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RESUM 

La litiasi renal (pedres de ronyó) és un desordre molt comú en països industrialitzats, 

als que aproximadament un 12% de la població desenvoluparà un càlcul renal al llarg 

de la seva vida. Aquestes xifres, però, varien molt en funció de diferents factors, com 

ara la zona geogràfica, el clima o l’alimentació. 

A Espanya, la urolitiasi té una prevalença al voltant del 4% amb una taxa d’incidència 

del 0,27%, i es produeixen uns 105.000 nous casos cada any. D’aquests, 

aproximadament una quarta part necessitarà una actuació urològica. L’índex 

d’incidència més gran es dóna entre els 30 i 60 anys, amb un clar predomini en els 

homes. 

A més, s’ha vist una correlació en l’augment de la freqüència de pedres en països 

desenvolupats amb l’increment de la riquesa i de la despesa en aliments per càpita. En 

el present estudi, es vol determinar una possible correlació entre els metalls pesants i 

la formació de pedres de ronyó. Els metalls pesants que s’investiguen són: zinc (Zn), 

plom (Pb) i coure (Cu). Tots ells poden introduir-se al cos humà per la ingesta 

d’aliments que, al seu torn, poden incorporar-los a través de l’aigua o del sòl, factors 

directament dependents de la qualitat del medi ambient on es conreen. 
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1. Introducció:  

1.1. Metalls pesants al medi ambient: Zn, Cu i Pb . 

“Metalls pesants” és el terme que s’aplica a un gran grup d’elements que són de 

gran importància industrial i biològica. Des d’un punt de vista químic, aquest grup 

d’elements es reconeixen amb una densitat atòmica major de 6g/cm3.1 Alguns 

d’aquests metalls són considerats essencials per a la vida, i tenen com a funció 

catalitzar reaccions a nivell bioquímic. De fet, alguns metalls es troben en baixes 

concentracions a l’organisme i, tot i tenir una funció fisiològica desconeguda, són 

necessaris per la vida. Tanmateix, aquests es poden convertir en elements tòxics si 

superen aquest llindar de concentració.2 Per tant, la presència de metalls pesants 

impliquen no només greus efectes en el medi ambient sinó també en la salut degut a 

exposicions cròniques. A diferència de molts compostos orgànics que es poden 

degradar en diòxid de carboni i aigua, els metalls pesants tendeixen a acumular-se en 

l’ambient i també en animals i plantes.3 

 

1.1.1.  Usos generals dels metalls en la indústria i incorporació al medi 

ambient. 

Zinc: 

És un dels elements més comuns de l’escorça terrestre (amb una concentració 

mitjana de 70mg/kg)4, també el podem trobar a l’aire, al sòl i a l’aigua, i està present 

en tots els aliments.  A causa de la seva reactivitat, el zinc metàl·lic no es troba com a 

element lliure en la natura; l’atmosfera oxidant de la terra fa que fonamentalment 

estigui formant part de compostos on té estat d’oxidació +II. Alguns dels seus 

compostos més representatius són clorur de zinc, òxid de zinc i sulfat de zinc. 

 

Aquest element pot ser alliberat per processos naturals, però l’alliberació principal 

prové de fonts antropogèniques, sobretot de les activitats mineres i foneries de 

metalls.  També poden ser alliberats per incineradores degut a la utilització de zinc en 

llautó, bronze, aliatges, cautxús i pintures. De fet, a causa de la descàrrega d’aquestes 

fonts les emissions al sòl són probablement la font més gran de zinc en el medi 

ambient. 

 



Introducció 
 

   2 

A més, es pot quedar unit amb el sòl, sediments i partícules de pols. Els ions de zinc 

tenen poca mobilitat en el sòl, sobretot en sòls d’un pH 5 o més alt, ja que en aquestes 

condicions són fortament absorbits pels components del sòl. No obstant, depenent del 

tipus de sòl, alguns components de zinc es poden transportar a aigües subterrànies, 

llacs i rius. 5 

 

El zinc també és capaç de formar diferents complexos amb una gran varietat de 

grups orgànics i inorgànics. L’activitat biològica pot afectar a la mobilitat del zinc en 

ambients aquàtics, on es bioacumula moderadament en organismes aquàtics.  

 

D’altra banda, la vegetació pot acumular nivells més alts de zinc si creix en sòls 

contaminats6. A més, s’ha vist que els fangs obtinguts per depuradores i el compost, 

que poden ser utilitzats en l’agricultura, tenen nivells alts de zinc5. 

 

Plom: 

El plom no és particularment abundant, però els seus jaciments són de fàcil accés i 

es distribueix àmpliament a tot el món. Aquest metall és utilitzat a una extensa gamma 

de productes com ara canonades, soldadura, peces i bateries d'emmagatzematge, ja 

que té propietats atractives per aquests usos, com la resistència a la corrosió, densitat i 

baix punt de fusió. 7 

 

El plom entra a l’ambient de forma natural com a través dels volcans i en petites 

quantitats a l’escorça terrestre (sobretot en forma del mineral Galena, PbS), però la 

majoria prové de l’activitat humana, tant de la minera com de la fosa de minerals amb 

plom, així com també dels subproductes del plom. La font de contaminació més 

important d’aquest metall durant anys va ser la gasolina, que contenia com a additiu 

tetraetilplom. De fet, el 1984, aquest agent va ser responsable del 90% de totes les 

emissions antròpiques de plom (segons la EPA). Darrerament, però, el mercat d’aquest 

tipus de gasolina es va prohibir a Europa a partir de l’1 de gener del 2000 (Directiva 

98/70/CE), mentre que a Espanya a partir del 1 de gener del 2002 (Reial Decret 

403/2000).  
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Quan el plom és alliberat a l’aire, pot viatjar llargues distàncies fins que es diposita 

al sòl, on queda fortament adherit. Normalment el trobem en les capes superiors del 

sòl i quasi no lixivia a capes més profundes ni a l’aigua subterrània. La part que sí que 

es filtra fins a capes inferiors depèn de les característiques del sòl i també del tipus de 

compost amb plom.7 

 

A l’aigua hi pot arribar per les indústries d’acer i de ferro i per l’obtenció de plom 

metàl·lic. Una forma indirecta és l’escolament urbà i la deposició atmosfèrica. La 

solubilitat de plom en aigua depèn del pH (és soluble en condicions d’acidesa), de la 

duresa, de la salinitat i de la presència de materials húmics. 

 

El plom és un element i no pot ser destruït, per tant, els seus compostos poden ser 

transformats en el medi ambient. Algunes d’aquestes substàncies són molt 

bioacumulables, es poden trobar concentracions molt altes de plom en el medi 

ambient, en alguns casos molt més que la permesa.7 

 

Coure: 

Aquest metall es pot trobar de forma natural en tots els ambients, des de roques i 

sòls, fins a l’aigua i l’aire. Les fonts naturals inclouen volcans, vegetació en 

descomposició i incendis forestals, que poden generar pols amb contingut de coure 

que és arrossegada pel vent. D’altra banda, pel què fa a les fonts antropogèniques, el 

coure pot provenir de l’alliberació de les mines de coure i d’altres metalls, de 

l’agricultura, i d’altres fàbriques que fan i utilitzen aquest metall o d’altres compostos 

d’aquest. El coure també pot entrar al medi ambient pels abocadors de residus, les 

aigües residuals domèstiques, la combustió de combustibles fòssils i les deixalles, la 

producció de fusta, la producció de fertilitzants basats en fosfats i les fonts naturals. 

 

Com la majoria de metalls, el coure no es troba aïllat a la natura, sinó combinat en 

forma de sals. Aquests compostos de coure  es poden descompondre i alliberar coure 

lliure a l’aigua, aire i aliments. Quan el coure és alliberat al sòl, a les capes superiors 

d’aquest pot quedar fortament unit al material orgànic i altres components com argiles 

o sorres. Tot i això, una petita part del metall pot arribar a les aigües subterrànies. 8  
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Pel que fa a l’aigua, el coure que és dissolt pot ser en la forma de coure lliure o 

compostos de coure, però la major part crea complexos amb els materials en 

suspensió. Encara que la major part es queda unit amb els sediments i materials en 

suspensió. El coure provinent de les fàbriques pot ser transportat per l’aire en forma 

de pols i pot tornar a la terra per efectes de la gravetat com la pluja o la neu. També 

podem trobar el coure en diferents concentracions en aliments i begudes. 

 

1.1.2. Reutilització de fangs d’EDAR a l’agricultura i absorció dels metalls 

presents per les plantes conreades.  

 

En totes les fases de les estacions depuradores d’aigües residuals (EDAR) hi ha un 

tractament de fangs provinents de l’acumulació de matèries dissoltes i en suspensió 

que duu l’aigua residual a conseqüència dels seus usos. Aquests biosòlids tenen 

diferents destinacions finals com ara la valorització energètica o la disposició en 

dipòsits controlats, però una de les més importants és l’aplicació al sòl. La gran 

quantitat de nutrients i matèria orgànica que contenen els fangs els confereix un gran 

valor per l’agricultura9. No obstant, els diferents processos fisicoquímics i biològics que 

tenen lloc als EDARs, tendeixen a acumular metalls pesants als fangs provinents de les 

aigües residuals. Això explica que normalment es troben concentracions més altes als 

fangs que al sòl, que poden arribar a nivells tòxics. Un cop els metalls són absorbits al 

sòl es poden retenir indefinidament, però això ja depèn, entre altres factors, del tipus 

de sòl i també de la forma química del metall 10. Per tant, per evitar que no es 

sobrepassin els nivells de toxicitat en els fangs, i que hagi una utilització segura a 

l’agricultura sense afectar als sistemes ecològics, durant les darreres dècades diferents 

països han impulsat diverses lleis per controlar la utilització de fangs11. Els valors que 

s’apliquen a l’Estat Espanyol són determinats pel Reial Decret  1310/1990, que regula 

la utilització de fangs de depuradores el sector agrari (taula 1), que relaciona les 

característiques del sòl i del contingut de metalls pesants al fang. 
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Taula 1: Valor límit de concentració dels metalls pesants que s’ analitzen en aquest estudi en els fangs destinats a la 
seva utilització agrària

12
 

Metall 
Valor límit (mg/kg de matèria seca) 

Sols amb pH menys de 7 Sols amb pH major de 7 

Coure 1000 1750 
Zinc 2500 4000 
Plom 750 1200 

 

És molt important conèixer la forma química del metall, ja que en depèn la 

mobilitat, la biodisponibilitat i fitotoxicitat. Pel que fa a aquestes dues últimes, 

l’absorció de metalls per les plantes suposa l’entrada d’aquests en la cadena 

alimentària. Sobretot en un sòl que ha estat recentment tractat amb fangs, l’equilibri 

bioquímic del sòl canvia i la biodisponibilitat dels metalls també pot canviar.13 En 

l’estudi de P.S Hooda (1997), s’han detectat concentracions de metalls més altes dels 

valors permesos i, més concretament en els tres tipus de verdures analitzats (espinacs, 

pastanaga i blat), detectant concentracions més altes de metalls en zones 

contaminades que en zones no contaminades.  

 

La marcada importància dels fets exposats a la societat, justifica el gran nombre i 

tipus d’estudis sobre aquest tema, dels que se’n desprèn que l’absorció de les plantes 

depèn molt de la forma química del metall, del tipus de sòl i del tipus de verdura. Hi ha 

algunes plantes que presenten mecanismes de defensa per tal de controlar l’entrada 

d’aquests metalls, i així eviten una potencial fitotoxicitat14. 

 

S’han trobat altes concentracions de metalls pesants als fangs d’alguns 

embassaments, com el situat a la zona de Flix (apartat 1.3.). Això significa que l’aigua 

contenia concentracions de metalls pesants que poc a poc s’han unit a les partícules en 

suspensió (com pot passar amb el zinc, el coure i el plom, com s’ha descrit 

anteriorment). Com que a aquesta zona possiblement han utilitzat fangs de 

depuradores i s’ha regat amb aigua residual, es poden haver acumulat metalls pesants 

a les zones agràries de la regió i, en conseqüència, una major absorció de les verdures 

que la població ingereix produint l’entrada d’aquests metalls als humans. Donat el fet 

que la generació d’orina és el mecanisme animal bàsic per eliminar substàncies 

tòxiques solubles en aigua, es pot deduir que una ingesta elevada de metalls pesants 
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provoca un augment de la seva concentració en l’orina. És per aquest motiu que s’ha 

estudiat si aquesta absorció pot influenciar el risc urolitiàsic.  

 

1.1.3. Incorporació dels metalls al metabolisme humà. 

 

Zinc: 

El zinc és un nutrient essencial pels humans, però exposicions llargues de zinc 

poden ser perjudicials per la salut i poden provocar rampes estomacals, anèmia i 

canvis en els nivells de colesterol. Aquestes exposicions poden ser produïdes per 

l’alimentació, bevent aigua i respirant aire contaminat en llocs de treball.4 

 

Per tant, l’exposició principal per a la població és per la ingestió. La ingesta mitjana 

de zinc a través d’aliments que realitzen els humans és de 5,2-16,2 mg/dia. Podem 

trobar aquest metall en tots els aliments, però és més present en aliments provinents 

d’animals, sobretot en el marisc. L’absorció de zinc dins del cos es produeix al llarg de 

l’intestí, encara que la major part de l’absorció es produeix en el duodè.15 

 

També hi ha una exposició per inhalació de zinc i dels seus components, sobretot 

del tracte respiratori que malmet la funció pulmonar, provocant una reducció 

pulmonar i una disminució de la capacitat de difusió del diòxid de carboni. L’absorció 

de zinc depèn de la mida de les partícules i de la solubilitat de l’aerosol de zinc. 

 

D’altra banda, no s’ha observat cap efecte tòxic en l’exposició de zinc i dels seus 

components en l’absorció dèrmica. Tampoc s’han trobat proves sòlides que indiquin 

que el zinc afecta la reproducció dels humans. Pel que fa l’efecte cancerós, s’ha 

classificat el zinc com grup D4 (segons la EPA, Environmental Protection Agency), és a 

dir, no classificable com cancerigen per humans per la falta de dades.  

 

Plom: 

La incorporació del plom en el cos humà és el resultat de la inhalació (de la qual 

entre un 30 i 50% és absorbida a la circulació sanguínia), la ingesta d’aliments i d’aigua 

contaminants (entre un 8% i 15% d’absorció) i, en poques quantitats, del contacte amb 
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la pell. 16 Les quantitats i els efectes de la inhalació depenen sobretot de la mida de les 

partícules inhalades, però també d’altres factors, com ara l’edat o la velocitat de la 

respiració. Un cop absorbit per la sang, el plom es concentra sobretot en els eritròcits i 

es distribueix per l’organisme, localitzant-se inicialment en el ronyó i el fetge, i després 

en l’os, on es produeix l’acumulació més gran.17 Per tant, el plom pot afectar de forma 

generalitzada a tots els òrgans i sistemes del nostre cos. El sistema més afectat és el 

sistema nerviós, tant en nens com adults. Exposicions molt llargues poden resultar en 

una disminució del rendiment en algunes proves que mesuren funcions del sistema 

nerviós 

 

Pel que fa a la ingesta, la ràtio d’absorció gastrointestinal de plom inorgànic és 

influenciada pels estats fisiològics dels humans (p.e. edat, concentració de calci en 

sang, etc) i pels caràcters fisicoquímics de la ingesta (p.e. mida de partícules, 

solubilitat, etc)7. Pot provocar dolor abdominal, abundants vòmits o excrements 

negres, entre altres 17.   

 

Coure:  

El coure és un element essencial pels humans en petites quantitats. Hi ha diverses 

vies d’exposició, pel que fa a la ingesta quasi tots els aliments contenen coure (és 

possible ingerir aproximadament 1 mg/dia) però, sobretot, és realment perillós ingerir 

fungicides que continguin coure. L’altra via d’ingesta és l’aigua, que també pot causar 

problemes ja que es poden trobar altes concentracions de coure a causa de la 

composició de les canonades. S’absorbeix principalment a l’estómac i després es 

distribueix per tot l’organisme. S’emmagatzema, sobretot, en el fetge, el cor, el ronyó i 

els músculs. 8 

 

També hi ha una gran exposició en llocs de treball on es produeix coure, sobretot és 

perillós la inhalació de pols i fums i el contacte amb al pell. A més a prop de moltes 

fàbriques que produeixen coure, s’han trobat concentracions més altes d’aquest 

metall, les formes solubles del qual són les que presenten un major perill per a la salut, 

sobretot les sals utilitzades en l’agricultura. 

 



Introducció 
 

   8 

1.2. Càlculs renals. Influència de la presència dels metalls pesants. 

La generació de càlculs en el tracte urinari es denomina urolitiasi. Un càlcul és una 

estructura sòlida que s’origina com a conseqüència d’alteracions en el balanç 

fisicoquímic i/o urodinàmic de l’aparell urinari (per exemple, estancament de l’orina). 

La principal explicació sobre la formació d’un cristall i el seu creixement és el fenomen 

de sobresaturació de diverses substàncies en l‘orina (promotors de la litiasi). L’excreció 

d’una quantitat excessiva d’aquestes espècies químiques o bé una diüresi insuficient 

poden fer que l’orina es trobi en condicions físiques de saturació. Aquest fet, unit a un 

pH determinat, permet la seva cristal·lització. Cal remarcar que la formació de 

concrecions sòlides està fortament influïda per l’absència d’inhibidors de la 

cristal·lització (p.e. citrat, glicosaminoglicans i diverses proteïnes com la proteïna 

Tamm Horsfall18) , per la presència de substàncies promotores (p.e. ió calci, oxalat, 

àcid úric) i per factors relacionats amb la morfoanatomia renal. En condicions normals, 

tot i que l’orina es troba en un estat metastable (sobresaturat però estable 

temporalment), existeix un equilibri entre totes les substàncies i no es formen càlculs, 

però l’alteració d’aquest estat metastable pot portar a un episodi litiàsic. 19 

 

Per entendre els mecanismes de cristal·lització s’ha d’entendre el procés de 

formació de cristalls, els factors més determinants del qual es llisten a la taula 2. 

L’estat de saturació dels ions a una solució és un paràmetre termodinàmic que es 

defineix com el quocient del seu producte d’activitat iònic en solució i el seu producte 

de solubilitat termodinàmic (Kps). És a dir, un augment de la concentració dels 

promotors en orina superior al Kps anirà lligat a l’associació de petites quantitats de 

cristal·loides per formar un nucli (nucleació). Si les condicions són favorables, el nucli 

creix, podent-se adherir a la superfície interna del ronyó. Un cop arriba a una 

determinada dimensió critica, el increment del seu volum és inevitable, es fa insoluble 

i amb el temps arribarà a una dimensió macroscòpica.20 

Taula 2: Formació de càlculs renals
18

 

Mecanisme Mediadors 

Saturació/sobresaturació Hàbits i dieta/ alteracions genètiques 
Cristal·lització Inhibidors/ promotors 
Retenció cristalls Mida cristalls/ adherència cristalls/ inhibidors 
Formació de pedres Contínua retenció de cristalls 
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Hi ha diferents tipus de pedres d’acord amb la composició química principal del 

càlcul, es pot classificar en 6 grans grups generals: 

 

 Litiasis d’oxalat de calci: constitueixen més del 70% dels càlculs generats 

en països industrialitzats. Es poden trobar en dues formes hidratades diferents 

que es diferencien pel nombre de molècules d’aigua d’hidratació de 

l’estructura: oxalat de calci monohidratat (COM), normalment amb una 

morfologia hexagonal i oxalat de calci dihidratat (COD) que precipita en forma 

de cristalls bipiramidals. El COD és la fase cinèticament més afavorida de 

l‘oxalat de calci, i que en contacte amb la fase líquida es transforma 

gradualment en la forma monohidratada, que és l’estable. El COM es dóna 

normalment en condicions de normocalciuria, (és a dir, excrecions urinàries 

normals de calci) associat amb un dèficit de capacitat inhibidora de la 

cristal·lització. D’altra banda, la formació de COD està afavorida en condicions 

de hipercalciuria (nivells elevats d’excrecions urinàries de calci), excrecions 

normals de citrat i un pH urinari ≥6. 

 

 Càlculs de fosfats: representen el 5-10% del càlculs, i es troben tant 

càlculs de fosfat càlcic format bàsicament de hidroxiapatita (HAP) com càlculs 

de brushita (CaHPO4). Aquests càlculs contenen una gran quantitat de matèria 

orgànica. Aquest tipus de càlculs es forma en espais confinats amb baixa 

eficàcia urodinàmica, es distribueixen petites partícules de matèria orgànica 

que sedimenten sobre la paret de la cavitat o la superfície interna del càlcul en 

desenvolupament. En condicions urinàries favorables (pH > 7 i una baixa 

concentració de magnesi) aquesta capa gradualment calcificada per 

hidroxiapatita (HAP), dóna lloc a un càlcul de HAP.  

 

També es troben càlculs de fosfats no càlcics, com els càlculs d’estruvita, que 

representen aproximadament un 5% dels casos. Aquests són càlculs de HAP 

sobre els que precipiten cristalls de fosfat amònic magnèsic (MgNH4PO4), 

derivat directament d’una activitat bacteriana anormalment alta. Aquest tipus 
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de litiasi està associada a la morbiditat substancial incloent hemorràgia, 

obstrucció i infecció urinària. 

 

 Càlculs d’àcid úric: són pedres uniformes, rodones i ataronjades. La 

combinació d’una diüresi insuficient i pH àcid de l’orina com a principals 

factors, units a una dieta alta en purines, pot afavorir el creixement de càlculs 

d’àcid úric. Aquest tipus de pedres són aproximadament entre el 5-10% dels 

casos. 

 

 Litiasis de cisteïna: aproximadament el 1% dels casos i són a causa d’una 

alteració genètica en el metabolisme d’aquest aminoàcid. 

 

 Litiasis medicamentosa: també són aproximadament el 1% dels casos, 

que són produïts per la insolubilitat urinària d’alguns medicaments com el 

Indinavir usat en el tractament de la sida. 

 

Els càlculs renals es poden formar per trastorns metabòlics, infeccions, influències 

hormonals, condicions de dieta i hàbits i la poca ingesta de líquids. No obstant, s’ha 

vist que l’orina pot contenir diferents components químics que poden prevenir la 

formació de cristalls. La gran dimensionalitat descrita per aquest sistema explica la 

gran variabilitat en la composició d’elements en les pedres reportada a la 

bibliografia21. A més, s’ha vist que en les darreres dècades la prevalença i la incidència 

de pedres de ronyó s’ha incrementat en els països industrialitzats com Estats Units, 

Europa, Japó, etc... Aquest fet s’associa fonamentalment a dos factors ambientals 

importants: d’una banda, la dieta, que en les darreres dècades ha evolucionat fins a 

augmentar la ingesta de promotors de la litiasi; de l’altra, el canvis en l’entorn, com el 

clima i la contaminació22. 

 

Així mateix, s’han trobat com a elements traça en càlculs d’orina metalls pesants, 

encara que la seva funció en el procés litiàsic és discutida. Hi ha estudis que demostren 

que alguns metalls fan la funció de inhibidors de la formació de càlculs d’oxalat de calci 

en concentracions molt baixes, però també s’ha plantejat la hipòtesi que d’altres 
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poden actuar com promotors. A més, poden estar involucrats en la inducció cristal·lina 

depenent de la relació particular entre metalls i soluts.23  

 

Fonamentalment hi ha interès a investigar la relació entre metalls divalents i els 

càlculs de calci (en forma d’oxalats o fosfats), ja que en tenir càrrega iònica com la del 

calci pot afavorir la substitució del calci per aquests ions metàl·lics.  

 

Per tant, aquest treball es centra en l’estudi de la influència dels metalls Zn2+, Pb2+ i 

Cu2+ sobre la litiasi renal càlcica. D’aquesta manera, aquest estudi cobreix 

aproximadament el 80% de casos de litiasi renal.  

 

1.3. Cas real. Relació entre població exposada a Flix, zona de gran controvèrsia 
ambiental, amb població no exposada. 

 
El municipi de Flix forma part de la comarca Ribera d’Ebre, a la província de 

Tarragona. Té 3961 habitants i ocupa una superfície de 166,9 km2. 24 L’origen del seu 

nom prové segurament del meandre agudíssim que envolta el poble. El territori 

comprèn la plana oligocènica de la Depressió Central. 25 

 

El clima de Flix és Mediterrani Continental Sec, amb una precipitació irregular i amb 

una total anual escasa26, concretament, la precipitació mitjana és d'uns 367 l/m2(n= 30 

anys). L’estació més plujosa és la tardor i la que menys l’estiu. El règim tèrmic es 

caracteritza pels estius calorosos i els hiverns moderats, de fet, la temperatura mitjana 

de les màximes de juliol és de 33 ºC , mentre que la mitjana de les mínimes de gener és 

de 2ºC27.  

 

Els usos del sòl es poden observar a la taula 3 i, pel que fa a la vegetació, hi ha un 

predomini de les comunitats vegetals de carrascar o alzinar continental, màquia 

continental, sureda i alzinar típic, els quals corresponen a un paisatge de terra baixa28. 

 

El motor econòmic del municipi és la industria Electroquímica de Flix S.A. (Ercros)  

L’agricultura, en canvi, té molt poca importància. Predomina l’agricultura de secà, 
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concretament el conreu d’oliveres, el qual ha adquirit un cert potencial de 

desenvolupament en les darreres dècades.  

 

Taula 3: Cobertes del sòl del municipi de Flix
29

 

Bosc  

Matollars Prats Altres 

Improductiu  

Conreus Total Dens Clar Natural Artificial 

2972ha 384ha 3243ha 7ha 1ha 177ha 135ha 4711ha 11639ha 

 

L’empresa Ercros va ser fundada el 1898 per l’empresa alemanya Chemiske Fabrik 

Elektron i Elektriztäts, que va ser la primera planta electrolítica de tot l’Estat (i tercera 

d’Europa). Va començar amb 90 treballadors i el 1960 va arribar a tenir 1508 

treballadors30. Principalment posseïa 3 línees de processos productius: va començar 

amb l’obtenció del clor alcalí pel blanqueig del sector tèxtil, tot i que després aquesta 

producció es va refocalitzar incloent altres sectors industrials (per exemple, en la 

fabricació de DDT o dels PCB). També produïen fosfat càlcic pel pinso en l’alimentació 

animal. Durant tot el segle XX aquesta planta ha abocat al riu tot tipus de 

contaminants com ara fluorurs o múltiples metalls pesants, entre els quals s’ha trobat 

zinc. Així doncs, entre la construcció de la presa de Flix (1949) i la construcció de la 

presa de Riba-Roja (1960) s’han acumulat tot tipus d’elements nocius pel medi 

ambient. En 1994 el CSIC va impulsar diverses recerques, en les quals van descobrir 

l’existència de metalls pesants i compostos organoclorats persistents als fangs de 

l’embassament31. 

 

Aquestes investigacions van tenir una gran atenció mediàtica arreu del país i, 

conseqüentment, ja s’han començat diverses neteges dels fangs de l’embassament per 

conservar l’entorn. Efectivament, s’han trobat tot tipus de metalls pesants als fangs 

d’aquesta àrea, alguns dels qual es podrien trobar també en l’orina i afectar al risc de 

la urolitiasis.  

 

1.4. Objectius. 

 

Com hem comentat anteriorment, durant les darreres dècades s’ha vist un augment 

del risc litiàsic en els països industrialitzats i, per tant, cada cop hi ha un interès 
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científic més important per tal de reduir la taxa d’incidència i recidiva d’aquest 

desordre, així com les despeses derivades als serveis de sanitat. Malgrat el gran 

nombre d’actuacions que s’han dut a terme per poder reduir la concentració de 

metalls pesants al medi ambient, encara hi ha llocs on es continuen acumulant molts 

metalls, com per exemple a Flix. Ja que es tracta d’elements bioacumulatius, pot ser 

que en aquests casos la ingesta sigui massa alta i, conseqüentment, influeixin en el risc 

litiàsic. 

 

Per tant, la finalitat d’aquest projecte és conèixer millor els efectes que poden 

produir la presència dels metalls pesants sobre la litiasi renal. Així doncs, els objectius 

d’aquest estudi són els següents: 

 

 Determinar la influència de la presència de metalls pesants en el 

creixement cristal·lí de substàncies litògenes in vitro. 

 Determinar la presència de metalls pesants com Zn, Cu i Pb en orina i la 

seva influència en el risc litogènic. 

 Realitzar un estudi per observar i analitzar la quantitat de metalls 

pesants en la orina dels habitants de l'àrea exposada de Flix (casos), i 

comparar-la amb els habitants de fora de l'àrea de Flix que en representaran 

els controls, per tal de determinar si la diferència en la composició de l’orina és 

significativament diferent a les dues zones esmentades.  
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2. Materials i mètodes. 

2.1. Definició dels criteris de mostreig d’orines reals. 

 

En aquest apartat es descriu tot el procés que s’ha dut a terme per obtenir les mostres 

d’orina per realitzar l’estudi. 

Els participants han de complir els següents requisits :  

 

 Criteris d’inclusió dels Casos: Edat entre 30-65 anys i residència dintre 

l’àrea de Flix  

 Criteris d’inclusió dels Controls: Edat entre 30-65 anys i residència fora 

de l’àrea de Flix  

 Criteris d’exclusió: Incapacitat física per participar en l’estudi.  

 

Els participants, han de signar un consentiment conforme estan d’acord a participar 

en l’estudi de forma voluntària, que responen lliurement al formulari, accedeixen a 

recollir i entregar l’orina acumulada durant el període nocturn (0h-8h 

aproximadament) i han d’estar informats dels mètodes i objectius generals de la 

investigació. 

 

D’altra banda, el GTS (Grup de Tècniques de Separació en Química) mantindrà 

l’anonimat de les persones que han participat en aquesta recerca, i la confidencialitat 

de les dades que se’n derivin. A més, les dades obtingudes només s’utilitzaran amb 

finalitat científica i en cas que els participants ho desitgin, seran informats dels 

objectius concrets i dels resultats de la investigació, una vegada hagi finalitzat.  

 

Per tal de simplificar al màxim la logística relativa a la recollida de mostres, es 

planteja emprar com a punt de recollida d’orines de l’àrea de casos exposats el Centre 

d’Atenció primària (CAP) de Flix. D’altra banda, els controls seran realitzats per 

voluntaris de l’àrea metropolitana de Barcelona. 
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Així doncs, va ser necessari contactar amb el CAP per demanar la seva col·laboració 

a aquest estudi. Aquest procediment requereix del certificat del Comitè Ètic 

d'Investigació Clínica (CEIC) de l'IDIAP Jordi Gol32 (Institut Universitari d'Investigació en 

Atenció Primària).  

 

Per tal de satisfer els requisits demanats per aquest organisme es van redactar el 

protocol de l’estudi, el full d’informació pels pacients i un formulari de primera 

comunicació (tots aquests documents es poden veure a l’Annex 6.1.). L’estudi proposat 

va ser avaluat el 19/12/2012 i aprovat el dia 07/01/2013. Immediatament es va 

informar a la metgessa de família voluntària del CAP de Flix per tal de començar la 

recollida de mostres segons s’especifica al protocol.  

 

Tant pels casos com pels controls, s’agafarà una mostra d’orina nocturna, que és la 

més adequada per aquest tipus de diagnòstic, ja que es troba molt concentrada i 

assegura detectar alguns productes químics i elements formats, que en forma diluïda 

no els podríem detectar33. De fet, el risc litogen augmenta durant la nit, de manera que 

es pot assumir que aquestes són les condicions més extremes a les que l’orina d’un 

pacient es pot veure sotmesa. En aquestes mostres s’analitzaran els metalls Zn, Pb, Cu 

i creatinina per tal de normalitzar els resultats, com s’exposa a continuació. 

 

2.2. Estudis in vitro amb orines artificials i reals sobre la influència dels 

metalls pesants sobre  oxalat de calci i hidroxiapatita. 

 

Orines artificials: 

A continuació es descriu el procés per poder conèixer la influència d’aquest metalls 

pesants sobre el risc urolitiàsic. En primer lloc, es realitzen unes incubacions amb les 

quals es treballa amb orina artificial34 amb propietats de sobresaturació, que es 

prepara abans de la seva utilització, mesclant volums iguals de les solucions A i B 

descrits en la taula 4. La solució resultant imita la composició mitjana de tots els ions 

implicats en l’orina humana. Les dues solucions són preparades per dissolució dels 

corresponents reactius en aigua milli-Q i s’ajusta a un pH 5,5. 
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Taula 4: Composició de les dues solucions usades per formar l’orina artificial 

Solució A (g/l)  Solució B (g/l)  

Na2SO4  4.86  NaH2PO4·2H2O 2.40  
MgSO4·7H2O 1.02  Na2HPO4·2H2O 3.00 
NH4Cl 4.65  NaCl 13.12 
KCl 12.2  Na2C2O4 0.075 
Ca(NO3)2·4H2O 2.24    

 

S’introdueixen 10ml de cada solució A i B a un erlenmeyer de 25mL. A més, 

s’afegeix una “llavor” o punt de nucleació en forma de pols de 0,150g d’oxalat de calci 

(COM) o hidroxiapatita (HAP).  

 

La HAP és un reactiu comercial (Fluka), mentre que el COM s’ha preparat al 

laboratori adaptant la metodologia descrita per J.A. Wesson35. Per fer-ho, s’addiciona 

gota a gota, simultàniament, 100ml de CaCl2 0,2 M amb 100 ml de Na2C2O4
 0,2M en 

300ml d’aigua. Un cop mesclades totes dues solucions es filtra el precipitat i es 

recullen es cristalls d’oxalat de calci format. Aquest sòlid es renta amb aigua i es deixa 

durant la nit a l’estufa per evaporar tota l’aigua.  

 

Finalment també s’afegeix un inhibidor que es troba ja de forma natural dins l’orina, 

aquest és el citrat, que actua dins l’orina disminuint la sobresaturació urinaria d’oxalat 

i fosfat càlcic mitjançant la formació de complexos solubles amb calci36. A més, degut a 

les seves propietats àcid-base, ajuda a regular el pH de l’orina. D’aquest inhibidor, se 

n’afegeixen 176 ppm. El volum afegit de citrat, 150 μL, no modifica de manera 

important la concentració de la resta d’analits. Finalment s’afegeixen diferents 

concentracions dels metalls pesants d’interès, que es troben dintre de les 

concentracions habituals d’aquests en la orina. La taula 5 resumeix els resultats de 

l’estudi consultat37 i en la figura 1 una visió sobre el procediment de les incubacions. 

 
Taula 5: Procés d’elecció de concentració dels metalls analitzats, seguint l’estudi ref 37. 

Element Nombre de               
subjectes 

Rang de concentracions 
(ppb) 

Concentració elegida 
(ppb) 

Zinc 683 266-846 500 
Plom 456 12-27 20 
Coure 507 4,2-50 27 
Crom 879 0,04-1,5 1 
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Per cada metall s’ha fet una incubació per duplicat i també una incubació per 

duplicat amb els 4 metalls junts, per determinar si els metalls poden tenir una 

interacció sinèrgica o si actuen individualment. A més s’han fet 4 blancs: 

  

 Blanc només amb orina i agitant. 

 Blanc dorina amb COM o HAP i agitant. 

 Blanc només amb orina i sense agitar. 

 Blanc dorina amb COM o HAP i sense agitar. 

 

El procediment descrit s’ha fet per tal de poder quantificar la precipitació d’oxalat 

de calci o HAP respecte l’orina sense llavor, atenent al fet que l’orina es troba 

sobresaturada normalment, i això dóna lloc a precipitació. Aquest valor es fa servir 

com a referència de precipitació a la resta de sistemes. 

 

Les incubacions amb agitació s’agiten amb un agitador magnètic durant 24h a 37oC, 

que és aproximadament la temperatura del nostre cos, per tal que l’experiment tingui 

les condicions més properes a la realitat. L’agitació es fa per afavorir la interacció entre 

la “llavor”, els metalls pesants i l’orina. 

 

Figura 1: Procediment de les incubacions. 

Zinc 500 ppb 

Plom 20 ppb 
 Zinc 500ppb 

 

Coure 27 ppb 

150µl 

Citrato  
150 mg 

COM  

 

150µl 

Citrato  
150 mg 

COM  

 

150µl 

Citrato  
150 mg 

COM  

 

150µl 

Citrato  
150 mg 

COM  
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Un cop passades les 24h s’agafen uns 10 ml de cada incubació mitjançant una 

xeringa (BD Discardit 10ml), es filtren (filtres Millipore 0,22µm) per tal d’eliminar els 

possibles cristalls i s’analitza la concentració de metall mitjançant ICP-MS (aquest 

procés s’explica a l’apartat 2.3.) 

 

Estudi amb orines reals: 

Un cop estudiats els efectes dels metalls pesants en orines artificials, s’estudiarà 

l’efecte del zinc sobre l’oxalat de calci i la hidroxiapatita en orines reals. Així, es pot 

aconseguir una aproximació més real de les incubacions anteriors, ja que s’utilitza 

directament orina real. Fent això es podrà observar com influeix la complexa matriu de 

l’orina, que inclou proteïnes, hormones i altres metabòlits, en els processos litiàsics. 

Per exemple, com hem comentat a la introducció, l’orina conté diversos tipus 

d’inhibidors de la cristal·lització, mentre que en les incubacions amb orina artificial 

només s’hi havia afegit citrat com a inhibidor.  

 

Per la realització d’aquests experiments, s’ha escollit treballar només amb el zinc, 

que és el metall que es troba en una concentració més gran en comparació amb els 

altres i, per tant, té una potencial influència més gran a la cristal·lització en orines 

reals. Una altra raó per la qual tan sols treballem amb zinc es que en les incubacions 

artificials va tenir una influència apreciable en la cristal·lització del calci. 

 

Per tant, l’única diferència en aquestes incubacions respecte les anteriors, és que al 

tenir un volum limitat d’orina recollida, es treballa amb només 10ml d’orina per cada 

incubació, s’afegeix 0,075g d’oxalat de calci o hidroxiapatita i 500ppb de zinc, però no 

s’afegeix citrat, ja que l’orina ja conté habitualment una quantitat similar a l’afegida a 

les orines artificials. Igual que els altres experiments, les mostres s’incuben agitant 

durant 24h a 37ºC . Un cop passat aquest temps es filtra la mostra, es fa una dilució 

1:10 i es determina el contingut en metalls (ICP-MS) i en creatinina 

(espectrofotometria). També es va preparar per cada mostres dos blancs: un blanc 

sense cap llavor i un altre blanc amb la llavor però sense cap addició de zinc. 
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Les orines reals amb les quals s’ha treballat han estat els controls de l’estudi de Flix 

que s’especifica a l’apartat (2.1.). 

2.3. Tècniques analítiques 

2.3.1. Anàlisi de metalls: ICP-MS. 

 

S’analitzen les mostres per determinar les composicions químiques i concentracions 

dels analits amb la metodologia analítica més adient. Concretament, per determinar 

els metalls pesants en aquest estudi, es treballa amb un equip d’Espectrometria de 

Masses amb Plasma d’Acoblament Inductiu (Sigles en àngles: Inductively coupled 

plasma - mass spectrometry, ICP-MS). El instrument utilitzat en les anàlisis és un ICP-

MS THERMO SCIENTIFIC XSERIES 2. Mentres que la creatinina s’utilitza un 

espectrofotòmetre UV-Vis (Novaspec II) 

 

La tècnica del ICP-MS consisteix en la nebulització d’una mostra líquida per 

aconseguir la posterior atomització, que permet transformar la composició de la 

mostra en un flux d’ions. Aquest flux és separat segons la relació massa/càrrega 

mitjançant un analitzador de ions (en el nostre cas, un quadrupol). Un cop separats, els 

ions incideixen al detector en què es recompta el nombre d’ions o es mesura la corrent 

iònica produïda quan els ions formats hi incideixen.38 

 

La tècnica bàsica consisteix en introduir una mostra líquida, que és bombejada a 

una velocitat aproximada de 1mL/min per una bomba peristàltica, en un nebulitzador, 

on és convertit en un aerosol amb gas argó (aproximadament 1L/min)39. Aquest 

aerosol passa a la torxa40, que està format per tres tubs concèntrics de quars a través 

dels qual flueixen corrents d’argó a una temperatura d’uns 10.000K. Aquest núvol 

d’argó a alta temperatura és el plasma, en el si del qual la mostra es desolvata, 

volatilitza, dissocia, atomitza i ionitza. Aquest procés es fa en una interfase que separa 

la zona de pressió atmosfèrica (zona del ICP) de la zona d’alt buit (espectròmetre de 

masses). Un cop passat el plasma, els ions travessen l’orifici del con de mostreig fins a 

una zona de menor pressió (aproximadament 2 mbar), per després travessar un segon 

element mostrejador (anomenat con skimmer) i arribar a un sistema de lents. Tots 

aquests passos es fan per enfocar millor el feix d’ions fins l’analitzador i eliminar les 
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molècules neutres presents al feix gràcies al camp electrostàtic que generen. Després 

del sistema de lents de focalització es troba el quadrupol, que te la funció de filtrar els 

ions. En cada instant, l’aplicació d’un voltatge determinat provoca que únicament els 

ions amb una determinada relació massa/càrrega (m/z) puguin mantenir una 

trajectòria estable dintre de l’analitzador que els permet arribar al detector de masses, 

el qual està format per un multiplicador d’electrons de dínodes discrets dissenyats per 

a la detecció d’ions positius 40. Cada dínode es manté a un potencial més alt que 

l’anterior i emet ràfegues d’electrons quan ions o electrons d’elevada energia 

incideixen sobre la seva superfície. El funcionament d’aquest tipus de detector permet 

obtenir respostes en el rang dels nanosegons 38. 

 

Els grans avantatges d’aquesta tècnica són el fet de tenir un límit de detecció molt 

baix (al rang de les ppt), un alt grau de selectivitat i la seva gran precisió i exactitud. El 

interval de massa analitzable és entre 3 i 300, i permet obtenir espectres senzills i fàcils 

d’interpretar. Un dels principals inconvenients de la tècnica és el seu cost, tant 

d’adquisició, com de funcionament i manteniment. Un altre problema important és 

l’existència d’interferències que puguin afectar l’anàlisi de determinats anàlits i alguns 

tipus de mostres. Aquesta interferència espectroscòpica és provocada quan una 

espècie iònica en el plasma té els mateixos valors de m/z que l’anàlit. Sobretot pot 

estar provocada pel solapament d’isòtops amb la mateixa relació m/z però 

corresponents a diferents elements (el cas típic és el 40Ar+ interfereix amb 40Ca+) o a 

ions poliatòmics, que són interaccions entre les espècies del plasma i les espècies de la 

matriu o de l’atmosfera (en aquest estudi el (23Na-40Ar)+  interfereix amb el 63Cu+). Un 

altre inconvenient és quan s’analitzen mostres amb una matriu complexa apareix 

l’efecte matriu en que per la mateixa concentració d’anàlit, l’anàlisi d’una mostra real 

o d’una dissolució estàndard de l’analit pur no proporciona la mateixa resposta 

instrumental.41 

 

D’altra banda, hi ha diferents mètodes per evitar aquests últims dos inconvenients. 

En general, es centren en la manipulació de les mostres: dilució de la mostra per tal de 

reduir l’efecte matriu o addició d’un patró intern. 
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En la taula 6 es descriuen les condicions d’operació instrumental del sistema de ICP-

MS utilitzat, un cop optimitzades, i en taula 7 s’indica quins isòtops s’han utilitzat en 

aquest estudi, la seva abundància en la naturalesa, el límit de detecció calculat a partir 

de les rectes de regressió amb patrons ((veure resultats dels calibratges al punt 6.2 

dels annexos)) d’aquests i les possibles interferències espectroscòpiques. De fet, s’ha 

escollit el 65Cu i el 66Zn que, tot i no ser els isòtops més abundants en la naturalesa 

(que són el 63Cu i 64Zn), permeten minimitzar les interferències espectroscòpiques. 

Durant les primeres proves s’ha vist que altres components en les mostes, com el sodi, 

provoquen interferències amb aquests components i no donaven resultats fiables. En 

canvi, el 208Pb no presenta interferències importants als casos estudiats. 

 
Taula 6: Condicions d’operació instrumental del sistema de ICP-MS. 

Sistema ICP 

Potència del generador 1400 W 
Flux de gas auxiliar 0,80 l/min 
Flux de gas de refrigeració 13,0 l/min 
Flux de gas de nebulització 0,9 l/min 

Sistema d’introducció de mostra 

Velocitat de la bomba peristàltica 30 rpm 
Temps d’estabilització 60 segons 
Temps de rentat 80 segons 

Paràmetres d’adquisició de dades 

Analitzadors Quadropol 
Números d’escombrats 35 
Números de replicats 3 
Temps de lectura 24 segons 

 
Taula 7: Isòtops utilitzat en els análisis. 

Isòtop Abundància Límit de detecció (ppb) Interferències espectroscòpiques 
44

Ca 2,13% 406,27 
17

OH+
27

Al(99.7%), 
40

Ar+
4
He(99,6%), 

12
C+

32
S(94,0%), 

16
O+

28
Si(92.0%) 

65
Cu 30,8% 0,35 

14
N+

51
V(99.4%), 

17
OH+

48
Ti(73.3%), 

1
H+

64
Zn(48.9%), 

40
Ar+

25
Mg(10.1%) 

66
Zn 27,9% 1,46 

14
N+

52
Cr(83.5%), 

1
H+

65
Cu(30.9%), 

40
Ar+

26
Mg(11.2%) 

208
Pb 52,4% 0,15 

16
O+

192
Os(40.9%), 

17
OH+

191
Ir(38.4), 

14
N+

194
Pt(32.7%), 

40
Ar+

168
Er(27.0%), 

12
C+

196
Pt(25.1%), 

1
H+

207
Pb(21,1) 

 

En primer lloc s’han analitzat les solucions incubades. Les mostres in vitro no s’han 

pogut analitzar directament a l’ICP-MS, perquè la concentració de sodi a les 

dissolucions era massa alta, de manera que s’observava un efecte matriu, com bé s’ha 

explicat anteriorment. Per aquesta raó s’han diluït les mostres 1:10 i s’ha afegit un 
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patró intern format per indi (In), gal·li (Ga) i escandi (Sc). A continuació, s’han analitzat 

les mostres amb la tècnica ICP-MS fent un calibrat dels metalls (Zn2+, Pb2+ i Cu2+) entre 

0,1ppb i 10 ppb pel Cu i Pb, i entre 0,1 ppb i 60 ppb pel zinc. Finalment, pel Ca2+ entre 

7,5ppm i 15ppm.  

 

Pel que fa a les incubacions d’orines reals també s’ha realitzat una dissolució 1:10 

però només s’ha analitzat zinc i calci, d’acord amb la descripció experimental exposada 

a l’apartat 2.2. A més, el calibrat de calci s’ha allargat fins a 60 ppm per adaptar-lo a la 

concentració de calci de les mostres, superior als estudis amb orina artificial. 

 

2.3.2. Anàlisi de creatinina: espectrofotometria d’UV-Vis. 

 

La creatinina és un producte de la degradació del fosfat de creatina en el múscul, 

produït pel cos constantment42, i que està acceptat com a marcador de la funció renal. 

Aquest metabòlit es determina per tal d’ajustar la concentració dels metalls a la 

concentració de creatinina en orina, amb l’objectiu d’eliminar la influència de les 

diferències individuals en la dilució d’orina43. La determinació es fa pel mètode més 

reconegut a nivell mundial, la reacció colorimètrica de Jaffé44.  

 

La tècnica colorimètrica es basa en el fenomen d’absorció de radiació de certs 

compostos. Aquest fet té una relació lineal amb la concentració de l’espècie absorbent 

a la solució i la distancia que travessa la llum a través d’aquesta. El màxim d’absorció 

es situa a una energia diferent, pel que convé establir la longitud d’ona adequada a 

cada anàlisi. En el cas que ens ocupa, es treballa en la regió visible.  

 

Aquesta consisteix en la reacció d’àcid pícric en medi bàsic amb dues molècules de 

creatinina que fan canviar el color de la reacció d’un color groguenc a un color 

vermellós, i s’analitzarà amb un espectrofotòmetre. En aquest estudi es va tenir com a 

referència l’adaptació del mètode realitzada per Harry Hudson i Abraham Rapoport45. 

Es va treballar amb una longitud d’ona de 485nm que és aproximadament la màxima 

absorció del complex creatinina-picrat i el blanc de la reacció Jaffé. Es realitza un 

calibrat amb diferents concentracions de creatinina. S’ha treballat entre 0 i 50 ppm ja 
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que a concentracions més altes es perd la linealitat i les mesures són poc fiables (veure 

resultat del calibratge al punt 6.2 dels annexos).  

 

Experimentalment, primer es mesura l’absorbància del dissolvent (el blanc) per tal 

que l’absorbància sigui zero. A continuació es posa la mostra sense reactiu en una 

cubeta i es mesura la seva absorbància46, que servirà per corregir l’absorbància 

mesurada en les mostres un cop han reaccionat amb el reactiu colorimètric. Per fer-ho, 

s’afegeixen 50 µl de la mostra d’orina i s’enrasa amb aigua Milli-Q fins a 1,5 ml, 

després s’afegeix 0,5 ml de NaOH 1M per tal de basificar el medi ja que aquesta 

reacció es produeix en medis molt bàsics. Finalment, s’afegeix 0,5 ml de 0,00066M 

d’àcid pícric i després de 20 minuts exactes es mesura la seva absorbància. Això es fa 

perquè es una reacció lenta i per tant s’ha d’esperar aquest temps perquè la recció 

sigui més completa. Un cop mesurades les absorbàncies, es calculen els grams de 

creatinina per litre d’orina. 

2.4. Expressió dels resultats 

 

Després de mesurar les concentracions de Zn2+, Pb2+, Cu2+, i Ca2+ en les orines, les 

dades s’analitzen i expressen com es descriu a continuació.  

 

Pel que fa al calci, es mesura la quantitat d’aquest que ha precipitat en cadascuna 

de les mostres, calculant el percentatge de la influència del metall, que fa referència a 

la precipitació de calci després de la incubació. Es pot expressar de la següent manera: 

 
 

 
Equació 1: L’equació per calcular el % de l’efecte promotor de la cristal·lització. 

On: 
- [Ca] (blanc)= és la concentració de calci en ppm en el blanc amb la  llavor però 

sense haver afegit el metall 

- [Ca] (mostra)= és la concentració de calci en ppm després de la incubació amb la 
llavor i afegint una concentració de metall 

 
El percentatge d’efecte del metall s’ha descrit d’aquesta forma, ja que podem saber 

de manera simplificada si el calci que hi havia a la solució d’orina ha cristal·litzat o no. 
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Si obtenim un percentatge de promotor del 0% significa que hi ha la mateixa 

concentració de calci en el blanc que a les mostres. En altres paraules, significa que els 

metalls no afecten al procés litiàsic. En canvi, un valor positiu (calci dissolt a la mostra < 

calci dissolt al blanc) significaria que els metalls faciliten la formació de cristalls de sals 

de calci i que, conseqüentment, augmenta el risc litiàsic. En canvi, si té un valor negatiu 

(calci dissolt a la mostra > calci dissolt al blanc), significa que els metalls inhibeixen la 

formació de cristalls de calci, i per tant, hi ha un menor risc litiàsic (menor risc de 

formació de pedra). 

 

D’altra banda, pel que fa als metalls es calcula el percentatge de pèrdua del metall 

de la solució per determinar si els metalls romanen dissolts a l‘orina o s’adhereixen als 

cristalls. S’ha calculat segons indica l’equació 2: 

 
 

 
 
Equació 2: L’equació per calcular el % de pèrdua del metall en les incubacions. 

A on: 
- Me (afegit)= és la concentració del metall en ppb que s’afegeix abans de començar 

l’incubació. 
- Me (mostra) = és la concentració del metall en ppb després de la incubació. 

 
D’aquesta manera, com més alt és el valor del % de pèrdua del metall, menys 

metalls hi ha després de la incubació i, per tant, es conclou que el metall ha precipitat 

amb l’oxalat de calci o la hidroxiapatita. Juntament amb el percentatge d’efecte 

promotor es podrà observar si, en el cas que el metall precipiti, aquest inhibeix o 

facilita el procés litiàsic. 

 

Amb totes les mostres d’orina, tant pels casos com pels controls, es determinarà la 

concentració de Ca, Cu, Zn i Pb en l’orina. Aquesta determinació servirà per determinar 

si hi ha una diferència significativa en la composició de l’orina entre les dues àrees, i si 

això podria influir en el risc litiàsic. 

 

Un cop determinada la concentració de creatinina es poden normalitzar els 

resultats obtinguts de les anàlisis de metalls com s’indica a les següents fórmules. 
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Aquesta normalització fa que no sigui necessari recollir tot el volum d’orina nocturna, 

amb els avantatges que aquest fet comporta, com s’ha comentat anteriorment.  

 

 

 

 

Equació 3: Equacions utilitzats per normalitzar la creatinina. 

 
D’altra banda, les orines reals contenen zinc, però es vol comprovar l’efecte 

inhibidor de la cristal·lització només del zinc afegit. Per determinar aquest efecte cal 

treballar amb les concentracions de calci tal i com mostra l’equació 4. Aquesta 

expressió resta la concentració de calci a la incubació amb zinc afegit, la corresponent 

a la incubació sense zinc afegit, i normalitza aquesta diferència respecte una referència 

(absència de metall). 

 

 
 
Equació 4: L’equació per calcular el % de l’influència del zinc sobre la cristal·lització de calci 

A on:  

- [Ca]amb Zn i amb llavor = vol dir la concentració de calci en ppm trobat després d’incubar 

l’orina afegint la llavor i el 500ppb de zinc. 

-  [Ca]només llavor = vol dir la concentració de calci en ppm trobat després d’incubar 

l’orina afegint la llavor però no el metall 

 

Si obtenim un percentatge d’influència del 0% significa que hi ha la mateixa 

concentració de calci en el blanc que a les orines amb addició de zinc. En altres 

paraules, significa que el zinc no afecta al procés litiàsic. En canvi, un valor negatiu 

significaria que els metalls faciliten la formació de cristalls de sals de calci i que, 

conseqüentment, augmenta el risc litiàsic. En canvi, si té un valor positiu, significa que 
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els metalls inhibeixen la formació de cristalls de calci (es dissol la llavor), i per tant, hi 

ha un menor risc litiàsic. 

 

Pel que fa el zinc es calcula el percentatge de pèrdua per veure si roman dissolt a 

l‘orina o s’adhereix als cristalls. Com les orines ja contenen una concentració inicial de 

zinc s’ha de tenir en compte aquest valor. S’ha calculat segons indica l’equació 5: 

 

 
Equació 5 L’equació per calcular el % de pèrdua del zinc en les incubacions reals. 

On:  
- [Zn](afegit) = la concentració de zinc (ppb)afegit abans d’incubar 
-  [Zn](natural)= la concentració de zinc natural (ppb) present en l’orina 
- [Zn](mostra) = la concentració final de zinc (ppb) després d’incubar  

  

D’aquesta manera, quan la pèrdua del zinc s’aproxima més al 0 %, significa que la 

concentració de zinc no canvia després de la incubació i, per tant, no s’ha precipitat 

amb l’oxalat de calci o la hidroxiapatita. Juntament amb el percentatge de pèrdua del 

metall es podrà observar si, en el cas que el metall precipiti, aquest inhibeix o facilita el 

procés litiàsic. 

 

Finalment també s’ha fet un percentatge per tal d’observar l’efecte de posar un 

punt de nucleació de HAP o COM a l’orina sense afegir zinc: 

 

 
Equació 6: L’equació per calcular el % de l’influència de la presencia d’una llavor sobre la cristal·lització de calci 

A on:  

- [Ca]llavor = vol dir la concentració de calci en ppm trobat després d’incubar l’orina 

afegint la llavor 

- [Ca]blanc = vol dir la concentració de calci en ppm trobat després d’incubar l’orina 

sense llavor. 

 

D’aquesta manera si hi ha un percentatge negatiu, significa que el calci precipita amb 

la presència d’una llavor. Això pot ser interesant per la gent que ja conté càlculs per 

veure que pot passar amb el calci quan ja tens un càlcul 
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Amb les incubacions artificials s’han fet per duplicat mínim i per tant els resultats 

s’expressen com la mitjana amb la seva desviació estàndard expressada als gràfics com 

a barra d’error.  

 
Amb aquests resultats podrem relacionar les dues zones geogràfiques de l’estudi. A 

més, segons els resultats obtinguts a les incubacions, es podrà determinar si les 

persones més exposades a aquests agents tenen més possibilitat de patir pedres de 

ronyó. 
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3. Resultats i discussió 

3.1. Determinació de la influència de metalls sobre l’oxalat de calci i la 
hidroxiapatita. 

Incubacions orines artificials amb oxalat de calci: 

 En la figura 2 (a partir de l’equació 2) es poden observar els percentatges de pèrdua 

dels metalls, tant de la incubació individual com de la incubació amb els tres metalls 

junts en presència de cristalls de COM. 

 

Figura 2: % de pèrdua dels metalls. 

Es pot veure, en general, que les pèrdues són semblants per a cada metall en les 

dues situacions (individuals o conjunts). Tot i així, el zinc tendeix més a formar cristalls 

individualment que no pas quan es troba amb els altres metalls. També s’observa que 

el coure té un percentatge de pèrdua molt baix, fet del que se’n desprèn que no té 

tanta afinitat d’adherir-se a la xarxa cristal·lina de l’oxalat de calci. Pel que fa el plom, 

s’observa que clarament hi ha una alta pèrdua d’aquest element en els dos casos 

 

D’altra banda, la figura 3 mostra el percentatge de la influència dels metalls sobre la 

precipitació de l’oxalat de calci. Les dades mostrades han estat calculades a partir de 

mesures de la concentració de calci a les mostres, tal i com indica l’Equació 1. A 

aquesta figura, podem veure com el zinc i el plom tenen una forta influència en la 

cristal·lització de calci individualment, com demostren els valors positius. És a dir, hi ha 

menys calci després de la incubació, ja que aquest ha quedat cristal·litzat en forma 

d’oxalat de calci. El coure no té una influència detectable en la formació de cristalls.  
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Figura 3: % de l’influència del metall sobre la cristal·lització en COM 

 

En canvi, si observem els resultats amb els metalls junts s’aprecia clarament un 

efecte sinèrgic en la formació de cristalls; en altres paraules, la presència dels tres 

metalls afavoreix la cristal·lització del calci. 

 

Incubacions orines artificials amb hidroxiapatita: 

 

Pel que fa al percentatge de pèrdua dels metalls en hidroxiapatita, s’han obtingut 

resultats molt diferents als d’oxalat càlcic. Resulta especialment interessant el fet que 

per tots els metalls s’ha determinat una pèrdua del 100 %, fet que suggereix que la 

HAP es capaç d’absorbir tots els metalls en solució, dintre dels rangs de concentració 

estudiats. 

 

 

Figura 4: % de l’influència del metall sobrela cristal·lització en HAP 
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D’altra banda, analitzant el percentatge de influencia del metall, figura 4 (equació 

1.), obtenim uns resultats molt interessants. S’observa clarament que el zinc té una 

influència com a metall positiva sobre cristal·lització, és a dir, afavoreix la formació de 

cristalls mentre que el plom no afecta de manera clara a la precipitació. El coure ha 

donat uns resultats diferents ja que té una influència oposada sobre aquest paràmetre. 

Això significa que el coure actua com a inhibidor de la precipitació de HAP. Aquest fet 

sembla molt remarcable; tanmateix, cal dir que els resultats de coure presenten una 

desviació estàndard molt gran i no podríem justificar completament aquest fet. Per 

obtenir una resposta definitiva caldria aprofundir aquesta part de l’estudi.  

 

D’altra banda, quan els tres elements es troben junts, actuen com a promotors de la 

cristal·lització de HAP.  

 

En conclusió, s’ha observat una clara diferència en les incubacions amb oxalat de 

calci i hidroxiapatita. Mentre que el zinc afavoreix la formació de cristalls en els dos 

casos, el plom i coure tenen un efecte diferent en cada cas.  

 

En les incubacions de COM s’ha observat que la presència dels tres metalls afavoreix 

clarament la cristal·lització. D’altra banda, a les incubacions de HAP la influència dels 

tres metalls té un efecte promotor de la precipitació més discret.  

 

Incubacions d’orines reals: 

 

Amb les orines obtingudes dels controls s’han fet 19 incubacions, de les quals s’han 

descartat dues perquè es van obtenir resultats anòmals. Es va calcular el % de pèrdua 

de zinc en hidroxiapatita i oxalat de calci (equació 5) per observar el comportament del 

zinc en presència d’una orina sobresaturada i amb una llavor. També es va observar el 

% de la influència del zinc en les dues situacions, per tal de determinar si aquest zinc 

afegit influeix en la cristal·lització de calci (equació 4). Pel que fa al % de pèrdua del 

zinc s’han obtingut els següents resultats: 
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Figura 5: % de pèrdua de zinc en hidroxiapatita i oxalat de calci. Cada parella de columnes representa una mostra. 

 

Analitzant la figura 5 s’observa una clara semblança dels resultats amb les orines 

artificials: el zinc quasi té un 100% de pèrdua en la hidroxiapatita. Per tant, quan és té 

una càlcul de HAP, aquest és capaç d’absorbir pràcticament tot el zinc en dissolució. 

D’altra banda, els valors pel zinc en oxalat de calci tenen una dispersió molt més 

acusada. Tot i així, la mitja de tots els resultats correspon a un 38% de pèrdua, valor 

similar al de les incubacions artificials.  

 

Es pot concloure, per tant, que el COM no té la mateixa capacitat d’absorbir el zinc 

que la HAP. A més, amb les orines artificials s’ha pogut obtenir un resultat similar al de 

les orines reals.  

 

Cal comparar si aquesta absorció de zinc als dos tipus de càlculs afavoreix la 

cristal·lització de calci, el que implicaria un augment del risc litiàsic. Els resultats es 

mostren a la Figura 6. En aquest cas, també dues mostres van ser descartades, en 

donar resultats anòmals. 
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Figura 6: % de l’influència del zinc a l’oxalat de calci i hidroxiapatita. 

 

En aquesta figura es pot veure, per a cada incubació i cada tipus d’orina, el seu % 

d’inhibició afegint zinc. Observant la figura 6, no s’observa cap relació entre els 

resultats. Hi ha incubacions que donen una influència positiva i, per tant, s’ha dissolt 

una part de llavor afegida. També es troben una influència del zinc negativa, és a dir, 

orines a les que una part del calci ha cristal·litzat sobre la llavor. S’ha intentat buscar 

una relació entre el resultats comparant els percentatges d’inhibició amb la 

concentració de calci, la concentració total de zinc i el seu pH, però en cap d’aquestes 

comparacions s’ha pogut trobar una relació clara. 

 

Per tant, no podem confirmar que el zinc influeix sobre la cristal·lització en les 

mostres reals. Aquests resultats són totalment diferents que les incubacions artificials, 

ja que s’observava que el zinc facilitava la formació de cristalls. La justificació d’aquest 

comportament es pot basar en el fet que l’orina és una matriu molt més complexa i 

conté tota una sèrie d’agents inhibidors com el citrat, els glicosaminoglicans i diverses 

proteïnes, que poden disminuir l’efecte del zinc.  

 

D’altra banda, també s’han analitzat les dades del % de la influència natural amb 

COM i HAP sense haver afegit zinc, això és la cristal·lització natural del calci a les orines 

que s’ha analitzat (equació 6.). Els resultats se expressen en la figura 7. 
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Figura 7: % de l’influència natural amb l’oxalat de calci i hidroxiapatita sense afegir zinc 

 

Aquí s’observa que en la majoria de casos, tant per les incubacions amb HAP com 

per les incubacions amb COM, hi ha percentatge d’influència negativa i, per tant, els 

calci ha precipitat. Això és un resultat esperat ja que l’orina es troba sobresaturada i 

tendeix a produir precipitats si es modifica l’activitat hidrodinàmica natural del cos. Si a 

més es troba en presència de  llavors o nuclis de precipitació la cristal·lització es fa 

encara més important.  

3.2. Explicació dels resultats de l’estudi de Flix  

En el present estudi es volia determinar, mitjançant l’orina, si a la zona de Flix les 

persones contenen concentracions més altes de metalls pesants que a la zona de 

control. En total es van aconseguir 35 controls i des de Flix van arribar 37 casos. Com 

s’ha explicat a la metodologia, s’ha determinat la concentració dels tres metalls 

pesants i del calci a les mostres i la creatinina per normalitzar els resultats.  

Es demostrarà per cada zona i per cada mostra les concentracions de creatinina, 

calci, coure, zinc i plom, i després les dades obtingudes es resumeixen a les taules 7 i 8. 

Les columnes que es troben buits es perquè estan sota el nivell de detecció. 
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Figura 8: Concentració de creatinina en totes les mostres analitzades. En el recuadre es mostren els resultats de 
voluntaris que han patit episodi litiàsic. 

 
Figura 9: Concentració de calci en totes les mostres analitzades. En el recuadre es mostren els resultats de 
voluntaris que han patit episodi litiàsic. 

 
Figura 10: Concentració de coure en totes les mostres analitzades. En el recuadre es mostren els resultats de 
voluntaris que han patit episodi litiàsic. 
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Figura 11: Concentració de zinc en totes les mostres analitzades. En el recuadre es mostren els resultats de 
voluntaris que han patit episodi litiàsic. 
 

 
Figura 12: Concentració de plom en totes les mostres analitzades. En el recuadre es mostren els resultats 
devoluntaris que han patit episodi litiàsic. 
 

 

Com es pot observar hi ha una gran diferència en cada mostra, aquí es posa el resum 
de totes les dades: 
 
Taula 1 :determinació de la concentración de creatinina, calci, coure, zinc i plom dels casos 

Casos (n=37) Creatinina (g/l) Ca(mg/g creat.) Cu (ug/g creat.) Zn (ug/g creat.) Pb (ug/g creat.) 

Mitja 0,919 220 12,9 418 6,897 

Desviació estàndard 0,420 107 6,51 238 6,248 

Interval (0,188-1,837) (67-556) (0-32,6) (90,5-998) (0-28,9) 
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Taula 2: determinació de la concentración de creatinina, calci, coure, zinc i plom als voluntaris de Flix. 

 

S’han pogut quantificar els tres metalls pesants en les dues zones però no hi ha 

diferències significatives entre aquestes. Per tant, encara que s’hagin trobat altes 

concentracions de metalls als fangs de l’embassament, aparentment no influeixen en 

l’entrada d’aquests elements al nostre cos, si més no, pels metalls analitzats: Cu, Zn i 

Pb. Pot ser si es analitza mercuri o cadmi, metalls pesants que s’han trobat també als 

fangs de l’embassament, podríem trobar diferències 

L’entrada d’aquest metalls no serà per inhalació sinó la majoria per la ingesta 

d’aquest compostos, ja que es troben en quasi tots els aliments. Aquests resultats fan 

descartar la hipòtesi inicial de l’estudi, que plantejava una concentració de metalls 

pesants en orina superior a la zona de Flix que a la zona control. La població estudiada 

de Flix té la mateixa exposició de metalls que els controls, excepte el coure que té una 

concentració estadísticament major en els controls que els casos.  

Hi ha diferents explicacions a aquest fet. És possible que realment no hi tenen cap 

exposició, però també podria ser que la majoria de aliments que consumeixen las 

persones de Flix provenen fora de l’àrea de Flix i que siguin els mateixos aliments que 

consumim a l’àrea de Barcelona. 

També podem confirmar que realment la població està exposada a aquests metalls, 

especialment al zinc. Pel que fa a les concentracions de coure i de zinc, els nivells 

detectats no són alarmants, ja que tots dos són micronutrients necessaris. D’altra 

banda, la majoria conté quantitats detectables de plom, encara que són molt baixes.  

Segons els metalls analitzats a les orines dels casos i controls, no podrem confirmar 

que al contenir aquests metalls tenen més risc de patir càlculs renals. Observant 

només els resultats obtinguts a les orines artificials podríem dir que totes les orines 

Controls (n=35) Creatinina (g/l) Ca(mg/g creat.) Cu (ug/g creat.) Zn (ug/g creat.) Pb (ug/g creat.) 

Mitja 0,999 292 19,2 404 5,852 

Desviació estàndard 0,433 403 12,6 246 4,320 

Interval (0,199-1,869) (34,1-2299) (6,37-63,9) (89,6-1037) (0-23,8) 
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analitzades tenen un cert increment del risc litiàsic amb l’oxalat de calci al tenir 

concentracions altes de zinc. S’ha vist que en aquelles situacions el zinc actua com a 

promotor de la cristal·lització. Tot i així, s’ha observat a les incubacions reals que no 

podem confirmar aquest fet, ja que l’orina conté moltes altres molècules que poden 

reduir l’efecte del zinc i també el risc litiàsic. Per tant, tant els casos com els controls, 

tenen la mateixa probabilitat de patir càlculs litiàsics. Aquesta probabilitat està 

fortament influïda per la resta de paràmetres urinaris dependents de cada individu. 

D’altra banda, s’han agrupat les dades dels voluntaris que han patit episodis de 

càlculs renals al llarg de la seva vida, per observar si les concentracions de metalls són 

diferents en cada àrea. En les sis primeres columnes de les figures 8, 9, 10, 11 i 12, es 

troben les concentracions dels elements analitzats dels voluntaris que han patits 

episodis. Els resultats s’expressen a les taules 9 i 10.  

Taula 3: Determinació de la concentració de creatinina, calci, coure, zinc i plom als voluntaris que conten càlculs 
renals l’àrea dels casos 

Casos 
(n=6) 

Creatinina (g/l) Ca (mg/gcreat.) Cu (ug/creat.) Zn (ug/gcreat.) Pb (ug/creat.) 

Mitja 1,024 329,713 10,550 565,164 2,882 

Desviació estàndard 0,314 165,985 9,354 332,332 2,413 

Interval (0,587-1,368) (139,379-555,810) (0-24,300) (191,283-998,414) (0-5,241) 
 

Taula 4: Determinació de la concentració de creatinina, calci, coure, zinc i plom als voluntaris que conten 
càlculs renals l’àrea dels controls 

Controls 
(n=6) 

Creatinina (g/l) Ca (mg/gcreat.) Cu (ug/creat.) Zn (ug/gcreat.) Pb (ug/creat.) 

Mitja 1,159 127,909 12,301 325,135 2,394 

Desviació estàndard 0,280 46,639 4,029 72,745 1,977 

Interval (0,752-1,554) (63,343-200,901) (6,366-17,705) (197,062-391,301) (0-4,633) 

En aquestes taules tampoc veiem diferencies significatives entre les dues zones. A 

primera vista es veu una diferència gradual del zinc en els dos casos però 

estadísticament no són significatius (P=0,14). Hi ha només una diferència significativa 

(P<0,05) amb els voluntaris de Flix que han patit càlculs renals, ja que tenen major 

concentració de calci que els controls. Això no està directament relacionat amb 

l’exposició a metalls pesants. 
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Per concloure, s’ha determinat la concentració dels tres metalls per comparar dues 

zones, l’àrea de Barcelona i l’àrea de Flix. S’ha comprovat que la hipòtesi inicial (l’àrea 

de Flix està més exposada als metalls analitzats) no és certa, ja que s’han trobat 

aproximadament les mateixes concentracions. 
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4. Conclusions: 

En aquest estudi s’han pogut analitzar diferents aspectes de la litiasi renal, i també 

s’ha pogut fer una relació entre dues zones de Catalunya per observar la exposició 

d’aquest metalls sobre la salut humana. 

 

En les incubacions s’han obtingut diferents resultats : 

- S’ha observat la pèrdua de metalls en totes les incubacions realitzades, amb 

lleugeres diferències: 

o Al cas de l’oxalat de calci, els metalls analitzats precipiten tan 

individualment com quan es troben conjuntament en solució, tot i que 

el percentatge de pèrdua del Zn és molt més alt quan es troba 

individualment. 

o Per la hidroxiapatita, s’ha vist que tots els metalls precipiten totalment 

dintre del rang de concentracions estudiat, diferència clara amb l’oxalat 

de calci. Per tant el COM no té la mateixa capacitat d’absorbir els 

metalls que la HAP. 

- L’efecte inhibidor o promotor de la precipitació de sals de calci que tenen els 

metalls és diferent al cas de l’oxalat de calci i de la hidroxiapatita: 

o Els metalls han demostrat tenir un efecte promotor de la precipitació de 

COM. El fet més destacable és que aquest efecte és sinèrgic quan els 

tres metalls en estudi es troben junts en solució. 

o Al cas de la hidroxiapatita, la influència dels tres metalls té un efecte 

dels metalls sobre la precipitació més discret. 

- Les incubacions amb orines reals han donat uns resultats similars a les 

incubacions amb orina artificial pel que fa el percentatge de pèrdua del zinc, ja 

que el zinc queda absorbit aproximadament amb els mateixos percentatges 

tant pel COM que pel HAP: 

o Cal destacar que els resultats obtinguts pel Zn amb orines artificials no 

s’han reproduït de la mateixa manera S’ha vist que pot actuar tant com 

un promotor o un inhibidor de la cristal·lització del calci. Això es causa 

de que l’orina es una matriu molt més complexa que les orines 
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artificials, ja que conté tota una sèrie d’agents inhibidors que poden 

disminuir l’efecte del zinc. 

- De l’estudi de Flix s’ha relacionat una zona contaminada com la de Flix amb 

altre, suposadament, menys contaminant. se n’extreuen les afirmacions 

següents: 

o Les concentracions dels metalls en estudi no difereixen 

significativament dels valors trobats per la població control. 

o Agrupant les dades de voluntaris que han patit algun episodi litiàsic, 

només es detecta que la concentració de calci és superior per aquests 

que per al grup control, un resultat independent de la concentració de 

metalls pesants. 
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6. Annexos: 
 

6.1.  Formularis i protocols: Formulari de primera comunicació, Certificat del 
comité ètic, Protocol per als facultatius i Informació pels pacients 
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Rosa Morros Pedrós, Presidenta del Comitè Étic d’Investigació Clínica del l’IDIAP Jordi Gol i Gurina.

CERTIFICA :

Que aquest Comitè a la reunió del día 19 de desembre de 2012, després d’avaluar per petició de la
Investigadora Principal Montserrat Garcia Vaquer el projecte d’investigació (P12/115) titulat:
Influència de la presència de metalls pesants en el risc lit iàsic.

Considera que respecta els requisits étics de confidencialitat i de bona pràctica clínica vigents.

Barcelona a 7 de gener de 2013.

INFORME DEL COMITÈ ÈTIC D’INVESTIGACIO CLÍNICA



  

 

INFORMACIÓ PER ALS FACULTATIUS: 

1. INTRODUCCIÓ 

El Centre Grup de Tècniques de Separació en Química, GTS, és un "Grup Consolidat de 
Recerca de Qualitat" des de 1993, que forma part de TECNIO - xarxa que potencia la tecnologia 
diferencial, la innovació empresarial i l'excel·lència a Catalunya. El GTS, localitzat a la 
Universitat Autònoma de Barcelona, investiga diferents àrees del medi ambient, biomedicina, 
aplicacions agroalimentàries i instrumentació analítica. 

En les darreres dècades ha augmentat l’interés en la recerca de la influència de factors 
ambientals sobre la salut. D’altra banda, s’ha observat un increment en el nombre de persones 
afectades per la litiasi renal.  En aquesta línia, l’objectiu del present estudi és establir una 
possible relació entre l’exposició a concentracions elevades de metalls tòxics i el 
desenvolupament d’un càlcul renal.  

2. INCIDÈNCIA: 

Les pedres de ronyó són molt comunes en països industrialitzats, als que aproximadament 
un 12% de la població desenvoluparà un càlcul renal al llarg de la seva vida, encara que 
aquestes xifres varien molt en funció de diferents factors, com ara la zona geogràfica, el clima 
o l’alimentació. 

A Espanya, la urolitiasis té una prevalença al voltant del 4% amb una taxa d’incidència del 
0,27%, i es produeixen uns 105.000 nous casos cada any. D’aquests, aproximadament una 
quarta part necessitarà una actuació urològica. L’índex d’incidència més gran es dóna entre els 
30 i 60 anys, amb un clar predomini en els homes. 

A més, s’ha vist una correlació en l’augment de la freqüència de pedres en països 
desenvolupats i amb l’increment de la riquesa i de la despesa d’aliments per càpita. En el 
present estudi, es vol estudiar si hi ha una correlació entre els metalls pesants i la formació de 
pedres de ronyó. Els metalls pesants que s’investiguen són: Zinc (Zn), Plom (Pb), Coure (Cu) i 
Crom (Cr). Tots ells poden introduir-se al cos humà per la ingesta d’aliments que poden 
incorporar-los a través de l’aigua o del sòl. 

3. OBJECTIUS: 

 Realitzar un estudi per observar i analitzar la quantitat de metalls pesants en la 
orina dels habitants de l'àrea exposada de Flix (casos), i comparar-la amb els 
habitants de fora de l'àrea de Flix (controls), per tal d'averiguar si la zona exposada 
conté realment més metalls que la zona de fora de l'àrea. 

 Avaluar si ha un risc associat a la relació amb metalls pesants i la formació de 
pedres de ronyó. 

4. CRITERIS D’INCLUSIÓ DE CASOS I CONTROLS 

Els participants han de complir els següents requisits i han d’omplir el formulari inclòs al 
final d’aquest document. 

Criteris d’inclusió dels Casos: 



  

 

 Edat entre 30-65 anys 

 Residència dintre l’àrea de Flix 

 

Criteris d’inclusió dels Controls: 

 Edat entre 30-65 anys 

 Residència fora de l’àrea de Flix 

Criteris d’exclusió: 

 Incapacitat física per participar en l’estudi. 

5. MOSTRA BIOLÒGICA D’ORINA 

Tant pels casos com pels controls, s’agafarà una mostra d’orina nocturna. En aquesta 
mostra s’analitzaran els metalls Zn, Pb, Cu i Cd i creatinina per tal de normalitzar els 
resultats.  

Presa de mostra: es facilitarà al participant un pot per recollir al voltant de 100 ml. Un cop 
recollida la mostra s’ha de mantenir congelada o, en cas que no sigui possible, refrigerada. 

Material necessari (Proporcionat pel Centre GTS): 

 Pot de recollida d’orina de 100 ml. 

 Etiquetes d’identificació de la mostra. 

 Formulari 

Processament de mostra: 

El Centre GTS analitzarà totes les mostres i, en cas de requeriment del pacient, se li enviarà 
una còpia dels resultats.  

Bellaterra, 26 de novembre del 2012 

 

 

Dra. Montserrat López Mesas          Jeroen De Bont 
Responsable de l’estudi          Tècnic analista 
 
Grup de Tècniques de Separació en Química 
Departament de Química, Unitat de Química Analítica 
Universitat Autònoma de Barcelona 
08193 Bellaterra, Barcelona, Spain 

 

Correu electrònic: Montserrat.lopez.mesas@uab.cat 



  

 

INFORMACIÓ PER ALS PARTICIPANTS: 

En les darreres dècades ha augmentat l’interés en la recerca de la influència de 
factors ambientals sobre la salut. D’altra banda, s’ha observat un increment en el 
nombre de persones afectades per la litiasi renal. En aquest estudi investiguem la 
possible relació entre l’exposició a metalls pesants i el desenvolupament d’un càlcul 
renal.  

El nostre grup de recerca, el Grup de Tècniques de Separació en Química, GTS, 
situat a la Universitat Autònoma de Barcelona, investiga diferents àrees del medi 
ambient, biomedicina, aplicacions agroalimentàries i instrumentació analítica. 

El voluntari participarà en l’estudi proporcionant una mostra d’orina, en la que 
seran analitzats els metalls pesants Zinc (Zn), Plom (Pb), Coure (Cu) i Crom (Cr) així com 
creatinina i que es farà servir per avaluar el seu risc litogen.  Aquesta presa de mostra 
no representa cap risc per a la salut ni cap inconvenient per al pacient.  

El pacient no obtindrà un benefici econòmic per l’estudi però si ajudarà a entendre 
millor els processos ambientals que poden afectar a la salut. El Centre GTS analitzarà 
totes les mostres i, en cas de requeriment del pacient, se li enviarà una còpia dels 
resultats.  

Segons les Llei Orgànica 15/1999, de 13 de desembre, de Protecció de Dades de 
Caràcter Personal, l’estudi plantejat té exclusivament caràcter científic i en cap 
moment interès comercial. A més, l’estudi és totalment confidencial i només tindran 
accés a les dades els investigadors implicats en el mateix. 

Moltes gràcies per participar en el present estudi. 

 

 

Dra. Montserrat López Mesas 

Grup de Tècniques de Separació en Química 
Departament de Química, Unitat de Química Analítica 
Universitat Autònoma de Barcelona 
08193 Bellaterra, Barcelona, Spain 

 

Correu electrònic: Montserrat.lopez.mesas@uab.cat 

Codi Pacient Flix- X 



  

 

FORMULARI DE PARTICIPACIÓ A L’ESTUDI DE CÀLCULS RENALS 

Dades del pacient: 

Edat: 

Vostè es de l’àrea de Flix?     □  Sí         □  No         

En cas negatiu, si us plau indiqui d’on és: 

Ha patit algun episodi de pedres de ronyó?     □  Sí             □  No 

En cas afirmatiu, si us plau, indiqui quants: 

Pren alguna medicació?      □  Sí         □  No        Quina? 
 
Data d’entrega de la mostra: 
 
Està interessat en rebre el resultat de les anàlisis?     □  Sí                     □  No 
En cas afirmatiu, si us plau, indiqui la seva adreça postal o electrònica: 
 
 
 
 
CONSENTIMENT INFORMAT 
 
El pacient declara que: 
 

1. Participa voluntàriament a l’estudi. 
2. Respon lliurement a aquest formulari. 
3. Accedeix a recollir i entregar l’orina acumulada donant el període 

nocturn (0h-8h aproximadament). 
4. Ha estat informat dels mètodes i objectius generals de la investigació. 

L’equip de recerca declara que: 

1. Mantindrà l’anonimat de les persones que han participat en aquesta 
recerca, i la confidencialitat de les dades que se’n derivin. 

2. Les dades obtingudes només s’utilitzaran amb finalitat científica. 
3. En cas que els participants ho desitgin, seran informats dels objectius 

concrets i dels resultats de la investigació, una vegada hagi finalitzat. 

 Data: 

 

     Dra. Montserrat López Mesas 
     Signatura del participant                                   L'equip de recerca 

 
Moltes gràcies per la seva participació! 

Codi Pacient Flix- X 
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6.2. Resultats: rectes de regressió 

 
Figura 1: recta de calibratge de coure. 

 
Figura 2: recta de calibratge de zinc 

 
Figura 3: recta de calibratge de plom 

 
Figura 4: recta de calibratge de calci 
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Figura 5: recta de calibratge de creatinina 
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6.3. Resultats: taules de dades 

 

Incubacions amb orines artificials. 

 

Taula 1: Càlculs de les orines artificials afegint metalls i oxalat de calci.  

Tipus 
d’incubació 

Element 
ppb afegit a 

la mostra 

ppb detectat 
després de 
la incubació 

Ca detectat 
(ppm) 

% de pèrdua 
% influència 

metall 

Individual Zn 490,33 309,36 17,86 36,91 7,986 

  490,33 311,06 17,38 36,56 10,467 

Individual Pb 19,69 4,90 18,73 75,11 3,513 

  19,69 7,54 17,52 61,70 9,751 

Individual Cu 26,77 19,92 19,82 25,59 -2,114 

  26,77 23,19 18,98 13,38 2,183 

 Zn 465,82 362,16 16,42 22,25 15,413 

3 metalls junts Pb 18,76 5,74 16,42 69,41 15,413 

 Cu 25,36 16,52 16,42 34,84 15,413 

 Zn 465,82 414,46 17,70 11,02 8,802 

3 metalls junts Pb 18,76 8,23 17,70 56,14 8,802 

 Cu 25,36 21,61 17,70 14,77 8,802 

 

 

Taula 2: Càlculs de les orines artificials afegint metalls i hidroxiapatita. 

Tipus 
d’incubació 

Element 
ppb afegit a 

la mostra 

ppb detectat 
desprès de 
la incubació 

Ca detectat 
(ppm) 

% de pèrdua 
% influència 

metall 

Individual Zn 490,330 <LOD 16,488 100,000 8,313 

  490,330 <LOD 16,848 100,000 6,312 

Individual Pb 19,686 <LOD 18,726 100,000 -4,132 

  19,686 <LOD 17,515 100,000 2,600 

Individual Cu 26,774 <LOD 20,818 100,000 -15,766 

  26,774 <LOD 17,984 100,000 -0,008 

 Zn 465,816 <LOD 16,417 100,000 8,710 

3 metalls junts Pb 18,764 <LOD 16,417 100,000 8,710 

 Cu 25,356 <LOD 16,417 100,000 8,710 

 Zn 465,816 <LOD 17,700 100,000 1,575 

3 metalls junts Pb 18,764 <LOD 17,700 100,000 1,575 

  Cu 25,356 <LOD 17,700 100,000 1,575 
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Incubacions amb orines reals 

 

 

Taula 3: Càlculs de les orines reals afegint zinc en COM i HAP 

Codi 
Creatinina 

(g/l) 

Blanc sense incubar Blanc incubat HAP Blanc sense Zn HAP amb Zn Oxalat Blanc sense Zn Oxalat amb Zn 

Ca (mg/gCr) Zn (ug/gCr) Ca (mg/gCr) Zn (ug/gCr) Ca (mg/gCr) Zn (ug/gCr) Ca (mg/gCr) Zn (ug/gCr) Ca (mg/gCr) Zn (ug/gCr) Ca (mg/gCr) Zn (ug/gCr) 

A 1,097 777,456 585,303 454,587 500,985 533,527 87,754 526,417 132,63 469,992 476,373 439,820 683,248 

B 0,706 399,542 812,822 320,370 613,688 296,717 138,31 286,520 184,26 310,314 606,182 302,949 911,893 

C 0,549 305,614 981,315 274,470 846,357 144,556 21,145 118,913 26,154 234,947 763,670 228,482 1147,782 

D 1,139 137,209 228,857 44,551 153,449 33,604 0,000 35,764 10,034 32,586 128,167 35,874 319,188 

E 1,312 209,697 152,548 172,360 109,420 158,949 8,351 155,672 21,145 162,073 114,678 189,276 319,574 

F 0,632 104,651 392,519 122,440 355,494 120,103 0,000 131,179 12,039 80,418 310,456 83,853 627,780 

G 1,040 85,641 173,917 78,421 120,175 84,459 9,028 85,738 30,659 51,973 121,232 52,151 346,536 

I 1,152 63,343 297,348 123,403 509,503 116,716 477,37 136,255 64,558 94,050 465,648 92,617 670,639 

J 1,698 125,438 237,508 115,426 194,046 99,997 20,777 94,167 29,198 99,467 187,980 98,230 302,082 

K 0,876 174,413 331,591 153,182 526,893 156,378 28,776 151,699 12,282 128,071 508,744 129,098 257,967 

L 1,554 107,617 353,037 83,738 264,472 82,644 30,959 82,193 54,008 69,063 259,066 68,902 406,009 

M 0,258 2299,39 1037,088 683,395 599,035 551,437 58,859 567,690 30,764 557,629 547,954 570,205 1485,978 

N 0,964 115,919 333,657 103,901 259,327 89,582 24,828 98,363 42,645 82,189 269,808 83,223 502,508 

P 0,425 105,026 284,020 101,617 186,024 44,084 0,000 53,512 30,048 52,854 154,942 48,457 675,019 

Q 0,752 107,491 322,725 106,454 289,494 112,370 11,175 106,889 20,565 76,821 274,765 76,856 583,733 

R 1,026 79,165 89,591 60,429 53,413 28,344 11,039 29,766 31,364 35,203 59,347 34,877 164,513 

S 0,681 118,844 352,849 110,155 234,548 82,062 12,872 79,406 9,746 81,079 236,309 76,074 559,583 
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Cas estudi: Flix 

 

Taula 4: Resultats obtinguts al analitzar la creatinina i els metalls pesants en l’orina dels controls. 

 

*SD= desviació estàndard 

 

 

Códi Creatinina (g/l) Ca(mg/g creat) Cu (ug/g creat) Zn (ug/g creat) Pb (ug/g creat) 

UAB-1 1,026 79,165 19,000 89,591 3,098 

UAB-2 0,876 174,413 25,283 331,591 3,949 

UAB-3 0,752 107,491 17,705 322,725 <LOQ 

UAB-4 0,549 305,614 47,244 981,315 8,232 

UAB-5 1,698 125,438 11,578 237,508 1,973 

UAB-6 0,258 2299,395 63,851 1037,088 23,799 

UAB-7 0,964 115,919 14,298 333,657 4,500 

UAB-8 0,425 105,026 28,284 284,020 5,690 

UAB-10 1,097 777,456 21,722 585,303 4,312 

UAB-11 0,706 399,542 23,737 812,822 10,665 

UAB-12 0,199 597,277 40,858 673,761 <LOQ 

UAB-13 1,139 137,209 14,467 228,857 <LOQ 

UAB-14 1,312 209,697 11,666 152,548 <LOQ 

UAB-15 0,632 104,651 19,404 392,519 6,426 

UAB-16 1,040 85,641 17,392 173,917 7,307 

UAB-17 1,362 200,901 15,794 391,301 3,826 

UAB-18 1,152 63,343 6,366 297,348 <LOQ 

UAB-19 0,978 183,894 14,812 133,908 4,395 

UAB-20 1,591 87,001 14,056 404,078 3,061 

UAB-21 0,991 147,882 11,730 389,338 4,633 

UAB-22 0,681 118,844 13,166 352,849 5,357 

UAB-23 0,811 185,396 13,140 389,899 8,247 

UAB-24 1,226 182,418 11,128 225,412 5,988 

UAB-25 1,554 107,617 11,927 353,037 2,510 

UAB-26 1,869 34,063 9,031 268,565 3,135 

UAB-27 0,861 374,914 15,301 215,631 5,472 

UAB-28 0,644 229,280 17,541 212,360 8,569 

UAB-29 1,826 104,826 9,727 203,847 2,738 

UAB-30 1,145 140,222 10,285 197,062 3,396 

UAB-31 0,502 302,455 21,499 409,650 <LOQ 

UAB-32 0,341 709,315 45,157 897,566 <LOQ 

UAB-33 1,356 271,155 10,806 648,825 5,016 

UAB-34 1,380 671,576 8,299 393,698 <LOQ 

UAB-35 1,033 185,443 17,256 707,394 <LOQ 

Mitja 0,999 291,896 19,221 403,794 5,852 

SD* 0,433 402,774 12,546 246,354 4,320 

Interval (0,199-1,869) (34,063-2299,395) (6.366-63,851) (89,591-1037,088) (1,973-23,799) 



Annexos 
 

 

   58 

Taula 5: Resultats obtinguts al analitzar la creatinina i els metalls pesants en l’orina dels casos de Flix. 

Códi Creatinina (g/l) Ca(mg/g creat) Cu (ug/g creat) Zn (ug/g creat) Pb (ug/g creat) 

Flix-1 0,992 245,320 17,064 685,365 28,866 

Flix-2 0,963 261,511 14,524 562,056 4,651 

Flix-3 1,837 102,955 9,305 358,683 3,653 

Flix-4 1,368 169,570 13,704 998,414 5,241 

Flix-5 1,750 239,264 11,195 376,296 3,074 

Flix-6 0,327 269,006 29,026 532,506 12,204 

Flix-7 1,258 134,630 14,019 303,673 8,456 

Flix-8 0,795 257,701 18,127 339,034 6,801 

Flix-9 0,819 67,698 13,352 294,271 8,074 

Flix-10 0,292 272,861 32,611 696,352 18,307 

Flix-11 0,761 125,817 11,738 285,099 <LOQ 

Flix-12 1,079 217,343 11,483 120,767 3,726 

Flix-13 1,281 139,379 10,769 301,311 2,591 

Flix-14 1,102 168,137 12,821 301,703 2,858 

Flix-15 0,986 86,193 12,237 378,249 4,451 

Flix-16 0,738 398,021 13,163 191,283 4,813 

Flix-20 0,749 67,097 11,692 255,199 4,365 

Flix-22 1,229 260,709 17,465 543,056 5,605 

Flix-23 0,981 266,469 21,925 384,559 3,630 

Flix-24 1,206 453,987 5,206 410,545 <LOQ 

Flix-26 0,477 175,890 12,884 90,501 <LOQ 

Flix-27 1,403 224,396 5,524 439,311 <LOQ 

Flix-29 1,611 216,992 7,014 116,751 2,514 

Flix-30 0,969 152,214 8,854 275,739 <LOQ 

Flix-31 0,414 378,765 8,484 336,223 <LOQ 

Flix-32 0,639 249,800 7,352 724,842 <LOQ 

Flix-33 0,853 198,982 9,668 256,521 3,785 

Flix-34 0,842 255,770 7,722 400,940 <LOQ 

Flix-35 0,587 555,810 24,300 927,372 <LOQ 

Flix-36 0,518 175,751 9,173 254,135 <LOQ 

Flix-37 1,374 187,998 7,671 154,663 <LOQ 

Flix-38 0,454 261,996 8,102 212,635 <LOQ 

Flix-39 0,188 310,449 <LOQ 860,114 <LOQ 

Flix-40 0,824 204,993 6,890 524,248 7,181 

Flix-41 0,205 78,114 22,339 880,427 <LOQ 

Flix-59 1,200 87,053 6,339 268,490 <LOQ 

Mitja 0,919 219,962 12,964 417,815 6,897 

SD* 0,420 107,411 6,509 237,590 6,248 

Interval (0,188-1,837) (67,097-555,810) (5,206-32,611) (90,501-998,414) (2,514-28,866) 

*SD=desviació estàndard 
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Taula 6: Resultats obtinguts al analitzar la creatinina i els metalls pesants en l’orina dels voluntaris 

amb càlculs renals, tant pels casos com controls 

Codi 
(Controls) 

Creatinina 
(g/l) 

Ca(mg/g creat) Cu (ug/g creat) Zn (ug/g creat) Pb (ug/g creat) 

UAB-3 0,752 107,491 17,705 322,725 0,000 

UAB-17 1,362 200,901 15,794 391,301 3,826 

UAB-18 1,152 63,343 6,366 297,348 0,000 

UAB-21 0,991 147,882 11,730 389,338 4,633 

UAB-25 1,554 107,617 11,927 353,037 2,510 

UAB-30 1,145 140,222 10,285 197,062 3,396 

Mitja 1,159 127,909 12,301 325,135 2,394 

SD* 0,280 46,639 4,029 72,745 1,977 

Interval (0,752-1,554) (63,343-200,901) (6,366-17,705) (197,062-391,301) (0-4,633) 

Codi 
(Casos) 

Creatinina 
(g/l) 

Ca(mg/g creat) Cu (ug/g creat) Zn (ug/g creat) Pb (ug/g creat) 

Flix-2 0,963 261,511 14,524 562,056 4,651 

Flix-4 1,368 169,570 13,704 998,414 5,241 

Flix-13 1,281 139,379 10,769 301,311 2,591 

Flix-16 0,738 398,021 0,000 191,283 4,813 

Flix-24 1,206 453,987 0,000 410,545 0,000 

Flix-35 0,587 555,810 24,300 927,372 0,000 

Mitja 1,024 329,713 10,550 565,164 2,882 

SD* 0,314 165,985 9,354 332,332 2,413 

Interval (0,587-1,368) (139,379-555,810) (0-24,300) (191,283-998,414) (0-5,241) 

 

*SD= desviació estàndard 
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