamente 230 mg (0.95 mmol, 1.1 eq.) de 

hexadecilamina y 0.15 mL de Et3N destilada. El sistema se deja progresar a 

19 20 
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temperatura ambiente durante todo el día, siguiéndolo por cromatografía de capa fina. 

A continuación se elimina el disolvente a presión reducida. Después se adicionan 10 

mL de una solución acuosa saturada de NaHCO3 y se realizan extracciones con 

CH2Cl2 (3x 10 mL). Finalmente se seca la fase orgánica con MgSO4 anhidro y se 

elimina el disolvente a presión reducida.  

El crudo obtenido se purifica mediante cromatografía en columna, usando como 

eluente una mezcla hexano: acetato de etilo 1:1. Se obtienen 330 mg (0.51 mmol, 70% 

rdto.) del producto 22, en forma de un aceite incoloro.  

 

Datos espectroscópicos y constantes físicas del compuesto 22: 

[α]D: +1.2 (c = 1.0, CH3Cl). 

IR (ATR): Falta realizarlo. 

1
H-RMN (250 MHz, CDCl3): δ 0.82-0.95 (t, 3H, CH3), 1.00 (s, 3H, CH3), 1.13-1.37 (a.c., 28H, -

CH2-, 3H, CH3), 1.44 (s, 9H, 
t
Bu), 1.68-2.08 (a.c., 5H), 2.13-2.33 (m, 1H), 2.38-2.53 (m, 1H), 

2.95-3.13 (m, 1H), 3.16-3.44 (a.c., 3H), 5.00–5.58 (a.c., 4H, CH2Bn, NH), 7.30– 7.41 (a.c., 5H, 

HAr). 

13
C-RMN (62.5 MHz, CDCl3): 14.5, 17.0, 23.1, 27.3, 28.5, 29.7(C(CH3)3), 30.1, 30.2, 31.7, 32.3, 

37.6, 39.7, 42.8, 44.6, 67.0 (CH2Bn), 81.3 (C(CH3)3), 128.5, 128.9, 137.1 (6C, CAr), 156.9 

(COcarbamato), 171.6(NHCO), 172.4 (CO2
t
Bu). 

Espectro de masas de alta resolución: Calculado para C39H66N2NaO5 (M+Na)
+
: 665.4864 

Experimental: 665.4851 

 

Síntesis del compuesto ácido (3S)-4-(benciloxicarbonilamino)-3-((1ʹR,3ʹR)-3ʹ-

(hexadecilcarbamoil)-2ʹ,2ʹ-dimetilciclobutil)butanoico  

 

 

 

 

 

Se disuelven 220 mg del producto 22 (0.34 mmol), 0.34 mL de ácido trifluoroacético 

(13 eq., 4.41 mmol) y 0.14 mL de trietilsilano (2.5 eq., 0.88 mmol) en diclorometano 

anhidro (4 mL). La mezcla se agita a temperatura ambiente durante toda la noche. El 

solvente se evapora y el exceso de ácido trifluoroacético se elimina en el liofilizador 

obteniendo 200 mg (0.34 mmol, rendimiento cuantitativo) del producto 23, en forma de 

aceite incoloro. 

 

 

 

22 23 
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Datos espectroscópicos y constantes físicas del compuesto 23: 

[α]D: +14.2 (c = 1.4, CH3Cl). 

IR (ATR): 3320 (NH), 2918-2850 (CH2), 1705 y 1636 (COcarbamato + COamida), 1532, 1466, 1160 

cm
-1

. 

1
H-RMN (250 MHz, CDCl3): δ 0.87-0.92 (t, 3H, CH3), 0.95 (s, 3H, CH3), 1.25-1.40 (a.c., 30H, -

CH2-, 3H, CH3), 1.42-1.62 (m, 1H), 1.63-1.94(m, 1H), 1.95-2.40 (a.c., 3H), 2.44-2.67 (m, 1H), 

2.84-3.40 (a.c., 4H), 5.00–5.48 (a.c., 3H, CH2Bn, NH), 5.63-5.83 (b.a. 1H, NH)  7.30– 7.47 (a.c., 

5H, HAr). 

13
C-RMN (62.5 MHz, CDCl3) = 14.5, 17.1, 23.1, 27.3, 29.8, 30.1, 31.5, 32.3, 35.9, 37.7, 40.1, 

42.4, 43.1, 47.5, 67.4 (CH2Bn), 128.5, 128.9, 136.7 (6C, CAr), 157.5 (COcarbamato), 172.4 

(NHCO), 176.63 (COOH). 

Espectro de masas de alta resolución: Calculado para C35H58N2NaO5 (M+Na)
+
: 609.4238 

Experimental: 609.4249 

 

Síntesis del ácido (3S)-4-amino-3-((1ʹR,3ʹR)-3ʹ-(hexadecilcarbamoil)-2ʹ,2ʹ 

dimetilciclobutil) butanoico  

 

                                                                                           

                                                                                     + 

 

 

En un recipiente hidrogenador provisto de agitación magnética se disuelven 200 mg 

del producto 23 (0.34 mmol) en una cantidad mínima de metanol. Posteriormente se 

adicionan 60 mg de Pd(OH)2/C (30% en peso). Se deja la solución agitando a 

temperatura ambiente durante 12 horas a 5 atmosferas de presión de hidrógeno. 

Pasado este tiempo, se filtra el crudo de reacción a través de Celite® y se lava con 

abundante metanol. Posteriormente se evapora el solvente y se obtienen 180 mg de 

una mezcla del producto 24 y 24 C, en forma de sólido de color casi blanco.  

 

Datos espectroscópicos y constantes físicas de la mezcla de los compuestos  24 y 24 C: 

1
H-RMN (250 MHz, CDCl3): δ 0.89-0.91 (t, 3H, CH3), 0.97 (s, 3H, CH3), 1.06-1.41 (a.c., 27H, -

CH2-, 3H, CH3), 1.59 (a.c., 2H), 1.95-2.07 (a.c., 3H), 2.21-2.66 (a.c., 2H), 2.82-3.03 (c.a., 2H), 

3.10–3.32 (a.c., 3H, 4.89-5.21 (b.a. 2H, NH). 

13
C-RMN (62.5 MHz, CD3OD): 13.3, 16.0, 17.72, 18.07, 22.4, 26.7, 29.1, 29.4, 29.5, 30.1, 31.5, 

31.8, 39.1, 42.2, 43.1, 45.9, 50.1, 172.1 (NHCO). 

Espectro de masas de alta resolución: Calculado para C27H52N2NaO3 (M+Na)
+
:453.4051 

Experimental: 453.4052 

 

23 24  24 C 
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5.3 DESCRIPCIÓN DE LOS PROCESOS EXPERIMENTALES DE LA EVALUACIÓN 

DE LAS PROPIEDADES FISICOQUÍMICAS:   

5.3.1. Tensiometría  por el método de la gota colgante:  

El equipo experimental para la formación de la gota colgante, diseñado por el Doctor 

Ramón Pons del Departamento de química y tecnología de surfactantes, consta de 

una celda de cuerpo metálico con ventanas laterales que permiten visualizar la gota. 

La sección de la celda donde se forma la gota es hermética permitiendo que el sistema 

alcance el equilibrio con su fase vapor.  

 

La fase líquida es introducida para formar la gota colgante. Se emplea una sonda de 

plástico y en el extremo una aguja quirúrgica, la cual se usa para formar la gota 

colgante desde el fondo de la sonda.  Para iluminar la celda desde su parte posterior 

se usa una lámpara de fibra óptica; entre la lámpara y la celda se emplea un difusor o 

filtro con el fin de obtener una distribución de luz homogénea.  

 

Al otro lado de la celda se ubica una cámara de video a la cual se le ajusta una micro 

lente. La imagen de la gota es visualizada por medio de un monitor, el cual permite el 

seguimiento de la formación de la gota. Para grabar las imágenes se utiliza una 

grabadora con sistema de video. (Figura 27). 

 

 

 

 

 

 

 

Figura 27. Tensiómetro diseñado por el grupo de investigación del  Departamento de 

química y tecnología de surfactantes (CSIC) 

Una vez obtenida la imagen capturada de la gota, se procede a limpiar la imagen y 

obtener el contorno de la misma. La tensión superficial es calculada a partir de ese 

contorno delineado de la gota.  
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5.3.2. Conductividad:  

Para su determinación se prepararon disoluciones en un rango de concentraciones 

desde 2.52 a 1.26 x 10-2 mmolal. Las soluciones evaluadas se prepararon pesando las 

cantidades necesarias en recipientes eppendorf de 1 mL con una balanza Sartorius 

(resolución  de ± 0.0001 g) y completando a 1 gramo de solución con agua Mili - Q.   

Una vez preparadas todas las disoluciones se midió la conductividad con un 

Conductímetro Orion Cond. Cell 011010A con electrodos de platino, integrado con un 

Thermo Orion 550A. La medida de la conductividad se realizó  a 25 oC. 

5.3.3. Medidas potenciometrícas de pH:  

Se utilizaron soluciones en un rango de concentraciones que oscila desde 7.57 hasta 

0.0037 milimolal las cuales fueron preparadas utilizando como solvente agua Mili – Q 

de pH 6.80. El pH fue medido a 25 oC con un electrodo (Thermo Orion, model 

8102BN). El electrodo fue calibrado con 2 soluciones buffer estándar de pH 4 y 10. Las 

medidas fueron realizadas iniciando con las soluciones menos concentradas para 

minimizar el error debido a la contaminación del electrodo.  
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6.1 Espectros de RMN 1H y 13C: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 28. Espectro de RMN 
1
H a 250 MHz del producto 17 en CDCl3 

 

 

 

Figura 12. Espectro de RMN 
13

C del compuesto 13 en CDCl3 

 

 

 

 

 

 

 

 

 

Figura 29. Espectro de RMN 
13

C a 360 MHz, del producto 17 en CDCl3 
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Figura 30. Espectro de RMN 
1
H a 250 MHz, del producto 19 en CDCl3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 31. Espectro de RMN 
13

C a 360 MHz, del producto 19 en CDCl3 
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Figura 32. Espectro de RMN 
1
H a 250 MHz, del producto 20 en CD3OD 

 

 

 

Figura 33.Espectro de RMN 
13

C a 360 MHz, del producto 20 en CD3OD 
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Figura 34. Espectro de RMN 
1
H a 250 MHz, del producto 22 en CDCl3 

 

Figura 35. Espectro de RMN 
13

C a 360 MHz, del producto 22 en CDCl3 
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Figura 36. Espectro de RMN 
1
H a 250 MHz, del producto 23 en CDCl3 

 

Figura 37. Espectro de RMN 
13

C  a 360 MHz, del producto 23 en CDCl3 
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Figura 38. Espectro de RMN 
1
H a 250 MHz, de la mezcla 24 y 24 C  en CDCl3 

 

Figura 39.. Espectro de RMN 
1
H a 360 MHz, del producto 24 y 24 C en CD3OD 
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 Figura 40. Espectro de RMN 
1
H a 250 MHz, del compuesto 13 en CDCl3 

 

Figura 41. Espectro de RMN 
13

C a 360 MHz, del compuesto 13 en CDCl3 
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Figura 42. Espectro de RMN 
1
H a 250 MHz, del compuesto 14 en CDCl3 

 

Figura 43. Espectro de RMN 
1
H a 250 MHz, del compuesto 15 en CDCl3 
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Figura 44. Espectro de RMN 
13

C a 360 MHz, del compuesto 15 en CDCl3 
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Figura 45. Espectro de RMN 
1
H a 250 MHz, del compuesto 16 en CDCl3 

 

Figura 46. Espectro de RMN 
13

C a 360 MHz, del compuesto 16 en CDCl3 

 

Figura 47. Espectro de RMN 
1
H a 250 MHz, del compuesto 21 en CDCl3 


