UNnB

Universitat Autonoma
de Barcelona

Estudio del servidor de
aplicaciones Glassfish y de
las aplicaciones J2EE

Memoria del projecte
d'Enginyeria Tecnica en
Informatica de Sistemes

realitzat per

David Serra Manchado

i dirigit per

Daniel Franco Puntes

Escola d’Enginyeria

Sabadell, Juny de 2010

UNnB

Universitat Autbnoma Model de certificat del tutor
de Barcelona

El sotasignat, Daniel Franco Puntes,

professor de I'Escola d’Enginyeria de la UAB,
CERTIFICA.:

Que el treball al que correspon la present memoria
ha estat realitzat sota la seva direccio
per en David Serra Manchado

I per a que consti firma la present.
Sabadell, Juny de 2010

Signat: Daniel Franco Puntes

Universitat Autdnoma Model de certificat del tutor de I'empresa
de Barcelona

El sotasignat, Joan Piedrafita Farras,
de OTSA Maquinaria Eléctrica S.L.,

CERTIFICA:

Que el treball al que correspon la present memoria
ha estat realitzat sota la seva supervisid
per en David Serra Manchado

I per a que consti firma la present.
Sabadell, Juny de 2010

Signat: Joan Piedrafita Farras

UNnB

Universitat Autbnoma
de Barcelona

Tabla de contenidos

iNDICE
INTRODUCCION 17
1.1 Previo 19
1.2 Objetivos 20
1.3 Motivacion 20
1.4 Estructura de la memoria 21
1.5 Agradecimientos 22
INTRODUCCION A J2EE 23
2.1 Plataforma Java 25
2.1.1 Java Specification Request 26
2.2 Java EE/J2EE 26
2.2.1 Introduccion 26
2.2.2 Alternativas a J2EE 29
2.2.2.1 PHP 29
2.2.2.2 C-C++ 29
2.3 .NET 30
2.3.1 Caracteristicas de .NET 30
2.3.2 Common Language Runtime (CLR) 31
2.3.3 .NET framework 33
2.3.4 .NET Remoting 35
2.3.5 Arquitectura 36
2.4 Diferencias entre Java2EE y .NET 37

UNnB

Universitat Autbnoma
de Barcelona

Tabla de contenidos

2.4.1 Ventajas de .NET 37

2.4.2 Ventajas de J2EE 39

2.5 Interoperabilidad entre J2EE y .NET 39
2.5.1 Interoperabilidad basada en Web Services 39

2.5.2 Interoperabilidad basada en I|IOP .NET 40
ENTORNO DE DESARROLLO PARA J2EE 41
3.1 Desarrollo de aplicaciones 43
3.1.1 Introduccion de Sistemas distribuidos 43

3.2 Arquitectura de las aplicaciones distribuidas 44
3.2.1 Arquitectura basada en componentes 44

3.2.2 Arquitectura orientada a servicios 45

3.2.3 Arquitectura orientada a capas 46

3.3 Software multinivel 49
3.3.1 Arquitecturas de 1-tier 49

3.3.2 Arquitectura de 2-tier 50

3.3.3 Arquitectura de 3-tier 52

3.3.4 Arquitectura de n-tier 53

3.4 J2EE 54
3.4.1 Arquitectura Aplicaciones J2EE 54

3.4.2 EJB 54
3.4.2.1 Tipos de EJBs 56

3.4.3 Historia de J2EE 58

3.4.4 Soporte de J2EE a las diferentes capas de la aplicacion 59
3.4.4.1 Soporte a la capa de persistencia 59

UNnB

Universitat Autbnoma
de Barcelona

3.4.4.1.1 Soporte para JPA
3.4.4.1.2 Soporte para JDBC
3.4.4.2 Soporte a la capa de légica de negocio
3.4.4.2.1 Control de transacciones JTA
3.4.2.2 Servicios de mensajeria JMS
3.4.3 Servicios de comunicacion
3.4.3.1 Soporte para CORBA
3.4.3.2 Soporte para Servicios Web
3.4.3.3 Soporte para RMI
3.4.3.4 Servicios de nombrado JNDI
3.4.4 Soporte a la capa de presentacion
3.4.4.1 Soporte para Serviet
3.4.4.2 Soporte para JSP
3.4.4.3 Soporte para JSF
3.4.5 Oftros niveles de soporte
3.4.5.1 Seguridad
3.4.5.2 Soporte para Concurrencia
3.4.5.3 Escalabilidad
3.4.6 Soporte para SOA
3.4.6.1 JBI
3.4.6.2 Open ESB
3.5 Resumen general de J2EE
3.6 Servidores de Aplicaciones Java EE 5 certificados
3.6.1 Jboss

3.6.1.1 Servidor de aplicaciones Jboss

Tabla de contenidos

59
60
61
61
63
65
65
66
68
70
71
71
73
75
77
77
78
78
79
79
79
81
82
83
84

UNnB

Universitat Autbnoma
de Barcelona

3.6.1.2 Servicios de Jboss
3.6.1.3 Ventajas de Jboss
3.6.1.4 Desventajas de Jboss
3.6.2 Apache Geronimo
3.6.2.1 Servicios de Apache Geronimo
3.6.2.2 Ventajas de Apache Geronimo
3.6.2.3 Desventajas de Apache Geronimo
3.6.3 Oracle WebLogic
3.6.3.1 Ventajas de Oracle WebLogic
3.6.3.2 Desventajas de Oracle WebLogic
3.7 Glassfish
3.7.1 Qué es Glassfish
3.7.2 Para qué sirve Glassfish
3.7.3 Cémo funciona un servidor de aplicaciones
3.7.4 Modular, Integrable y Extendible
3.7.5 Herramientas de programacion
3.7.6 Tecnologias de Integracion
3.7.7 Historia

3.7.8 Diferencia entre versiones de Glassfish

DESARROLLO DE EJB's

Tabla de contenidos

84
86
87
88
88
90
91
92
94
94
96
96
96
97
97
98
98
99

100

103

4.1 Introduccion de EJB
4.2 Servicios proporcionados por el contenedor EJB

4.3 Funcionamiento de los componentes EJB

4.4 Tipos de EJB

105
105
106
107

UNnB

Universitat Autbnoma Tabla de contenidos
de Barcelona

4.4.1 Beans de Sesion 108
4.4.1.1 Beans de sesion sin estado 108

4.4.1.2 Beans de sesion con estado 109

4.4.1.3 Anotaciones de un Bean se Sesion 110

4.4.2 Beans de entidad 111
4.4.2.1 Anotaciones de un Bean de Entidad 112

4.4.2.2 Diferencias entre beans de sesion y de entidad 119

4.4.3 Beans dirigidos por mensajes 120
4.4.3.1 Anotaciones de Beans dirigidos por mensajes 120

4.4.3.2 Diferencias con los beans de sesion y de entidad 121

4.4.4 Anotaciones de dependencias 122

4.5 Diferencias con la version EJB 2.x 122
4.5.1 Stateless Session Beans 123

4.5.2 Stateful Session Beans 124

4.5.3 Message-Driven Beans 124

4.5.4 Entity Beans 125

4.6 Ventajas de la tecnologia EJB 126
4.7 Inconvenientes de EJB 128
4.8 Tutorial de creacion de EJB 129
4.9 Explicacion de la creacion de EJB 135
4.9.1 API de Persistencia: Entity Manager 135

4.9.2 Unidad de Persistencia 138

4.9.3 Ciclo de vida de una Entidad 138

4.10 Ejemplo 140

4.10.1 Analisis de resultados 142

UNnB

Universitat Autbnoma Tabla de contenidos
de Barcelona

4.10.2 Tiempo de ejecucion de un EJB 142
4.10.3 Tiempo de ejecucion de un Servlet 143
4.10.4 Tiempo de acceso a la Base de Datos 144
DESARROLLO DE LA CAPA DE PRESENTACION 145
5.1 Alternativas para la capa de presentacion 147
5.1.1 Aplicaciones basadas en web 147
5.1.1.1 Aplicaciones Servlet/JSP clasicas 147

5.1.1.2 Aplicaciones RIA 149

5.1.1.3 Desarrollo mediando struts 151

5.1.1.4 Desarrollo mediante JSF 154

5.1.2 Aplicaciones de escritorio 157

5.2 Comparativa de los diferentes tipos de capas de presentacion 158
CONCLUSIONES 159
6.1 Conclusiones 161
6.2 Conclusiones personales 163
6.3 Posibles ampliaciones 164
BIBLIOGRAFIA 165
Referencias bibliograficas 167
Referencias Web 167
ANEXOS 169

Anexo 1. Configuracién de la plataforma de desarrollo 171-181

UNnB

Universitat Autbnoma Tabla de contenidos
de Barcelona

INDICE DE FIGURAS
Fig. 2.1 Arquitectura J2EE 27
Fig. 2.2 Organizacion de la estructura de un Framework en .NET 34
Fig. 2.3 Arquitectura de .NET Remoting 36
Fig. 2.4 Java vs .NET 37
Fig. 2.5 Web Services 39
Fig. 2.6 Ejemplo de IIOP .Net 40
Fig. 3.1 Diferencia entre capas y niveles 48
Fig. 3.2 Arquitectura 1-tier 50
Fig. 3.3 Arquitectura de 2-tier 51
Fig. 3.4 Arquitectura de 3-tier 53
Fig. 3.5 Arquitectura de 4-tier 53
Fig. 3.6 Modulo EJB 55
Fig. 3.7 Relacion entre aplicaciones cliente, codigo de negocio, servidor de 55

aplicacion y otroselementos basado en J2EE

Fig. 3.8 Diferentes versiones de J2EE 58
Fig. 3.9 Aplicaciones de J2EE 59
Fig. 3.10 Ejemplo de mapeo JPA 60
Fig. 3.11 Diagrama de clases de JDBC 61
Fig. 3.12 Arquitectura JTA 63
Fig. 3.13 Funcionamiento de JMS 64
Fig. 3.14 Esquema de CORBA 66
Fig. 3.15 Funcionamiento de Web Services 68
Fig. 3.16 Funcionamiento de RMI 69
Fig. 3.17 Comparacioén de RMI con el modelo OSI 70

Fig. 3.18 JNDI puede ser usado para buscar beans en EJB 71

UNnB

Universitat Autbnoma Tabla de contenidos
de Barcelona

Fig. 3.19 El navegador envia una peticion. El servidor identifica la peticion y 72
muestra la pagina web.
Fig. 3.20 Funcionamiento de JSP 74
Fig. 3.21 Componentes JSF en la pagina de configuracién de Glassfish 75
Fig. 3.22 Interfaz de ICEfaces 76
Fig. 3.23 Interfaz de Oracle ADF 76
Fig. 3.24 JBI 79
Fig. 3.25 Interaccion entre diferentes interfaces, EJB y Servlets/JSPs, servidor 81
de aplicaciones y servicios externos
Fig. 3.26 Esquema de Jboss 84
Fig. 3.27 Ejemplo de Geronimo utilizando Tomcat/Jetty y OpenEJB 90
Fig. 3.28 Tecnologias de WebLogic 93
Fig. 3.29 Evolucion de Glassfish 100
Fig. 4.1 Representacion del funcionamiento de los enterprise beans 106
Fig. 4.2 Anotacion Stateless 111
Fig. 4.3 Anotaciones de Entidad 115
Fig. 4.5 Remote y Home Interface en EJB 2.x 123
Fig. 4.6 Seleccion de Modulo EJB 129
Fig. 4.7 Seleccion de bean entidad 130
Fig. 4.8 Seleccion de Base de Datos 131
Fig. 4.9 Seleccion de tablas 131
Fig. 4.10 Creando la unidad de persistencia 132
Fig. 4.11 Clase entidad 133
Fig. 4.12 Creacion de Session Beans 133
Fig. 4.13 SessionBean 134
Fig. 4.14 Deploy EJB 135
Fig. 4.15 Funciones del EntityManager 137

Fig. 4.16 Implementacioén del EntityManager 137

UNnB

Universitat Autbnoma
de Barcelona

Fig
Fig
Fig

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

. 417
.4.18
.4.19
4.20
4.21
4.22
4.23
4.24
4.25
5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
A1
A2
A3
A4
A5

persistence.xml

Ciclo de vida de una Entidad
Seleccion de EJB

Cadigo de findAll

Ejemplo de findAll

Cddigo de medicion de tiempo
Tiempo de ejecucién EJB
Tiempo de ejecucién de un Servlet
Tiempo de acceso a la BD
Esquema JSP/Servlet
Servlet/JSP

Pagina de login con la RIA ICEfaces
ICEfaces login correcto
Esquema de MVC

Esquema Struts de ejemplo
Formulario

Login correcto

Elementos de Woodstock
Lista de empleados
Formulario

Aplicacion de escritorio
Resultados de tiempos
VirtualBox

Pagina principal de admin
Ejemplo Hello.war

VirtualBox

Entorno de desarrollo NetBeans 6.7.1

Tabla de contenidos

138
139
140
141
141
142
143
144
144
148
139
150
150
151
152
153
154
155
156
156
157
158
169
175
176
178
179

CAPITULO 1

Introduccion

UNnB

Universitat Autbnoma
de Barcelona Introduccion

1.1 Previo

Este proyecto se basa en un estudio del servidor de aplicaciones Glassfish asi como un
estudio general de las aplicaciones J2EE.

En el mundo empresarial se necesitan a diario multitud de aplicaciones tanto para uso
interno como para ofrecer a personas externas. Inicialmente las aplicaciones se
desarrollaban para un solo ordenador para mas adelante realizarse las primeras
aplicaciones cliente/servidor. Pero las necesidades de las empresas van evolucionando y
se crearon los sistemas distribuidos. De este modo aparece Java con su estandar J2EE,
que permite el desarrollo de aplicaciones multi-nivel.

Ante la complejidad y heterogeneidad de este tipo de sistemas, J2EE ofrece una
arquitectura unificada y modular que facilita el desarrollo de aplicaciones distribuidas,
proporcionandoles una serie de servicios que permiten acelerar el proceso de desarrollo
dentro de las necesidades especificas de una empresa.

Las caracteristicas mas importantes de la arquitectura J2EE son la portabilidad, la
escalabilidad, la simplicidad y la capacidad de integracion. Su desarrollo se basa en
especificaciones de de Enterprise JavaBeans, Servlets y JSP, que explicaremos en el
transcurso de este proyecto.

Como servidor de las aplicaciones J2EE se ha optado por Glassfish, desarrolllado por Sun
Microsystems, es un servidor Open Source que ofrece multitud de herramientas que
encajan con la filosofia de J2EE y dispone su apoyo asi como de todo el soporte de JSP,
JSF, EJB, efc.

Todas estas aplicaciones supondrian un gasto muy elevado para las empresas, que
gracias a estas herramientas open source se pueden llevar a cabo sin ninguna inversién
inicial.

19

UNnB

Universitat Autbnoma
de Barcelona Introduccion

1.2 Objetivos

El objetivo principal del proyecto consiste en realizar un estudio sobre J2EE y Glassfish.
Realizar un analisis de sus componentes asi como de sus posibles alternativas tanto de
aplicaciones como de servidores. Ademas realizar un estudio completo sobre EJB asi
como sus diferentes tipos. Y finalmente, realizar una comparativa entre las diferentes
posibilidades de interfaces de presentacion que se se pueden utilizar segun las diferentes
tecnologias existentes.

Finalmente el ultimo objetivo es la realizacibn de un prototipo de una aplicacion
empresarial utilizando las herramientas explicadas en el proyecto consistente en un
administrador de los recursos humanos de la empresa para la gestién interna de los
trabajadores.

1.3 Motivacion

La tematica de este proyecto fue propuesta al autor por la empresa OTSA Maquinaria
Eléctrica S.L.

La principal motivacion del proyecto siempre ha sido entrar en contacto con un proyecto
real en el mundo laboral. Al surgir esa posibilidad, dentro del proyecto se ofrecia ampliar
conocimientos de base de datos y java, ademas de introducirse en la arquitectura de
sistemas multicapa basados en J2EE y servidor de aplicaciones.

Glassfish y J2EE son dos tecnologias que gracias a su distribucion open source hace que
haya una creciente comunidad de usuarios y las empresas se dedican cada vez mas en
trabajar sobre ellas, asi que estudiar sobre ella supone una oportunidad para aprender
sobre tecnologias en desarrollo actual.

20

UNnB

Universitat Autbnoma
de Barcelona Introduccion

1.4 Estructura de la memoria

Esta memoria se compone de 6 capitulos. El capitulo 1 es la Introduccién al proyecto, el
capitulo 2 es una introduccion a J2EE asi como un estudio a sus alternativas, el capitulo 3
se basa en el entorno de desarrollo J2EE detallando todas sus caracteristicas, estudio de
los tipos de arquitectura asi como del servidor de aplicaciones Glassfish y sus
competidores mas importantes, para acabar con la instalacién del entorno de desarrollo
que se ha utilizado para el proyecto. El capitulo 4 se basa en un estudio completo de la
tecnologia EJB, todos los tipos que hay y como se utilizan, finalizando con un tutorial de
creacion de EJB. El capitulo 5 se basa en la implementacion de diferentes tipos de logica
de usuario, intercambiando diferentes interfaces y realizando una comparacion final de los
tiempos de ejecucidon de cada uno. Finalmente, en el capitulo 6 podemos encontrar las
conclusiones finales del proyecto.

21

UNnB

Universitat Autbnoma
de Barcelona Introduccion

1.5 Agradecimientos

En primer lugar me gustaria agradecer a Joan Piedrafita Farras por el tiempo dedicado a
ayudarme a realizar este proyecto y por ofrecerse a aceptar a estudiantes para integrarse
en el mundo laboral.

En general agradezco a todo el equipo de OTSA Maquinaria Eléctrica S.L. la ayuda que
me han ofrecido en todo este tiempo, junto con mis compafieros estudiantes de la UPC
que gracias a ellos el transcurso de este proyecto se ha hecho mucho mas ameno.

También agradecer a Daniel Franco por ofrecerme la oportunidad de realizar este
proyecto en la empresa OTSA Maquinaria Eléctrica S.L.

Por ultimo agradecer a mi familia todo el apoyo que me han ofrecido durante todos los
anos de la carrera y a mis amigos y novia por aguantarme y apoyarme.

22

CAPITULO 2

Introduccion a J2EE

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.1 Plataforma Java

La plataforma Java es el entorno de software basado en Java que se ejecuta sobre otras
plataformas y su software puede ser usado sobre varios sistemas operativos y hardware.
Esta formada por tres componentes:

Lenguaje. Es un lenguaje de propdsito general, de alto nivel que utiliza el
paradigma de orientacion a objetos.

La Maquina Virtual. Los programas escritos en Java son compilados como
archivos ejecutables de una maquina virtual llamada Java Virtual Machine (JVM),
esto permite que los programas ejecutables puedan ejecutarse en distintas
arquitecturas.

Las Bibliotecas. El conjunto de bibliotecas del lenguaje es conocido como la Java
Aplication Programming Interface (Java API) y es un conjunto de componentes que
proporcionan diferentes herramientas para el desarrollo.

Para la plataforma Java existen diferentes ediciones:

Java 2 Plataform, Micro Edition (J2M3). Desarrollo para articulos moviles
pequenos.

Java 2 Plataform, Standard Edition (J2SE). Desarrollo para ordenadores
personales y aplicaciones en general.

Java 2 Plataform Enterprise Edition (J2EE). Desarrollo orientado a aplicaciones
empresariales.

25

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.1.1 Java Specification Request

El Java Community Process, es un proceso formalizado el cual permite a las partes
interesadas a involucrarse en la definicion de futuras versiones y caracteristicas de la
plataforma Java.

El Proceso JCP conlleva el uso de Java Specification Request, las cuales son
documentos formales que describen las especificaciones y tecnologias propuestas para
que sean anadidas a la plataforma Java. Una de estas especificaciones es la plataforma
J2EE.

2.2 Java EE/J2EE

2.2.1 Introduccion

Segun Sun Java Web: “J2EE define el estandar para el desarrollo de aplicaciones
multicapa basados en componentes de la empresa”.

Java J2EE es un conjunto de especificaciones para APls, una arquitectura de
computacion distribuida, y las definiciones para el paquete de componentes distribuidos
para el desarrollo.

Es una coleccidon de componentes estandarizados, contenedores y servicios para crear y
desarrollar aplicaciones distribuidas en una arquitectura bien definida.

J2EE esta dirigido a sistemas empresariales a gran escala. El software que funciona a
este nivel no se ejecuta en un solo PC por falta de recursos, por esa razén, el software
tiene que ser dividido en partes y desplegados en las plataformas de hardware adecuado.
Esa es la esencia de la computacion distribuida. J2EE proporciona un conjunto de
componentes estandarizados que facilitan la implementacion de software, interfaces
estandar que definen la interconexion de los distintos modulos de software, y los servicios
estandar que define como se comunican los distintos moédulos.

26

UNnB

Universitat Autbnoma
de Barcelona Introduccion a J2EE

J2EE permite desarrollar y ejecutar software de aplicaciones en Lenguaje de
programacion Java con arquitectura de N niveles distribuida, basandose ampliamente en
componentes de software modulares ejecutandose sobre un servidor de aplicaciones.

La caracteristica principal de esta plataforma es que en lugar de presentarse como un
producto o solucion software se presenta como una especificacion. Esta especificacion se
considera informalmente como un estandar debido a que los productos que la
implementen deben cumplir unos ciertos requisitos de conformidad con esta. De esta
manera se consigue un grado de apertura bastante importante ya que la implementacion
particular de un producto conforme a J2EE no “ata” el desarrollo de aplicaciones a dicho
producto y permite un alto grado de capacidad de despliegue en productos conformes con
la especificacion. Por otro lado el hecho de estar desarrollado sobre la plataforma Java
permite la instalacion de la solucién en diferentes arquitecturas hardware y sistemas
operativos.

J2EE proporciona un conjunto de API's para el desarrollo y coordinacidon de aplicaciones y
componentes distribuidos tales como EJB, XML, JDBC, RMMI, JMS, Java Server Pages,
Servlets, etc.

Figura 2.1 Arquitectura J2EE

27

UNnB

Universitat Auténoma

de Barcelona Introduccion a J2EE
Ademas J2EE también se encarga de proporcionar caracteristicas para la gestién de:

* Seguridad

» Control de transacciones

* Gestion de componentes desplegados

* Control de concurrencia

* Uso y asignacion de recursos

Estas caracteristicas han sido clave para la eleccion de la plataforma utilizada ya que le
confieren un nivel muy aceptable para el desarrollo de una aplicacién distribuida
multinivel.

28

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.2.2 Alternativas a J2EE

Algunas alternativas a la tecnologia J2EE puede ser .NET, PHP o C-C++.

2.2.2.1 PHP

La opcidén PHP permite crear un programa que se pueda ejecutar en cualquier servidor
desde un programa visualizador de paginas web y dar respuestas en funcion de los datos
que introduzca el usuario. PHP destaca en la sencillez, velocidad y facilidad de uso.
Caracteristicas que a su vez limitan su usabilidad y portabilidad con otros lenguajes y
programas. PHP tampoco ofrece ningun tipo de separacién entre aplicacion vy
presentacion.

Java Beans es mas lento que PHP en servidores pequefios pero es totalmente portable y
compatible, haciendo del lenguaje Java un lenguaje universal y no solo un lenguaje para
programar paginas dinamicas como PHP.

2.2.2.2 C-C++

Los lenguajes de programaciéon C-C++ se desarrollaron en los afios 70 pensando para
trabajar con el hardware extremadamente caro de la época. Las limitaciones que
suponian los elevados costes de ampliacién de velocidad del hardware de aquella época,
suponian que la orientacion de los lenguajes de programacion fuese hacia generar
velocidad desde la integracion del lenguaje con la maquina.

La evolucion del hardware hasta la actualidad ha vencido las barreras del hardware y hoy
en dia la necesidad es la portabilidad y la escalabilidad, caracteristicas que no posee C y
en las que se basa Java y, por extension, Java Beans. Ademas, C-C++ no poseen un
estandar para grandes proyectos de tipo J2EE.

29

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.3.NET

.NET es un proyecto de Microsoft para crear una nueva plataforma de desarrollo de
software con énfasis en transparencia de redes, con independencia de plataforma de
hardware y que permita un rapido desarrollo de aplicaciones. Basado en ella, la empresa
intenta desarrollar una estrategia horizontal que integre todos sus productos, desde el
sistema operativo hasta las herramientas de mercado. .NET podria considerarse una
respuesta de Microsoft al creciente mercado de los negocios en entornos Web, como
competencia a la plataforma J2EE de Sun Microsystems.

Desde el punto de vista del programador, el entorno .NET ofrece un solo entorno de
desarrollo para todos los lenguajes que soporta. Provee un extenso conjunto de
soluciones predefinidas para necesidades generales de la programacion de aplicaciones,
y administra la ejecuciéon de los programas escritos especificamente con la plataforma.
Esta solucion es el producto principal en la oferta de Microsoft, y pretende ser utilizada por
la mayoria de las aplicaciones creadas para la plataforma Windows.

Para el desarrollo y ejecuciéon de aplicaciones en este nuevo entorno tecnoldgico
Microsoft proporciona el conjunto de herramientas conocido .NET Framework SDK, que
es posible descargarlo gratuitamente de su sitio web e incluye compiladores de lenguajes
como C#, Visual Basic.NET, Managed C++ y JScript.NET especificamente disefiados para
crear aplicaciones para él.

2.3.1 Caracteristicas de .NET

Las principales caracteristicas de .NET son:

* Interoperabilidad con otros entornos. Permite operar con distintos
entornos,independientemente de la plataforma, usando MSIL (Microsoft
Intermediate Language) que es un conjunto de instrucciones independientes del
procesador.

30

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

* Soporte para desarrollar aplicaciones independientes del lenguaje. Debido a
la publicacion de la norma para la infraestructura comun de lenguajes (CLI), el
desarrollo de lenguajes se facilita. .NET soporta ya mas de 20 lenguajes de
programacion como son: C#, Visual Basic, Delphi, C++, J#, Perl, Python, Fortran y
Cobol.NET.

* Soporte para aplicaciones Web y servicios XML. La arquitectura .NET soporta
estos dos tipos de aplicaciones mediante la tecnologia ASP.NET.

 Soporte para aplicaciones remotas y COM. Proporciona servicios para
interactuar con componentes COM (Component Object Model) y COM+.

2.3.2 Common Language Runtime (CLR)

El corazon de la plataforma.NET es el CLR (Common Language Runtime), que es una
aplicacion similar a un maquina virtual que se encarga de gestionar la ejecucion de las
aplicaciones para ella escritas. A estas aplicaciones les ofrece numerosos servicios que
facilita su desarrollo y mantenimiento y favorecen su fiabilidad y seguridad. Entre ellos los
principales son:

Modelo de programacion consistente y sencillo, orientado a objetos.

* Eliminacién del temido problema de compatibilidad entre DLLs

* Ejecucion multiplataforma y multilenguaje.

* Recolector de basura: elimina de memoria objetos no utilizados.

» Soporte de multiproceso (hilos): permite ejecutar cédigo en forma paralela.

31

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

* Gestion del acceso a objetos remotos que permite el desarrollo de aplicaciones
distribuidas de manera transparente a la ubicacion real de cada uno de los objetos
utilizados en las mismas.

* Empaquetador de COM: coordina la comunicacién con los componentes COM para
que puedan ser usados por el .NET Framework.

32

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.3.3 .NET framework

La arquitectura .NET es una plataforma de desarrollo de software creada por Microsoft
con el objetivo de proporcionar a los programadores herramientas para el desarrollo de
aplicaciones. EI framework constituye la base de la plataforma .NET y denota la
infraestructura sobre la cual se reunen un conjunto de lenguajes, herramientas y servicios
que simplifican el desarrollo de aplicaciones en entorno de ejecucion distribuido. Los
elementos principales de .NET Framework son basicamente:

* La Common Language Specification (CLS) describe un conjunto de
caracteristicas comunes a diferentes lenguajes.

 La Base Class Library (BCL), que contiene la funcionalidad mas comunmente
utilizada para el desarrollo de todo tipo de aplicaciones.

* ADO.NET, que contiene un conjunto de clases que permiten interactuar con bases
de datos relacionales y documentos XML como repositorios de informacion
persistente.

* ASP.NET, que constituye la tecnologia dentro del .NET Framework para construir
aplicaciones con interfaz de usuario Web y servicios Web.

* Windows Forms, que constituye la tecnologia dentro del .NET Framewok que
permite crear aplicaciones con interfaz de usuario basada ventanas.

* ElI Common Language Runtime (CLR), comentado anteriormente.

33

UNnB

Universitat Autbnoma

de Barcelona Introduccion a J2EE

4

Common Language Specification

ASP.NET ‘ Windows Forms

ADO.NET y XML

.NET Framework SDK

Base Class Library

.NET Framework
Redistributable

Common Language Runtime

Windows COM+ Services

Figura 2.2 Organizacion de la estructura de un Framework en .NET

Y

Kelqiq sse|n

ylomoweld |IN°

34

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.3.4 .NET Remoting

La plataforma .NET es una apuesta de Microsoft para competir con la plataforma Java.
.Net Remoting es parte del .Net Framework y permite crear facilmente aplicaciones
ampliamente distribuidas, tanto si los componentes de las aplicaciones estan todos en un
equipo como si estan repartidos por el mundo. Se pueden crear aplicaciones de cliente
que utilicen objetos en otros procesos del mismo equipo o en cualquier otro equipo
disponible en la red. También se puede utilizar .NET Remoting para comunicarse con
otros dominios de aplicacion en el mismo proceso.

.NET Remoting proporciona un enfoque abstracto en la comunicacién entre procesos que
separa el objeto utilizado de forma remota de un dominio de aplicacion de cliente o
servidor especifico y de un mecanismo especifico de comunicacion. Por lo tanto, se trata
de un sistema flexible y facilmente personalizable. Se puede reemplazar un protocolo de
comunicacién con otro o un formato de serializacién con otro sin tener que recompilar el
cliente ni el servidor. Ademas, el sistema de interaccion remota no presupone ningun
modelo de aplicacion en particular. Se puede comunicar desde una aplicacion Web, una
aplicacion de consola, un servicio de Windows, desde casi cualquier aplicacion que se
desee utilizar. Los servidores de interaccion remota también pueden ser cualquier tipo de
dominio de aplicacion. Cualquier aplicacion puede albergar objetos de interaccion remota
y proporcionar sus servicios a cualquier cliente en su equipo o red.

35

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.3.5 Arquitectura

Un cliente se limita a crear una nueva instancia de la clase de servidor. El sistema de
interaccidn remota crea un objeto proxy que representa a la clase y devuelve al objeto del
cliente una referencia al objeto proxy. Cuando un cliente llama a un método, la
infraestructura de interaccibn remota controla la llamada, comprueba el tipo de
informacion y dirige la llamada por el canal hacia el proceso del servidor. Un canal a la
escucha detecta la solicitud y la reenvia al sistema de interaccion remota del servidor, que
a su vez busca (o crea, si es necesario) y llama al objeto solicitado. A continuacion el
proceso se invierte: el sistema de interaccion remota del servidor incluye la respuesta en
un mensaje que el canal del servidor envia al canal del cliente. Por ultimo, el sistema de
interaccidn remota del cliente devuelve el resultado de la llamada al objeto del cliente a
través del objeto proxy.

Sistema .MET Sistema .NET
Remoting Remoting

/!

(Objeto de servidor) (Objeto de cliente)

Figura 2.3 Arquitectura de .NET Remoting

36

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.4 Diferencias entre Java2EE y .NET

Las tecnologias Java2EE y .NET pertenecen a Sun Microsystems y Microsoft
respectivamente. Son dos empresas rivales que luchan por un mercado exclusivo.

¢

e Microsoft

'b'
===

— VS

Java ¢

Figura 2.4 Java vs .NET

2.4.1 Ventajas de .NET

.Net tiene la posibilidad de emplear multiples lenguajes de programacién, mientras
que J2EE solo trabaja con Java.

* Las herramientas de desarrollo incluidas por Microsoft en su Visual Studio .Net son
mucho mas simples, intuitivas y sencillas de manejar que las herramientas de
desarrollo equivalentes en J2EE suministradas por otras empresas.

* C# es un lenguaje interesante y facil de aprender por los programadores de Java y
existe un conversor Java-C#.

* .Net se ha disefiado considerando los servicios Web siendo estos servicios propios
de la plataforma.

37

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.4.2 Ventajas de J2EE

Las implementaciones de J2EE pueden adquirirse a distintas compainiias, mientras
que .Net solo puede comprarse a Microsoft.

La seguridad frente a virus informaticos de los productos de Microsoft es menor
que los basados en Java ya que desde un comienzo Java se fundament6 en un
estricto modelo de seguridad.

Las aplicaciones Java pueden correr en una amplia gama de sistemas operativos y
de arquitecturas hardware.

Java es una tecnologia Open Source y posibilita que los desarrolladores puedan
conocer y entender completamente como hace las cosas Java y aprovecharlo para
sus aplicaciones.

J2EE es ahora el producto de la colaboracion de mas de 400 empresas y
organizaciones de todo tipo. .Net es y sera el producto de una sola compafiia.

38

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.5 Interoperabilidad entre J2EE y .NET

Las empresas actuales exigen cada vez mas una mejora en la escalabilidad y portabilidad
de las aplicaciones, asi como la facilidad de integracion de las aplicaciones. Dado que las
plataformas J2EE de Sun y .NET de Microsoft son las plataformas mas utilizadas
actualmente en el mercado han surgido varios métodos para realizar la integracion.

2.5.1 Interoperabilidad basada en Web Services

Los Servicios Web se estan convirtiendo cada vez mas en la solucién tecnolégica mas
atractiva para temas de interoperatividad. Los servicios web se basan en XML. La forma
de invocar funcionalidades en otra maquina se hace a través de texto plano usando
protocolos estandar W3C. Los protocolosbinarios son mucho mas rapidos que un servicio
web en XML. Este inconveniente sin embargo se ve compensado por la facilidad con la
que diferentesplataformas pueden comunicarse unas con otras. Esta ventaja implica que
podemos tener aplicaciones en .NET ejecutandose en una maquina Windows y esta
aplicaciéon puede ser accedida por cualquier otra aplicaciéon escrita en otro lenguaje
corriendo en otra maquina con otro sistema operativo

Los servicios web son cddigo ejecutandose en otra plataforma que tienen un punto de
entrada que permite activar el codigo usando un documento especial XML. En la mayoria
de los casos se envia un documento XML en un formato llamado SOAP (Simple Object
Access Protocol) sobre HTTP. El servidor tiene un oyente a la espera de un paquete
SOAP, cuando se recibe un paquete de este tipo, el servidor se pone en funcionamiento y
ejecuta su codigo nativo. El servidor coge el resultado de ese cddigo nativo, lo empaqueta
en otro paquete SOAP y se lo devuelve al cliente.

NET Web Sarvidor de
Cliente JZEE , . Services aplicaciones MET
o (2 soap o) c P [
Cliente MET B iy JZEE Web 'y 4 Servidor de
Servicas aplicaclones J2EE

_————————

Figura 2.5 Web Services

39

UNnB

Universitat Autbnoma
de Barcelona Introduccién a J2EE

2.5.2 Interoperabilidad basada en IIOP .NET

IIOP.Net permite una interoperatividad entre .Net, CORBA y objetos distribuidos J2EE.
Esto se hace gracias a la incorporacion del soporte de CORBA/IIOP por parte de .Net
sustentado por el framework Remoting.

Las caracteristicas de IIOP.Net son las siguientes:
» Alto acoplamiento entre los objetos distribuidos en .Net, CORBA 'y J2EE.

» Transparencia. Los servidores existentes pueden ser usados sin ser modificados,
sin codigo envolvente ni adaptadores.

* Gran cobertura de mapeo de tipos CORBA/.NET

* Integracién nativa en el framework .Net. IIOP.Net esta directamente basada en la
infraestructura estandar de Remoting.

Aplicacién .NET Aplicacién Java
Framework .NET JVM
Ramulinﬂm RMI - IOP
I,/_VQF‘_.'—-._' # ¢
i w:ll:acm:;l "DF
i &
Y # ’ #
- Runtime Jaren RMI - LIOP IDL - NOP
Remoting Remoting
Framework .NET
e K NET Server JZEE ORE CORBA
Aplicacién NET EJB1 EJB: OBis OBiz
Aplicacidn .NET

Firura 2.6 Ejemplo de I[IOP .Net

40

CAPITULO 3

Entorno de desarrollo para J2EE

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.1 Desarrollo de aplicaciones

Inicialmente las aplicaciones se desarrollaban en un solo ordenador. Eran aplicaciones
centralizadas ya que el coste del hardware era muy elevado. Con la aparicion de la LAN
aparecieron las primeras aplicaciones cliente/servidor y con el tiempo el crecimiento de
Internet asi como el aumento de anchos de bandas aparecieron aplicaciones basadas en
Cloud Computing o Web Services. En este proyecto nos centraremos el tema en las
aplicaciones distribuidas.

3.1.1 Introduccion de Sistemas distribuidos

Un sistema distribuido se define como una coleccion de computadores auténomos
conectados por una red, y con el software distribuido adecuado para que el sistema sea
visto por los usuarios como una unica entidad capaz de proporcionar facilidades de
computacion. [Colouris 1994 |

El desarrollo de los sistemas distribuidos vino de la mano de las redes locales de alta
velocidad a principios de 1970. El avance de la electronica y de las tecnologias de la
informacion han propiciado un aumento en su uso en detrimento de las aplicaciones
disefiadas para ordenadores centralizados multiusuario. Las aplicaciones distribuidas
varian dependiendo de la naturaleza de su uso, ya sean estos sistemas de computo
masivo o aplicaciones bancarias, aunque en todas ellas podemos destacar una serie de
puntos clave comunes a todas ellas, que son:

* Comparticion de recursos

* Apertura (openness)

* Concurrencia

» [Escalabilidad

* Tolerancia a fallo

* Transparencia

43

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

De las soluciones existentes para el desarrollo de sistemas distribuidos se ha optado en
este proyecto por la utilizacion de la plataforma J2EE desarrollada por Sun Microsystems,
ahora Oracle, mediante la implementacion de ella por el producto Glassfish.

3.2 Arquitectura de las aplicaciones distribuidas

3.2.1 Arquitectura basada en componentes

Aproximan el disefio de sistemas como un conjunto de componentes. Un componente es
una pieza de software que expone una interfaz bien definida y que puede colaborar con
otros componentes para resolver un problema. Normalmente presenta caracteristicas de
herencia, polimorfismo y encapsulacion.

Ventajas:
* La division en componentes reduce la complejidad, permite la reutilizacion vy

acelera el proceso de ensamblaje de software.

* Los creadores de componentes pueden especializarse creando objetos cada vez
mas complejos y de mayor calidad.

* La interoperabilidad entre componentes de distintos fabricantes aumenta la
competencia, reduce los costos y facilita la construccion de estandares.

* Los costes de mantenimiento del software se reducen.

Desventajas:

* Desarrollos mas complejos.

* El coste de comunicaciones entre componentes es elevado.

44

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

» Dificultad en establecer los limites de los componentes y la relacion entre ellos.
3.2.2 Arquitectura orientada a servicios

La Arquitectura Orientada a Servicios o0 SOA es un concepto de arquitectura de software
que define la utilizacién de servicios para dar soporte a los requisitos del negocio.

Permite la creacién de sistemas altamente escalables que reflejan el negocio de la
organizacion y ofrece una invocacion de servicios mediante Web Services, lo que facilita
la interaccion entre diferentes sistemas.

SOA define las siguientes capas de software:

* Aplicaciones basicas. Sistemas desarrollados bajo cualquier arquitectura o
tecnologia, geograficamente separados.

* De exposicion de funcionalidades. Donde las funcionalidades de la capa de
aplicacion son expuestas en forma de Web services.

* De integracion de servicios. Facilitan el intercambio de datos entre elementos de
la capa aplicativa orientada a procesos empresariales internos.

* De composicién de procesos. Define el proceso en funcion del negocio y sus
necesidades.

* De entrega. Donde los servicios son desplegados a los usuarios finales.

SOA proporciona una metodologia y un marco de trabajo para documentar las
capacidades de negocio y puede dar soporte a las actividades de integracion y
consolidacion.

45

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

La arquitectura orientada a servicios esta destinado a servicios que se encuentran en
Internet 0 en una intranet usando servicios web. Existen diversos estandares relacionados
con los servicios web como XML, HTTP, SOAP, etc.

Ventajas:

* Proporciona una gran integracion y homogeneidad.
* Facilidad en la adaptacién de nuevos servicios.
* Facilidad en la reestructuracion de sistemas

Desventajas:

* Lavelocidad de intercambio entre sistemas es mas lenta que una conexion directa.

* Intercambiar grandes cantidades de informacién puede afectar al rendimiento del
bus.

3.2.3 Arquitectura orientada a capas

El estilo de arquitectura de capas se basa en una distribucion jerarquica de los roles de
cada componente para proporcionar una divisién efectiva de los problemas que pueda
surgir. Las capas de una aplicacion pueden estar en la misma maquina o estar
distribuidos entre varios equipos. La mayoria de interacciones entre los servicios solo
ocurren entre capas vecinas que se comunican mediante alguna interfaz conocido por las
dos partes.

En toda arquitectura de capa los elementos agrupados en una misma capa pueden
comunicarse entre si; pero existen variantes en cuanto a las comunicaciones permitidas
entre elementos de capas diferentes:

46

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Arquitectura top-down. Los elementos de una capa i+1 pueden enviar solicitudes
de servicio a elementos de la capa inferior. Entonces se produce una cascada de
solicitudes. Una arquitectura top-down puede ser no estricta si los elementos de
una capa i+1 pueden enviar solicitudes a un elemento de cualquiera de las capas
inferiores.

Arquitectura buttom-up. Cada elemento de una capa i puede notificar a
elementos de la capa superior de algun evento. Una

Ventajas:

Se consigue una independencia entre capas que hace que se puedan realizar
actualizaciones en cualquiera de las capas sin que afecte al resto del sistema.

Mejora de rendimiento ya que distribuyendo las capas en distintos niveles fisico se
mejora la escalabilidad, la tolerancia a fallos y el rendimiento.

Cada capa tiene una interfaz bien definida por lo que las pruebas se pueden
realizar independientemente en cada capa sin afectar en el resto.

Desventajas:

La dificultad para programar es mayor ya que hay diferentes dispositivos que tienen
que comunicarse entre si.

Si se utilizan varios niveles de hardware, supone una gran carga en la red debido a
la mayor cantidad de trafico.

Es importante distinguir los conceptos de capas y niveles porque es comun que se
confundan o se denominen de forma incorrecta.

47

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Las capas se ocupan de la division l6gica de componentes y funcionalidad y no tienen en
cuenta la localizacién fisica de componentes en diferentes servidores oen diferentes
lugares. Por el contrario, los niveles se ocupan de la distribucion fisica de componentes y
funcionalidad en servidores separados, teniendo en cuenta la topologia de redes y
localizaciones remotas. Aunque tanto las capas como los niveles usan los mismos
nombres (presentacion, negocio, etc.), es importante no confundirlos y solo los niveles
implican una separacion fisica.

Arquitectura tradicional N- Arquitectura 3-Tier (Fisica)

Capas (Logica)

Basas de Dalps

Sistemas

? Capa de met.dﬁ'l i Aplicaciones
§ g\ : Euternas
of 2

; Capa de Hetodb Cliente

a g . / Web patd

'y
g- Capa de Acceso a Datos Cllente

Figura l.- Arquitectura Figura 2.- Arquitectura 3-Tier (Fisica)

tradicional N-Layer (Légica)

Figura 3.1 Diferencia entre capas y niveles

48

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.3 Software multinivel

La arquitectura multinivel (o n-tier) es una evolucion de las arquitecturas de los softwares
antiguos. Primero, el cliente, los datos y el proceso estaban centralizados en el mismo
lugar. Después evoluciond a una arquitectura cliente/servidor donde el proceso estaba
dividido entre el cliente y el servidor y las solicitudes eran consultas a una base de datos.
La logica de negocios se desarrollaba en el cliente una vez recibidos los datos del
servidor. Finalmente evolucion6 a la arquitectura de tres capas donde se separo la capa
de presentacion de la logica de negocio. Esta separacion significa que la logica de
negocio no necesita saber que tipo de cliente muestra los datos. Las capas son mas
escalables y pueden trabajar en diferentes tipos de plataformas. La seguridad es mas facil
de implementar ya que el software de la aplicacion ya no esta en la capa cliente.

3.3.1 Arquitecturas de 1-tier

Son aplicaciones sencillas que han sido escritas para ejecutarse en un Unico equipo.
Todos los servicios proporcionados por la aplicacién, la interfaz de usuario, el acceso a
datos, légica de negocio, etc. existe en el mismo equipo fisico y se agrupan en la misma
aplicaciéon. Esta arquitectura se llama de 1-tier ya que todo esta localizado en la misma
capa.

Los sistemas de un nivel son relativamente faciles de administrar y la persistencia de
datos es simple porque los datos se almacenan en un lugar unico. Sin embargo, también
tienen muchas desventajas. Estos sistemas no son escalables para gestionar multiples
usuarios, y no proporcionan un medio facil de comparticion de datos. Estos sistemas solo
puede trabajar una persona a la vez.

49

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Logica de Presentacion
Logica de Negocio
Acceso Base de Datos

Figura 3.2 Arquitectura 1-tier

3.3.2 Arquitectura de 2-tier

Muchas mas aplicaciones constan de una arquitectura de 2 niveles. Esta se basa en un
servidor de base de datos y acceso a datos persistentes mediante el envio de comandos
SQL al servidor para guardar y recuperar datos. En este caso, la base de datos se ejecuta
como un proceso independiente de la aplicacién, o incluso en una maquina diferente a la
que ejecuta el resto del programa. Los componentes de acceso a datos estan separados
del resto de la légica de la aplicacion. Esta arquitectura se basa en centralizar los datos
para que varios usuarios trabajen simultdneamente con una base de datos comun. Esta
arquitectura también esta denominada como cliente/servidor.

50

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Una de las desventajas de la arquitectura de dos niveles es que la légica que manipula los
datos y aplica las normas especificas de los datos se agrupan en la propia aplicacién.
Esto plantea un problema en las aplicaciones de uso multiple con una base de datos
compartida ya que si se quiere hacer alguna modificacion en las reglas de insercion de
datos, por ejemplo, hay que asegurarse de realizar todos los cambios en todos los
ordenadores que ejecuten la aplicacion. Y ademas estos cambios deben realizarse al
mismo tiempo y volverse a compilar.

Ldgica Presentacion
Ldgica Mecogio

E Acceso a datos
]
Client Q

Logica Presentacion
Ldgica Necogio

Server

Client

Figura 3.3 Arquitectura de 2-tier

Con el objetivo de solucionar el problema de tener que modificar todas las aplicaciones,
surgio la idea de separar fisicamente las reglas de negocio en un servidor independiente
para que el software que ejecuta las reglas de negocio solo tenga que actualizarse una
vez.

51

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.3.3 Arquitectura de 3-tier

En la arquitectura de 3-tier, se afiade una capa adicional entre el cédigo de interfaz de
usuario y la base de datos. Este nivel se llama légica de negocio y representa la
funcionalidad.

La arquitectura de tres niveles es la utilizada por servidores de aplicaciones. Las ventajas
de esta arquitectura es que permite la modificacion de nivel capa por separado facilitando
la tarea al programador, simplifica la administracion de los sistemas, facilita una
disponibilidad inmediata en los cambios y ademas reparte la carga de trabajo entre los
distintos ordenadores. Los niveles son las siguientes:

* Légica de usuario. Es la parte de la aplicacion que se ejecuta en los ordenadores
de los usuarios y puede ser proporcionado por una aplicacion independiente o
usando un navegador de Internet.

* Légica de negocio. Se ejecuta en otra maquina remota y es posible que esté
repartida en varias maquinas. Utiliza una tecnologia en la que se ve la
funcionalidad como una coleccion de objetos en vez de llamadas SQL.

* Légica de datos. Posiblemente implementada en otras maquinas, mediante uno o
mas gestores de Base de Datos. La funcionalidad solo deberia ser accesible desde
la Logica de negocio.

52

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

1. Capa de presentacion 2, Capa de negocio 3. Capa de datos

S N N
- ° i
S =
Clientes Servidor de Servidor de
Aplicaciones Base de Datos

.)
Figura 3.4 Arquitectura de 3-tier

3.3.4 Arquitectura de n-tier

Una vez se sobrepasan los 3 niveles ya se pueden utilizar los niveles que se necesiten.
Las arquitecturas de este numero de niveles son mucho mas complejas. Se pueden
utilizar varios para enviar diferentes consultas SQL o por ejemplo utilizar un nivel mas
para seguridad en compras con tarjeta de crédito. También es comun utilizar una
arquitectura de 4-tier separando el servidor web de la légica de negocio o utilizando la
persistencia de datos como una capa separada.

1. Capa de presentacidn 2. Capa web 3. Capa de negocio 4, Capa de datos

S

Servidor de Servidor de

Servidor web g
Aplicaciones Base de Datos

Clientes

Figura 3.5 Arquitectura de 4-tier

53

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.4 J2EE

3.4.1 Arquitectura Aplicaciones J2EE

Las aplicaciones J2EE constan de 3 partes basicas, que son las siguientes:

* Moébdulos EJB. Encargado de tener la légica de negocio y transacciones.
Basicamente es el encargado de ejecutar programas y hacer consultas a la base
de datos.

* Mobdulo WAR. Es la encargada de tener todos los elementos de interfaz como
paginas web, servlets, etc.

* Aplicacién EAR. Contiene toda la configuracién de la aplicacion J2EE, incluyendo
el modulo WAR y EJB.

3.4.2EJB

Uno de los principales componentes de J2EE es la tecnologia de Enterprise JavaBeans,
que proporciona un estandar para el desarrollo de las clases que encapsulan la
funcionalidad y reglas del negocio y que seran accedidas desde las aplicaciones cliente
de modo casi idéntico a como lo serian si formasen parte de estas aplicaciones.

El esquema propuesto por J2EE para aplicaciones distribuidas es el de un servidor de
aplicaciones que proporciona una gran cantidad de servicios, como acceso a la base de
datos, servidores de correo, etc. Para implementar la funcionalidad del negocio se crean
una seria de Enterprise Beans que seran cargados por el servidor de aplicaciones y
pueden acceder a estos servicios. Estos beans seran administrados por el Mddulo o
Contenedor EJB.

54

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

F—jb Beans E_;] Beans

Beans E_:j [’_' s
E =2 |Beans

Beansa/ﬁo{iulﬂ EJE'.\\S Beans

=5

Figura 3.6 Modulo EJB

Principales caracteristicas de EJB:

Comunicacion remota utilizando CORBA

* Transacciones

» Control de la concurrencia

* Eventos utilizando JMS (Java messaging service)
» Servicios de nombres y de directorio

» Seguridad

Ubicacién de componentes en un servidor de aplicaciones.

El objetivo de los EJB es dotar al programador de un modelo que le permita abstraerse de
los problemas generales de una aplicacidn empresarial (concurrencia, transacciones,
persistencia, seguridad, etc.) para centrarse en el desarrollo de la aplicacion.

55

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Es posible acceder a esta funcionalidad no solo desde aplicaciones Java, sino desde
cualquier aplicacion CORBA, lo que proporciona la posibilidad de trabajar con el lenguaje
que queramos para crear las aplicaciones de cliente. J2EE también proporciona soporte
para el acceso a la funcionalidad del negocio desde paginas HTML o XML, con lo que se
puede utilizar un navegador para interactuar con las clases de negocio.

Servidor de Servicios de almacenamiento.
aplicaciones directorio, correo, eftc.

.a'-x.plrafc:?.rl. cliente " Servidor WebSphere/Borland App q—JDEC@
_ Lava) Server, o cualquier otro,

—Java Mail—h{ Servidor de Corren |

Aplicaciones Cliente

Enterprise Java Beans

Factura d—JNDl—b{ Semicios de Directorio |

‘ Cliente l

.Api:acijn cliente | Proveedor q—HMI—h{ Aplicaciones Java |

[C++CORBA) [
q—uop—(Servidores CORBA)

1—d|‘u18*>{ Colas de mensajes |

h

Figura 3.7 Relacion entre aplicaciones cliente, codigo de negocio, servidor de aplicacion y otros
elementos basado en J2EE

3.4.2.1 Tipos de EJBs

* Beans de Sesion. Representan las acciones que realizan los clientes. Pueden
mantener un estado, pero solo durante el tiempo que el cliente interactua con el
bean. Esto significa que los beans de sesion no almacenan sus datos en la Base
de Datos después que el cliente termine el proceso. Hay dos tipos: con estado y sin
estado.

* Beans de sesion con Estado. Almacenan datos especificos obtenidos durante la
conexidon con el cliente. Es decir, se almacena el estado conversacional de un
cliente con el que interactua y se modifica conforma el cliente va realizando
llamadas a los métodos de negocio del bean. Este estado no se guarda cuando el
cliente termina la sesion.

56

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Beans de sesion sin Estado. No se modifican con las llamadas de los clientes.
Solo reciben datos y devuelven resultados pero sin modificar internamente el
estado del bean. Son usados para ejecutar procesos de negocio o0 como puente de
acceso a una Base de Datos o0 a un bean de entidad.

Beans de Mensajes. Pueden escuchar mensajes de un servicio de mensajes JMS,
éstos nunca se comunican directamente con el cliente.

Beans de Entidad. Modelan conceptos o datos de negocio. Es la representacién
de la Base de Datos. El contenedor se encarga de sincronizar las variables de
instancia del bean con la Base de Datos. Ya que los beans de entidad se guardan
en un mecanismo de almacenamiento se dice que es persistente. Es decir, el
estado del bean existe mas tiempo que la duracién de la aplicacion.

57

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.4.3 Historia de J2EE

La especificacion original J2EE fue desarrollada por Sun Microsystems. Comenzando con
J2EE 1.3, la especificacion fue desarrollada bajo el Java Community Process. JSR 58
especifica J2EE 1.3 y JSR 151 especifica J2EE 1.4. El SDK de J2EE 1.3 fue liberado
inicialmente como beta en abril de 2001. La beta del SDK de J2EE 1.4 fue liberada por
Sun en diciembre de 2002. La especificacion Java EE 5 fue desarrollada bajo el JSR 244
y la liberacion final fue hecha el 11 de mayo de 2006. Finalmente la especificacién Java
EE 6 se lanz6 en Diciembre de 2009.

(. Flexibility
(Ease of

——

E Development Java EE 6
Web
java Services Pruning
il Java EE 5 ExtenSII:-rIl y
Robustness Pmﬂes o
Enterprise Java Ease of TEase of
Platform J2EE 1.4 o Development
Annolanons i
: Web . EJBLite
s JEF13) R iiio | |
Management RESTfUl
CMP ; Pemlstence Services
JPE ap Connector - New and ‘Dependency
Project 320 . Architecture GDASYHCI Updated Ejection
EJB nnector Web Services| i
oes Web Profile
RMINOP

Figura 3.8 Diferentes versiones de J2EE

58

Universitat Autbnoma
de Barcelona Entorno de desarrollo para J2EE

3.4.4 Soporte de J2EE a las diferentes capas de la aplicaciéon

A continuacién describiremos las diferentes aplicaciones que podemos encontrar en los
diferentes subsistemas de J2EE.

Client-Side Server-Side Server-Side Enterprise
Presentation Presentation Business Logic Iniézrmation
T ——— Ty e . " stem

Web EIB g | y
Browser Sanvar

Container | |

£ Pure

HTML JSE

¢ dava MJava
. Applet ' Servlet

" Desktop . XML

T Java

‘Application | ~

I©Web

I Service

! Service

e
Other Device
£ J2EE

Client

Figura 3.9 Aplicaciones de J2EE
3.4.4.1 Soporte a la capa de persistencia

3.4.4.1.1 Soporte para JPA

Java Persistence API, es la API de persistencia desarrollada para la plataforma Java EE
incluida en el estandar EJB 3.0. Anteriormente a esta version se utilizaban beans de
entidad. Se encarga del mapeo entre una tabla relacional y su objeto Java. Proporciona
métodos para manejar la persistencia de un Bean de Entidad, permite afadir, eliminar,
actualizar y consultar asi como manejar su ciclo de vida.

59

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

El objetivo que persigue el disefio de esta API es no perder las ventajas de la orientacion
a objetos al interactuar con una base de datos y utilizar los elementos de persistencia
como objetos planos de Java (POJOs).

@Entity
UserProfile

|mm === - +{get/set}LoginName() : String

| +{get/set}EncryptedPassword() : String
| = = = J A{get/set}FirstName() : String

J +{get/set}Surname() : String
+{qet/set}Email() : String - -~
+{qet/set}Language() : String ;- - - -
+{get/set}Country() : String- =1- - - - - & EEEEEE =
+{qet/setVersion() : String - -- - - - A== —:— --=q

"enPassword")

@Column(name

@Version

{_________

¥ W W L4 " ¥ L4
loginName | enPassword | firstName | surname | email | language | country | version

(PK)

Tabla = UserProfile
Figura 3.10 Ejemplo de mapeo JPA

3.4.4.1.2 Soporte para JDBC

Java DataBase Connectivity APl se presenta como una coleccion de interfaces Java y
métodos de gestion de manejadores de conexion hacia cada modelo especifico de base
de datos.

Un manejador de conexiones hacia un modelo de base de datos en particular es un
conjunto de clases que implementan las interfaces Java y que utilizan los métodos de
registro para declarar los tipos de localizadores a base de datos (URL) que pueden
manejar.

60

UNnB

Universitat Autbnoma
de Barcelona Entorno de desarrollo para J2EE

Para utilizar una base de datos particular, el usuario ejecuta su programa junto con la
biblioteca de conexidn apropiada al modelo de su base de datos, y accede a ella
estableciendo una conexion, para ello provee el localizador a la base de datos y los
parametros de conexion especificos. A partir de alli puede realizar con cualquier tipo de
tareas con la base de datos a las que tenga permiso: consulta, actualizacién, creacion,
modificacion y borrado de tablas, ejecucion de procedimientos almacenados en la base de
datos, etc.

JDBC 2.1 (Core) HOTAS

- Interfaces en talica
- La herencia se espeicifica como sigue; BASE —— DERIVADA

I Cannection +—| DatapaseMetalata .Set_lllll'{l ad i
| Statement |—1-;E| 1—‘ | DriverManager | lml] :
| Preparedsiztement | ResuitSet | I Driver | J
l ! -
| CalfableState ment | ResultSetMeta Data | |DriverF’roper‘t':.flnT-:||
r T TEcepciones 0BC | [soporte tpos SOL iy ae tipes | | TiosSoLs |
| SELE woeption | I : =0l : Clat : |
I : : !
X | | ; ; |
| SELWarning BatchUpdateException || I : IT] ' |
[§ L i i
| DataTruncation | I |

Figura 3.11 Diagrama de clases de JDBC

3.4.4.2 Soporte a la capa de Iégica de negocio

3.4.4.2.1 Control de transacciones JTA

J2EE proporciona una API estandar que hace mas facil la coordinacién de los distintos
sistemas en lo que se refiere a operaciones de tipo transaccional, llamada JTA (Java
Transaction API), en la cual no es necesario que se escriba codigo.

61

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

El JTA consta de tres elementos: una interfaz de aplicacion de transaccion de alto nivel,
una interfaz de administracion para transacciones de alto nivel para el servidor de
aplicaciones, y un mapeo de Java del estdandar X/Open XA que permite a un

administrador de recursos de transacciones participar en una transaccién global
mediante un manager.

* La aplicacion cliente puede ser sencillo como un objeto simple o completo como
una aplicacion entera. La aplicacion de cliente usan datos mediante transacciones
con el fin de garantizar que su interaccién con los datos se controla y se pueda
corregir facilmente si algo sale mal.

* El manager de transaccién es el responsable de coordinar la aplicacion de cliente y
el resto de componentes de procesamiento de transacciones.

* El administrador de recursos es el componente responsable de coordinar el acceso
a los recursos afectados por una transaccion. Puede ser tan simple como un
controlador JDBC que gestiona el acceso a una base de datos y sus tablas, o la
cola que controla la conexién de JMS.

62

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

JITA
TransactionManager

.-"-'--
e — -

B~ _— /_x
! Application

Server /

JDBC, IMS
i

‘

Resource

I;'f Application

." Transaction Manager \
|' v Manager S I|
JTA / Low-level \ ITA
UserTransaction Transaction .
) XAResource
Service
Implementation
(for example, JTS)
A
[nbound tx Outbound tx -
Protocol specific Communication Resource Protocol specific
Manager (CRM)

Figura 3.12 Arquitectura JTA

3.4.2.2 Servicios de mensajeria JMS

Los productos de mensajeria en el software se estan conviertiendo en un componente
esencial para la integracion de los componentes del programa.

La APl JMS de Java proporciona una interfaz para aplicaciones que requieren los
servicios de un sistema de mensajeria. Un sistema de mensajeria permite que los
mensajes que contienen texto, objetos u otro tipo de mensajes se envien y reciban de
forma asincrona.

63

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Una implementacion de un sistema de mensajeria que cumpla con la APl de JMS se llama
proveedor de JMS. Glassfish contiene un proveedor de JMS.

Timelt LogWriterQuewe MessageWriter

Session bean

Message-driven
th';t E;Js{_::; ;P:E IMS NS JMS . bean that
Services to —>| Message Queue Message > ||ste.~ns_fr.'rr an
schedule Producer _/ Consumer D
messages

messages

Figura 3.13 Funcionamiento de JMS

Como podemos observar en la figura anterior, el bean de Sesion del EJB son los
encargados de enviar el mensaje. Estos se conocen como clientes JMS. El sistema de
mensajes es el encargado de guardar los mensajes hasta que puedan ser entregados al
destinatario. Hay dos tipos de destinos en JMS:

* Point-to-point. Es un tipo de mensajeria en el que una aplicacion envia un
mensaje directamente a una cola de mensajes especificos. Solo una aplicacion
recupera el mensaje de la cola. En este caso solo participan dos clientes, el que
envia y el que recibe. Un ejemplo de este sistema de mensajeria seria una cola de
entrada de pedidos.

* Publish/Subscribe. En este tipo de mensajeria, el remitente del mensaje publica
un mensaje. Cualquiera que esté interesado en recibir mensajes sobre un tema
determinado se subscribe al mensaje. Como resultado, cuando el emisor envia el
mensaje con el tema, cada suscriptor recibe una copia del mensaje. En este caso
el mensaje tiene un remitente y, muchos destinatarios.

64

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Uno de los aspectos mas importantes de este tipo de mensajes es que el remitente no
sabe nada sobre los abonados. No sabe cuantos suscriptores hay, donde estan ubicados
o lo que hacen con los mensajes. Un ejemplo de este tipo de mensajes seria cuando una
empresa enviase un mensaje que indica que les ha llegado un pedido, las demas
secciones obtienen el mensaje y saben lo que tienen que hacer a partir de ahi.

3.4.3 Servicios de comunicacion

3.4.3.1 Soporte para CORBA

Es un estandar que establece una plataforma de desarrollo de sistemas distribuidos
facilitando la invocacién de métodos remotos bajo un paradigma orientado a objetos.
Permite realizar llamadas a objetos remotos, independiente del lenguaje de programacién
en que fueron programados. CORBA es una especificacidon, no es un software o
aplicacion. Hay muchas implementaciones de CORBA las cuales son conocidas como
ORB (Object Request Broker).

En un sentido general, CORBA "envuelve" el codigo escrito en otro lenguaje, en un
paquete que contiene informacién adicional sobre las capacidades del cdédigo que
contiene y sobre como llamar a sus métodos. Los objetos que resultan, pueden entonces
ser invocados desde otro programa (u objeto CORBA) desde la red. En este sentido
CORBA se puede considerar como un formato de documentacion legible por la maquina,
similar a un archivo de cabeceras, pero con mas informacion.

CORBA utiliza un lenguaje de definicion de interfaces (IDL) para especificar las interfaces
con los servicios que los objetos ofreceran. CORBA puede especificar a partir de este IDL,
la interfaz a un lenguaje determinado, describiendo cémo los tipos de dato CORBA deben
ser utilizados en las implementaciones del cliente y del servidor. Implementaciones
estandar existen para Ada, C, C++, Smalltalk, Java, Python, Perl y Tcl.

65

UNnB

Universitat Autbnoma
de Barcelona Entorno de desarrollo para J2EE

Al compilar una interfaz en IDL se genera cddigo para el cliente y el servidor (el
implementador del objeto). El codigo del cliente sirve para poder realizar las llamadas a
métodos remotos. Es el conocido como stub, el cual incluye un proxy del objeto remoto en
el lado del cliente. El cédigo generado para el servidor consiste en unos skelefons que el
desarrollador tiene que rellenar para implementar los métodos del objeto.

Clienid Server

?

£

[, 8

!
Intarface
% Definition
}

Sirelrs

3 : Network link -

Figura 3.14 Esquema de CORBA

3.4.3.2 Soporte para Servicios Web

Los Servicios Web o Web Services son una API para permitir exponer servicios a través
de la Web. Permite que aplicaciones Web interactuen dinamicamente con otras
aplicaciones, utilizando para ello estandares abiertos como XML (Extensible Markup
Language), UDDI (Universal Description, Discovery and Integration) y SOAP (Simple
Object Access Protocol). Las funciones que pueden ser realizadas por los web services
pueden ir desde simples intercambios de informacién hasta complicados procesos de
negocios. Se puede encapsular su légica de negocio mediante web services y exponerlas
para que los clientes las consuman a través de la web.

66

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Los Web Services permiten realizar invocaciones a procedimientos remotos, tanto en
redes pequefias como una Intranet empresarial como en redes grandes como Internet.
Esto es posible porque estan basados en un protocolo simple para realizar las
invocaciones. Este protoco estandar lo se denomina SOAP, y esta creado por la W3C,
basado en XML.

SOAP esta compuesto por cuatro componentes: un envoltorio que define un framework
para describir los mensajes y como estos deben ser procesador, un conjunto de reglas
para codificar instancias de tipos de datos definidos por las aplicaciones, una convencion
de cdmo representar invocaciones remotas y sus respuestas y una convencion para
vincular el intercambio de mensajes con un protocolo de transporte. El protocolo de
transporte es http.

Utilizar http como protocolo de transporte facilita el uso de la infraestructura Web ya
existente practicamente en todo empresa, para el intercambio de informaciéon o
publicacion de servicios de la empresa.

Los Web Services también incorporan WSDL (Web Services Description Language) como
un lenguaje también basado en XML que permite describir los contratos de cada servicio
e incluye un protocolo para recibir y enviar documentas a través de una URL conocida, o
utilizando mecanismos UDDI en el caso de no conocer la URL.

Las ventajas de utilizar Web Services son las siguientes:

* Aportan interoperabilidad entre aplicaciones de software independientemente de
sus propiedades o de las plataformas sobre las que se instalen.

* Los servicios Web fomentan los estandares y protocolos basados en texto, que
hacen mas facil acceder a su contenido y entender su funcionamiento.

* Al utilizar http, los servicios Web pueden aprovecharse de los sistemas de
seguridad firewall sin necesidad de cambiar el filtrado.

* Permiten que servicios y software de diferentes compafias ubicadas en diferentes
lugares puedan ser combinados facilmente.

67

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

* Permiten la interoperabilidad entre plataformas de distintos fabricantes por medio
de protocolos estandar y abiertos.

Los inconvenientes de utilizar Web Services son los siguientes:
* Para realizar transacciones no pueden compararse en su grado de desarrollo con

los estandares abiertos de computacién distribuida como CORBA.

* Su rendimiento es bajo si se compara con otros modelos de computacion
distribuida como RMI o CORBA.

» Al utilizar http, pueden esquivar medidas de seguridad basadas en firewall.

Service
Broker
; UDDI|
I |
WSDL | WSsDL |
oy — A
e i,
SOAP'I ,“mr;d#%g
Service Service
Reguester Provider

Figura 3.15 Funcionamiento
de Web Services

3.4.3.3 Soporte para RMI

RMI (Remote Method Invocation) es el mecanismo ofrecido en Java que permite a una
aplicacién poder ser invocado remotamente. RMI, al ser nativo de Java, es mucho mas
amigable y natural para un programador Java, permitiéndole ademas aprovechar las
ventajas del entorno. En el RMI existen tres procesos fundamentales:

68

UNnB

Universitat Autbnoma
de Barcelona Entorno de desarrollo para J2EE
» El cliente: proceso que invoca un método en un objeto remoto.
* El servidor: proceso que posee el objeto remoto.

* Registro de objetos: obtiene acceso a objetos remotos utilizando su nombre.

f’_\\‘
R
B CEES
» (roveg |
Rbl— | - Al T

L1 l_r 1
s AMI :
. Server URL
. UBL .+ profocal
Web server |« - protecdl '
~.]

Te=. URL
profocal ' == === » | Webh sarver

Figura 3.16 Funcionamiento de RMI

Por medio de RMI, un programa Java puede exportar un objeto. A partir de esa operacion
este objeto esta disponible en la red, esperando conexiones en un puerto TCP. Un cliente
puede entonces conectarse e invocar métodos. La invocacion consiste en el “marshaling”
de los parametros, luego se sigue con la invocacion del método. Mientras esto sucede el
llamador se queda esperando por una respuesta. Una vez que termina la ejecucion el
valor de retorno es serializado y enviado al cliente. El cédigo cliente recibe este valor
como si la invocacién hubiera sido local.

La arquitectura de RMI es la siguiente:

« Capa de aplicacion. Se corresponde con la implementacion real de las
aplicaciones cliente y servidor. Aqui tienen lugar las llamadas a alto nivel para
acceder y exportar objetos remotos. Cualquier aplicacion que quiera que sus
métodos estén disponibles para su acceso por clientes remotos debe declarar
dichos métodos en una interfaz que extienda java.rmi.Remote.

» Capa de presentaciéon. Esta capa es la que interactua directamente con la capa
de aplicacién. Todas las llamadas a objetos remotos y acciones junto con sus
parametros y retorno de objetos tienen lugar en esta capa.

69

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Capa de sesién. Es la de referencia remota, y es responsable del manejo de la
parte semantica de las invocaciones remotas. También es responsable de la
gestion de la replicacion de objetos y realizacidn de tareas especificas de la
implementacion con los objetos remotos, como el establecimiento de las
persistencias semanticas y estrategias adecuadas para la recuperacion de
conexiones perdidas. En esta capa se espera una conexion de tipo stream (stream-
oriented connection) desde la capa de transporte.

Capa de transporte. Es la responsable de realizar las conexiones necesarias y
manejo del transporte de los datos de una maquina a otra. El protocolo de
transporte subyacente para RMI es JRMP (Java Remote Method Protocol), que
solamente es "comprendido” por programas Java.

CLIENTE OBJETO REMOTO 05l
Cliente invocando metodo en el | Objeto remota ofrece el semvicio Capa de aplicacidn
objeto remoto
Stub Skeleton Capa de presentacidn
JEMP JREMP Capa de sesion
TCF TCF Capa de transporte
IP IF Capa de red

Interfaz de hardware e—nterfaz de hardware s—— Capa de vinculos de datos

Figura 3.17 Comparacion de RMI con el modelo OSI

3.4.3.4 Servicios de nombrado JNDI

La interfaz de Nombrado y Directorio Java (JNDI) es una API para servicios de directorio.
Esto permite a los clientes buscar objetos y nombres a través de un nombre siendo
independiente de la implementacion.

La API JNDI se usa por RMI a las APIs de J2EE para buscar objetos en una red. La API
suministra lo siguiente:

70

UNnB

Universitat Autbnoma
de Barcelona Entorno de desarrollo para J2EE
* Un mecanismo para asociar un objeto a un nombre.
* Unainterfaz de busqueda de directorio que permite consultas generales.

* Una interfaz de enventos que permite a los clientes determinar cuando las entradas
de directorio han sido modificadas.

EJB

Beans

Figura 3.18 JNDI puede ser usado para buscar beans en EJB

3.4.4 Soporte a la capa de presentacion

3.4.4.1 Soporte para Servlet

La palabra servlet deriva de otra anterior, applet, que se referia a pequenos programas
que se ejecutan en el contexto de un navegador web. Por contraposicion, un servlet es un
programa que se ejecuta en un servidor y generan respuestas a solicitudes de clientes.
En una aplicacién J2EE, el cliente se pone en contacto con una pagina JSP que se
comunida con el servlet. El servlet llama a un bean de sesidn que interactua con otros
beans tanto de sesion como de entidad. Los beans de entidad utilizaran JDBC para
comunicarse con la base de datos. Pero los servlets también pueden hacer una llamada
directamente a la base de datos.

71

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Los servlets son a menudo vistos como una alternativa a CGI. Un programa CGI ha sido
una forma popular de afadir contenido dinamico a paginas Web en lenguaje Perl. Ademas
de las limitaciones del lenguaje presenta varios problemas. Cada solicitud requiere un
nuevo proceso para manejar la situacion y tener que manejar este volumen de solicitudes
presenta problemas para los servidores.

Por contra, los servlets se escriben en Java y uno solo puede manejar las solicitudes de
todos los usuarios, con lo que no se genera la sobrecarga al no tener que crear un servlet
cada vez que se solicita. Los servlets se inicializan una vez y luego persisten. Ademas,
como utilizan lenguaje java pueden utilizar objetos java que trabajen en el servlet.

Un servlet se ejecuta dentro de una aplicacion llamada contenedor de servlets dentro de
una Java Virtual Machine en el servidor. El propio contenedor ya se encarga de funciones
como el ciclo de vida de cada servlet.

Workstation

\%\ ~ /W

Figura 3.19 El navegador envia una peticion. El servidor identifica la peticion y
muestra la pagina web.

72

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.4.4.2 Soporte para JSP

Los servilets es una herramienta importante para responder a las solicitudes de los
clientes. Sin embargo, no son las mejores herramientas para la generacion de contenidos
destinados a explorador web. JSP permite agregar muchas funcionalidades a una pagina
HTML. Las paginas JSP son documentos de texto basado en HTML con trozos de cédigo
Java llamados scriplets que son incrustados en el documento HTML.

Cuando la pagina JSP se despliega, el contenido se ejecuta de adentro hacia fuera, un
servlet se crea basandose en las etiquetas scriplets incrustados en el codigo Java. Todo
esto sucede de manera transparente para el usuario.

No hay que confundir JSP con Javascript, este ultimo también basado en codigo Java,
puede ser incluido dentro de una pagina web y el cédigo es ejecutado por el propio
navegador. JSP es parecido pero el codigo se compila y se ejecuta en el servidor, y se
envia el HTML resultante al navegador. Ademas las paginas JSP son ligeras y rapidas y
proporciona una gran cantidad de escalabilidad de las aplicaciones.

JSP permite crear contenido tanto estatico como dinamico. Ya que el contenido en que se
basa una pagina JSP, no es necesario que sea creado por un programador, sino que
puede ser desarrollado por un disenador web.

Dado la ejecucion de JSP se basa en servlets, JSP ofrece el mismo apoyo para la gestion
de sesion como los servlets. Ademas también puede cargar y llamar componentes EJB,
acceso a datos, realizar calculos, etc.

73

UNnB

Universitat Autbnoma
de Barcelona Entorno de desarrollo para J2EE

JSP
Java
> HTML
First request Java JSP is compiled
since application into a Serviet
was started HTML
Server >
Servlet
All subsequent requests :
Asks server
for JSP
Web Browser
Information Serviet
returned to generates
client as HTML HTML
HTML <

Figura 3.20 Funcionamiento de JSP

74

Universitat Autbnoma
de Barcelona Entorno de desarrollo para J2EE

3.4.4.3 Soporte para JSF

JSF es una tecnologia que trata de proporcionar una interfaz robusta y variada para
aplicaciones web. JSF se utiliza junto con servlets y JSP. Cuando se usa solo servlets o
JSP para generar la presentacion, la interfaz de usuario se limita a lo que se puede
implementar en HTML con componentes como listas, casillas de verificaciéon, botones, etc.
JSF proporciona una API para la creacién de interfaces de usuario.

Los componentes de JSF son componentes de interfaz de usuario que se pueden colocar
facilmente juntos para crear una interfaz de usuario del lado del servidor. La tecnologia
JSF también hace que sea facil conectar los componentes de interfaz de usuario.

Los componentes de interfaz del mismo usuario pueden ser usados para generar codigo
de presentacion para cualquier dispositivo. Por lo tanto, si el dispositivo cliente cambia,
solo es necesario cambiar la configuracién del sistema, sin necesidad de cambiar nada de
codigo.

La propia pagina de configuracion de Glassfish esta hecha con JSF junto con AJAX en un
proyecto llamado woodstock, cuyos componentes se pueden utilizar con la API Visual
Web JSF en el entorno Netbeans.

Us: Domain: domainl | Server: localhost

Sun Java™ System Application Server Admin Console

el Applications = Web Applications
[§ Registration Web Applications
Application Server £ b application module consists of a collection of Weh resources such as JavaServer Pages (ISPs), serviets, and HTML pages thet are packaged in a WAR (Weh Spplication
. Archive) file or directory
v [#pplications
Enterprize &pplications T ———
> [weh Applicatians (%) (3] | [Deploya] | Undepioy | | Ensble | | Dissble
example
@ | | Hame | Enabled | Context Root ‘ Action
EJB Modules
I:‘ Example true Jexample Launch Redeploy
Connector Modules
Lifecycle Modules
Application Cliert Modules

Figura 3.21 Componentes JSF en la pagina de configuracion de Glassfish

Como alternativa a la interface de woodstock también encontramos otros de cédigo libre
como ICEfaces, que combina JSF con AJAX, o Oracle ADF.

75

Universitat Autbnoma
de Barcelona Entorno de desarrollo para J2EE

ICEfaces AJAX Components

| _Browse... | | Upload Fle Edt View
P Zoomin
File Size: B Zoom Ou
File Name: 0 Fit In Window
Mima. Typs m Actusl SiZe
= Tan 2 -
Figura 3.22 Interfaz de ICEfaces
ORACLE -
ry
:| Departments View + Format - E Freeze ;—;j'g Detach W
More Info
M Raphaely M Khoo H Baida M Tobias Himu |Employeeld FirstName LastName Eme
B Colmenares 114 Den Raphaely DR A
) . 115 Alexander Khoo AKF
10.04% | LastName: Colmenares 116 Shelli Baida SBa
117 Sigal Tobias STC
’ 118 Guy Himura GHI—
10.44% 119 Karen Cnlmenares Ker ™
< >
T
showDetailltem 1
11.24%
*Employeeld 114
Firstilame |Den
11.65% g *LastName |Raphaely

*Email |DRAPHEAL

12.45%

PhoneMumber [515.127.4561

Figura 3.23 Interfaz de Oracle ADF

76

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.4.5 Otros niveles de soporte

Una aplicacion distribuida, ademas de dar respuesta a las necesidades concretas para la
que ha sido disefiada, necesita resolver cuestiones técnicas que aumentan la dificultad
del desarrollo.

3.4.5.1 Seguridad

La seguridad es un componente vital en las aplicaciones empresariales. J2EE ofrece
mecanismos integrados de seguridad mas seguros de los que se puedan adadir
manualmente.

J2EE proporciona mecanismos de autentificacion y autorizacion de acceso a los usuarios,
asi como recursos para el acceso anénimo si se necesita. Es posible especificar quien
tiene acceso a cada método de un Enterprise Bean.

Otro aspecto importante de la seguridad es el de la transmision segura de informacion,
que se consigue mediante la encriptacion. La mayor parte de los servidores de aplicacion
soportan comunicaciones seguras a través de SSL (Secure Sockets Layer).

3.4.5.2 Soporte para Concurrencia

El uso de un sistema distribuido implica que varios usuarios pueden estar accediendo a la
misma informacioén a la vez, problema de concurrencia. El servidor de aplicaciones se
hace cargo del problema, por defecto el servidor no permite acceder a los objetos a mas
de un thread, hasta que un cliente no haya terminado de ejecutar no puede ejecutar
ningun otro cliente el mismo objeto.

77

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.4.5.3 Escalabilidad

A veces pueden suceder sucesos como un inesperado aumento de usuarios en un
momento dado, aumento de carga en el hardware, etc. La arquitectura J2EE proporciona
una gran flexibilidad para adaptarse a cambios como el rencimiento o la capacidad de
cambio.

La arquitectura de la aplicacion de n capas permite aplicar potencia adicional cuando es
necesario. También es posible dividir en mas niveles los puntos especificos que presentan
mas problemas, sin afectar a otros componentes de la aplicacion.

Ademas, algunos servidores de aplicaciones como Glassfish contienen sistemas para
mejorar el rendimiento y la disponibilidad de las aplicaciones.

78

UNnB

Universitat Autbnoma
de Barcelona Entorno de desarrollo para J2EE

3.4.6 Soporte para SOA

3.4.6.1 JBI

Java Business Integration es una especificacion desarrollada bajo la JCP (Java
Community Process) para el desarrollo de componentes de servicios. Esta especificacion
fue pensada para la crear una arquitectura interconectable para componentes que
implementan servicios de tipo proveedor o componentes consumidores de servicio.
OpenESB es una implementacién open source basada en JBI.

External Extermal
Sefvice Service
Prowider Consumer

__+ ________ +___.._

JBI Runtime

[S e e)

Figura 3.24 JBI

3.4.6.2 Open ESB

OpenESB es un implementacién de un Enterprise Servicie Bus (ESB) basado en la
especificacion JBI, iniciada por Sun Microsystems. Permite integrar facilmente
aplicaciones empresariales y webservices como aplicaciones compuestas débilmente
acopladas. Esto permite componer y recomponer de manera fluida y rapida aplicaciones
compuestas, con todas las ventajas de una verdadera Arquitectura Orientada a Servicios.

79

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

OpenESB se ejecuta sobre el servidor de aplicaciones Glassfish/Sun Application Server e
incluye una gran variedad de componentes JBI (Java Business Integration) y un motor de
servicio WS-BPEL 2.0. Ademas incluye su propio motor BPEL (BPEL SE).

Open ESB amplia las capacidades de la implementacion de JBI con services engines,
binding components, herramientas y servicios de administracion y monitorizaciéon
adicionales. La integracién con el entorno de desarrollo NetBeans permite el despliegue
de aplicaciones de una manera rapida y eficiente, con una serie de facilidades como
ayuda en el desarrollo, control de errores y pruebas.

80

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.5 Resumen general de J2EE

J2EE proporciona una solucion global, estandarizada y sencilla al desarrollo de
aplicaciones corporativas. La funcionalidad del negocio se implementa mediante EJB y los
clientes interactuan con una interface. El servidor de aplicaciones lleva a cabo tareas
fundamentales como control de seguridad, concurrencia, etc. proporcionando ademas una
serie de interfaces estandar para el acceso a bases de datos, correo electrénico, etc.

Respecto al acceso a los Enterprise Beans, J2EE proporciona numerosas alternativas
como usar aplicaciones a medida, HTML, etc. Ademas, el protocolo utilizado hace posible
que las aplicaciones cliente estén escritas en cualquier lenguaje que soporte CORBA.

Para soportar el desarrollo de HTML/XML, J2EE proporciona los APIs Servlets y Java
Serves Pages, que hacen portable al cédigo utilizado para generarlos entre diversas
plataformas.

Servidor dea Sarvicios de almacenamiento,
aplicasiones directorio, correo, ete.

'2”“"""",::':'“ cliente | Semidor WebSphare/Barland App I—JDEC@
ava) =erver, o cualguier ofro.

—.|ava Mail—>| Seridor de Carren |

Aplicaciohes Cliente

-

Aplicacidn cliente | Enterprise Java Beans _
(CH++/CORBA) | Cliente | Factura 1—JMDI—>| SErvicios de Direu:turiu:u|
Applet ﬁ Frovesdor 1—Rru1l—>| Aplicsciones Java |

+ .

HTML —|IOP —m Sepidores CORBA

Mavegadar SOPOAE Wel >

Intzrnet Explorer, : s — R :
Netscape - HTH |I Servlets H | J5Ps '| " JME—>| Colas de mensajes |
Mavigator)

F 3
¥

Figura 3.25 Interaccion entre diferentes interfaces, EJB y Servlets/JSPs, servidor de aplicaciones
y servicios externos

81

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.6 Servidores de Aplicaciones Java EE 5 certificados

Un servidor de aplicaciones se trata de un dispositivo de software que proporciona
servicios de aplicacion a las computadoras cliente. Un servidor de aplicaciones gestiona
las funciones de logica de negocio y de acceso de datos a la aplicaciéon. Los principales
beneficios son la centralizacion y la disminucion de la complejidad en el desarrollo de
aplicaciones. Algunos servidores de J2EE son los siguientes:

JonAS. Servidor de aplicaciones de codigo abierto de ObjectWeb.

* WebLogic Application Server. Servidor de aplicaciones desarrollado por BEA
Systems posteriormente adquirida por Oracle Corporation

* Jboss. Desarrollado inicialmente por JBoss Inc y adquirido posteriormente por Red
Hat. Existe una version de codigo abierto soportada por la comunidad y otra
empresarial.

* Sun Java System Application Server Platform Edition 9.0. Servidor de
aplicaciones basado en GlassFish.

* Apache Geronimo 2.0. Servidor de aplicaciones de Apache Software Foundation.

* GlassFish, Servidor de aplicaciones de codigo abierto de Sun.

A continuacion detallaremos los mas importantes.

82

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.6.1 JBoss

JBoss es un servidor de aplicaciones J2EE de codigo abierto implementado en Java puro.
Al estar basado en Java, JBoss puede ser utilizado en cualquier sistema operativo que lo
soporte. Los principales desarrolladores trabajan para una empresa de servicios, JBoss
Inc., adquirida por Red Hat en Abril del 2006, fundada por Marc Fleury, el creador de la
primera version de JBoss. El proyecto esta apoyado por una red mundial de
colaboradores. Los ingresos de la empresa estan basados en un modelo de negocio de
servicios.

JBoss es una implementaciéon Open-Source de un contenedor EJB; es mediante este tipo
de productos que es posible llevar acabo un desarrollo con EJB's. La gran gamma de
productos en J2EE han sido comercializados como Java Application Servers.

Como se observa en la siguiente imagen un Java Application Server se encuentra
compuesto por dos partes: un Servlet Engine y un EJB Engine, dentro del Servlet Engine
se ejecutan exclusivamente las clasicas aplicaciones de Servidor (JSP's y Servlets) ,
mientras el EJB Engine (Contenedor) es reservado para aplicaciones desarrolladas
alrededor de EJB's.

83

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

f — _ linBC
}'.-:_ I Eiﬂsl‘tlr|31=-:1L15f]reu::hTI-----—'—'-'-----—------.

| _l Solicitudes
. I.'1:'_r1.'l|:". Engine | prrp s grTes de Intermet
™ [Web-Candamer) —_——
: : 3 I_ — R 3:'wi-:|::'rr|:|+—ml
& _ |leoreal] RHI .~ IIOF |_""'S_i'"‘"‘_| HTTPS
(| nicaciones Legacy l—-— -t
s (COBOL, Cet) | " hean Contminer | ——
i L weeee i Comtainer - —
gl - | | | {B[B-Container] I Ii"_}“‘_] Java Applet
IEH]" ["Enterprise Resouree| | (T g b _| | _“]
| Flannming™y T . Programa Java
2 s : CAT | |
L _UDEdwards, SAP) __! [| |

T RHI ~ IIOF
ELS ("Enterprizse Information
Systems”)

Figura 3.26 Esquema de JBoss

3.6.1.1 Servidor de aplicaciones JBoss

JBoss AS es el primer servidor de aplicaciones de codigo abierto, preparado para la
produccion y certificado J2EE, ofreciendo una plataforma de alto rendimiento para
aplicaciones de e-business. Combinando una arquitectura orientada a servicios
revolucionaria con una licencia de cddigo abierto, JBoss AS puede ser descargado,
utilizado, incrustado y distribuido sin restricciones por la licencia.

3.6.1.2 Servicios de Jboss

* EJB 3.0. Implementa la especificacion inicial de Enterprise JavaBeans 3.0.

 JBoss AOP. Esta orientado a trabajar con Programacion Orientada a Aspectos.
Esto permitira afiadir facilmente servicios empresariales (transacciones, seguridad,
persistencia) a clases Java simples.

84

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

» Hibernate. Es un servicio de persistencia objeto/relaciones y consultas para Java.
Hibernate facilita a los desarrolladores crear las clases de persistencia utilizando el
lenguaje Java - incluyendo la asociacién,herencia, polimorfismo y composicion
y el entorno de colecciones Java.

* JBoss Cache. Es un producto disefiado para almacenar en caché los objetos Java
mas frecuentemente accedidos de manera que aumente de forma notable el
rendimiento de aplicaciones e-bussines. Eliminando accesos innecesarios a la
base de datos, JBoss Cache reduce el trafico de red e incrementa la escalabilidad
de las aplicaciones.

* JBoss IDE. Brinda una IDE Eclipse para el JBoss AS. De esta forma la depuracién
y otras tareas asociadas al desarrollo de aplicaciones puede ser realizadas desde
el entorno de Eclipse.

« JBoss jBPM. PM es una plataforma para lenguajes de procesos ejecutables,
cubriendo desde gestion de procesos de negocio (BPM) bajo workflow hasta
orquestacion de servicios. Actualmente jBPM soporta tres lenguajes de procesos
sobre una sola tecnologia: Maquina Virtual de Procesos(PVM).

 JBoss Portal. Es una plataforma de cédigo abierto para albergar y servir un
interfaz de portales Web, publicando y gestionando el contenido asi como
adaptando el aspecto de la presentacion.

* Tomcat. Es un contenedor de servlets utilizado como la implementaciéon de
referencia oficial para las tecnologias de JavaServer Pages y Java Servlet.

« JBoss Mail Server, MQ, Messaging. Servicios de mail, mensajeria en Java
Message Service y un servicio de mensajeria robusto y de alto rendimiento que
soporta esquemas de integracion que van desde simples mecanismos entre
aplicaciones hasta grandes Arquitecturas de Servicios (SOAs) y Canales de
Servicios Empresariales (ESBs).

85

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

* JBoss Forum (Jforum). Es un foro de discusion en Java similar en prestaciones y
aspecto a phpBB. Tiene licencia BSD, soporte para bases de datos MySQL,
PostgreSQL y HSQLDB, una interfaz altamente configurable, soporte para un
numero ilimitado de grupos de usuarios con permisos distintos, notificaciones por
email de actividad en los posts, soporte para internacionalizacion, etc.

3.6.1.3 Ventajas de JBoss
Las ventajas de JBoss son multiples.

* ElI producto esta siendo constantemente actualizado y cuenta con buena
documentacion.

* Producto de licencia de codigo abierto.

* Cumple los estandares.

* Confiable a nivel de empresa.

* Orientado a arquitectura de serviccios.

* Soporte completo para Java Management eXtensions.

* Ayuda profesional 24 horas.

86

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.6.1.4 Desventajas de JBoss

La principal y muy importante desventaja de JBoss es el precio, ya que no todas las
empresas pueden permitirse gastarse el muy elevado precio de la licencia Jboss. También
existe una version gratuita de menor rendimiento y prestaciones.

Comparandolo con Glassfish:

Glassfish tiene una mejor consola de administracion.

» Despliegue en caliente es mas fiable en Glassfish.

* La nueva versiéon de Glassfish soporta Java EE 6 mientras que Jboss utiliza Java
EE 5.

* WebServices funcionan mejor sobre Glassfish.

» Glassfish tiene un entorno mas amigable para desarrolladores. Ademas si se usa
NetBeans es mas sencillo.

87

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.6.2 Apache Geronimo

Apache Geronimo es un servidor de aplicaciones de codigo abierto desarrollado por la
Apache Software Foundation y distribuido bajo la licencia Apache. Geronimo es
actualmente compatible con la especificacion Java Enterprise Edition (Java EE) 5.0. IBM
ha proporcionado un apoyo considerable al proyecto a través de la comercializacion, las
contribuciones de cddigo, y la financiacién de varios proyectos.

El nucleo de Geronimo es Java EE agnostic. Su unico objetivo es la gestién de bloques de
construccion de Geronimo. Se caracteriza por un disefo arquitectonico que se basa en el
concepto de Inversion of Control (COIl), lo que significa que el nucleo no tiene
dependencia directa de cualquiera de sus componentes. El nucleo es un framework para
los servicios que controla el ciclo de vida de servicio y el registro y esta basado en Java
EE.

La mayoria de los servicios de Geronimo se agregan y configuran a través de GBeans
para convertirse en una parte del global de las aplicaciones de servicio. GBean es la
interfaz que conecta los componentes al nucleo. La interfaz de GBeans permite cambiar
entre dos contenedores de servlets, por ejemplo, Jetty o Tomcat sin afectar a toda la
arquitectura utilizando una interfaz de Gbeans. Esta arquitectura flexible permite a los
desarrolladores de Geronimo para integrar varias existentes, probados en los proyectos
de software de codigo abierto.

3.6.2.1 Servicios de Apache Geronimo

* Apache Tomcat. Servidor de HTTP y contenedor de Servlet que soporta Java
Servlet 2.5 y JavaServer Pages (JSP) 2.1.

» Jetty. Tiene las mismas funcionalidades que Tomcat, es una alternativa.

* Apache ActiveMQ. Servicio de mensajeria open source basado en Java Message
Service (JMS) 1.1.

88

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

* Apache OpenEJB. Open source Enterprise JavaBeans (EJB) Container System y
EJB Server que soporta Enterprise JavaBeans 3.0, incluye Container Managed
Persistence 2 (CMP2) y EJB Query Language (EJBQL).

* Apache OpenJPA. Implementacion de open source Java Persistence APl (JPA)
1.0

* Apache ServiceMix. Open source Enterprise Service Bus (ESB) y componentes
basados en el Java Business Integration (JBI) standard JSR 208.

* Apache Axis y Apache Scout. Axis es una implementacién Simple Object Access
Protocol (SOAP), Scout es una implementacién JSR 93 (JAXR).

» Apache CXF. Estructura de servicios web con variedad de protocolos como SOAP,
XML/HTTP, RESTfull HTTP o COBRA.

* Apache Derby. Relational database management system (RDBMS) con soporte
para Java Database Connectivity (JDBC)

» Apache WADI. Clustering, balanceo de carga y solucion de error para la aplicacion
web.

 MX4J. Java Management Extensions, suministra las herramientas para la gestion y
seguimiento de las aplicaciones, los objetos del sistema, los dispositivos y las
redes de servicios orientados.

89

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Servidor Geronimo
Explorador Cliente -l - CAPA WEB
TomcathJetty
Aplicacion CAPA DE NEGOCIOS
Cliente - - Open EJB
|
<

Base de datos

Figura 3.27 Ejemplo de Geronimo utilizando Tomcat/Jetty y OpenEJB

3.6.2.2 Ventajas de Apache Geronimo

Las principales ventajas de este servidor de aplicaciones son las siguientes.

* Facil de usar.

* Open Source.

« El tiempo de ejecucion es bueno para satisfacer las necesidades de
desarrolladores, administradores e integradores de sistemas.

90

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

* Integracién completa con Eclipse.
* Actualizaciones frecuentes con nuevas caracteristicas y correccion de errores.

* Existe una comunidad que desarrolla nuevas herramientas constantemente.

3.6.2.3 Desventajas de Apache Geronimo

* Comparandolo con Glassfish, Apache Geronimo es un servidor de aplicaciones
mas sencillo y con menos aplicaciones que el primero. Ademas el rendimiento de
Geronimo es menor.

* Glassfish aprovecha todas las funcionalidades de JEES (o 6 en la ultima version) y
es mas sencillo de utilizar gracias a la compatibilidad con Netbeans.

» Geronimo es mucho menos utilizado que Glassfish o Jboss, lo cual significa que el
apoyo de la comunidad sera menor y es mas dificil encontrar expertos que trabajen
en él.

91

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.6.3 Oracle WebLogic

Oracle WebLogic es un servidor de aplicaciones J2EE y también un servidor web HTTP
desarrollado por BEA Systems posteriormente adquirida por Oracle Corporation. Puede
ejecutarse en distintos sistemas operativos. La ultima version de WebLogic forma parte de
Oracle Fusion Middleware, que consiste en un conjunto de software de Oracle.

WebLogic server permite desarrollar y desplegar aplicaciones fiables, seguras, escalables
y manejables. Dirige los detalles a nivel de sistema para que el desarrollador sélo se
tenga que preocupar por la légica de negocio y la presentacion.

WebLogic puede utilizar distintas bases de datos como DB2, Microsoft SQL Server u otras
bases de datos que se ajusten al estandar JDBC. Es compatible con WS-Security y
cumple con los estandares de J2EE, incluyendo JEE 5 en su ultima version 10.

Oracle WebLogic Server es parte de Oracle WebLogic Platform, de la cual forman parte
los siguientes componentes.

Portal. Servidor de comercio y personalizacion.

* WebLogic Integration. Aplicacion basada en java para la integracion de sistemas
y conectividad.

* WebLogic Workshop. IDE para Java.

* JRockit. Maquina Virtual de Java para CPUs de Intel.

WebLogic Server incluye interoperabilidad .NET y admite las siguientes capacidades de
integraciono nativa:

* Mensajeria nativa JMS.

92

UNnB

Universitat Autbnoma

de Barcelona Entorno de desarrollo para J2EE

* J2EE Connector Architecture.

¢ Tuxedo Connector.

* Conectividad COM+ y CORBA.

» Conectividad IBM WebSphere MQ.

El modelo de seguridad de WebLogic Server incluye Separar la légica de negocio del
cédigo de seguridad y rango completo de cobertura de seguridad para todos los

componentes, sean o no J2EE.

WebLogic implementa las siguientes tecnologias en sus distintas capas.

Communication
TCPIP, HTTP, 8SL
RMI
RMI-lIIOP

Application Services

Business Logic

Presentation Logic

Figura 3.28 Tecnologias de WebLogic

93

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.6.3.1 Ventajas de Oracle WebLogic

Las principales ventajas de Oracle WebLogic son las siguientes.

* Soporte de Java Enterprise para facilitar la implementacion y despliegue de
componentes de aplicacion.

* Diversas opciones de cliente. WebLogic soporta navegadores Web y otros clientes
que usen HTTP, clientes Java que usan RMI o IIOP o dispositivos moviles que usan
WAP. Los conectores permiten virtualmente a cualquier cliente o aplicacién trabajar
con WebLogic.

» Escalabilidad. Esta asegurada a través del uso de componentes EJB y otros
mecanismos.

* Ofrece una Consola de Administracion basada en Web para configurar y
monitorizar los servicios.

» Seguridad lista para el comercio electréonico. WeblLogic proporciona soporte de
Secure Sockets Layer (SSL) para encriptar datos. La seguridad permite la
autentificacion y autorizacion del usuario para todos los servicios.

* Flexibilidad en el desarrollo y despliegue. WeblLogic proporciona integracion y
soporte con las bases de datos mas importantes, herramientas de desarrollo y
otros entornos.

3.6.3.2 Desventajas de Oracle WebLogic

Los inconvenientes mas importantes que tiene WebLogic respecto a Glassfish son los
siguientes.

94

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

* Glassfish continuara con la implementacién Java EE como referencia y como
proyecto Open Source. Esta es la desventaja mas importante ya que el gasto para
las empresas es muy elevado

* Glassfish cuenta con Netbeans como IDE, ya incorporado en el propio Netbeans.

* Glassfish soporta las mas recientes versiones de JSP, Java Servlets y la version
JEE 6.

95

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.7 Glassfish

3.7.1 Qué es Glassfish

El término Glassfish, traducido al espafiol seria algo parecido como “Pez de Cristal”, es el
nombre de un pez que realmente existe y vive en el agua dulce; su cuerpo es
transparente, por lo que sus huesos son visibles. El nombre fue elegido debido a la
transparencia que los creadores querian darle al proyecto, que utiliza una licencia Open
Source, concretamente la licencia Common Development and Distribution License
(CDDL) v1.0 y la GNU Public License (GPL) v2.

ﬁq

N s

3.7.2 Para qué sirve Glassfish

GlassFish es un servidor de aplicaciones desarrollado por Sun Microsystems que
implementa las tecnologias definidas en la plataforma Java EE y permite ejecutar
aplicaciones que siguen esta especificacion. La version comercial es denominada Sun
GlassFish Enterprise Server. Soporta las ultimas versiones de tecnologias como: JSP,
Servlets, EJBs, Java API para Servicios Web (JAX-WS), Arquitectura Java para Enlaces
XML (JAXB), Metadatos de Servicios Web para la Plataforma Java 1.0, y muchas otras
tecnologias.

Glassfish ademas de ser un servidor de aplicaciones, es una comunidad de usuarios, que
descargan y utilizan libremente Glassfish, también existen partners que contribuyen
agregandole mas caracteristicas importantes a Glassfish. Ademas ingenieros y beta
testers que desarrollan codigo y prueban las versiones liberadas para eliminar todo fallo
que se encuentre, y muchos otros miembros. La comunidad fue lanzada en el afo 2005
en java.net. Al igual que el pez original, la Comunidad Glassfish es transparente en cuanto
a términos de entrega de cdédigo fuente, discusiones de ingenieria, agendas, datos de
descarga, etc. Tu puedes tener acceso a todo ésto, ademas puedes formar parte de todo
el proceso detras de la comunidad Glassfish. Un ejemplo de esto es la comunidad
FishCAT.

96

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.7.3 Coémo funciona un servidor de aplicaciones

Un servidor de aplicaciones proporciona generalmente gran cantidad de funcionalidades
built in de forma transparente al usuario de manera que no sea necesario escribir codigo
fuente. Estas funcionalidades son posibles ya que los componentes se ejecutan dentro del
contenedor en un espacio de ejecucion virtual llamado dominio de ejecucion. Su funcion
principal es la de interponerse entre las llamadas que se hacen a los métodos de los
beans y las implementaciones de los mismos, de modo que entre otras cosas puede
hacer las comprobaciones para verificar si el usuario que llama al método tiene los
permisos adecuados, antes de llamarlo.

3.7.4 Modular, Integrable y Extendible

Glassfish dispone de una arquitectura Modular, se puede descargar e instalar solamente
los modulos que se necesiten para las apps, con lo cual se minimiza el tiempo de inicio,
consumo de memoria y espacio en disco.

Basandose en el modelo de componentes dinamico y completo para Java OSGi (Open
Services Gateway Initiative), las aplicaciones y/o componentes de Glassfish pueden ser
remotamente instalados, iniciados, actualizados, etc. sin necesidad de reiniciar el servidor.

Es posible ejecutar Glassfish dentro de una maquina virtual sin necesidad de disponer de
instalar un servidor de aplicaciones. Es posible usar Glassfish como una libreria mas en la
JVM, seleccionando solo lo que se necesita y probando pequehas aplicaciones webs sin
necesidad de correr todo el AppServer, teniendo en cuenta las limitaciones de no tener el
AppServer instalado.

97

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

3.7.5 Herramientas de programacion

AJAX. Glassfish dispone de una tecnologia y framework para Java basadas en
web (Java Server Faces) llamado Woodstock, que simplifica el desarrollo de
interfaces de usuario en aplicaciones J2EE en el cual se pueden incluir
componentes AJAX.

Ruby Rails. Se pueden ejecutar aplicaciones basadas en Ruby Rails de dos
formas diferentes. La primera es mediante jRuby que esta incluido en la Java
Platform y la segunda seria ejecutar Rails en un interprete nativo de Ruby
comunicandose con Gassfish mediante CGI.

PHP. Puede utilizarse PHP con la implementacion Quercus PHP 5 desenvolupada
por Caucho en Java.

3.7.6 Tecnologias de Integraciéon

TopLink Essentials. Es la implementacion de JPA (Java Persistence API) para la
comunidad Glassfish. La API se proporciona un modelo de programacién sencillo
para las entidades persistencia de EJB y ademas incluye la herramienta para
conectar diferentes proveedores de persistencia.

CORBA. Glassfish incluye una implementacién completa de CORBA. Esta
aplicacién ha ido mejorando con las diferentes versiones de Glassfish.

OpenMQ Messaging. Glassfish incorpora una herramienta de mensajeria que
proporciona:

- Mensajes entre los componentes del sistema

- Distribucion escalable de servidores de mensajeria

- Integracion de mensajes SOAP / HTTP

- Java y C Cliente API

98

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

Java Business Integration. Glassfish incluye soporte para la APl JBIl. Se encarga
de la integracion de bus y componentes de arquitectura. La implementacion
incluida en Glassfish proviene del proyecto OpenESB.

3.7.7 Historia

Junio de 2005. Primer lanzamiento del proyecto.

Mayo de 2006. Primera version que soporta la especificacion Java EE 5.

Mayo de 2007. El proyecto Project SailFin se anuncia en JavaOne como un
subproyecto bajo GlassfFish. SailFin es un proyecto que afade nuevas
funcionalidades, como el servlet de Session Initiation Protocol (SIP).

Septiembre de 2007. Aparece la versién 2 (también conocida como Sun Java
System Application Server 9.1) con capacidades de cluster y nuevas caracteristicas
de interconexion entre servicios web.

Diciembre de 2008. Sun Microsystems y la comunidad lanza GlassFish 2.1 (Sun
GlassFish Enterprise Server 2.1), el que sirve como la base para el proyecto Sailfin
SIP AppServer project (también conocido como Sun Communication Application
Server).

Diciembre de 2009. Aparece la versién 3 que soporta la especificacion Java EE 6.

99

UNnB

Universitat Autbnoma

de Barcelona Entorno de desarrollo para J2EE
Romest v2 v3 Prelude ea
Catalina Fast, Easy, Reliable v3
JSTL vi Modular, Integrable, Extendible
Struts GlassFish UR1 UR2
Crimson | Sunch v2.1
XSLTC '
Xalan * *
Xerces
I I I I
| | | | . |
JAXB June May Sep Nov Dec Mid-2009
JA:‘;"C 2005 2006 2007 2008 2008
Glassfish Enterprise
SJS9.0P.E

Licencia: GPLv2 + CPE - CDDL
Figura 3.29 Evolucion de Glassfish

3.7.8 Diferencia entre versiones de Glassfish

* Glassfish v1: Después de un ano, ésta fue la primera version que fue liberada,
conjuntamente con la liberacion de Java EE 5. El principal objetivo de ésta version,
fue desarrollar un servidor de aplicaciones totalmente compatible con Java EE 5, y
lo lograron, recibiendo excelentes resefnas de analistas. A la vez que se liberaba la
primera version de Glassfish, también se lanzaba un producto correspondiente de
Glassfish bajo el Sun Java System 9.0 Platform Edition. La principal diferencia
entre la versidén Open Source y el producto de Sun fue: marca de Sun, mejor
instalador, drivers de DataDirect JDBC e indemnizacion limitada. Todo lo demas era
exactamente lo mismo.

* Glassfish v2: ésta version fue liberada en Septiembre del 2007, junto con algunas
actualizaciones, éstas incluian reparacion de bugs y algunos parches. El principal
enfoque de la version v2 fue agregar varias caracteristicas empresariales. Las tres
palabras clave que resumen ésta versién son: Rapido, Facil y Fiable.

100

UNnB

Universitat Auténoma
de Barcelona Entorno de desarrollo para J2EE

* Glassfish v2.1: versién liberada en Diciembre del 2008, dénde se repararon mas
de 500 problemas. Permite el uso de SailFin 1.0 e incluye muchisimas mejoras de
calidad. Las caracteristicas principales de esta version son:

- Java EES

- Java Web Technologies (Servlet 2.5, JSP 2.1, JSF 1.2)
- Metro Web Services Stack

- .NET 3.0 Web Services Interoperability

-EJB 3.0

- JPA 1.0 (TopLink)

- Grizzly (Java NIO)

- CORBA

* Glassfish v3: Esta version tiene como principales caracteristicas: altamente
modular, integrable y extendible. Ademas de que es totalmente compatible con
Java EE 6. Caracteristicas de esta version:

- Java Web Technologies (Servlet 3.0, JSP 2.2, JSF 2.0)
- Metro Web Services Stack

- .NET 3.5 Web Services Interoperability

- EJB 3.1

- JPA 2.0 (EclipseLink)

- Grizzly (Java NIO)

- CORBA

- Arquitectura Modular Basada en OSGi

101

CAPITULO 4

Desarrollo de EJB's

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.1 Introduccion de EJB

Con EJB es posible desarrollar componentes que luego podemos utilizar y ensamblar en
distintas aplicaciones. El desarrollo basado en enterprise beans supone un paso mas en
la escalabilidad que la programacion orientada a objetos. Con componentes es posible
reutilizar un mayor numero de funcionalidades, incluso modificar éstas y adaptarlas a
cada entorno de trabajo sin tocar el codigo del componente desarrollado. Un componente
0 enterprise bean es una especie de objeto tradicional con un conjunto de servicios
adicionales soportados en tiempo de ejecucion por el contenedor de componentes, o EJB.
El EJB es una especie de sistema operativo donde residen los componentes. Podemos
ver un componente como un objeto remoto RMI que reside en un contenedor EJB que
proporciona un conjunto de servicios adicionales.

4.2 Servicios proporcionados por el contenedor EJB

El contenedor EJB ya incorpora unos servicios concretos sin necesidad de programar
ninguna clase que los implemente. Los servicios mas importantes que proporcionan los
enterprise beans son los siguientes:

Manejo de transacciones. Apertura y cierre de transacciones asociadas a las
llamadas a los métodos del bean.

* Seguridad. Comprobacion de permisos de acceso a los métodos del bean.

» Concurrencia. Llamada simultanea a un mismo bean desde multiples clientes.

» Servicios de red. Comunicacion entre el cliente y el bean en diferentes maquinas.

* Gestion de recursos. Gestion automatica de recursos como las colas de mensajes,
bases de datos, etc.

* Persistencia. Sincronizacién entre los datos del bean y tablas de una base de
datos.

105

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

* Gestion de mensajes. Utilizacion de Java Message Service.

* Escalabilidad. Posibilidad de anadir clusters de servidores de aplicaciones con
multiples hosts para poder dar respuesta a aumentos de carga de la aplicacién solo
con afadir hosts adicionales.

* Adaptacion en tiempo de despliegue. Posibilidad de modificacién de todas estas
caracteristicas en el momento del despliegue del bean.

4.3 Funcionamiento de los componentes EJB

El contenedor EJB es un programa Java que se ejecuta en el servidor y contiene todas las
clases y objetos necesarios para el correcto funcionamiento de los enterprise beans.

El funcionamiento basico es el siguiente. El cliente que realiza peticiones al bean y el
servidor que contiene el bean estan ejecutandose en maquinas virtuales Java distintas. El
contenedor EJB proporciona un EJBObject al cliente, que hace de interfaz. Cualquier
peticion del cliente se hace a través del objeto EJB, el cual solicita al contenedor EJB una
serie de servicios y se comunica con el enterprise bean. Por ultimo el bean realiza las
peticiones a la base de datos. El propio contenedor EJB ya se encarga de comprobar las
cuestiones de permisos, abrir y cerrar transacciones, etc.

Cliente

Servicios

Servicios

Enterprise
bean

Interfaz negocio

Contenedor EJB

Figura 4.1 Representacion del funcionamiento de los enterprise beans
106

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.4 Tipos de EJB

EJB de Entidad. Representan un objeto concreto que existe en la base de datos.
Una instancia de un bean de entidad representa una fila en una tabla de la base de
datos.

EJB de Sesidn. Gestionan el flujo de la informacion en el servidor. Representa un
proceso o una accion de negocio. Cualquier llamada a un servicio del servidor debe
comenzar con una llamada a un bean de sesion.

EJB dirigidos por mensajes. Son los Unicos beans con funcionamiento asincrono.
Usando el Java Messaging System, se suscriben a un tema o0 a una cola y se
activan al recibir un mensaje dirigido a dicho tema o cola. No necesitan objetos
EJBODbject porque los clientes no se comunican con ellos directamente.

107

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

Uso de anotaciones

Una anotacion proporciona un recurso adicional al elemento de codigo al que va asociado
en el momento de su compilacion. Cuando se ejecuta, la clase busca estas anotaciones y
determina el comportamiento a seguir con el codigo al que va unido.

4.4.1 Beans de Sesion

Los beans de sesion representan sesiones interactivas con uno o mas clientes. Pueden
mantener un estado, pero solo durante el tiempo que el cliente interactua con el bean.
Cuando termina el proceso los beans de sesién no almacenan sus datos en la base de
datos. Los beans de sesion no son persistentes.

A diferencia de los beans de entidad, los beans de sesidén no se comparten entre los
clientes, sino que hay un bean de sesion por cada cliente. Por eso el contenedor EJB no
necesita implementar mecanismos de manejo de concurrencia en el acceso a estos
beans.

Dentro de los beans de Sesidén encontramos dos tipos: sin estado (stateless) y con estado
(stateful).

4.4.1.1 Beans de sesion sin estado

Los beans de sesidon sin estado no se modifican con las llamadas de los clientes. Los
meétodos que estan implementados en las aplicaciones cliente son llamadas que reciben
datos y devuelven resultados, pero no modifican el estado del bean. Esto permite que el
contenedor de EJB cree una reserva de instancias del mismo bean de sesion sin estado y
pueda asignar cualquier instancia a cualquier cliente, o incluso el mismo bean a multiples
clientes.

Una de las ventajas del uso de beans de sesidn frente al uso de clases Java u objetos
RMI es que no es necesario escribir los métodos de los beans de sesién de forma segura
para threads ya que el contenedor EJB se encarga que solo haya un thread accediendo al
objeto. Para eso utiliza multiples instancias del bean.

108

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

Cuando un cliente invoca un método de un bean de sesion sin estado, el contenedor EJB
obtiene una instancia de la reserva cualquiera. Recordamos que cualquier instancia sirve
ya que el bean no guarda informacion referida al cliente. Cuando el método termina la
ejecucion la instancia del bean esta disponible de nuevo. Gracias a esto los beans de
sesidon sin estado son muy escalables y pueden ser utilizados por un gran numero de
clientes. Si el contenedor EJB necesita recursos y memoria en un momento dado solo
tiene que destruir algunas instancias.

Los beans de sesion sin estado se usan en general para encapsular procesos de negocio,
mas que datos de negocio. Proporcionan un conjunto de procesos relacionados con un
dominio especifico del negocio. Por eso se utilizan cuando una tarea no esta ligada a un
cliente especifico. Un ejemplo seria usarlo para enviar un e-mail que confirme un pedido
on-line.

4.4.1.2 Beans de sesion con estado

En un bean de sesion con estado, las variables de la instancia del bean almacenan datos
especificos obtenidos durante la conexién con el cliente. Cada bean de sesion con estado
almacena el estado conversacional de un cliente que interactua con el bean. Este estado
se modifica conforme el cliente va realizando llamadas a los métodos de negocio del bean
y se elimina cuando el cliente termina la sesion.

La interaccion del bean se divide en un conjunto de pasos en el que cada paso se afiade
nueva informacion al estado del bean. Un ejemplo especifico seria por ejemplo un carrito
de la compra, donde el cliente va guardando uno a uno cada cosa que compra.

El estado del bean se mantiene mientras existe el bean. A diferencia de los beans de
entidad, no existe ningun recurso exterior al contenedor EJB en el que se almacene este
estado.

Debido a que el bean guarda el estado conversacional con un cliente especifico, no es
posible crear un almacén de beans y compartirlos entre muchos clientes asi como sucede
con los beans de sesidn sin estado. Por eso el manejo de este tipo de beans es mas
pesado que el de beans de sesion sin estado.

109

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.4.1.3 Anotaciones de un Bean se Sesion

@Stateful: Indica que el Bean de Sesidn es con estado. Atributos:
* name. Por defecto el nombre de la clase pero se puede especificar otro.
« mappedName. Si se quiere que el contenedor maneje el objeto de manera
especifica. Si incluimos esta opcidn nuestra aplicacién puede que no sea portable y

no funcione en otro servidor de aplicaciones.

» description. Descripcion de la anotacion.

@Stateless: Indica que el Bean de Sesion es sin estado y contiene los mismos atributos
que Stateful.

@Init: Especifica que el método se corresponde con un método create de un EJBHome o
EJBLocalHome de EJB 2.1. Sdlo se puede llamar una vez a este método.

@Remove: Indica que el contenedor debe llamar al método cuando quiera destruir la
instancia del Bean.

@Local: Indica que la interfaz es local.
@Remote: Indica que la interfaz es remota.
@PostActivate: Invocado después de que el Bean sea activado por el contenedor.

@PrePassivate: Invocado antes de que el Bean esté en estado passivate.

110

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

inport java.util.List:

import javax.ejb.S5tateless;

import javax.persistence.EntityManager:;
inport javax.persistence.PersistenceContext;
import org.ejb.entidad.Productos;

@5tateless

public class ProduoctosFacade implements ProductosFacadeBemote {
EPer=zistenceContext
private EntityManager em;

Figura 4.2 Anotacion Stateless

4.4.2 Beans de entidad

Los beans de entidad utilizan conceptos o datos de negocio que pueden expresarse como
nombres o 'cosas'. Es decir, los beans de entidad representan objetos reales como
estudiantes o habitaciones y cosas abstractas como una reserva. Estos beans describen
tanto el estado como la conducta de objetos del mundo real y permiten encapsular las
reglas de datos y de negocio asociadas con un concepto especifico. Por ejemplo un bean
de entidad 'estudiante’ encapsula los datos y reglas de negocio asociadas a un
estudiante. Gracias a esto es posible manejar de forma consistente y segura los datos
asociados a un concepto.

Los beans de entidad se corresponden con datos en un almacenamiento persistente
como una base de datos. Las variables de instancia del bean representan los datos en las
columnas de la base de datos. El contenedor EJB debe sincronizar las variables de
instancia del bean con la base de datos. Los beans de entidad se diferencian de los beans
de sesién en que las variables de instancia se almacenan de forma persistente.

A continuacién podemos observar los pasos que realiza un bean de entidad:

* El cliente debe obtener una referencia a la instancia concreta del bean de entidad
que se esta buscando (una id concreta) mediante un método finder, los cuales
estan definidos en la interfaz home e implementados en la clase bean.

111

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

* El cliente interactua con la instancia del bean usando los métodos get y set. El
estado del bean se carga en la base de datos antes de procesar las llamadas a los
métodos. Esto se realiza de forma automatica por parte del contenedor.

* Finalmente, cuando el cliente termina la interaccidén con la instancia del bean sus
contenidos se vuelcan en la base de datos.

Las ventajas de usar beans de entidad en lugar de acceder a la base de datos
directamente son multiples. El uso de beans de entidad nos da una perspectiva orientada
a objetos de los datos y nos proporciona un mecanismo mucho mas simple para acceder
y modificar los datos. Por poner un ejemplo, es mucho mas sencillo cambiar el nombre de
un estudiante llamando a una funcién que ejecutando un comando SQL contra la base de
datos. Ademas el uso de objetos favorece la reutilizacion del software. Una vez se ha
definido el bean de entidad, su definicion puede usarse a lo largo de todo el sistema de
forma consistente y simple. Esto hace que el desarrollo sea mas sencillo y menos
costoso.

En la versidn EJB 3.0 los beans de entidad han pasado a ser substituidos por la entidad
de Java Persistence API.

4.4.2.1 Anotaciones de un Bean de Entidad

@ENntity: Indica que es un Bean de Entidad.

Métodos del ciclo de vida de una entidad

@EntityListeners: Se pueden definir clases oyentes con métodos de ciclo de vida de una
entidad.

@ExcludeSuperclassListeners: Indica que ningun listener de la superclase ser3;
invocado por la entidad ni por ninguna de sus subclases.

@ExcludeDefaultListeners: Indica que ningun listener por defecto sera; invocado por
esta clase ni por ninguna de sus subclases.

112

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

@PrePersist: El método se llamara justo antes de la persistencia del objeto. Podria ser
necesario para asignarle la clave primaria a la entidad a persistir en base de datos.

@PostPersist: El método se llamara después de la persistencia del objeto.
@PreRemove: El método se llamara antes de que la entidad sea eliminada.

@PostRemove: El método se llamara después de eliminar la entidad de la base de
datos.

@PreUpdate: El método se llamara antes de que una entidad sea actualizada en base de
datos.

@PostUpdate: El método se llamara después de que la entidad sea actualizada.

@PostLoad: El método se llamara después de que los campos de la entidad sean
cargados con los valores de su entidad correspondiente de la base de datos. Se suele
utilizar para inicializar valores no persistidos.

@NamedQuery: Especifica el nombre del objeto query utilizado junto a EntityManager.
* name. Nombre del objeto query.

* query. Especifica la consulta a la base de datos mediante lenguaje Java
Persistence Query Language.

@NamedQueries: Especifica varias queries como la anterior.

@NamedNativeQuery: Especifica el nombre de una query SQL normal.
* name. Nombre del objeto query.
* query. Especifica la consulta a la base de datos.
» resultClass. Clase del objeto resultado de la ejecucion de la consulta.

113

UNnB

Universitat Autbnoma

de Barcelona Desarrollo de EJB's

* resultSetMapping. Nombre del SQLResultSetMapping definido.
@NamedNaviteQueries: Especifica varias queries SQL.

@SQLResultSetMapping: Permite recoger el resultado de una query SQL.

* name. Nombre del objeto asignado al mapeo.

+ EntityResult[] entities(). Entidades especificadas para el mapeo de los datos.

* ColumnResult[] columns(). columnas de la tabla para el mapeo de los datos.

@PersistenceContext: Objeto de la clase EntityManager que nos proporciona todo lo

que necesitamos para manejar la persistencia.

« name. Nombre del objeto utilizado para la persistencia en caso de ser diferente al

de la clase donde se incluye la anotacion.

* unitName. |dentifica la unidad de la persistencia usada en el bean en caso de que

hubiera mas de una.

* type. Tipo de persistencia.

@PersistenceContexts: Define varios contextos de persistencia.

@PersistenceUnit: Indica la dependencia de una EntityManagerFactory definida en el

archivo persistence.xml

* name. nombre del objeto utilizado para la persistencia en caso de ser diferente al de la clase

donde se incluye la anotacion.

* unitName. identifica la unidad de la persistencia usada en el bean en caso de que

hubiera mas de una.

114

UNnB

Universitat Autbnoma

de Barcelona Desarrollo de EJB's

BEntity

ATable (name = "productoz™)

ANamedQueries ({ @NamedQuery (name = "Productos.findAll", guery

= "SELECT p FROM Productos p"),@NamedQuery (name = "Productos.findByIdPro™,
query = "5ELECT p FROM Productos p WHERE p.idPro = :idPra"™),

ANamedQuery (name ="Productos.findByDescPro”, query = "SELECT p " +
! OM sductos p WHERE p.descPro = :descPro™)})

Figura 4.3 Anotaciones de Entidad

Mapeos objeto-relacional

@Table: Especifica la tabla principal relacionada con la entidad.
* name. Nombre de la tabla, por defecto el de la entidad si no se especifica.
» catalog. Nombre del catalogo.

* schema. Nombre del esquema

@SecondaryTable: Especifica una tabla secundaria relacionada con el Bean de entidad
si éste englobara a mas de una. Tiene los mismos atributos que @Table

@SecondaryTables: Indica otras tablas asociadas a la entidad.

@UniqueConstraints: Especifica que una unica restriccion se incluya para la tabla
principal y la secundaria.

@Column: Especifica una columna de la tabla a mapear con un campo de la entidad.
* name. Nombre de la columna.
* unique. Si el campo tiene un unico valor.
* nullable. Si permite valores nulos.
* insertable. Si la columna se incluira en la sentencia INSERT generada.
* updatable. Si la columna se incluira en la sentencia UPDATE generada.

» table. Nombre de la tabla que contiene la columna.

115

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

length. longitud de la columna.
precision. Numero de digitos decimales.

scale. Escala decimal.

@JoinColumn: Especifica una campo de la tabla que es foreign key de otra tabla
definiendo la relacion del lado propietario.

name. Nombre de la columna de la FK.

referenced. Nombre de la columna referencia.

unique. Si el campo tiene un unico valor.

nullable. Si permite valores nulos.

insertable. Si la columna se incluira en la sentencia INSERT generada.
updatable. Si la columna se incluira en la sentencia UPDATE generada.

table. Nombre de la tabla que contiene la columna.

@JoinColumns: Anotacién para agrupar varias JoinColumn.

@Id: Indica la clave primaria de la tabla.

@GeneratedValue: Asociado con la clave primaria, indica que ésta se debe generar por
ejemplo con una secuencia de la base de datos.

@SequenceGenerator: Define un generador de claves primarias utilizado junto con la
anotacion @GeneratedValue.

@TableGenerator: Define una tabla de claves primarias generadas.

116

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

@AttributeOverride: Indica que sobrescriba el campo con el de la base de datos
asociado.

@AttributeOverrides: Mapeo de varios campos.
@EmbeddedlId: Se utiliza para formar la clave primaria con multiples campos.

@IdClass: Se aplica en la clase entidad para especificar una composicién de la clave
primaria mapeada a varios campos o propiedades de la entidad.

@Transient: Indica que el campo no se debe persistir.

@Version: Se utiliza a la hora de persistir la entidad en base de datos para identificar las
entidades segun su version.

@Basic: Mapeo por defecto para tipos basicos.

@OneToOne: Indica que un campo esta en relacién con otro.

@ManyToOne: Indica que un campo esta asociado con varios campos de otra entidad.
@OneToMany: Asocia varios campos con uno.

@ManyToMany: Asociacion de varios campos con otros con multiplicidad muchos-a-
muchos.

@Lob: Se utiliza junto con la anotacion @Basic para indicar que un campo se debe
persistir como un campo de texto largo si la base de datos soporta este tipo.

@Temporal: Se utiliza junto con la anotacion @Basic para especificar que un campo
fecha debe guardarse con el tipo java.util.Date o java.util.Calendar.

117

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

@Enumerated: Se utiliza junto con la anotaciéon @Basic e indica que el campo es un tipo
String.

@JoinTable: Se utiliza en el mapeo de una relacibn ManyToMany o en una relacion
unidireccional OneToMany.

@MapKey: Especifica la clave de una clase de tipo java.util.Map.

@OrderBy: Indica el orden de los elementos de una coleccion por un item especifico de
forma ascendente o descendente.

@Inheritance: Define la forma de herencia de una jerarquia de clases entidad, es decir la
relaciéon entre las tablas relacionales con los Beans de entidad.

@PrimaryKeyJoinColumn: Especifica la clave primaria de la columna que es clave
extranjera de otra entidad.

BEntity
BTable (name = "productos™)
ENamedCueries | { EHamedCuery (name = "FProductos.f

e — [

sz p") , EHamedQuery (name

query =

@NamedQuery (name ="Productos.findEBvDesc

{1 [PO, B - OEDE
| g I S L I a2 "D ot

private static final long s=erizlVersionUID = 1L;
BId
EBazic (optional = false)

@Column (name = "id pro")
private String idPro;
@Column (name = "desc pro™)

Figura 4.4 Anotaciones de Entidad

118

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.4.2.2 Diferencias entre beans de sesion y de entidad

Los beans de entidad se diferencian de los beans de sesion, basicamente, en que son
persistentes, permiten el acceso compartido, tienen clave primaria y pueden participar en
relaciones con otros beans de entidad:

* Persistencia. Debido a que un bean de entidad se guarda en una base de datos
se dice que es persistente, el estado del bean de entidad existe mas alla de la
duracién de la aplicacion o del proceso del servidor J2EE.

Los beans de entidad tienen dos tipos de persistencia: Persistencia Gestionada por
el Bean (BMP) y Persistencia Gestionada por el Contenedor (CMP). En el primer
caso el bean de entidad contiene el codigo que accede a la base de datos. En el
segundo, la relacion entre las entidades de la base de datos y el bean se describe
en el dichero de propiedades del bean, y el contenedor EJB se ocupa de la
implementacion.

* Acceso compartido. Los clientes pueden compartir beans de entidad, con lo que
el contenedor EJB debe gestionar el acceso concurrente a los mismos.

 Clave primaria. Cada bean de entidad tiene un identificador unico. Este
identificador unico, o clave primaria, permite al cliente localizar a un bean de
entidad particular.

* Relaciones. De la misma forma que una table en una base de datos, un bean de
entidad puede estar relacionado con otros EJB. Las relaciones se implementan
segun si la persistencia esta siendo manejada por el bean o por el contenedor. En
el primer caso debemos programar y gestionar nosotros las relaciones, en el
segundo caso es el propio contenedor el que se hace cargo.

119

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.4.3 Beans dirigidos por mensajes

Estos beans permiten que las aplicaciones J2EE reciban mensajes JMS de forma
asincrona. Asi el hilo de ejecucion de un cliente no se bloquea cuando esta esperando
que se complete algun método de negocio de otro enterprise bean. Los mensajes pueden
enviarse desde cualquier componente J2EE o por una aplicacién o sistema JMS que no
use la tecnologia J2EE.

4.4.3.1 Anotaciones de Beans dirigidos por mensajes

@Timeout: Asigna un tiempo de ejecucion a un método.

@ApplicationException: Excepcion a enviar al cliente cuando se produzca.

120

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.4.3.2 Diferencias con los beans de sesion y de entidad

La diferencia mas importante de los beans de sesién o entidad con los beans dirigidos por
mensajes es que en estos ultimos los clientes no acceden a los beans mediante
interfaces, sino que un bean dirigido por mensajes solo tienen una clase bean.

En algunos aspectos, un bean dirigido por mensajes es parecido a un bean de sesion sin
estado:

* Las instancias de un bean dirigido por mensajes no almacenan ningun estado
conversacional ni datos de clientes.

* Todas las instancias de los beans dirigidos por mensajes son equivalentes, lo que
permite al contenedor EJB asignar un mensaje a cualquier instancia. El contenedor
puede almacenar estas instancias para permitir que los streams de mensajes sean
procesador de forma concurrente.

* Un unico bean dirigido por mensajes puede procesar mensajes de multiples
clientes.

Las variables de instancia de estos beans pueden contener algun estado referido al
manejo de los mensajes de los clientes. Por ejemplo, pueden contener una conexién JMS,
una conexion de base de datos, etc.

Cuando llega un mensaje, el contenedor llama al método onMessage del bean. Este
meétodo suele realizar un casting del mensaje a uno de los cinco tipos de mensajes de
JMS y manejarlo de forma acorde con la légica de negocio de la aplicacion. El método
puede llamar a métodos auxiliares, o puede invocar a un bean de sesion o de entidad
para procesar la informacion del mensaje o para almacenarlo en una base de datos.

121

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.4.4 Anotaciones de dependencias

@EJB: Mediante esta anotacién el contenedor asignara la referencia del EJB indicado.
* name. Nombre del recurso.

* Beanlinterface. Nombre del Bean especificado con el atributo name en caso de
que varios Beans implementen la misma interfaz.

« mappedName. Si se quiere que el contenedor maneje el objeto indicado de
manera especifica.

» description. Descripcion de la anotacion para la inyeccién de dependencia.

@Resource: Referencia de un recurso especifico.
* name. Nombre del recurso.
* type. Tipo del objeto.

* authenticationType. Especifica doénde se debe realizar el proceso de
autenticacion.

» shareable. Indica si el objeto se comparte.

4.5 Diferencias con la version EJB 2.x

La especificacion EJB 3.0 permite una facil creacion de EJBs con un desarrollo mas
simple, facilitanto el desarrollo basado en pruebas y centrandose mas en el modelo de
persistencia basado en POJO. El APl de Persistencia Java simplifica el uso de la
persistencia transparente mediante anotaciones.

122

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.5.1 Stateless Session Beans

En EJB 2.x y anteriores especificaciones, los beans de sesién requieren dos interfaces: la
remota (o local) para definir los métodos de negocio, y la interface home para definir los
métodos de ciclo de vida. Un bean de sesiéon también puede implementar varias
interfaces.

Un interface remoto debe extenderse desde javax.ejb.EJBObject. La interfaz remota
defina los métodos de negocio y debe seguir las reglas de RMI-IIOP. Un interfaz home
debe extenderse desde javax.ejb.EJBHome y define los métodos de ciclo de vida. Debe
contener el método create() sin parametros para crear una instancia del contenedor de
EJB. La clase de implementacion del bean debe ser publica y tiene que implementar la
interface javax.ejb.SessionBean.

<« Bemote Interface in EJB 2. = — StockQuote.jawva
package stockguote;
import jawa.rml.REemoteException:
import jawvax.ejb EJBObject
public interface Stock{uote extends EJBObject {
public double getStockuote(String Symbol) throws
FemnoteException

i

#¢ Home Interface in EJB 2 . x — StockOuoteHoms. jawa

paclkage =tockquote;

import java.rmi. RemoteEzception:

import javax.=jb EJBObject

import javax.ejb. CreateEzception:

public interface StockfuoteHome extend=s EJEHome {
public Stockfuote create() throws RemnoteException,

CreateException;

I
Figura 4.5 Remote y Home Interface en EJB 2.x

Como podemos observar las diferencias son notables con la version 3.0, la cual facilita la
labor de programacion. En EJB 3.0 un bean de sesién es un POJO (Plain Old Java
Object) manejado por el contenedor. Ademas, como hemos explicado anteriormente, hace
uso de anotaciones para especificar el tipo de bean. No existe el concepto de control
remoto de interface home ya que la interfaz se define solo en la légica de negocio y se
indica si es local o remoto por medio de las anotaciones comentadas anteriormente.

123

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.5.2 Stateful Session Beans

Las diferencias en los beans de sesion con estado son muy parecidas a las de beans de
sesion con estado. La principal diferencia es que en el bean de sesién con estado puede
tener una sobrecarga de métodos create(). Para cada método crear en el interface home
tiene que haber un métod ejbCreate in la implementacion de la clase del bean.

Session Bean — Interfaz de cliente

En EJB 2.x el cliente obtiene un objeto de sesion mediante un nombre JNDI y luego llama
al método create(). La diferencia con 3.0 es que en éste solo es necesario usar la
anotacion @EJB.

4.5.3 Message-Driven Beans

En EJB 2x implementan las interfaces javax.ejpMessageDrivenBean vy
javax.jms.MessageListener. Cuando el destino del mensaje lo recibe, el contenedor EJB
invoca el método OnMessage. Igual que los beans de sesidn, los beans dirigidos por
mensajes también tienen un archivo de desarrollo de implementacién (ejb-jar.xml), que
contiene la informacién del nombre del bean, la clase, el destino del mensaje y su tipo.
Las diferencias con EJB 3.0, como en la mayoria de casos, se basa en que el bean
dirigido por mensaje es un POJO manejado por el contenedor EJB, el cual se implementa
mediante anotaciones.

124

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.5.4 Entity Beans

El bean de Entidad estda manejado por un CMP (Container-Managed Persistence). En EJB
2.x los beans son objetos locales. La interfaz local del EJB es la encargada de habilitar el
codigo para localizar y manejar los beans de entidad. La clase bean debe implementar
ttodos los métodos de la interfaz javax.ejb.EntityBean. La clase de implementacién del
bean deben utilizar métodos de acceso para acceder al campo persistente. El contenedor
maneja la persistencia y los métodos de ciclo de vida de los beans de entidad, que se
declaran vacios en la clase de implementacién del bean.

El contenedor sincroniza automaticamente el estado del bean de entidad con la base de
datos llamando a los métodos del ciclo de vida. Los descriptores de despliegue de los
beans de entidad necesitan ser escritos o generados usando herramientas.

En EJB 2.x, la configuracion de los descriptores de despliegue XML para el bean de
entidad CMP era un obstaculo importante. Por lo tanto, una de las ventajas importantes
de la especificacion EJB 3.0 es la de proteger al programador de tener que trabajar con
archivos XML. Ademas en EJB 3.0 la clase entidad es un POJO que estan marcados por
la anotacion @Entity y todas las propiedades en la clase entidad que no estan marcadas
con la anotacion @Transient son consideradas persistentes.

En EJB 3.0, el API de persistencia define las anotaciones para definir los criterios de
persistencia y la relacidén en las lineas de los conceptos de mapeo objeto-relacional. Las
clases de entidad no necesitan las interfaces home ni local. Los métodos de busqueda
estan especificados con la anotacion @NamedQuery.

125

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.6 Ventajas de la tecnologia EJB

Las ventajas que ofrece la arquitectura Enterprise JavaBeans a los desarrolladores de las
aplicaciones son las siguientes:

» Simplicidad. El contenedor de aplicaciones libera al programador de realizar las
tareas del nivel del sistema, gracias a eso la escritura de un enterprise bean es casi
tan sencilla como la escritura de una clase Java. No nos tenemos que preocupar
de la seguridad, transacciones, concurrencia o programacion distribuida. Como
consecuencia solo debemos concentrarnos en la légica de negocio y el dominio
especifico de aplicacion.

* Portabilidad de la aplicacién. Una aplicacion EJB puede ser desplegada en
cualquier servidor de aplicaciones que soporte J2EE.

* Reusabilidad de componentes. Una aplicacion EJB esta formada por
componentes enterprise beans, cada uno de los cuales puede ser reusado a nivel
de desarrollo y de aplicacion cliente. Un bean desarrollado puede utilizarse en
distintas aplicaciones adaptando sus caracteristicas a las necesidades de cada
momento. También un mismo bean puede ser usado por multiples aplicaciones
cliente.

* Posibilidad de construccion de aplicaciones complejas. La arquitectura EJB
simplifica la construccion de aplicaciones complejas. Al estar basada en
componentes y en un conjunto de interfaces, se facilita el desarrollo en equipo de
la aplicacién.

* Separacion de la légica de presentacién y la lé6gica de negocio. Un enterprise
bean encapsula tipicamente un proceso de negocio, lo cual esta independiente de
la l6gica de presentacidén. El bean proporciona unos datos de salida que pueden
ser utilizados en distintos interfaces. Esta separacién hace posible desarrollar
varias légicas de presentacion para la misma légica de negocio o cambiar los
interfaces sin modificar el cédigo de la l6gica de negocio.

126

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

Despliegue en varios entornos. La escalabilidad de los EJB permite el
despliegue de las aplicaciones en distintos sistemas operativos, bases de datos o
aplicaciones ya en marcha.

Despliegue distribuido. La arquitectura EJB hace posible que las aplicaciones se
desplieguen de forma distribuida entre distintos servidores de una red. El cédigo es
el mismo independientemente de si el bean se va a desplegar en una maquina o en
otra.

Interoperabilidad entre aplicaciones. La arquitectura EJB hace mas facil la
integracion de multiples aplicaciones de diferentes origenes.

Integracion con otros sistemas. Las APIs como Java Message Service hacen
posible la integracion de los enterprise beans con otros sistemas que no son Java.

Herramientas de desarrollo. El hecho de que la especificacion EJB sea un
estandar hace que exista una oferta creciente de herramientas y formacién para
facilitar el trabajo.

A continuaciéon vemos las ventajas que ofrece la arquitectura EJB a un posible cliente

final:

Elecciéon de servidor. Debido a que las aplicaciones EJB pueden ser ejecutadas
en cualquier servidor J2EE, no queda ligado solo a un tipo de servidores. Un cliente
puede dejar de estar atado a un tipo de servidor y cambiarlo cuando sus
necesidades lo requieran. La misma aplicacion puede ser ejecutada en Jboss o
Glassfish, por ejemplo.

Gestion de las aplicaciones. Las aplicaciones son mas sencillas de manejar
debido a que existen herramientas de control mas elaboradas.

127

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

Integracién con aplicaciones y datos ya existentes. La arquitectura EJB y otras
APls de J2EE simplifican y estandarizan la integracion de aplicaciones EJB con
aplicaciones no Java y sistemas en el entorno operativo del cliente que lo utilice.
Por ejemplo, no hace falta cambiar un esquema de base de datos para encajar una
aplicacion.

Seguridad. La arquitectura EJB traslada la mayor parte de la responsabilidad de la
seguridad de una aplicacion de el desarrollador de aplicaciones al vendedor del
servidor, los cuales estan mas cualificados que el desarrollador para hacer segura
la aplicacion.

4.7 Inconvenientes de EJB

A continuacion enumeraremos los inconvenientes de la tecnologia EJB:

Prueba de componentes. La mayor parte de los componentes pueden ser
comprobados fuera del contenedor, pero el servicio de de contenedor de objetos
solo puede ser comprobado dentro del contenedor.

Conocimiento completo de Java. EJB es uno de los principales componentes de
J2EE, por lo cual para desarrollarlo se debe tener conocimiento de otras partes de
J2EE como RMI o JDBC.

Tiempo de Desarrollo. Desarrollar un sistema con EJB es complejo en lo referido
a tiempo de desarrollo. Puede no ser ideal para todas las empresas.

128

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.8 Tutorial de creacion de EJB

A continuacion describiremos los pasos de la creacion de un médulo EJB junto con los
distintos beans en el entorno de desarrollo Netbeans y utilizando una aplicacion web
basada en Servlets, ejecutandose en el servidor de aplicaciones Glassfish. En este caso
utilizamos beans de sesion de tipo Stateless.

1. Creacion del moédulo EJB

Desde Netbeans, creamos un nuevo proyecto y seleccionamos Java EE —
EJB Module. Escribimos el nombre del moédulo y seleccionamos Glassfish
como servidor.

| il
O Proyecto Muevo @
Pasos seleccionar proyecto
1. Seleccionar proyecto Categorias: Proyectos:
E e 3 Java A5, Enterprise Application
-3 JavaFx ﬁ, Enterprise Application with Existing Sources
--|(3) Javaweb (=8 Module _ —
) JavaEE @) EIE Module with Existing Sources
" @ Enterprise Application Client
i i sk @' Enterprise Application Client with Existing Sources
I PHP Packaged Archive
-3 CjC++
-|[3) Médulos NetBeans
-2 Ejemplos
-y Python
Descripcion:
Creates a new Enterprise JavaBean (EJB) module in a standard IDE project.
Standard projects use an IDE-generated Ant build script to build and run your
project.
7 ||']
|
< Atras Terminar Cancelar] [Ayuda

Figura 4.6 Seleccion de Modulo EJB

129

UNnB

Universitat Autbnoma
de Barcelona

Desarrollo de EJB's

2. Creacidn de légica de negocio

Con el mdédulo EJB creado procedemos a crear toda la I6gica de negocio necesaria
para obtener la informacion de las tablas de la base de datos.

3. Creacion de bean de entidad

A continuacién creamos las clases entidad que representaran a nuestras
tablas de la base de datos. Para ello hacemos click derecho en el mddulo

EJB y seleccionamos un archivo nuevo de tipo Persistencia — Clase entidad a
partir de base de datos.

| O Archivo Nuevo Iﬁ1

Pasos Escoja el tipo de archivo

1. Escoja el tipo de archivo Proyecto: % EIEDema

Categorias: Tipos de Archivos:
®-CD JavaEE |§| Clase entidad
.....) Java |§| Clases entidad a partir de bases de datos
..... 3 Javarx |8 Clases controladoras JPA de Clases Entidad
_____ £ Objetos JavaBeans @ Unidad de persistencia
: ; =2, Esquema de base de datos
= unit
..... i =

o || Session Beans para dases entidad
-----) Persistencia

-----) web Services
----- I3 Operador ¥ML
----- =) GlassFish

Descripcidn:

duracidn es mayor que la de la ejecucion habitual de un programa. Esta plantilla =+
crea una clase entidad para cada tabla seleccionada, rellena con anotaciones de

consulta con nombre, campos que representan columnas y las claves externas
que representan relaciones. r

| L .

< Atrds Siguiente > Terminar

[m]

m
1l
T
fu
i)

Figura 4.7 Seleccion de bean entidad

130

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

Hacemos click en siguiente y aparece una ventana con la opcion Nueva fuente de
Datos. Se nos muestra una ventana donde introducimos el nombre que
representara nuestra fuente de datos y seleccionamos la conexién a la base de
datos que elijamos.

[(:] Create Data Source l-i:hJ1

IMDI Mame: jdbc/direcciones

Database Connection: |jdbc:sglserver: /JBICHU-PC\SQLEXPRESS; databaseName=di. .. v:

[Arceptar]| Cancelar]| Ayuda

Figura 4.8 Seleccion de Base de Datos

Una vez realizado este paso se nos cargaran automaticamente las tablas
creadas en la base da datos. Seleccionamos la tabla con la que queremos
trabajar en el bean de entidad.

Tablas de bases de datos

© Fuente de Datos? Jodcjejp)

“1 Estructura de la base de datos | Archives de configuradén: ‘dbo_EJBDemo

Tablas disponibles: Tablas seleccionadas:

productos (dase Productos) detalle_producto
sysdiagrams

l Agregrar todo == I

l < < Eliminar todo I

Induir tablas reladonadas
Figura 4.9 Seleccion de tablas

131

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

Hacemos click en siguiente y se nos muestra una ventana donde tenemos el
nombre de la tabla y el nombre de la clase que representa a esta tabla.
Ingresamos el nombre del paquete donde se guardara la clase. A continuacion
hacemos click en Crear unidad de Persistencia y se nos muestra la siguiente
ventana.

i]
OCreatE Persistence Unit... ﬁ

Persistence Unit Name: |5 SDemoPl. |

Spedfy the persistence provider and database for entity dasses.,
Persistence Provider: |TopLink{dEfault} - |

Data Source: |jdbu:,.’ejb - |

¥ | Use Java Transaction APIs
Table Generation Strategy: () Create () Drop and Create (@) None

Create]| Cancel

Figura 4.10 Creando la unidad de persistencia

Como podemos observar se nos crea la unidad de persistencia con el proveedor
Toplink que se encarga de convertir los objetos Java en documentos XML.

Con esta accién se nos ha creado la clase de la tabla de base de datos ademas
del archivo persistence.xml que contiene la referencia a la base de datos.

132

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4 ---%aEJBDemD
|[@ Enterprise Beans

a- _@aCunﬁguraﬁon Files
- MANIFEST.MF

A§|_'_-| public_EJBDema.dbschema
JG public_EJBDemo
~[E detalle_producto
productos
_@E‘Seruer Resources

e _!-jaSource Packages
PN cnvcad
i----@ﬁpmductns.java e
~|ILF TestPackages
_é Libraries
_@ Test Libraries

Figura 4.11 Clase entidad
4. Creacion de beans de Sesion

A continuacion crearemos las clases que implementaran los métodos para
toda la logica, que seran de tipo SessionBean. Hacemos click derecho al
proyecto y afadimos un archivo Persistencia — Session Beans para clases
entidad. Como podemos observar esto creara las classes en base a la clase que
representa la entidad. Seleccionamos la clase que queremos afiadir y activamos la
opcion Remote.

Session Beans generados

Especifigue la ubicacion de las nuevas dases Session Bean

Proyecto: EJEDemo
|Ubicacian: Source Packages -
Paguete: orag.ejb.beans -

Archivos creados: <ClassMame >Facade, <ClassMame =Facadelocal para cada dase entidad.
Crear interfaces:

Remoto
7| Local

Figura 4.12 Creacion de Session Beans

133

UNnB

Universitat Autbnoma
de Barcelona

Desarrollo de EJB's

Automaticamente se nos ha creado las clases del tipo SessionBean creadas y los

métodos de create, edit, remove, find y findAll implementados.

‘Proy... 41 = :Arpchivos : Prestaciones

+!;E.¢ AppWeb_EJIB
59
—,_@ Enterprise Beans
—&3 ProductosFacade
—ﬂ?:ﬁ’ Remote Methods e
| o create
. i Edlt
- ----- @ remaove
..... @ fnd
@ findal
+-IL5) Configuration Files
+,_|ﬁ Server Resources
—jj Source Packages
—{::} org.ejb.beans
' >|§| ProductosFacade. java

P |&] ProductosFacadeRemote.java
+-[org.ejb.entidad

Figura_4.13 SessionBean

5. Anadir EJB a servidor Glassfish

-

m

A continuaciéon hacemos click derecho en el proyecto y seleccionamos deploy

para agregar el modulo EJB en el servidor Glassfish.

134

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

: Proyectos : Archivos Pres.. 4 x
7= Bases de datos "
+@ Servidios Web
+@ Enterprise Beans (2.x)
- Servidores
+% Apache Tomcat 6.0, 18
= C':D GlassFish v2. 1
-|j Applications
+ 3 Enterprise Applications
+|j Web Applications
23 EJB Modules

-8 ExBDemo
E ?& ProductosFacade
+|j Connector Modules
+|j App Client Modules
+[t|— Resources
- WMs

[=]
+-- iy Constructores de Hudson

==Y

Figura 4.14 Deploy EJB

m

Con todo esto ya tenemos nuestro EJB creado y solo nos faltaria crear la interface que lo
utilice.

4.9 Explicacién de la creacién de EJB

Anteriormente hemos comentado cual es el proceso de creacion de un EJB. A
continuacion explicaremos mas detalladamente el proceso comentando el cadigo.

4.9.1 API de Persistencia: Entity Manager

Basicamente se encarga del mapeo entre una tabla relacional y su objeto Java.
Proporciona métodos para manejar la persistencia de un Bean de Entidad, permite afadir,
eliminar, actualizar y consultar asi como manejar su ciclo de vida. Sus métodos mas
importantes son:

135

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

persist (Object entity). Alimacena el objeto entity en la base de datos.

* merge (T entity). Actualiza las modificaciones en la entidad devolviendo la lista
resultante.

* remove (Object entity). Elimina la entidad.

» find (Class <T> entity, Object primaryKey). Busca la entidad a través de su clave
primaria.

* flush (). Sincroniza las entidades con el contenido de la base de datos.

* refresh (Object entity). Actualiza el estado de la entidad con su contenido en la
base de datos.

» createQuery(string query). Crea una consulta utilizando el lenguaje JPQL.

* createNativeQuery (). Crea una consulta utilizando el lenguaje SQL.

* isOpen (). Comprueba si esta abierto el EntityManager.

close (). Cierra el EntityManager.

Las funciones que hemos implementado son las siguientes:

136

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

pukblic void create (Productos productos) {
em.persist (productos) ;

pukbklic wvolid edit (Productos productos) {
em.merge (productos) ;

public void remove (Productos productos) {
em. remove (em.merge (productos))

pukblic Productos find(Cbhject id) {
return em.find (Productos.class, id):

public List<Productos> findAll () {
return em.createluery("select object (o) from Productos as o").getResultLis=st ()

Figura 4.15 Funciones del EntityManager

Podemos obtener una referencia al EntityManager a través de la anotacién
@PersistenceContext. El contenedor de EJB nos proporciona el contexto de persistencia
mediante inyeccion por lo que no tendremos que preocuparnos de su creacion y
destruccion.

@Stateless
public class ProductosFacade implements ProductosFacadeBemote
EPersistenceContext

private EntityManager em;

F;'gura 4.16 Implementacion del EntityManager

137

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.9.2 Unidad de Persistencia

Una unidad de persistencia defina un conjunto de todas las clases de entidad que estan
administrados por instancias EntityManager en una aplicacion. Este conjunto de clases de
entidad representan los datos contenidos en una unica base de datos.

Las wunidades de persistencia son definidas en el archivo de configuracion
persistence.xml. Cada unidad de persistencia debe tener un identificador unico.

El contenido del archivo persistence.xml es el siguiente:

<?xml wversion="1.0" encoding="UTIF-8"7>

<persistence wversion="1.0" xmlns="http ava.sun.com/ xml/n=s/perzistence”
xmlns:xsi="http WWwW.wW3.org/ 2001/ XML5chema-instance™
®¥=2i:=schemalocation="http java.sun.com/xml/ns/persistence

<persistence-unit name="EJEDemoPU" transaction-ty
<jta-data-=source>jbde/ejb</jta—data-=source>
<properties;/ >
</persistence—units>
</persistence>

Figura 4.17 persistence.xml

4.9.3 Ciclo de vida de una Entidad

Engloba dos aspectos: la relacion entre el objeto Entidad y su contexto a persistir y por
otro lado la sincronizacion de su estado con la base de datos. Para realizar estas
operaciones la Entidad puede encontrarse en cualquiera de estos cuatro estados:

* new. Nueva instancia de la Entidad en memoria sin que aun le sea asignado su
contexto persistente almacenado en la tabla de la base de datos.

138

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

* managed. Entidad dispone de contenido asociado con el de la tabla de la base de
datos debido a que se utilizoé el método persist(). Los cambios que se produzcan en
la Entidad se podran sincronizar con los de la base de datos llamando al método
flush().

* detached. La Entidad se ha quedado sin su contenido persistente. Es necesario
utilizar el método merge() para actualizarla.

* removed. Estado después de llamarse al método remove() y el contenido de la
Entidad sera eliminado de la base de datos.

persist)) -
flush{) U
f\l refreshi)
Eace de (./-.. <<termina contexto persistente=>
Datos | ™

removed

removel)

persist)
Figura 4.18 Ciclo de vida de una Entidad

139

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.10 Ejemplo

A continuacion desarrollaremos un ejemplo que utilice el EJB que hemos creado
anteriormente. Para ello creamos una interface basada en JSP, dentro del cual creamos
un servlet, que sera el encargado de llamar al EJB.

Para esto dentro del método processRequest del servlet hacemos click derecho y
seleccionamos Insertar Codigo — Call Enterprise Bean. Aqui escogemos nuestro bean de
sesion creado anteriormente.

E:] Call Enterprise Bean [i:-?-,'

Select an enterprise bean from open projects,

—6::) FIRMNemn
Reference Mame: ProductosFacade
Referenced Interface: Local (@ Remote
Aceptar I | Cancelar I | Ayuda

Figura 4.19 Seleccion de EJB

Con esto ultimo se nos ha copiado el cédigo de llamada remoto a EJB. Solo nos queda
utilizar los métodos proporcionados por este EJB. Para este caso utilizaremos el método
findAll que se encarga de mostrar toda la lista de productos que hayan en la tabla de la
base de datos seleccionada. El cédigo que se encarga de hacer la llamada a findAll es el
siguiente.

140

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

Li=t productos=productosFacade.findAll () ;
for(int i=0;i<productos.size();i++)1{
Productos it = (Productos) productos.get (i) !
out.println("<hl>" + it.getIdPro()+"-—->"+it.getDescPro()+"</ 0l=>");

Figura 4.20 Codigo de findAll

Y finalmente solo nos queda hacer referencia al servlet que acabamos de crear desde la
pagina de index.jsp. Cuando ejecutamos la aplicacién se nos muestra lo siguiente:

) et sppsenet e - ez e

Archive Editar Ver Historial Marcadores Herramientas Ayuda
@ - 2y ||| httpy//localhost:8080/ AppWeb_EIB/appserviet_ejb

Proyecto

|| Servlet appserviet_ejb +

Productos:
productol-->librol

producto2-->libro2

Figura 4.21 Ejemplo de findAll

141

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

4.10.1 Analisis de resultados

Para hacer una comparacién entre los distintos tiempos vamos a utilizar la APl JAMon
Java Application Monitor, que permite ver los tiempos entre capas, cuanto tiempo tarde en
ejecutarse un determinado EJB, JSP o servlet. Cuanto tarda la Base de datos en ejecutar
cierta consulta y pasarla a la clase que la ha pedido, etc.

No solo podemos sacar estadisticas de tiempo en la ejecucion, sino que también
podemos ver cuantos usuarios simultaneos hay en la apliacion y detectar errores de
programacion.

Para la ejecucion de la APl deberemos escribir el siguiente cddigo. Donde start es el
momento desde donde empezamos a mediar y stop cuando paramos.

Monitor mimonitor = MonitorFactory.start|)
mimonitor.stop () :
Sy=stem.cut.println (mimonitor) ;

Figura 4.22 Codigo de medicion de tiempo

4.10.2 Tiempo de ejecucion de un EJB

Hemos analizado la diferencia de tiempo que hay entre la ejecucion de un EJB con estado
a diferencia de un EJB sin estado. El contenido de los dos EJBs es el mismo y solo varia
el tipo.

142

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

Tiempo de ejecucion EJB
16
14
12

10

; []

ms ElB Stateful ElB Stateless
Figura 4.23 Tiempo de ejecucion EJB

Como podemos observar en la grafica la diferencia de tiempo de ejecuciéon entre un EJB
Stateful y un Stateless es muy superior, aun siendo bajo (14 ms), ya que éste se tiene que
encargar de guardar el estado para una posible siguiente llamada al EJB.

4.10.3 Tiempo de ejecucion de un Servlet

Esta vez analizaremos el tiempo de ejecuciéon de un Servlet concreto, que es el que
hemos utilizado en el ejemplo anterior. Haremos la comparacion utilizando EJBs con
estado y sin estado.

143

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de EJB's

Tiempo de gecucion de un Sendet

50
50
40
30
20
10
0
ms EJB Stateful EJB Stateless

Figura 4.24 Tiempo de ejecucion de un Servlet

4.10.4 Tiempo de acceso a la Base de Datos

Haciendo el analisis del tiempo que se tarda en acceder a la base de datos podemos
observar que no influye el tipo de EJB de sesién ya que el tiempo es el mismo.

Tiempo de acceso ala BD
12

10

=]

7]

e

2

0
ms

EJB Stateful EJB Stateless
Figura 4.25 Tiempo de acceso a la BD

144

CAPITULO 5

Desarrollo de la capa de presentacion

UNnB

Universitat Auténoma
de Barcelona Desarrollo de la capa de presentacion

5.1 Alternativas para la capa de presentacion

Cuando nos planteamos el desarrollo de una aplicacion, una de las cosas mas
importantes es identificar el tipo de aplicacion que vamos a desarrollar. El tipo de
aplicacién que construiremos dependera de las restricciones de despliegue que tengamos
y del servicio que se quiere ofrecer. Por ejemplo, se puede tener la restriccion de no
requerir ningun tipo de instalacién en los clientes, en cuyo caso tendriamos una aplicacion
web. Tenemos los siguientes tipos de aplicaciones.

5.1.1 Aplicaciones basadas en web

Estas aplicaciones se pueden ejecutar en cualquier navegador sin la necesidad de
realizar ninguna instalacion en el cliente.

5.1.1.1 Aplicaciones Servlet/JSP clasicas

JSP permite agregar muchas funcionalidades a una pagina HTML dinamicamente. Las
aplicaciones Servlet/JSP permiten ejecutar EJB y presentar los resultados en formato html
mediante el comando printin. Cuando la pagina JSP se despliega, el contenido se ejecuta
de adentro hacia fuera, un servlet se crea basandose en las etiquetas scriplets
incrustados en el cédigo Java. Todo esto sucede de manera transparente para el usuario.
Una de las ventajas de JSP es puede ser desarrollado por un programador web sin
necesidad de tener conocimientos de un desarrollador.

En el ejemplo utilizado que hemos explicado en el capitulo anterior de EJB, utilizamos una
pagina JSP simple como pagina de inicio que mediante una llamada a un Servlet, éste se
encarga de llamar a los EJBs necesarios para la ejecucién de la aplicacion y nos devuelve
como resultado en formato html los datos que hemos pedido.

147

UNnB

Universitat Autbnoma
de Barcelona

Desatrrollo de la capa de presentacion

En la siguiente figura se explica el proceso de JSP.

JSP
Java
HTML
First request Java J5P is compiled
since application into a Servlet
was started HTML
Server >
All subsequent requests Servlet
Asks server —
for JSP
Web Browser
Information Servlet
returned to generates
client as HTML HTML
| HTML <

Figura 5.1 Esquema JSP/Servlet

A continuacion exponemos la resolucién final del programa realizado, que se adjuntara
junto con la memoria del proyecto.

148

UNnB

Universitat Auténoma
de Barcelona Desarrollo de la capa de presentacion

Archive Editar Ver Historial Marcadores Herramientas Ayuda
@ = £y || | http:/focalhostB080/ AppWeb_EIB/appserviet_gjb

Proyecto

| | Servlet appserviet_ejb +

Productos:
productol-->librol

producto2-->libro2

Figura 5.2 Servlet/JSP

5.1.1.2 Aplicaciones RIA

Las aplicaciones RIA (Rich Internet Applications), son la eleccion mas adecuada cuando
queremos dar una version mas visual y con mejor respuesta a través de la red. Estas
aplicaciones ofrecen la calidad grafica de una aplicacién de escritorio y las ventajas de
despliegue y mantenimiento de una pagina web.

Las aplicaciones RIA son un nuevo tipo de aplicaciones con mas ventajas que las
tradicionales aplicaciones web. Surgen como una combinacion entre aplicaciones web y
aplicaciones tradicionales.

Para desarrollar una aplicacion RIA hemos utilizado ICEfaces, que es una framework Ajax
habilitado con J2EE y que utiliza lenguaje Java.

Esta aplicacion que hemos desarrollado consiste en una pagina de Login que mediante
EJBs se comunica con la base de datos y comprueba si el usuario y la contrasefia son
correctos. El programa se adjunta junto con la memoria y el resultado es el siguiente.

149

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de la capa de presentacion

|| TODO JSP Page +

Logear |Welcome to ICEfaces

Figura 5.3 Pagina de login con la RIA ICEfaces

Si el login es correcto nos devuelve la palabra “logueado” y sino es correcto o ha habido
algun error de conexion nos devuelve un mensaje de error.

: salida

GlassFish v2.1 = | EnterpriseApplicationPrueba (run) x|

logueado

b
b
i ||
3|
&

|usos O Resultados de la busqueda HTTP Server Monitor g Tareas | - Salida

Figura 5.4 ICEfaces login correcto

150

UNnB

Universitat Autbnoma
de Barcelona Desarrollo de la capa de presentacion

5.1.1.3 Desarrollo mediando struts

Los struts son un framework de la capa de presentacion que implementa el patron MVC,
modelo-vista-controlador, en Java. Y, como todo framework, intenta simplificar la
implementacion de la arquitectura.

MVC es un patrén de disefio aportado originariamente por el lenguaje SmallTalk a la
Ingenieria del Software. Consiste principalmente en dividir las aplicaciones en tres partes:
Controlador, modelo y vistas. El controlador es el encargado de redirigir o asignar una
aplicacion a cada peticion. El modelo se corresponde con la l6gica de negocio y una vez
realizadas las operaciones necesarias el flujo vuelve al controlador y la vista es la gestion
de la interfaz de los datos a los usuarios.

L L

1. Solicitud Controller 2 Acciones

(Serviet) «
3. Resuitados

" 4. Redirecdionamiento

: View T
6. Resultado (JSPs, TagLibs) 5. Consulta

Figura 5.5 Esquema de MVC

151

UNnB

Universitat Auténoma
de Barcelona Desarrollo de la capa de presentacion

Para este caso hemos desarrollado un ejemplo que consiste en la validacion de un login.
El navegador genera una solicitud que es atendida por el controlador. El mismo se
encarga de analizar la solicitud, seguir con la configuracién que se le ha programado en el
xml y llamar al Action pasandole los parametros enviados. El Actionform se encarga de
comprobar si los datos introducidos son correctos.

web.xmi struts-config.xml
determine t determine
form bean view
map *.do ¥
requests .
ActionForm
. instantiate baan,
dﬂt&;g::g: populate with
form data
L 4 -
i = . ¥
1 submit ActionServiet A‘thﬂn invoke execute
client pom
L 4

| JSP File

sand response with processed data

Figura 5.6 Esquema Struts de ejemplo

152

UNnB

Universitat Auténoma
de Barcelona Desarrollo de la capa de presentacion

El ejemplo esta adjunto junto con la memoria y el resultado visual es el siguiente:

|_| Login Form +

Login Form

Introduce el nombre

Introduce el email

Login

Figura 5.7 Formulario

Si los valores son incorrectos muestra un mensaje de error y si es correcto te muestra la
siguiente pagina jsp.

153

UNnB

Universitat Auténoma
de Barcelona Desarrollo de la capa de presentacion

| | Login Correcto

Enhorabuena!

Te has logeado correctamente.
Tu nombre es: dawid.

Tu e-mail es: davidd@gmail.com.

Figura 5.8 Login correcto

5.1.1.4 Desarrollo mediante JSF

Al igual que Struts, JSF pretende normalizar y estandarizar el desarrollo de aplicaciones
web. JSF es posterior a Struts y por lo tanto se ha basado en ella para mejorar las
deficiencias. Ademas comparten el mismo creador.

JSF trata el interfaz de forma visual, similar a Swing o Visual Basic. De forma que la
programacion del interfaz se haga a través de componentes mediante clicks.

La gran virtud de JSF es su sencillez, que ademas nos permite crear nuestros propios
componentes.

Esta vez hemos utilizado Visual Web JSF que es una herramienta mediante la cual
podemos arrastrar objetos de manera visual y el propio programa te genera codigo sin
necesidad de introducirlo manualmente. De esta manera obtenemos una interfaz muy
atractiva para el usuario sin necesidad de conocimientos complejos de jsp. Visual Web
JSF utiliza la libreria Woodstock creada por Sun.

154

UNnB

Universitat Autbnoma
de Barcelona

Desatrrollo de la capa de presentacion

: Paleta

-| Woodstock Basic

5 Label |A] Static Text
[Text Field |=] Text Area

[# | Button &2 Hyperlink

@ Image Hyperlink % Drop Dowen List
\Z]] Listbox |w] Chedkbox

[vH Checkbox Group () Radio Button
(#)' Radio Button Group |T4] Image

E=] Table 5] Table Column
£ Table Row Group [=*+] Pazsword Field
{”73 Hidden Field (23 calendar

@. File Upload ﬂ Tree

O Tree Mode nﬁg Anchar

1]

Figura 5.9 Elementos de Woodstock

m

El siguiente ejemplo es una simulacion de como podria ser una aplicacion empresarial
para recursos humanos, donde tenemos una base de datos con personas relacionadas

con la empresa y los datos de los empleados, junto con los estudios de cada uno.

A continuacién veremos como seria cuando se ejecuta la pagina que muestra todos los
empleados que hay en la empresa.

155

Universitat Autbnoma
de Barcelona Desarrollo de la capa de presentacion

maquinaria elécirica

‘OTSA

Empleados
Empleados
Menu
|ID 4 |ID_EmpIeadou DHI e |NASS + |Fecha_Nacimienton Info_Extra+, |Alta +, | Baja 4
> Personas
fr_lo_do | fr_lo_do_e 41255415b | 1542687495 01-uk-2010 0:00:00 02-ene-1959
v Empleados - - == o 0:00:00
[} Listar Empleado o_go_he jo_go_he_e 45781174s 4579815425 15-may-1987 0:00:00 3_40'3?3‘0"2009
|__“| Afiadir Empleado o
. . 03-feb-2015 01-ene-2011
) ma_su_hi = ma_su_hi_g 45817748a 1547894551 04-mar-1983 0:00:00
|__"| Modificar Empleado - - - = 0:00:00 0:00:00

[Estudios Reglados
[Estudios no Reglados

» [0 idiomas

Figura 5.10 Lista de empleados

Otro ejemplo serian formularios implementados para introducir datos en la base de datos.

magquinaria eléctrica

‘OTSA

Personas

Menu
Introduce los datos de la persona

v Personas
E‘] Listar Personas

Mombre * i Direccion
I_—LI Apellido1 = Codigo Postal
[} Buscar Persona : ;
i Apellido2 = Telefono1
|__"| Modificar Persona g
Pais Teléfono2
v Empleados g
A Provinci il
|—_|_| VN rovincia g-mai
(] Adfiadir Empleado Ciudad g-mail2
[} Modificar Empleado * Campo obligatorio

v Estudios Reglados
[[] Afiadir Estudio
|__“| Buscar por Estudios
|__"| Eliminar Estudios

» Estudios no Reglados

> ldiomas

Figura 5.11 Formulario

UNnB

Universitat Auténoma
de Barcelona Desarrollo de la capa de presentacion

5.1.2 Aplicaciones de escritorio

Las aplicaciones de escritorio, o Rich Client, son de tipo aplicacion tradicional. Ofrecen
potentes interfaces graficas y alto rendimiento. Pueden funcionar en todo tipo de entornos,
con conexion o sin conexion.

Para la realizacion del siguiente ejemplo hemos utilizado Swing, que es una biblioteca
grafica para Java que incluye widgets como cajas de texto, botones, tablas, etc.

Las ventajas que ofrece Swing son varias, por ejemplo el disefio en Java puro provee
menos limitaciones a la plataforma y el desarrollo de componentes de Swing es mas
activo. Por contraposicion, al ser una plataforma de escritorio necesita tener instalados los
plug-in de Java en los ordenadores que quieran ejecutarlo y la necesidad de tener que
instalar actualizaciones en cada ordenador.

El ejemplo consiste en una aplicacion que interaccione con la base de datos para que se
puedan afiadir, modificar, actualizar o eliminar la misma.

i N

| £ Aplicacion Escritorio =RACN X
File Help
Id Mombre Apellidol Apellido2 Teléfono
1|David SEerra Manchado 654154778
2|Chesco Lopez Dorado 451455157
Id:
Mombre:
Apellido1:
Apellido2:
Teléfono:
Mew Delete Refresh Save L
14
-

Figura 5.12 Aplicacion de escritorio

157

UNnB

Universitat Auténoma
de Barcelona Desarrollo de la capa de presentacion

5.2 Comparativa de los diferentes tipos de capas de presentacion

Hemos realizado una comparativa de los tiempos de carga de los diferentes tipos de
capas de presentacién y los resultados son los siguientes.

2500
2000

1500
B Maximo

. s
1000 Minimo

" L
ar - A - -

0 >

JSP/Servlet ICEfaces Struts Aplicacion Escritorio

Tiempo [ms]

Figura 5.13 Resultados de tiempos

Como podemos observar en la grafica hay una diferencia muy grande entre la aplicacion
de escritorio y las demas aplicaciones. Esto es debido a que debe cargarse toda la
aplicacion con todos los componentes desde el principio, a diferencia de las aplicaciones
web que éstas se cargan progresivamente a medida que se van ejecutando las distintas
paginas.

Cabe destacar también que cuantos mas elementos dispongamos en la aplicaciéon, mas
tardara en desplegarse. JSF al disponer de elementos visuales mas elaborados es logico
que el tiempo sea mayor. Aun asi, consideramos que el tiempo maximo de la aplicacion
mas lenta es de 2342ms, con lo que al ser un tiempo no muy elevado no supone un
problema para su utilizacion.

158

CAPITULO 6

Conclusiones

UNnB

Universitat Autbnoma
de Barcelona Conclusiones

6.1 Conclusiones

Para este proyecto, hemos realizado un estudio sobre las tecnologias que debemos
utilizar para realizar una aplicacion empresarial, por lo tanto a continuacion expondremos
qué hemos elegido finalmente y porque.

Antes de nada, cabe remarcar que las conclusiones de este estudio estan condicionadas
por el estado actual del mercado. EI mundo informatico se encuentra en constante
evolucion sin detenerse. Es por ello que lo que hoy puede ser la solucion mas adecuada,
en unos anos pueda convertirse en algo obsoleto que requiera una actualizacion. De
todos modos, y teniendo en cuenta este universo cambiante, el estudio de este proyecto
se ha realizado para tener un periodo de validez de entre 3 y 5 afos.

La primera decision que hay que tomar es elegir la plataforma de desarrollo. En este caso
claramente distinguimos dos plataformas que pueden competir en cuanto a recursos,
filosofia y prestaciones, que son .NET y J2EE. Se analizé6 .NET Framework 2.0 ya que es
la especificacion compatible con Mono, que es la implementacion open source.
Actualmente esta disponible la versiéon 4.0, pero solo es compatible con sistemas
operativos Windows.

La eleccion se ha decantado por J2EE. Principalmente hay que comentar que las dos
plataformas estan destinadas a un mercado similar, pero con un despliegue diferente.
Mientras con .NET te ves restringido a utilizar toda la tecnologia de Microsoft, lo que
comporta una gran inversion, la gran ventaja de J2EE es que es una especificacion
abierta que puede adaptada por multitud de aplicaciones. Si trabajas con .NET estas
ligado principalmente a tecnologias de Microsoft, como por ejemplo BizTalk o Sharepoint.
Es por esta razén que para minimizar riesgos se ha decidido trabajar con J2EE que se
basa en procesos de estandarizacién de la Java Community Process en las tecnologias
que implementa. Ademas J2EE también permite la integracion de otras plataformas, como
ya hemos comentado en su correspondiente capitulo, mediante RMI o Web Services.

Una vez elegida la plataforma de desarrollo se procede a elegir el servidor de las
aplicaciones. De todos los servidores que hemos estudiado en los capitulos anteriores del
proyecto los que destacan por sus caracteristicas y por ser open source (recordamos que
en principio la empresa no esta dispuesta a realizar ningun gasto adicional) son Jboss y
Glassfish. Los dos servidores de aplicaciones encajan perfectamente con la plataforma
J2EE y ofrecen servicios para EJB, Tomcat, etc.

161

UNnB

Universitat Autbnoma
de Barcelona Conclusiones

Glassfish pertenece a Sun Microsystems y Jboss fue comprada por RedHat. Hay que
remarcar que los dos son productos fiables y con comunidades de desarrollo grandes.
Para la eleccion de la plataforma se ha valorado principalmente el nivel de adopcion de
estandares y las tecnologias opcionales que éstos pueden implementar. Se escoge
Glassfish por ser la especificacién de referencia de J2EE por un lado, y por tener soporte
de Sun en su desarrollo. Ademas, si a la empresa en algun momento le interesa realizar
una importante ampliacion, existe la version comercial Sun Glassfish Enterprise Server,
que ofrece servicios extra y un soporte 24 horas. Otro punto a favor de Glassfish es la
integracion con todos los productos de Sun, como por ejemplo con Netbeans. El propio
programa en su IDE dispone de un entorno para ejecutar las aplicaciones en el servidor,
de manera que se vuelve muy simple y eficaz para el desarrollador. Por otro lado, hay que
afiadir que durante el transcurso de este proyecto Sun microsystems fue comprado por
Oracle, que también poseia una plataforma J2EE, por lo que las implicaciones de futuro
de esta compra son desconocidas.

Por ultimo, hemos de decidir que tipo de tecnologias para la interfaz de usuario tenemos
que elegir para el desarrollo de la Ul. Esta ultima depende tanto de las necesidades como
de criterios de usabilidad. Deberan valorarse las caracteristicas requeridas en cada
aplicacién en particular. Si por ejemplo se necesita una aplicacion con gran carga de
interacciéon de Ul, como aplicativos CAD o de graficos, la mejor opcidon seria una
aplicacion de escritorio, mientras que si prima la movilidad la opcidn seria aplicaciones
web.

En caso que queramos utilizar una aplicacion web, como hemos visto anteriormente
disponemos de varias soluciones. Segun la grafica de comparaciones que se ha
realizado, realmente no existe una diferencia significativa valorando el tiempo, por lo tanto
descartamos este factor, sin embargo, en aplicaciones muy potentes, JSP solo envia http
y se ejecuta en el servidor y JSF se ejecuta parte en el cliente, deberemos elegir qué nos
interesa mas. A partir de aqui, si queremos una aplicacion mas llamativa visualmente
podemos optar por ICEFaces o JSF mediante Woodstock.

Para hacer el prototipo de la aplicacion se decidié por Woodstock, basicamente por su
facil manejo de su edicion y resultados eficaces. No obstante, en el futuro no se sabe que
pasara con esta libreria ya que, como he comentado anteriormente, la reciente compra de
Oracle a Sun Microsystems, que ya disponia de su propia libreria de JSF llamada Oracle
ADF, hace que posiblemente en el futuro pueda haber una fusion de estas tecnologias o
simplemente apoyar ésta ultima y dejar de respaldar a ICEFaces o Woodstock. Pero esto
es algo que por el momento no podemos averiguar.

162

UNnB

Universitat Autbnoma
de Barcelona Conclusiones

6.2 Conclusiones personales

Como conclusiones personales, este proyecto me ha ayudado muchisimo a mejorar
varios aspectos estudiados durante la carrera.

El conocimiento de Java que tenia antes de empezar este proyecto era muy basico y me
ha ayudado a ampliar conocimientos sobre éste asi como utilizar objetos simples con
soltura.

Gracias a haber realizado varios ejemplos distintos de interfaces que en definitiva buscan
lo mismo me ha ayudado a aprender un poco de cada tecnologia, haciendo un incapié en
JSF, que es donde he llegado a realizar una aplicacién mas elaborada.

Me ha ayudado a mejorar conocimiento de bases de datos ya que he tenido que realizar
varias bases de datos por mi mismo partiendo desde cero. Asi como utilizar tecnologias
como JDBC para la interconexion de la base de datos con las aplicaciones.

También he aprendido a realizar un estudio amplio sobre un tema en concreto sabiendo
utilizar la informacién util y desechar lo que no interesa, teniendo en cuenta que en la
mayoria de los casos la mayoria de la documentacion esta realizada por el propio
fabricante y, l6gicamente, solo se valoran los puntos a favor de su producto.

Como conclusion general podriamos decir que ha sido una ampliacion y resumen de todo
lo visto durante todos estos afios de estudios.

163

UNnB

Universitat Autbnoma
de Barcelona Conclusiones

6.3 Posibles ampliaciones

Las ampliaciones que se podrian hacer y no se han realizado son las siguientes:

Como medida para el futuro, se podria explotar el rendimiento de Glassfish en cluster, con
varios servidores conectados entre si y varios usuarios accediendo a la vez.

También se podria ampliar el retoque de las configuraciones de Glassfish en los
siguientes térmitos:

* Augmentar el rendimiento y la estabilidad.

* Fortalecer la seguridad.

* Mejorar la administracion.

* Creacion de diferentes tipos de usuario.

Finalmente otra continuacién hubiese sido haber implementado toda una aplicacion
empresarial que se dedicara a dirigir todos los recursos humanos de la empresa. Por
ejemplo se podria afadir varios tipos de usuarios, como administradores, jefes y
trabajadores, para que cada uno pudiese realizar sus operaciones pertinentes como
revisar el curriculum, el historial de bajas, etc.

Esta posible ampliacién se podria haber realizado en varias versiones diferentes para
ofrecer el producto a otras empresas por ejemplo como cliente de escritorio y como
aplicacion web.

164

UNnB

Universitat Autbnoma
de Barcelona Bibliografia

Referencias bibliograficas

[1] Kevin Mukhar and Chris Zelenak with James L. Weaver and Jim Crume, Beginning
Java EE 5 From Novice to Professional, APRESS, 2006

2] Justin Couch and Daniel H. Steinberg, Java 2 Enterprise Edition Bible, Hungry
Minds, Inc., 2002.

Referencias Web

[3] http://msdn.microsoft.com/es-es/architecture/default.aspx

[4] https://glassfish.dev.java.net/

[5] http://docs.sun.com/

[6] http://netbeans.org/kb/index.html

[7] http://www.adictosaltrabajo.com/

[8] http://www.programacion.com/

167

http://msdn.microsoft.com/es-es/architecture/default.aspx
http://www.programacion.com/
http://www.adictosaltrabajo.com/
http://netbeans.org/kb/index.html
http://docs.sun.com/
https://glassfish.dev.java.net/

UNnB

Universitat Autdbnoma
de Barcelona Anexos

Anexo 1. Configuracioén de la plataforma de desarrollo

Para este proyecto las plataformas que hemos elegido para su desarrollo seran
PostgreSQL como base de datos, Glassfish como servidor de aplicaciones y Netbeans
como IDE para el desarrollo de Java. A continuacion describiremos los pasos de la
instalacion de cada uno de los elementos.

1.1 Instalacion de Glassfish

Para hacer pruebas y no ejecutar Glassfish directamente en el servidor hemos decidido
instalar Maquina Virtual con el mismo Sistema Operativo que se utilizara para realizar una
simulacion.

Para estas pruebas se ha utilizado la maquina virtual Sun VirtualBox con la
implementacion Debian de GNU/Linux. Légicamente el rendimiento sera menor en una
maquina virtual pero sera util para realizar pruebas antes de aplicarlas al servidor real.

i w - . L - = | B |t

@ Sun VirtualBox

Archive Maquina Ayuda

{:} {%} & DEtEﬂEi@ Instantaneas !@ Descripcidn |

Mueva Configuracidn Iniciar Descartar @. General
Nombre: Debian.

=1 debian escritorio oot B e

F Corriendo sistema

- Memoria base: 1024 MB

| :J Debian. Frocesador{es): 1

@ @Apagada Orden de arrangue: Disquete, CO,/OVD-ROM, Disco duro
VT-xf/AMD-Y Habilitado
Paginacion anidada: Habilitado

Pantalla =

Memoria video: 12 MB
Aceleracion 3D: Inhabilitado
Aceleracion de video 2D: Inhabilitado
Servidor de pantalla remota: Inhabilitado

(2 Almacenamiento
Controlador IDE
IDE primario maestro: Debian.vdi (Marmal, 8,00 GE)
IDE secundario maestro (CD,/OVD): Unidad anfitrion =0
Controlador de disquete

Dispositivo de disquete 0: Vacio
e Audio
Controlador de anfitridn: Windows DirectSound
Controlador: ICH ACS7
EF Red
Adaptador 1: PCnet-FAST III (Adaptador sdlo-anfitrion,

"WirtualBox Host-Onlv Ethernet Adapter”

LFigura A.1 VirtualBox

UNnB

Universitat Autbnoma
de Barcelona Anexos

1.1.1 Instalacion de Debian GNU/Linux 5.0

Se ha instalado el paquete basico de la distribucién de GNU/Linux Debian 5.0 sobre
VirtualBox con una reserva de memoria de 1 Gb y una particidn virtual de disco duro de 8
Gb.

1.1..2 Instalacion de JDK

Glassfish utiliza el Java Development Kit (JDK), que es un software que provee
herramientas de desarrollo para la creacion de programas en java. Glassfish utiliza la
especificacion J2EE y por lo tanto necesita la instalacion de JDK.

Hay dos formas de instalar el paquete de java:

172

UNnB

Universitat Autbnoma
de Barcelona Anexos

1. Instalacion a través de la pagina web de java

Para este tipo de instalaciéon realizamos los siguientes pasos:

a)

Descargar el archivo de instalador binario jdk_6u3_linux-i586.bin desde la pagina
web www.java.sun.com

En un terminal, nos vamos a la carpeta donde hemos descargado .bin:

$ cd <carpeta>

Le damos permisos de ejecucion al archivo:

$ chmod +x jkd-6ul-linux-i586.bin

Instalamos:

$ sudo ./jdk-6ul-linux-i586.bin

Seguimos las instrucciones que aparecen en pantalla.

Movemos la carpeta creada después de la instalacion a /usr/lib/jvm:

$ sudo mv jdk1.6.0_01 /usr/lib/jvm

Actualizamos el nuevo Java como una de las alternativas de Java:

$ sudo update-alternatives --install “/usr/bin/java” “java”
“lusr/lib/jvm/jdk1.6.0_01/bin/java” 1

h) Actualizamos la nueva alternativa como la real de Java:

$ sudo update-alternatives --set java
lusr/lib/jvm/jdk1.6.0_01/bin/java

173

http://www.java.sun.com/

i) Comprobamos si se ha instalado correctamente la version 1.6.0:

$ java -version

2. Instalacion a través de apt

APT (Advanced Packaging Tool) es un sistema de gestién de paquetes creado por el
proyecto Debian. APT simplifica en gran medida la instalacién y eliminacién de programas
en los sistemas GNU/Linux.

a) Actualizacion de la lista de sources. Editar el archivo /etc/apt/sources.list con la
pagina web de descargas de Debian.

b) Actualizar lista

$ apt-get update

c) Procedemos a la instalacion de OpenJDK que es lo mismo pero la version software
libre.

d) Instalar OpenJDK

$ install openjdk-6-jdk

La instalacidon de OpendDK se realizd con éxito y a continuacion instalamos Glassfish 2.1

UNnB

Universitat Autbnoma
de Barcelona Anexos

1.1.3 Instalacién de Sun GlassFish Enterprise Server v2.1
a) Descarga del GlassFish v2.1 utilizando wget guardandolo en la carpeta tmp.
$ cd /tmp wget
http://download.java.net/javaee5/v2.1_branch/promoted/Linux/glassfish-
installer-v2.1-b60e-linux.jar
b) Instalar Glassfish

$ glassfish java -Xmx256M -jar glassfish-installer-v2.1-b60e-linux.jar

c) Mover a la carpeta opt

d) Creamos el usuario “glassfish” que sera el encargado de el servidor de
aplicaciones.

$ sudo adduser —home /opt/glassfish glassfish
e) Les damos permisos de ejecucion al usuario glassfish.
$ sudo chown -R glassfish /opt/glassfish

$ sudo chgrp -R glassfish /opt/glassfish

f) Volver ejecutables los scripts de Ant.

$ chmod -R +x lib/ant/bin/

175

UNnB

Universitat Autbnoma
de Barcelona Anexos
g) Ejecutamos la configuracion.
$ sudo -u glassfish lib/ant/bin/ant -f setup.xml

h) Iniciar un Dominio

$ sudo -u glassfish bin/asadmin start-domain domain1

i) Configuramos el VirtualBox para que se conecte a través de la ip del host y
escribimos en el navegador de Windows la direccion http://192.168.56.101:4848.
Aqui tenemos la pagina principal de Glassfish, donde para acceder escribimos el
usuario y contrasefa por defecto.

176

UNnB

Universitat Autbnoma
de Barcelona Anexos

Sun GlassFish™Enterprise Server v2.1
Administration Console

User Name: admin

Password: eesssssssee

g emtn:nd dinthe |:nr0du|t s de
property rmhL may inc IIJdE' one or more ofthe LS. p:
or penqu patent applica sinthe U.S. andin otherc cnur|tr|

l:IEuE'ICILIE'CI
,the Sun logo, Java and
25 in the U.S. and other countries

Flgura A.2 Pagzna prmczpal de admin

1.1.4 Primera prueba en Glassfish

Para comprobar el correcto funcionamiento de Glassfish hemos descargado una prueba
de la pagina oficial https://glassfish.dev.java.net/downloads/quickstart/hello.war

Para ejecutar la prueba tenemos que ubicar el archivo en el directorio
Iglassfish/domains/domain1/autodeploy/ y escribir en el navegador
http://192.168.56.101:8080/hello y se nos muestra la siguiente pantalla.

177

UNnB

Universitat Autdbnoma
de Barcelona Anexos

Y

Hi, my name is Duke. What's yours?

Submit || Reset |

Figura A.3 Ejemplo Hello.war

178

UNnB

Universitat Autbnoma
de Barcelona Anexos

1.2 Instalacion de PostgreSQL
Hacemos la instalacion en Debian mediante el comando apt, se instala por defecto la
version 8.3

$ sudo apt-get install postgresql
Se crea automaticamente el usuario postgres asi nos logueamos como ese usuario para
crear una base de datos de prueba.

$ su — postgres

$ createdb postgres
Una vez creada la base de datos accedemos a la terminal de postgresql y definimos un
usuario y su contrasefa para la base de datos.

$ psql postgres

$ alter user postgres with password 'XXXX';

1.2.1 Configuracioén del servidor de Base de Datos

Nuestro objetivo es manejar la base de datos instalada en Debian con la aplicacion
PgAdmin que permite el manejo de esta en Windows. Para ello tenemos que hacer una
serie de modificaciones en los archivos de configuracion de Postgresql.

Primero editamos el archivo postgresql.conf y modificamos las direcciones de escucha
para podernos conectar a la base de datos desde el “exterior”.

#listen_addressess = 'localhost’
#port=5432

179

UNnB

Universitat Autbnoma
de Barcelona

Pasara a estar asi.

listen_addressess ="'
port=5432

Anexos

A continuacién modificamos el archivo pg_hba.conf para definir la ip local desde la cual

nos conectamos.

#lpv4 local connections:

host all all

192.168.56.1md5

Ya tenemos configurado postgresql. A continuacion configuramos el programa pgAdmin |l

desde Windows para que se conecte a la base de datos.

-
5# Sun VirtualBox . - LI . -, =R X
Archive Maquina Ayuda

{::‘} {:cz} :% {3} Detalles |@ Instantaneas |@ Descripcion |
~
Mueva Configuradon Inigar Descartar .@. General |
Mombre: Debian.
Tipo 50: Debian
= debian escritorio 4
\ F Corriendo Sistema
Memoria base: 1024 MB
= Debian. Procesador(es): 1
'ﬂ L @Apagada Orden de arranque: Disquete, CD,/DVD-ROM, Disco duro
VT-3¢/AMD- Habilitado

Paginacion anidada:

Pantalla

Memoria video:

Aceleracion 3D:

Aceleracion de video 2D:
Servidor de pantalla remota:

(&) Almacenamiento
Controlador IDE
IDE primario maestro:

IDE secundario maestro (CD/OVD):

Controlador de disquete
Dispositivo de disquete 0:

I Audio
Controlador de anfitridn:
Controlador:

EP Red

Adaptador 1:

Habilitado

12MBe

Inhabilitado
Inhabilitado
Inhabilitado

Debian.vdi (Mormal, &,00 GB)
Unidad anfitrion «D:=

Vacio

Windows DirectSound
ICH ACS7

PCnet-FAST III (Adaptador sdlo-anfitridn,
"irtualBox Host-Onlv Ethernet Adapter”

m

LFigura A.4 VirtualBox

180

Universitat Autbnoma
de Barcelona Anexos

1.3 NetBeans

La instalacion de netbeans se ha realizado en windows, por lo que lo Unico que se ha
tenido que hacer es descargarse el archivo ejecutable desde la pagina oficial
http://netbeans.org/downloads/index.html.

Se ha elegido la version 6.7.1 ya que es la ultima que cuenta con soporte a la aplicacion
Visual Web JSF y es compatible con la version 2.1 de Glassfish.

Archive Editar Ver Mavegar Fuente Reestructurar Ejecutar Depurar Profile Equipo Herramientas Ventana Ayuda
Ll [= ™ 9 b (S . -

E E % e I8 P G}

B Proyectos | :Archivos {Pres.. 4 x

- Bases de datos

-8 servicios Web

Pagina de Inido x] @ appezerviet_ejb.java =] @ ProductosFacade.java =] @ Productos.java x‘| 1:‘:E| E] @
[+ Enterprise Beans (2.x)
Servidores

< NetBeanSIDE 6.7.1
- Constructores de Hudson

@ Reportes Trackers ' e) " Mi NetBeans T

@ WebApplication1 Java EE 6 Pet Catalog with GlassFish 3 and MySQL TID810

m

This Pet Catalog app explains a web application that uses JSF 2.0, Java EE 8.
& enterpriseApplicationt-app-client GlassFish and MyS@L. Carol MacDonald took an existing ...
% EnterpriseApplication1-ejb

i . 210601
A EnterpriseApplication Community Docs: NetBeans Code Coverage 208410

S5 The NetBeans Code Coverage Flugin provides an interactive way to see testing
& JavaApplicationt coverage results within the NetBeans IDE. This enables ... o
NetBeans 6.9 Rel Candidate 2 Available for D load 2/08410

The NetBeans Tesm is pleased to anncunce that the NetBeans IDE £.9 Relesse

Candidate 2 build is now available for download. Downlo

| GlassFish va.1 - Na\mgatﬁr 4l |

TODAS LAS NOTICIAS>> TODOS LOS ARTICULOS >>

Figura A.5 Entorno de desarrollo NetBeans 6.7.1

181

								
	3.6.1.1 Servidor de aplicaciones JBoss

		2010-07-08T00:45:43+0200
	DAVID SERRA MANCHADO

