

Desenvolupament d'un

gestor d'idees

Memòria del projecte

d'Enginyeria Tècnica en

Informàtica de Gestió

realitzat per

Narcís Davins Riu

i dirigit per

Xavier Verge Mestre

Escola d’Enginyeria

Sabadell, Juny de 2010

2

El sotasignat, Ignacio Cofré Gómez,
de Softonic,

CERTIFICA:

Que el treball al que correspon la present memòria ha

estat realitzat sota la seva supervisió per en Narcís Davins

Riu

I per a que consti firma la present.

Sabadell, Juny de 2010

Signat: Ignacio Cofré Gómez

3

El sotasignat, Xavier Verge Mestre,
professor de l’Escola Universitària d’Informàtica de la UAB,

CERTIFICA:

Que el treball al que correspon la present memòria ha

estat realitzat sota la seva supervisió per en Narcís Davins

Riu

I per a que consti firma la present.

Sabadell, Juny de 2010

Signat: Xavier Verge Mestre

4

Índex
1 Introducció .. 6

1.1 Descripció .. 6

1.2 Objectius ... 7

1.3 Estat de l'art ... 7

1.4 Motivacions.. 8

1.5 Estructura de la memòria ... 9

2 Anàlisi i planificació ... 10

2.1 Requeriments funcionals ... 10

2.2 Requeriments no funcionals .. 12

2.3 Mètodes de desenvolupament ... 15

2.4 Eines de desenvolupament .. 16

2.5 Riscs.. 17

2.6 Planificació del projecte ... 18

3 Marc Teòric ... 20

3.1 Apache HTTP Server ... 20

3.2 HTML (HyperText Markup Language).. 20

3.3 CSS (Cascading Style Sheets) .. 21

3.4 jQuery .. 21

3.5 MySQL .. 22

3.6 PHP (PHP: Hypertext Processor) .. 23

4 Disseny ... 26

4.1 UML: Casos d'ús ... 26

4.2 Arquitectura del sistema .. 32

4.3 Base de dades ... 41

4.4 Interfície d'usuari ... 45

5 Codificació i proves ... 47

5.1 Estil de codificació ... 47

5.2 Proves ... 48

6 Conclusions .. 50

6.1 Assoliment d'objectius ... 50

6.2 Desviacions sobre la planificació ... 50

6.3 Línies d'ampliació .. 52

7 Bibliografia .. 53

Annex 1: Exemple de codificació ... 54

Annex 2: Captures de pantalla .. 58

5

Resum introductori

Aquesta memòria explica el desenvolupament del projecte de final de carrera
d'Enginyeria Tècnica en Informàtica de Gestió proposat per a l'empresa Softonic.

El projecte sorgeix per intentar donar una solució per gestionar efectivament el
talent dels treballadors de l'empresa per tal de que l'empresa en pugui treure profit.
Tot i que hi ha altres aplicacions que realitzen aquesta funció, es vol una aplicació
feta a mida que pugui complir tots els requisits que es desitgen, tot assolint una
total integració en l‟aplicació interna de l‟empresa.

El projecte ha seguit totes les fases d‟un projecte de desenvolupament de
software: anàlisi, disseny, desenvolupament i proves. Essent la fase d‟anàlisi i
disseny més llarga que les d‟un projecte que comenci de zero, ja que en aquest
cas s‟havia d‟analitzar l‟aplicació interna existent per poder-hi integrar la que
s‟havia de desenvolupar.

6

1 Introducció

1.1 Descripció

Actualment, a les empreses tecnològiques la innovació forma part imprescindible
en elles. Poder-se mantenir en un mercat no només depèn de la perfecció dels
productes existents, sinó també de la definició dels productes i estratègies futures.

En empreses petites pot semblar prescindible disposar d'una tecnologia específica
per realitzar aquesta gestió, però avui en dia, gràcies a Internet és possible donar
accés a una àmplia comunitat que pot aportar moltes idees al teu projecte d'una
manera extremadament fàcil. És sobretot en casos com aquest, on el nombre
d'idees a tractar pot ser elevat, que pren molta importància disposar de mètodes i
tecnologies eficaces que permetin gestionar correctament aquesta informació, i
donar pesos específics d'importància a cada proposta.

Aquest projecte formarà part d'una aplicació interna de l'empresa que actualment
aglutina vàries eines diferents: Keep In Tonic, Tweettonic, Videos i Team.

Keep In Tonic és l'eina principal de l'aplicació i és la que li dona nom al conjunt de
l'aplicació interna. Aquesta és, juntament amb la missatgeria instantània i el correu
electrònic, una de les eines de comunicació internes principals. En ella s'hi poden
deixar missatges, tant de feina com de lleure, i apareixen en un format que recorda
a una barreja entre un fòrum i una xarxa social, com ara Twitter. Les entrades de
l'aplicació poden ser comentades i votades per altres usuaris, llistar les entrades
d'un usuari, dels usuaris d'un departament...

Des de Tweettonic qualsevol usuari de l‟aplicació pot crear entrades per al compte
oficial de Softonic a la xarxa social Twitter. A més a més, aquesta eina serveix
també per veure les entrades de Twitter creades des d'aquesta eina, personificant-
les amb l'usuari que les ha creat.

L'eina Videos és utilitzada per mostrar vídeos relacionats amb l'empresa, des de
reportatges on aquesta hi apareix fins a vídeos d'esdeveniments interns.

Team és probablement l'ultima eina que s'identifica com a tal degut a que no té
una pestanya que l'enllaci. L'objectiu d'aquesta eina és col·laborar a que els
treballadors es coneguin entre ells, permetre que els usuaris puguin personalitzar
el seu perfil, veure el departament al qual pertanyen, els aniversaris...

7

1.2 Objectius

Amb aquest projecte es pretén aprofitar el talent dels treballadors alhora que se'n
facilita l'expressió i recepció de les seves idees, tot fent-los més partícips del
projecte de l'empresa.

A més, al tenir una eina eficaç per tractar les idees, es pretén que a través d'elles
millori la productivitat i la qualitat del producte que s'ofereix als clients.

Per donar aquests objectius com a assolits caldrà valorar varis aspectes passat un
any des de la seva implantació:

 Tenir un volum total d'idees mensuals equivalents a mitja per usuari, que
amb el volum actual de treballadors equivaldria a més de 1000 idees passat
un any del llançament de l‟aplicació.

 Mitjana de 5 vots per idea.

 Un 5% de les idees proposades han estat posades en marxa.

 El temps entre la proposició de la idea, i la decisió de portar-la a terme no
sobrepassi els dos mesos.

Per tal d'assolir aquests objectius es pretén desenvolupar una aplicació web que
reuneixi tot un seguit de requisits enfocats a augmentar la col·laboració i implicació
dels treballadors en aquests aspectes.

1.3 Estat de l'art

L'aplicació més utilitzada últimament a Internet per recollir feedback dels seus
usuaris és Get Satisfaction: una eina web, amb diferents tipus de llicències.
Aquesta aplicació ajuda a les companyies recollint preguntes, opinions, problemes
i elogis en una plataforma unificada. Això permet que les accions dels usuaris
puguin ser aprofitades per les companyies en diferents aspectes:
desenvolupament de producte, màrqueting... És una eina flexible que s'integra
fàcilment.

En la figura 1 tenim un exemple d'integració de Get Satisfaction en una pàgina
web, en aquest cas en la pàgina foursquare, en la qual només cal prémer el botó
feedback del lateral perquè s'obri un requadre per introduir l'aportació de l'usuari.

8

Figura 1: pàgina de Foursquare

Aquesta aplicació, però, guarda la majoria de contingut en obert a la web de Get
Satisfaction, cosa que pot ser un gran problema per segons quin sigui l'ús que se'n
vol donar al gestor d'idees.

1.4 Motivacions

Les principals motivacions a l'hora de fer aquest treball són aprofundir en el
coneixement dels llenguatges PHP, MySQL. Llenguatges apresos profundament
en l'empresa abans de l'inici de la codificació d'aquest treball, realitzant-hi un curs
de desenvolupament d'aplicacions web d'alt rendiment amb tecnologia LAMP.

Una altre motivació és poder-lo incorporar a la intranet d'aquesta i veure'l en
funcionament, tot escoltant-ne l'opinió d'altre gent. A més també era una gran
oportunitat per fer un bon treball en una gran empresa d'Internet.

9

1.5 Estructura de la memòria

Aquesta memòria està estructurada en sis capítols, a part d'aquest primer
d'introducció.

En el capítol dos es tracta l'explicació de la fase d'anàlisi de l'aplicació a
desenvolupar i de la planificació del projecte.

En el capítol tres hi ha el marc teòric de l'aplicació, on s'expliquen algun dels trets
més importants de les diferents aplicacions i tecnologies utilitzades durant el
desenvolupament de l'aplicació.

En el quart capítol es troba explicada tota la fase de disseny: casos d'ús, base de
dades, arquitectura de l'aplicació i interfície.

En el cinquè s'expliquen diferents convencions que s'han portat a terme a l'hora de
desenvolupar l'aplicació.

En el sisè capítol hi ha les conclusions del projecte: assoliment d'objectius,
desviacions que hi ha hagut en la planificació del projecte i diferents línies
d'ampliació aplicables al projecte per tal d'aprofundir en els objectius en que ha
estat creat.

Finalment, en el capítol set, hi ha la bibliografia principal que s'ha utilitzat pel
desenvolupament d'aquest projecte.

10

2 Anàlisi i planificació

2.1 Requeriments funcionals

Llistes d'idees

Aquesta serà la pàgina principal de l'aplicació d'idees. En ella s'hauran de mostrar
les llistes d'idees, excepte la de moderació.

Les llistes d'idees seran:

 New: idees amb estat 'new' ordenades per data de creació, de més recent a
més antiga.

 Top: idees amb estat 'new' ordenades per increment de vots.

 In-process: idees amb estat 'in process' ordenades per data de creació, de
més recent a més antiga.

 Implemented: idees amb estat 'implemented' ordenades per data de
creació, de més recent a més antiga.

 Area: idees pertanyents a una àrea.

 Author: idees creades per un usuari.

 Department: idees creades pels usuaris d'un departament.

Introducció, modificació, eliminació d'idees

En la part central superior de la web, hi haurà d'haver disponible a totes les
pàgines el formulari d'introducció d'idees, que constarà de títol, cos de la idea,
etiquetes i àrea a la que pertany.

Les idees podran ser eliminades i editades en qualsevol moment pel seu
responsable, mentre que el seu creador tindrà un temps limitat per a fer-ho.

A més a més, si l'idea està en estat "in process" o "implemented" s'hi podrà afegir
l'identificador corresponent a la tasca associada de JIRA, el programa de gestió de
tasques utilitzat a l‟empresa.

Moderació d'idees.

Cada àrea tindrà designats un o més responsables.

11

Aquests usuaris seran els encarregats de la moderació i canvis d'estat de les
idees.

Disposaran d'una pàgina on hi apareixerà un llistat de les idees de la seva àrea o
àrees que els facilitarà la gestió de les seves àrees de responsabilitat.

Llistat de moderació d'idees

Les idees s'han de poder filtrar tant per les seves àrees, com per qualsevol dels
estats existents. Podent aplicar els dos filtres simultàniament.

A més aquest llistat s'ha de poder ordenar per qualsevol dels camps mostrats en
mode ascendent i també descendent.

Votacions

Cada usuari només ha de poder votar un cop cada idea.

Hi haurà un nombre màxim de vots setmanals per usuari, els vots restants tenen
que ser visibles per a l'usuari.

Només es podran votar les idees en estat 'new'.

Subscripcions

Cada usuari ha de poder-se subscriure a qualsevol idea i a qualsevol àrea,
independentment de si n'és responsable.

Enviament de correus electrònics

Hi haurà vàries accions que tenen que generar un correu electrònic:

 Creació d'una nova idea: aquesta acció té que generar un correu electrònic
a les persones subscrites a l'àrea a la qual s'afegeix la idea, i als
responsables de l'àrea.

 Nou comentari: aquesta acció generarà una alerta a les persones subscrites
a la idea on s'afegeix el comentari.

12

 Canvi d'estat d'una idea: aquesta acció generarà una alerta a les persones
subscrites tant a la idea com a l'àrea d'aquesta, al seu creador, i als
responsables de l'àrea.

 Enviament setmanal: Periòdicament s'enviarà als responsables de cada
àrea un resum amb les idees amb un major increment de vots en aquella
setmana.

Interacció amb Keep In Tonic

Quan s'introdueixi una idea nova, aquesta acció haurà de ser visible per tots els
usuaris en la pàgina principal de Keep In Tonic.

En el perfil d'usuari i de departament, hi ha d'haver una llista amb les darreres
idees d'aquest element, de la mateixa manera que existeix la llista de últims
worklogs i últims tweets.

2.2 Requeriments no funcionals

Llistes d'idees

Les llistes: New, Top, In Process i Implemented tenen que aparèixer en format
pestanya, seguint el mateix estil de Lastest worklogs i Hotness de la pàgina
principal de Keep in Tonic.

El llistat per defecte de la pàgina principal d'idees té que ser la llista New.

En el llistat d'àrea té que aparèixer la opció per subscriure's-hi.

Introducció, modificació, eliminació d'idees

En la fitxa d'idea hi haurà d'haver un botó per tornar a la pàgina des de la qual
s'havia arribat a la idea, en el cas de no provenir de cap llistat d'idees, no hauria
d'aparèixer aquest botó.

En la part central superior de la web, hi haurà d'haver disponible a totes les
pàgines el formulari d'introducció d'idees, que constarà de títol, cos de la idea,
etiquetes i àrea a la que pertany.

S'haurà de poder accedir a la fitxa d'idea i a la de moderació des de qualsevol de
les llistes, i a la d'edició des de la fitxa de la pròpia idea.

13

En la pàgina d'edició d'idees els responsables hi tindran l'eina per canviar-les
d'estat.

Moderació d'idees.

Els responsables son els usuaris que representen la figura d'administrador, dins de
les seves àrees. Podran esborrar i editar qualsevol idea en qualsevol moment.

A més seran els responsables dels canvis d'estat d'aquestes.

Llistat de moderació d'idees

Aquesta llista haurà de permetre als responsables tenir una visió global de les
idees de les seves àrees per facilitar-ne la moderació.

Hi haurà de ser present el títol de la idea, el nombre de comentaris, el nombre de
vots, l‟increment de vots en els últims dies, data de creació... com qualsevol altre
dada que pugui ser significativa.

Votacions

Les votacions s'hauran de fer en segon pla, per tal de millorar l'experiència de
l'usuari evitant recarregar la pàgina. Per aconseguir-ho s'utilitzarà AJAX
(Asinchronous Javascript and XML).

Serà possible votar tant a qualsevol idea que aparegui en les llistes d'idees de la
pàgina principal com en la fitxa d'una idea en concret.

El nombre de vots restants serà visible en totes les pàgines on es pugui votar una
idea.

Subscripcions

Els usuaris podran subscriure's i eliminar la subscripció a una idea mitjançant un
botó en la fitxa de l'idea. Mentre que les subscripcions a una àrea es realitzaran en
la corresponent llista d'idees de l'àrea en qüestió.

14

Totes les subscripcions s'hauran de fer en segon pla, per tal de millorar
l'experiència de l'usuari evitant recarregar la pàgina. Per aconseguir-ho s'utilitzarà
AJAX.

Requisits no funcionals generals

L'aplicació haurà d'estar integrada en l'actual Keep In Tonic, mantenint-ne
l‟aparença i compartint-ne el domini. De la mateixa manera que també ho te Keep
In Tonic, l'aplicació d'idees haurà de seguir utilitzant Friendly URLs. S'haurà
d'intentar minimitzar les paraules reservades que provoquin les noves adreces de
l'aplicació d'idees.

L'aplicació haurà d'estar implementada en PHP 5 orientat a objecte i utilitzar una
base de dades MySQL, a més a més haurà de ser una implementació eficaç en el
tractament de recursos i escalable, tot aplicant-hi els coneixements adquirits
durant el curs realitzat en l'empresa i seguint una arquitectura MVC(Model Vista
Controlador).

Totes les dades numèriques, com ara el període de edició de les idees, el nombre
d'idees que apareixen en les llistes, el temps en que es compte l'increment de
vots... hauran de ser completament configurables i estar definides en un arxiu de
configuració ".ini".

La sensació de l'usuari ha de ser de que està utilitzant una eina més de Keep In
Tonic, i per tant l'aplicació d'idees haurà de mantenir el màxim possible l'aspecte
visual de l'aplicació actual.

15

2.3 Mètodes de desenvolupament

Per tal de realitzar el projecte es van tenir en compte dos models diferents de
desenvolupament de software, el model seqüencial i el model iteratiu.

El model seqüencial, o en cascada, es basa en ordenar rigorosament les etapes
del cicle de vida del software de tal manera que una etapa no pot iniciar-se fins
que acabi l'anterior. En la figura 2.1 tenim l‟esquema d‟aquest mètode.

Figura 2.1: model seqüencial

La principal avantatge d'aquest model és la seva senzillesa i la distinció entre
etapes que en realitza. Al ser un model que no permet la modificació dels
requisits, redueix el possible error en el temps estimat de desenvolupament del
projecte. D'altra banda és difícil assegurar en l'inici d'un projecte que es disposa de
tota la informació necessària i que no hi haurà cap canvi en els requisits del
projecte. En projectes no massa grans és el model més eficaç i econòmic.

El model iteratiu es basa en separar el desenvolupament per etapes, anomenades
iteracions. Cadascuna d'aquestes iteracions inclourà etapes d‟anàlisi, disseny
implementació i test. En la figura 2.2 hi ha l‟esquema orientatiu de com és aquest
model, en ell s‟hi pot observar com en les primeres iteracions les fases més
importants son requeriments, anàlisi i disseny, i a mesura que van passant
iteracions, perden pes a favor de les d‟implementació i test.

16

Figura 2.2: model iteratiu

Aquest model, al contrari que l'anterior és flexible a canvis en els requisits, i per
tant en fa disminuir els riscos de que el producte final no sigui el que s'espera. Per
altra banda el fet d'analitzar l'aplicació per etapes i poder-ne fer canvis, incrementa
significativament el risc d'errada en l'estimació del temps de desenvolupament del
projecte respecte el previst inicialment.

Tenint en compte els avantatges i desavantatges que comporten cadascun,
finalment s'ha decidit seguir el model seqüencial, degut al menor risc d'allargar el
temps de desenvolupament del projecte. Un altre factor determinant ha estat la
separació clara entre fases, que al ser una sola persona la que treballarà en el
projecte, en facilita la feina. Això implicarà haver de fer una fase d'anàlisi i de
disseny més profunda per intentar evitar problemes durant el desenvolupament.

2.4 Eines de desenvolupament

Els llenguatges de programació que s'utilitzaran en el projecte són PHP, MySQL i
Javascript mitjançant la llibreria jQuery. S'utilitzaran aquests degut a que són els
que s'utilitzen a l'empresa i en els que ja està programada l'aplicació actual.

El servidor en que s'allotjarà l'aplicació final en l'empresa no en tenim cap control, i
per tant, el servidor que s'escolleixi serà utilitzat només en el desenvolupament de
l'aplicació, s'optarà per Apache degut a la fàcil posada en marxa, gratuïtat i a la
seguretat que aporta que sigui un projecte de llarg recorregut amb una gran
comunitat al darrere.

Concretament i per motius de rapidesa en la configuració i posada en marxa de
l'entorn de desenvolupament de l'aplicació s'instal·larà XAMPP (Cross platform,
Apache, MySQL, PHP, Perl). La versió de XAMPP que s'utilitzarà és la versió
1.7.1, aquesta versió inclou Apache HTTP Server 2.2, PHP versió 5.2.9, MySQL
5.1.33, phpMyAdmin 3.1.3.1.

17

A l'hora d'escollir un editor per fer el projecte, es van plantejar dues opcions,
NetBeans i Eclipse PDT. Un editor de text pla estava descartat, ja que no ressalten
sintaxi, no completen codi... i aquestes son funcionalitats que si que tenen els IDE
i que faciliten en gran mesura la programació.

Ambdós programes permeten moltes opcions, les diferencies més grans entre ells
es redueixen bàsicament, encara que no exclusivament, a:

Eclipse PDT té un nivell més baix d'auto completat, no suportant auto completat
per jQuery ni per a SQL mentre que NetBeans si que ho permet.

L'auto completat de NetBeans no suporta PHP4, mentre que Eclipse si que ho fa.

A priori NetBeans sembla ser un editor més complet, però al ser Keep In Tonic un
projecte amb codi antic, s'utilitzarà Eclipse PDT per facilitar l'interacció amb
pàgines que utilitzin codi antic.

2.5 Riscs

Existeixen varis riscs a tenir en compte en aquest projecte:

 Planificació temporal optimista: és un risc amb una probabilitat alta, però
que en aquest cas, a no ser que s‟allargui en excés no comportarà
conseqüències greus.

 Canvi de requisits: aquest risc te una probabilitat força probable també i
provocaria que s‟allargués el projecte, igual que en el cas anterior a priori
no seria massa greu.

 Dificultat per accedir als stakeholders: aquest risc si ocorregués podria fer
augmentar el temps del projecte en les fases d‟anàlisi de requisits. És un
risc difícil de que succeeixi ja que s‟estarà diàriament en contacte amb un
representant de l‟empresa.

 Tests insuficients: aquest és un risc crític, i per tant s‟haurà de fer
minuciosament la fase de proves per tal d‟evitar-lo.

18

2.6 Planificació del projecte

El projecte es desenvoluparà del 25 de gener de 2010 al 29 de març de 2010 amb
una dedicació de 20 dies al més i de 40 hores setmanals durant el més de febrer, i
20 hores setmanals la resta.

Tasques del projecte

19

Planificació temporal

20

3 Marc Teòric

3.1 Apache HTTP Server

Apache HTTP Server és un software col·laboratiu robust, ple de funcionalitats i
disponible gratuïtament que permet amb poc temps tenir un servidor web
funcionant en qualsevol ordinador.

Aquest software permet tenir varis hosts funcionant simultàniament, mitjançant
virtual hosts configurables en l'arxiu de configuració d'apache "httpd.conf".

3.2 HTML (HyperText Markup Language)

HTML és el llenguatge de marcat utilitzat per l'elaboració de pàgines web. Aquest
llenguatge no només en defineix l'estructura, sinó també la semàntica. Encara que
a l'usuari se li pugui mostrar unes dades de forma idèntica utilitzant etiquetes
diferents, cada etiqueta porta un concepte associat que ajuda a que usuaris no
humans, puguin entendre'n el contingut i interpretar-lo degudament.

Aquest llenguatge es basa en la definició d'etiquetes, escrites entre els símbols "<"
i ">". Les etiquetes poden contenir diferents atributs per distingir-los, definir-ne el
comportament, donar-li cert format... A més també poden contenir text i altres
etiquetes, aquestes etiquetes per tal de saber on comencen i on acaben s'han
d'escriure utilitzant una etiqueta d'obertura i una de tancament, quedant de la
següent manera "<etiqueta>text</etiqueta>".

Editors

Aquest llenguatge pot ser creat i editat en qualsevol editor de textos bàsic, com
per exemple "bloc de notes" en Windows, "gedit" en Linux o qualsevol altre editor
que admeti text sense format.

A part, existeixen altres editors més complexes per la creació de pàgines web amb
característiques WYSIWYG (What You See Is What You Get). Aquest tipus
d'editors permeten veure el resultat del que s'està editant en temps real a mesura
que es va editant el document. Alguns exemples d'aquests editors serien:
Macromedia Dreamweaver o Microsoft FrontPage. El principal problema d'aquests
és que no acostumen a tenir en compte la semàntica web ni tampoc respecten la
separació entre el contingut i la presentació.

Un altre tipus d'editors són els WYSIWYM (What You See Is What You Mean).
Aquests editors estan pensats per separar l'estructura de la presentació, i tenir en

21

compte la semàntica web per d'aquesta manera solucionar el problema dels
anteriors. El problema que tenen aquests editors és que s'ha de tenir clara des
d'un inici l'estructura que tindrà el document, i sovint tenen un llenguatge propi.
Aquests problemes fan que requereixin un període d'adaptació i que a vegades
resulti difícil d'utilitzar.

La importància del marcat HTML en el posicionament en els buscadors

En els punts anteriors s'ha remarcat la importància d'una bona estructura HTML.
Encara que els buscadors no facilitin dades sobre el procés de registre dels llocs
web, el que si que és clar es que en més del 90 per cent dels casos aquest
s'efectua de forma automàtica. Els encarregats d'aquesta tasca son programes
anomenats spiders. Aquests programes son cecs a tot el contingut visual de la
nostra pàgina (imatges, vídeos, Flash...), per tant en el que es fixen és en el
contingut HTML i aquesta és una de les coses que tindrà en compte a l‟hora
d'indexar una pàgina web.

3.3 CSS (Cascading Style Sheets)

CSS és un llenguatge utilitzat per definir la presentació d'una pàgina web.
L'objectiu d'aquests llenguatge és la separació entre l'estructura i significat d'una
pàgina web, de la seva aparença, fent així possible visualitzar una mateixa pàgina
de diferents maneres, sense tenir-ne que modificar el codi HTML. Aquesta
separació entre el codi HTML i la presentació de la pàgina millora l'eficiència a
l'hora de modificar qualsevol de les dues coses, ja que el codi està més ordenat.

3.4 jQuery

jQuery és una llibreria de JavaScript ràpida i concisa que simplifica el tractament
d'elements HTML, tractament d'events, animació i interaccions AJAX. jQuery no
ofereix cap funcionalitat extra que no es pogués fer únicament amb JavaScript,
però en simplifica molt l'ús. Tant és així que per exemple, una acció tant recurrent
com pot ser una petició AJAX i posar el contingut en un element HTML, que en
JavaScript ocupa unes 10-15 línies com a mínim, en jQuery en pot resoldre en una
sola línia utilitzant només dues funcions.

Una de les principals característiques que permet aquesta simplificació del codi és
que qualsevol funció sempre en retorna l'objecte per d'aquesta manera poder
encadenar varies funcions que es vulguin aplicar a un mateix element una rera
l'altre.

22

3.5 MySQL

MySQL és una base de dades relacional amb llicencia GNU que s'executa com a
un servidor multithread i multi-usuari.

Una de les principals característiques de MySQL és que et permet escollir entre
varis sistemes d'emmagatzemament, podent coexistir en una mateixa base de
dades taules de més d'un sistema.

Els sistemes d'emmagatzemament són: MyISAM, InnoDB, Memory, Merge i
Federated entre altres.

Per poder escollir adequadament el sistema a utilitzar cal conèixer les principals
característiques que puguin afectar al rendiment.

MyISAM

 És el sistema que té el maneig d'auto increments més flexible i eficaç de
tots els sistemes d'emmagatzemament.

 Suporta índexs FULL TEXT.

 Múltiples sentencies SQL poden llegir simultàniament d'una taula, però al
escriure cadascuna bloqueja la taula sencera mentre dura l'acció.

 No suporta transaccions.

Merge

 Una taula MERGE es una col·lecció de taules MyISAM idènticament
estructurades.

 Lògicament, una consulta en una taula MERGE actua com una consulta en
cadascuna de les taules MyISAM que la formen.

 Són més lentes llegint índexs, ja que es tenen que buscar índexs de
múltiples taules.

InnoDB

 Suporta transaccions.

 Proporciona un sistema d'auto recuperació després d'una fallada del
servidor MySQL o del host on s'està executant.

 Múltiples sentencies SQL poden llegir simultàniament d'una taula, al
escriure cadascuna bloqueja només la fila afectada mentre dura l'acció.

23

 Suporta claus externes i integritat referencial, incloent events en cascada,
eliminació i actualització.

Memory

 Té un rendiment molt ràpid.

 Els continguts de les taules Memory no perduren després d'una fallada o
del reinici del sistema. Si que ho fa l'estructura.

 Al utilitzar memòria, no són adequades per grans continguts.

 No poden contenir camps de tipus TEXT ni BLOB.

Federated

Aquest sistema d'emmagatzemament és un sistema nou, inclòs en la versió 5 de
MySQL. Aquest sistema permet a MySQL server utilitzar taules d'altres servidors
MySQL per ser utilitzades com si fossin del propi servidor. Una de les grans
avantatges que aporta és que en una sola consulta pots accedir a la informació de
varis servidors, però al ser un sistema nou, encara no està del tot ben optimitzat.

 No suporta transaccions.

 No s'efectua cap mena de blocatge a les taules.

3.6 PHP (PHP: Hypertext Processor)

Història

PHP és un llenguatge d'scripting. La majoria de la seva sintaxi està treta d'altres
llenguatges com C, Java i Perl. L'objectiu d'aquest llenguatge de programació és
permetre als desenvolupadors web codificar ràpidament pàgines generades
dinàmicament.

La primera versió de PHP va néixer l'any 1995, sota el nom de PHP/FI. Inicialment
era un recull d'scripts de Perl, amb la finalitat de controlar els accessos a una web
personal. L'autor d'aquest codi, que va anar augmentant la col·lecció de codi amb
implementacions de C per connectar a base de dades per exemple, va fer públic el
codi font perquè tothom el pogués utilitzar. Probablement aquest naixement tant
personal i enfocat a una finalitat concreta sigui la que va marcar-ne el seu objectiu
de facilitar la codificació de pàgines web, així com la seva poca consistència, en
els inicis, com a llenguatge de programació.

L'any 1998 va aparèixer la versió 3, anomenada ja com a PHP, el seu punt més
fort era la gran quantitat de compatibilitats amb bases de dades, protocols i API's,

24

el que va provocar que molta gent s'apuntés a crear mòduls per a PHP. L'aparició
de la versió 4 va suposar importants canvis. L'objectiu d'aquesta versió va ser
millorar el rendiment de les aplicacions complexes i millorar-ne la modularitat del
codi de PHP, ja que fins llavors no estava preparat per suportar extensions
externes de manera eficaç. PHP5 va significar un canvi considerable al introduir un
nou model de programació orientada a objectes, més estricte i eficaç tot mantenint
el màxim possible la compatibilitat amb la versió anterior.

Perquè PHP

No és estrany llegir opinions negatives que diuen que PHP és un llenguatge poc
rigorós, per inexperts... PHP des del seu naixement va ser creat per facilitar la
programació de pàgines web dinàmiques, mentre que altres llenguatges com ara
Java poden esdevenir molt feixucs d'aprendre per algú que mai no hagi programat,
PHP és just el contrari, resulta molt senzill començar-lo a utilitzar a un nivell bàsic,
només cal anar inserint etiquetes PHP que continguin petits scripts enmig d'una
pàgina HTML. A més, per aquest perfil de gent, PHP té un altre gran avantatge, i
és que no cal declarar variables prèviament a utilitzar-les, ni definir-los cap tipus
de dades, tot i que internament PHP adjudica un tipus de dades, que pot variar, a
totes elles.

Aquest tipus de pàgines, a més a més, acostumen a tenir totes el gran
inconvenient de no tenir nitidesa del codi, i de no ser escalables. PHP, però,
permet estructures molt més complexes que no pas aquest tipus de pàgines, com
per exemple des de la versió 5 una efectiva programació orientada a objectes que
entre altres coses permet aplicar correctament el patró de disseny MVC (Model
Vista Controlador). Aquest patró de disseny simplifica el desenvolupament i el
manteniment del software al separar l'aplicació en tres components lògics:

 Model: aquesta capa és l'encarregada de la lògica de negoci i l'accés a les
dades emmagatzemades. En definitiva és un conjunt de mètodes
encapsulats en classes segons la seva naturalesa que en permeten la
reutilització en qualsevol punt de l'aplicació.

 Vista: aquesta capa, en aplicacions web, seria el que es considera com a
disseny web, és a dir, l'encarregada de la sortida de l'aplicació, tot el que
visualitzarà l'usuari.

 Controlador: aquesta és la capa principal, aglutina el flux d'execució del
programa. És l'encarregada de recollir les dades d'usuari, comunicar-se amb
els models i finalment donar la informació a la vista perquè la mostri a
l'usuari.

25

Framework

Els frameworks són un conjunt d'eines amb la finalitat de disminuir la càrrega dels
desenvolupadors al aportar tot un seguit d'eines utilitzables en qualsevol tipus de
projecte i independentment de la seva mida. Les primeres versions públiques i les
més utilitzades de frameworks en PHP van ser CakePHP, Symfony i Zend
Framework les quals van aparèixer l'any 2005.

A part de proporcionar als desenvolupadors eines per facilitar la programació d'una
manera modular i configurable amb eines de filtratge, registre d'errors, arxius de
configuració... també ajudar al programador a separar les diferents parts del codi
en les tres capes corresponents a una arquitectura MVC i a que aquestes estiguin
ben organitzades o a gestionar les direccions de les diferents pàgines de
l'aplicació.

26

4 Disseny

4.1 UML: Casos d'ús

Introducció

El propòsit d‟aquest document és definir les funcionalitats del sistema (casos d‟ús)
i el context d‟aquest (interacció amb entitats externes o actors). Es presenten els
diferents diagrames de casos d‟ús per als actors en què es divideix el sistema i les
descripcions resumides de cada actor i cas d‟ús.

El model de casos d'ús que es presenta dividit en 6 parts i els respectius
diagrames casos d'us.

Actors:

 Usuari identificat: Aquest actor representa un usuari identificat en
l'aplicació, els actors: usuari autor i responsable són també actors d'aquest
tipus.

 Usuari autor: Representa un usuari actuant amb idees i comentaris creats
per ell.

 Responsable: Aquest actor representa un usuari identificat, responsable
d'una o més àrees.

 Servidor: Representa aquelles accions iniciades pel propi sistema sense
intervenció humana.

Casos d'ús:

o Afegir una idea

Consisteix en afegir una nova idea, amb el seu títol, contingut, una àrea a la
qual estarà associada i una llista de etiquetes opcionalment.

o Afegir un comentari

Quan l'usuari estigui observant una idea, podrà crear un comentari associat a
aquella idea. També al canviar una idea d'estat es generarà un comentari que
no es podrà borrar.

o Afegir un worklog

Algunes accions crearan un worklog en l'aplicació de Keep In Tonic.

27

o Visualitzar llistes d'idees

Aquest serà un dels casos d'ús més recurrents, les llistes d'idees mostraran el
títol, contingut amb un nombre limitat de caràcters, data de creació, numero de
comentaris, àrea, estat, foto de l'autor, etiquetes i nombre de vots. Aquest cas
d'ús aglutina les llistes d'idees en estat 'new', 'implemented','in process ', la llista
d'un usuari, d'un departament, d'una àrea i d'una etiqueta.

o Tornar a la llista anterior

Quan l'usuari estigui en una pàgina de l'aplicació que no sigui d'una llista, podrà
tornar a la llista des de la qual havia anat a aquesta pàgina, mantenint els
possibles filtres i la pàgina en la que es trobava.

o Filtrar una llista

Quan l'usuari estigui a una llista, la podrà filtrar per àrea i/o estat.

o Visualitzar una idea

Aquest cas d'ús correspon a la visualització completa d'una idea. Seran visibles
totes les propietats relacionades amb l'idea excepte els etiquetes.

o Visualitzar comentaris

L'usuari podrà directament anar a veure els comentaris d'una idea des de la
llista d'idees.

o Votar una idea

L'usuari podrà votar una idea sempre que l'estat de la idea ho permeti, que
l'usuari tingui vots restants i que encara no l'hagi votat. Aquest cas d'ús pot
succeir tant en la pàgina de la idea com en qualsevol de les llistes, excepte la
de moderació.

o Esborrar una idea

L'usuari podrà esborrar les seves idees durant un període de temps, o si és
responsable podrà esborrar qualsevol idea que pertanyi a alguna de les seves
àrees i en qualsevol moment.

o Esborrar un comentari

Un usuari podrà esborrar qualsevol comentari escrit per ell mateix, o qualsevol
comentari esborrable de qualsevol idea pertanyent a les àrees de les quals sigui
responsable.

28

o Editar una idea

Aquest cas d'ús correspon a l'edició d'idees, es podrà editar títol, contingut,
etiquetes, l'àrea de la idea i afegir o editar l'identificador de la tasca de JIRA
associada a la idea.

o Canviar estat d'una idea

Un usuari responsable podrà modificar l'estat d'una idea en qualsevol moment.

o Visualitzar llista de moderació

Els usuaris que siguin responsables tindran accés a la llista de moderació des
de la qual se'ls facilitarà la gestió de les idees permetent una visió ràpida de les
idees de les seves àrees de responsabilitat.

o Ordenar una llista

Els responsables podran ordenar la llista de moderació per qualsevol de les
columnes existents en ordre tant ascendent com descendent.

o Subscripció a una idea

Els usuaris podran subscriure's a una idea per tal de rebre notificacions dels
canvis que succeeixin, com afegir comentaris o canviar l'estat de la idea.

o Subscripció a una àrea

Els usuaris podran subscriure's a una àrea per tal de rebre notificacions dels
canvis que succeeixin, com afegir noves idea a l'àrea o canviar l'estat d'alguna
de les idees d'aquesta.

o Enviar correu

Aquest cas d'ús correspon a l‟enviament de correu electrònic, aquest succeirà
tant per accions realitzades pels usuaris com periòdicament per part del
servidor.

29

Vistes

A continuació es mostren les diferents vistes funcionals del sistema.

1. Keep In Tonic

En la figura 4.1 veiem el diagrama de casos d‟ús referents a les accions de la nova
aplicació que es podran realitzar des de les eines antigues de Keep In Tonic pels
usuaris de l‟aplicació d‟idees.

Figura 4.1: Diagrama UML de les pàgines de KiT

2. Pàgina principal de l'aplicació d'idees

En la figura 4.2 tenim el diagrama de casos d‟ús de la pàgina principal de
l‟aplicació d‟idees.

Figura 4.2: Diagrama UML de la pàgina principal d’idees

30

3. Fitxa d'idea

En les figures 4.3, 4.4 i 4.5 tenim el diagrama de casos d‟ús relatius a les pàgines
de fitxes d‟una idea.

Figura 4.3: Diagrama UML de la fitxa d’idea

Figura 4.4: Diagrama UML de la fitxa d’idea

Figura 4.5: Diagrama UML de la fitxa d’idea

31

4. Fitxa d'edició d'idea

En les figures 4.6 i 4.7 hi ha el diagrama de casos d‟ús referents a la pàgina
d‟edició d‟idees.

Figura 4.6: Diagrama UML de la fitxa d’edició d’idea

Figura 4.7: Diagrama UML de la fitxa d’edició d’idea

32

5. Apartat de moderació d'idees

En la figura 4.8 hi ha el diagrama de casos d‟ús referents a la pàgina de moderació
d‟idees.

Figura 4.8: Diagrama UML de la pàgina de moderació

6. Altres casos d'us

En la figura 4.9 hi ha representat el diagrama de casos d‟ús que no estan
relacionats directament amb cap pàgina.

Figura 4.9: Diagrama UML no encapsulable en cap pàgina

4.2 Arquitectura del sistema

Al ser aquest un projecte que s'ha d'integrar en una altre eina, s'ha de fer un
primer anàlisi de l'estructura de l'aplicació actual i un estudi dels elements
d'aquesta.

4.2.1 Anàlisi de Keep In Tonic

Keep In Tonic, com ja s'ha esmentat anteriorment, utilitza un sistema d'adreces
anomenat Friendly URLs (Uniform Resource Locator) que consisteix en que la

33

direcció de les diferents pàgines no descriu les direccions reals de l'arxiu a
executar de l'aplicació, sinó que existeix un objecte que tracta aquesta direcció i
n'extreu la informació que serà utilitzada per carregar el controlador adequat i per
utilitzar-ne els paràmetres en aquest. Cal tenir en compte a més que un gestor
d'URLs no només serveix per aconseguir el nom del controlador a executar, sinó
que sovint provoca que hi hagi paraules reservades en alguna posició de la URL.

Per tal d'aconseguir això s'han de redirigir totes les peticions HTTP a un mateix
fitxer PHP i aquest serà l'encarregat d'inicialitzar els elements de configuració
necessaris, executar el gestor d'URLs i seguidament el controlador adequat
mitjançant un objecte nomenat dispatcher.

Cal també identificar qualsevol element en el flux principal de l'aplicació que pugui
afectar a l'execució de l'aplicació.

inc/index.php

Aquest és el primer fitxer que s'executa per a qualsevol petició. La seqüència
d'accions en aquest fitxer són:

1. Aplica la funció strip_tags a les variables globals $_GET, $_POST,
$_REQUEST i $_SESSION.

2. Inicialitza la sessió.
3. Carrega el fitxer de configuració inc/config.lib.php.
4. Inicialitza l'objecte sql implementant el patró de disseny multiton.
5. Inicialitza i executa el gestor d‟URLs.
6. Inicialitza l'objecte singleton user.
7. Si l'usuari no està identificat el redirecciona a la pàgina corresponent.
8. Executa el dispatcher.
9. Executa un seguit d'operacions per depurar l‟aplicació.

inc/config.lib.php

En aquest arxiu es defineixen constants referents a URLs, com per exemple el
domini de l'aplicació i les rutes de les diferents carpetes de l'aplicació. També fa
una inclusió de diferents classes pròpies i externes. A més executa en cas de que
així sigui requerit, tot un seguit de funcions relacionades amb la depuració de
l'aplicació.

34

inc/misc.lib.php

Aquest arxiu conté una llibreria de funcions vàries com creació d‟URLs, obtenir la
IP de l'usuari, donar format a certs tipus de dades...

Gestor d'URLs

Keep In Tonic té una classe nomenada URLHandler que s'encarrega d'aquesta
funció. Aquesta classe consta de dos mètodes i un constructor.

En el constructor agafa tot de paràmetres opcionals, globals en l'aplicació, i els
guarda en una propietat pública.

El mètode detectMainSections, cridat en el constructor, defineix en funció del
primer paràmetre de la URL quina és la secció que li correspon, definint en cas de
que sigui necessari variables extra. La llista de noms de secció utilitzats, i que per
tant són paraules reservades en primera posició de les direccions, és:

 worklog

 upload

 worklog-edit

 tweettonic

 login

 logout

 search

 avatar

 team

 team-photos

 account

 get-avatar

 ajax

 restricted

 crons

 external

 index.xml

El mètode “prepare” inicialitza la propietat de classe "main_controller" amb la ruta
de l'arxiu que conté el dispatcher. I afegeix a la variable global $_GET els
paràmetres obtinguts de l'adreça.

Amb aquesta informació sabem que les adreces utilitzades segueixen el següent
format, estant entre claus les parts opcionals:

http://domini/secció[/paràmetres][/valor_tag/tag][/offtopic|/work][/hotness][/page/nu
m_pàgina]

35

Dispatcher

El dispatcher és l'element encarregat d'executar el controlador adequat. En el cas
de Keep InTonic ens trobem amb un arxiu que inicialitza varis objectes Template,
un switch amb cadascuna de les diferents seccions i l'arxiu que té que carregar.
Finalment imprimeix la plantilla per pantalla.

sql

Aquesta es una classe que permet tenir connexions simultànies a diferents bases
de dades, però només una a cadascuna d'elles. Les dades de connexió les obté
de l'arxiu "inc/profiles.lib.php"

Té com a mètode principal "query" que permet fer consultes a la base de dades
pertinent, en cas de ser una consulta d'obtenció de dades, en retorna els resultats
en format array.

user

Aquesta classe és de tipus singleton i conté tots els mètodes relacionats amb
usuari: identificar-se, obtenir dades, subscriure's, obtenir llistes d'usuari, editar
dades d'usuari, buscar usuaris...

Al inicialitzar-se guarda en propietats de l'objecte les dades de l'usuari connectat.

template

Aquesta classe es la que fa les funcions de sistema de plantilles de l'aplicació. A
diferència d'altres sistemes de plantilles, com ara smarty, aquesta no té un
llenguatge propi, sinó que utilitza el propi llenguatge PHP per representar les
operacions que s'hagin de fer en les plantilles.

Consta de 3 mètodes:

 Constructor, en el qual se li defineix la plantilla a utilitzar.

 set, que és el que permet definir variables en la plantilla.

 fetch, que és el mètode que ens retorna la sortida resultant d'executar la
plantilla amb les variables definides mitjançant el mètode set.

36

PHPMailer

PHPMailer és una classe de PHP per a la transferència de correus electrònics
amb una gran varietat de funcions i característiques. Entre altres coses permet:

 Enviar correus a múltiples recipients.

 Utilitzar servidors i autentificació SMTP.

 Correus amb part alternativa pels clients que no permetin HTML.

 Diferents tipus de codificació

 Capçaleres personalitzables.

 Múltiples arxius adjunts.

 Suport per imatges incrustades.

item

Aquesta classe conté un conjunt de mètodes relacionats amb worklogs i "tweets"
(elements de twitter). Afegir, editar, eliminar...

4.2.2 Framework de l'aplicació d'idees

Per tal d'aprofitar els beneficis de la programació utilitzant un framework, se n'ha
creat un a mida per a l'aplicació. Els elements d'aquest framework són:

__autoload()

Per tal de no haver-se que preocupar constantment d'incloure els fitxers
necessaris, o de incloure'ls tots, cosa que sobrecarregaria el programa amb molts
elements innecessaris, s'utilitzarà la funció de PHP __autoload()

Aquesta és una funció global de PHP, que es cridada sempre que s'intenta crear
un objecte que no ha estat definit encara a l'aplicació. Com a paràmetres rep el
nom de la classe que es vol instanciar. Per tant hem de definir un patró en els
noms de les classes que ens permetin, en aquesta funció, conèixer on està situat
l'arxiu que la conté i quin és el nom d'aquest.

En l'aplicació tindrem 3 tipus d'objectes ben diferenciats: controladors, models i les
classes referents al framework.

 Controladors
o Estaran situats a la carpeta scripts, agrupats en carpetes.
o El nom dels arxius serà del tipus nom.controller.php.
o Els nom dels objectes tindrà el següent format: NomControllerCarpeta.

37

 Models:
o Estaran situats a la carpeta inc, agrupats en carpetes.
o El nom dels arxius serà del tipus nom.model.php
o Els nom dels objectes tindrà el següent format: NomModelCarpeta.

 Classes del framework:
o Estaran situats a la carpeta inc.
o El nom dels arxius serà nom.class.php
o El nom dels objectes no podrà contenir ni les paraules Controller ni

Model.

Config

Aquesta classe serveix per obtenir dades de diferents arxius de configuració ".ini"

Factory

Aquesta implementa els patró de disseny factory i no podrà instanciar-se.
D'aquesta manera aconseguirem un punt únic des d'on poder instanciar qualsevol
objecte, a més no es podrà instanciar dues vegades un mateix objecte a través
d'aquest, de manera que si es demana un objecte que ja ha estat instanciat amb
anterioritat, s'aconseguirà l'instanciat anteriorment, com si d'un objecte que
implementi el patró singleton es tractés.

Filter

Aquesta classe l'ha proporcionat l'empresa, conté diferents tipus de mètodes de
validació i filtratge, així com classes de filtre específiques per a les variables
$_GET, $_POST, $_COOKIE i $_FILES. Al instanciar una d'aquestes classes
específiques de filtratge, n'elimina la variable original, fent així que només sigui
possible obtenir les variables que puguin contenir a través d'aquests filtres.

Mailer

Aquesta classe implementa el patró de disseny adapter que consisteix en crear
una classe intermèdia per utilitzar una classe externa, PHPMailer en aquest cas.
L'objectiu d'aplicar aquest patró de disseny és facilitar una futura actualització de
la classe externa, podent adaptar fàcilment qualsevol canvi que s'hagi produït en
aquesta.

38

Controller

Aquesta és una classe abstracta de la qual n'extendran tots els controladors de
l'aplicació. La classe definirà el mètode abstracta getData que serà el mètode que
s'executarà al carregar un controlador, i que per tant contindrà l'execució principal
de cada controlador, i tindrà tot un seguit de mètodes comuns en la majoria de
controladors com per exemple:

 Obtenir un filtre.

 Obtenir un model.

 Obtenir variables de configuració.

Model

Aquesta és una classe abstracta de la qual n'extendran tots els models de
l'aplicació. La seva funció és crear una connexió a la base de dades, que serà
accessible a tots els models que n'extenguin.

Excepcions

L'aplicació tindrà un sistema d‟excepcions per tractar els possibles errors i/o
restriccions d'accés que puguin succeir. Hi ha una classe GeneralException, la
qual no tindrà cap funció específica, però que es crea amb la intenció de que tota
la resta d'excepcions de l'aplicació n'extenguin i d'aquesta manera si en un futur es
necessita afegir alguna funcionalitat a totes les excepcions, com per exemple
guardar un registre d'errors, sigui més simple.

Les altres excepcions que existiran seran:

 ForbiddenException: defineix un error de restricció d'accés. quan sorgeix-hi
una excepció d'aquestes s'haurà de retornar una capçalera HTTP 403.

 NotFoundException: Aquesta pàgina excepció mostrarà una pàgina d'error
de pàgina no trobada, i utilitzarà capçaleres 404 o 500 depenent del tipus
d'error que hagi succeït, 404 si s'intenta accedir a un element que no existeix,
i 500 en casos estranys en que el servidor no respongui com s'espera.

 AjaxException: Aquesta pàgina servirà per retornar un element d'error en
format Json. S'utilitzarà en aquells controladors que siguin cridats via AJAX.

39

4.2.3 Integració en l'aplicació Keep In Tonic

Un dels primers punts que cal decidir, es quin tipus d'URLs utilitzarà l'aplicació.
Per tal de complir el requisit de minimitzar l'impacte de paraules reservades que
pugui provocar l'aplicació d'idees, s'englobaran totes dins de la secció "idea", i
utilitzant el següent paràmetre per decidir quin es el controlador a executar.
D'aquesta manera, a més dels paràmetres addicionals que agafava el gestor
d'URLs, les direccions de l'aplicació d'idees quedaran de la següent manera:

http://domini/idea[/seccio_idea][/paràmetres]

D'aquesta manera aconseguim que respecte a l'aplicació Keep In Tonic, només
s'hagi afegit una paraula reservada. Això provoca que en en switch del dispatcher,
s'hagi d'afegir un nou cas "idea", que serà el punt inicial de la nova aplicació.

En aquest punt d'entrada s'hi crearà un dispatcher propi de l'aplicació d'idees. En
aquest punt es recolliran totes les diferents excepcions que es puguin llençar des
de la nostre aplicació i es tractaran degudament.

En quant a la manera de carregar els controladors, s'utilitzarà un arxiu de
configuració que relacionarà el paràmetre de la URL amb el controlador que té que
carregar, aconseguint d'aquesta manera una gran flexibilitat a l'hora de modificar
les URLs de l'aplicació.

Com el dispatcher de Keep In Tonic treu per pantalla un seguit de plantilles
inicialitzades abans de l'execució dels controladors, per tal de tenir ple control de
la sortida del programa en als controladors, s'ha de fer que aquests ens retornin
els diferents objectes template en format de matriu, per així sobreescriure les
variables del dispatcher de Keep In Tonic per les que ens retorni el controlador.

El diagrama de classes resultant un cop muntat el framework esta representat en
les figures 4.10, 4.11 i 4.12:

40

Figura 3.10: Diagrama de classes de l’aplicació

Figura 4.11: Diagrama de classes de l’aplicació

Figura 4.12: Diagrama de classes de l’aplicació

41

En l'aplicació s'ha de definir dos models, un per cadascun dels dos grans objectes
del projecte: àrees i idees. Cadascun d'aquests models han de tenir totes les
funcions relacionades amb aquests: afegir idees, comentaris, editar, obtenir
llistes...

L'aplicació disposarà de 4 pàgines dinàmiques principals, l'esquema de pàgines de
l'aplicació és el següent:

Figura 4.13: Esquema de pàgines de l’aplicació

En quant a controladors se'n defineixen 7 diferents, un per cadascuna de les 4
pàgines de l'aplicació, dos per les diferents peticions AJAX i un per gestionar
l'enviament periòdic de correus electrònics. Els controladors per tant són:

 main

 edit

 idea

 manage

 subscription

 vote

 subscriptionBulletin

4.3 Base de dades

En aquest apartat, de la mateixa manera que en l'anterior, al no començar el
projecte des de zero, sinó que existeix una plataforma sobre la qual s'hi ha de
integrar el projecte provoca que abans de començar a dissenyar la base de dades
del projecte s'hagi de fer un estudi de la base de dades de Keep In Tonic.

42

Base de dades de Keep In Tonic

Aquesta base de dades consta de 12 taules, totes elles utilitzant el motor
d'emmagatzemament MyISAM, amb un índex full text a la taula 'users'. L'esquema
de la base de dades és el representat en la figura 4.14:

Figura 4.14: Esquema de la base de dades original

43

Una de les coses importants que s'hi observa és que tot i que la taula „users‟ conté
un camp 'id', que és la clau primària de la taula, s'utilitza el camp 'username' per
fer d'enllaç entre les diferents taules de la base de dades, cosa que provoca que
canviar el nom d'usuari comporti molts maldecaps comparant-ho amb la flexibilitat
que comportaria utilitzar el camp auto incremental 'id'.

Un altre inconvenient és la utilització de diferents noms per referir-se a un mateix
camp, aquest fet pot provocar errades o confusió a l'hora de programar o llegir el
codi. En les taules 'worklog_attach' i 'worklog_type' es refereix al camp 'id' de la
taula 'worklog' com a 'id_worklog', mentre que en les taules 'worklog_votes' i
comments el nom que utilitza per referir-se a aquest mateix camp és el de
'id_item'.

Disseny de la nova base de dades

Tot i que la base de dades anterior presenta alguns inconvenients, no forma part
del projecte la modificació del programa proporcionat, per tant no es modificarà
l'estructura de la base de dades.

Com no hi ha previst cap buscador en la nova aplicació, el motor utilitzat per a la
nova part de la base de dades serà InnoDB en totes les taules per poder aprofitar
el fet de tenir un sistema de base de dades transaccional i relacional, excepte en
els punts en que s'enllaci a taules antigues.

El nom de totes les taules estarà precedit per la cadena de text "idea". D'aquesta
manera seran més fàcils d'identificar i intuir-ne l'ús al veure el nom.

Les taules necessàries per a la nova aplicació són les següents:

 idea

 idea_vote

 idea_comment

 idea_state

 idea_tag

 idea_tag_relation

 idea_area

 idea_area_responsible

 idea_subscription

 idea_area_subscription

El diagrama resultant de la base de dades, minimitzant les taules antigues que no
presenten cap canvi o que no interactuen amb les noves, és representat en la
figura 4.15.

44

Figura 4.15: Esquema de la base de dades de l’aplicació

45

4.4 Interfície d'usuari

L'interfície de l'aplicació ha de seguir l'estil de Keep InTonic. Les parts comunes en
les pàgines de l'aplicació que mantindrà la nova eina són:

 Un iframe a la part superior (figura 4.16).

Figura 4.16: captura de pantalla de l’iframe superior

 Navegació per pestanyes entre aplicacions (figura 4.17).

Figura 4.17: captura de pantalla de les pestanyes de les aplicacions

 Navegació per pestanyes entre diferents tipus de llistes (figura 4.18).

Figura 4.18: captura de pantalla de les llistes

 Barra lateral a la part dreta de la pantalla amb enllaços i accions possibles
(figura 4.19).

46

Figura 4.19: captura de pantalla de la barra lateral

 Logotip de Keep In Tonic (figura 4.20).

Figura 4.20: captura de pantalla del logotip

 Tonalitats blaves en tota l'aplicació.

També l'aplicació disposa d'una llibreria d'icones, que s'han aprofitat en diversos
punts de la nova aplicació.

47

5 Codificació i proves

5.1 Estil de codificació

L‟homogeneïtzació de l'estil de codificació és un aspecte molt important en
qualsevol tipus de projecte, sobretot quan hi participen vàries persones. Entre
altres avantatges, seguir un mateix estil en tot un projecte agilitza la lectura de
codi, facilita la detecció d'errors i ajuda a terceres persones a entendre el codi del
teu projecte.

Algunes de les directrius sobre les quals s'ha basat la codificació d'aquest projecte
són les següents:

Idioma

Tant en els comentaris, com en qualsevol variable, classe o mètode, l'idioma
utilitzat és l'anglès. Aquesta decisió es deu a que l'empresa per la qual s'ha
desenvolupat el projecte hi ha programadors de moltes nacionalitats diferents.

Noms

Els noms de variables, mètodes i classes són el més descriptius possibles del que
representen.

Els noms compostos de les classes i dels seus mètodes s'escriuen sense guió
baix, les paraules es diferencien escrivint la primera lletra en majúscula, excepte la
primera paraula en el cas dels mètodes, per tal de diferenciar-los del nom de les
classes més fàcilment.

Les variables globals s'escriuen amb tots els caràcters en majúscula, separant les
diferents paraules per guions baixos.

Claus ("{}")

En el cas de les claus hi havia dues opcions per triar, posar-les en la mateixa línia
que inicia el bloc que contindrà, o fer-ho en la següent.

48

Les dues opcions, il·lustrades, són:

Opció 1 Opció 2

if(xxx) {
 ...
}

if(xxx)
{
 ...
}

L'opció escollida és la segona ja que si s'utilitzen editors que detectin les claus,
com Eclipse que ha estat l'utilitzat en el desenvolupament del projecte, és més
fàcil identificar la clau que obre si està a l'inici de la línia que no si tens que buscar-
la a finals de línia. Això es deu a que saps més precisament per on la tens que
buscar que no pas en la primera opció ja que la longitud de la condició és diferent
en cada cas.

Alineació

Quan s'inicialitzen varies variables consecutivament, s‟alineen els "=" mitjançant
tabuladors per tal de facilitar-ne la lectura.

Igualtats

Al comparar una variable a un valor, sempre es posa el valor al davant, d'aquesta
manera s'evita el possible error produït al deixar-se un dels dos iguals de la
igualtat, ja que al executar-ho PHP llançaria un error i per tant es detectaria i es
solucionaria.

5.2 Proves

Tot i ser una aplicació per a la intranet d‟una empresa, amb el control i la
seguretat, a priori, de que no hi haurà usuaris malintencionats, s‟ha donat la
mateixa importància a que l‟aplicació funcioni degudament a que ho faci de
manera segura.

Les proves de que l‟aplicació funciona com s‟espera s‟han anat fent a mesura que
s‟anaven creant els diferents mòduls. Aquestes proves simulaven tant les actituds
esperades d‟un usuari: votar una idea, editar… com altres menys corrents: votar

49

una mateixa idea dos cops, votar una idea inexistent, intentar editar una idea que
no sigui teva sense ser-ne responsable…

A part d‟aquestes proves, també s‟han provat, un cop finalitzada la aplicació,
diferents tipus d‟atacs per veure si aquesta responia com s‟esperava. Per tal de fer
aquestes proves abans s‟han de conèixer diferents atacs que pot rebre una web a
nivell de deficiències de codi. D‟aquestes proves en quedaran excloses per tant
tots aquells atacs que afectin al servidor com pot ser DoS (Denial of Service), o les
que puguin provenir de deficiències en l‟aplicació ja existent, com robatori de
sessions.

Cross Site Scripting (XSS)

Aquest atac consisteix en introduir codi de script, javascript per exemple, en la
pàgina web. Per tal de detectar si l‟aplicació té aquest problema s‟han comprovat
totes les possibles entrades de l‟aplicació utilitzant com a entrada una cadena
especial per localitzar vulnerabilitats d‟aquest tipus. La cadena utilitzada en aquest
cas és:

></script>">'><script>alert(string.fromcharcode(88,83,83))</script>

SQL injection

Aquest atac consisteix en introduir codi SQL en les consultes realitzades pel
servidor a la base de dades. Per comprovar-ho s‟han tingut que provar totes les
entrades una a una.

Execució maliciosa de codi

Aquesta vulnerabilitat existeix quan l‟aplicació utilitza les entrades de l‟usuari per
carregar arxius. En aquesta aplicació no es dona aquesta situació i per tant no és
necessari fer cap prova.

Fuga d’informació

Aquest error consisteix en mostrar els errors de programació que succeeixin. Això
suposa un error de seguretat ja que els errors de PHP mostren rutes d‟arxius i a
vegades també petites parts del codi.

50

6 Conclusions

6.1 Assoliment d'objectius

Aquest és un aspecte difícil de valorar degut a que els objectius d'aquest projecte
són objectius a llarg termini, que només poden ser valorats un cop hagi passat un
temps des de que el projecte s'hagi posat en marxa.

Tot i que encara no s'ha posat en marxa i que per tant no es poden valorar els
objectius, l'aplicació compleix tots els requisits que es van demanar pensant en
assolir aquests objectius. Un altre aspecte encoratjador és que hi ha diversos
treballadors de l'empresa, que tot i que no han tingut encara possibilitat de provar
l'aplicació, un cop se'ls ha explicat diferents aspectes de com seria aquesta, han
opinat favorablement sobre la proposta i n'han mostrat interès.

Tenint en compte aquests aspectes, tot sembla indicar que els objectius que es
pretenen assolir amb aquest projecte es compliran.

6.2 Desviacions sobre la planificació

En les primeres fases: anàlisi, disseny, desenvolupament i proves, van efectuar-se
segons el calendari establert, amb petites variacions en les seves durades. Totes
elles van ser acabades segons estava previst a mitjans del més de març.

L'ultima fase de redacció de la memòria però, ha sofert un considerable retard
segons el calendari previst degut a situacions vàries, endarrerint el seu inici fins a
principi de maig. La duració d'aquesta tasca ha estat reduïda en quant a nombre
total d'hores, però dedicant-hi menys hores diàries de les previstes, que eren
quatre.

El diagrama de GANTT de seguiment del desenvolupament del projecte ha estat el
de la figura 6.1.

51

Figura 6.1

52

6.3 Línies d'ampliació

Hi ha varies línies possibles d‟ampliació d'aquest projecte, algunes d'elles són:

Integrar l'aplicació amb el gestor de tasques que utilitza l'empresa: JIRA. Aquesta
integració podria permetre conèixer l'estat de la tasca associada a una idea,
canviar automàticament l'estat d'una idea a implementada quan la tasca associada
finalitza, facilitar la creació d'una tasca des de la fitxa d'una idea...

Una altre possible línia d'ampliació important seria la creació de temes sobre els
quals donar idees. Aquesta millora permetria rebre idees focalitzades en un tema
en concret d'interès per a l'empresa, a més de tenir les idees pertanyents a un
mateix tema agrupades i així facilitar-ne la valoració.

A part d'aquestes dos grans línies també hi hauria altres ampliacions més petites
possibles, com per exemple canviar el sistema de BBCodes utilitzat en la creació
de idees i comentaris, heretat de Keep In Tonic, per un sistema WYSIWYG,
d'aquesta manera per a usuaris menys avançats seria més fàcil crear textos
enriquits. Aquesta ampliació, però, requereix també modificar-ho a Keep In Tonic
per tal de mantenir l'uniformitat en el conjunt d'aplicacions.

53

7 Bibliografia

Bibliografia fonamental

 Paul Dubois, Stefan Hinz, Carsten Pedersen, "MySQL 5.0 Certification
Study Guide". MySQL Press.

 Kevin McArthur, "Pro PHP: Patterns, Frameworks, Testing and More".
Apress 2008

Fonts Electròniques

Pàgines web

 Wikipedia [online]. Disponible a: http://en.wikipedia.org (2010 febrer).

 PHP [online]. Disponible a: http://www.php.net (2010 febrer).

 Oracle Corporation. MySQL reference Manual [online]. Disponible a:
http://dev.mysql.com/doc/refman/5.0/en/ (2010 febrer).

 The Apache Software Foundation. Disponible a:
 http://httpd.apache.org/docs/2.0/vhosts/ (2010 gener).

 The jQuery Project. jQuery API. Disponible a: http://api.jquery.com/ (2010
febrer)

 Sergi Quiñonero. Diferentes tipos de ataques en páginas y aplicaciones
web [online]. Disponible a: http://www.sergiquinonero.net/diferentes-tipos-
de-ataques-en-paginas-y-aplicaciones-web.html (2010 febrer)

 Epsilon Eridani C.B. phpDocumentor [online]. Disponible a:
 http://www.epsilon-eridani.com/cubic/ap/cubic.php/doc/phpDocumentor---
documentacion-para-codigo-PHP-246.html (2010 gener).

 Get Satisfaction [online]. Disponible a: http://getsatisfaction.com/ (2010
gener)

Documents Web

 PHP_IDE_EN [online]. Disponible a:
https://spreadsheets.google.com/ccc?key=pV8XyUSUOM7ET07rn4n7NYA#
gid=0 (2010 gener)

http://www.wikipedia.org/
http://www.php.net/
http://dev.mysql.com/doc/refman/5.0/en/
http://httpd.apache.org/docs/2.0/vhosts/
http://api.jquery.com/
http://www.sergiquinonero.net/diferentes-tipos-de-ataques-en-paginas-y-aplicaciones-web.html
http://www.sergiquinonero.net/diferentes-tipos-de-ataques-en-paginas-y-aplicaciones-web.html
http://www.epsilon-eridani.com/cubic/ap/cubic.php/doc/phpDocumentor---documentacion-para-codigo-PHP-246.html
http://www.epsilon-eridani.com/cubic/ap/cubic.php/doc/phpDocumentor---documentacion-para-codigo-PHP-246.html
https://spreadsheets.google.com/ccc?key=pV8XyUSUOM7ET07rn4n7NYA#gid=0
https://spreadsheets.google.com/ccc?key=pV8XyUSUOM7ET07rn4n7NYA#gid=0

54

Annex 1: Exemple de codificació

A continuació es mostren tres exemples de codi corresponents a:

 Exemple de codificació: un controlador

 Exemple de codificació: classe factory

 Exemple de codificació: funció __autoload

55

Exemple codificació: un controlador

Aquesta classe és la que s‟executa periòdicament amb un cron tab. Per a cada
usuari responsable, li envia la llista de les idees més votades de l‟últim període per
a les seves àrees de responsabilitat.

<?php

/**

 * Idea Responsible Bulletin controller.

 * This class is the responsible for sending the periodical emails when the cron tab is

executed.

 * @author Narcís

 *

 */

class ResponsibleBulletinControllerIdea extends Controller

{

 /**

 * Class var that will contain the users resposability areas list.

 *

 * @var array

 */

 private $area_idea_list_result = array();

 /**

 * Mailer object.

 * @var Mailer

 */

 private $mailer;

 /**

 * Sends an email containing a summary of the ideas most voted during the last

period on every user areas of responsability.

 */

 public function getData()

 {

 $this->loadConfig();

 $area_model = $this->getModelInstance('AreaModelIdea');

 $idea_model = $this->getModelInstance('IdeaModelIdea');

 $this->mailer = Factory::getInstance('Mailer');

 $area_list = $area_model->getAreaList();

 $users_responsible_list = $area_model->getUsersResponsabilityAreas();

 foreach ($area_list as $value)

 {

 $this->area_idea_list_result[$value['id_area']] = $idea_model-

>getListTop(0, $value['id_area'], $this->configVars['email_list_size'], 1, $this-

>configVars['email_vote_period']);

 }

 foreach ($users_responsible_list as $user_id => $value)

 {

 $this->sendMailToResponsible($user_id, $value);

 }

 }

 /**

 * Method to send an email to a responsible.

 * @param integer $user_id

 * @param array $value

 */

 private function sendMailToResponsible($user_id, $value)

 {

 $tpl_mail_body = new Template('email/idea_responsible_bulletin.tpl.php');

 $tpl_mail_body->set ('idea_lists' , $this->area_idea_list_result);

56

 $tpl_mail_body->set ('user_areas' , $value['areas']);

 $this->mailer->AddAddress($value['email']);

 $this->mailer->Body = $tpl_mail_body->fetch();

 $this->mailer->Send();

 $this->mailer->ClearAddresses();

 }

}

Exemple de codificació: classe Factory

Aquesta classe és la responsable de la creació dels objectes de l‟aplicació,
assegurant al programador que si ja ha instanciat una classe anteriorment, se li
retornarà el mateix objecte, evitant així gastar més memòria de la necessària.

<?php

/**

 * Factory Class, responsible for creating singletoned objects.

 *

 * @author Narcís Davins

 */

class Factory

{

 // Propierty that holds classes instances.

 protected static $instances = array();

 // Private constructor to prevent the creation of instances of Factory externally.

 private function __construct(){}

 /**

 * Returns the requested instance.

 *

 * @param string class to be instantiated

 * @return object

 */

 public static function getInstance($class_name)

 {

 //If it hasn't already been instantiated

 if (!array_key_exists ($class_name, self::$instances))

 {

 if (!class_exists($class_name))

 {

 throw new FactoryException('Error trying to create "' .

$class_name .'", class doesn\'t exist' , 500);

 }

 self::$instances[$class_name] = new $class_name;

 }

 return self::$instances[$class_name];

 }

}

57

Exemple de codificació: funció __autoload

Aquesta és una funció que permet que no s‟hagin d‟incloure els fitxers
manualment, permetent així també tenir centralitzat el punt des d‟on s‟inclouen tots
els arxius i per tant facilitant la depuració del codi i el canvi en la nomenclatura
dels arxius i de les direccions físiques d‟aquests.

<?php

/**

 * Framework __autoload function.

 * @author Narcís

 */

/**

 * Includes the file for the requested class name

 * @param string $class name of the class to include.

 */

function __autoload($class)

{

 $pattern = '/^([a-z]+)(controller|model)([a-z]+)$/i';

 preg_match($pattern , $class , $matches);

 $type = isset($matches[2]) ? $matches[2] : '';

 switch (mb_strtolower($type))

 {

 case 'controller':

 $path = PATH_SCRIPTS;

 if ($path == NULL) throw new Exception('Failed loading

controller path' , 500);

 list(, $class , , $folder) = $matches;

 $fullPath = $path . $folder . DIRECTORY_SEPARATOR . $class .

'.Controller.php';

 break;

 case 'model':

 $path = PATH_INCLUDES;

 if ($path == NULL) throw new Exception('Failed loading

model path' , 500);

 list(, $class , , $folder) = $matches;

 $fullPath = $path . $folder . DIRECTORY_SEPARATOR . $class .

'.Model.php';

 break;

 default:

 $path = PATH_INCLUDES;

 if ($path == NULL) throw new Exception('Failed loading

class path' , 500);

 $fullPath = $path . $class . '.Class.php';

 break;

 }

 if (!file_exists(mb_strtolower ($fullPath))) throw new Exception (

'File "' . $fullPath . '" not found.' , 404);

 require_once (mb_strtolower ($fullPath));

}

58

Annex 2: Captures de pantalla

A continuació es mostren a tall d‟exemple diverses captures de pantalla de
l‟aplicació:

1. Pàgina principal
2. Fitxa d‟idea
3. Edició d‟idees
4. Moderació d‟idees
5. Últimes idees
6. Worklog d‟idea

59

1. Pàgina principal

2. Fitxa d’idea

60

3. Edició d’idea

4. Moderació d’idees

61

5. Últimes idees

6. Worklog d’idea

62

Narcís Davins Riu
Sabadell, Juny de 2010

