

 Estudio del servidor de
aplicaciones Glassfish y de

las aplicaciones J2EE

 Memòria del projecte

d'Enginyeria Tècnica en

Informàtica de Sistemes

realitzat per

David Serra Manchado

i dirigit per

Daniel Franco Puntes

Escola d’Enginyeria

Sabadell, Juny de 2010

Model de certificat del tutor

El sotasignat, Daniel Franco Puntes,

professor de l'Escola d’Enginyeria de la UAB,

CERTIFICA:

Que el treball al que correspon la present memòria
ha estat realitzat sota la seva direcció
per en David Serra Manchado

I per a que consti firma la present.
Sabadell, Juny de 2010

Signat: Daniel Franco Puntes

Model de certificat del tutor de l'empresa

El sotasignat, Joan Piedrafita Farràs,
de OTSA Maquinaria Eléctrica S.L.,

CERTIFICA:

Que el treball al que correspon la present memòria
ha estat realitzat sota la seva supervisió
per en David Serra Manchado

I per a que consti firma la present.
Sabadell, Juny de 2010

Signat: Joan Piedrafita Farràs

Tabla de contenidos

ÍNDICE

INTRODUCCIÓN 17
1.1 Previo 19

1.2 Objetivos 20

1.3 Motivación 20

1.4 Estructura de la memoria 21

1.5 Agradecimientos 22

INTRODUCCIÓN A J2EE 23
2.1 Plataforma Java 25

2.1.1 Java Specification Request 26

2.2 Java EE/J2EE 26

2.2.1 Introducción 26

2.2.2 Alternativas a J2EE 29

2.2.2.1 PHP 29

2.2.2.2 C-C++ 29

2.3 .NET 30

2.3.1 Características de .NET 30

2.3.2 Common Language Runtime (CLR) 31

2.3.3 .NET framework 33

2.3.4 .NET Remoting 35

2.3.5 Arquitectura 36

2.4 Diferencias entre Java2EE y .NET 37

Tabla de contenidos

2.4.1 Ventajas de .NET 37

2.4.2 Ventajas de J2EE 39

2.5 Interoperabilidad entre J2EE y .NET 39

2.5.1 Interoperabilidad basada en Web Services 39

2.5.2 Interoperabilidad basada en IIOP .NET 40

ENTORNO DE DESARROLLO PARA J2EE 41
3.1 Desarrollo de aplicaciones 43

3.1.1 Introducción de Sistemas distribuidos 43

3.2 Arquitectura de las aplicaciones distribuidas 44

3.2.1 Arquitectura basada en componentes 44

3.2.2 Arquitectura orientada a servicios 45

3.2.3 Arquitectura orientada a capas 46

3.3 Software multinivel 49

3.3.1 Arquitecturas de 1-tier 49

3.3.2 Arquitectura de 2-tier 50

3.3.3 Arquitectura de 3-tier 52

3.3.4 Arquitectura de n-tier 53

3.4 J2EE 54

3.4.1 Arquitectura Aplicaciones J2EE 54

3.4.2 EJB 54

3.4.2.1 Tipos de EJBs 56

3.4.3 Historia de J2EE 58

3.4.4 Soporte de J2EE a las diferentes capas de la aplicación 59

3.4.4.1 Soporte a la capa de persistencia 59

Tabla de contenidos

3.4.4.1.1 Soporte para JPA 59

3.4.4.1.2 Soporte para JDBC 60

3.4.4.2 Soporte a la capa de lógica de negocio 61

3.4.4.2.1 Control de transacciones JTA 61

3.4.2.2 Servicios de mensajería JMS 63

3.4.3 Servicios de comunicación 65

3.4.3.1 Soporte para CORBA 65

3.4.3.2 Soporte para Servicios Web 66

3.4.3.3 Soporte para RMI 68

3.4.3.4 Servicios de nombrado JNDI 70

3.4.4 Soporte a la capa de presentación 71

3.4.4.1 Soporte para Servlet 71

3.4.4.2 Soporte para JSP 73

3.4.4.3 Soporte para JSF 75

3.4.5 Otros niveles de soporte 77

3.4.5.1 Seguridad 77

3.4.5.2 Soporte para Concurrencia 78

3.4.5.3 Escalabilidad 78

3.4.6 Soporte para SOA 79

3.4.6.1 JBI 79

3.4.6.2 Open ESB 79

3.5 Resumen general de J2EE 81

3.6 Servidores de Aplicaciones Java EE 5 certificados 82

3.6.1 Jboss 83

3.6.1.1 Servidor de aplicaciones Jboss 84

Tabla de contenidos

3.6.1.2 Servicios de Jboss 84

3.6.1.3 Ventajas de Jboss 86

3.6.1.4 Desventajas de Jboss 87

3.6.2 Apache Geronimo 88

3.6.2.1 Servicios de Apache Geronimo 88

3.6.2.2 Ventajas de Apache Geronimo 90

3.6.2.3 Desventajas de Apache Geronimo 91

3.6.3 Oracle WebLogic 92

3.6.3.1 Ventajas de Oracle WebLogic 94

3.6.3.2 Desventajas de Oracle WebLogic 94

3.7 Glassfish 96

3.7.1 Qué es Glassfish 96

3.7.2 Para qué sirve Glassfish 96

3.7.3 Cómo funciona un servidor de aplicaciones 97

3.7.4 Modular, Integrable y Extendible 97

3.7.5 Herramientas de programación 98

3.7.6 Tecnologías de Integración 98

3.7.7 Historia 99

3.7.8 Diferencia entre versiones de Glassfish 100

DESARROLLO DE EJB's 103
4.1 Introducción de EJB 105

4.2 Servicios proporcionados por el contenedor EJB 105

4.3 Funcionamiento de los componentes EJB 106

4.4 Tipos de EJB 107

Tabla de contenidos

4.4.1 Beans de Sesión 108

4.4.1.1 Beans de sesión sin estado 108

4.4.1.2 Beans de sesión con estado 109

4.4.1.3 Anotaciones de un Bean se Sesión 110

4.4.2 Beans de entidad 111

4.4.2.1 Anotaciones de un Bean de Entidad 112

4.4.2.2 Diferencias entre beans de sesión y de entidad 119

4.4.3 Beans dirigidos por mensajes 120

4.4.3.1 Anotaciones de Beans dirigidos por mensajes 120

4.4.3.2 Diferencias con los beans de sesión y de entidad 121

4.4.4 Anotaciones de dependencias 122

4.5 Diferencias con la version EJB 2.x 122

4.5.1 Stateless Session Beans 123

4.5.2 Stateful Session Beans 124

4.5.3 Message-Driven Beans 124

4.5.4 Entity Beans 125

4.6 Ventajas de la tecnología EJB 126

4.7 Inconvenientes de EJB 128

4.8 Tutorial de creación de EJB 129

4.9 Explicación de la creación de EJB 135

4.9.1 API de Persistencia: Entity Manager 135

4.9.2 Unidad de Persistencia 138

4.9.3 Ciclo de vida de una Entidad 138

4.10 Ejemplo 140

4.10.1 Análisis de resultados 142

Tabla de contenidos

4.10.2 Tiempo de ejecución de un EJB 142

4.10.3 Tiempo de ejecución de un Servlet 143

4.10.4 Tiempo de acceso a la Base de Datos 144

DESARROLLO DE LA CAPA DE PRESENTACIÓN 145
5.1 Alternativas para la capa de presentación 147

5.1.1 Aplicaciones basadas en web 147

5.1.1.1 Aplicaciones Servlet/JSP clásicas 147

5.1.1.2 Aplicaciones RIA 149

5.1.1.3 Desarrollo mediando struts 151

5.1.1.4 Desarrollo mediante JSF 154

5.1.2 Aplicaciones de escritorio 157

5.2 Comparativa de los diferentes tipos de capas de presentación 158

CONCLUSIONES 159
6.1 Conclusiones 161

6.2 Conclusiones personales 163

6.3 Posibles ampliaciones 164

BIBLIOGRAFÍA 165
Referencias bibliográficas 167

Referencias Web 167

ANEXOS 169
Anexo 1. Configuración de la plataforma de desarrollo 171-181

Tabla de contenidos

 ÍNDICE DE FIGURAS

Fig. 2.1 Arquitectura J2EE 27

Fig. 2.2 Organización de la estructura de un Framework en .NET 34

Fig. 2.3 Arquitectura de .NET Remoting 36

Fig. 2.4 Java vs .NET 37

Fig. 2.5 Web Services 39

Fig. 2.6 Ejemplo de IIOP .Net 40

Fig. 3.1 Diferencia entre capas y niveles 48

Fig. 3.2 Arquitectura 1-tier 50

Fig. 3.3 Arquitectura de 2-tier 51

Fig. 3.4 Arquitectura de 3-tier 53

Fig. 3.5 Arquitectura de 4-tier 53

Fig. 3.6 Módulo EJB 55

Fig. 3.7 Relación entre aplicaciones cliente, código de negocio, servidor de 55
aplicación y otroselementos basado en J2EE

Fig. 3.8 Diferentes versiones de J2EE 58

Fig. 3.9 Aplicaciones de J2EE 59

Fig. 3.10 Ejemplo de mapeo JPA 60

Fig. 3.11 Diagrama de clases de JDBC 61

Fig. 3.12 Arquitectura JTA 63

Fig. 3.13 Funcionamiento de JMS 64

Fig. 3.14 Esquema de CORBA 66

Fig. 3.15 Funcionamiento de Web Services 68

Fig. 3.16 Funcionamiento de RMI 69

Fig. 3.17 Comparación de RMI con el modelo OSI 70

Fig. 3.18 JNDI puede ser usado para buscar beans en EJB 71

Tabla de contenidos

Fig. 3.19 El navegador envía una petición. El servidor identifica la petición y 72
muestra la página web.

Fig. 3.20 Funcionamiento de JSP 74

Fig. 3.21 Componentes JSF en la página de configuración de Glassfish 75

Fig. 3.22 Interfaz de ICEfaces 76

Fig. 3.23 Interfaz de Oracle ADF 76

Fig. 3.24 JBI 79

Fig. 3.25 Interacción entre diferentes interfaces, EJB y Servlets/JSPs, servidor 81
de aplicaciones y servicios externos

Fig. 3.26 Esquema de Jboss 84

Fig. 3.27 Ejemplo de Geronimo utilizando Tomcat/Jetty y OpenEJB 90

Fig. 3.28 Tecnologías de WebLogic 93

Fig. 3.29 Evolución de Glassfish 100

Fig. 4.1 Representación del funcionamiento de los enterprise beans 106

Fig. 4.2 Anotación Stateless 111

Fig. 4.3 Anotaciones de Entidad 115

Fig. 4.5 Remote y Home Interface en EJB 2.x 123

Fig. 4.6 Selección de Módulo EJB 129

Fig. 4.7 Selección de bean entidad 130

Fig. 4.8 Selección de Base de Datos 131

Fig. 4.9 Selección de tablas 131

Fig. 4.10 Creando la unidad de persistencia 132

Fig. 4.11 Clase entidad 133

Fig. 4.12 Creación de Session Beans 133

Fig. 4.13 SessionBean 134

Fig. 4.14 Deploy EJB 135

Fig. 4.15 Funciones del EntityManager 137

Fig. 4.16 Implementación del EntityManager 137

Tabla de contenidos

Fig. 4.17 persistence.xml 138

Fig. 4.18 Ciclo de vida de una Entidad 139

Fig. 4.19 Selección de EJB 140

Fig. 4.20 Código de findAll 141

Fig. 4.21 Ejemplo de findAll 141

Fig. 4.22 Código de medición de tiempo 142

Fig. 4.23 Tiempo de ejecución EJB 143

Fig. 4.24 Tiempo de ejecución de un Servlet 144

Fig. 4.25 Tiempo de acceso a la BD 144

Fig. 5.1 Esquema JSP/Servlet 148

Fig. 5.2 Servlet/JSP 139

Fig. 5.3 Página de login con la RIA ICEfaces 150

Fig. 5.4 ICEfaces login correcto 150

Fig. 5.5 Esquema de MVC 151

Fig. 5.6 Esquema Struts de ejemplo 152

Fig. 5.7 Formulario 153

Fig. 5.8 Login correcto 154

Fig. 5.9 Elementos de Woodstock 155

Fig. 5.10 Lista de empleados 156

Fig. 5.11 Formulario 156

Fig. 5.12 Aplicación de escritorio 157

Fig. 5.13 Resultados de tiempos 158

Fig. A.1 VirtualBox 169

Fig. A.2 Página principal de admin 175

Fig. A.3 Ejemplo Hello.war 176

Fig. A.4 VirtualBox 178

Fig. A.5 Entorno de desarrollo NetBeans 6.7.1 179

CAPÍTULO 1

Introducción

Introducción

1.1 Previo

Este proyecto se basa en un estudio del servidor de aplicaciones Glassfish así como un
estudio general de las aplicaciones J2EE.

En el mundo empresarial se necesitan a diario multitud de aplicaciones tanto para uso
interno como para ofrecer a personas externas. Inicialmente las aplicaciones se
desarrollaban para un solo ordenador para más adelante realizarse las primeras
aplicaciones cliente/servidor. Pero las necesidades de las empresas van evolucionando y
se crearon los sistemas distribuidos. De este modo aparece Java con su estándar J2EE,
que permite el desarrollo de aplicaciones multi-nivel.

Ante la complejidad y heterogeneidad de este tipo de sistemas, J2EE ofrece una
arquitectura unificada y modular que facilita el desarrollo de aplicaciones distribuidas,
proporcionándoles una serie de servicios que permiten acelerar el proceso de desarrollo
dentro de las necesidades específicas de una empresa.

Las características más importantes de la arquitectura J2EE son la portabilidad, la
escalabilidad, la simplicidad y la capacidad de integración. Su desarrollo se basa en
especificaciones de de Enterprise JavaBeans, Servlets y JSP, que explicaremos en el
transcurso de este proyecto.

Como servidor de las aplicaciones J2EE se ha optado por Glassfish, desarrolllado por Sun
Microsystems, es un servidor Open Source que ofrece multitud de herramientas que
encajan con la filosofía de J2EE y dispone su apoyo así como de todo el soporte de JSP,
JSF, EJB, etc.

Todas estas aplicaciones supondrían un gasto muy elevado para las empresas, que
gracias a estas herramientas open source se pueden llevar a cabo sin ninguna inversión
inicial.

19

Introducción

1.2 Objetivos

El objetivo principal del proyecto consiste en realizar un estudio sobre J2EE y Glassfish.
Realizar un análisis de sus componentes así como de sus posibles alternativas tanto de
aplicaciones como de servidores. Además realizar un estudio completo sobre EJB así
como sus diferentes tipos. Y finalmente, realizar una comparativa entre las diferentes
posibilidades de interfaces de presentación que se se pueden utilizar según las diferentes
tecnologías existentes.

Finalmente el último objetivo es la realización de un prototipo de una aplicación
empresarial utilizando las herramientas explicadas en el proyecto consistente en un
administrador de los recursos humanos de la empresa para la gestión interna de los
trabajadores.

1.3 Motivación

La temática de este proyecto fue propuesta al autor por la empresa OTSA Maquinaria
Eléctrica S.L.

La principal motivación del proyecto siempre ha sido entrar en contacto con un proyecto
real en el mundo laboral. Al surgir esa posibilidad, dentro del proyecto se ofrecía ampliar
conocimientos de base de datos y java, además de introducirse en la arquitectura de
sistemas multicapa basados en J2EE y servidor de aplicaciones.

Glassfish y J2EE son dos tecnologías que gracias a su distribución open source hace que
haya una creciente comunidad de usuarios y las empresas se dedican cada vez más en
trabajar sobre ellas, así que estudiar sobre ella supone una oportunidad para aprender
sobre tecnologías en desarrollo actual.

20

Introducción

1.4 Estructura de la memoria

Esta memoria se compone de 6 capítulos. El capítulo 1 es la Introducción al proyecto, el
capítulo 2 es una introducción a J2EE así como un estudio a sus alternativas, el capítulo 3
se basa en el entorno de desarrollo J2EE detallando todas sus características, estudio de
los tipos de arquitectura así como del servidor de aplicaciones Glassfish y sus
competidores más importantes, para acabar con la instalación del entorno de desarrollo
que se ha utilizado para el proyecto. El capítulo 4 se basa en un estudio completo de la
tecnología EJB, todos los tipos que hay y cómo se utilizan, finalizando con un tutorial de
creación de EJB. El capítulo 5 se basa en la implementación de diferentes tipos de lógica
de usuario, intercambiando diferentes interfaces y realizando una comparación final de los
tiempos de ejecución de cada uno. Finalmente, en el capítulo 6 podemos encontrar las
conclusiones finales del proyecto.

21

Introducción

1.5 Agradecimientos

En primer lugar me gustaría agradecer a Joan Piedrafita Farrás por el tiempo dedicado a
ayudarme a realizar este proyecto y por ofrecerse a aceptar a estudiantes para integrarse
en el mundo laboral.

En general agradezco a todo el equipo de OTSA Maquinaria Eléctrica S.L. la ayuda que
me han ofrecido en todo este tiempo, junto con mis compañeros estudiantes de la UPC
que gracias a ellos el transcurso de este proyecto se ha hecho mucho más ameno.

También agradecer a Daniel Franco por ofrecerme la oportunidad de realizar este
proyecto en la empresa OTSA Maquinaria Eléctrica S.L.

Por último agradecer a mi familia todo el apoyo que me han ofrecido durante todos los
años de la carrera y a mis amigos y novia por aguantarme y apoyarme.

22

CAPÍTULO 2

Introducción a J2EE

Introducción a J2EE

2.1 Plataforma Java

La plataforma Java es el entorno de software basado en Java que se ejecuta sobre otras
plataformas y su software puede ser usado sobre varios sistemas operativos y hardware.
Está formada por tres componentes:

• Lenguaje. Es un lenguaje de propósito general, de alto nivel que utiliza el
paradigma de orientación a objetos.

• La Máquina Virtual. Los programas escritos en Java son compilados como
archivos ejecutables de una máquina virtual llamada Java Virtual Machine (JVM),
esto permite que los programas ejecutables puedan ejecutarse en distintas
arquitecturas.

• Las Bibliotecas. El conjunto de bibliotecas del lenguaje es conocido como la Java
Aplication Programming Interface (Java API) y es un conjunto de componentes que
proporcionan diferentes herramientas para el desarrollo.

Para la plataforma Java existen diferentes ediciones:

• Java 2 Plataform, Micro Edition (J2M3). Desarrollo para artículos móviles
pequeños.

• Java 2 Plataform, Standard Edition (J2SE). Desarrollo para ordenadores
personales y aplicaciones en general.

• Java 2 Plataform Enterprise Edition (J2EE). Desarrollo orientado a aplicaciones
empresariales.

25

Introducción a J2EE

2.1.1 Java Specification Request

El Java Community Process, es un proceso formalizado el cual permite a las partes
interesadas a involucrarse en la definición de futuras versiones y características de la
plataforma Java.

El Proceso JCP conlleva el uso de Java Specification Request, las cuales son
documentos formales que describen las especificaciones y tecnologías propuestas para
que sean añadidas a la plataforma Java. Una de estas especificaciones es la plataforma
J2EE.

2.2 Java EE/J2EE

2.2.1 Introducción

Según Sun Java Web: “J2EE define el estándar para el desarrollo de aplicaciones
multicapa basados en componentes de la empresa”.

Java J2EE es un conjunto de especificaciones para APIs, una arquitectura de
computación distribuida, y las definiciones para el paquete de componentes distribuidos
para el desarrollo.

Es una colección de componentes estandarizados, contenedores y servicios para crear y
desarrollar aplicaciones distribuidas en una arquitectura bien definida.

J2EE está dirigido a sistemas empresariales a gran escala. El software que funciona a
este nivel no se ejecuta en un solo PC por falta de recursos, por esa razón, el software
tiene que ser dividido en partes y desplegados en las plataformas de hardware adecuado.
Esa es la esencia de la computación distribuida. J2EE proporciona un conjunto de
componentes estandarizados que facilitan la implementación de software, interfaces
estándar que definen la interconexión de los distintos módulos de software, y los servicios
estándar que define como se comunican los distintos módulos.

26

Introducción a J2EE

J2EE permite desarrollar y ejecutar software de aplicaciones en Lenguaje de
programación Java con arquitectura de N niveles distribuida, basándose ampliamente en
componentes de software modulares ejecutándose sobre un servidor de aplicaciones.

La característica principal de esta plataforma es que en lugar de presentarse como un
producto o solución software se presenta como una especificación. Esta especificación se
considera informalmente como un estándar debido a que los productos que la
implementen deben cumplir unos ciertos requisitos de conformidad con esta. De esta
manera se consigue un grado de apertura bastante importante ya que la implementación
particular de un producto conforme a J2EE no “ata” el desarrollo de aplicaciones a dicho
producto y permite un alto grado de capacidad de despliegue en productos conformes con
la especificación. Por otro lado el hecho de estar desarrollado sobre la plataforma Java
permite la instalación de la solución en diferentes arquitecturas hardware y sistemas
operativos.

J2EE proporciona un conjunto de API's para el desarrollo y coordinación de aplicaciones y
componentes distribuidos tales como EJB, XML, JDBC, RMMI, JMS, Java Server Pages,
Servlets, etc.

27

Figura 2.1 Arquitectura J2EE

Introducción a J2EE

Además J2EE también se encarga de proporcionar características para la gestión de:

• Seguridad

• Control de transacciones

• Gestión de componentes desplegados

• Control de concurrencia

• Uso y asignación de recursos

Estas características han sido clave para la elección de la plataforma utilizada ya que le
confieren un nivel muy aceptable para el desarrollo de una aplicación distribuida
multinivel.

28

Introducción a J2EE

2.2.2 Alternativas a J2EE

Algunas alternativas a la tecnología J2EE puede ser .NET, PHP o C-C++.

2.2.2.1 PHP

La opción PHP permite crear un programa que se pueda ejecutar en cualquier servidor
desde un programa visualizador de páginas web y dar respuestas en función de los datos
que introduzca el usuario. PHP destaca en la sencillez, velocidad y facilidad de uso.
Características que a su vez limitan su usabilidad y portabilidad con otros lenguajes y
programas. PHP tampoco ofrece ningún tipo de separación entre aplicación y
presentación.

Java Beans es más lento que PHP en servidores pequeños pero es totalmente portable y
compatible, haciendo del lenguaje Java un lenguaje universal y no solo un lenguaje para
programar páginas dinámicas como PHP.

2.2.2.2 C-C++

Los lenguajes de programación C-C++ se desarrollaron en los años 70 pensando para
trabajar con el hardware extremadamente caro de la época. Las limitaciones que
suponían los elevados costes de ampliación de velocidad del hardware de aquella época,
suponían que la orientación de los lenguajes de programacion fuese hacia generar
velocidad desde la integración del lenguaje con la máquina.

La evolución del hardware hasta la actualidad ha vencido las barreras del hardware y hoy
en día la necesidad es la portabilidad y la escalabilidad, características que no posee C y
en las que se basa Java y, por extensión, Java Beans. Además, C-C++ no poseen un
estándar para grandes proyectos de tipo J2EE.

29

Introducción a J2EE

2.3 .NET

.NET es un proyecto de Microsoft para crear una nueva plataforma de desarrollo de
software con énfasis en transparencia de redes, con independencia de plataforma de
hardware y que permita un rápido desarrollo de aplicaciones. Basado en ella, la empresa
intenta desarrollar una estrategia horizontal que integre todos sus productos, desde el
sistema operativo hasta las herramientas de mercado. .NET podría considerarse una
respuesta de Microsoft al creciente mercado de los negocios en entornos Web, como
competencia a la plataforma J2EE de Sun Microsystems.

Desde el punto de vista del programador, el entorno .NET ofrece un solo entorno de
desarrollo para todos los lenguajes que soporta. Provee un extenso conjunto de
soluciones predefinidas para necesidades generales de la programación de aplicaciones,
y administra la ejecución de los programas escritos específicamente con la plataforma.
Esta solución es el producto principal en la oferta de Microsoft, y pretende ser utilizada por
la mayoría de las aplicaciones creadas para la plataforma Windows.

Para el desarrollo y ejecución de aplicaciones en este nuevo entorno tecnológico
Microsoft proporciona el conjunto de herramientas conocido .NET Framework SDK, que
es posible descargarlo gratuitamente de su sitio web e incluye compiladores de lenguajes
como C#, Visual Basic.NET, Managed C++ y JScript.NET específicamente diseñados para
crear aplicaciones para él.

2.3.1 Características de .NET

Las principales características de .NET son:

• Interoperabilidad con otros entornos. Permite operar con distintos
entornos,independientemente de la plataforma, usando MSIL (Microsoft
Intermediate Language) que es un conjunto de instrucciones independientes del
procesador.

30

Introducción a J2EE

• Soporte para desarrollar aplicaciones independientes del lenguaje. Debido a
la publicación de la norma para la infraestructura común de lenguajes (CLI), el
desarrollo de lenguajes se facilita. .NET soporta ya más de 20 lenguajes de
programación como son: C#, Visual Basic, Delphi, C++, J#, Perl, Python, Fortran y
Cobol.NET.

• Soporte para aplicaciones Web y servicios XML. La arquitectura .NET soporta
estos dos tipos de aplicaciones mediante la tecnología ASP.NET.

• Soporte para aplicaciones remotas y COM. Proporciona servicios para
interactuar con componentes COM (Component Object Model) y COM+.

2.3.2 Common Language Runtime (CLR)

El corazón de la plataforma.NET es el CLR (Common Language Runtime), que es una
aplicación similar a un máquina virtual que se encarga de gestionar la ejecución de las
aplicaciones para ella escritas. A estas aplicaciones les ofrece numerosos servicios que
facilita su desarrollo y mantenimiento y favorecen su fiabilidad y seguridad. Entre ellos los
principales son:

• Modelo de programación consistente y sencillo, orientado a objetos.

• Eliminación del temido problema de compatibilidad entre DLLs

• Ejecución multiplataforma y multilenguaje.

• Recolector de basura: elimina de memoria objetos no utilizados.

• Soporte de multiproceso (hilos): permite ejecutar código en forma paralela.

31

Introducción a J2EE

• Gestión del acceso a objetos remotos que permite el desarrollo de aplicaciones
distribuidas de manera transparente a la ubicación real de cada uno de los objetos
utilizados en las mismas.

• Empaquetador de COM: coordina la comunicación con los componentes COM para
que puedan ser usados por el .NET Framework.

32

Introducción a J2EE

2.3.3 .NET framework

La arquitectura .NET es una plataforma de desarrollo de software creada por Microsoft
con el objetivo de proporcionar a los programadores herramientas para el desarrollo de
aplicaciones. El framework constituye la base de la plataforma .NET y denota la
infraestructura sobre la cual se reúnen un conjunto de lenguajes, herramientas y servicios
que simplifican el desarrollo de aplicaciones en entorno de ejecución distribuido. Los
elementos principales de .NET Framework son básicamente:

• La Common Language Specification (CLS) describe un conjunto de
características comunes a diferentes lenguajes.

• La Base Class Library (BCL), que contiene la funcionalidad más comúnmente
utilizada para el desarrollo de todo tipo de aplicaciones.

• ADO.NET, que contiene un conjunto de clases que permiten interactuar con bases
de datos relacionales y documentos XML como repositorios de información
persistente.

• ASP.NET, que constituye la tecnología dentro del .NET Framework para construir
aplicaciones con interfaz de usuario Web y servicios Web.

• Windows Forms, que constituye la tecnología dentro del .NET Framewok que
permite crear aplicaciones con interfaz de usuario basada ventanas.

• El Common Language Runtime (CLR), comentado anteriormente.

33

Introducción a J2EE

34

Figura 2.2 Organización de la estructura de un Framework en .NET

Introducción a J2EE

2.3.4 .NET Remoting

La plataforma .NET es una apuesta de Microsoft para competir con la plataforma Java.
.Net Remoting es parte del .Net Framework y permite crear fácilmente aplicaciones
ampliamente distribuidas, tanto si los componentes de las aplicaciones están todos en un
equipo como si están repartidos por el mundo. Se pueden crear aplicaciones de cliente
que utilicen objetos en otros procesos del mismo equipo o en cualquier otro equipo
disponible en la red. También se puede utilizar .NET Remoting para comunicarse con
otros dominios de aplicación en el mismo proceso.

.NET Remoting proporciona un enfoque abstracto en la comunicación entre procesos que
separa el objeto utilizado de forma remota de un dominio de aplicación de cliente o
servidor específico y de un mecanismo específico de comunicación. Por lo tanto, se trata
de un sistema flexible y fácilmente personalizable. Se puede reemplazar un protocolo de
comunicación con otro o un formato de serialización con otro sin tener que recompilar el
cliente ni el servidor. Además, el sistema de interacción remota no presupone ningún
modelo de aplicación en particular. Se puede comunicar desde una aplicación Web, una
aplicación de consola, un servicio de Windows, desde casi cualquier aplicación que se
desee utilizar. Los servidores de interacción remota también pueden ser cualquier tipo de
dominio de aplicación. Cualquier aplicación puede albergar objetos de interacción remota
y proporcionar sus servicios a cualquier cliente en su equipo o red.

35

Introducción a J2EE

2.3.5 Arquitectura

Un cliente se limita a crear una nueva instancia de la clase de servidor. El sistema de
interacción remota crea un objeto proxy que representa a la clase y devuelve al objeto del
cliente una referencia al objeto proxy. Cuando un cliente llama a un método, la
infraestructura de interacción remota controla la llamada, comprueba el tipo de
información y dirige la llamada por el canal hacia el proceso del servidor. Un canal a la
escucha detecta la solicitud y la reenvía al sistema de interacción remota del servidor, que
a su vez busca (o crea, si es necesario) y llama al objeto solicitado. A continuación el
proceso se invierte: el sistema de interacción remota del servidor incluye la respuesta en
un mensaje que el canal del servidor envía al canal del cliente. Por último, el sistema de
interacción remota del cliente devuelve el resultado de la llamada al objeto del cliente a
través del objeto proxy.

36

Figura 2.3 Arquitectura de .NET Remoting

Introducción a J2EE

2.4 Diferencias entre Java2EE y .NET

Las tecnologías Java2EE y .NET pertenecen a Sun Microsystems y Microsoft
respectivamente. Son dos empresas rivales que luchan por un mercado exclusivo.

2.4.1 Ventajas de .NET

• .Net tiene la posibilidad de emplear múltiples lenguajes de programación, mientras
que J2EE sólo trabaja con Java.

• Las herramientas de desarrollo incluidas por Microsoft en su Visual Studio .Net son
mucho más simples, intuitivas y sencillas de manejar que las herramientas de
desarrollo equivalentes en J2EE suministradas por otras empresas.

• C# es un lenguaje interesante y fácil de aprender por los programadores de Java y
existe un conversor Java-C#.

• .Net se ha diseñado considerando los servicios Web siendo estos servicios propios
de la plataforma.

37

Figura 2.4 Java vs .NET

Introducción a J2EE

2.4.2 Ventajas de J2EE

• Las implementaciones de J2EE pueden adquirirse a distintas compañías, mientras
que .Net solo puede comprarse a Microsoft.

• La seguridad frente a virus informáticos de los productos de Microsoft es menor
que los basados en Java ya que desde un comienzo Java se fundamentó en un
estricto modelo de seguridad.

• Las aplicaciones Java pueden correr en una amplia gama de sistemas operativos y
de arquitecturas hardware.

• Java es una tecnología Open Source y posibilita que los desarrolladores puedan
conocer y entender completamente cómo hace las cosas Java y aprovecharlo para
sus aplicaciones.

• J2EE es ahora el producto de la colaboración de más de 400 empresas y
organizaciones de todo tipo. .Net es y será el producto de una sola compañía.

38

Introducción a J2EE

2.5 Interoperabilidad entre J2EE y .NET

Las empresas actuales exigen cada vez más una mejora en la escalabilidad y portabilidad
de las aplicaciones, así como la facilidad de integración de las aplicaciones. Dado que las
plataformas J2EE de Sun y .NET de Microsoft son las plataformas más utilizadas
actualmente en el mercado han surgido varios métodos para realizar la integración.

2.5.1 Interoperabilidad basada en Web Services

Los Servicios Web se están convirtiendo cada vez más en la solución tecnológica más
atractiva para temas de interoperatividad. Los servicios web se basan en XML. La forma
de invocar funcionalidades en otra máquina se hace a través de texto plano usando
protocolos estándar W3C. Los protocolosbinarios son mucho más rápidos que un servicio
web en XML. Este inconveniente sin embargo se ve compensado por la facilidad con la
que diferentesplataformas pueden comunicarse unas con otras. Esta ventaja implica que
podemos tener aplicaciones en .NET ejecutándose en una máquina Windows y esta
aplicación puede ser accedida por cualquier otra aplicación escrita en otro lenguaje
corriendo en otra máquina con otro sistema operativo

Los servicios web son código ejecutándose en otra plataforma que tienen un punto de
entrada que permite activar el código usando un documento especial XML. En la mayoría
de los casos se envía un documento XML en un formato llamado SOAP (Simple Object
Access Protocol) sobre HTTP. El servidor tiene un oyente a la espera de un paquete
SOAP, cuando se recibe un paquete de este tipo, el servidor se pone en funcionamiento y
ejecuta su código nativo. El servidor coge el resultado de ese código nativo, lo empaqueta
en otro paquete SOAP y se lo devuelve al cliente.

39

Figura 2.5 Web Services

Introducción a J2EE

2.5.2 Interoperabilidad basada en IIOP .NET

IIOP.Net permite una interoperatividad entre .Net, CORBA y objetos distribuidos J2EE.
Esto se hace gracias a la incorporación del soporte de CORBA/IIOP por parte de .Net
sustentado por el framework Remoting.

Las características de IIOP.Net son las siguientes:

• Alto acoplamiento entre los objetos distribuidos en .Net, CORBA y J2EE.

• Transparencia. Los servidores existentes pueden ser usados sin ser modificados,
sin código envolvente ni adaptadores.

• Gran cobertura de mapeo de tipos CORBA/.NET

• Integración nativa en el framework .Net. IIOP.Net está directamente basada en la
infraestructura estándar de Remoting.

40

Firura 2.6 Ejemplo de IIOP .Net

CAPÍTULO 3

Entorno de desarrollo para J2EE

Entorno de desarrollo para J2EE

3.1 Desarrollo de aplicaciones

Inicialmente las aplicaciones se desarrollaban en un solo ordenador. Eran aplicaciones
centralizadas ya que el coste del hardware era muy elevado. Con la aparición de la LAN
aparecieron las primeras aplicaciones cliente/servidor y con el tiempo el crecimiento de
Internet así como el aumento de anchos de bandas aparecieron aplicaciones basadas en
Cloud Computing o Web Services. En este proyecto nos centraremos el tema en las
aplicaciones distribuidas.

3.1.1 Introducción de Sistemas distribuidos

Un sistema distribuido se define como una colección de computadores autónomos
conectados por una red, y con el software distribuido adecuado para que el sistema sea
visto por los usuarios como una única entidad capaz de proporcionar facilidades de
computación. [Colouris 1994]

El desarrollo de los sistemas distribuidos vino de la mano de las redes locales de alta
velocidad a principios de 1970. El avance de la electrónica y de las tecnologías de la
información han propiciado un aumento en su uso en detrimento de las aplicaciones
diseñadas para ordenadores centralizados multiusuario. Las aplicaciones distribuidas
varían dependiendo de la naturaleza de su uso, ya sean estos sistemas de cómputo
masivo o aplicaciones bancarias, aunque en todas ellas podemos destacar una serie de
puntos clave comunes a todas ellas, que son:

• Compartición de recursos

• Apertura (openness)

• Concurrencia

• Escalabilidad

• Tolerancia a fallo

• Transparencia

43

Entorno de desarrollo para J2EE

De las soluciones existentes para el desarrollo de sistemas distribuidos se ha optado en
este proyecto por la utilización de la plataforma J2EE desarrollada por Sun Microsystems,
ahora Oracle, mediante la implementación de ella por el producto Glassfish.

3.2 Arquitectura de las aplicaciones distribuidas

3.2.1 Arquitectura basada en componentes

Aproximan el diseño de sistemas como un conjunto de componentes. Un componente es
una pieza de software que expone una interfaz bien definida y que puede colaborar con
otros componentes para resolver un problema. Normalmente presenta características de
herencia, polimorfismo y encapsulación.

Ventajas:

• La división en componentes reduce la complejidad, permite la reutilización y
acelera el proceso de ensamblaje de software.

• Los creadores de componentes pueden especializarse creando objetos cada vez
mas complejos y de mayor calidad.

• La interoperabilidad entre componentes de distintos fabricantes aumenta la
competencia, reduce los costos y facilita la construcción de estándares.

• Los costes de mantenimiento del software se reducen.

Desventajas:

• Desarrollos más complejos.

• El coste de comunicaciones entre componentes es elevado.

44

Entorno de desarrollo para J2EE

• Dificultad en establecer los límites de los componentes y la relación entre ellos.

3.2.2 Arquitectura orientada a servicios

La Arquitectura Orientada a Servicios o SOA es un concepto de arquitectura de software
que define la utilización de servicios para dar soporte a los requisitos del negocio.

Permite la creación de sistemas altamente escalables que reflejan el negocio de la
organización y ofrece una invocación de servicios mediante Web Services, lo que facilita
la interacción entre diferentes sistemas.

SOA define las siguientes capas de software:

• Aplicaciones básicas. Sistemas desarrollados bajo cualquier arquitectura o
tecnología, geográficamente separados.

• De exposición de funcionalidades. Donde las funcionalidades de la capa de
aplicación son expuestas en forma de Web services.

• De integración de servicios. Facilitan el intercambio de datos entre elementos de
la capa aplicativa orientada a procesos empresariales internos.

• De composición de procesos. Define el proceso en función del negocio y sus
necesidades.

• De entrega. Donde los servicios son desplegados a los usuarios finales.

SOA proporciona una metodología y un marco de trabajo para documentar las
capacidades de negocio y puede dar soporte a las actividades de integración y
consolidación.

45

Entorno de desarrollo para J2EE

La arquitectura orientada a servicios está destinado a servicios que se encuentran en
Internet o en una intranet usando servicios web. Existen diversos estándares relacionados
con los servicios web como XML, HTTP, SOAP, etc.

Ventajas:

• Proporciona una gran integración y homogeneidad.

• Facilidad en la adaptación de nuevos servicios.

• Facilidad en la reestructuración de sistemas

Desventajas:

• La velocidad de intercambio entre sistemas es más lenta que una conexión directa.

• Intercambiar grandes cantidades de información puede afectar al rendimiento del
bus.

3.2.3 Arquitectura orientada a capas

El estilo de arquitectura de capas se basa en una distribución jerárquica de los roles de
cada componente para proporcionar una división efectiva de los problemas que pueda
surgir. Las capas de una aplicación pueden estar en la misma máquina o estar
distribuidos entre varios equipos. La mayoría de interacciones entre los servicios solo
ocurren entre capas vecinas que se comunican mediante alguna interfaz conocido por las
dos partes.

En toda arquitectura de capa los elementos agrupados en una misma capa pueden
comunicarse entre si; pero existen variantes en cuanto a las comunicaciones permitidas
entre elementos de capas diferentes:

46

Entorno de desarrollo para J2EE

• Arquitectura top-down. Los elementos de una capa i+1 pueden enviar solicitudes
de servicio a elementos de la capa inferior. Entonces se produce una cascada de
solicitudes. Una arquitectura top-down puede ser no estricta si los elementos de
una capa i+1 pueden enviar solicitudes a un elemento de cualquiera de las capas
inferiores.

• Arquitectura buttom-up. Cada elemento de una capa i puede notificar a
elementos de la capa superior de algún evento. Una

Ventajas:

• Se consigue una independencia entre capas que hace que se puedan realizar
actualizaciones en cualquiera de las capas sin que afecte al resto del sistema.

• Mejora de rendimiento ya que distribuyendo las capas en distintos niveles físico se
mejora la escalabilidad, la tolerancia a fallos y el rendimiento.

• Cada capa tiene una interfaz bien definida por lo que las pruebas se pueden
realizar independientemente en cada capa sin afectar en el resto.

Desventajas:

• La dificultad para programar es mayor ya que hay diferentes dispositivos que tienen
que comunicarse entre sí.

• Si se utilizan varios niveles de hardware, supone una gran carga en la red debido a
la mayor cantidad de tráfico.

Es importante distinguir los conceptos de capas y niveles porque es común que se
confundan o se denominen de forma incorrecta.

47

Entorno de desarrollo para J2EE

Las capas se ocupan de la división lógica de componentes y funcionalidad y no tienen en
cuenta la localización física de componentes en diferentes servidores oen diferentes
lugares. Por el contrario, los niveles se ocupan de la distribución física de componentes y
funcionalidad en servidores separados, teniendo en cuenta la topología de redes y
localizaciones remotas. Aunque tanto las capas como los niveles usan los mismos
nombres (presentación, negocio, etc.), es importante no confundirlos y solo los niveles
implican una separación física.

48

Figura 3.1 Diferencia entre capas y niveles

Entorno de desarrollo para J2EE

3.3 Software multinivel

La arquitectura multinivel (o n-tier) es una evolución de las arquitecturas de los softwares
antiguos. Primero, el cliente, los datos y el proceso estaban centralizados en el mismo
lugar. Después evolucionó a una arquitectura cliente/servidor donde el proceso estaba
dividido entre el cliente y el servidor y las solicitudes eran consultas a una base de datos.
La lógica de negocios se desarrollaba en el cliente una vez recibidos los datos del
servidor. Finalmente evolucionó a la arquitectura de tres capas donde se separó la capa
de presentación de la lógica de negocio. Esta separación significa que la lógica de
negocio no necesita saber que tipo de cliente muestra los datos. Las capas son mas
escalables y pueden trabajar en diferentes tipos de plataformas. La seguridad es mas fácil
de implementar ya que el software de la aplicación ya no está en la capa cliente.

3.3.1 Arquitecturas de 1-tier

Son aplicaciones sencillas que han sido escritas para ejecutarse en un único equipo.
Todos los servicios proporcionados por la aplicación, la interfaz de usuario, el acceso a
datos, lógica de negocio, etc. existe en el mismo equipo físico y se agrupan en la misma
aplicación. Esta arquitectura se llama de 1-tier ya que todo está localizado en la misma
capa.

Los sistemas de un nivel son relativamente fáciles de administrar y la persistencia de
datos es simple porque los datos se almacenan en un lugar único. Sin embargo, también
tienen muchas desventajas. Estos sistemas no son escalables para gestionar múltiples
usuarios, y no proporcionan un medio fácil de compartición de datos. Estos sistemas solo
puede trabajar una persona a la vez.

49

Entorno de desarrollo para J2EE

3.3.2 Arquitectura de 2-tier

Muchas más aplicaciones constan de una arquitectura de 2 niveles. Esta se basa en un
servidor de base de datos y acceso a datos persistentes mediante el envío de comandos
SQL al servidor para guardar y recuperar datos. En este caso, la base de datos se ejecuta
como un proceso independiente de la aplicación, o incluso en una máquina diferente a la
que ejecuta el resto del programa. Los componentes de acceso a datos están separados
del resto de la lógica de la aplicación. Esta arquitectura se basa en centralizar los datos
para que varios usuarios trabajen simultáneamente con una base de datos común. Esta
arquitectura también está denominada como cliente/servidor.

50

Figura 3.2 Arquitectura 1-tier

Entorno de desarrollo para J2EE

Una de las desventajas de la arquitectura de dos niveles es que la lógica que manipula los
datos y aplica las normas específicas de los datos se agrupan en la propia aplicación.
Esto plantea un problema en las aplicaciones de uso múltiple con una base de datos
compartida ya que si se quiere hacer alguna modificación en las reglas de inserción de
datos, por ejemplo, hay que asegurarse de realizar todos los cambios en todos los
ordenadores que ejecuten la aplicación. Y además estos cambios deben realizarse al
mismo tiempo y volverse a compilar.

Con el objetivo de solucionar el problema de tener que modificar todas las aplicaciones,
surgió la idea de separar físicamente las reglas de negocio en un servidor independiente
para que el software que ejecuta las reglas de negocio solo tenga que actualizarse una
vez.

51

Figura 3.3 Arquitectura de 2-tier

Entorno de desarrollo para J2EE

3.3.3 Arquitectura de 3-tier

En la arquitectura de 3-tier, se añade una capa adicional entre el código de interfaz de
usuario y la base de datos. Este nivel se llama lógica de negocio y representa la
funcionalidad.

La arquitectura de tres niveles es la utilizada por servidores de aplicaciones. Las ventajas
de esta arquitectura es que permite la modificación de nivel capa por separado facilitando
la tarea al programador, simplifica la administración de los sistemas, facilita una
disponibilidad inmediata en los cambios y además reparte la carga de trabajo entre los
distintos ordenadores. Los niveles son las siguientes:

• Lógica de usuario. Es la parte de la aplicación que se ejecuta en los ordenadores
de los usuarios y puede ser proporcionado por una aplicación independiente o
usando un navegador de Internet.

• Lógica de negocio. Se ejecuta en otra máquina remota y es posible que esté
repartida en varias máquinas. Utiliza una tecnología en la que se ve la
funcionalidad como una colección de objetos en vez de llamadas SQL.

• Lógica de datos. Posiblemente implementada en otras máquinas, mediante uno o
más gestores de Base de Datos. La funcionalidad solo debería ser accesible desde
la Lógica de negocio.

52

Entorno de desarrollo para J2EE

3.3.4 Arquitectura de n-tier

Una vez se sobrepasan los 3 niveles ya se pueden utilizar los niveles que se necesiten.
Las arquitecturas de este número de niveles son mucho más complejas. Se pueden
utilizar varios para enviar diferentes consultas SQL o por ejemplo utilizar un nivel más
para seguridad en compras con tarjeta de crédito. También es común utilizar una
arquitectura de 4-tier separando el servidor web de la lógica de negocio o utilizando la
persistencia de datos como una capa separada.

53

Figura 3.4 Arquitectura de 3-tier

Figura 3.5 Arquitectura de 4-tier

Entorno de desarrollo para J2EE

3.4 J2EE

3.4.1 Arquitectura Aplicaciones J2EE

Las aplicaciones J2EE constan de 3 partes básicas, que son las siguientes:

• Módulos EJB. Encargado de tener la lógica de negocio y transacciones.
Básicamente es el encargado de ejecutar programas y hacer consultas a la base
de datos.

• Módulo WAR. Es la encargada de tener todos los elementos de interfaz como
páginas web, servlets, etc.

• Aplicación EAR. Contiene toda la configuración de la aplicación J2EE, incluyendo
el módulo WAR y EJB.

3.4.2 EJB

Uno de los principales componentes de J2EE es la tecnología de Enterprise JavaBeans,
que proporciona un estándar para el desarrollo de las clases que encapsulan la
funcionalidad y reglas del negocio y que serán accedidas desde las aplicaciones cliente
de modo casi idéntico a como lo serían si formasen parte de estas aplicaciones.

El esquema propuesto por J2EE para aplicaciones distribuidas es el de un servidor de
aplicaciones que proporciona una gran cantidad de servicios, como acceso a la base de
datos, servidores de correo, etc. Para implementar la funcionalidad del negocio se crean
una seria de Enterprise Beans que serán cargados por el servidor de aplicaciones y
pueden acceder a estos servicios. Estos beans serán administrados por el Módulo o
Contenedor EJB.

54

Entorno de desarrollo para J2EE

Principales características de EJB:

• Comunicación remota utilizando CORBA

• Transacciones

• Control de la concurrencia

• Eventos utilizando JMS (Java messaging service)

• Servicios de nombres y de directorio

• Seguridad

• Ubicación de componentes en un servidor de aplicaciones.

El objetivo de los EJB es dotar al programador de un modelo que le permita abstraerse de
los problemas generales de una aplicación empresarial (concurrencia, transacciones,
persistencia, seguridad, etc.) para centrarse en el desarrollo de la aplicación.

55

Figura 3.6 Módulo EJB

Entorno de desarrollo para J2EE

Es posible acceder a esta funcionalidad no solo desde aplicaciones Java, sino desde
cualquier aplicación CORBA, lo que proporciona la posibilidad de trabajar con el lenguaje
que queramos para crear las aplicaciones de cliente. J2EE también proporciona soporte
para el acceso a la funcionalidad del negocio desde páginas HTML o XML, con lo que se
puede utilizar un navegador para interactuar con las clases de negocio.

3.4.2.1 Tipos de EJBs

• Beans de Sesión. Representan las acciones que realizan los clientes. Pueden
mantener un estado, pero solo durante el tiempo que el cliente interactua con el
bean. Esto significa que los beans de sesión no almacenan sus datos en la Base
de Datos después que el cliente termine el proceso. Hay dos tipos: con estado y sin
estado.

• Beans de sesión con Estado. Almacenan datos específicos obtenidos durante la
conexión con el cliente. Es decir, se almacena el estado conversacional de un
cliente con el que interactua y se modifica conforma el cliente va realizando
llamadas a los métodos de negocio del bean. Este estado no se guarda cuando el
cliente termina la sesión.

56

Figura 3.7 Relación entre aplicaciones cliente, código de negocio, servidor de aplicación y otros
elementos basado en J2EE

Entorno de desarrollo para J2EE

• Beans de sesión sin Estado. No se modifican con las llamadas de los clientes.
Sólo reciben datos y devuelven resultados pero sin modificar internamente el
estado del bean. Son usados para ejecutar procesos de negocio o como puente de
acceso a una Base de Datos o a un bean de entidad.

• Beans de Mensajes. Pueden escuchar mensajes de un servicio de mensajes JMS,
éstos nunca se comunican directamente con el cliente.

• Beans de Entidad. Modelan conceptos o datos de negocio. Es la representación
de la Base de Datos. El contenedor se encarga de sincronizar las variables de
instancia del bean con la Base de Datos. Ya que los beans de entidad se guardan
en un mecanismo de almacenamiento se dice que es persistente. Es decir, el
estado del bean existe más tiempo que la duración de la aplicación.

57

Entorno de desarrollo para J2EE

3.4.3 Historia de J2EE

La especificación original J2EE fue desarrollada por Sun Microsystems. Comenzando con
J2EE 1.3, la especificación fue desarrollada bajo el Java Community Process. JSR 58
especifica J2EE 1.3 y JSR 151 especifica J2EE 1.4. El SDK de J2EE 1.3 fue liberado
inicialmente como beta en abril de 2001. La beta del SDK de J2EE 1.4 fue liberada por
Sun en diciembre de 2002. La especificación Java EE 5 fue desarrollada bajo el JSR 244
y la liberación final fue hecha el 11 de mayo de 2006. Finalmente la especificación Java
EE 6 se lanzó en Diciembre de 2009.

58

Figura 3.8 Diferentes versiones de J2EE

Entorno de desarrollo para J2EE

3.4.4 Soporte de J2EE a las diferentes capas de la aplicación

A continuación describiremos las diferentes aplicaciones que podemos encontrar en los
diferentes subsistemas de J2EE.

3.4.4.1 Soporte a la capa de persistencia

3.4.4.1.1 Soporte para JPA

Java Persistence API, es la API de persistencia desarrollada para la plataforma Java EE
incluida en el estándar EJB 3.0. Anteriormente a esta versión se utilizaban beans de
entidad. Se encarga del mapeo entre una tabla relacional y su objeto Java. Proporciona
métodos para manejar la persistencia de un Bean de Entidad, permite añadir, eliminar,
actualizar y consultar así como manejar su ciclo de vida.

59

Figura 3.9 Aplicaciones de J2EE

Entorno de desarrollo para J2EE

El objetivo que persigue el diseño de esta API es no perder las ventajas de la orientación
a objetos al interactuar con una base de datos y utilizar los elementos de persistencia
como objetos planos de Java (POJOs).

3.4.4.1.2 Soporte para JDBC

Java DataBase Connectivity API se presenta como una colección de interfaces Java y
métodos de gestión de manejadores de conexión hacia cada modelo específico de base
de datos.

Un manejador de conexiones hacia un modelo de base de datos en particular es un
conjunto de clases que implementan las interfaces Java y que utilizan los métodos de
registro para declarar los tipos de localizadores a base de datos (URL) que pueden
manejar.

60

Figura 3.10 Ejemplo de mapeo JPA

Entorno de desarrollo para J2EE

Para utilizar una base de datos particular, el usuario ejecuta su programa junto con la
biblioteca de conexión apropiada al modelo de su base de datos, y accede a ella
estableciendo una conexión, para ello provee el localizador a la base de datos y los
parámetros de conexión específicos. A partir de allí puede realizar con cualquier tipo de
tareas con la base de datos a las que tenga permiso: consulta, actualización, creación,
modificación y borrado de tablas, ejecución de procedimientos almacenados en la base de
datos, etc.

3.4.4.2 Soporte a la capa de lógica de negocio

3.4.4.2.1 Control de transacciones JTA

J2EE proporciona una API estándar que hace más fácil la coordinación de los distintos
sistemas en lo que se refiere a operaciones de tipo transaccional, llamada JTA (Java
Transaction API), en la cual no es necesario que se escriba código.

61

Figura 3.11 Diagrama de clases de JDBC

Entorno de desarrollo para J2EE

El JTA consta de tres elementos: una interfaz de aplicación de transacción de alto nivel,
una interfaz de administración para transacciones de alto nivel para el servidor de
aplicaciones, y un mapeo de Java del estándar X/Open XA que permite a un

administrador de recursos de transacciones participar en una transacción global
mediante un manager.

• La aplicación cliente puede ser sencillo como un objeto simple o completo como
una aplicación entera. La aplicación de cliente usan datos mediante transacciones
con el fin de garantizar que su interacción con los datos se controla y se pueda
corregir fácilmente si algo sale mal.

• El manager de transacción es el responsable de coordinar la aplicación de cliente y
el resto de componentes de procesamiento de transacciones.

• El administrador de recursos es el componente responsable de coordinar el acceso
a los recursos afectados por una transacción. Puede ser tan simple como un
controlador JDBC que gestiona el acceso a una base de datos y sus tablas, o la
cola que controla la conexión de JMS.

62

Entorno de desarrollo para J2EE

3.4.2.2 Servicios de mensajería JMS

Los productos de mensajería en el software se están conviertiendo en un componente
esencial para la integración de los componentes del programa.

La API JMS de Java proporciona una interfaz para aplicaciones que requieren los
servicios de un sistema de mensajería. Un sistema de mensajería permite que los
mensajes que contienen texto, objetos u otro tipo de mensajes se envíen y reciban de
forma asíncrona.

63

Figura 3.12 Arquitectura JTA

Entorno de desarrollo para J2EE

Una implementación de un sistema de mensajería que cumpla con la API de JMS se llama
proveedor de JMS. Glassfish contiene un proveedor de JMS.

Como podemos observar en la figura anterior, el bean de Sesión del EJB son los
encargados de enviar el mensaje. Estos se conocen como clientes JMS. El sistema de
mensajes es el encargado de guardar los mensajes hasta que puedan ser entregados al
destinatario. Hay dos tipos de destinos en JMS:

• Point-to-point. Es un tipo de mensajería en el que una aplicación envía un
mensaje directamente a una cola de mensajes específicos. Sólo una aplicación
recupera el mensaje de la cola. En este caso solo participan dos clientes, el que
envía y el que recibe. Un ejemplo de este sistema de mensajería sería una cola de
entrada de pedidos.

• Publish/Subscribe. En este tipo de mensajería, el remitente del mensaje publica
un mensaje. Cualquiera que esté interesado en recibir mensajes sobre un tema
determinado se subscribe al mensaje. Como resultado, cuando el emisor envía el
mensaje con el tema, cada suscriptor recibe una copia del mensaje. En este caso
el mensaje tiene un remitente y, muchos destinatarios.

64

Figura 3.13 Funcionamiento de JMS

Entorno de desarrollo para J2EE

Uno de los aspectos más importantes de este tipo de mensajes es que el remitente no
sabe nada sobre los abonados. No sabe cuántos suscriptores hay, dónde están ubicados
o lo que hacen con los mensajes. Un ejemplo de este tipo de mensajes sería cuando una
empresa enviase un mensaje que indica que les ha llegado un pedido, las demás
secciones obtienen el mensaje y saben lo que tienen que hacer a partir de ahí.

3.4.3 Servicios de comunicación

3.4.3.1 Soporte para CORBA

Es un estándar que establece una plataforma de desarrollo de sistemas distribuidos
facilitando la invocación de métodos remotos bajo un paradigma orientado a objetos.
Permite realizar llamadas a objetos remotos, independiente del lenguaje de programación
en que fueron programados. CORBA es una especificación, no es un software o
aplicación. Hay muchas implementaciones de CORBA las cuales son conocidas como
ORB (Object Request Broker).

En un sentido general, CORBA "envuelve" el código escrito en otro lenguaje, en un
paquete que contiene información adicional sobre las capacidades del código que
contiene y sobre cómo llamar a sus métodos. Los objetos que resultan, pueden entonces
ser invocados desde otro programa (u objeto CORBA) desde la red. En este sentido
CORBA se puede considerar como un formato de documentación legible por la máquina,
similar a un archivo de cabeceras, pero con más información.

CORBA utiliza un lenguaje de definición de interfaces (IDL) para especificar las interfaces
con los servicios que los objetos ofrecerán. CORBA puede especificar a partir de este IDL,
la interfaz a un lenguaje determinado, describiendo cómo los tipos de dato CORBA deben
ser utilizados en las implementaciones del cliente y del servidor. Implementaciones
estándar existen para Ada, C, C++, Smalltalk, Java, Python, Perl y Tcl.

65

Entorno de desarrollo para J2EE

Al compilar una interfaz en IDL se genera código para el cliente y el servidor (el
implementador del objeto). El código del cliente sirve para poder realizar las llamadas a
métodos remotos. Es el conocido como stub, el cual incluye un proxy del objeto remoto en
el lado del cliente. El código generado para el servidor consiste en unos skeletons que el
desarrollador tiene que rellenar para implementar los métodos del objeto.

3.4.3.2 Soporte para Servicios Web

Los Servicios Web o Web Services son una API para permitir exponer servicios a través
de la Web. Permite que aplicaciones Web interactúen dinámicamente con otras
aplicaciones, utilizando para ello estándares abiertos como XML (Extensible Markup
Language), UDDI (Universal Description, Discovery and Integration) y SOAP (Simple
Object Access Protocol). Las funciones que pueden ser realizadas por los web services
pueden ir desde simples intercambios de información hasta complicados procesos de
negocios. Se puede encapsular su lógica de negocio mediante web services y exponerlas
para que los clientes las consuman a través de la web.

66

Figura 3.14 Esquema de CORBA

Entorno de desarrollo para J2EE

Los Web Services permiten realizar invocaciones a procedimientos remotos, tanto en
redes pequeñas como una Intranet empresarial como en redes grandes como Internet.
Esto es posible porque están basados en un protocolo simple para realizar las
invocaciones. Este protoco estándar lo se denomina SOAP, y está creado por la W3C,
basado en XML.

SOAP está compuesto por cuatro componentes: un envoltorio que define un framework
para describir los mensajes y cómo estos deben ser procesador, un conjunto de reglas
para codificar instancias de tipos de datos definidos por las aplicaciones, una convención
de cómo representar invocaciones remotas y sus respuestas y una convención para
vincular el intercambio de mensajes con un protocolo de transporte. El protocolo de
transporte es http.

Utilizar http como protocolo de transporte facilita el uso de la infraestructura Web ya
existente prácticamente en todo empresa, para el intercambio de información o
publicación de servicios de la empresa.

Los Web Services también incorporan WSDL (Web Services Description Language) como
un lenguaje también basado en XML que permite describir los contratos de cada servicio
e incluye un protocolo para recibir y enviar documentas a través de una URL conocida, o
utilizando mecanismos UDDI en el caso de no conocer la URL.

Las ventajas de utilizar Web Services son las siguientes:

• Aportan interoperabilidad entre aplicaciones de software independientemente de
sus propiedades o de las plataformas sobre las que se instalen.

• Los servicios Web fomentan los estándares y protocolos basados en texto, que
hacen más fácil acceder a su contenido y entender su funcionamiento.

• Al utilizar http, los servicios Web pueden aprovecharse de los sistemas de
seguridad firewall sin necesidad de cambiar el filtrado.

• Permiten que servicios y software de diferentes compañías ubicadas en diferentes
lugares puedan ser combinados fácilmente.

67

Entorno de desarrollo para J2EE

• Permiten la interoperabilidad entre plataformas de distintos fabricantes por medio
de protocolos estándar y abiertos.

Los inconvenientes de utilizar Web Services son los siguientes:

• Para realizar transacciones no pueden compararse en su grado de desarrollo con
los estándares abiertos de computación distribuida como CORBA.

• Su rendimiento es bajo si se compara con otros modelos de computación
distribuida como RMI o CORBA.

• Al utilizar http, pueden esquivar medidas de seguridad basadas en firewall.

3.4.3.3 Soporte para RMI

RMI (Remote Method Invocation) es el mecanismo ofrecido en Java que permite a una
aplicación poder ser invocado remotamente. RMI, al ser nativo de Java, es mucho más
amigable y natural para un programador Java, permitiéndole además aprovechar las
ventajas del entorno. En el RMI existen tres procesos fundamentales:

68

Figura 3.15 Funcionamiento
de Web Services

Entorno de desarrollo para J2EE

• El cliente: proceso que invoca un método en un objeto remoto.

• El servidor: proceso que posee el objeto remoto.

• Registro de objetos: obtiene acceso a objetos remotos utilizando su nombre.

Por medio de RMI, un programa Java puede exportar un objeto. A partir de esa operación
este objeto está disponible en la red, esperando conexiones en un puerto TCP. Un cliente
puede entonces conectarse e invocar métodos. La invocación consiste en el “marshaling”
de los parámetros, luego se sigue con la invocación del método. Mientras esto sucede el
llamador se queda esperando por una respuesta. Una vez que termina la ejecución el
valor de retorno es serializado y enviado al cliente. El código cliente recibe este valor
como si la invocación hubiera sido local.

La arquitectura de RMI es la siguiente:

• Capa de aplicación. Se corresponde con la implementación real de las
aplicaciones cliente y servidor. Aquí tienen lugar las llamadas a alto nivel para
acceder y exportar objetos remotos. Cualquier aplicación que quiera que sus
métodos estén disponibles para su acceso por clientes remotos debe declarar
dichos métodos en una interfaz que extienda java.rmi.Remote.

• Capa de presentación. Esta capa es la que interactúa directamente con la capa
de aplicación. Todas las llamadas a objetos remotos y acciones junto con sus
parámetros y retorno de objetos tienen lugar en esta capa.

69

Figura 3.16 Funcionamiento de RMI

Entorno de desarrollo para J2EE

• Capa de sesión. Es la de referencia remota, y es responsable del manejo de la
parte semántica de las invocaciones remotas. También es responsable de la
gestión de la replicación de objetos y realización de tareas específicas de la
implementación con los objetos remotos, como el establecimiento de las
persistencias semánticas y estrategias adecuadas para la recuperación de
conexiones perdidas. En esta capa se espera una conexión de tipo stream (stream-
oriented connection) desde la capa de transporte.

• Capa de transporte. Es la responsable de realizar las conexiones necesarias y
manejo del transporte de los datos de una máquina a otra. El protocolo de
transporte subyacente para RMI es JRMP (Java Remote Method Protocol), que
solamente es "comprendido" por programas Java.

3.4.3.4 Servicios de nombrado JNDI

La interfaz de Nombrado y Directorio Java (JNDI) es una API para servicios de directorio.
Esto permite a los clientes buscar objetos y nombres a través de un nombre siendo
independiente de la implementación.

La API JNDI se usa por RMI a las APIs de J2EE para buscar objetos en una red. La API
suministra lo siguiente:

70

Figura 3.17 Comparación de RMI con el modelo OSI

Entorno de desarrollo para J2EE

• Un mecanismo para asociar un objeto a un nombre.

• Una interfaz de búsqueda de directorio que permite consultas generales.

• Una interfaz de enventos que permite a los clientes determinar cuando las entradas
de directorio han sido modificadas.

3.4.4 Soporte a la capa de presentación

3.4.4.1 Soporte para Servlet

La palabra servlet deriva de otra anterior, applet, que se refería a pequeños programas
que se ejecutan en el contexto de un navegador web. Por contraposición, un servlet es un
programa que se ejecuta en un servidor y generan respuestas a solicitudes de clientes.
En una aplicación J2EE, el cliente se pone en contacto con una página JSP que se
comunida con el servlet. El servlet llama a un bean de sesión que interactúa con otros
beans tanto de sesión como de entidad. Los beans de entidad utilizarán JDBC para
comunicarse con la base de datos. Pero los servlets también pueden hacer una llamada
directamente a la base de datos.

71

Figura 3.18 JNDI puede ser usado para buscar beans en EJB

Entorno de desarrollo para J2EE

Los servlets son a menudo vistos como una alternativa a CGI. Un programa CGI ha sido
una forma popular de añadir contenido dinámico a páginas Web en lenguaje Perl. Además
de las limitaciones del lenguaje presenta varios problemas. Cada solicitud requiere un
nuevo proceso para manejar la situación y tener que manejar este volumen de solicitudes
presenta problemas para los servidores.

Por contra, los servlets se escriben en Java y uno solo puede manejar las solicitudes de
todos los usuarios, con lo que no se genera la sobrecarga al no tener que crear un servlet
cada vez que se solicita. Los servlets se inicializan una vez y luego persisten. Además,
como utilizan lenguaje java pueden utilizar objetos java que trabajen en el servlet.

Un servlet se ejecuta dentro de una aplicación llamada contenedor de servlets dentro de
una Java Virtual Machine en el servidor. El propio contenedor ya se encarga de funciones
como el ciclo de vida de cada servlet.

72

Figura 3.19 El navegador envía una petición. El servidor identifica la petición y
muestra la página web.

Entorno de desarrollo para J2EE

3.4.4.2 Soporte para JSP

Los servlets es una herramienta importante para responder a las solicitudes de los
clientes. Sin embargo, no son las mejores herramientas para la generación de contenidos
destinados a explorador web. JSP permite agregar muchas funcionalidades a una página
HTML. Las páginas JSP son documentos de texto basado en HTML con trozos de código
Java llamados scriplets que son incrustados en el documento HTML.

Cuando la página JSP se despliega, el contenido se ejecuta de adentro hacia fuera, un
servlet se crea basándose en las etiquetas scriplets incrustados en el código Java. Todo
esto sucede de manera transparente para el usuario.

No hay que confundir JSP con Javascript, este último también basado en código Java,
puede ser incluido dentro de una página web y el código es ejecutado por el propio
navegador. JSP es parecido pero el código se compila y se ejecuta en el servidor, y se
envía el HTML resultante al navegador. Además las páginas JSP son ligeras y rápidas y
proporciona una gran cantidad de escalabilidad de las aplicaciones.

JSP permite crear contenido tanto estático como dinámico. Ya que el contenido en que se
basa una página JSP, no es necesario que sea creado por un programador, sino que
puede ser desarrollado por un diseñador web.

Dado la ejecución de JSP se basa en servlets, JSP ofrece el mismo apoyo para la gestión
de sesión como los servlets. Además también puede cargar y llamar componentes EJB,
acceso a datos, realizar cálculos, etc.

73

Entorno de desarrollo para J2EE

74

Figura 3.20 Funcionamiento de JSP

Entorno de desarrollo para J2EE

3.4.4.3 Soporte para JSF

JSF es una tecnología que trata de proporcionar una interfaz robusta y variada para
aplicaciones web. JSF se utiliza junto con servlets y JSP. Cuando se usa solo servlets o
JSP para generar la presentación, la interfaz de usuario se limita a lo que se puede
implementar en HTML con componentes como listas, casillas de verificación, botones, etc.
JSF proporciona una API para la creación de interfaces de usuario.

Los componentes de JSF son componentes de interfaz de usuario que se pueden colocar
fácilmente juntos para crear una interfaz de usuario del lado del servidor. La tecnología
JSF también hace que sea fácil conectar los componentes de interfaz de usuario.

Los componentes de interfaz del mismo usuario pueden ser usados para generar código
de presentación para cualquier dispositivo. Por lo tanto, si el dispositivo cliente cambia,
solo es necesario cambiar la configuración del sistema, sin necesidad de cambiar nada de
código.

La propia página de configuración de Glassfish está hecha con JSF junto con AJAX en un
proyecto llamado woodstock, cuyos componentes se pueden utilizar con la API Visual
Web JSF en el entorno Netbeans.

Como alternativa a la interface de woodstock también encontramos otros de código libre
como ICEfaces, que combina JSF con AJAX, o Oracle ADF.

75

Figura 3.21 Componentes JSF en la página de configuración de Glassfish

Entorno de desarrollo para J2EE

76

Figura 3.22 Interfaz de ICEfaces

Figura 3.23 Interfaz de Oracle ADF

Entorno de desarrollo para J2EE

3.4.5 Otros niveles de soporte

Una aplicación distribuida, además de dar respuesta a las necesidades concretas para la
que ha sido diseñada, necesita resolver cuestiones técnicas que aumentan la dificultad
del desarrollo.

3.4.5.1 Seguridad

La seguridad es un componente vital en las aplicaciones empresariales. J2EE ofrece
mecanismos integrados de seguridad más seguros de los que se puedan añadir
manualmente.

J2EE proporciona mecanismos de autentificación y autorización de acceso a los usuarios,
así como recursos para el acceso anónimo si se necesita. Es posible especificar quien
tiene acceso a cada método de un Enterprise Bean.

Otro aspecto importante de la seguridad es el de la transmisión segura de información,
que se consigue mediante la encriptación. La mayor parte de los servidores de aplicación
soportan comunicaciones seguras a través de SSL (Secure Sockets Layer).

3.4.5.2 Soporte para Concurrencia

El uso de un sistema distribuido implica que varios usuarios pueden estar accediendo a la
misma información a la vez, problema de concurrencia. El servidor de aplicaciones se
hace cargo del problema, por defecto el servidor no permite acceder a los objetos a mas
de un thread, hasta que un cliente no haya terminado de ejecutar no puede ejecutar
ningun otro cliente el mismo objeto.

77

Entorno de desarrollo para J2EE

3.4.5.3 Escalabilidad

A veces pueden suceder sucesos como un inesperado aumento de usuarios en un
momento dado, aumento de carga en el hardware, etc. La arquitectura J2EE proporciona
una gran flexibilidad para adaptarse a cambios como el rencimiento o la capacidad de
cambio.

La arquitectura de la aplicación de n capas permite aplicar potencia adicional cuando es
necesario. También es posible dividir en más niveles los puntos específicos que presentan
más problemas, sin afectar a otros componentes de la aplicación.

Además, algunos servidores de aplicaciones como Glassfish contienen sistemas para
mejorar el rendimiento y la disponibilidad de las aplicaciones.

78

Entorno de desarrollo para J2EE

3.4.6 Soporte para SOA

3.4.6.1 JBI

Java Business Integration es una especificación desarrollada bajo la JCP (Java
Community Process) para el desarrollo de componentes de servicios. Esta especificación
fue pensada para la crear una arquitectura interconectable para componentes que
implementan servicios de tipo proveedor o componentes consumidores de servicio.
OpenESB es una implementación open source basada en JBI.

3.4.6.2 Open ESB

OpenESB es un implementación de un Enterprise Servicie Bus (ESB) basado en la
especificación JBI, iniciada por Sun Microsystems. Permite integrar fácilmente
aplicaciones empresariales y webservices como aplicaciones compuestas débilmente
acopladas. Esto permite componer y recomponer de manera fluida y rápida aplicaciones
compuestas, con todas las ventajas de una verdadera Arquitectura Orientada a Servicios.

79

Figura 3.24 JBI

Entorno de desarrollo para J2EE

OpenESB se ejecuta sobre el servidor de aplicaciones Glassfish/Sun Application Server e
incluye una gran variedad de componentes JBI (Java Business Integration) y un motor de
servicio WS-BPEL 2.0. Además incluye su propio motor BPEL (BPEL SE).

Open ESB amplía las capacidades de la implementación de JBI con services engines,
binding components, herramientas y servicios de administración y monitorización
adicionales. La integración con el entorno de desarrollo NetBeans permite el despliegue
de aplicaciones de una manera rápida y eficiente, con una serie de facilidades como
ayuda en el desarrollo, control de errores y pruebas.

80

Entorno de desarrollo para J2EE

3.5 Resumen general de J2EE

J2EE proporciona una solución global, estandarizada y sencilla al desarrollo de
aplicaciones corporativas. La funcionalidad del negocio se implementa mediante EJB y los
clientes interactuan con una interface. El servidor de aplicaciones lleva a cabo tareas
fundamentales como control de seguridad, concurrencia, etc. proporcionando además una
serie de interfaces estándar para el acceso a bases de datos, correo electrónico, etc.

Respecto al acceso a los Enterprise Beans, J2EE proporciona numerosas alternativas
como usar aplicaciones a medida, HTML, etc. Además, el protocolo utilizado hace posible
que las aplicaciones cliente estén escritas en cualquier lenguaje que soporte CORBA.

Para soportar el desarrollo de HTML/XML, J2EE proporciona los APIs Servlets y Java
Serves Pages, que hacen portable al código utilizado para generarlos entre diversas
plataformas.

81

Figura 3.25 Interacción entre diferentes interfaces, EJB y Servlets/JSPs, servidor de aplicaciones
y servicios externos

Entorno de desarrollo para J2EE

3.6 Servidores de Aplicaciones Java EE 5 certificados

Un servidor de aplicaciones se trata de un dispositivo de software que proporciona
servicios de aplicación a las computadoras cliente. Un servidor de aplicaciones gestiona
las funciones de lógica de negocio y de acceso de datos a la aplicación. Los principales
beneficios son la centralización y la disminución de la complejidad en el desarrollo de
aplicaciones. Algunos servidores de J2EE son los siguientes:

• JonAS. Servidor de aplicaciones de código abierto de ObjectWeb.

• WebLogic Application Server. Servidor de aplicaciones desarrollado por BEA
Systems posteriormente adquirida por Oracle Corporation

• Jboss. Desarrollado inicialmente por JBoss Inc y adquirido posteriormente por Red
Hat. Existe una versión de código abierto soportada por la comunidad y otra
empresarial.

• Sun Java System Application Server Platform Edition 9.0. Servidor de
aplicaciones basado en GlassFish.

• Apache Geronimo 2.0. Servidor de aplicaciones de Apache Software Foundation.

• GlassFish, Servidor de aplicaciones de código abierto de Sun.

A continuación detallaremos los más importantes.

82

Entorno de desarrollo para J2EE

3.6.1 JBoss

JBoss es un servidor de aplicaciones J2EE de código abierto implementado en Java puro.
Al estar basado en Java, JBoss puede ser utilizado en cualquier sistema operativo que lo
soporte. Los principales desarrolladores trabajan para una empresa de servicios, JBoss
Inc., adquirida por Red Hat en Abril del 2006, fundada por Marc Fleury, el creador de la
primera versión de JBoss. El proyecto está apoyado por una red mundial de
colaboradores. Los ingresos de la empresa están basados en un modelo de negocio de
servicios.

JBoss es una implementación Open-Source de un contenedor EJB; es mediante este tipo
de productos que es posible llevar acabo un desarrollo con EJB's. La gran gamma de
productos en J2EE han sido comercializados como Java Application Servers.

Como se observa en la siguiente imagen un Java Application Server se encuentra
compuesto por dos partes: un Servlet Engine y un EJB Engine, dentro del Servlet Engine
se ejecutan exclusivamente las clásicas aplicaciones de Servidor (JSP's y Servlets) ,
mientras el EJB Engine (Contenedor) es reservado para aplicaciones desarrolladas
alrededor de EJB's.

83

Entorno de desarrollo para J2EE

3.6.1.1 Servidor de aplicaciones JBoss

JBoss AS es el primer servidor de aplicaciones de código abierto, preparado para la
producción y certificado J2EE, ofreciendo una plataforma de alto rendimiento para
aplicaciones de e-business. Combinando una arquitectura orientada a servicios
revolucionaria con una licencia de código abierto, JBoss AS puede ser descargado,
utilizado, incrustado y distribuido sin restricciones por la licencia.

3.6.1.2 Servicios de Jboss

• EJB 3.0. Implementa la especificación inicial de Enterprise JavaBeans 3.0.

• JBoss AOP. Está orientado a trabajar con Programación Orientada a Aspectos.
Esto permitirá añadir fácilmente servicios empresariales (transacciones, seguridad,
persistencia) a clases Java simples.

84

Figura 3.26 Esquema de JBoss

Entorno de desarrollo para J2EE

• Hibernate. Es un servicio de persistencia objeto/relaciones y consultas para Java.
Hibernate facilita a los desarrolladores crear las clases de persistencia utilizando el
lenguaje Java - incluyendo la asociación,herencia, polimorfismo y composición
y el entorno de colecciones Java.

• JBoss Cache. Es un producto diseñado para almacenar en caché los objetos Java
más frecuentemente accedidos de manera que aumente de forma notable el
rendimiento de aplicaciones e-bussines. Eliminando accesos innecesarios a la
base de datos, JBoss Cache reduce el tráfico de red e incrementa la escalabilidad
de las aplicaciones.

• JBoss IDE. Brinda una IDE Eclipse para el JBoss AS. De esta forma la depuración
y otras tareas asociadas al desarrollo de aplicaciones puede ser realizadas desde
el entorno de Eclipse.

• JBoss jBPM. PM es una plataforma para lenguajes de procesos ejecutables,
cubriendo desde gestion de procesos de negocio (BPM) bajo workflow hasta
orquestacion de servicios. Actualmente jBPM soporta tres lenguajes de procesos
sobre una sola tecnologia: Maquina Virtual de Procesos(PVM).

• JBoss Portal. Es una plataforma de código abierto para albergar y servir un
interfaz de portales Web, publicando y gestionando el contenido así como
adaptando el aspecto de la presentación.

• Tomcat. Es un contenedor de servlets utilizado como la implementación de
referencia oficial para las tecnologías de JavaServer Pages y Java Servlet.

• JBoss Mail Server, MQ, Messaging. Servicios de mail, mensajería en Java
Message Service y un servicio de mensajería robusto y de alto rendimiento que
soporta esquemas de integración que van desde simples mecanismos entre
aplicaciones hasta grandes Arquitecturas de Servicios (SOAs) y Canales de
Servicios Empresariales (ESBs).

85

Entorno de desarrollo para J2EE

• JBoss Forum (Jforum). Es un foro de discusión en Java similar en prestaciones y
aspecto a phpBB. Tiene licencia BSD, soporte para bases de datos MySQL,
PostgreSQL y HSQLDB, una interfaz altamente configurable, soporte para un
número ilimitado de grupos de usuarios con permisos distintos, notificaciones por
email de actividad en los posts, soporte para internacionalización, etc.

3.6.1.3 Ventajas de JBoss

Las ventajas de JBoss son múltiples.

• El producto está siendo constantemente actualizado y cuenta con buena
documentación.

• Producto de licencia de código abierto.

• Cumple los estándares.

• Confiable a nivel de empresa.

• Orientado a arquitectura de serviccios.

• Soporte completo para Java Management eXtensions.

• Ayuda profesional 24 horas.

86

Entorno de desarrollo para J2EE

3.6.1.4 Desventajas de JBoss

La principal y muy importante desventaja de JBoss es el precio, ya que no todas las
empresas pueden permitirse gastarse el muy elevado precio de la licencia Jboss. También
existe una versión gratuita de menor rendimiento y prestaciones.

Comparándolo con Glassfish:

• Glassfish tiene una mejor consola de administración.

• Despliegue en caliente es más fiable en Glassfish.

• La nueva versión de Glassfish soporta Java EE 6 mientras que Jboss utiliza Java
EE 5.

• WebServices funcionan mejor sobre Glassfish.

• Glassfish tiene un entorno más amigable para desarrolladores. Además si se usa
NetBeans es más sencillo.

87

Entorno de desarrollo para J2EE

3.6.2 Apache Geronimo

Apache Geronimo es un servidor de aplicaciones de código abierto desarrollado por la
Apache Software Foundation y distribuido bajo la licencia Apache. Geronimo es
actualmente compatible con la especificación Java Enterprise Edition (Java EE) 5.0. IBM
ha proporcionado un apoyo considerable al proyecto a través de la comercialización, las
contribuciones de código, y la financiación de varios proyectos.

El núcleo de Geronimo es Java EE agnostic. Su único objetivo es la gestión de bloques de
construcción de Geronimo. Se caracteriza por un diseño arquitectónico que se basa en el
concepto de Inversión of Control (COI), lo que significa que el núcleo no tiene
dependencia directa de cualquiera de sus componentes. El núcleo es un framework para
los servicios que controla el ciclo de vida de servicio y el registro y está basado en Java
EE.

La mayoría de los servicios de Geronimo se agregan y configuran a través de GBeans
para convertirse en una parte del global de las aplicaciones de servicio. GBean es la
interfaz que conecta los componentes al núcleo. La interfaz de GBeans permite cambiar
entre dos contenedores de servlets, por ejemplo, Jetty o Tomcat sin afectar a toda la
arquitectura utilizando una interfaz de Gbeans. Esta arquitectura flexible permite a los
desarrolladores de Geronimo para integrar varias existentes, probados en los proyectos
de software de código abierto.

3.6.2.1 Servicios de Apache Geronimo

• Apache Tomcat. Servidor de HTTP y contenedor de Servlet que soporta Java
Servlet 2.5 y JavaServer Pages (JSP) 2.1.

• Jetty. Tiene las mismas funcionalidades que Tomcat, es una alternativa.

• Apache ActiveMQ. Servicio de mensajería open source basado en Java Message
Service (JMS) 1.1.

88

Entorno de desarrollo para J2EE

• Apache OpenEJB. Open source Enterprise JavaBeans (EJB) Container System y
EJB Server que soporta Enterprise JavaBeans 3.0, incluye Container Managed
Persistence 2 (CMP2) y EJB Query Language (EJBQL).

• Apache OpenJPA. Implementación de open source Java Persistence API (JPA)
1.0

• Apache ServiceMix. Open source Enterprise Service Bus (ESB) y componentes
basados en el Java Business Integration (JBI) standard JSR 208.

• Apache Axis y Apache Scout. Axis es una implementación Simple Object Access
Protocol (SOAP), Scout es una implementación JSR 93 (JAXR).

• Apache CXF. Estructura de servicios web con variedad de protocolos como SOAP,
XML/HTTP, RESTfull HTTP o COBRA.

• Apache Derby. Relational database management system (RDBMS) con soporte
para Java Database Connectivity (JDBC)

• Apache WADI. Clustering, balanceo de carga y solución de error para la aplicación
web.

• MX4J. Java Management Extensions, suministra las herramientas para la gestión y
seguimiento de las aplicaciones, los objetos del sistema, los dispositivos y las
redes de servicios orientados.

89

Entorno de desarrollo para J2EE

3.6.2.2 Ventajas de Apache Geronimo

Las principales ventajas de este servidor de aplicaciones son las siguientes.

• Fácil de usar.

• Open Source.

• El tiempo de ejecución es bueno para satisfacer las necesidades de
desarrolladores, administradores e integradores de sistemas.

90

Figura 3.27 Ejemplo de Geronimo utilizando Tomcat/Jetty y OpenEJB

Entorno de desarrollo para J2EE

• Integración completa con Eclipse.

• Actualizaciones frecuentes con nuevas características y corrección de errores.

• Existe una comunidad que desarrolla nuevas herramientas constantemente.

3.6.2.3 Desventajas de Apache Geronimo

• Comparándolo con Glassfish, Apache Geronimo es un servidor de aplicaciones
más sencillo y con menos aplicaciones que el primero. Además el rendimiento de
Geronimo es menor.

• Glassfish aprovecha todas las funcionalidades de JEE5 (o 6 en la última versión) y
es más sencillo de utilizar gracias a la compatibilidad con Netbeans.

• Geronimo es mucho menos utilizado que Glassfish o Jboss, lo cual significa que el
apoyo de la comunidad será menor y es más dificil encontrar expertos que trabajen
en él.

91

Entorno de desarrollo para J2EE

3.6.3 Oracle WebLogic

Oracle WebLogic es un servidor de aplicaciones J2EE y también un servidor web HTTP
desarrollado por BEA Systems posteriormente adquirida por Oracle Corporation. Puede
ejecutarse en distintos sistemas operativos. La última versión de WebLogic forma parte de
Oracle Fusion Middleware, que consiste en un conjunto de software de Oracle.

WebLogic server permite desarrollar y desplegar aplicaciones fiables, seguras, escalables
y manejables. Dirige los detalles a nivel de sistema para que el desarrollador sólo se
tenga que preocupar por la lógica de negocio y la presentación.

WebLogic puede utilizar distintas bases de datos como DB2, Microsoft SQL Server u otras
bases de datos que se ajusten al estándar JDBC. Es compatible con WS-Security y
cumple con los estándares de J2EE, incluyendo JEE 5 en su última versión 10.

Oracle WebLogic Server es parte de Oracle WebLogic Platform, de la cual forman parte
los siguientes componentes.

• Portal. Servidor de comercio y personalización.

• WebLogic Integration. Aplicación basada en java para la integración de sistemas
y conectividad.

• WebLogic Workshop. IDE para Java.

• JRockit. Máquina Virtual de Java para CPUs de Intel.

WebLogic Server incluye interoperabilidad .NET y admite las siguientes capacidades de
integracióno nativa:

• Mensajería nativa JMS.

92

Entorno de desarrollo para J2EE

• J2EE Connector Architecture.

• Tuxedo Connector.

• Conectividad COM+ y CORBA.

• Conectividad IBM WebSphere MQ.

El modelo de seguridad de WebLogic Server incluye Separar la lógica de negocio del
código de seguridad y rango completo de cobertura de seguridad para todos los
componentes, sean o no J2EE.

WebLogic implementa las siguientes tecnologías en sus distintas capas.

93

Figura 3.28 Tecnologías de WebLogic

Entorno de desarrollo para J2EE

3.6.3.1 Ventajas de Oracle WebLogic

Las principales ventajas de Oracle WebLogic son las siguientes.

• Soporte de Java Enterprise para facilitar la implementación y despliegue de
componentes de aplicación.

• Diversas opciones de cliente. WebLogic soporta navegadores Web y otros clientes
que usen HTTP, clientes Java que usan RMI o IIOP o dispositivos móviles que usan
WAP. Los conectores permiten virtualmente a cualquier cliente o aplicación trabajar
con WebLogic.

• Escalabilidad. Está asegurada a través del uso de componentes EJB y otros
mecanismos.

• Ofrece una Consola de Administración basada en Web para configurar y
monitorizar los servicios.

• Seguridad lista para el comercio electrónico. WebLogic proporciona soporte de
Secure Sockets Layer (SSL) para encriptar datos. La seguridad permite la
autentificación y autorización del usuario para todos los servicios.

• Flexibilidad en el desarrollo y despliegue. WebLogic proporciona integración y
soporte con las bases de datos más importantes, herramientas de desarrollo y
otros entornos.

3.6.3.2 Desventajas de Oracle WebLogic

Los inconvenientes más importantes que tiene WebLogic respecto a Glassfish son los
siguientes.

94

Entorno de desarrollo para J2EE

• Glassfish continuará con la implementación Java EE como referencia y como
proyecto Open Source. Esta es la desventaja más importante ya que el gasto para
las empresas es muy elevado

• Glassfish cuenta con Netbeans como IDE, ya incorporado en el propio Netbeans.

• Glassfish soporta las mas recientes versiones de JSP, Java Servlets y la versión
JEE 6.

95

Entorno de desarrollo para J2EE

3.7 Glassfish

3.7.1 Qué es Glassfish

El término Glassfish, traducido al español sería algo parecido como “Pez de Cristal”, es el
nombre de un pez que realmente existe y vive en el agua dulce; su cuerpo es
transparente, por lo que sus huesos son visibles. El nombre fue elegido debido a la
transparencia que los creadores querían darle al proyecto, que utiliza una licencia Open
Source, concretamente la licencia Common Development and Distribution License
(CDDL) v1.0 y la GNU Public License (GPL) v2.

3.7.2 Para qué sirve Glassfish

GlassFish es un servidor de aplicaciones desarrollado por Sun Microsystems que
implementa las tecnologías definidas en la plataforma Java EE y permite ejecutar
aplicaciones que siguen esta especificación. La versión comercial es denominada Sun
GlassFish Enterprise Server. Soporta las últimas versiones de tecnologías como: JSP,
Servlets, EJBs, Java API para Servicios Web (JAX-WS), Arquitectura Java para Enlaces
XML (JAXB), Metadatos de Servicios Web para la Plataforma Java 1.0, y muchas otras
tecnologías.

Glassfish además de ser un servidor de aplicaciones, es una comunidad de usuarios, que
descargan y utilizan libremente Glassfish, también existen partners que contribuyen
agregándole más características importantes a Glassfish. Además ingenieros y beta
testers que desarrollan código y prueban las versiones liberadas para eliminar todo fallo
que se encuentre, y muchos otros miembros. La comunidad fue lanzada en el año 2005
en java.net. Al igual que el pez original, la Comunidad Glassfish es transparente en cuanto
a términos de entrega de código fuente, discusiones de ingeniería, agendas, datos de
descarga, etc. Tú puedes tener acceso a todo ésto, además puedes formar parte de todo
el proceso detrás de la comunidad Glassfish. Un ejemplo de esto es la comunidad
FishCAT.

96

Entorno de desarrollo para J2EE

3.7.3 Cómo funciona un servidor de aplicaciones

Un servidor de aplicaciones proporciona generalmente gran cantidad de funcionalidades
built in de forma transparente al usuario de manera que no sea necesario escribir código
fuente. Estas funcionalidades son posibles ya que los componentes se ejecutan dentro del
contenedor en un espacio de ejecución virtual llamado dominio de ejecución. Su función
principal es la de interponerse entre las llamadas que se hacen a los métodos de los
beans y las implementaciones de los mismos, de modo que entre otras cosas puede
hacer las comprobaciones para verificar si el usuario que llama al método tiene los
permisos adecuados, antes de llamarlo.

3.7.4 Modular, Integrable y Extendible

Glassfish dispone de una arquitectura Modular, se puede descargar e instalar solamente
los módulos que se necesiten para las apps, con lo cual se minimiza el tiempo de inicio,
consumo de memoria y espacio en disco.

Basándose en el modelo de componentes dinámico y completo para Java OSGi (Open
Services Gateway Initiative), las aplicaciones y/o componentes de Glassfish pueden ser
remotamente instalados, iniciados, actualizados, etc. sin necesidad de reiniciar el servidor.

Es posible ejecutar Glassfish dentro de una máquina virtual sin necesidad de disponer de
instalar un servidor de aplicaciones. Es posible usar Glassfish como una librería más en la
JVM, seleccionando solo lo que se necesita y probando pequeñas aplicaciones webs sin
necesidad de correr todo el AppServer, teniendo en cuenta las limitaciones de no tener el
AppServer instalado.

97

Entorno de desarrollo para J2EE

3.7.5 Herramientas de programación

• AJAX. Glassfish dispone de una tecnología y framework para Java basadas en
web (Java Server Faces) llamado Woodstock, que simplifica el desarrollo de
interfaces de usuario en aplicaciones J2EE en el cual se pueden incluir
componentes AJAX.

• Ruby Rails. Se pueden ejecutar aplicaciones basadas en Ruby Rails de dos
formas diferentes. La primera es mediante jRuby que está incluido en la Java
Platform y la segunda sería ejecutar Rails en un interprete nativo de Ruby
comunicándose con Gassfish mediante CGI.

• PHP. Puede utilizarse PHP con la implementación Quercus PHP 5 desenvolupada
por Caucho en Java.

3.7.6 Tecnologías de Integración

• TopLink Essentials. Es la implementación de JPA (Java Persistence API) para la
comunidad Glassfish. La API se proporciona un modelo de programación sencillo
para las entidades persistencia de EJB y además incluye la herramienta para
conectar diferentes proveedores de persistencia.

• CORBA. Glassfish incluye una implementación completa de CORBA. Esta
aplicación ha ido mejorando con las diferentes versiones de Glassfish.

• OpenMQ Messaging. Glassfish incorpora una herramienta de mensajería que
proporciona:

- Mensajes entre los componentes del sistema

- Distribución escalable de servidores de mensajería

- Integracion de mensajes SOAP / HTTP

- Java y C Cliente API

98

Entorno de desarrollo para J2EE

• Java Business Integration. Glassfish incluye soporte para la API JBI. Se encarga
de la integración de bus y componentes de arquitectura. La implementación
incluida en Glassfish proviene del proyecto OpenESB.

3.7.7 Historia

• Junio de 2005. Primer lanzamiento del proyecto.

• Mayo de 2006. Primera versión que soporta la especificación Java EE 5.

• Mayo de 2007. El proyecto Project SailFin se anuncia en JavaOne como un
subproyecto bajo GlassfFish. SailFin es un proyecto que añade nuevas
funcionalidades, como el servlet de Session Initiation Protocol (SIP).

• Septiembre de 2007. Aparece la versión 2 (también conocida como Sun Java
System Application Server 9.1) con capacidades de cluster y nuevas características
de interconexión entre servicios web.

• Diciembre de 2008. Sun Microsystems y la comunidad lanza GlassFish 2.1 (Sun
GlassFish Enterprise Server 2.1), el que sirve como la base para el proyecto Sailfin
SIP AppServer project (también conocido como Sun Communication Application
Server).

• Diciembre de 2009. Aparece la versión 3 que soporta la especificación Java EE 6.

99

Entorno de desarrollo para J2EE

3.7.8 Diferencia entre versiones de Glassfish

• Glassfish v1: Después de un año, ésta fue la primera versión que fue liberada,
conjuntamente con la liberación de Java EE 5. El principal objetivo de ésta versión,
fue desarrollar un servidor de aplicaciones totalmente compatible con Java EE 5, y
lo lograron, recibiendo excelentes reseñas de analistas. A la vez que se liberaba la
primera versión de Glassfish, también se lanzaba un producto correspondiente de
Glassfish bajo el Sun Java System 9.0 Platform Edition. La principal diferencia
entre la versión Open Source y el producto de Sun fue: marca de Sun, mejor
instalador, drivers de DataDirect JDBC e indemnización limitada. Todo lo demás era
exactamente lo mismo.

• Glassfish v2: ésta versión fue liberada en Septiembre del 2007, junto con algunas
actualizaciones, éstas incluían reparación de bugs y algunos parches. El principal
enfoque de la versión v2 fue agregar varias características empresariales. Las tres
palabras clave que resumen ésta versión son: Rápido, Fácil y Fiable.

100

Figura 3.29 Evolución de Glassfish

Entorno de desarrollo para J2EE

• Glassfish v2.1: versión liberada en Diciembre del 2008, dónde se repararon más
de 500 problemas. Permite el uso de SailFin 1.0 e incluye muchísimas mejoras de
calidad. Las características principales de esta versión son:

- Java EE5

- Java Web Technologies (Servlet 2.5, JSP 2.1, JSF 1.2)

- Metro Web Services Stack

- .NET 3.0 Web Services Interoperability

- EJB 3.0

- JPA 1.0 (TopLink)

- Grizzly (Java NIO)

- CORBA

• Glassfish v3: Esta versión tiene como principales características: altamente
modular, integrable y extendible. Además de que es totalmente compatible con
Java EE 6. Características de esta versión:

- Java Web Technologies (Servlet 3.0, JSP 2.2, JSF 2.0)

- Metro Web Services Stack

- .NET 3.5 Web Services Interoperability

- EJB 3.1

- JPA 2.0 (EclipseLink)

- Grizzly (Java NIO)

- CORBA

- Arquitectura Modular Basada en OSGi

101

CAPÍTULO 4

Desarrollo de EJB's

Desarrollo de EJB's

4.1 Introducción de EJB

Con EJB es posible desarrollar componentes que luego podemos utilizar y ensamblar en
distintas aplicaciones. El desarrollo basado en enterprise beans supone un paso más en
la escalabilidad que la programación orientada a objetos. Con componentes es posible
reutilizar un mayor número de funcionalidades, incluso modificar éstas y adaptarlas a
cada entorno de trabajo sin tocar el código del componente desarrollado. Un componente
o enterprise bean es una especie de objeto tradicional con un conjunto de servicios
adicionales soportados en tiempo de ejecución por el contenedor de componentes, o EJB.
El EJB es una especie de sistema operativo donde residen los componentes. Podemos
ver un componente como un objeto remoto RMI que reside en un contenedor EJB que
proporciona un conjunto de servicios adicionales.

4.2 Servicios proporcionados por el contenedor EJB

El contenedor EJB ya incorpora unos servicios concretos sin necesidad de programar
ninguna clase que los implemente. Los servicios mas importantes que proporcionan los
enterprise beans son los siguientes:

• Manejo de transacciones. Apertura y cierre de transacciones asociadas a las
llamadas a los métodos del bean.

• Seguridad. Comprobación de permisos de acceso a los métodos del bean.

• Concurrencia. Llamada simultánea a un mismo bean desde múltiples clientes.

• Servicios de red. Comunicación entre el cliente y el bean en diferentes máquinas.

• Gestión de recursos. Gestión automática de recursos como las colas de mensajes,
bases de datos, etc.

• Persistencia. Sincronización entre los datos del bean y tablas de una base de
datos.

105

Desarrollo de EJB's

• Gestión de mensajes. Utilización de Java Message Service.

• Escalabilidad. Posibilidad de añadir clusters de servidores de aplicaciones con
múltiples hosts para poder dar respuesta a aumentos de carga de la aplicación sólo
con añadir hosts adicionales.

• Adaptación en tiempo de despliegue. Posibilidad de modificación de todas estas
características en el momento del despliegue del bean.

4.3 Funcionamiento de los componentes EJB

El contenedor EJB es un programa Java que se ejecuta en el servidor y contiene todas las
clases y objetos necesarios para el correcto funcionamiento de los enterprise beans.

El funcionamiento básico es el siguiente. El cliente que realiza peticiones al bean y el
servidor que contiene el bean están ejecutándose en máquinas virtuales Java distintas. El
contenedor EJB proporciona un EJBObject al cliente, que hace de interfaz. Cualquier
petición del cliente se hace a través del objeto EJB, el cual solicita al contenedor EJB una
serie de servicios y se comunica con el enterprise bean. Por último el bean realiza las
peticiones a la base de datos. El propio contenedor EJB ya se encarga de comprobar las
cuestiones de permisos, abrir y cerrar transacciones, etc.

106
Figura 4.1 Representación del funcionamiento de los enterprise beans

Desarrollo de EJB's

4.4 Tipos de EJB

• EJB de Entidad. Representan un objeto concreto que existe en la base de datos.
Una instancia de un bean de entidad representa una fila en una tabla de la base de
datos.

• EJB de Sesión. Gestionan el flujo de la información en el servidor. Representa un
proceso o una acción de negocio. Cualquier llamada a un servicio del servidor debe
comenzar con una llamada a un bean de sesión.

• EJB dirigidos por mensajes. Son los únicos beans con funcionamiento asíncrono.
Usando el Java Messaging System, se suscriben a un tema o a una cola y se
activan al recibir un mensaje dirigido a dicho tema o cola. No necesitan objetos
EJBObject porque los clientes no se comunican con ellos directamente.

107

Desarrollo de EJB's

Uso de anotaciones

Una anotación proporciona un recurso adicional al elemento de código al que va asociado
en el momento de su compilación. Cuando se ejecuta, la clase busca estas anotaciones y
determina el comportamiento a seguir con el código al que va unido.

4.4.1 Beans de Sesión

Los beans de sesión representan sesiones interactivas con uno o más clientes. Pueden
mantener un estado, pero sólo durante el tiempo que el cliente interactúa con el bean.
Cuando termina el proceso los beans de sesión no almacenan sus datos en la base de
datos. Los beans de sesión no son persistentes.

A diferencia de los beans de entidad, los beans de sesión no se comparten entre los
clientes, sino que hay un bean de sesión por cada cliente. Por eso el contenedor EJB no
necesita implementar mecanismos de manejo de concurrencia en el acceso a estos
beans.

Dentro de los beans de Sesión encontramos dos tipos: sin estado (stateless) y con estado
(stateful).

4.4.1.1 Beans de sesión sin estado

Los beans de sesión sin estado no se modifican con las llamadas de los clientes. Los
métodos que están implementados en las aplicaciones cliente son llamadas que reciben
datos y devuelven resultados, pero no modifican el estado del bean. Esto permite que el
contenedor de EJB cree una reserva de instancias del mismo bean de sesión sin estado y
pueda asignar cualquier instancia a cualquier cliente, o incluso el mismo bean a múltiples
clientes.
Una de las ventajas del uso de beans de sesión frente al uso de clases Java u objetos
RMI es que no es necesario escribir los métodos de los beans de sesión de forma segura
para threads ya que el contenedor EJB se encarga que solo haya un thread accediendo al
objeto. Para eso utiliza múltiples instancias del bean.

108

Desarrollo de EJB's

Cuando un cliente invoca un método de un bean de sesión sin estado, el contenedor EJB
obtiene una instancia de la reserva cualquiera. Recordamos que cualquier instancia sirve
ya que el bean no guarda información referida al cliente. Cuando el método termina la
ejecución la instancia del bean está disponible de nuevo. Gracias a esto los beans de
sesión sin estado son muy escalables y pueden ser utilizados por un gran número de
clientes. Si el contenedor EJB necesita recursos y memoria en un momento dado solo
tiene que destruir algunas instancias.

Los beans de sesión sin estado se usan en general para encapsular procesos de negocio,
más que datos de negocio. Proporcionan un conjunto de procesos relacionados con un
dominio específico del negocio. Por eso se utilizan cuando una tarea no está ligada a un
cliente específico. Un ejemplo sería usarlo para enviar un e-mail que confirme un pedido
on-line.

4.4.1.2 Beans de sesión con estado

En un bean de sesión con estado, las variables de la instancia del bean almacenan datos
específicos obtenidos durante la conexión con el cliente. Cada bean de sesión con estado
almacena el estado conversacional de un cliente que interactúa con el bean. Este estado
se modifica conforme el cliente va realizando llamadas a los métodos de negocio del bean
y se elimina cuando el cliente termina la sesión.

La interacción del bean se divide en un conjunto de pasos en el que cada paso se añade
nueva información al estado del bean. Un ejemplo específico sería por ejemplo un carrito
de la compra, donde el cliente va guardando uno a uno cada cosa que compra.

El estado del bean se mantiene mientras existe el bean. A diferencia de los beans de
entidad, no existe ningún recurso exterior al contenedor EJB en el que se almacene este
estado.

Debido a que el bean guarda el estado conversacional con un cliente específico, no es
posible crear un almacén de beans y compartirlos entre muchos clientes así como sucede
con los beans de sesión sin estado. Por eso el manejo de este tipo de beans es más
pesado que el de beans de sesión sin estado.

109

Desarrollo de EJB's

4.4.1.3 Anotaciones de un Bean se Sesión

@Stateful: Indica que el Bean de Sesión es con estado. Atributos:

• name. Por defecto el nombre de la clase pero se puede especificar otro.

• mappedName. Si se quiere que el contenedor maneje el objeto de manera
específica. Si incluimos esta opción nuestra aplicación puede que no sea portable y
no funcione en otro servidor de aplicaciones.

• description. Descripción de la anotación.

@Stateless: Indica que el Bean de Sesión es sin estado y contiene los mismos atributos
que Stateful.

@Init: Especifica que el método se corresponde con un método create de un EJBHome o
EJBLocalHome de EJB 2.1. Sólo se puede llamar una vez a este método.
@Remove: Indica que el contenedor debe llamar al método cuando quiera destruir la
instancia del Bean.

@Local: Indica que la interfaz es local.

@Remote: Indica que la interfaz es remota.

@PostActivate: Invocado después de que el Bean sea activado por el contenedor.

@PrePassivate: Invocado antes de que el Bean esté en estado passivate.

110

Desarrollo de EJB's

4.4.2 Beans de entidad

Los beans de entidad utilizan conceptos o datos de negocio que pueden expresarse como
nombres o 'cosas'. Es decir, los beans de entidad representan objetos reales como
estudiantes o habitaciones y cosas abstractas como una reserva. Estos beans describen
tanto el estado como la conducta de objetos del mundo real y permiten encapsular las
reglas de datos y de negocio asociadas con un concepto específico. Por ejemplo un bean
de entidad 'estudiante' encapsula los datos y reglas de negocio asociadas a un
estudiante. Gracias a esto es posible manejar de forma consistente y segura los datos
asociados a un concepto.

Los beans de entidad se corresponden con datos en un almacenamiento persistente
como una base de datos. Las variables de instancia del bean representan los datos en las
columnas de la base de datos. El contenedor EJB debe sincronizar las variables de
instancia del bean con la base de datos. Los beans de entidad se diferencian de los beans
de sesión en que las variables de instancia se almacenan de forma persistente.

A continuación podemos observar los pasos que realiza un bean de entidad:

• El cliente debe obtener una referencia a la instancia concreta del bean de entidad
que se está buscando (una id concreta) mediante un método finder, los cuales
están definidos en la interfaz home e implementados en la clase bean.

111

Figura 4.2 Anotación Stateless

Desarrollo de EJB's

• El cliente interactúa con la instancia del bean usando los métodos get y set. El
estado del bean se carga en la base de datos antes de procesar las llamadas a los
métodos. Esto se realiza de forma automática por parte del contenedor.

• Finalmente, cuando el cliente termina la interacción con la instancia del bean sus
contenidos se vuelcan en la base de datos.

Las ventajas de usar beans de entidad en lugar de acceder a la base de datos
directamente son múltiples. El uso de beans de entidad nos da una perspectiva orientada
a objetos de los datos y nos proporciona un mecanismo mucho más simple para acceder
y modificar los datos. Por poner un ejemplo, es mucho mas sencillo cambiar el nombre de
un estudiante llamando a una función que ejecutando un comando SQL contra la base de
datos. Además el uso de objetos favorece la reutilización del software. Una vez se ha
definido el bean de entidad, su definición puede usarse a lo largo de todo el sistema de
forma consistente y simple. Esto hace que el desarrollo sea más sencillo y menos
costoso.

En la versión EJB 3.0 los beans de entidad han pasado a ser substituidos por la entidad
de Java Persistence API.

4.4.2.1 Anotaciones de un Bean de Entidad

@Entity: Indica que es un Bean de Entidad.

Métodos del ciclo de vida de una entidad

@EntityListeners: Se pueden definir clases oyentes con métodos de ciclo de vida de una
entidad.

@ExcludeSuperclassListeners: Indica que ningún listener de la superclase será;
invocado por la entidad ni por ninguna de sus subclases.

@ExcludeDefaultListeners: Indica que ningún listener por defecto será; invocado por
esta clase ni por ninguna de sus subclases.

112

Desarrollo de EJB's

@PrePersist: El método se llamará justo antes de la persistencia del objeto. Podría ser
necesario para asignarle la clave primaria a la entidad a persistir en base de datos.

@PostPersist: El método se llamará después de la persistencia del objeto.

@PreRemove: El método se llamará antes de que la entidad sea eliminada.

@PostRemove: El método se llamará después de eliminar la entidad de la base de
datos.

@PreUpdate: El método se llamará antes de que una entidad sea actualizada en base de
datos.

@PostUpdate: El método se llamará después de que la entidad sea actualizada.

@PostLoad: El método se llamará después de que los campos de la entidad sean
cargados con los valores de su entidad correspondiente de la base de datos. Se suele
utilizar para inicializar valores no persistidos.

@NamedQuery: Especifica el nombre del objeto query utilizado junto a EntityManager.

• name. Nombre del objeto query.

• query. Especifica la consulta a la base de datos mediante lenguaje Java
Persistence Query Language.

@NamedQueries: Especifica varias queries como la anterior.

@NamedNativeQuery: Especifica el nombre de una query SQL normal.

• name. Nombre del objeto query.

• query. Especifica la consulta a la base de datos.

• resultClass. Clase del objeto resultado de la ejecución de la consulta.

113

Desarrollo de EJB's

• resultSetMapping. Nombre del SQLResultSetMapping definido.
@NamedNaviteQueries: Especifica varias queries SQL.

@SQLResultSetMapping: Permite recoger el resultado de una query SQL.

• name. Nombre del objeto asignado al mapeo.

• EntityResult[] entities(). Entidades especificadas para el mapeo de los datos.

• ColumnResult[] columns(). columnas de la tabla para el mapeo de los datos.

@PersistenceContext: Objeto de la clase EntityManager que nos proporciona todo lo
que necesitamos para manejar la persistencia.

• name. Nombre del objeto utilizado para la persistencia en caso de ser diferente al
de la clase donde se incluye la anotación.

• unitName. Identifica la unidad de la persistencia usada en el bean en caso de que
hubiera más de una.

• type. Tipo de persistencia.

@PersistenceContexts: Define varios contextos de persistencia.

@PersistenceUnit: Indica la dependencia de una EntityManagerFactory definida en el
archivo persistence.xml

• name. nombre del objeto utilizado para la persistencia en caso de ser diferente al de la clase
donde se incluye la anotación.

• unitName. identifica la unidad de la persistencia usada en el bean en caso de que
hubiera más de una.

114

Desarrollo de EJB's

Mapeos objeto-relacional

@Table: Especifica la tabla principal relacionada con la entidad.

• name. Nombre de la tabla, por defecto el de la entidad si no se especifica.

• catalog. Nombre del catálogo.

• schema. Nombre del esquema

@SecondaryTable: Especifica una tabla secundaria relacionada con el Bean de entidad
si éste englobara a más de una. Tiene los mismos atributos que @Table

@SecondaryTables: Indica otras tablas asociadas a la entidad.

@UniqueConstraints: Especifica que una única restricción se incluya para la tabla
principal y la secundaria.

@Column: Especifica una columna de la tabla a mapear con un campo de la entidad.

• name. Nombre de la columna.

• unique. Si el campo tiene un único valor.

• nullable. Si permite valores nulos.

• insertable. Si la columna se incluirá en la sentencia INSERT generada.

• updatable. Si la columna se incluirá en la sentencia UPDATE generada.

• table. Nombre de la tabla que contiene la columna.

115

Figura 4.3 Anotaciones de Entidad

Desarrollo de EJB's

• length. longitud de la columna.

• precision. Número de dígitos decimales.

• scale. Escala decimal.

@JoinColumn: Especifica una campo de la tabla que es foreign key de otra tabla
definiendo la relación del lado propietario.

• name. Nombre de la columna de la FK.

• referenced. Nombre de la columna referencia.

• unique. Si el campo tiene un único valor.

• nullable. Si permite valores nulos.

• insertable. Si la columna se incluirá en la sentencia INSERT generada.

• updatable. Si la columna se incluirá en la sentencia UPDATE generada.

• table. Nombre de la tabla que contiene la columna.

@JoinColumns: Anotación para agrupar varias JoinColumn.

@Id: Indica la clave primaria de la tabla.

@GeneratedValue: Asociado con la clave primaria, indica que ésta se debe generar por
ejemplo con una secuencia de la base de datos.

@SequenceGenerator: Define un generador de claves primarias utilizado junto con la
anotación @GeneratedValue.

@TableGenerator: Define una tabla de claves primarias generadas.

116

Desarrollo de EJB's

@AttributeOverride: Indica que sobrescriba el campo con el de la base de datos
asociado.

@AttributeOverrides: Mapeo de varios campos.

@EmbeddedId: Se utiliza para formar la clave primaria con múltiples campos.

@IdClass: Se aplica en la clase entidad para especificar una composición de la clave
primaria mapeada a varios campos o propiedades de la entidad.

@Transient: Indica que el campo no se debe persistir.

@Version: Se utiliza a la hora de persistir la entidad en base de datos para identificar las
entidades según su versión.

@Basic: Mapeo por defecto para tipos básicos.

@OneToOne: Indica que un campo está en relación con otro.

@ManyToOne: Indica que un campo está asociado con varios campos de otra entidad.

@OneToMany: Asocia varios campos con uno.

@ManyToMany: Asociación de varios campos con otros con multiplicidad muchos-a-
muchos.

@Lob: Se utiliza junto con la anotación @Basic para indicar que un campo se debe
persistir como un campo de texto largo si la base de datos soporta este tipo.

@Temporal: Se utiliza junto con la anotación @Basic para especificar que un campo
fecha debe guardarse con el tipo java.util.Date o java.util.Calendar.

117

Desarrollo de EJB's

@Enumerated: Se utiliza junto con la anotación @Basic e indica que el campo es un tipo
String.

@JoinTable: Se utiliza en el mapeo de una relación ManyToMany o en una relación
unidireccional OneToMany.

@MapKey: Especifica la clave de una clase de tipo java.util.Map.

@OrderBy: Indica el orden de los elementos de una colección por un ítem específico de
forma ascendente o descendente.

@Inheritance: Define la forma de herencia de una jerarquía de clases entidad, es decir la
relación entre las tablas relacionales con los Beans de entidad.

@PrimaryKeyJoinColumn: Especifica la clave primaria de la columna que es clave
extranjera de otra entidad.

118

Figura 4.4 Anotaciones de Entidad

Desarrollo de EJB's

4.4.2.2 Diferencias entre beans de sesión y de entidad

Los beans de entidad se diferencian de los beans de sesión, básicamente, en que son
persistentes, permiten el acceso compartido, tienen clave primaria y pueden participar en
relaciones con otros beans de entidad:

• Persistencia. Debido a que un bean de entidad se guarda en una base de datos
se dice que es persistente, el estado del bean de entidad existe más allá de la
duración de la aplicación o del proceso del servidor J2EE.

Los beans de entidad tienen dos tipos de persistencia: Persistencia Gestionada por
el Bean (BMP) y Persistencia Gestionada por el Contenedor (CMP). En el primer
caso el bean de entidad contiene el código que accede a la base de datos. En el
segundo, la relación entre las entidades de la base de datos y el bean se describe
en el dichero de propiedades del bean, y el contenedor EJB se ocupa de la
implementación.

• Acceso compartido. Los clientes pueden compartir beans de entidad, con lo que
el contenedor EJB debe gestionar el acceso concurrente a los mismos.

• Clave primaria. Cada bean de entidad tiene un identificador único. Este
identificador único, o clave primaria, permite al cliente localizar a un bean de
entidad particular.

• Relaciones. De la misma forma que una table en una base de datos, un bean de
entidad puede estar relacionado con otros EJB. Las relaciones se implementan
según si la persistencia está siendo manejada por el bean o por el contenedor. En
el primer caso debemos programar y gestionar nosotros las relaciones, en el
segundo caso es el propio contenedor el que se hace cargo.

119

Desarrollo de EJB's

4.4.3 Beans dirigidos por mensajes

Estos beans permiten que las aplicaciones J2EE reciban mensajes JMS de forma
asíncrona. Así el hilo de ejecución de un cliente no se bloquea cuando está esperando
que se complete algún método de negocio de otro enterprise bean. Los mensajes pueden
enviarse desde cualquier componente J2EE o por una aplicación o sistema JMS que no
use la tecnología J2EE.

4.4.3.1 Anotaciones de Beans dirigidos por mensajes

@Timeout: Asigna un tiempo de ejecución a un método.

@ApplicationException: Excepción a enviar al cliente cuando se produzca.

120

Desarrollo de EJB's

4.4.3.2 Diferencias con los beans de sesión y de entidad

La diferencia más importante de los beans de sesión o entidad con los beans dirigidos por
mensajes es que en estos últimos los clientes no acceden a los beans mediante
interfaces, sino que un bean dirigido por mensajes sólo tienen una clase bean.

En algunos aspectos, un bean dirigido por mensajes es parecido a un bean de sesión sin
estado:

• Las instancias de un bean dirigido por mensajes no almacenan ningún estado
conversacional ni datos de clientes.

• Todas las instancias de los beans dirigidos por mensajes son equivalentes, lo que
permite al contenedor EJB asignar un mensaje a cualquier instancia. El contenedor
puede almacenar estas instancias para permitir que los streams de mensajes sean
procesador de forma concurrente.

• Un único bean dirigido por mensajes puede procesar mensajes de múltiples
clientes.

Las variables de instancia de estos beans pueden contener algún estado referido al
manejo de los mensajes de los clientes. Por ejemplo, pueden contener una conexión JMS,
una conexión de base de datos, etc.

Cuando llega un mensaje, el contenedor llama al método onMessage del bean. Este
método suele realizar un casting del mensaje a uno de los cinco tipos de mensajes de
JMS y manejarlo de forma acorde con la lógica de negocio de la aplicación. El método
puede llamar a métodos auxiliares, o puede invocar a un bean de sesión o de entidad
para procesar la información del mensaje o para almacenarlo en una base de datos.

121

Desarrollo de EJB's

4.4.4 Anotaciones de dependencias

@EJB: Mediante esta anotación el contenedor asignará la referencia del EJB indicado.

• name. Nombre del recurso.

• BeanInterface. Nombre del Bean especificado con el atributo name en caso de
que varios Beans implementen la misma interfaz.

• mappedName. Si se quiere que el contenedor maneje el objeto indicado de
manera específica.

• description. Descripción de la anotación para la inyección de dependencia.

@Resource: Referencia de un recurso específico.

• name. Nombre del recurso.

• type. Tipo del objeto.

• authenticationType. Especifica dónde se debe realizar el proceso de
autenticación.

• shareable. Indica si el objeto se comparte.

4.5 Diferencias con la version EJB 2.x

La especificación EJB 3.0 permite una fácil creación de EJBs con un desarrollo mas
simple, facilitanto el desarrollo basado en pruebas y centrándose más en el modelo de
persistencia basado en POJO. El API de Persistencia Java simplifica el uso de la
persistencia transparente mediante anotaciones.

122

Desarrollo de EJB's

4.5.1 Stateless Session Beans

En EJB 2.x y anteriores especificaciones, los beans de sesión requieren dos interfaces: la
remota (o local) para definir los métodos de negocio, y la interface home para definir los
métodos de ciclo de vida. Un bean de sesión también puede implementar varias
interfaces.

Un interface remoto debe extenderse desde javax.ejb.EJBObject. La interfaz remota
defina los métodos de negocio y debe seguir las reglas de RMI-IIOP. Un interfaz home
debe extenderse desde javax.ejb.EJBHome y define los métodos de ciclo de vida. Debe
contener el método create() sin parámetros para crear una instancia del contenedor de
EJB. La clase de implementación del bean debe ser pública y tiene que implementar la
interface javax.ejb.SessionBean.

Como podemos observar las diferencias son notables con la versión 3.0, la cual facilita la
labor de programación. En EJB 3.0 un bean de sesión es un POJO (Plain Old Java
Object) manejado por el contenedor. Además, como hemos explicado anteriormente, hace
uso de anotaciones para especificar el tipo de bean. No existe el concepto de control
remoto de interface home ya que la interfaz se define solo en la lógica de negocio y se
indica si es local o remoto por medio de las anotaciones comentadas anteriormente.

123

Figura 4.5 Remote y Home Interface en EJB 2.x

Desarrollo de EJB's

4.5.2 Stateful Session Beans

Las diferencias en los beans de sesión con estado son muy parecidas a las de beans de
sesión con estado. La principal diferencia es que en el bean de sesión con estado puede
tener una sobrecarga de métodos create(). Para cada método crear en el interface home
tiene que haber un métod ejbCreate in la implementación de la clase del bean.

Session Bean – Interfaz de cliente

En EJB 2.x el cliente obtiene un objeto de sesión mediante un nombre JNDI y luego llama
al método create(). La diferencia con 3.0 es que en éste solo es necesario usar la
anotación @EJB.

4.5.3 Message-Driven Beans

En EJB 2.x implementan las interfaces javax.ejbMessageDrivenBean y
javax.jms.MessageListener. Cuando el destino del mensaje lo recibe, el contenedor EJB
invoca el método OnMessage. Igual que los beans de sesión, los beans dirigidos por
mensajes también tienen un archivo de desarrollo de implementación (ejb-jar.xml), que
contiene la información del nombre del bean, la clase, el destino del mensaje y su tipo.
Las diferencias con EJB 3.0, como en la mayoría de casos, se basa en que el bean
dirigido por mensaje es un POJO manejado por el contenedor EJB, el cual se implementa
mediante anotaciones.

124

Desarrollo de EJB's

4.5.4 Entity Beans

El bean de Entidad está manejado por un CMP (Container-Managed Persistence). En EJB
2.x los beans son objetos locales. La interfaz local del EJB es la encargada de habilitar el
código para localizar y manejar los beans de entidad. La clase bean debe implementar
ttodos los métodos de la interfaz javax.ejb.EntityBean. La clase de implementación del
bean deben utilizar métodos de acceso para acceder al campo persistente. El contenedor
maneja la persistencia y los métodos de ciclo de vida de los beans de entidad, que se
declaran vacios en la clase de implementación del bean.

El contenedor sincroniza automáticamente el estado del bean de entidad con la base de
datos llamando a los métodos del ciclo de vida. Los descriptores de despliegue de los
beans de entidad necesitan ser escritos o generados usando herramientas.

En EJB 2.x, la configuración de los descriptores de despliegue XML para el bean de
entidad CMP era un obstáculo importante. Por lo tanto, una de las ventajas importantes
de la especificación EJB 3.0 es la de proteger al programador de tener que trabajar con
archivos XML. Además en EJB 3.0 la clase entidad es un POJO que están marcados por
la anotación @Entity y todas las propiedades en la clase entidad que no están marcadas
con la anotación @Transient son consideradas persistentes.

En EJB 3.0, el API de persistencia define las anotaciones para definir los criterios de
persistencia y la relación en las líneas de los conceptos de mapeo objeto-relacional. Las
clases de entidad no necesitan las interfaces home ni local. Los métodos de búsqueda
están especificados con la anotación @NamedQuery.

125

Desarrollo de EJB's

4.6 Ventajas de la tecnología EJB

Las ventajas que ofrece la arquitectura Enterprise JavaBeans a los desarrolladores de las
aplicaciones son las siguientes:

• Simplicidad. El contenedor de aplicaciones libera al programador de realizar las
tareas del nivel del sistema, gracias a eso la escritura de un enterprise bean es casi
tan sencilla como la escritura de una clase Java. No nos tenemos que preocupar
de la seguridad, transacciones, concurrencia o programación distribuida. Como
consecuencia solo debemos concentrarnos en la lógica de negocio y el dominio
específico de aplicación.

• Portabilidad de la aplicación. Una aplicación EJB puede ser desplegada en
cualquier servidor de aplicaciones que soporte J2EE.

• Reusabilidad de componentes. Una aplicación EJB está formada por
componentes enterprise beans, cada uno de los cuales puede ser reusado a nivel
de desarrollo y de aplicación cliente. Un bean desarrollado puede utilizarse en
distintas aplicaciones adaptando sus características a las necesidades de cada
momento. También un mismo bean puede ser usado por múltiples aplicaciones
cliente.

• Posibilidad de construcción de aplicaciones complejas. La arquitectura EJB
simplifica la construcción de aplicaciones complejas. Al estar basada en
componentes y en un conjunto de interfaces, se facilita el desarrollo en equipo de
la aplicación.

• Separación de la lógica de presentación y la lógica de negocio. Un enterprise
bean encapsula típicamente un proceso de negocio, lo cual está independiente de
la lógica de presentación. El bean proporciona unos datos de salida que pueden
ser utilizados en distintos interfaces. Esta separación hace posible desarrollar
varias lógicas de presentación para la misma lógica de negocio o cambiar los
interfaces sin modificar el código de la lógica de negocio.

126

Desarrollo de EJB's

• Despliegue en varios entornos. La escalabilidad de los EJB permite el
despliegue de las aplicaciones en distintos sistemas operativos, bases de datos o
aplicaciones ya en marcha.

• Despliegue distribuido. La arquitectura EJB hace posible que las aplicaciones se
desplieguen de forma distribuida entre distintos servidores de una red. El código es
el mismo independientemente de si el bean se va a desplegar en una máquina o en
otra.

• Interoperabilidad entre aplicaciones. La arquitectura EJB hace más fácil la
integración de múltiples aplicaciones de diferentes orígenes.

• Integración con otros sistemas. Las APIs como Java Message Service hacen
posible la integración de los enterprise beans con otros sistemas que no son Java.

• Herramientas de desarrollo. El hecho de que la especificación EJB sea un
estándar hace que exista una oferta creciente de herramientas y formación para
facilitar el trabajo.

A continuación vemos las ventajas que ofrece la arquitectura EJB a un posible cliente
final:

• Elección de servidor. Debido a que las aplicaciones EJB pueden ser ejecutadas
en cualquier servidor J2EE, no queda ligado solo a un tipo de servidores. Un cliente
puede dejar de estar atado a un tipo de servidor y cambiarlo cuando sus
necesidades lo requieran. La misma aplicación puede ser ejecutada en Jboss o
Glassfish, por ejemplo.

• Gestión de las aplicaciones. Las aplicaciones son más sencillas de manejar
debido a que existen herramientas de control más elaboradas.

127

Desarrollo de EJB's

• Integración con aplicaciones y datos ya existentes. La arquitectura EJB y otras
APIs de J2EE simplifican y estandarizan la integración de aplicaciones EJB con
aplicaciones no Java y sistemas en el entorno operativo del cliente que lo utilice.
Por ejemplo, no hace falta cambiar un esquema de base de datos para encajar una
aplicación.

• Seguridad. La arquitectura EJB traslada la mayor parte de la responsabilidad de la
seguridad de una aplicación de el desarrollador de aplicaciones al vendedor del
servidor, los cuales están más cualificados que el desarrollador para hacer segura
la aplicación.

4.7 Inconvenientes de EJB

A continuación enumeraremos los inconvenientes de la tecnología EJB:

• Prueba de componentes. La mayor parte de los componentes pueden ser
comprobados fuera del contenedor, pero el servicio de de contenedor de objetos
sólo puede ser comprobado dentro del contenedor.

• Conocimiento completo de Java. EJB es uno de los principales componentes de
J2EE, por lo cual para desarrollarlo se debe tener conocimiento de otras partes de
J2EE como RMI o JDBC.

• Tiempo de Desarrollo. Desarrollar un sistema con EJB es complejo en lo referido
a tiempo de desarrollo. Puede no ser ideal para todas las empresas.

128

Desarrollo de EJB's

4.8 Tutorial de creación de EJB

A continuación describiremos los pasos de la creación de un módulo EJB junto con los
distintos beans en el entorno de desarrollo Netbeans y utilizando una aplicación web
basada en Servlets, ejecutándose en el servidor de aplicaciones Glassfish. En este caso
utilizamos beans de sesión de tipo Stateless.

1. Creación del módulo EJB

Desde Netbeans, creamos un nuevo proyecto y seleccionamos Java EE →
EJB Module. Escribimos el nombre del módulo y seleccionamos Glassfish
como servidor.

129

Figura 4.6 Selección de Módulo EJB

Desarrollo de EJB's

2. Creación de lógica de negocio

Con el módulo EJB creado procedemos a crear toda la lógica de negocio necesaria
para obtener la información de las tablas de la base de datos.

3. Creación de bean de entidad

A continuación creamos las clases entidad que representaran a nuestras
tablas de la base de datos. Para ello hacemos click derecho en el módulo
EJB y seleccionamos un archivo nuevo de tipo Persistencia → Clase entidad a

partir de base de datos.

130

Figura 4.7 Selección de bean entidad

Desarrollo de EJB's

Hacemos click en siguiente y aparece una ventana con la opción Nueva fuente de
Datos. Se nos muestra una ventana donde introducimos el nombre que
representará nuestra fuente de datos y seleccionamos la conexión a la base de
datos que elijamos.

Una vez realizado este paso se nos cargaran automáticamente las tablas
creadas en la base da datos. Seleccionamos la tabla con la que queremos
trabajar en el bean de entidad.

131

Figura 4.8 Selección de Base de Datos

Figura 4.9 Selección de tablas

Desarrollo de EJB's

Hacemos click en siguiente y se nos muestra una ventana donde tenemos el
nombre de la tabla y el nombre de la clase que representa a esta tabla.
Ingresamos el nombre del paquete donde se guardará la clase. A continuación
hacemos click en Crear unidad de Persistencia y se nos muestra la siguiente
ventana.

Como podemos observar se nos crea la unidad de persistencia con el proveedor
Toplink que se encarga de convertir los objetos Java en documentos XML.

Con está acción se nos ha creado la clase de la tabla de base de datos además
del archivo persistence.xml que contiene la referencia a la base de datos.

132

Figura 4.10 Creando la unidad de persistencia

Desarrollo de EJB's

4. Creación de beans de Sesión

A continuación crearemos las clases que implementarán los métodos para
toda la lógica, que serán de tipo SessionBean. Hacemos click derecho al
proyecto y añadimos un archivo Persistencia → Session Beans para clases
entidad. Como podemos observar esto creará las classes en base a la clase que
representa la entidad. Seleccionamos la clase que queremos añadir y activamos la
opcion Remote.

133

Figura 4.11 Clase entidad

Figura 4.12 Creación de Session Beans

Desarrollo de EJB's

Automáticamente se nos ha creado las clases del tipo SessionBean creadas y los
métodos de create, edit, remove, find y findAll implementados.

5. Añadir EJB a servidor Glassfish

A continuación hacemos click derecho en el proyecto y seleccionamos deploy
para agregar el módulo EJB en el servidor Glassfish.

134

Figura 4.13 SessionBean

Desarrollo de EJB's

Con todo esto ya tenemos nuestro EJB creado y solo nos faltaría crear la interface que lo
utilice.

4.9 Explicación de la creación de EJB

Anteriormente hemos comentado cual es el proceso de creación de un EJB. A
continuación explicaremos más detalladamente el proceso comentando el código.

4.9.1 API de Persistencia: Entity Manager

Básicamente se encarga del mapeo entre una tabla relacional y su objeto Java.
Proporciona métodos para manejar la persistencia de un Bean de Entidad, permite añadir,
eliminar, actualizar y consultar así como manejar su ciclo de vida. Sus métodos más
importantes son:

135

Figura 4.14 Deploy EJB

Desarrollo de EJB's

• persist (Object entity). Almacena el objeto entity en la base de datos.

• merge (T entity). Actualiza las modificaciones en la entidad devolviendo la lista
resultante.

• remove (Object entity). Elimina la entidad.

• find (Class <T> entity, Object primaryKey). Busca la entidad a través de su clave
primaria.

• flush (). Sincroniza las entidades con el contenido de la base de datos.

• refresh (Object entity). Actualiza el estado de la entidad con su contenido en la
base de datos.

• createQuery(string query). Crea una consulta utilizando el lenguaje JPQL.

• createNativeQuery (). Crea una consulta utilizando el lenguaje SQL.

• isOpen (). Comprueba si está abierto el EntityManager.

• close (). Cierra el EntityManager.

Las funciones que hemos implementado son las siguientes:

136

Desarrollo de EJB's

Podemos obtener una referencia al EntityManager a través de la anotación
@PersistenceContext. El contenedor de EJB nos proporciona el contexto de persistencia
mediante inyección por lo que no tendremos que preocuparnos de su creación y
destrucción.

137

Figura 4.15 Funciones del EntityManager

Figura 4.16 Implementación del EntityManager

Desarrollo de EJB's

4.9.2 Unidad de Persistencia

Una unidad de persistencia defina un conjunto de todas las clases de entidad que están
administrados por instancias EntityManager en una aplicación. Este conjunto de clases de
entidad representan los datos contenidos en una única base de datos.

Las unidades de persistencia son definidas en el archivo de configuración
persistence.xml. Cada unidad de persistencia debe tener un identificador único.

El contenido del archivo persistence.xml es el siguiente:

4.9.3 Ciclo de vida de una Entidad

Engloba dos aspectos: la relación entre el objeto Entidad y su contexto a persistir y por
otro lado la sincronización de su estado con la base de datos. Para realizar estas
operaciones la Entidad puede encontrarse en cualquiera de estos cuatro estados:

• new. Nueva instancia de la Entidad en memoria sin que aún le sea asignado su
contexto persistente almacenado en la tabla de la base de datos.

138

Figura 4.17 persistence.xml

Desarrollo de EJB's

• managed. Entidad dispone de contenido asociado con el de la tabla de la base de
datos debido a que se utilizó el método persist(). Los cambios que se produzcan en
la Entidad se podrán sincronizar con los de la base de datos llamando al método
flush().

• detached. La Entidad se ha quedado sin su contenido persistente. Es necesario
utilizar el método merge() para actualizarla.

• removed. Estado después de llamarse al método remove() y el contenido de la
Entidad será eliminado de la base de datos.

139

Figura 4.18 Ciclo de vida de una Entidad

Desarrollo de EJB's

4.10 Ejemplo

A continuación desarrollaremos un ejemplo que utilice el EJB que hemos creado
anteriormente. Para ello creamos una interface basada en JSP, dentro del cual creamos
un servlet, que será el encargado de llamar al EJB.

Para esto dentro del método processRequest del servlet hacemos click derecho y
seleccionamos Insertar Código → Call Enterprise Bean. Aquí escogemos nuestro bean de
sesión creado anteriormente.

Con esto último se nos ha copiado el código de llamada remoto a EJB. Solo nos queda
utilizar los métodos proporcionados por este EJB. Para este caso utilizaremos el método
findAll que se encarga de mostrar toda la lista de productos que hayan en la tabla de la
base de datos seleccionada. El código que se encarga de hacer la llamada a findAll es el
siguiente.

140

Figura 4.19 Selección de EJB

Desarrollo de EJB's

Y finalmente solo nos queda hacer referencia al servlet que acabamos de crear desde la
página de index.jsp. Cuando ejecutamos la aplicación se nos muestra lo siguiente:

141

Figura 4.20 Código de findAll

Figura 4.21 Ejemplo de findAll

Desarrollo de EJB's

4.10.1 Análisis de resultados

Para hacer una comparación entre los distintos tiempos vamos a utilizar la API JAMon
Java Application Monitor, que permite ver los tiempos entre capas, cuanto tiempo tarde en
ejecutarse un determinado EJB, JSP o servlet. Cuanto tarda la Base de datos en ejecutar
cierta consulta y pasarla a la clase que la ha pedido, etc.

No sólo podemos sacar estadísticas de tiempo en la ejecución, sino que también
podemos ver cuantos usuarios simultáneos hay en la apliación y detectar errores de
programación.

Para la ejecución de la API deberemos escribir el siguiente código. Dónde start es el
momento desde donde empezamos a mediar y stop cuando paramos.

4.10.2 Tiempo de ejecución de un EJB

Hemos analizado la diferencia de tiempo que hay entre la ejecución de un EJB con estado
a diferencia de un EJB sin estado. El contenido de los dos EJBs es el mismo y solo varia
el tipo.

142

Figura 4.22 Código de medición de tiempo

Desarrollo de EJB's

Como podemos observar en la gráfica la diferencia de tiempo de ejecución entre un EJB
Stateful y un Stateless es muy superior, aún siendo bajo (14 ms), ya que éste se tiene que
encargar de guardar el estado para una posible siguiente llamada al EJB.

4.10.3 Tiempo de ejecución de un Servlet

Esta vez analizaremos el tiempo de ejecución de un Servlet concreto, que es el que
hemos utilizado en el ejemplo anterior. Haremos la comparación utilizando EJBs con
estado y sin estado.

143

Figura 4.23 Tiempo de ejecución EJB

Desarrollo de EJB's

4.10.4 Tiempo de acceso a la Base de Datos

Haciendo el análisis del tiempo que se tarda en acceder a la base de datos podemos
observar que no influye el tipo de EJB de sesión ya que el tiempo es el mismo.

144

Figura 4.24 Tiempo de ejecución de un Servlet

Figura 4.25 Tiempo de acceso a la BD

CAPÍTULO 5

Desarrollo de la capa de presentación

Desarrollo de la capa de presentación

5.1 Alternativas para la capa de presentación

Cuando nos planteamos el desarrollo de una aplicación, una de las cosas más
importantes es identificar el tipo de aplicación que vamos a desarrollar. El tipo de
aplicación que construiremos dependerá de las restricciones de despliegue que tengamos
y del servicio que se quiere ofrecer. Por ejemplo, se puede tener la restricción de no
requerir ningún tipo de instalación en los clientes, en cuyo caso tendríamos una aplicación
web. Tenemos los siguientes tipos de aplicaciones.

5.1.1 Aplicaciones basadas en web

Estas aplicaciones se pueden ejecutar en cualquier navegador sin la necesidad de
realizar ninguna instalación en el cliente.

5.1.1.1 Aplicaciones Servlet/JSP clásicas

JSP permite agregar muchas funcionalidades a una página HTML dinámicamente. Las
aplicaciones Servlet/JSP permiten ejecutar EJB y presentar los resultados en formato html
mediante el comando println. Cuando la página JSP se despliega, el contenido se ejecuta
de adentro hacia fuera, un servlet se crea basándose en las etiquetas scriplets
incrustados en el código Java. Todo esto sucede de manera transparente para el usuario.
Una de las ventajas de JSP es puede ser desarrollado por un programador web sin
necesidad de tener conocimientos de un desarrollador.

En el ejemplo utilizado que hemos explicado en el capítulo anterior de EJB, utilizamos una
página JSP simple como página de inicio que mediante una llamada a un Servlet, éste se
encarga de llamar a los EJBs necesarios para la ejecución de la aplicación y nos devuelve
como resultado en formato html los datos que hemos pedido.

147

Desarrollo de la capa de presentación

En la siguiente figura se explica el proceso de JSP.

A continuación exponemos la resolución final del programa realizado, que se adjuntará
junto con la memoria del proyecto.

148

Figura 5.1 Esquema JSP/Servlet

Desarrollo de la capa de presentación

5.1.1.2 Aplicaciones RIA

Las aplicaciones RIA (Rich Internet Applications), son la elección más adecuada cuando
queremos dar una versión más visual y con mejor respuesta a través de la red. Estas
aplicaciones ofrecen la calidad gráfica de una aplicación de escritorio y las ventajas de
despliegue y mantenimiento de una página web.

Las aplicaciones RIA son un nuevo tipo de aplicaciones con más ventajas que las
tradicionales aplicaciones web. Surgen como una combinación entre aplicaciones web y
aplicaciones tradicionales.

Para desarrollar una aplicación RIA hemos utilizado ICEfaces, que es una framework Ajax
habilitado con J2EE y que utiliza lenguaje Java.

Esta aplicación que hemos desarrollado consiste en una página de Login que mediante
EJBs se comunica con la base de datos y comprueba si el usuario y la contraseña son
correctos. El programa se adjunta junto con la memoria y el resultado es el siguiente.

149

Figura 5.2 Servlet/JSP

Desarrollo de la capa de presentación

Si el login es correcto nos devuelve la palabra “logueado” y sino es correcto o ha habido
algun error de conexión nos devuelve un mensaje de error.

150

Figura 5.3 Página de login con la RIA ICEfaces

Figura 5.4 ICEfaces login correcto

Desarrollo de la capa de presentación

5.1.1.3 Desarrollo mediando struts

Los struts son un framework de la capa de presentación que implementa el patrón MVC,
modelo-vista-controlador, en Java. Y, como todo framework, intenta simplificar la
implementación de la arquitectura.

MVC es un patrón de diseño aportado originariamente por el lenguaje SmallTalk a la
Ingeniería del Software. Consiste principalmente en dividir las aplicaciones en tres partes:
Controlador, modelo y vistas. El controlador es el encargado de redirigir o asignar una
aplicación a cada petición. El modelo se corresponde con la lógica de negocio y una vez
realizadas las operaciones necesarias el flujo vuelve al controlador y la vista es la gestión
de la interfaz de los datos a los usuarios.

151

Figura 5.5 Esquema de MVC

Desarrollo de la capa de presentación

Para este caso hemos desarrollado un ejemplo que consiste en la validación de un login.
El navegador genera una solicitud que es atendida por el controlador. El mismo se
encarga de analizar la solicitud, seguir con la configuración que se le ha programado en el
xml y llamar al Action pasándole los parámetros enviados. El Actionform se encarga de
comprobar si los datos introducidos son correctos.

152

Figura 5.6 Esquema Struts de ejemplo

Desarrollo de la capa de presentación

El ejemplo está adjunto junto con la memoria y el resultado visual es el siguiente:

Si los valores son incorrectos muestra un mensaje de error y si es correcto te muestra la
siguiente página jsp.

153

Figura 5.7 Formulario

Desarrollo de la capa de presentación

5.1.1.4 Desarrollo mediante JSF

Al igual que Struts, JSF pretende normalizar y estandarizar el desarrollo de aplicaciones
web. JSF es posterior a Struts y por lo tanto se ha basado en ella para mejorar las
deficiencias. Además comparten el mismo creador.

JSF trata el interfaz de forma visual, similar a Swing o Visual Basic. De forma que la
programación del interfaz se haga a través de componentes mediante clicks.

La gran virtud de JSF es su sencillez, que además nos permite crear nuestros propios
componentes.

Esta vez hemos utilizado Visual Web JSF que es una herramienta mediante la cual
podemos arrastrar objetos de manera visual y el propio programa te genera código sin
necesidad de introducirlo manualmente. De esta manera obtenemos una interfaz muy
atractiva para el usuario sin necesidad de conocimientos complejos de jsp. Visual Web
JSF utiliza la librería Woodstock creada por Sun.

154

Figura 5.8 Login correcto

Desarrollo de la capa de presentación

El siguiente ejemplo es una simulación de como podría ser una aplicación empresarial
para recursos humanos, donde tenemos una base de datos con personas relacionadas
con la empresa y los datos de los empleados, junto con los estudios de cada uno.

A continuación veremos como sería cuando se ejecuta la página que muestra todos los
empleados que hay en la empresa.

155

Figura 5.9 Elementos de Woodstock

Desarrollo de la capa de presentación

Otro ejemplo serían formularios implementados para introducir datos en la base de datos.

156

Figura 5.10 Lista de empleados

Figura 5.11 Formulario

Desarrollo de la capa de presentación

5.1.2 Aplicaciones de escritorio

Las aplicaciones de escritorio, o Rich Client, son de tipo aplicación tradicional. Ofrecen
potentes interfaces gráficas y alto rendimiento. Pueden funcionar en todo tipo de entornos,
con conexión o sin conexión.

Para la realización del siguiente ejemplo hemos utilizado Swing, que es una biblioteca
gráfica para Java que incluye widgets como cajas de texto, botones, tablas, etc.

Las ventajas que ofrece Swing son varias, por ejemplo el diseño en Java puro provee
menos limitaciones a la plataforma y el desarrollo de componentes de Swing es más
activo. Por contraposición, al ser una plataforma de escritorio necesita tener instalados los
plug-in de Java en los ordenadores que quieran ejecutarlo y la necesidad de tener que
instalar actualizaciones en cada ordenador.

El ejemplo consiste en una aplicación que interaccione con la base de datos para que se
puedan añadir, modificar, actualizar o eliminar la misma.

157

Figura 5.12 Aplicación de escritorio

Desarrollo de la capa de presentación

5.2 Comparativa de los diferentes tipos de capas de presentación

Hemos realizado una comparativa de los tiempos de carga de los diferentes tipos de
capas de presentación y los resultados son los siguientes.

Como podemos observar en la gráfica hay una diferencia muy grande entre la aplicación
de escritorio y las demás aplicaciones. Esto es debido a que debe cargarse toda la
aplicación con todos los componentes desde el principio, a diferencia de las aplicaciones
web que éstas se cargan progresivamente a medida que se van ejecutando las distintas
páginas.

Cabe destacar también que cuantos más elementos dispongamos en la aplicación, más
tardará en desplegarse. JSF al disponer de elementos visuales más elaborados es lógico
que el tiempo sea mayor. Aun así, consideramos que el tiempo máximo de la aplicación
mas lenta es de 2342ms, con lo que al ser un tiempo no muy elevado no supone un
problema para su utilización.

158

Figura 5.13 Resultados de tiempos

JSF JSP/Servlet ICEfaces Struts Aplicación Escritorio
0

500

1000

1500

2000

2500

Máximo
Mínimo

Ti
em

po
 [m

s]

CAPÍTULO 6

Conclusiones

Conclusiones

6.1 Conclusiones

Para este proyecto, hemos realizado un estudio sobre las tecnologías que debemos
utilizar para realizar una aplicación empresarial, por lo tanto a continuación expondremos
qué hemos elegido finalmente y porque.

Antes de nada, cabe remarcar que las conclusiones de este estudio están condicionadas
por el estado actual del mercado. El mundo informático se encuentra en constante
evolución sin detenerse. Es por ello que lo que hoy puede ser la solución más adecuada,
en unos años pueda convertirse en algo obsoleto que requiera una actualización. De
todos modos, y teniendo en cuenta este universo cambiante, el estudio de este proyecto
se ha realizado para tener un período de validez de entre 3 y 5 años.

La primera decisión que hay que tomar es elegir la plataforma de desarrollo. En este caso
claramente distinguimos dos plataformas que pueden competir en cuanto a recursos,
filosofía y prestaciones, que son .NET y J2EE. Se analizó .NET Framework 2.0 ya que es
la especificación compatible con Mono, que es la implementación open source.
Actualmente está disponible la versión 4.0, pero solo es compatible con sistemas
operativos Windows.

La elección se ha decantado por J2EE. Principalmente hay que comentar que las dos
plataformas están destinadas a un mercado similar, pero con un despliegue diferente.
Mientras con .NET te ves restringido a utilizar toda la tecnología de Microsoft, lo que
comporta una gran inversión, la gran ventaja de J2EE es que es una especificación
abierta que puede adaptada por multitud de aplicaciones. Si trabajas con .NET estás
ligado principalmente a tecnologías de Microsoft, como por ejemplo BizTalk o Sharepoint.
Es por esta razón que para minimizar riesgos se ha decidido trabajar con J2EE que se
basa en procesos de estandarización de la Java Community Process en las tecnologías
que implementa. Además J2EE también permite la integración de otras plataformas, como
ya hemos comentado en su correspondiente capítulo, mediante RMI o Web Services.

Una vez elegida la plataforma de desarrollo se procede a elegir el servidor de las
aplicaciones. De todos los servidores que hemos estudiado en los capítulos anteriores del
proyecto los que destacan por sus características y por ser open source (recordamos que
en principio la empresa no está dispuesta a realizar ningún gasto adicional) son Jboss y
Glassfish. Los dos servidores de aplicaciones encajan perfectamente con la plataforma
J2EE y ofrecen servicios para EJB, Tomcat, etc.

161

Conclusiones

Glassfish pertenece a Sun Microsystems y Jboss fue comprada por RedHat. Hay que
remarcar que los dos son productos fiables y con comunidades de desarrollo grandes.
Para la elección de la plataforma se ha valorado principalmente el nivel de adopción de
estándares y las tecnologías opcionales que éstos pueden implementar. Se escoge
Glassfish por ser la especificación de referencia de J2EE por un lado, y por tener soporte
de Sun en su desarrollo. Además, si a la empresa en algún momento le interesa realizar
una importante ampliación, existe la versión comercial Sun Glassfish Enterprise Server,
que ofrece servicios extra y un soporte 24 horas. Otro punto a favor de Glassfish es la
integración con todos los productos de Sun, como por ejemplo con Netbeans. El propio
programa en su IDE dispone de un entorno para ejecutar las aplicaciones en el servidor,
de manera que se vuelve muy simple y eficaz para el desarrollador. Por otro lado, hay que
añadir que durante el transcurso de este proyecto Sun microsystems fue comprado por
Oracle, que también poseía una plataforma J2EE, por lo que las implicaciones de futuro
de esta compra son desconocidas.

Por último, hemos de decidir que tipo de tecnologías para la interfaz de usuario tenemos
que elegir para el desarrollo de la UI. Esta última depende tanto de las necesidades como
de criterios de usabilidad. Deberán valorarse las características requeridas en cada
aplicación en particular. Si por ejemplo se necesita una aplicación con gran carga de
interacción de UI, como aplicativos CAD o de gráficos, la mejor opción sería una
aplicación de escritorio, mientras que si prima la movilidad la opción sería aplicaciones
web.

En caso que queramos utilizar una aplicación web, como hemos visto anteriormente
disponemos de varias soluciones. Según la gráfica de comparaciones que se ha
realizado, realmente no existe una diferencia significativa valorando el tiempo, por lo tanto
descartamos este factor, sin embargo, en aplicaciones muy potentes, JSP solo envía http
y se ejecuta en el servidor y JSF se ejecuta parte en el cliente, deberemos elegir qué nos
interesa más. A partir de aquí, si queremos una aplicación más llamativa visualmente
podemos optar por ICEFaces o JSF mediante Woodstock.

Para hacer el prototipo de la aplicación se decidió por Woodstock, básicamente por su
fácil manejo de su edición y resultados eficaces. No obstante, en el futuro no se sabe que
pasará con esta librería ya que, como he comentado anteriormente, la reciente compra de
Oracle a Sun Microsystems, que ya disponía de su propia librería de JSF llamada Oracle
ADF, hace que posiblemente en el futuro pueda haber una fusión de estas tecnologías o
simplemente apoyar ésta última y dejar de respaldar a ICEFaces o Woodstock. Pero esto
es algo que por el momento no podemos averiguar.

162

Conclusiones

6.2 Conclusiones personales

Como conclusiones personales, este proyecto me ha ayudado muchísimo a mejorar
varios aspectos estudiados durante la carrera.

El conocimiento de Java que tenía antes de empezar este proyecto era muy básico y me
ha ayudado a ampliar conocimientos sobre éste así como utilizar objetos simples con
soltura.

Gracias a haber realizado varios ejemplos distintos de interfaces que en definitiva buscan
lo mismo me ha ayudado a aprender un poco de cada tecnología, haciendo un incapié en
JSF, que es donde he llegado a realizar una aplicación más elaborada.

Me ha ayudado a mejorar conocimiento de bases de datos ya que he tenido que realizar
varias bases de datos por mí mismo partiendo desde cero. Así como utilizar tecnologías
como JDBC para la interconexión de la base de datos con las aplicaciones.

También he aprendido a realizar un estudio amplio sobre un tema en concreto sabiendo
utilizar la información útil y desechar lo que no interesa, teniendo en cuenta que en la
mayoría de los casos la mayoría de la documentación está realizada por el propio
fabricante y, lógicamente, solo se valoran los puntos a favor de su producto.

Como conclusión general podríamos decir que ha sido una ampliación y resumen de todo
lo visto durante todos estos años de estudios.

163

Conclusiones

6.3 Posibles ampliaciones

Las ampliaciones que se podrían hacer y no se han realizado son las siguientes:

Como medida para el futuro, se podría explotar el rendimiento de Glassfish en cluster, con
varios servidores conectados entre sí y varios usuarios accediendo a la vez.

También se podría ampliar el retoque de las configuraciones de Glassfish en los
siguientes térmitos:

• Augmentar el rendimiento y la estabilidad.

• Fortalecer la seguridad.

• Mejorar la administración.

• Creación de diferentes tipos de usuario.

Finalmente otra continuación hubiese sido haber implementado toda una aplicación
empresarial que se dedicara a dirigir todos los recursos humanos de la empresa. Por
ejemplo se podría añadir varios tipos de usuarios, como administradores, jefes y
trabajadores, para que cada uno pudiese realizar sus operaciones pertinentes como
revisar el currículum, el historial de bajas, etc.

Esta posible ampliación se podría haber realizado en varias versiones diferentes para
ofrecer el producto a otras empresas por ejemplo como cliente de escritorio y como
aplicación web.

164

Bibliografía

Bibliografía

Referencias bibliográficas

[1] Kevin Mukhar and Chris Zelenak with James L. Weaver and Jim Crume, Beginning
Java EE 5 From Novice to Professional, APRESS, 2006

[2] Justin Couch and Daniel H. Steinberg, Java 2 Enterprise Edition Bible, Hungry
Minds, Inc., 2002.

Referencias Web

[3] http://msdn.microsoft.com/es-es/architecture/default.aspx

[4] https://glassfish.dev.java.net/

[5] http://docs.sun.com/

[6] http://netbeans.org/kb/index.html

[7] http://www.adictosaltrabajo.com/

[8] http://www.programacion.com/

167

http://msdn.microsoft.com/es-es/architecture/default.aspx
http://www.programacion.com/
http://www.adictosaltrabajo.com/
http://netbeans.org/kb/index.html
http://docs.sun.com/
https://glassfish.dev.java.net/

Anexos

Anexos

Anexo 1. Configuración de la plataforma de desarrollo

Para este proyecto las plataformas que hemos elegido para su desarrollo serán
PostgreSQL como base de datos, Glassfish como servidor de aplicaciones y Netbeans
como IDE para el desarrollo de Java. A continuación describiremos los pasos de la
instalación de cada uno de los elementos.

1.1 Instalación de Glassfish

Para hacer pruebas y no ejecutar Glassfish directamente en el servidor hemos decidido
instalar Máquina Virtual con el mismo Sistema Operativo que se utilizará para realizar una
simulación.
Para estas pruebas se ha utilizado la máquina virtual Sun VirtualBox con la
implementación Debian de GNU/Linux. Lógicamente el rendimiento será menor en una
máquina virtual pero será útil para realizar pruebas antes de aplicarlas al servidor real.

171
Figura A.1 VirtualBox

Anexos

1.1.1 Instalación de Debian GNU/Linux 5.0

Se ha instalado el paquete básico de la distribución de GNU/Linux Debian 5.0 sobre
VirtualBox con una reserva de memoria de 1 Gb y una partición virtual de disco duro de 8
Gb.

1.1..2 Instalación de JDK

Glassfish utiliza el Java Development Kit (JDK), que es un software que provee
herramientas de desarrollo para la creación de programas en java. Glassfish utiliza la
especificación J2EE y por lo tanto necesita la instalación de JDK.

Hay dos formas de instalar el paquete de java:

172

Anexos

1. Instalación a través de la página web de java

Para este tipo de instalación realizamos los siguientes pasos:

a) Descargar el archivo de instalador binario jdk_6u3_linux-i586.bin desde la página
web www.java.sun.com

b) En un terminal, nos vamos a la carpeta donde hemos descargado .bin:

$ cd <carpeta>

c) Le damos permisos de ejecución al archivo:

$ chmod +x jkd-6ul-linux-i586.bin

d) Instalamos:

$ sudo ./jdk-6ul-linux-i586.bin

e) Seguimos las instrucciones que aparecen en pantalla.

f) Movemos la carpeta creada después de la instalación a /usr/lib/jvm:

$ sudo mv jdk1.6.0_01 /usr/lib/jvm

g) Actualizamos el nuevo Java como una de las alternativas de Java:

$ sudo update-alternatives --install “/usr/bin/java” “java”
“/usr/lib/jvm/jdk1.6.0_01/bin/java” 1

h) Actualizamos la nueva alternativa como la real de Java:

$ sudo update-alternatives --set java
/usr/lib/jvm/jdk1.6.0_01/bin/java

173

http://www.java.sun.com/

i) Comprobamos si se ha instalado correctamente la versión 1.6.0:

$ java -version

2. Instalación a través de apt

APT (Advanced Packaging Tool) es un sistema de gestión de paquetes creado por el
proyecto Debian. APT simplifica en gran medida la instalación y eliminación de programas
en los sistemas GNU/Linux.

a) Actualización de la lista de sources. Editar el archivo /etc/apt/sources.list con la
página web de descargas de Debian.

b) Actualizar lista

$ apt-get update

c) Procedemos a la instalacion de OpenJDK que es lo mismo pero la versión software
libre.

d) Instalar OpenJDK

$ install openjdk-6-jdk

La instalación de OpenJDK se realizó con éxito y a continuación instalamos Glassfish 2.1

Anexos

1.1.3 Instalación de Sun GlassFish Enterprise Server v2.1

a) Descarga del GlassFish v2.1 utilizando wget guardándolo en la carpeta tmp.

$ cd /tmp wget
http://download.java.net/javaee5/v2.1_branch/promoted/Linux/glassfish-
installer-v2.1-b60e-linux.jar

b) Instalar Glassfish

$ glassfish java -Xmx256M -jar glassfish-installer-v2.1-b60e-linux.jar

c) Mover a la carpeta opt

d) Creamos el usuario “glassfish” que será el encargado de el servidor de
aplicaciones.

$ sudo adduser –home /opt/glassfish glassfish

e) Les damos permisos de ejecución al usuario glassfish.

$ sudo chown -R glassfish /opt/glassfish
$ sudo chgrp -R glassfish /opt/glassfish

f) Volver ejecutables los scripts de Ant.

$ chmod -R +x lib/ant/bin/

175

Anexos

g) Ejecutamos la configuracion.

$ sudo -u glassfish lib/ant/bin/ant -f setup.xml

h) Iniciar un Dominio

$ sudo -u glassfish bin/asadmin start-domain domain1

i) Configuramos el VirtualBox para que se conecte a través de la ip del host y
escribimos en el navegador de Windows la dirección http://192.168.56.101:4848.
Aquí tenemos la página principal de Glassfish, donde para acceder escribimos el
usuario y contraseña por defecto.

176

Anexos

1.1.4 Primera prueba en Glassfish

Para comprobar el correcto funcionamiento de Glassfish hemos descargado una prueba
de la página oficial https://glassfish.dev.java.net/downloads/quickstart/hello.war

Para ejecutar la prueba tenemos que ubicar el archivo en el directorio
/glassfish/domains/domain1/autodeploy/ y escribir en el navegador
http://192.168.56.101:8080/hello y se nos muestra la siguiente pantalla.

177

Figura A.2 Página principal de admin

Anexos

178

Figura A.3 Ejemplo Hello.war

Anexos

1.2 Instalación de PostgreSQL

Hacemos la instalación en Debian mediante el comando apt, se instala por defecto la
versión 8.3

$ sudo apt-get install postgresql

Se crea automáticamente el usuario postgres así nos logueamos como ese usuario para
crear una base de datos de prueba.

$ su – postgres

$ createdb postgres

Una vez creada la base de datos accedemos a la terminal de postgresql y definimos un
usuario y su contraseña para la base de datos.

$ psql postgres

$ alter user postgres with password 'XXXX';

1.2.1 Configuración del servidor de Base de Datos

Nuestro objetivo es manejar la base de datos instalada en Debian con la aplicación
PgAdmin que permite el manejo de esta en Windows. Para ello tenemos que hacer una
serie de modificaciones en los archivos de configuración de Postgresql.

Primero editamos el archivo postgresql.conf y modificamos las direcciones de escucha
para podernos conectar a la base de datos desde el “exterior”.

#listen_addressess = 'localhost'
#port=5432

179

Anexos

Pasará a estar así.

listen_addressess = '*'
port=5432

A continuación modificamos el archivo pg_hba.conf para definir la ip local desde la cual
nos conectamos.

#Ipv4 local connections:
host all all 192.168.56.1md5

Ya tenemos configurado postgresql. A continuación configuramos el programa pgAdmin III
desde Windows para que se conecte a la base de datos.

180

Figura A.4 VirtualBox

Anexos

1.3 NetBeans

La instalación de netbeans se ha realizado en windows, por lo que lo único que se ha
tenido que hacer es descargarse el archivo ejecutable desde la página oficial
http://netbeans.org/downloads/index.html.

Se ha elegido la versión 6.7.1 ya que es la última que cuenta con soporte a la aplicación
Visual Web JSF y es compatible con la versión 2.1 de Glassfish.

181

Figura A.5 Entorno de desarrollo NetBeans 6.7.1

								
	3.6.1.1 Servidor de aplicaciones JBoss

		2010-07-08T00:45:43+0200
	DAVID SERRA MANCHADO

