
Control de dispositivos con
Android

Memoria del proyecto
de Ingeniería Técnica en
Informática de Gestión

realizado por
Albert Férriz Pérez

y dirigido por
Marc Tallo Sendra

Escola d’Enginyeria
Sabadell, Septiembre de 2013

FULL DE RESUM – PROJECTE FI DE CARRERA DE L’ESCOLA
D’ENGINYERIA

Títol del projecte: Control de dispositivos con Android

Autor[a]: Albert Férriz Pérz Data: Septembre, 2013

Tutor[a]/s[es]: Marc Tallo Sendra

Titulació: Enginyería Tècnica en Informàtica de Gestió

Paraules clau (mínim 3)

1. Català: Android, Raspberry Pi, Control, Remot, Temperatura, Calefacció

2. Castellà:Android, Raspberry Pi, Control, Remoto, Temperatura, Calefacción

3. Anglès: Android, Raspberry Pi, Control, Remote, Temperature, Heating

Resum del projecte (extensió màxima 100 paraules)

4. Català:

Aquest projecte de final de carrera de la titulació d'Enginyería Informàtica de Gestió consisteix
en el disseny i desenvolupament d'un sistema de control de dispositius connectats a Raspberry
Pi i gestionats des d'un dispositiu Android. Es podran portar a terme diferents accions com
encendre, apagar, programar la calefacció i consultar la temperatura actual remotament des
d'un dispositiu connectat a la red wifi domèstica o des de qüalsevol altre xarxa connectada a
internet.

5. Castellà:

Este proyecto de final de carrera de la titulación de Ingeniería en Informática de Gestión
consiste en el diseño y desarrollo de un sistema de control de dispositivos conectados a
Raspberry Pi y gestionados desde un dispositivo Android. Se podrán llevar a cabo diferentes
acciones como encender, apagar, programar la calefacción y consultar la temperatura actual
remotamente desde un dispostivo conectado a la red wifi doméstica o desde de cualquier red
que esté conectada a internet.

6. Anglès:

This is the final project of Engineering degree in Computer Science and it is about the design
and development of a control system with Raspberry Pi devices connected to and managed
from an Android device. It can perform various actions such as turn on and off, program the
heating and check the current temperature remotely from one device connected to the home
wireless network or from any network that is connected to the Internet

Tabla de contenidos

1. Introducción
1.1 Presentación ….. 1
1.2 Objetivos ….. 1
1.3 Estado del arte ….. 2
1.4 Motivaciones ….. 2
1.5 Estructura de la memoria …... 3

2. Estudio de Viabilidad
Introducción …... 4
2.1 Objetivos ….. 5
2.2 Especificaciones …... 6
2.3 Planificación ….. 7
2.4 Valoración …... 8
2.5 Riesgos ….. 10
2.6 Conclusiones …... 13

3 . fundamentos teóricos
Introducción …... 14
3.1 Raspberry Pi …... 14
3.2 Android .. 18
3.3 Java .. 22
3.3 SQLite ... 22

4 . análisis
Introducción .. 23
4.1 Requerimientos .. 23
4.2 Planificación ... 25
4.3 Recursos .. 27
4.4 Material ... 29

5. implementación
Introducción .. 31
5.1 Inicio .. 31
5.2 Servidor .. 33
5.3 Android ... 37
5.4 SQLite ... 50
5.5 Pi4J .. 51

6 . pruebas
Introducción .. 52
Pruebas realizadas ... 52

7 . conclusiones
Introducción ... 56
7.1 Valoración ... 56
7.2 Objetivos marcados .. 56
7.3 Lineas futuras .. 57

8 . bibliografía ... 58

Anexos

Índice de tablas ... 60
Índice de figuras .. 60
Índice de diagramas ... 61
Glosario .. 62
Diagrama de Gantt ... 65

Albert Férriz Pérez Control de dispositivos con Android

1 introducción

1.1 Presentación

El objetivo de este proyecto es crear un sistema de gestión de dispositivos que podemos tener
en casa, y realizarlo todo ello remotamente desde dispositivos móviles.

La gestión incluye que el usuario pueda “programar” diferentes características de un
dispositivo, como podría ser las horas de encendido de la calefacción y hacer una planificación
diferente para cada día.

Además de la gestión también queremos permitir la recolección de datos (como por ejemplo la
temperatura) añadiendo otros sensores a Raspberry y permitir al usuario el cómo y cuándo
llevar a cabo estas tareas de monitorización.

Estos datos recogidos le proporcionarán al usuario una información valiosa para la toma de
decisiones.

1.2 Objetivos

Cada vez más la sociedad está concienciada con el uso responsable de los recursos
energéticos. Con este proyecto se quiere realizar un sistema que lleve a cabo una gestión y
monitorización de diferentes componentes que podemos encontrar en una casa.

Queremos obtener la eficiencia energética de, por ejemplo, el sistema de calefacción
basándonos en datos que hemos podido recoger.

Raspberry Pi funcionará como el sistema central, el corazón del sistema. Se encargará de
monitorizar los datos de los diferentes sensores o datos que proporcionen de otros
componentes conectados a Raspberry y la gestión de estos, como puede ser un simple
encendido o apagado o algo más complejo como podría ser la automatización.

Volviendo al caso de la calefacción el usuario podrá programar cuando se pondrá en marcha
dando, por ejemplo, horas de encendido para diferentes días, rangos de fechas, etc...

Y toda esta información, gestión, históricos y configuraciones el usuario las podrá realizar
desde un dispositivo móvil Android.

Universitat Autònoma de Barcelona 1

Albert Férriz Pérez Control de dispositivos con Android

1.3 Estado del arte

En los últimos años han aparecido diferentes dispositivos electrónicos que se pueden controlar
mediante teléfonos móviles.

Estos dispositivos son independientes, no forman parte de un sistema: uno controla las luces
de la casa, las activa o desactiva o cambiar el color de la luz u otros dispositivos como
termostatos...

Como hemos comentado todos estos dispositivos al no formar parte de un sistema, cada uno
tienen sus propias aplicaciones para los dispositivos móviles.

Esto puede resultar incómodo para el usuario tener que usar una aplicación para cada cosa,
además de no poder obtener las ventajas que proporcionaría tener un sistema centralizado
donde podemos obtener información de cada uno de los componentes.

1.4 Motivaciones

La aparición de estas micro computadoras ha facilitado la creación de proyectos que antes era
imposible, debido a los altos costes que comporta el uso del hardware. La potencia y
versatilidad de estos dispositivos junto con la potencia que ofrecen los dispositivos móviles hoy
en día, abre un nuevo campo de desarrollo con muchísimas oportunidades de negocio.

La realización de este proyecto permite profundizar en los dos campos y relacionarlos para
crear sistemas de control muy potentes.

Trabajar con estos dispositivos nos ofrece la oportunidad de crear sistemas realmente potentes
y ofrecer soluciones a problemas cotidianos con unos costes considerablemente bajos.

Universitat Autònoma de Barcelona 2

Albert Férriz Pérez Control de dispositivos con Android

1.5 Estructura de la memoria

En el capítulo 1 haremos una introducción al proyecto desde el punto de vista de un cliente,
donde describiremos el estado del arte, objetivos y motivaciones.

En el capítulo 2 extenderemos la introducción hecha en el capítulo 1 y concretaremos las
especificaciones del proyecto, las asignaciones de recursos y el material necesario.

En el capítulo 3 expondremos las tecnologías que hemos usado para llevar a cabo el proyecto.
En los primeros puntos introduciremos Raspberry y Android y también se detallarán sus
características principales. Explicaremos también otras tecnologías utilizadas en el proyecto.

El capítulo 4 nos centraremos en detallar cuales son los requerimientos de la aplicación , la
planificación, el uso de de los recursos y los costes del proyecto.

La implementación del proyecto la trataremos en el capítulo 5, donde mostraremos las clases
creadas para llevar a cabo el proyecto y la interacción entre los diferentes componentes.
También se mostraran cuales son los flujos de ejecución.

Las pruebas llevadas a cabo para comprobar que el proyecto funciona según las
especificaciones y su correcto funcionamiento se describirán en el capítulo 6.

En el capítulo 7 expondremos las conclusiones obtenidas con la realización del proyecto.

Por último añadiremos la bibliografía en el capítulo 8, donde listaremos las referencias a los
documentos consultados.

Para completar la memoria, adjuntaremos en los anexos el índice de tablas, índice de
figuras e índice de diagramas. También se adjuntará el Glosario donde se explicarán
algunos de los términos usados y el diagrama de Gantt donde se mostrará la planificación del
proyecto

Universitat Autònoma de Barcelona 3

Albert Férriz Pérez Control de dispositivos con Android

2 estudio de viabilidad

Introducción

En los últimos años hemos experimentado un enorme crecimiento en el mundo de la telefonía
móvil.
Los teléfonos móviles han pasado de ser utilizados sólo para llamar a convertirse en
auténticos ordenadores. Con cada nuevo dispositivo disponemos de más sensores que nos
permiten llevar aún más allá la experiencia del usuario.

Debido al rápido desarrollo de estos dispositivos, los sistemas operativos que los manejan
(como lo es Android) han pasado a lanzar nuevas actualizaciones con muy poca diferencia de
tiempo mejorando así las funcionalidades en versiones anteriores y además añadiendo nuevas.
Además de mejorar la experiencia de usuario.

Esto ha abierto un infinito campo de posibilidades permitiéndonos crear aplicaciones que hagan
uso de todas estas capacidades para crear software que mejore la vida de las personas.

Paralelamente a este boom de los teléfonos móviles, han aparecido otros dispositivos de
hardware como son Arduino y Raspberry.

Arduino es una plataforma de hardware libre. Es un microcontrolador y un entorno de
desarrollo que debido a su precio y la gran comunidad que la respalda se ha convertido en un
de los proyectos más famosos dentro de la comunidad para llevar a cabo proyectos
electrónicos.

Por otro lado, recientemente ha aparecido Raspberry Pi. Es una placa que podríamos definirla
como una microcomputadora totalmente funcional que utiliza con un sistema operativo basado
en Linux a un precio muy bajo. Esta además, tiene montadas en la misma placa unas pins de
entrada y salida que permite la conexión de hardware u otros circuitos electrónicos, que
podemos controlar desde la placa.

Como podemos ver todas estas tecnologías por si solas han abierto infinitas posibilidades para
el mundo del software y de la electrónica.
Debido al bajo coste de estos ha permitido que muchísima gente haya podido acceder a estos
dispositivos y crear proyectos que de otra manera jamás habríamos podido ver.

En este proyecto vamos a usar dos de estas tecnologías, Android y Raspberry Pi, para llevar a
cabo un sistema que gestionará y monitorizará los diferentes dispositivos que podemos
encontrar en casa.

Universitat Autònoma de Barcelona 4

Albert Férriz Pérez Control de dispositivos con Android

2.1 Objetivos

El objetivo del proyecto es de poder crear un sistema compuesto por diferentes componentes.

Raspberry Pi será el corazón del sistema. Se encargara de responder a las peticiones que se
envían desde los diferentes dispositivos móviles, como puede ser la consulta en tiempo real de
la temperatura. También se encargará de la comunicación recolección de datos de los
diferentes dispositivos y los realizará con la configuración que el usuario le proporcione:
Monitorización de la temperatura cada X segundos, obtener estadísticas y realizar históricos.

La otra parte del proyecto será la creación del programa para Android, donde el usuario llevará
a cabo todas las acciones, como la consulta de la temperatura actual, programación de las
horas de encendido y apagado de la calefacción, estado de las luces de casa, etc...

2.1.1 Estado del arte

El poder gestionar diferentes componentes de casa, ha implicado grandes sistemas de gestión
que se han ocupado completamente de la gestión de todos y cada uno de los componentes de
una casa a precios desorbitados.

La aparición de componentes como Raspberry Pi o Arduino ha permitido el acceso a la creación
de hardware y software para la creación de proyectos, los cuales antes sólo podían ser creados
por compañías que disponían de un gran capital.

Con este proyecto queremos crear dispositivos a bajo coste para gestionar diferentes
dispositivos que tenemos en casa

Nest (http://nest.com/)

Nest es un termostato inteligente. Aprende del uso que se le da favoreciendo así el consumo
de energía y se puede controlar remotamente desde un teléfono inteligente, una tablet o
desde un navegador web.

Wemo (http://www.belkin.com/us/wemo)

Wemo desarrollado por Belkin ha creado unos enchufes con wifi, que permite encender y
apagar los dispositivos que estén conectados a este enchufe. Actúa como un interruptor wifi.

Philips Hue (https://www.meethue.com/es-US)

Philips hue son unas bombillas led conectadas a internet. Podremos controlar estas bombillas
desde un teléfono inteligente permitiéndonos encenderlas, apagarlas o programar estas
acciones, incluso cambiar el tono de luz de estas.

Universitat Autònoma de Barcelona 5

http://nest.com/
https://www.meethue.com/es-US
http://www.belkin.com/us/wemo

Albert Férriz Pérez Control de dispositivos con Android

2.2 Especificaciones

2.2.1 Requisitos funcionales

Para facilitar la lectura y la comprensión, pasaremos a usar la palabra “Servidor” para
referirnos a Raspberry Pi y “Cliente” para referirnos al dispositivo Android.

· Al iniciarse la aplicación se quedará a la escucha de peticiones de los diferentes clientes.

· Podrá recibir solicitudes de clientes que estén en la misma red local o desde internet.

· Cuando el cliente quiere hacer una petición u no conoce la dirección del Servidor, envía un
paquete UDP a la dirección de broadcast con un código de operación.

· El servidor recibe la petición de descubrimiento y responde al cliente con la ip del servidor.

· Las siguientes comunicaciones se harán usando el protocolo TCP.

· El cliente cada vez que solicite una información al servidor, deberá enviar un código de
operación que identificará cual es la acción que se debe llevar a cabo.

· El servidor creará un proceso aparte que llevará a cabo la petición requerida.

· El cliente podrá consultar la temperatura actual.
 El servidor enviará esta información al cliente cuando:

- El cliente no envíe un código de fin de operación.
- Si la temperatura ha cambiado desde la última vez que se envío.

· El cliente podrá encender o apagar el sistema de calefacción:
- Enviará un código de activación o desactivación.

· El cliente podrá programar el encendido:
- Configurando un rango de días
- Configurando un rango de horas
- Cuando la temperatura esté por debajo de un mínimo.
- Combinaciones de las anteriores.

· El cliente podrá activar o desactivar la recolección de temperatura cada x tiempo.

· El servidor recolectará estos datos y los almacenará en la BBDD.

· El cliente podrá configurar cada cuanto tiempo se obtienen datos de la temperatura actual
para guardarla en la base de datos.

· El cliente podrá consultar estos datos por:
- Rangos de fecha

- Rangos de hora

Universitat Autònoma de Barcelona 6

Albert Férriz Pérez Control de dispositivos con Android

2.2.2 Requisitos no funcionales

· La comunicación entre el cliente y el servidor una vez se han descubierto se deberá cifrar.

· Los clientes sólo podrán hacer peticiones desde Internet si previamente se han registrado en
el servidor desde.

· Los datos referentes a la monitorización de las temperaturas se podrán mostrar en diferentes
formatos.

2.3 Planificación

El proyecto lo desarrollaremos usando el modelo en cascada (waterfall). Con este modelo
dividiremos el proyecto en fases y planificaremos todas las actividades antes de empezar.
Ninguna fase empezará antes de que se acabe la anterior.

1.- Documentación
2.- Análisis y definición de requerimientos-
3.- Diseño del sistema y el software.
4.- Programación.
5.- Pruebas.

2.3.1 Documentación

En esta fase investigaremos todo lo relacionado con los diferentes dispositivos con los que
llevaremos a cabo el proyecto, documentarnos sobre como usar las diferentes tecnologías y
usarlas a la vez.

2.3.2 Análisis y definición de requerimientos

Analizaremos que es lo que el sistema debe hacer y como interaccionarán los dispositivos.
Una vez hecho este análisis podremos obtener los requerimientos funcionales y no funcionales
para Raspberry y para el móvil

2.3.3 Diseño del sistema y el software

Con los requisitos y el análisis del paso anterior, pasaremos a diseñar la estructura de de la
aplicación.

2.3.4 Programación

Esta es la parte más importante del proyecto y donde más tiempo vamos a invertir. En los dos
pasos anteriores hemos definido qué ha de hacer y cómo ha de ser la aplicación. En esta etapa
implementaremos el código de la aplicación.
Ya que ésta fase es muy compleja, la dividiremos en subtareas para facilitar la
implementación:

Universitat Autònoma de Barcelona 7

Albert Férriz Pérez Control de dispositivos con Android

· Programación de Raspberry Pi, que será el corazón central del sistema.
· Bases de datos, para guardar los datos que vamos recolectando.
· Programación de la aplicación para Android.
· Interfaz gráfica de la aplicación para Android.

2.3.5 Pruebas

Una vez acabada la programación de la aplicación, debemos asegurarnos que cumple con los
requisitos que especificados. Para ello llevaremos a cabo diferentes pruebas para asegurar el
correcto funcionamiento.

2.4 Valoración

En este apartado mostraremos todos los recursos necesarios para llevar a cabo el proyecto
además de el coste de cada uno.

2.4.1 Materiales

Los componentes físicos que necesitaremos para realizar el proyecto son:

• Raspberry Pi (Modelo B)
• Dispositivo Android
• Sensor temperatura
• PC

◦ Intel Core i7
◦ 4GB de memoria RAM

Los costes de estos recursos son

Raspberry Pi 33 €

Dispositivo Android 324 €

Sensor temperatura 5,43€

PC 750€

Total 1.112,43€

Tabla 1: Costes de material

2.4.2 Software de desarrollo

Especificaremos todos los componentes de desarrollo necesarios para la programación de este.

Eclipse IDE 3.6.2
La programación tanto de la parte cliente como servidor se realizarán en Java. El desarrollo de
la parte Android funciona con éste IDE.·

Universitat Autònoma de Barcelona 8

Albert Férriz Pérez Control de dispositivos con Android

Java Development Kit (JDK) 6
Es el software que nos permitirá crear las aplicaciones en Java.

Android Developer Tools (ADT)
ADT es un paquete de recursos para la creación de aplicaciones para
Android. Incluye el plugin para extender las funcionalidades de Eclipse para el desarrollo
de Android y también contiene Android SDK Tools que son las herramientas de desarrollo de
Android.

SQLite
SQLite es el gestor de Base de datos.

Ubuntu 12.04
Sistema operativo sobre el que usaremos las herramientas de desarrollo.

PHP 5.4
Es el lenguajede programación que usaremos para programar la consulta de información desde
la web.

GIT
Gestor de control de versiones.

BitBucket
Repositorio online gratuito que usaremos para centralizar el control de versiones del proyecto.

Es importante remarcar que el coste de todo este software de desarrollo es a coste 0.

2.4.3 Personal

Para la realización del proyecto necesitaremos un analista, un programador y un equipo de
test. El coste del personal es el siguiente:

Analista 50€/h

Ingeniero 35€/h

Tester 25€/h

Tabla 2: Coste/hora del personal

Universitat Autònoma de Barcelona 9

Albert Férriz Pérez Control de dispositivos con Android

2.4.4 Desarrollo del proyecto

Tarea Quién Duración Coste

Documentación Analista 24h 1200€

Análisis y definición
de requerimientos

Analista 16h 800€

Ingeniero 8h 280€

Diseño del sistema
y el software

Analista 16h 800€

Ingeniero 8h 280€

Programación. Ingeniero 175h 6125€

Pruebas. Tester 40h 1000€

10.485€

Tabla 3: Tareas y asignación

2.4.5 Coste total

Una vez desglosados todos los recursos del proyecto y sus costes relacionados, obtenemos el
coste total:

Concepto Coste total

Materiales 1.112,42

Software desarrollo. 0 €

Desarrollo 10.485€

Total 11.597,42€

Tabla 4: Coste del proyecto por categorías

2.5 Riesgos

Para garantizar el buen funcionamiento del sistema debemos prever posibles fallos o mal
funcionamiento del sistema, de algunos de los componentes o del propio software.

Especificaremos unos requerimientos de de fiabilidad y seguridad donde tendremos los
posibles eventos peligrosos que pueden surgir además de evitar otros daños derivados.

Se definirán los posibles riesgos con una descripción, la probabilidad de que este suceda (alto,
medio o bajo) y la aceptabilidad de este fallo (aceptable, inaceptable).

Universitat Autònoma de Barcelona 10

Albert Férriz Pérez Control de dispositivos con Android

Riesgo: Temperaturas extremas Probabilidad: Baja Impacto: Inaceptable

Descripción
Detección de temperaturas extremas para la zona en la que se encuentra.

Solución
Desactivar cualquier tipo de operación y avisar al usuario de unas temperaturas inusuales.

Riesgo: Acceso usuarios no
permitidos

Probabilidad: Baja Impacto: Inaceptable

Descripción
Registrar peticiones de dispositivos que no se han registrado previamente.

Solución
Bloquear todas las peticiones provenientes del dispositivo no autorizado y avisar al usuario
principal de una posible intrusión.

Riesgo: Conversión errónea de
unidades de temperatura

Probabilidad: Baja Impacto: intolerable

Descripción
Se detectan solicitudes de cambio de temperatura con unos cambios muy grandes. Lo más
probable es que el usuario haga cambios de pocas unidades.

Solución
Detectar solicitudes de cambio de temperatura con cambios muy bruscos. Comprobar si hay
relación entre cambios de temperatura son unitarios en las diferentes unidades (celsius,
fahrenheit).

Riesgo: Fallo inesperado del
sistema

Probabilidad: Baja Impacto: intolerable

Descripción
Se detectan fallos en el sistema de los que no es posible recuperarse ni obtener una solución.

Universitat Autònoma de Barcelona 11

Albert Férriz Pérez Control de dispositivos con Android

Solución
Reportar del error en los logs del sistema y apagar el dispositivo para evitar males mayores.

Riesgo:Comunicación entre
dispositivos

Probabilidad: Baja Impacto: aceptable

Descripción
Se pueden producir errores a la hora de la comunicación entre o la pérdida de datos.

Solución
Usaremos tiempos de espera para la recepción de una petición.
Se reintentará el envío tres veces, cada uno con su tiempo de espera.
En caso de no poder conectar el dispositivo android deberá volver a hacer la petición de
descubrimiento.
En caso de que el error persista el usuario deberá comproba la configuración de la aplicación
para comprobar que los datos son los correctos.

Riesgo: Fallo en el sensor de
temperatura

Probabilidad: Baja Impacto: Inaceptable

Descripción
Durante la monitorización se detectan cambios bruscos y continuados en las mediciones de
temperatura.

Solución
Guardamos el error encontrado en los logs del sistema, informamos al usuario de un posible
mal funcionamiento del sensor y detenemos el sistema. El usuario deberá reemplazar el
sensor.

Riesgo: Monitorización y
guardado de datos

Probabilidad: Baja Impacto: Inaceptable

Descripción
El sistema de comprobación de temperatura que se activa cada X segundos no está
funcionando, o el guardado de en base de datos de la información recogida no se puede
almacenar.

Universitat Autònoma de Barcelona 12

Albert Férriz Pérez Control de dispositivos con Android

Solución
Comprobar si el error en la monitorización es un fallo del sensor. Si es un fallo del sensor
atenderemos al “Riesgo: Fallo en el sensor de temperatura” especificado anteriormente.

Si el error es referente al guardado en base de datos, la aplicación comprobará si es un error
que puede solucionar y lo reintentará. En caso contrario se detendrá la monitorización y
avisará al usuario de que se ha producido un error en el guardado de datos.

2.6 Conclusiones

Hemos expuesto algunos de los productos existentes en el mercado que tienen una
funcionalidad parecida a lo que pretendemos realizar en este proyecto, pero todas ellas están
limitadas a una función específica y no es posible ampliarlos con otras funcionalidades.

Nuestro proyecto permitirá ampliar las funciones para gestionar otros dispositivos bien sea con
nuevos dispositivos de control conectados a Raspberry Pi u ofreciendo nuevas funcionalidades
a las aplicaciones de Android que controlan los diferentes dispositivos de control conectados a
Raspberry.

Los costes que son uno de los factores claves para poder empezar a desarrollar el proyecto son
considerablemente bajos.

Con todos estos puntos a favor concluimos que el proyecto es viable.

Universitat Autònoma de Barcelona 13

Albert Férriz Pérez Control de dispositivos con Android

3 fundamentos teóricos

Introducción

En este capítulo presentaremos las diferentes tecnologías que se usan para desarrollar el
proyecto y además de los diferentes conceptos relacionados.

3.1 Raspberry Pi

3.1.1 Introducción a Raspeberry

Raspberry Pi es un micro ordenador que que se creó con la idea de ofrecer dispositivos baratos
y asequibles para todo el mundo y así poder facilitar el acceso al mundo del desarrollo de
software a todas aquellas personas que estuviesen interesadas en aprender pero que no
podían permitirse comprar un ordenador.

Este proyecto ha tenido una gran acogida en la comunidad educativa de todo el mundo debido
a que uno de sus principales objetivos era ser un dispositivos para el aprendizaje.

Pero Raspberry Pi ha ido más allá del uso académico. Debido a las más que aceptables
prestaciones que ofrece a un precio muy bajo, lo ha convertido en un dispositivo útil para
muchos proyectos profesionales.

Miles de interesantes proyectos se están llevando a cabo gracias a este dispositivo, que
además está fomentando la colaboración y el compartir información de la comunidad de
desarrolladores.

3.1.2 ¿Qué es Raspberry Pi?

Como hemos comentado en el punto anterior, este dispositivo no es más que un placa
electrónica, un micro ordenador que dispone una versión del sistema operativo Linux, llamado
Raspbian.

Esta pequeña placa de unos 8 centímetros por 5 de ancho, dispone de componentes de
entrada y salida similares a un ordenador convencional.

Pero lo que la hace muy interesante es que dispone de unas entradas llamadas GPIO.

GPIO es el acrónimo de General Purpose Input Output, y son unos pins que nos permiten
conectar el dispositivo con el mundo real. Esto nos permite hacer cosas como activar o
desactivar los diferentes dispositivos conectados a Raspberry.

Universitat Autònoma de Barcelona 14

Albert Férriz Pérez Control de dispositivos con Android

Pero no sólo podemos enviar señales de encendido y apagado, parte de esos pins son
diferentes tipos de conectores: existen pins para I2C* (Inter-Integrated Circuit), UART*
(Universal Asynchronous Receiver-Transmitter) y PWM* (Pulse With Modulation).

Con todo este tipo de conexiones que nos ofrece Raspberry, podremos controlar su
comportamiento con el software que nosotros escribamos.

3.1.2 Especificaciones

A continuación detallaremos las especificaciones componentes de que dispone la placa.

Modelo A Modelo B
Ethernet/Internet Broadcom BCM2835 SoC full

HD multimedia applications
processor

Broadcom BCM2835 SoC full
HD multimedia applications

processor

Memoria 256MB SDRAM 512MB SDRAM

Chip Broadcom BCM2835 SoC full
HD multimedia applications

processor

Broadcom BCM2835 SoC full
HD multimedia applications

processor

CPU Dual Core VideoCore IV®
Multimedia Co-Processor

Dual Core VideoCore IV®
Multimedia Co-Processor

GPU

USB 2.0 Un conector USB Dos conectores USB

Salida de Vídeo HDMI (rev 1.3 & 1.4)
Composite RCA
(PAL and NTSC)

HDMI (rev 1.3 & 1.4)
Composite RCA
(PAL and NTSC)

Salida de Audio 3.5mm jack, HDMI 3.5mm jack, HDMI

Almacenamiento SD, MMC, SDIO card slot SD, MMC, SDIO card slot

Sistema Operativo Linux Linux

Dimensiones 8.6cm x 5.4cm x 1.5cm 8.6cm x 5.4cm x 1.7cm

Ethernet No integrada 10/100 Ethernet RJ45
jack

Tabla 5: Especificaciones de Raspberry A/

Universitat Autònoma de Barcelona 15

Albert Férriz Pérez Control de dispositivos con Android

Figura 1: Raspberry modelo B

Aunque Raspberry funciona prácticamente como un ordenador, tiene algunas diferencias.
Como podemos ver en la figura no disponemos de disco duro donde almacenar nuestro S.O y
documentos. Para solucionar esto Raspberry dispone de una entrada para tarjetas de memoria
SD, que hará las funciones de disco duro.

Esto nos ofrece la ventaja de poder disponer de diferentes Sistemas Operativos en diferentes
tarjetas y utilizarlos según nos convenga.

El SoC (System on Chip) Broadcom funciona a una frecuencia de 700Mhz y una GPU (Graphic
Processing Unit) que es capaz de reproducir veo con calidad de BluRay. La GPU tiene un
desempeño similar al de Xbox.

3.1.3 Sistemas Operativos

Disponemos de diferentes sistemas operativos que podemos instalar, todos ellos son sistemas
operativos Linux para procesadores ARM.

Universitat Autònoma de Barcelona 16

Albert Férriz Pérez Control de dispositivos con Android

Raspbian

Es una distribución basada en Debian Wheezy (Debian 7). Es un “port” no oficial para la
arquitectura de procesadores ARM. Dispone de entorno gráfico LXDE (Lightweight X11
Desktop Environment).

LXDE es un entorno de escritorio ligero que tiene un ligero uso de los recursos para ofrecer
estabilidad y usabilidad.

Pidora

Es una distribución basada en Fedora optimizada para Raspberry adaptada para funcionar en
arquitectura ARM

Arch Linux ARM

Esta distribución está basada en Arch Linux adaptada a la arquitectura ARM. Esta distribución
no está recomendada para los principiantes ya que para la instalación y configuración del
sistema se requieren conocimientos altos. La filosofía de esta distribución es la simplicidad y el
control absoluto para el usuario.

3.1.4 Otros

Arduino

Este es un proyecto de hardware libre con la finalidad de crear proyectos electrónicos. Es una
placa electrónica compuesta por un microcontrolador. Los microcontroladores más usados son
Atmega(168 y 328) y CortexM3.
Arduino proporciona un IDE con el que poder programar el microcontrolador.

Este dispositivo ha facilitado la creación de proyectos y ha contribuido a la construcción de un
ecosistema donde cada vez más gente participa creando nuevos proyectos.

Una de las partes más interesantes de Arduino es que sea hardware libre: Tanto su diseño
como su distribución es libre y se pueden crear proyectos sin disponer de una licencia.
Gracias a esta característica podemos encontrar diferentes tipos de placa Arduino que están
basadas en la placa “base” pero con diferentes configuraciones, como procesadores,
velocidades de reloj, número de pins o incluso tamaños muy reducidos.
Como ya hemos comentado Arduino proporciona su propio IDE para programar el
microcontrolador, pero esta no es la única opción ya que podemos usar prácticamente
cualquiera de los lenguajes más conocidos para programarlo (C, C++, C#, Python, Java …)

La combinación de Arduino y Raspberry nos ofrece una potente herramienta para la creación
de proyectos muy interesantes.

Universitat Autònoma de Barcelona 17

Albert Férriz Pérez Control de dispositivos con Android

Cubieboard

Este un proyecto muy parecido a Raspberry con una configuración diferente y más potente,
pero a un coste más alto. Recientemente (Junio 2013) ha aparecido la 2ª versión de este
proyecto el cual es capaz de correr un sistema como Ubuntu 12.04 o Android 4.2 JellyBean.

Sus especificaciones técnicas son las siguientes:

CPU ARM® Cortex™-A7 Dual-Core

GPU ARM® Mali400MP2, Complies with OpenGL ES 2.0/1.1

Memoria 1GB DDR3 @960M

Almacenamiento 4GB internos NAND flash, hasta 64GB en el slot de uSD, hasta 2T en
disco 2.5 SATA

Alimentación Entrada 5VDC a 2A o entrada USB

Conexiones de red 10/100 ethernet, wifi opcional

USB 2 USB 2.0 HOST, 1 USB 2.0 OTG

Otros Una entrada para IR (infrarrojos)

Otras interfaces 96 pins, que incluyen I2C, SPI, RGB/LVDS, VGA, etc...

Tabla 6: Especificaciones Cubieboard

3.1.5 Elección de Raspberry frente a otros productos

La aparición de Raspberry ha dado pie a que se hayan creado otros dispositivos parecidos a
este con diferentes especificaciones técnicas y más potentes. Para la realización de este
proyecto las especificaciones que nos ofrece Raspberry cubren nuestras necesidades y con
unos costes inferiores a los de por ejemplo Cubieboard.

Arduino no nos proporciona las capacidades que necesitamos, cosa que sí hace Raspberry por
tanto más que un sustituto es un complemento para Raspberry y potenciar aún más los
proyectos que se puedan crear.

3.2 Android

En nuestro proyecto Android toma una parte fundamental ya será el punto de acceso que el
usuario tendrá a la aplicación que estará funcionando en la Raspberry Pi. Al usuario se le
presentarán todas las posibles acciones que deberá llevar a cabo desde la pantalla de su
dispositivo.

Universitat Autònoma de Barcelona 18

Albert Férriz Pérez Control de dispositivos con Android

3.2.1 Introducción a Android

Android es plataforma abierta para el desarrollo de aplicaciones para dispositivos móviles.
Quizás la mejor manera de explicar que es Android de forma concisa es la descripción que hizo
Andy Rubin, ingeniero de Google :

“La primera plataforma comprensiva para dispositivos móviles. Incluye un
sistema operativo, interfaz de usuario y aplicaciones – Todo el software
necesario para hacer funcionar un dispositivo móvil pero sin los problemas de
patentes que dificultan la innovación.”

Android forma parte de la Open Handset Alliance que es la unión de más de 80 empresas
tecnológicas incluidas compañías de hardware, compañías de teléfono, desarrolladores de
software como Samsung, Motorola, HTC, T-Mobile, Vodafone, ARM, y Qualcomm.

LA OHA pretende mejorar la experiencia del software para los usuarios proporcionando una
plataforma para la innovación del desarrollo móvil a una mayor velocidad y calidad, sin
problemas sobre licencias tanto por los desarrolladores como los desarrolladores de los
dispositivos.

Cabe destacar que Android está instalado en miles de dispositivos en más de 190 países. Cada
día se activan mas de 1 millón de dispositivos en todo el mundo. Esto nos ofrece un mercado
potencial enorme.

3.2.2 ¿Qué es Android?

Como hemos comentado en el punto anterior, Android es una plataforma de software open
source para diferentes dispositivos móviles. Pero para ser más específicos Android está
compuesto de diferentes partes :

· Un kernel de Linux que proporciona una interfaz de bajo nivel para interactuar con el
hardware, gestión de la memoria y control de procesos, todo optimizado para dispositivos
móviles.

· Librerías open source para el desarrollo de aplicaciones, como puede ser SQLite, WebKit y
OpenGL.

· Dalvik Virtual Machine (DVM) y el núcleo de librerías que proporcionan funcionalidad
especifica para Android

· Un framework de aplicaciones que proporciona los servicios del dispositivo a la capa de
aplicación incluyendo el gestor de ventanas, el gestor de geolocalización, bases de datos,
telefonía y sensores.

· Software de desarrollo (SDK) que se usa para crear aplicaciones, incluyendo las herramientas
necesarias, plug-ins y documentación.
En el siguiente punto desarrollaremos estos componentes.

Universitat Autònoma de Barcelona 19

Albert Férriz Pérez Control de dispositivos con Android

3.2.3 Arquitectura de Android

Figura 2: Arquitectura por capas de Android

Linux Kernel

Los servicios (incluyendo drivers de hardware, gestión de memoria y procesos, seguridad,
redes u gestión de energía) están controlados por un kernel 3.0 de Linux (para versión
JellyBean 4.3). El kernel también proporciona una capa de abstracción entre el hardware y el
resto de la arquitectura.

Universitat Autònoma de Barcelona 20

Albert Férriz Pérez Control de dispositivos con Android

Librerías

Están en la capa por encima del kernel incluye librearías como

· Librería para media para el audio y e vídeo
· Surface manager para proporcionar un gestor para la pantalla
· Librerías gráficas que incluyen SGL, OpenGL para gráficos en 2D y 3D
· SQLite para soporte nativo para base de datos.
· SSL y WebKit para seguridad integrada para navegadores web.

Android Run Time

Android Run Time es lo que marca la diferencia entre un teléfono Android y un teléfono con
una implementación de Linux. Incluye las librerías principales y la máquina virtual Dalvik.
Android Run Time es el motor que hace funcionar las aplicaciones y , aparte de las librerías,
forma el núcleo básico del framework.

Android Run Time – Librerías

Aunque la mayoría de las aplicaciones desarrolladas para Android están escritas en Java,
Dalvik no es una máquina virtual Java.
Las librerías del núcleo de Android proporcionan gran parte de la funcionalidad que está
disponible en las librerías de Java, además de las específicas de Android.

Android Run Time – Dalvik

Dalvik es una máquina virtual que se ha optimizado para asegurar que un dispositivo puede
hacer funcionar múltiples instancias eficientemente. Dalvik descansa sobre kernel de Linux
para la gestión de procesos y de memoria de bajo nivel.

Application Framework

El framework de la aplicación proporciona las clases que se usan para crear aplicaciones
Android. También nos proporciona una abstracción genérica para el acceso a hardware y
gestiona la interfaz de usuario y los recursos de la aplicación.

Application Layer

Todas las aplicaciones, tanto las nativas como las de terceros, están construidas sobre esta
capa a través de la API. La capa de aplicación funciona dentro del Android Run Time y usa las
clases y los servicios disponibles del application framework.

Universitat Autònoma de Barcelona 21

Albert Férriz Pérez Control de dispositivos con Android

3.2.4 Android frente a otros

Uno de los aspectos más importantes a la hora de elegir Android es la facilidad de acceso a los
desarrolladores a diferencia de sus principales competidores:

Android tiene un potente SDK abierto y disponible para todos los sistemas operativos más
importantes sin tener que desembolsar ni un céntimo. Dispone de una excelente
documentación y una comunidad de desarrolladores enorme.

· No se necesitan certificaciones para ser un desarrollador de Android
· No existen procesos de aprobación por parte de Google para distribuir aplicaciones.
· Los desarrolladores tiene control total sobre sus marcas.

Otras compañías como Apple, limitan el acceso a desarrollar para sus dispositivos limitando los
SDK's a sus máquinas y sistemas operativos, someten las aplicaciones subidas a su tienda a
una aprobación totalmente subjetiva. Todo esto implica un gran desembolso, económicamente
hablando, que puede ser difícil de asumir para algunos desarrolladores.

3.3 Java

Java es el lenguaje elegido para la programación de prácticamente el 99% de la aplicación.

Para Raspberry disponemos de la librería Pi4J que nos permite tener acceso total a Raspberry
(configuración de pins, pulsos, lectura escritura, comunicación I2C...) creada por un equipo de
desarrollo que no pertenece a Raspberry, pero muy activa.

El lenguaje de facto para el desarrollo de aplicaciones para Android es Java y dadas esta
situaciones se ha elegido este lenguaje para llevar a cabo todo el proyecto.

3.3 SQLite

SQLite es una base de datos rápida, eficiente y compacta. Es autocontenida, transaccional y no
necesita de servidor ni configuración.

Como en el caso de Java, SQLite es el motor de base de datos de facto de Android, y en
nuestro proyecto lo usaremos en el lado del servidor (Raspberry) para guardar el histórico de
temperaturas.

En Android el uso de esta base de datos esta justificado debido a las limitaciones de espacio
que suelen tener los dispositivos que usan este sistema operativo.

Universitat Autònoma de Barcelona 22

Albert Férriz Pérez Control de dispositivos con Android

4 análisis
Introducción

En este capítulo llevaremos a cabo un análisis de diferentes aspectos como requerimientos
funcionales, materiales y el personal requerido para realizar el proyecto.

4.1 Requerimientos

Detallaremos cuales son los requerimientos funcionales y no funcionales del proyecto.

4.1.1 Funcionales

El servidor debe permanecer a la escucha

Una vez que el servidor se ha iniciado este debe permanecer a la escucha de los diferentes
dispositivos que quieran interactuar con él.
Para esto el servidor creará dos sockets que permanecerán a la escucha.
Uno de estos sockets se encargará de responder al cliente para decirle que está activo.
El otro proceso será el que llevará a cabo la comunicación real entre servidor y cliente.

Disponible tanto en red local como en Internet

El tipo de red en la que está conectado el servidor ha de ser transparente al cliente. El
cliente y el servidor se conectarán de manera diferente dependiendo de la red en la que este el
cliente.

Detectaremos si el cliente está en una red local y en este caso enviaremos una solicitud a
todos los dispositivos conectados a esa red y únicamente el servidor reconocerá esa solicitud
con unos datos concretos y responderá al cliente con la ip y el puerto al que debe conectarse
para hacer las peticiones que requiera.

En el caso de que el cliente no esté conectado a una red local, podrá conectarse remotamente
accediendo a un IP concreta.

Notificar de cambio de IP

Cuando el cliente no está conectado a una red wifi necesita una IP a la que poder acceder. Las
IP's que asignan los ISP's suelen se dinámicas. El servidor comprobará si se ha producido
algún cambio de IP y en caso de que sea así notificará al cliente con la nueva IP a la que debe
hacer las peticiones.

Universitat Autònoma de Barcelona 23

Albert Férriz Pérez Control de dispositivos con Android

Creación de procesos en diferentes Threads

Para poder atender a las diferentes peticiones de uno o más clientes, todas las solicitudes que
se lleven a cabo por un cliente deben realizarse en Threads diferentes del principal.

Las peticiones que requieran tares que se han de repetir durante un intervalo de tiempo
también han de ejecutarse en procesos diferentes para no bloquear el proceso principal.

Acceso de múltiples clientes al servidor

Podrán conectarse varios clientes simultáneamente al servidore.
El acceso de clientes estará restringido a los dispositivo que estén identificados.
Se limitará el número de clientes que pueden estar conectados.

Identificación de dispositivos

Al establecer la conexión cada dispositivos deberá identificarse. De esta manera se evitarán
posibles accesos no autorizados y se podrá monitorizar quién ha realizado un acción.

Consulta de temperatura actual

El cliente solicitará al servidor que le devuelva la temperatura que está obteniendo del sensor
de temperatura. Estos datos se enviarán cada vez que se detecte un cambio en la
temperatura.

El envío de los datos se llevará a cabo hasta que el usuario envíe la petición de detener el
envío.

Encendido del sistema de calefacción

El cliente podrá encender o apagar la calefacción.

Programación de encendido

El cliente podrá programar el encendido de la calefacción con diferentes opciones.
Podrá configurar el encendido por horas, días y meses. También se podrá usar una
combinación de estas como por ejemplo encender la calefacción de lunes a viernes a las 8h de
la mañana hasta las 10h y de las 18h a las 23h.

Registrar temperatura

El cliente podrá programar el registro de la temperatura cada x tiempo. Estos datos se
guardarán en Base de Datos con el fin de obtener estadísticas sobre las temperaturas.

Estadísticas de temperatura

Podrá solicitar al servidor datos estadísticos sobre las temperaturas registradas.

Universitat Autònoma de Barcelona 24

Albert Férriz Pérez Control de dispositivos con Android

4.1.2 No funcionales

Comunicación cifrada
Al establecer la conexión entre servidor y cliente esta deberá estar cifrada, especialmente si se
realiza desde fuera de una red local.

Restricción de acceso remoto
Antes de poder acceder remotamente al servidor, el dispositivo cliente se deberá registrar
como cliente en servidor.

Formato de las estadísticas
Los datos obtenidos de las estadísticas se podrán mostrar en varios formatos. Ya sea
simplemente mostrando los valores de resultados concretos o mostrando esos datos en forma
de diferentes tipos de gráficas.

4.2 Planificación

El desarrollo del proyecto se llevará a cabo por fases. Se dividirá el proyecto en diferentes
tareas y subtareas. El modelo de desarrollo que se usará será el modelo en cascada
(Waterfall) donde no se puede iniciar una tarea hasta que la anterior no haya finalizado. Esto
nos permite construir el proyecto de una manera más coherente con las tareas relacionadas.

Así construimos de forma ascendente las partes del proyecto, desde los elementos que serán
comunes y que proporcionan funcionalidades a las “capas” superiores.

Se facilita el debug de la aplicación y se proporciona una construcción más sólida para las
demás partes del proyecto.

4.2.1 Tareas

4.2.1.1 Servidor

Servicio de escucha de peticiones

El servidor ha estar a la escucha de las diferentes peticiones que lleguen del cliente.
Se crearán las clases que manejan las peticiones. Estas clases manejarán la creación de los
sockets, puertos, etc.. que se necesitarán para conectar con el cliente.

· Se creará la parte que gestionará la recepción de paquetes de descubrimiento del servicio.

· Manejo de las conexiones con los diferentes clientes que se conecten al servidor.

· La comprobación de los cambios de IP del servidor para posteriores notificaciones a los
clientes del cambio.

Universitat Autònoma de Barcelona 25

Albert Férriz Pérez Control de dispositivos con Android

Gestión de las peticiones

Creación de las clase/s necesaria/s que gestionan la petición que hace el cliente.
El cliente enviará una petición con los datos que quiere obtener y esta petición estará
compuesta por un estructura concreta, que identificará la clase y el método que se debe
ejecutar.
Se ocupará de la creación de las clases correspondientes y la llamada al método requerido
para completar la petición del usuario.

Controlador y Modelo

Se usará la implementación del patrón MVC de una forma particular ya que en este proyecto la
parte de la vista la representa el socket.

El controlador realizará las funciones de gestión entre el Modelo y la Vista.
El modelo será el encargado de ejecutar toda la lógica de negocio.
Se creará el controlador y el modelo de Temperatura y todas la acciones que se podrán
ejecutar.

Gestión del termostato y la calefacción

Crearemos los objetos que se encargarán de abstraer el funcionamiento de la calefacción y el
termostato. Ejecutará las peticiones que reciba del modelo.
Se encargará de interactuar con los GPIO de Raspberry pi obtener los datos del sensor de
temperatura y el encendido y apagado de la calefacción. Gestionará los estados de los
diferentes componentes y almacenará la información de las diferentes interacciones.

4.2.1.2 Android

Descubrimiento del servidor

Se creará las objetos necesarios para tratar el descubrimiento del servidor y la conexión con
este.

Conexión con el servidor

Se creará una clase que abstraiga la conexión con el servidor y se ocupará del envío y la
recepción de los datos provenientes de este.
Otra clase se encargará de encapsular y gestionar las peticiones al servidor.

Estructura gráfica

Se crearán las pantallas necesarias para facilitar al usuario la interacción con el servidor y la
obtención de estos datos y mostrarlos en pantalla en caso de que sea necesario.
Se añadirán los elementos gráficos necesarios para permitir la interacción con el usuario y el
envío de datos al servidor.

Universitat Autònoma de Barcelona 26

Albert Férriz Pérez Control de dispositivos con Android

Peticiones al servidor

Se implementará el código para que los componentes gráficos hagan las peticiones al servidor
cuando el usuario interaccione con la aplicación. Se gestionará la recepción de datos devueltos
y se implementará el código necesario para mostrar esta información en los componentes
gráficos adecuados.
Notificaciones

Se creará la gestión de las notificaciones que enviará el servidor a través de Google para
informarnos de cambios en la IP proporcionada por el ISP. LA gestión de la nueva IP a la que
conectar será transparente al usuario que sólo será informado de que ha habido u cambio de
IP.

Diseño de la aplicación

Partiendo de los componentes visuales básicos creados para el funcionamiento básico de la
aplicación, se creará un diseño con la finalidad de que sea funcional para el usuario, fácil de
entender y de usar.
Además del diseño se buscará usar la mejor forma para la navegación entre las diferentes
pantallas que componen la aplicación.

4.3 Recursos

Tal y como describimos en el apartado 2.5.3,el personal que creemos sería el adecuado estaría
compuesto por un Analista, un Ingeniero y un Tester.
Debido a la naturaleza del proyecto todos estos roles están gestionados por una sola persona.

Detallaremos cuales serían las funciones de los diferentes recursos y que aportarían.

Analista

El analista es la persona encargada de estudiar el dominio del software y prepara los
requerimientos y la especificación. En este proyecto se encargará de diseñar la estructura de la
aplicación que correrá en el servidor y de la aplicación de Android.

Deberá tener conocimientos sobre el funcionamiento de Raspberry Pi y sus características para
adaptar el software a los recursos de que de dispone el dispositivo.

También tendrá conocimientos de como funciona Android y sus características como versiones
disponibles, porcentaje de usos de cada versión para poder llegar a más dispositivos y los
problemas inherentes a crear apliaciones que funcionen en la mayoría de dispositivos.

Las horas que se asignan a las tareas quedan repartidas de la siguiente manera

Tareas Documentación Análisis
requerimientos

Diseño software Total

Horas 24 16 16 56

Tabla 7: Asignación horas/tarea de Analista

Universitat Autònoma de Barcelona 27

Albert Férriz Pérez Control de dispositivos con Android

Y el coste será

Coste hora (€) Horas Total

50 56 2800 €

Tabla 8: Coste de las horas asignadas al Analista

Ingeniero de software

El ingeniero de software se encarga de aplicar los principios de la ingeniería al diseño,
desarrollo, mantenimiento, pruebas de funcionamiento y evaluación del software y los sistemas
que funcionan en los ordenadores.

En este proyecto el Ingeniero de software trabajará junto al Analista en el diseño de la
aplicación. También se encargará de la programación de la aplicación aplicando los
conocimientos concretos del lenguaje que se usará y aplicando los principios de Ingeniería del
Software. También especificará los tests que que deberá usar el Tester.

Las horas que se asignan a las tareas quedan repartidas de la siguiente manera

Tareas Análisis
requerimientos

Diseño software Programación Total

Horas 8 8 175 191

Tabla 9: Asignación horas/tarea del Ingeniero de Software

Y el coste será

Coste hora (€) Horas Total

35 191 6685 €

Tabla 10: Coste de las horas asignadas al Ingeniero de Software

Tester

Una vez se haya completado la aplicación llega el momento de comprobar que el producto
cumple con todas las especificaciones y requisitos y que funciona correctamente. Para esta
tarea asignaremos un Tester que comprobará el cumplimiento de lo especificado haciendo
funcionar la batería de tests. Todos los posibles errores serán reportados al Ingeniero de
software que los corregirá y volverán a ser sometidos a las pruebas.

Universitat Autònoma de Barcelona 28

Albert Férriz Pérez Control de dispositivos con Android

Las horas que se asignan a las tareas quedan repartidas de la siguiente manera

Tareas Pruebas Total

Horas 40 40

Tabla 11: Asignación horas/tarea del Tester

Y el coste será

Coste hora (€) Horas Total

25 40 1000 €

Tabla 12: Coste de las horas asignadas al Tester

4.4 Material

Detallaremos todo el material (tanto físico, como de software) necesario para el desarrollo del
proyecto.

Raspberry Pi, Modelo B Coste: 33€

Sensor Temperatura Coste: 5,43€

Teléfono móvill Android Coste: 199€

PC Unidades:2 Coste: 750€/u

Intel core i7
4GB Memoria
Disco duro de 1 TB

Monitor Unidades: 4 Coste: 200€/u

Monitores de 23”

Eclipse IDE 3.6.2 Coste: 0€

Eclipse es el IDE con el que programaremos todo el proyecto, aprovechando la integración
que ofrece el SDK de Android.

Java Coste: 0€

Lenguaje con el que desarrollaremos el proyecto.

Universitat Autònoma de Barcelona 29

Albert Férriz Pérez Control de dispositivos con Android

SQLite Coste: 0€

Base de Datos

Android Developer Tools Coste: 0€

Plugin para Eclipse para el desarrollo de aplicaciones Android

Ubuntu 12.04 Coste: 0€

Sistema Operativo que instalaremos en los Pc's

PHP 5.4 Coste: 0€

Lenguaje de programación

GIT Coste: 0€

Software de control de versiones

BitBucket Coste: 0€

Servicio de alojamiento web para sistemas de control de versión

Coste total del material 2537,43

Universitat Autònoma de Barcelona 30

Albert Férriz Pérez Control de dispositivos con Android

5 implementación

Introducción

En este capítulo describiremos de forma técnica como está diseñado el proyecto y la
interacción entre los diferentes componentes del sistema.

Dividiremos el el capítulo en tres puntos principales: empezaremos explicando de forma muy
general cómo es el proceso de descubrimiento del servidor por parte del cliente y
seguidamente continuaremos con la descripción de la parte del servidor (Raspberry) y la parte
cliente (Android).

5.1 Inicio

Cuando conectamos el servidor para que empiece a funcionar, este se queda a la escucha de
las peticiones del cliente. Pero surge el problema de que el cliente desconoce que ip tiene el
servidor y por tanto no puede comunicarse con él.

Por tanto necesitamos un paso previo, antes de empezar a enviar peticiones al servidor, y es el
de saber quién es el servidor.

5.1.1 En una red local

Si nos encontramos en una red local el proceso de descubrimiento se desarrolla de la siguiente
manera:

1.- El servidor está funcionando y está a la escucha de de solicitudes.

2.- El cliente inicia la aplicación y ve que no tiene ninguna conexión con el servidor, ni tiene un
dirección de una conexión anterior. Por tanto envía un paquete UDP a la dirección broadcast de
la red en la que está con un contenido especial. Se queda a la escucha del servidor.

3.- Todos los ordenadores de la red reciben este paquete, pero sólo el servidor reconoce ese
contenido como un paquete para descubrir el servidor de control.

4.- El servidor envía un paquete al cliente, que contiene la ip y el puerto por el que está
escuchando para peticiones.

5.- El cliente ahora dispone de la dirección del servidor y establece la comunicación.

Ahora el cliente puede hacer todas las solicitudes al servidor que considere.

Universitat Autònoma de Barcelona 31

Albert Férriz Pérez Control de dispositivos con Android

Figura 3: Proceso de conexión en una red local

5.1.2 En Internet

En el caso de que estemos fuera del alcance de una red local, la forma de conectar con el
servidor es diferente y además nos encontramos de que la mayoría de las conexiones a
Internet que nos proporcionan los ISP's son con IP's dinámicas y esto nos impide poder hacer
una conexión directa con nuestro servidor.
Para solventar esto usaremos los servicios de notificación que nos proporciona Google, Google
Cloud Messaging (GCM).

Gcm es un servicio que nos permite enviar información desde nuestro servidor a un dispositivo
Android concreto.

El proceso es el siguiente:

1.- Al iniciar el servidor, se crea un proceso que se ocupa únicamente de comprobar cada X
minutos si la IP que nos ha asignado el servidor ha cambiado.

2.- Si se detecta que la IP ha cambiado, se envía una notificación a los servidores de GCM con
la nueva IP del servidor.

3.- El dispositivo recibe una notificación en su dispositivo informándole que la IP de su servidor
ha cambiado. Automáticamente la aplicación Android se encargará de usar esa dirección para
cualquier petición.

Universitat Autònoma de Barcelona 32

Albert Férriz Pérez Control de dispositivos con Android

Figura 4: Proceso de comunicación por GCM

Una vez establecida el cliente ha descubierto la al servidor, ya se pueden realizar las peticiones
que estén disponibles para el usuario.

5.2 Servidor

5.2.1 Diagrama de clases básico del servidor

Diagrama 1: UML de clases básico del servidor

Este diagrama es una visión global de las principales clases que forman el proyecto. En los
siguientes puntos entraremos en detalle y mostraremos las otras clases que forman parte del
programa.

Universitat Autònoma de Barcelona 33

Albert Férriz Pérez Control de dispositivos con Android

5.2.2 Funcionamiento del Servidor

El servidor corre la aplicación principal de todo el sistema. Es el encargado de el control de los
diferentes dispositivos que se conecten a él, que en el caso de este proyecto será el sensor de
temperatura y el encendido y apagado del sistema de calefacción.

Diagrama 2: UML completo de clases del servidor

La clase Main es el punto de entrada a la aplicación. Al iniciarse el servidor, crea tres hilos:
MulticastServer y TCPServer se crea los sockets que estarán a la espera de recibir
solicitudes y CheckIp que comprobará los cambios de ip.

Cuando la aplicación se inicia esta desconoce que IP le ha asignado el router por eso uno de
los los primeros hilos que crea al iniciar la aplicación es el de la clase MulticastServer.

MulticastServer

MutlicastServer se queda a la escucha de recibir un paquete enviado por broadcast, con unos
datos concretos. Esta acción se llama “descubrimiento” y la envía el cliente desde el dispositivo
Android para encontrar el servidor al que asociarse.

Entonces se le devuelve al cliente la dirección IP y el puerto del proceso que llevará a cabo
todas las peticiones solicitadas por el cliente. Este proceso está implementado en la clase
TCPServer.

Universitat Autònoma de Barcelona 34

Albert Férriz Pérez Control de dispositivos con Android

TCPServer

TCPServer es el punto de entrada para la gestión de las peticiones del usuario y únicamente
creará instancias de la clase MainController por cada dispositivo nuevo que se conecte.

Diagrama 3: UML de clases TcpServer y MainCotroller

La lógica de la aplicación empieza en la clase MainController. Esta implementación sigue el
patrón de diseño MVC (Modelo Vista Controlador) de una manera “sui generis” para el
funcionamiento de esta proyecto.

MainController se encargará de interpretar la petición que llega desde el cliente.
Las peticiones están especificadas con el formato siguiente:

“Nombre del Controlador:Nombre del método[:[parametros]]”.

Entonces MainController creará un objeto de la clase y llamará al método especificados y en
caso de que sea necesario pasará los parámetros.

MainController quedará a la espera de que el cliente envíe una petición o directamente cierre
la conexión.

Universitat Autònoma de Barcelona 35

Albert Férriz Pérez Control de dispositivos con Android

Diagrama 4: UML Controlador y Modelo y Termostato

ControladorTemperatura implementa el controlador en el patrón MVC. Se encarga de
gestionar las peticiones del cliente haciendo las peticiones al Modelo que es el que hace la
lógica de negocio del proyecto. Una vez el modelo le ha devuelto al controlador el resultado, lo
pasa a la vista, que en este caso la vista lo implementa el socket que envía los datos al
cliente. En este caso el ControladorTermperatura se encarga de la gestión de peticiones
relacionadas con el sensor de temperatura y el estado de la calefacción.

La clase Termostato representa al estado del sensor de temperatura y el estado de la
calefacción. Implemente el patrón Singleton ya que no debe existir ningún otro objeto que
represente el estado actual de estos componentes. Se encarga de implementar las librerías
Java que gestionan el control de los componentes de Raspberry Pi. Almacena la última
temperatura registrada.

La clase Cliente representa al dispositivo móvil que se conecta con el servidor. Almacena el
socket que conecta con el dispositivo. Se encarga de recibir y de enviar los datos y controla el
estado de la conexión.

Diagrama 5: UML de la clase SQLiteConexion

SqliteConexion es la clase encargada de realizar la conexión con la base de datos sqlite.
Busca el fichero que será la base de datos y la abre. En caso de que no exista la base de
datos la creará.

Universitat Autònoma de Barcelona 36

Albert Férriz Pérez Control de dispositivos con Android

Diagrama 6: UML de la clase ScheduledRequest

ScheduledRequest es una de las clases más importantes de la implementación del servidor.

Algunas de las peticiones que se hacen al servidor, como puede ser el obtener la temperatura
actual o el registrar la temperatura, necesitan que se ejecuten cada X tiempo. Estas tareas se
llevan a cabo usando ScheduledExecutorService que donde se ejecutan Threads con el
código necesario para llevar a cabo las peticiones.

Todos estos procesos los guardamos en un array de objetos ScheduledRequest donde se
asocia el proceso que se ejecutará con el nombre del método y la clase que la ha creado. De
esta manera cuando el usuario solicite la detención de estos servicios sólo deberemos buscar
el objeto ScheduledRequest que haya realizado la llamada y cancelar la ejecución de ese
proceso.

5.3 Android

En este apartado describiremos el diagrama de clases y componentes de la aplicación y
además contaremos con el apartado gráfico que es uno de los aspectos fundamentales de la
aplicación.

Todas las acciones que el usuario puede hacer conllevan la interacción con la interfaz gráfica
del usuario y estas peticiones actualizan esa interfaz gráfica para mostrar los datos devueltos
por el sevidor.

Empezaremos a describiendo el funcionamiento del framework que Android nos ofrece y la
parte más directa con el usuario que son las Activities.

5.3.1 Activities

Las activities son la capa de presentación de las aplicaciones. Las interfaces gráficas de las
aplicaciones se construyen extendiendo de la clase Activity. Las Activities usan Fragments y
Vistas para mostrar la información y la disposición en que ésta se mostrará y para responder a
las acciones del usuario.

Uno de los aspectos más importantes de las aplicaciones es el ciclo de vida de las Activities.

Universitat Autònoma de Barcelona 37

Albert Férriz Pérez Control de dispositivos con Android

Las aplicaciones de Android no controlan sus proppios ciclos de vida sino que se ocupa de eso
el RunTime, y lo hace por cada aplicaciones que está funcionando y por extensión de cada
Activity dentro de cada proceso.
Aunque el Run Time se ocupa del manejo de las Activities y de cuando debe termina su
proceso, el estado de una Activity ayuda a determinar cual es la prioridad de una Aplicación.
Las Activities se crean y se destruyen o son sacadas de la pila de Activities de la aplicaicón.
Mientras se realizan esas transiciones, podemos encontrar las Activities en cuatro estados
diferentes:

Activa

Cuando una activity esta arriba de la pila de activities significa que está en primer plano, que
es visible y que el usuario está interaccionado con ella. Android intentará mantener
funcionando la Activity a cualquier precio matando otras Activities que esten por debajo si es
necesario para asegurarse que la Activity principal tiene todos los recursos que necesite. Esta
activity pasará estar pausada cuando otra Activity sea la activa.

Pausada

En algunos casos la Activity podrá estar visible, pero no tendrá el foco. En esta situación la
Activity estará pausada. Se llega a este estado si una Activity transparente o que no sea a
pantalla completa pasa a estar activa delante de otra, como puede ser el caso cuando se
muestra un Dialog con un mensaje informativo o esperando algúna confirmación por parte del
usuario.

Cuando una Activity está pausada se le trata como si estuviese activa aunque no tenga
interacción con el usuario.

En algún caso extremo se puede matar una Activity que está pausada en caso de que se
necesiten recursos para la que sí está activa.

Cuando una Activity pasa a ser totatalmente invisble se para.

Parada

La activity permanece en memoria y guarda toda la información referente a los estados. En
este caso, si el sistema necesita memoria esta activity es una candidadta a ser eliminada para
obtener esos recursos.

Cuando una activity está en este estado es importante guardar todos los datos y el estado de
la interfaz de usuario y detener cualquier operación que no sea crítica. Una vez que se ha
salido de la activity o se ha cerrado, pasa a estar inactiva.

Inactiva

Antes de matar una activity y antes de que se muestre, su estado es inactivo.
Las activities que están en este estado, se han eliminado de la pila y se tienen que
volver a iniciar antes de que se puedan mostrar al usuario.

Universitat Autònoma de Barcelona 38

Albert Férriz Pérez Control de dispositivos con Android

Figura 5: Ciclo de vida de las activities

Entre las transiciones de los estados comentados anteriormente, el sistema llama a un
conjunto de métodos que se llaman para asegurar que la activity reacciona a los diferentes
cambios de estado.

Figura 6: Ciclo de vida de las activities y callbacks

Universitat Autònoma de Barcelona 39

Albert Férriz Pérez Control de dispositivos con Android

5.3.2 Diagramas de clase básico

Diagrama 7: UML de clases básico Android

Como podemos ver en el diagrama, tenemos unas clases que extienden de la clase Fragment.
Un fragment es forma parte del framework de Android y representa el comportamiento de
una parte independiente de una activity. Los fragments nos proporcionan flexibilidad a la
hora de componer las interfaces gráficas y también aporta al poder reusarlo en otras partes de
la aplicación. En una activity pueden convivir diferentes fragments y cada uno de ellos tiene
su propia ciclo de vida aunque ésta depende principalmente del ciclo de vida de la activity.
Cuando la la activity se pausa los fragments también, si se destruye los fragments
también.
Un fragment siempre ha de estar dentro (pertenecer) a una activity y en nuestro proyecto
cada fragment pasará a formar parte de MainActivity según el usuario lo requiera.

Cada fragment tendrá asociado un layout con los widgets necesarios para que el usuario puede
interactuar con la aplicación y poder mostrar la información en pantalla.

Universitat Autònoma de Barcelona 40

Albert Férriz Pérez Control de dispositivos con Android

Antes de empezar a describir que tarea lleva a cabo cada fragment, debemos detenerlos antes
en explicar una de las clases que usaremos para proceder a hacer todas las peticiones al
servidor, la clase AsyncTask.

Android se preocupa mucho por que la experiencia de usuario sea fluida. A veces las
aplicaciones se pueden colgar, quedarse “congeladas” durante unos instantes o tarda mucho el
llevar a cabo un proceso. Estas situaciones se conocen como ANR (Application Not
Responding) y se lanzan después de que la IU este bloqueada durante 5 segundos.

Cuando Android detecta una de estas situaciones y la aplicaión deja de responder, se le
muestra al usuario un Dialog preguntándole si quiere esperar a que la aplicación vuelva a
funcionar o quiere cerrarla.

Las aplicaciones que hacen uso de peticiones de internet (como es nuestro caso) son
susceptibles de encontrarse en la situación de ANR.

Para evitar esto Android nos propone sacar fuera del proceso principal de la interfaz de usuario
todas estas operaciones que pueden bloquear la aplicación, y ejecutarlos en Threads
diferentes.

El problema que aparece si usamos Threads aparte es que perdemos el contexto de la
aplicación y en el caso de que tengamos que actualizar o mostrar información por pantalla al
usuario, la aplicación se complicará.

Pero Android nos proporciona la clase AsyncTask que nos soluciona estos dos problemas.
AsyncTask nos permite ejecutar estas aplicaciones que pueden ser bloqueantes en background,
sin bloquear el hilo principal de la aplicación que es el de la UI. Además nos permite actualizar
la UI en caso de que lo necesitemos.

En el método doInBackground es donde se lleva a cabo el código que puede bloquear la UI y
llamando al método publishProgress desde dentro de doInbackground se ejecuta el
método onProgressUpdate y desde ahí podemos actualizar la IU.

En nuestra aplicación cada fragment que hace peticiones al servidor, implementa estas
acciones extendiendo de una clase AsyncTask creadas como clases privadas.

Diagrama 8: UML de EstadisticasFragment

Se encarga de hacer las peticiones sobre los datos de temperaturas recogidos por el servidor y
los muestra en pantalla. El método onCreateView carga el layout asociado.

Universitat Autònoma de Barcelona 41

Albert Férriz Pérez Control de dispositivos con Android

Diagrama 9: UML de TemperaturaActualFragment

Solicita al servidor cual es la temperatura actual que está ogbteniendo el sensor de
temperatura. El socket permanece a la escucha para recibir todos los cambios que se detectan
y lo muestra por pantalla. El método onCreateView carga el layout asociado.

Diagrama 10: UML de EstadoTermostatoFragment

Hace las peticiones al servidor para encender o apagar la calefacción. Comprueba antes cual es
el estado en que se encuentra. El método onCreateView carga el layout asocidado.

Universitat Autònoma de Barcelona 42

Albert Férriz Pérez Control de dispositivos con Android

5.3.3 Interfaz de usuario

En Android las interfaces gráficas se crean un ficheros independientes del código. Estos
ficheros son los Layouts y definen la estructura visual de la interfaz de usuario. Los layouts y
los componentes que forman parte de la UI están escritos en XML.

En cada activity o fragment se cargan estos ficheros que definen la UI y de esta manera
queda asociado la activity o fragment a el layout concreto. Una vez están asociados podremos
acceder a los componentes del layout desde el código y podremos realizar las modificaciones
que consideremos.

Disponemos de diferentes maneras de acceder a las actividades o fragments, ya sea de en
forma de Tabs o de la forma más general que es accediendo desde los botones que nos lleven
a las diferentes pantallas.

En nuestro proyecto hemos implementado una de las últimas formas de navegación y más
eficientes entre pantallas llamada Swipe Views y lo combinaremos con Tabs.

Las vistas Swipe proporcionan una navegación lateral entre pantallas, así el usuario sólo ha de
desplazar la pantalla hacia uno de los laterales para acceder a otra pantalla.

Figura 7: Navegación entre las diferentes activities

Universitat Autònoma de Barcelona 43

Albert Férriz Pérez Control de dispositivos con Android

Pantalla Principal

Esta es la primera pantalla que aparecerá al
abrir la aplicación de Android.

La primera activity que se carga es el
MainActivity que será el contenedor de
todos los fragments que forman parte de la
aplicación.

El primer fragment que se carga es
MainFragment.

Este únicamente se encargará de mostrar el
layout. No habrá ningún tipo de interacción
con el los componentes.

 Figura 8: Activity principal

Universitat Autònoma de Barcelona 44

Albert Férriz Pérez Control de dispositivos con Android

Temperatura actual

En esta pantalla se le mostrará al usuario
la temperatura que esta registrando el
sensor de temperatura.

El fragment que carga esta vista es
TemperaturaActualFragment.

Cuando navegamos entre pantallas y
llegamos a esta, cuando la vista pasa a ser
visible el fragment se encarga de llamar al
AsyncTask que hará la petición al servidor.

El socket se quedará leyendo lo que recibe
del servidor hasta que el usuario navega
hacia otra pantalla. Entonce el fragment
volverá a llamar a otro AsyncTask para
decirle al servidor que cancele el envío de
los cambios de temperatura.

Este proceso se repetirá cada vez que esta
pantalla esté activa.

Se activa el Tab Actual para mostrar en la
pantalla que estamos.

 Figura 9: Activity Actual

Universitat Autònoma de Barcelona 45

Albert Férriz Pérez Control de dispositivos con Android

Termostato

La pantalla de Termostato nos da las
opciones de enceder o apagar la
calefacción y de registrar la temperatura
cada x tiempo.

Para el encendido de la calefacción
deberemos proporcionar los grados a los
que queremos que se matenga encendida.

Cuando navega hasta esta pantalla se
pregunta al servidor cual es el estado del
termostato.

El encendido y apagado tiene su propio
asynctask que hará las peticiones al
servidor cuando el switch de encender y
apagar cambie de estado.

En el registro de temperatura el usuario
podrá especificar cada cuando quiere
registrar la temperatura actual.
Introducirá el número y seleccionará en el
spinner si son minutos o segundos.

Si ya hemos iniciado un proceso de
registro en servidor, el botón de “Iniciar
monitorización” pasará a mostrar el texto
“Detener monitorización”.

El registro de temperatura también tiene
su propio asynctask para hacer las
peticiones al servidor, que se ejecutará
cada vez que el usuario presione el botón.

 El fragment que se carga es
Figura 10: Activity Termostato EstadoTermostatoFragment.

Universitat Autònoma de Barcelona 46

Albert Férriz Pérez Control de dispositivos con Android

Estadísticas

Como su nombre bien indica, en esta
pantalla se muestran los datos que se han
recogido al activar el registro de
temperaturas de la pantalla anterior. Nos
devuelve 3 resultados con las
temperaturas media, máxima y mínima de
todos los datos de que se dispone en el
servidor, además del momento en que se
registro esa temperatura.

El asyncTask hace la petición al servidor y
se queda esperando hasta la recepción de
los datos.

La actualizaciones son constantes si hemos
activado el registro y por tanto cada vez
que se entre en esta pantalla se solicitarán
los datos nuevamente.

El fragment que se carga es
EstadisticasFragment.

 Figura 11: Activity Estadísticas

Universitat Autònoma de Barcelona 47

Albert Férriz Pérez Control de dispositivos con Android

Programación

En la pantalla de programación es donde
el usuario puede programar el encendido
de la calefacción.

La elección es múltiple ya que puede
seleccionar una combinación de días y
meses, sólo días o sólo meses.

También especificará de que hora a que
hora estará encendidas proporcionando
un rango de horas.

El asyncTask enviará la selección que
haya hecho el usuario y la guardará y
ejecutará el encendido según lo
especificado.

Para desactivar cualquier programación
previa, se desactivarán todas las opciones
y el botón de “Programar” pasará a ser
“Desactivar”.

Se puede sobrescribir una programación
anterior simplemente creando una nueva.

 Figura 12: Activity Programación

Universitat Autònoma de Barcelona 48

Albert Férriz Pérez Control de dispositivos con Android

5.3.4 Notificaciones

Como comentamos en el punto 5.1, cuando estamos fuera del alcance de una red local
necesitamos saber cual es la Ip que nos ha asignado el ISP para poder conectar con nuestro
servidor, pero esta IP cambia dinámicamente y necesitamos saber cuando nuestra IP ha
cambiado y cual es la nueva dirección.

Para informarnos de este cambio el servidor nos envía notificaciones al al teléfono móvil con la
nueva ip.

Figura 13: Notificación cambio de IP

Para gestionar la recepción de las notificaciones y el manejo de estas y del contenido que nos
proporcionan usaremos las clases GCMBroadcastReceiver, GCMIntentService y
GCMRegister.

Diagrama 11: UML de GcmRegister

Antes de poder recibir notificaciones, necesitamos que nuestro dispositivo se registre en los
servidores de GCM. Cuando un dispositivo se registra obtiene un ID que identificará al
dispositivo al que enviar las notificaciones. De estos pasos se encarga la clase GCMRegister.

Diagrama 12: UML de GcmBroadcastReceiver

Universitat Autònoma de Barcelona 49

Albert Férriz Pérez Control de dispositivos con Android

GCMBroadcastReceiver lleva a cabo la recepción de los mensajes de GCM. Como podemos
ver hereda de la clase WakefulBroadcastReceiver que es un tipo especial de receptores de
broadcast que se asegura de la CPU está activa aunque la pantalla no esté activa para que el
proceso de pasar los mensajes a la clase que se encargará de tratar la información contenida
en la notificación no se queda sin concluir.

Diagrama 13: UML de GcmIntentService

GCMIntentService es la clase que se encarga de gestionar el mensaje recibido. Obtiene los
datos de la nueva IP para usarlos par la aplicación y muestra la notificación que verá el usuario
en la prte superior de su teléfono donde podrá ver el icono de la aplicación y un pequeño texto
informándole que se ha obtenido la nueva ip del servidor.

5.4 SQLite

Cuando el usuario decide registrar las temperaturas durante unos intervalos de tiempo, esta
información se guarda en una base de datos llamada SQLite. Esta base de datos nos ofrece
toas lo que necesitamos para almacenar la información relacionada con la temperatura y las
fechas.

Esta base de datos no precisa de configuración, tiene un tamaño realmente pequeño y es igual
de eficaz y confiable que otras bases de datos de más renombre.

Diagrama 14: UML de Base de Datos

Únicamente usaremos una tabla para almacenar estos datos. Podremos realizar desde código

Universitat Autònoma de Barcelona 50

Albert Férriz Pérez Control de dispositivos con Android

varios tipos de de estadísticas y filtrar por rangos de fecha y hora.
5.5 Pi4J

Esta es la librería para Java que usará el servidor para realizar todas las comunicaciones con
los pins GPIO de Raspberry.

Pi4J es un proyecto creado por una comunidad de usuarios que proporcionan un puente entre
las librerías nativas y el lenguaje Java para proporcionan un acceso completo a las pins de
raspberry.

Aunque es proyecto aún se encuentra en fase de desarrollo es muy estable.

Algunas de las funciones disponibles para la versión 0.0.5 son:

· Export de pins GPIO
· Configurar de los pins GPIO para entrada/salida
· Configurar el limite de detección de cambio para los pins GPIO
· Enviar pulsos
· Leer los estados de los pins GPIO
· Permanece a la escucha de cambios de estado (basado en interrupciones)

Universitat Autònoma de Barcelona 51

Albert Férriz Pérez Control de dispositivos con Android

6 pruebas

Introducción

Para asegurarnos de que el software que hemos programado cumple con los requisitos
especificados y que funciona correctamente, someteremos el software a las pruebas requeridas
para hacer estas comprobaciones.

Pruebas realizadas

Recepción/Envío descubrimiento

Creación del Thread

En caso de que en Main de la aplicación del servidor encuentre un error al crear la clase
TCPServer que extiende de Thread. Este debe lanzar una expcepción NullPointerException.

Iniciaremos la aplicación varias veces para comprobar que la creación se crea correctamente.

Forzaremos que falle la creación de la clase para comprobar que capturamos la excepción.

Tipo de prueba Resultado

Creación del Thread CORRECTO

Forzamos el error y comprobamos excepción CORRECTO

Creación del socket

Comprobamos que se crea el socket correctamente y permite el envío y recepción de datos. En
caso de que surja algún problema al abrir el socket lanzará una expcepción IOException.
Comprobaremos si controla la excepción lanzada, informa al usuario mostrándole el mensaje
por consola y para la ejecución del programa.

Si el número de puerto al que se pone a escuchar el socket está fuera del rango de puertos
permitidos (0 a 65535) se lanzará una excepción del tipo IllegalArgumentException.
Comprobaremos que captura la excepción, informa al usuario mostrándole la información por
consola y paramos la ejecución del programa.

Universitat Autònoma de Barcelona 52

Albert Férriz Pérez Control de dispositivos con Android

Tipo de prueba Resultado

Creación del socket CORRECTO

Captura error número puerto fuera del rango CORRECTO

Máximo de conexiones del servidor

Existe un máximo de clientes permitidos haciendo peticiones al servidor.
Cuando se supera el límite de clientes conectados el servidor debe rechazar la conexión.
Comprobaremos que el comportamiento al alcanzar el máximo + 1 por parte del servidor es el
de cerrar la conexión con el cliente.

Tipo de prueba Resultado

Cerrar socket al sobrepasar el límite de conexiones CORRECTO

Comprobación de cambio de IP

Se crea un Thread que ejecutará una comprobación de la IP cada x tiempo. Comprobaremos
que se crea correctamente y forzaremos que falle para comprobar que lanza la excepción
NullPointerException. En caso de que falle la creación se notificará por consola al usuario con
un mensaje y reintentará la creación del socket.

Comprobaremos que la consulta de cambio de IP se realiza en el tiempo especificado.

Forzaremos el cambio de IP para comprobar si envía la notificación y el dispositivo lo recibe
con la nueva IP.

Tipo de prueba Resultado

Creación del Thread CORRECTO

Consulta de IP en el tiempo especificado CORRECTO

Forzamos el error y comprobamos excepción CORRECTO

Bucle de recepción de peticiones

Cuando el cliente ha establecido la conexión con el servidor, el servidor se queda en un bucle
esperando a la recepción de peticiones. Se detendrá el bucle en el caso de que el cliente cierre
la conexión o envíe la orden explícita de cerrar la conexión.

Comprobaremos que el bucle se detiene cuando recibe la petición de parar y cierra la conexión
con el cliente correctamente y acaba el Thread correspondiente con esta conexión.

Comprobaremos que el servidor cierra el socket si el cliente cierra la conexión repentinamente.
Se lanzará una excepción que deberemos capturar. Saldremos del bucle y acabará el Thread.

Universitat Autònoma de Barcelona 53

Albert Férriz Pérez Control de dispositivos con Android

Tipo de prueba Resultado

Recibimos la orden de detener la ejecución CORRECTO

Sale del bucle y cierra la conexión con el cliente CORRECTO

Se cierra el Thread CORRECTO

Tipo de prueba Resultado

Cierra el socket si el cliente cierra la conexión CORRECTO

Tratamos la excepción y salimos del bucle CORRECTO

Se cierra el Thread CORRECTO

Peticiones de clases o métodos no existentes

El cliente envía las peticiones especificando la clase y el método a ejecutar y los parámetros si
se requiere. En el caso de que no exista la clase o el método se lanzarán excepciones.

Cuando se solicita un método o una clase que no existe, el tipo de los parámetros no es
correcto u otras posibles situaciones en las que no se pueda llevar a cabo la llamada al objeto
y método requerido, se lanzarán las siguiente excepciones: NoSuchMethodException,
SecurityException, IllegalAccessException, IllegalArgumentException,
InvocationTargetException

Tipo de prueba Resultado

Capturamos la excepción que se lanza al invocar una clase
inexistente

CORRECTO

Capturamos la excepción que se lanza al invocar un método
inexistente

CORRECTO

Capturamos la excepción que se lanza al invocar un método
con tipos erróneos, o número de parámetros incorrectos.

CORRECTO

Obtener temperatura

El envío de la temperatura se envía cada vez que esta cambia y mientras el usuario no cancele
el envío.

Comprobaremos que envía la temperatura cada vez que cambia la temperatura aplicando calor
al sensor de temperatura y dejando que vuelva a la temperatura ambiente donde el cambio de
temperatura es mínimo y el envío del cambio se realizará con menos frecuencia.

Tipo de prueba Resultado

Envío de la temperatura con cada cambio de temperatura
siempre que el usuario no cancele la monitorización.

CORRECTO

Universitat Autònoma de Barcelona 54

Albert Férriz Pérez Control de dispositivos con Android

Detener procesos que se ejecutan cada x tiempo

Los procesos que se han de ejecutar cada x tiempo se ejecutan en Threads aparte.
Se creará un objeto que guardará el proceso y la clase y el método que lo ha ejecutado. Cada
vez que se cree uno de estos objetos se almacenará en una lista.

El usuario enviara la petición de detención de ese proceso, especificando la clase y el método.
Se buscará ese proceso en la lista y se detendrá. Comprobaremos que encuentra el proceso, y
que lo detiene. Si no existe el proceso mostrará por consola que no existe ningún proceso con
esas características y continuará el programa normalmente.

Tipo de prueba Resultado

Creación del objeto ScheduledRequests que identifica los
procesos que se ejecutan cada x tiempo

CORRECTO

Detiene el proceso cuando el usuario solicita la detención CORRECTO

Si no se encuentra ningún método con los parámetros
especificados, muestra un mensaje por consola y continua la
ejecución.

CORRECTO

Gestión sensor y pins Raspberry

Comprobaremos que podemos encender y apagar la calefacción envíando las peticiones a los
pins seleccionados.

Detección y lectura de la temperatura del sensor, en caso de que no pueda leer la temperatura
el valor será 0.

El acceso a los recursos de Raspberry se han de hacer como superusuario, en caso contrario la
aplicación se detiene.

Tipo de prueba Resultado

Encendido y apagado CORRECTO

Sensor de temperatura CORRECTO

Acceso como superusuario y como usuario sin privilegios CORRECTO

Universitat Autònoma de Barcelona 55

Albert Férriz Pérez Control de dispositivos con Android

7 conclusiones

Introducción

Dedicaremos el último apartado de la memoria para aportar las conclusiones finales del
proyecto que se ha realizado.

7.1 Valoración

Para llevar a cabo el proyecto se han utilizado muchas tecnologías diferentes y de diferentes
complejidades.

Podríamos diferenciar 3 grandes bloques, que han supuesto grandes retos para solucionar.

Por un lado el uso de Raspberry Pi ha supuesto que tuviese que documentarme sobre el
aparatdo electrónico del proyecto com el uso de sensores, relés, resistencias y conexiones. La
investigación sobre como funcionan este tipo de dispositivos me permitido tener una visión
global de los proyectos que se pueden llegar a llevar a cabo con este tipo de dispositivos.
Además esta investigación me he parmitido conocer los otros dispositivos que complementan a
Raspberry, como pude ser Arduino, y el gran potencial que esta combianción dispone.

En lo referente a la comunicación entre diferentes dispositivos mediante sockets y el uso de
Threads ha sido de las partes más complejas de resolver. Esto me ha supuesto la investigación
y la lectura de muchos recursos y por supuesto muchas hora de programación.

Y por último destacaría la parte de Android que ha sido la otra parte que ha requerido muchas
horas de investigación y búsqueda en los difertentes tutoriales que Google nos ofrece.

Lo más importante a destacar es el conocimiento que he obtenido al tener que investigar en
los tres bloques descritos anteriormente. Ha supuesto todo un reto personal y una gran
satisfacción poder cumplirlo con éxito.

Además me ha hecho interesarme mucho por los proyectos que se desarrollan con Raspberry y
Android. Sin duda continuaré investigando con todo lo relaciondo con estos campos ya que,
personalmente, el campo de innovación es realmente grande.

7.2 Objetivos marcados

Por la naturaleza del proyecto y de que trabajamos con tecnologías de las que hemos ido
aprendiendo durante la realización de este, durante el desarrollo del proyecto hemos
encontrado problemas inesperados que han ralentizado el progreso.

Debido a esto no hemos podido cumplir con algunas de las funcionalidades que se habían
propuesto llevar a cabo, debido a la falta de tiempo.

Universitat Autònoma de Barcelona 56

Albert Férriz Pérez Control de dispositivos con Android

A pesar de esto se han cumplido con todas las funcionalidades necesarias para hacer las dos
aplicaciones, tanto Raspberry como Android, funcionen satisfactoriamente y ofrecer un
producto acabado al usuario.

7.3 Lineas futuras

Habiendo cumplido con prácticamente todos los requisitos propuestos y basándonos en el
objetivo global del que se propuso este proyecto, se propondrán ampliaciones al proyecto.

Registros

Uno de los objetivos del proyecto era el del control de diferentes dispositivos y el de la
recolección de los datos que estos dispositivos u otros sensores nos puedan proporcionar.

La recolección de estos datos es loq ue le aportará la información al usuario sobre sus
consumos.

Por tanto una de las ampliaciones futuras será la ampliación de la base de datos del servidor
con diferentes tablas para capturar información de otros dispositivos o sensores.

Estadísticas

Los datos recogidos y almacenados deberían poder mostrarse al usuario de diferentes maneras
para que le sean los más útiles posibles.

La ampliación de las formas de visualización de estos datos tanto en dispositivos móviles como
en una aplicación web, o el uso de filtros para seleccionar los datos precisos, sería otra de las
ampliaciones a llevar a cabo.

Aplicación WEB

Aunque la consulta de los datos el teléfono móvil es una forma fácil y rápida de consulta de
datos, esta es bastante limitada.

La flexibilidad que nos ofrecen las aplicaciones web es un punto a considrear para posibles
ampliaciones, y ofrecer al usuario otras formas de consulta de sus datos con formas más
potentes y visuales.

Control otros dispositivos

El control de otros dispositivos o componentes de una casa, como podrían ser las luces, es uno
de los campos naturales de ampliación de este proyecto. Además la integración del control de
diferentes dispositivos en una misma aplicación.

Universitat Autònoma de Barcelona 57

Albert Férriz Pérez Control de dispositivos con Android

8 bibliografía

[1] Android Developers
http://developer.android.com/index.html

[2] Raspberry Pi
http://www.raspberrypi.org/

[3] The Pi4J Project
http://pi4j.com/

[4] RPi Low-level peripherals
http://elinux.org/RPi_Low-level_peripherals

[5] Professional Android 4 Application Development
Reto Meier, Wrox

[6] Bruce Eckel, Piensa en Java 2ª Edición
Pearson, Prentice Hall

[7] Java 7 API Specification
http://docs.oracle.com/javase/7/docs/api/

[8] Java Tutorials: Concurrency
http://docs.oracle.com/javase/tutorial/essential/concurrency/

[9] Java Tutorials: Java Remote Method Invocation (RMI)
http://docs.oracle.com/javase/tutorial/rmi/index.html

[10] Java Tutorials: Sockets
http://docs.oracle.com/javase/tutorial/sdp/index.html

[11] SQLite Documentation
http://www.sqlite.org/docs.html

Universitat Autònoma de Barcelona 58

http://developer.android.com/index.html
http://www.sqlite.org/docs.html
http://docs.oracle.com/javase/tutorial/sdp/index.html
http://docs.oracle.com/javase/tutorial/rmi/index.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/
http://docs.oracle.com/javase/7/docs/api/
http://elinux.org/RPi_Low-level_peripherals
http://pi4j.com/
http://www.raspberrypi.org/

Albert Férriz Pérez Control de dispositivos con Android

[12] Sommerville, Ingeniería del software 9ª Edición
Addison-Wesley, Pearson

[13] Raspberry Pi Temperature Sensor, University of Cambridge
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature/

[14]Google Cloud Messaging for Android
http://developer.android.com/google/gcm/index.html

Universitat Autònoma de Barcelona 59

http://developer.android.com/google/gcm/index.html
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature/

Albert Férriz Pérez Control de dispositivos con Android

Anexos

Albert Férriz Pérez Control de dispositivos con Android

Índice de tablas

Tabla 1: Costes de material 8

Tabla 2: Coste/hora del personal 9

Tabla 3: Tareas y asignación 10

Tabla 4: Coste del proyecto por categorías 10

Tabla 5: Especificaciones de Raspberry A/B 15

Tabla 6: Especificaciones Cubieboard 18

Tabla 7: Asignación horas/tarea de Analista 27

Tabla 8: Coste de las horas asignadas al Analista 28

Tabla 9: Asignación horas/tarea del Ingeniero de Software 28

Tabla 10: Coste de las horas asignadas al Ingeniero de Software 28

Tabla 11: Asignación horas/tarea del Tester 29

Tabla 12: Coste de las horas asignadas al Tester 29

Índice de figuras

Figura 1: Raspberry modelo B 16

Figura 2: Arquitectura por capas de Android 20

Figura 3: Proceso de conexión en una red local 32

Figura 4: Proceso de comunicación por GCM 33

Figura 5: Ciclo de vida de las activities 39

Figura 6: Ciclo de vida de las activities y callbacks 39

Figura 7: Navegación entre las diferentes activities 43

Figura 8: Activity principal 44

Figura 9: Activity Actual 45

Figura 10: Activity Termostato 46

Universitat Autònoma de Barcelona 60

Albert Férriz Pérez Control de dispositivos con Android

Figura 11: Activity Estadísticas 46

Figura 12: Activity Programación 48

Figura 13: Notificación cambio de IP 49

Índice de diagramas

Diagrama 1: UML de clases básico del servidor 33

Diagrama 2: UML completo de clases del servidor 34

Diagrama 3: UML de clases TcpServer y MainCotroller 35

Diagrama 4: UML Controlador y Modelo y Termostato 36

Diagrama 5: UML de la clase SQLiteConexion 36

Diagrama 6: UML de la clase ScheduledRequest 37

Diagrama 7: UML de clases básico Android 40

Diagrama 8: UML de EstadisticasFragment 41

Diagrama 9: UML de TemperaturaActualFragment 42

Diagrama 10: UML de EstadoTermostatoFragment 42

Diagrama 11: UML de GcmRegister 49

Diagrama 12: UML de GcmBroadcastReceiver 49

Diagrama 13: UML de GcmIntentService 50

Diagrama 14: UML de Base de Datos 50

Universitat Autònoma de Barcelona 61

Albert Férriz Pérez Control de dispositivos con Android

Glosario

Hardware
El término hardware hace referencia a los diferentes componente físicos que forman parte de
un sistema informático.

Microcontrolador
Un microcontrolador es un circuito integrado (también conocido como chip) que se encarga de
ejecutar las instrucciones almacenadas en la memoria. Un microcontrolador está compuesto
por una unidad central de procesamiento, memoria y periféricos de entrada y salida.

Red local
Interconexión de diferentes dispositivos en una misma red.

UDP
UDP es el acrónimo de User Datagram Procol. Es un protocolo perteneciente a la capa de
transporte y permite el envío de datagramas sin que exista un establecimiento previo de la
conexión.

TCP
TCP es el acrónimo de Transmision Control Protocol. Al igual queUDP perenece a la capa de
transporte. TCP es un protocolo orientado a la conexión, lo que significa que prèviamente
establece una conexión entre los dos dispositivos. Además permite el control de errores de
envío/recepción.

BBDD
Es la base de datos donde se almacenan los datos, donde esta información es indexada y
estructurada de forma que se pueda obtener esta información posteriormente de forma rápida.

Memoria RAM
Es la memoria de acceso rápido de la que disponen todos los ordenadores. Es donde se
almacenan los datos de los programas en ejecución en un ordenador y las instrucciones que
estas deben hacer.

Plugin
Los plugins son pequeñas funcionalidades que se instalan en un programa ya existente, para
añadirle nuevas características y funcionalidades.

Gestor de control de versiones
Los gestores de versiones facilitan el desarrollo del software, almacenando los cambios que se
van produciendo a lo largo del desarrollo. Nos permite hacer modificaciones en el código de un
programa sin afectar a la versión principal y posteriormente unir los dos códigos. También
facilita el desarrollo en equipo ya que evita que un desarrollador pise los cambios realizados
por otro.

Universitat Autònoma de Barcelona 62

Albert Férriz Pérez Control de dispositivos con Android

Repositorio
El repositorio es donde se almacena el código que gestiona el Gestor de control de versiones.
Todos los desarrolladores obtendrán el código de este repositorio central y lo actualizarán con
los nuevos cambios que haya realizado.

GPIO
GPIO es el acrónimo de General Purpose Input Output son los pins de Raspberry Pi donde
podremos conectar dispositivos externos, como pueden ser leds, motores de pulsos, circuitos
externos.

I2C (Inter-Integrated Circuit)
Algunos de los pins de Raspberry Pi disponen de I2C, que es un bus de comunicaciones en
serie. Se usa para comunicar microcontroladores y sus periféricos.

PWM (Pulse With Modulation)
Algunos de los pins de Raspberry Pi disponen de PWM, que es una señal que se envía
periódicamente para transmitir información para, por ejemplo, el control de motores.

Ethernet
Ethernet es una tecnología que se usa en las redes locales y que especifica las características
de cableado y señalización del nivel físico y los formatos e las tramas de datos de la capa de
enlace de datos.

CPU
Es la parte principal de un ordenador, es donde se llevan a cabo todas las instrucciones
especificadas por los programas, las interpreta y las ejecuta.

GPU
Es un procesador similiar a la CPU pero que en este caso se encarga únicamente del
procesamiento gráfico.

SoC (System on Chip)
Son las tecnologías que integran algunos componentes que forman parte en un ordenador, en
un único circuito integrado.

ARM
Es un arquitectura de procesadores que está compuesta por 32 instrucciones. Son
procesadores simples y ideales para dispositivos de baja potencia, por este motivo son los que
más se usan en dispositivos móviles.

Hardware libre
Son los dispositivos de hardware de los cuales las especificaciones y los diagramas son
públicos y que pueden ser recreados por cualquiera.

Dalvik Virtual Machine
Es la máquina virtual que utiliza Android para ejecutar los programas de Android.

Universitat Autònoma de Barcelona 63

Albert Férriz Pérez Control de dispositivos con Android

Framework
Es un conjunto de herramientas y patrones que usaremos para la implementación de una
aplicación, donde nos proporcionará las librerías y clases necesarias.

SDK
Es el kit de desarrollo necesario para poder crear programas para un sistema concreto.

Kernel
El kernel es la parte principal de un Sistema Operativo. Facilia el acceso seguro al hardware,
gestiona la memoria y gestiona los procesos.
Sockets
Un socket es una abstracción que representa los puntos de conexión de un ordenador a otro a
través de una red.

Puertos
Un puerto está estrechamente relacionado con el socket, ya que representa dónde nos hemos
de conectar del socket y que parte de nuestro socket dejamos para que otros se conecten a
nosotros.

IP
Es un protocolo de internet que identifica los dispositivos dentro de esta.

ISP
Son las empresas que contratamos para que nos provean acceso a internet.

Universitat Autònoma de Barcelona 64

Albert Férriz Pérez Control de dispositivos con Android

Diagrama de Gantt

Universitat Autònoma de Barcelona 65

Sabadell, Septiembre de 2013

Firmado: Albert Férriz Pérez

