UNB

Universitat Autonoma
de Barcelona

Control de dispositivos con
Android

Memoria del proyecto
de Ingenieria Técnica en
Informatica de Gestidn

realizado por
Albert Férriz Pérez

y dirigido por
Marc Tallo Sendra

Escola d’Enginyeria
Sabadell, Septiembre de 2013

FULL DE RESUM - PROJECTE FI DE CARRERA DE L'ESCOLA
D'ENGINYERIA

Titol del projecte: Control de dispositivos con Android

Autor[a]: Albert Férriz Pérz Data: Septembre, 2013

Tutor[a]/s[es]: Marc Tallo Sendra

Titulacié: Enginyeria Técnica en Informatica de Gestio

1.

2.

3.

Paraules clau (minim 3)

Catala: Android, Raspberry Pi, Control, Remot, Temperatura, Calefaccié
Castella:Android, Raspberry Pi, Control, Remoto, Temperatura, Calefaccion

Angles: Android, Raspberry Pi, Control, Remote, Temperature, Heating

4,

Resum del projecte (extensid maxima 100 paraules)

Catala:

Aquest projecte de final de carrera de la titulacid d'Enginyeria Informatica de Gestid consisteix
en el disseny i desenvolupament d'un sistema de control de dispositius connectats a Raspberry
Pi i gestionats des d'un dispositiu Android. Es podran portar a terme diferents accions com
encendre, apagar, programar la calefaccid i consultar la temperatura actual remotament des
d'un dispositiu connectat a la red wifi doméstica o des de qlalsevol altre xarxa connectada a
internet.

. Castella:

Este proyecto de final de carrera de la titulacién de Ingenieria en Informatica de Gestidn
consiste en el disefio y desarrollo de un sistema de control de dispositivos conectados a
Raspberry Pi y gestionados desde un dispositivo Android. Se podran llevar a cabo diferentes
acciones como encender, apagar, programar la calefaccion y consultar la temperatura actual
remotamente desde un dispostivo conectado a la red wifi doméstica o desde de cualquier red
que esté conectada a internet.

. Angles:

This is the final project of Engineering degree in Computer Science and it is about the design
and development of a control system with Raspberry Pi devices connected to and managed
from an Android device. It can perform various actions such as turn on and off, program the
heating and check the current temperature remotely from one device connected to the home
wireless network or from any network that is connected to the Internet

Tabla de contenidos

1. Introduccion

Ul

(<))

1.1 Presentacion
1.2 Objetivos
1.3 Estado del arte
1.4 Motivaciones

1.5 EStructura de 1@ MEMIOIA .ovvieeiiii it ettt aaeeae s e e e e e e naaasssseeeenennnn

. Estudio de Viabilidad
Introduccion
2.1 Objetivos
2.2 ESPECITICACIONES ...ttt it i it i e e e
2.3 Planificacion
2.4 Valoracion
2.5 Riesgos ..cc.vvvuvennnns
2.6 Conclusiones

. fundamentos tedricos
Introduccion
3.1 Raspberry Pi
3.2 Android
3.3Java .o
3.3 SQLIte .ovcvvvreenennn

. analisis
Introduccion
4.1 Requerimientos
4.2 Planificacion
4.3 RECUrsoSvveeeen.
4.4 Material

. implementacion
Introduccion
5.1 INICI0 covviiiiiiiieinnns
5.2 Servidor
5.3 Android
5.4 SQLIte v.vvvvvvrrennnnn
55Pi4) ..cciiiiiiiiiiinn

. pruebas
Introduccion
Pruebas realizadas

. conclusiones
Introduccion
7.1 Valoracién
7.2 Objetivos marcados
7.3 Lineas futuras

WNNRER=

HFEHEONOU A

w o

14
18
22
22

23
23
25
27
29

31
31
33
37
50
51

52
52

56
56
56
57

8 . bibliografia ...t

Anexos

indice de tablas
Indice de figuras ...

Indice de (a1 T=To | =1 1= 1=

Glosarioevvvunnnn.

Diagrama de Gantt

58

60
60
61
62
65

Albert Férriz Pérez Control de dispositivos con Android

introduccion

1.1 Presentacion

El objetivo de este proyecto es crear un sistema de gestion de dispositivos que podemos tener
en casa, y realizarlo todo ello remotamente desde dispositivos moviles.

La gestion incluye que el usuario pueda “programar” diferentes caracteristicas de un
dispositivo, como podria ser las horas de encendido de la calefaccion y hacer una planificacion
diferente para cada dia.

Ademas de la gestion también queremos permitir la recoleccion de datos (como por ejemplo la
temperatura) afiadiendo otros sensores a Raspberry y permitir al usuario el cdmo y cuando
llevar a cabo estas tareas de monitorizacion.

Estos datos recogidos le proporcionaran al usuario una informacion valiosa para la toma de
decisiones.

1.2 Objetivos

Cada vez mas la sociedad esta concienciada con el uso responsable de los recursos
energéticos. Con este proyecto se quiere realizar un sistema que lleve a cabo una gestion y
monitorizacién de diferentes componentes que podemos encontrar en una casa.

Queremos obtener la eficiencia energética de, por ejemplo, el sistema de calefaccidon
basandonos en datos que hemos podido recoger.

Raspberry Pi funcionard como el sistema central, el corazén del sistema. Se encargard de
monitorizar los datos de los diferentes sensores o datos que proporcionen de otros
componentes conectados a Raspberry y la gestion de estos, como puede ser un simple
encendido o apagado o algo mas complejo como podria ser la automatizacion.

Volviendo al caso de la calefaccion el usuario podra programar cuando se pondra en marcha
dando, por ejemplo, horas de encendido para diferentes dias, rangos de fechas, etc...

Y toda esta informacién, gestién, historicos y configuraciones el usuario las podra realizar
desde un dispositivo mavil Android.

Universitat Autobnoma de Barcelona 1

Albert Férriz Pérez Control de dispositivos con Android

1.3 Estado del arte

En los Ultimos afios han aparecido diferentes dispositivos electronicos que se pueden controlar
mediante teléfonos moviles.

Estos dispositivos son independientes, no forman parte de un sistema: uno controla las luces
de la casa, las activa o desactiva o cambiar el color de la luz u otros dispositivos como
termostatos...

Como hemos comentado todos estos dispositivos al no formar parte de un sistema, cada uno
tienen sus propias aplicaciones para los dispositivos moviles.

Esto puede resultar incomodo para el usuario tener que usar una aplicacién para cada cosa,
ademas de no poder obtener las ventajas que proporcionaria tener un sistema centralizado
donde podemos obtener informacion de cada uno de los componentes.

1.4 Motivaciones

La aparicidn de estas micro computadoras ha facilitado la creacién de proyectos que antes era
imposible, debido a los altos costes que comporta el uso del hardware. La potencia y
versatilidad de estos dispositivos junto con la potencia que ofrecen los dispositivos moviles hoy
en dia, abre un nuevo campo de desarrollo con muchisimas oportunidades de negocio.

La realizacién de este proyecto permite profundizar en los dos campos y relacionarlos para
crear sistemas de control muy potentes.

Trabajar con estos dispositivos nos ofrece la oportunidad de crear sistemas realmente potentes
y ofrecer soluciones a problemas cotidianos con unos costes considerablemente bajos.

Universitat Autobnoma de Barcelona 2

Albert Férriz Pérez Control de dispositivos con Android

1.5 Estructura de la memoria

En el capitulo 1 haremos una introduccion al proyecto desde el punto de vista de un cliente,
donde describiremos el estado del arte, objetivos y motivaciones.

En el capitulo 2 extenderemos la introduccion hecha en el capitulo 1 y concretaremos las
especificaciones del proyecto, las asignaciones de recursos y el material necesario.

En el capitulo 3 expondremos las tecnologias que hemos usado para llevar a cabo el proyecto.
En los primeros puntos introduciremos Raspberry y Android y también se detallaran sus
caracteristicas principales. Explicaremos también otras tecnologias utilizadas en el proyecto.

El capitulo 4 nos centraremos en detallar cuales son los requerimientos de la aplicaciéon , la
planificacidn, el uso de de los recursos y los costes del proyecto.

La implementacion del proyecto la trataremos en el capitulo 5, donde mostraremos las clases
creadas para llevar a cabo el proyecto y la interaccion entre los diferentes componentes.
También se mostraran cuales son los flujos de ejecucion.

Las pruebas llevadas a cabo para comprobar que el proyecto funciona segun las
especificaciones y su correcto funcionamiento se describiran en el capitulo 6.

En el capitulo 7 expondremos las conclusiones obtenidas con la realizacion del proyecto.

Por Gltimo afadiremos la bibliografia en el capitulo 8, donde listaremos las referencias a los
documentos consultados.

Para completar la memoria, adjuntaremos en los anexos el indice de tablas, indice de
figuras e indice de diagramas. También se adjuntara el Glosario donde se explicaran
algunos de los términos usados y el diagrama de Gantt donde se mostrara la planificacion del
proyecto

Universitat Autobnoma de Barcelona 3

Albert Férriz Pérez Control de dispositivos con Android

estudio de viabilidad

Introduccion

En los ultimos afos hemos experimentado un enorme crecimiento en el mundo de la telefonia
movil.

Los teléfonos moviles han pasado de ser utilizados sélo para llamar a convertirse en
auténticos ordenadores. Con cada nuevo dispositivo disponemos de mas sensores que nos
permiten llevar aun mas allad la experiencia del usuario.

Debido al rapido desarrollo de estos dispositivos, los sistemas operativos que los manejan
(como lo es Android) han pasado a lanzar nuevas actualizaciones con muy poca diferencia de
tiempo mejorando asi las funcionalidades en versiones anteriores y ademas afiadiendo nuevas.
Ademas de mejorar la experiencia de usuario.

Esto ha abierto un infinito campo de posibilidades permitiéndonos crear aplicaciones que hagan
uso de todas estas capacidades para crear software que mejore la vida de las personas.

Paralelamente a este boom de los teléfonos modviles, han aparecido otros dispositivos de
hardware como son Arduino y Raspberry.

Arduino es una plataforma de hardware libre. Es un microcontrolador y un entorno de
desarrollo que debido a su precio y la gran comunidad que la respalda se ha convertido en un
de los proyectos mas famosos dentro de la comunidad para llevar a cabo proyectos
electrénicos.

Por otro lado, recientemente ha aparecido Raspberry Pi. Es una placa que podriamos definirla
como una microcomputadora totalmente funcional que utiliza con un sistema operativo basado
en Linux a un precio muy bajo. Esta ademas, tiene montadas en la misma placa unas pins de
entrada y salida que permite la conexién de hardware u otros circuitos electrénicos, que
podemos controlar desde la placa.

Como podemos ver todas estas tecnologias por si solas han abierto infinitas posibilidades para
el mundo del software y de la electronica.

Debido al bajo coste de estos ha permitido que muchisima gente haya podido acceder a estos
dispositivos y crear proyectos que de otra manera jamas habriamos podido ver.

En este proyecto vamos a usar dos de estas tecnologias, Android y Raspberry Pi, para llevar a
cabo un sistema que gestionara y monitorizara los diferentes dispositivos que podemos
encontrar en casa.

Universitat Autbnoma de Barcelona 4

Albert Férriz Pérez Control de dispositivos con Android

2.1 Objetivos

El objetivo del proyecto es de poder crear un sistema compuesto por diferentes componentes.

Raspberry Pi sera el corazén del sistema. Se encargara de responder a las peticiones que se
envian desde los diferentes dispositivos moviles, como puede ser la consulta en tiempo real de
la temperatura. También se encargara de la comunicacién recoleccion de datos de los
diferentes dispositivos y los realizard con la configuracion que el usuario le proporcione:
Monitorizacion de la temperatura cada X segundos, obtener estadisticas y realizar histéricos.

La otra parte del proyecto sera la creacion del programa para Android, donde el usuario llevara
a cabo todas las acciones, como la consulta de la temperatura actual, programacion de las
horas de encendido y apagado de la calefaccion, estado de las luces de casa, etc...

2.1.1 Estado del arte

El poder gestionar diferentes componentes de casa, ha implicado grandes sistemas de gestion
que se han ocupado completamente de la gestién de todos y cada uno de los componentes de
una casa a precios desorbitados.

La aparicion de componentes como Raspberry Pi o Arduino ha permitido el acceso a la creacion
de hardware y software para la creacion de proyectos, los cuales antes sdlo podian ser creados
por compaiiias que disponian de un gran capital.

Con este proyecto queremos crear dispositivos a bajo coste para gestionar diferentes
dispositivos que tenemos en casa

Nest (http://nest.com/)
Nest es un termostato inteligente. Aprende del uso que se le da favoreciendo asi el consumo

de energia y se puede controlar remotamente desde un teléfono inteligente, una tablet o
desde un navegador web.

Wemo (http://www.belkin.com/us/wemo)

Wemo desarrollado por Belkin ha creado unos enchufes con wifi, que permite encender y
apagar los dispositivos que estén conectados a este enchufe. Actia como un interruptor wifi.

Philips Hue (https://www.meethue.com/es-US)

Philips hue son unas bombillas led conectadas a internet. Podremos controlar estas bombillas
desde un teléfono inteligente permitiéndonos encenderlas, apagarlas o programar estas
acciones, incluso cambiar el tono de luz de estas.

Universitat Autbnoma de Barcelona 5

http://nest.com/
https://www.meethue.com/es-US
http://www.belkin.com/us/wemo

Albert Férriz Pérez Control de dispositivos con Android

2.2 Especificaciones

2.2.1 Requisitos funcionales

Para facilitar la lectura y la comprensién, pasaremos a usar la palabra “Servidor” para
referirnos a Raspberry Pi y "Cliente” para referirnos al dispositivo Android.

- Al iniciarse la aplicacién se quedara a la escucha de peticiones de los diferentes clientes.
- Podra recibir solicitudes de clientes que estén en la misma red local o desde internet.

+ Cuando el cliente quiere hacer una peticién u no conoce la direccién del Servidor, envia un
paquete UDP a la direccion de broadcast con un cédigo de operacion.

- El servidor recibe la peticidon de descubrimiento y responde al cliente con la ip del servidor.
- Las siguientes comunicaciones se haran usando el protocolo TCP.

El cliente cada vez que solicite una informacién al servidor, debera enviar un cédigo de
operacion que identificara cual es la accidon que se debe llevar a cabo.

- El servidor creara un proceso aparte que llevara a cabo la peticién requerida.

- El cliente podra consultar la temperatura actual.
El servidor enviara esta informacion al cliente cuando:
- El cliente no envie un cédigo de fin de operacion.
- Si la temperatura ha cambiado desde la Ultima vez que se envio.

- El cliente podra encender o apagar el sistema de calefaccion:
- Enviara un coédigo de activacion o desactivacion.

- El cliente podra programar el encendido:
- Configurando un rango de dias
- Configurando un rango de horas
- Cuando la temperatura esté por debajo de un minimo.
- Combinaciones de las anteriores.

- El cliente podra activar o desactivar la recoleccidon de temperatura cada x tiempo.
- El servidor recolectara estos datos y los almacenara en la BBDD.

- El cliente podrd configurar cada cuanto tiempo se obtienen datos de la temperatura actual
para guardarla en la base de datos.

- El cliente podra consultar estos datos por:
- Rangos de fecha
- Rangos de hora

Universitat Autbnoma de Barcelona 6

Albert Férriz Pérez Control de dispositivos con Android

2.2.2 Requisitos no funcionales
- La comunicacién entre el cliente y el servidor una vez se han descubierto se debera cifrar.

- Los clientes sdlo podran hacer peticiones desde Internet si previamente se han registrado en
el servidor desde.

- Los datos referentes a la monitorizacion de las temperaturas se podran mostrar en diferentes
formatos.

2.3 Planificacion

El proyecto lo desarrollaremos usando el modelo en cascada (waterfall). Con este modelo
dividiremos el proyecto en fases y planificaremos todas las actividades antes de empezar.
Ninguna fase empezarad antes de que se acabe la anterior.

1.- Documentacion

2.- Analisis y definicion de requerimientos-
3.- Disefno del sistema y el software.

4.- Programacion.

5.- Pruebas.

2.3.1 Documentacion

En esta fase investigaremos todo lo relacionado con los diferentes dispositivos con los que
llevaremos a cabo el proyecto, documentarnos sobre como usar las diferentes tecnologias y
usarlas a la vez.

2.3.2 Analisis y definicién de requerimientos

Analizaremos que es lo que el sistema debe hacer y como interaccionaran los dispositivos.
Una vez hecho este analisis podremos obtener los requerimientos funcionales y no funcionales
para Raspberry y para el movil

2.3.3 Diseno del sistema y el software

Con los requisitos y el analisis del paso anterior, pasaremos a disefiar la estructura de de la
aplicacion.

2.3.4 Programacion

Esta es la parte mas importante del proyecto y donde mas tiempo vamos a invertir. En los dos
pasos anteriores hemos definido qué ha de hacer y cdmo ha de ser la aplicacion. En esta etapa
implementaremos el codigo de la aplicacion.

Ya que ésta fase es muy compleja, la dividiremos en subtareas para facilitar la
implementacion:

Universitat Autbnoma de Barcelona 7

Albert Férriz Pérez Control de dispositivos con Android

- Programacion de Raspberry Pi, que sera el corazén central del sistema.
- Bases de datos, para guardar los datos que vamos recolectando.
 Programacién de la aplicacién para Android.

- Interfaz grafica de la aplicacion para Android.

2.3.5 Pruebas

Una vez acabada la programacion de la aplicacion, debemos asegurarnos que cumple con los
requisitos que especificados. Para ello llevaremos a cabo diferentes pruebas para asegurar el
correcto funcionamiento.

2.4 Valoracion

En este apartado mostraremos todos los recursos necesarios para llevar a cabo el proyecto
ademas de el coste de cada uno.

2.4.1 Materiales

Los componentes fisicos que necesitaremos para realizar el proyecto son:

+ Raspberry Pi (Modelo B)
- Dispositivo Android
* Sensor temperatura
« PC
o Intel Corei7
o 4GB de memoria RAM

Los costes de estos recursos son

Raspberry Pi 33€
Dispositivo Android 324 €
Sensor temperatura 5,43€
PC 750€

Total 1.112,43€

Tabla 1: Costes de material
2.4.2 Software de desarrollo

Especificaremos todos los componentes de desarrollo necesarios para la programacion de este.

Eclipse IDE 3.6.2
La programacién tanto de la parte cliente como servidor se realizaran en Java. El desarrollo de
la parte Android funciona con éste IDE.-

Universitat Autbnoma de Barcelona 8

Albert Férriz Pérez Control de dispositivos con Android

Java Development Kit (JDK) 6
Es el software que nos permitira crear las aplicaciones en Java.

Android Developer Tools (ADT)

ADT es un paquete de recursos para la creacion de aplicaciones para

Android. Incluye el plugin para extender las funcionalidades de Eclipse para el desarrollo
de Android y también contiene Android SDK Tools que son las herramientas de desarrollo de
Android.

SQLite
SQLite es el gestor de Base de datos.

Ubuntu 12.04
Sistema operativo sobre el que usaremos las herramientas de desarrollo.

PHP 5.4

Es el lenguajede programacidén que usaremos para programar la consulta de informacién desde
la web.

GIT
Gestor de control de versiones.

BitBucket
Repositorio online gratuito que usaremos para centralizar el control de versiones del proyecto.

Es importante remarcar que el coste de todo este software de desarrollo es a coste 0.

2.4.3 Personal

Para la realizacion del proyecto necesitaremos un analista, un programador y un equipo de
test. El coste del personal es el siguiente:

Tabla 2: Coste/hora del personal

Universitat Autbnoma de Barcelona 9

Albert Férriz Pérez Control de dispositivos con Android

2.4.4 Desarrollo del proyecto

Tarea Quién Duracion Coste
Documentacion Analista 24h 1200€
Analisis y definicion Analista 16h 800€
de requerimientos Ingeniero 8h 280€
Disefio del sistema Analista 16h 800€
y el software Ingeniero 8h 280€
Programacion. Ingeniero 175h 6125€
Pruebas. Tester 40h 1000€

10.485€

Tabla 3: Tareas y asignacion

2.4.5 Coste total

Una vez desglosados todos los recursos del proyecto y sus costes relacionados, obtenemos el
coste total:

Concepto Coste total
Materiales 1.112,42
Software desarrollo. 0€
Desarrollo 10.485€

Total 11.597,42€

Tabla 4: Coste del proyecto por categorias

2.5 Riesgos

Para garantizar el buen funcionamiento del sistema debemos prever posibles fallos o mal
funcionamiento del sistema, de algunos de los componentes o del propio software.

Especificaremos unos requerimientos de de fiabilidad y seguridad donde tendremos los
posibles eventos peligrosos que pueden surgir ademas de evitar otros dafios derivados.

Se definiran los posibles riesgos con una descripcion, la probabilidad de que este suceda (alto,
medio o bajo) y la aceptabilidad de este fallo (aceptable, inaceptable).

Universitat Autbnoma de Barcelona 10

Albert Férriz Pérez Control de dispositivos con Android
Riesgo: Temperaturas extremas Probabilidad: Baja Impacto: Inaceptable

Descripcién

Deteccion de temperaturas extremas para la zona en la que se encuentra.

Solucién
Desactivar cualquier tipo de operacion y avisar al usuario de unas temperaturas inusuales.

Riesgo: Acceso usuarios no Probabilidad: Baja Impacto: Inaceptable
permitidos

Descripcidn
Registrar peticiones de dispositivos que no se han registrado previamente.

Solucién
Bloquear todas las peticiones provenientes del dispositivo no autorizado y avisar al usuario
principal de una posible intrusion.

Riesgo: Conversion errénea de Probabilidad: Baja Impacto: intolerable
unidades de temperatura

Descripcion
Se detectan solicitudes de cambio de temperatura con unos cambios muy grandes. Lo mas
probable es que el usuario haga cambios de pocas unidades.

Solucién

Detectar solicitudes de cambio de temperatura con cambios muy bruscos. Comprobar si hay
relacion entre cambios de temperatura son unitarios en las diferentes unidades (celsius,
fahrenheit).

Riesgo: Fallo inesperado del Probabilidad: Baja Impacto: intolerable
sistema

Descripcién
Se detectan fallos en el sistema de los que no es posible recuperarse ni obtener una solucion.

Universitat Autbnoma de Barcelona 11

Albert Férriz Pérez Control de dispositivos con Android

Solucién
Reportar del error en los logs del sistema y apagar el dispositivo para evitar males mayores.

Riesgo:Comunicacion entre Probabilidad: Baja Impacto: aceptable
dispositivos

Descripcidn
Se pueden producir errores a la hora de la comunicacidn entre o la pérdida de datos.

Solucién

Usaremos tiempos de espera para la recepcidon de una peticién.

Se reintentara el envio tres veces, cada uno con su tiempo de espera.

En caso de no poder conectar el dispositivo android debera volver a hacer la peticion de
descubrimiento.

En caso de que el error persista el usuario deberd comproba la configuracion de la aplicacién
para comprobar que los datos son los correctos.

Riesgo: Fallo en el sensor de Probabilidad: Baja Impacto: Inaceptable
temperatura

Descripcién
Durante la monitorizacion se detectan cambios bruscos y continuados en las mediciones de
temperatura.

Solucién

Guardamos el error encontrado en los logs del sistema, informamos al usuario de un posible
mal funcionamiento del sensor y detenemos el sistema. El usuario deberd reemplazar el
Sensor.

Riesgo: Monitorizacién y Probabilidad: Baja Impacto: Inaceptable
guardado de datos

Descripcién

El sistema de comprobacidon de temperatura que se activa cada X segundos no esta
funcionando, o el guardado de en base de datos de la informacion recogida no se puede
almacenar.

Universitat Autbnoma de Barcelona 12

Albert Férriz Pérez Control de dispositivos con Android

Solucién
Comprobar si el error en la monitorizacién es un fallo del sensor. Si es un fallo del sensor
atenderemos al “Riesgo: Fallo en el sensor de temperatura” especificado anteriormente.

Si el error es referente al guardado en base de datos, la aplicacion comprobara si es un error
que puede solucionar y lo reintentarad. En caso contrario se detendra la monitorizacién y
avisara al usuario de que se ha producido un error en el guardado de datos.

2.6 Conclusiones

Hemos expuesto algunos de los productos existentes en el mercado que tienen una
funcionalidad parecida a lo que pretendemos realizar en este proyecto, pero todas ellas estan
limitadas a una funcidn especifica y no es posible ampliarlos con otras funcionalidades.

Nuestro proyecto permitira ampliar las funciones para gestionar otros dispositivos bien sea con
nuevos dispositivos de control conectados a Raspberry Pi u ofreciendo nuevas funcionalidades
a las aplicaciones de Android que controlan los diferentes dispositivos de control conectados a
Raspberry.

Los costes que son uno de los factores claves para poder empezar a desarrollar el proyecto son
considerablemente bajos.

Con todos estos puntos a favor concluimos que el proyecto es viable.

Universitat Autbnoma de Barcelona 13

Albert Férriz Pérez Control de dispositivos con Android

3 fundamentos teodricos

Introduccion

En este capitulo presentaremos las diferentes tecnologias que se usan para desarrollar el
proyecto y ademas de los diferentes conceptos relacionados.

3.1 Raspberry Pi

3.1.1 Introduccién a Raspeberry

Raspberry Pi es un micro ordenador que que se cred con la idea de ofrecer dispositivos baratos
y asequibles para todo el mundo y asi poder facilitar el acceso al mundo del desarrollo de
software a todas aquellas personas que estuviesen interesadas en aprender pero que no
podian permitirse comprar un ordenador.

Este proyecto ha tenido una gran acogida en la comunidad educativa de todo el mundo debido
a que uno de sus principales objetivos era ser un dispositivos para el aprendizaje.

Pero Raspberry Pi ha ido mas alld del uso académico. Debido a las mas que aceptables
prestaciones que ofrece a un precio muy bajo, lo ha convertido en un dispositivo util para
muchos proyectos profesionales.

Miles de interesantes proyectos se estan llevando a cabo gracias a este dispositivo, que
ademas esta fomentando la colaboracion y el compartir informacién de la comunidad de
desarrolladores.

3.1.2 éQué es Raspberry Pi?

Como hemos comentado en el punto anterior, este dispositivo no es mas que un placa
electrdnica, un micro ordenador que dispone una versidon del sistema operativo Linux, llamado
Raspbian.

Esta pequefia placa de unos 8 centimetros por 5 de ancho, dispone de componentes de
entrada y salida similares a un ordenador convencional.

Pero lo que la hace muy interesante es que dispone de unas entradas llamadas GPIO.

GPIO es el acronimo de General Purpose Input Output, y son unos pins que nos permiten
conectar el dispositivo con el mundo real. Esto nos permite hacer cosas como activar o
desactivar los diferentes dispositivos conectados a Raspberry.

Universitat Autbnoma de Barcelona 14

Albert Férriz Pérez Control de dispositivos con Android

Pero no so6lo podemos enviar sefiales de encendido y apagado, parte de esos pins son
diferentes tipos de conectores: existen pins para I2C* (Inter-Integrated Circuit), UART*
(Universal Asynchronous Receiver-Transmitter) y PWM* (Pulse With Modulation).

Con todo este tipo de conexiones que nos ofrece Raspberry, podremos controlar su
comportamiento con el software que nosotros escribamos.

3.1.2 Especificaciones

A continuacién detallaremos las especificaciones componentes de que dispone la placa.

Modelo A Modelo B

Ethernet/Internet Broadcom BCM2835 SoC full Broadcom BCM2835 SoC full
HD multimedia applications HD multimedia applications
processor processor
Memoria 256MB SDRAM 512MB SDRAM
Chip Broadcom BCM2835 SoC full Broadcom BCM2835 SoC full
HD multimedia applications HD multimedia applications
processor processor
CPU Dual Core VideoCore IV® Dual Core VideoCore IV®
Multimedia Co-Processor Multimedia Co-Processor
GPU
USB 2.0 Un conector USB Dos conectores USB
Salida de Video HDMI (rev 1.3 & 1.4) HDMI (rev 1.3 & 1.4)
Composite RCA Composite RCA
(PAL and NTSC) (PAL and NTSC)
Salida de Audio 3.5mm jack, HDMI 3.5mm jack, HDMI
Almacenamiento SD, MMC, SDIO card slot SD, MMC, SDIO card slot
Sistema Operativo Linux Linux
Dimensiones 8.6cm x 5.4cm x 1.5cm 8.6cm x 5.4cm x 1.7cm
Ethernet No integrada 10/100 Ethernet R145
jack

Tabla 5: Especificaciones de Raspberry A/

Universitat Autbnoma de Barcelona 15

Albert Férriz Pérez Control de dispositivos con Android

RCAVIDEO AUDIO LEDS USB

912MB RAM

CPU & GPU HDMI

SD CARD

POWER

Figura 1: Raspberry modelo B

Aunque Raspberry funciona practicamente como un ordenador, tiene algunas diferencias.
Como podemos ver en la figura no disponemos de disco duro donde almacenar nuestro S.O y
documentos. Para solucionar esto Raspberry dispone de una entrada para tarjetas de memoria
SD, que hara las funciones de disco duro.

Esto nos ofrece la ventaja de poder disponer de diferentes Sistemas Operativos en diferentes
tarjetas y utilizarlos segun nos convenga.

El SoC (System on Chip) Broadcom funciona a una frecuencia de 700Mhz y una GPU (Graphic
Processing Unit) que es capaz de reproducir veo con calidad de BluRay. La GPU tiene un
desempefio similar al de Xbox.

3.1.3 Sistemas Operativos

Disponemos de diferentes sistemas operativos que podemos instalar, todos ellos son sistemas
operativos Linux para procesadores ARM.

Universitat Autbnoma de Barcelona 16

Albert Férriz Pérez Control de dispositivos con Android
Raspbian

Es una distribucion basada en Debian Wheezy (Debian 7). Es un “port” no oficial para la
arquitectura de procesadores ARM. Dispone de entorno grafico LXDE (Lightweight X11
Desktop Environment).

LXDE es un entorno de escritorio ligero que tiene un ligero uso de los recursos para ofrecer
estabilidad y usabilidad.

Pidora

Es una distribucidon basada en Fedora optimizada para Raspberry adaptada para funcionar en
arquitectura ARM

Arch Linux ARM

Esta distribucién esta basada en Arch Linux adaptada a la arquitectura ARM. Esta distribucion
no estd recomendada para los principiantes ya que para la instalacion y configuracion del
sistema se requieren conocimientos altos. La filosofia de esta distribucion es la simplicidad vy el
control absoluto para el usuario.

3.1.4 Otros

Arduino

Este es un proyecto de hardware libre con la finalidad de crear proyectos electrénicos. Es una
placa electronica compuesta por un microcontrolador. Los microcontroladores mas usados son
Atmega(168 y 328) y CortexM3.

Arduino proporciona un IDE con el que poder programar el microcontrolador.

Este dispositivo ha facilitado la creacion de proyectos y ha contribuido a la construcciéon de un
ecosistema donde cada vez mas gente participa creando nuevos proyectos.

Una de las partes mas interesantes de Arduino es que sea hardware libre: Tanto su disefio
como su distribucién es libre y se pueden crear proyectos sin disponer de una licencia.

Gracias a esta caracteristica podemos encontrar diferentes tipos de placa Arduino que estan
basadas en la placa “base” pero con diferentes configuraciones, como procesadores,
velocidades de reloj, nimero de pins o incluso tamafios muy reducidos.

Como ya hemos comentado Arduino proporciona su propio IDE para programar el
microcontrolador, pero esta no es la Unica opcidn ya que podemos usar practicamente
cualquiera de los lenguajes mas conocidos para programario (C, C++, C#, Python, Java ...)

La combinacion de Arduino y Raspberry nos ofrece una potente herramienta para la creacién
de proyectos muy interesantes.

Universitat Autbnoma de Barcelona 17

Albert Férriz Pérez Control de dispositivos con Android

Cubieboard

Este un proyecto muy parecido a Raspberry con una configuracion diferente y mas potente,
pero a un coste mas alto. Recientemente (Junio 2013) ha aparecido la 22 versiéon de este
proyecto el cual es capaz de correr un sistema como Ubuntu 12.04 o Android 4.2 JellyBean.

Sus especificaciones técnicas son las siguientes:

CPU ARM® Cortex™-A7 Dual-Core
GPU ARM® Mali400MP2, Complies with OpenGL ES 2.0/1.1
Memoria 1GB DDR3 @960M

Almacenamiento 4GB internos NAND flash, hasta 64GB en el slot de uSD, hasta 2T en
disco 2.5 SATA

Alimentacion Entrada 5VDC a 2A o entrada USB

Conexiones de red 10/100 ethernet, wifi opcional
UsB 2 USB 2.0 HOST, 1 USB 2.0 OTG

Otros Una entrada para IR (infrarrojos)
Otras interfaces 96 pins, que incluyen 12C, SPI, RGB/LVDS, VGA, etc...

Tabla 6: Especificaciones Cubieboard

3.1.5 Eleccién de Raspberry frente a otros productos

La aparicion de Raspberry ha dado pie a que se hayan creado otros dispositivos parecidos a
este con diferentes especificaciones técnicas y mas potentes. Para la realizacion de este
proyecto las especificaciones que nos ofrece Raspberry cubren nuestras necesidades y con
unos costes inferiores a los de por ejemplo Cubieboard.

Arduino no nos proporciona las capacidades que necesitamos, cosa que si hace Raspberry por
tanto mas que un sustituto es un complemento para Raspberry y potenciar aun mas los
proyectos que se puedan crear.

3.2 Android

En nuestro proyecto Android toma una parte fundamental ya sera el punto de acceso que el
usuario tendra a la aplicacion que estara funcionando en la Raspberry Pi. Al usuario se le
presentaran todas las posibles acciones que deberd llevar a cabo desde la pantalla de su
dispositivo.

Universitat Autbnoma de Barcelona 18

Albert Férriz Pérez Control de dispositivos con Android

3.2.1 Introduccion a Android

Android es plataforma abierta para el desarrollo de aplicaciones para dispositivos moviles.
Quizas la mejor manera de explicar que es Android de forma concisa es la descripcion que hizo
Andy Rubin, ingeniero de Google :

“La primera plataforma comprensiva para dispositivos moviles. Incluye un
sistema operativo, interfaz de usuario y aplicaciones - Todo el software
necesario para hacer funcionar un dispositivo movil pero sin los problemas de
patentes que dificultan la innovacion.”

Android forma parte de la Open Handset Alliance que es la union de mas de 80 empresas
tecnoldgicas incluidas compafiias de hardware, compafias de teléfono, desarrolladores de
software como Samsung, Motorola, HTC, T-Mobile, Vodafone, ARM, y Qualcomm.

LA OHA pretende mejorar la experiencia del software para los usuarios proporcionando una
plataforma para la innovacion del desarrollo moévil a una mayor velocidad y calidad, sin
problemas sobre licencias tanto por los desarrolladores como los desarrolladores de los
dispositivos.

Cabe destacar que Android estd instalado en miles de dispositivos en mas de 190 paises. Cada
dia se activan mas de 1 millén de dispositivos en todo el mundo. Esto nos ofrece un mercado
potencial enorme.

3.2.2 ¢{Qué es Android?

Como hemos comentado en el punto anterior, Android es una plataforma de software open
source para diferentes dispositivos moviles. Pero para ser mas especificos Android esta
compuesto de diferentes partes :

Un kernel de Linux que proporciona una interfaz de bajo nivel para interactuar con el
hardware, gestion de la memoria y control de procesos, todo optimizado para dispositivos
moviles.

- Librerias open source para el desarrollo de aplicaciones, como puede ser SQLite, WebKit y
OpenGL.

Dalvik Virtual Machine (DVM) y el nlcleo de librerias que proporcionan funcionalidad
especifica para Android

- Un framework de aplicaciones que proporciona los servicios del dispositivo a la capa de
aplicacion incluyendo el gestor de ventanas, el gestor de geolocalizacién, bases de datos,
telefonia y sensores.

- Software de desarrollo (SDK) que se usa para crear aplicaciones, incluyendo las herramientas

necesarias, plug-ins y documentacion.
En el siguiente punto desarrollaremos estos componentes.

Universitat Autbnoma de Barcelona 19

Albert Férriz Pérez Control de dispositivos con Android

3.2.3 Arquitectura de Android

Application Layer

Mative Apps ;
LCol\tacts, Maps, BIpUE'SC‘I, ete) { Thlrd_Parw Apps ‘ (DeveloperApps ‘
Application Framework
Location-Based Content Window Activity Package
Services Providers Manager Manager Manager
Bluetooth / NFC / e ' Resource
(Telephony J Wi-Fi Direct Notifications ‘ Views w { Manager J
Libraries Android Run Time

Graphics

(OpenGL, SGL, Free Type) Media S5L & Webkit Android Libraries

Surface Dalvik

libc SGLite Manager Virtual Machine

A

AN

Linux Kernel

Power Process Memory

Management Management Management

Hardware Drivers
[USE, Display, Bluetooth, ete.)

N

Figura 2: Arquitectura por capas de Android

Linux Kernel

Los servicios (incluyendo drivers de hardware, gestion de memoria y procesos, seguridad,
redes u gestién de energia) estan controlados por un kernel 3.0 de Linux (para versién
JellyBean 4.3). El kernel también proporciona una capa de abstraccién entre el hardware y el
resto de la arquitectura.

Universitat Autbnoma de Barcelona 20

Albert Férriz Pérez Control de dispositivos con Android

Librerias
Estan en la capa por encima del kernel incluye librearias como

- Libreria para media para el audio y e video

- Surface manager para proporcionar un gestor para la pantalla

- Librerias graficas que incluyen SGL, OpenGL para graficos en 2D y 3D
+ SQLite para soporte nativo para base de datos.

- SSL y WebKit para seguridad integrada para navegadores web.

Android Run Time

Android Run Time es lo que marca la diferencia entre un teléfono Android y un teléfono con
una implementacion de Linux. Incluye las librerias principales y la maquina virtual Dalvik.
Android Run Time es el motor que hace funcionar las aplicaciones y , aparte de las librerias,
forma el nucleo basico del framework.

Android Run Time - Librerias

Aungue la mayoria de las aplicaciones desarrolladas para Android estan escritas en Java,
Dalvik no es una maquina virtual Java.

Las librerias del nucleo de Android proporcionan gran parte de la funcionalidad que esta
disponible en las librerias de Java, ademas de las especificas de Android.

Android Run Time - Dalvik

Dalvik es una maquina virtual que se ha optimizado para asegurar que un dispositivo puede
hacer funcionar multiples instancias eficientemente. Dalvik descansa sobre kernel de Linux
para la gestién de procesos y de memoria de bajo nivel.

Application Framework

El framework de la aplicacién proporciona las clases que se usan para crear aplicaciones
Android. También nos proporciona una abstraccién genérica para el acceso a hardware y
gestiona la interfaz de usuario y los recursos de la aplicacion.

Application Layer

Todas las aplicaciones, tanto las nativas como las de terceros, estan construidas sobre esta
capa a través de la API. La capa de aplicacion funciona dentro del Android Run Time y usa las
clases y los servicios disponibles del application framework.

Universitat Autbnoma de Barcelona 21

Albert Férriz Pérez Control de dispositivos con Android

3.2.4 Android frente a otros

Uno de los aspectos mas importantes a la hora de elegir Android es la facilidad de acceso a los
desarrolladores a diferencia de sus principales competidores:

Android tiene un potente SDK abierto y disponible para todos los sistemas operativos mas
importantes sin tener que desembolsar ni un céntimo. Dispone de una excelente
documentacién y una comunidad de desarrolladores enorme.

: No se necesitan certificaciones para ser un desarrollador de Android
- No existen procesos de aprobacion por parte de Google para distribuir aplicaciones.
- Los desarrolladores tiene control total sobre sus marcas.

Otras compairiias como Apple, limitan el acceso a desarrollar para sus dispositivos limitando los
SDK's a sus maquinas y sistemas operativos, someten las aplicaciones subidas a su tienda a
una aprobacion totalmente subjetiva. Todo esto implica un gran desembolso, econdmicamente
hablando, que puede ser dificil de asumir para algunos desarrolladores.

3.3 Java

Java es el lenguaje elegido para la programacion de practicamente el 99% de la aplicacion.

Para Raspberry disponemos de la libreria Pi4] que nos permite tener acceso total a Raspberry
(configuracidon de pins, pulsos, lectura escritura, comunicacion I2C...) creada por un equipo de
desarrollo que no pertenece a Raspberry, pero muy activa.

El lenguaje de facto para el desarrollo de aplicaciones para Android es Java y dadas esta
situaciones se ha elegido este lenguaje para llevar a cabo todo el proyecto.

3.3 SQLite

SQLite es una base de datos rapida, eficiente y compacta. Es autocontenida, transaccional y no
necesita de servidor ni configuracién.

Como en el caso de Java, SQLite es el motor de base de datos de facto de Android, y en
nuestro proyecto lo usaremos en el lado del servidor (Raspberry) para guardar el histérico de
temperaturas.

En Android el uso de esta base de datos esta justificado debido a las limitaciones de espacio
que suelen tener los dispositivos que usan este sistema operativo.

Universitat Autbnoma de Barcelona 22

Albert Férriz Pérez Control de dispositivos con Android

analisis
Introduccion

En este capitulo llevaremos a cabo un analisis de diferentes aspectos como requerimientos
funcionales, materiales y el personal requerido para realizar el proyecto.

4.1 Requerimientos

Detallaremos cuales son los requerimientos funcionales y no funcionales del proyecto.
4.1.1 Funcionales

El servidor debe permanecer a la escucha

Una vez que el servidor se ha iniciado este debe permanecer a la escucha de los diferentes
dispositivos que quieran interactuar con él.

Para esto el servidor creara dos sockets que permaneceran a la escucha.

Uno de estos sockets se encargara de responder al cliente para decirle que esta activo.

El otro proceso sera el que llevara a cabo la comunicacién real entre servidor y cliente.

Disponible tanto en red local como en Internet

El tipo de red en la que estd conectado el servidor ha de ser transparente al cliente. El
cliente y el servidor se conectaran de manera diferente dependiendo de la red en la que este el
cliente.

Detectaremos si el cliente estd en una red local y en este caso enviaremos una solicitud a
todos los dispositivos conectados a esa red y Unicamente el servidor reconocera esa solicitud
con unos datos concretos y respondera al cliente con la ip y el puerto al que debe conectarse
para hacer las peticiones que requiera.

En el caso de que el cliente no esté conectado a una red local, podra conectarse remotamente
accediendo a un IP concreta.

Notificar de cambio de IP
Cuando el cliente no estd conectado a una red wifi necesita una IP a la que poder acceder. Las
IP's que asignan los ISP's suelen se dindmicas. El servidor comprobara si se ha producido

algun cambio de IP y en caso de que sea asi notificara al cliente con la nueva IP a la que debe
hacer las peticiones.

Universitat Autbnoma de Barcelona 23

Albert Férriz Pérez Control de dispositivos con Android
Creacion de procesos en diferentes Threads

Para poder atender a las diferentes peticiones de uno o mas clientes, todas las solicitudes que
se lleven a cabo por un cliente deben realizarse en Threads diferentes del principal.

Las peticiones que requieran tares que se han de repetir durante un intervalo de tiempo
también han de ejecutarse en procesos diferentes para no bloquear el proceso principal.

Acceso de multiples clientes al servidor

Podran conectarse varios clientes simultadneamente al servidore.
El acceso de clientes estara restringido a los dispositivo que estén identificados.
Se limitara el nUmero de clientes que pueden estar conectados.

Identificacién de dispositivos

Al establecer la conexién cada dispositivos debera identificarse. De esta manera se evitaran
posibles accesos no autorizados y se podra monitorizar quién ha realizado un accion.

Consulta de temperatura actual

El cliente solicitara al servidor que le devuelva la temperatura que esta obteniendo del sensor
de temperatura. Estos datos se enviaran cada vez que se detecte un cambio en la
temperatura.

El envio de los datos se llevard a cabo hasta que el usuario envie la peticion de detener el
envio.

Encendido del sistema de calefaccion

El cliente podra encender o apagar la calefaccion.

Programacion de encendido

El cliente podra programar el encendido de la calefaccion con diferentes opciones.

Podra configurar el encendido por horas, dias y meses. También se podra usar una
combinacion de estas como por ejemplo encender la calefaccion de lunes a viernes a las 8h de
la mafiana hasta las 10h y de las 18h a las 23h.

Registrar temperatura

El cliente podrd programar el registro de la temperatura cada x tiempo. Estos datos se
guardaran en Base de Datos con el fin de obtener estadisticas sobre las temperaturas.

Estadisticas de temperatura

Podra solicitar al servidor datos estadisticos sobre las temperaturas registradas.

Universitat Autbnoma de Barcelona 24

Albert Férriz Pérez Control de dispositivos con Android
4.1.2 No funcionales

Comunicacién cifrada
Al establecer la conexion entre servidor y cliente esta debera estar cifrada, especialmente si se
realiza desde fuera de una red local.

Restriccion de acceso remoto

Antes de poder acceder remotamente al servidor, el dispositivo cliente se debera registrar
como cliente en servidor.

Formato de las estadisticas
Los datos obtenidos de las estadisticas se podran mostrar en varios formatos. Ya sea
simplemente mostrando los valores de resultados concretos o mostrando esos datos en forma
de diferentes tipos de gréficas.

4.2 Planificacion

El desarrollo del proyecto se llevard a cabo por fases. Se dividira el proyecto en diferentes
tareas y subtareas. El modelo de desarrollo que se usarad sera el modelo en cascada
(Waterfall) donde no se puede iniciar una tarea hasta que la anterior no haya finalizado. Esto

nos permite construir el proyecto de una manera mas coherente con las tareas relacionadas.

Asi construimos de forma ascendente las partes del proyecto, desde los elementos que seran
comunes y que proporcionan funcionalidades a las “capas” superiores.

Se facilita el debug de la aplicacion y se proporciona una construccion mas sélida para las
demas partes del proyecto.

4.2.1 Tareas

4.2.1.1 Servidor

Servicio de escucha de peticiones

El servidor ha estar a la escucha de las diferentes peticiones que lleguen del cliente.

Se crearan las clases que manejan las peticiones. Estas clases manejaran la creacion de los
sockets, puertos, etc.. que se necesitaran para conectar con el cliente.

- Se creara la parte que gestionara la recepcidon de paquetes de descubrimiento del servicio.

- Manejo de las conexiones con los diferentes clientes que se conecten al servidor.

La comprobacidon de los cambios de IP del servidor para posteriores notificaciones a los
clientes del cambio.

Universitat Autbnoma de Barcelona 25

Albert Férriz Pérez Control de dispositivos con Android

Gestion de las peticiones

Creacidn de las clase/s necesaria/s que gestionan la peticion que hace el cliente.

El cliente enviard una peticion con los datos que quiere obtener y esta peticion estara
compuesta por un estructura concreta, que identificard la clase y el método que se debe
ejecutar.

Se ocupara de la creacidon de las clases correspondientes y la Ilamada al método requerido
para completar la peticion del usuario.

Controlador y Modelo

Se usara la implementacion del patron MVC de una forma particular ya que en este proyecto la
parte de la vista la representa el socket.

El controlador realizara las funciones de gestidon entre el Modelo y la Vista.

El modelo sera el encargado de ejecutar toda la légica de negocio.

Se creara el controlador y el modelo de Temperatura y todas la acciones que se podran
ejecutar.

Gestion del termostato y la calefaccion

Crearemos los objetos que se encargaran de abstraer el funcionamiento de la calefaccion y el
termostato. Ejecutara las peticiones que reciba del modelo.

Se encargara de interactuar con los GPIO de Raspberry pi obtener los datos del sensor de
temperatura y el encendido y apagado de la calefaccion. Gestionara los estados de los
diferentes componentes y almacenara la informacion de las diferentes interacciones.

4.2.1.2 Android
Descubrimiento del servidor

Se creara las objetos necesarios para tratar el descubrimiento del servidor y la conexién con
este.

Conexion con el servidor

Se creard una clase que abstraiga la conexidon con el servidor y se ocupara del envio y la
recepcion de los datos provenientes de este.

Otra clase se encargara de encapsular y gestionar las peticiones al servidor.

Estructura grafica

Se crearan las pantallas necesarias para facilitar al usuario la interaccién con el servidor y la
obtencién de estos datos y mostrarlos en pantalla en caso de que sea necesario.

Se anadiran los elementos graficos necesarios para permitir la interacciéon con el usuario y el
envio de datos al servidor.

Universitat Autbnoma de Barcelona 26

Albert Férriz Pérez Control de dispositivos con Android

Peticiones al servidor

Se implementara el codigo para que los componentes graficos hagan las peticiones al servidor
cuando el usuario interaccione con la aplicacién. Se gestionara la recepcion de datos devueltos
y se implementara el cédigo necesario para mostrar esta informacidon en los componentes
graficos adecuados.

Notificaciones

Se creara la gestion de las notificaciones que enviara el servidor a través de Google para
informarnos de cambios en la IP proporcionada por el ISP. LA gestién de la nueva IP a la que
conectar sera transparente al usuario que sélo sera informado de que ha habido u cambio de
IP.

Disefio de la aplicacion

Partiendo de los componentes visuales basicos creados para el funcionamiento basico de la
aplicacion, se creara un disefio con la finalidad de que sea funcional para el usuario, facil de
entender y de usar.

Ademas del disefio se buscara usar la mejor forma para la navegacion entre las diferentes
pantallas que componen la aplicacién.

4.3 Recursos

Tal y como describimos en el apartado 2.5.3,el personal que creemos seria el adecuado estaria
compuesto por un Analista, un Ingeniero y un Tester.
Debido a la naturaleza del proyecto todos estos roles estan gestionados por una sola persona.

Detallaremos cuales serian las funciones de los diferentes recursos y que aportarian.

Analista

El analista es la persona encargada de estudiar el dominio del software y prepara los
requerimientos y la especificacién. En este proyecto se encargara de disefiar la estructura de la

aplicacion que correra en el servidor y de la aplicacién de Android.

Debera tener conocimientos sobre el funcionamiento de Raspberry Pi y sus caracteristicas para
adaptar el software a los recursos de que de dispone el dispositivo.

También tendra conocimientos de como funciona Android y sus caracteristicas como versiones
disponibles, porcentaje de usos de cada version para poder llegar a mas dispositivos y los
problemas inherentes a crear apliaciones que funcionen en la mayoria de dispositivos.

Las horas que se asignan a las tareas quedan repartidas de la siguiente manera

Documentacion Analisis Diseno software Total
requerimientos
24 16 16 56

Tabla 7: Asignacion horas/tarea de Analista

Universitat Autbnoma de Barcelona 27

Albert Férriz Pérez Control de dispositivos con Android

Y el coste sera

50 56 2800 €

Tabla 8: Coste de las horas asignadas al Analista

Ingeniero de software

El ingeniero de software se encarga de aplicar los principios de la ingenieria al disefio,
desarrollo, mantenimiento, pruebas de funcionamiento y evaluacion del software y los sistemas
que funcionan en los ordenadores.

En este proyecto el Ingeniero de software trabajara junto al Analista en el disefio de la
aplicacion. También se encargarda de la programacién de la aplicacion aplicando los
conocimientos concretos del lenguaje que se usara y aplicando los principios de Ingenieria del
Software. También especificara los tests que que debera usar el Tester.

Las horas que se asignan a las tareas quedan repartidas de la siguiente manera

Analisis Disefio software Programacion Total
requerimientos
8 8 175 191

Tabla 9: Asignacion horas/tarea del Ingeniero de Software

Y el coste sera

35 191 6685 €

Tabla 10: Coste de las horas asignadas al Ingeniero de Software
Tester

Una vez se haya completado la aplicacion llega el momento de comprobar que el producto
cumple con todas las especificaciones y requisitos y que funciona correctamente. Para esta
tarea asignaremos un Tester que comprobara el cumplimiento de lo especificado haciendo
funcionar la bateria de tests. Todos los posibles errores seran reportados al Ingeniero de
software que los corregira y volveran a ser sometidos a las pruebas.

Universitat Autbnoma de Barcelona 28

Albert Férriz Pérez

Control de dispositivos con Android

Las horas que se asighan a las tareas quedan repartidas de la siguiente manera

Pruebas Total
40 40
Tabla 11: Asignacion horas/tarea del Tester
Y el coste sera
25 40 1000 €
Tabla 12: Coste de las horas asignadas al Tester
4.4 Material

Detallaremos todo el material (tanto fisico, como de software) necesario para el desarrollo del

proyecto.

‘Raspberry Pi, Modelo B

‘ Coste: 33€

‘ Sensor Temperatura

| Coste: 5,43€

‘Teléfono movill Android

‘ Coste: 199€

PC Unidades:2 Coste: 750€/u
Intel core i7

4GB Memoria

Disco duro de 1 TB

Monitor Unidades: 4 Coste: 200€/u

Monitores de 23"

Eclipse IDE 3.6.2

Coste: 0€

Eclipse es el IDE con el que programaremos todo el proyecto, aprovechando la integracion
gue ofrece el SDK de Android.

Java

Coste: 0€

Lenguaje con el que desarrollaremos el proyecto.

Universitat Autbnoma de Barcelona

29

Albert Férriz Pérez Control de dispositivos con Android

SQLite Coste: 0€
Base de Datos

Android Developer Tools Coste: 0€
Plugin para Eclipse para el desarrollo de aplicaciones Android

Ubuntu 12.04 Coste: 0€
Sistema Operativo que instalaremos en los Pc's

PHP 5.4 Coste: 0€
Lenguaje de programacion

GIT Coste: 0€
Software de control de versiones

BitBucket Coste: 0€
Servicio de alojamiento web para sistemas de control de version

Coste total del material 2537,43

Universitat Autbnoma de Barcelona

30

Albert Férriz Pérez Control de dispositivos con Android

implementacion

Introduccion

En este capitulo describiremos de forma técnica como estd disefiado el proyecto y la
interaccion entre los diferentes componentes del sistema.

Dividiremos el el capitulo en tres puntos principales: empezaremos explicando de forma muy
general cdmo es el proceso de descubrimiento del servidor por parte del cliente y
seguidamente continuaremos con la descripcién de la parte del servidor (Raspberry) y la parte
cliente (Android).

5.1 Inicio

Cuando conectamos el servidor para que empiece a funcionar, este se queda a la escucha de
las peticiones del cliente. Pero surge el problema de que el cliente desconoce que ip tiene el
servidor y por tanto no puede comunicarse con él.

Por tanto necesitamos un paso previo, antes de empezar a enviar peticiones al servidor, y es el
de saber quién es el servidor.

5.1.1 En una red local

Si nos encontramos en una red local el proceso de descubrimiento se desarrolla de la siguiente
manera:

1.- El servidor esta funcionando y estd a la escucha de de solicitudes.

2.- El cliente inicia la aplicacién y ve que no tiene ninguna conexidn con el servidor, ni tiene un
direccién de una conexidon anterior. Por tanto envia un paquete UDP a la direccion broadcast de
la red en la que esta con un contenido especial. Se queda a la escucha del servidor.

3.- Todos los ordenadores de la red reciben este paquete, pero sélo el servidor reconoce ese
contenido como un paquete para descubrir el servidor de control.

4.- El servidor envia un paquete al cliente, que contiene la ip y el puerto por el que esta
escuchando para peticiones.

5.- El cliente ahora dispone de la direccidn del servidor y establece la comunicacion.

Ahora el cliente puede hacer todas las solicitudes al servidor que considere.

Universitat Autbnoma de Barcelona 31

Albert Férriz Pérez Control de dispositivos con Android

Figura 3: Proceso de conexion en una red local

5.1.2 En Internet

En el caso de que estemos fuera del alcance de una red local, la forma de conectar con el
servidor es diferente y ademas nos encontramos de que la mayoria de las conexiones a
Internet que nos proporcionan los ISP's son con IP's dindmicas y esto nos impide poder hacer
una conexion directa con nuestro servidor.

Para solventar esto usaremos los servicios de notificacion que nos proporciona Google, Google
Cloud Messaging (GCM).

Gcm es un servicio que nos permite enviar informacion desde nuestro servidor a un dispositivo
Android concreto.

El proceso es el siguiente:

1.- Al iniciar el servidor, se crea un proceso que se ocupa Unicamente de comprobar cada X
minutos si la IP que nos ha asignado el servidor ha cambiado.

2.- Si se detecta que la IP ha cambiado, se envia una notificacién a los servidores de GCM con
la nueva IP del servidor.

3.- El dispositivo recibe una notificacién en su dispositivo informandole que la IP de su servidor

ha cambiado. Automaticamente la aplicacién Android se encargara de usar esa direccion para
cualquier peticion.

Universitat Autbnoma de Barcelona 32

Albert Férriz Pérez Control de dispositivos con Android

Figura 4: Proceso de comunicacion por GCM

Una vez establecida el cliente ha descubierto la al servidor, ya se pueden realizar las peticiones
gue estén disponibles para el usuario.

5.2 Servidor

5.2.1 Diagrama de clases basico del servidor

Controlador

| MulticastSer\rerl

Main -——— - -5 -—-— -|MainController|-=.'% -- -¢ontrolador Imperatur{
-

Diagrama 1: UML de clases basico del servidor
Este diagrama es una visidon global de las principales clases que forman el proyecto. En los

siguientes puntos entraremos en detalle y mostraremos las otras clases que forman parte del
programa.

Universitat Autbnoma de Barcelona 33

Albert Férriz Pérez Control de dispositivos con Android

5.2.2 Funcionamiento del Servidor

El servidor corre la aplicacién principal de todo el sistema. Es el encargado de el control de los
diferentes dispositivos que se conecten a él, que en el caso de este proyecto sera el sensor de
temperatura y el encendido y apagado del sistema de calefaccién.

TCPServer

-serverSocket: ServerSocket
-socket: Socket

-listaDeThreads: List<Thread=
-in: BufferedReader

-out: PrintWriter

-MAX CONEXIONES: static final int
+PORT _TCP: static fimal int

+ TCPServer(): TCPServer
+run(): void

MulticastServer
Main +public static maskFlagBitl: byte
- : - - +maskFlagBit2: byte
+ multicastServer: static MulticastServer 3 +PORT: static final int

+ tcpServer: static TcpServer
+ main(args:Stringll): static void

+ MulticastServer(): MulticastServer
+ run(): void
+ getlpvd(): String

Checklp
+ ultimaIpObtenida: String

+ comprobarNuevaIp(): void
+ enviarNuevaIp(ip:String)

Diagrama 2: UML completo de clases del servidor

La clase Main es el punto de entrada a la aplicacion. Al iniciarse el servidor, crea tres hilos:
MulticastServer y TCPServer se crea los sockets que estaran a la espera de recibir
solicitudes y CheckIp que comprobara los cambios de ip.

Cuando la aplicacién se inicia esta desconoce que IP le ha asignado el router por eso uno de
los los primeros hilos que crea al iniciar la aplicacion es el de la clase MulticastServer.

MulticastServer

MutlicastServer se queda a la escucha de recibir un paquete enviado por broadcast, con unos
datos concretos. Esta accidon se llama “descubrimiento” y la envia el cliente desde el dispositivo
Android para encontrar el servidor al que asociarse.

Entonces se le devuelve al cliente la direccion IP y el puerto del proceso que llevara a cabo
todas las peticiones solicitadas por el cliente. Este proceso esta implementado en la clase
TCPServer.

Universitat Autbnoma de Barcelona 34

Albert Férriz Pérez

TCPServer

Control de dispositivos con Android

TCPServer es el punto de entrada para la gestion de las peticiones del usuario y Unicamente

creara instancias de la clase MainController por cada dispositivo nuevo que se conecte.

TCPServer

-serverSocket: ServerSocket
-socket: Socket

-listaDeThreads: List<Thread=
-in: BufferedReader

-out: PrintWriter

-MAX CONEXIONES: static final int
+PORT TCP: static final int

MainController

- socket: Socket
- cliente: Cliente
- threads: ArraylList<Thread=

- controlador: ControladorTemperatura

+ TCPServer(): TCPServer
+runi(): void

+ MainController(socket:Socket)

- getController({request:String): Controlador

-getMethod(request:String): String

- getParameters(request:String): String

+ addThread(thread:Thread): void
+ runf{): void

Diagrama 3: UML de clases TcpServer y MainCotroller

La logica de la aplicacion empieza en la clase MainController. Esta implementacion sigue el

patron de disefio MVC (Modelo Vista Controlador) de una manera “sui generis” para el

funcionamiento de esta proyecto.

MainController se encargara de interpretar la peticiéon que llega desde el cliente.

Las peticiones estan especificadas con el formato siguiente:

“Nombre del Controlador:Nombre del método[:[parametros]]”.

Entonces MainController creard un objeto de la clase y llamara al método especificados y en

caso de que sea necesario pasara los parametros.

MainController quedara a la espera de que el cliente envie una peticion o directamente cierre

la conexion.

Universitat Autbnoma de Barcelona

35

Albert Férriz Pérez Control de dispositivos con Android

ControladorTemperatura

- termostato: Termostato Termostato
- cliente: Cliente - gplo: GpioController
- modTemperatura: ModeloTemperatura - pin: GpioPinDigitalOutput

ultimaTemperaturaCapturada: static float
Termostato()

getTemperatura(): float
encender(temperatura:fleat): void
apagar(): void

encenderHora (horafencender:int)

- seEstaMonitorizandoTemperatura: boolean »
- pararRegistroTemperatura: boolean

ses: ScheduledExecutorService

future: ScheduledFuture<?>

requestList: static List=ScheduledRequest>

++ + + + [+

ControladorTemperaturalcliente:Cliente)
getActuall): void

stopGettingActual(): woid
getHistoricol(): void
+findRequest(whichMethod:String)

+ iniciarRegistro{minutos:int)

+ seEstaRegistrandoTemperatura(): void

+ pararRegistroTemperatura(): wvoid

+ startTermostato(): boolean
+stopTermostato(): boolean

+ o+ o+ |+

ModeloTemperatura

+ ModeloTemperatural)

+ getTemperatura(): int

+ guardarTemperatura(statement:Statement,
termestato:Termestato): void

Diagrama 4: UML Controlador y Modelo y Termostato

ControladorTemperatura implementa el controlador en el patrén MVC. Se encarga de
gestionar las peticiones del cliente haciendo las peticiones al Modelo que es el que hace la
I6gica de negocio del proyecto. Una vez el modelo le ha devuelto al controlador el resultado, lo
pasa a la vista, que en este caso la vista lo implementa el socket que envia los datos al
cliente. En este caso el ControladorTermperatura se encarga de la gestion de peticiones
relacionadas con el sensor de temperatura y el estado de la calefaccion.

La clase Termostato representa al estado del sensor de temperatura y el estado de la
calefacciéon. Implemente el patron Singleton ya que no debe existir ningan otro objeto que
represente el estado actual de estos componentes. Se encarga de implementar las librerias
Java que gestionan el control de los componentes de Raspberry Pi. Almacena la Ultima
temperatura registrada.

La clase Cliente representa al dispositivo madvil que se conecta con el servidor. Almacena el
socket que conecta con el dispositivo. Se encarga de recibir y de enviar los datos y controla el
estado de la conexioén.

SOLiteConexion

+ conectar(): Statement

Diagrama 5: UML de la clase SQLiteConexion
SqliteConexion es la clase encargada de realizar la conexién con la base de datos sqlite.

Busca el fichero que serd la base de datos y la abre. En caso de que no exista la base de
datos la creara.

Universitat Autbnoma de Barcelona 36

Albert Férriz Pérez Control de dispositivos con Android

ScheduledRequest

className: String
- methodName: String
future: ScheduledFuture<?=

ScheduledRequest {className: String,.methodName:5tring,
future:5cheduledFuture=7=)

getClassMame(): String

setClassName {className: 5tring): woid

getMethodName(): String

setMethodName (methodName:5tring) : void

getFuture(): ScheduledFuture=i=

setFuture(future :5cheduledFuture<?=): void

+

T+ T

Diagrama 6: UML de la clase ScheduledRequest

ScheduledRequest es una de las clases mas importantes de la implementacion del servidor.

Algunas de las peticiones que se hacen al servidor, como puede ser el obtener la temperatura
actual o el registrar la temperatura, necesitan que se ejecuten cada X tiempo. Estas tareas se
llevan a cabo usando ScheduledExecutorService que donde se ejecutan Threads con el
codigo necesario para llevar a cabo las peticiones.

Todos estos procesos los guardamos en un array de objetos ScheduledRequest donde se
asocia el proceso que se ejecutarda con el nombre del método y la clase que la ha creado. De
esta manera cuando el usuario solicite la detencién de estos servicios s6lo deberemos buscar
el objeto ScheduledRequest que haya realizado la llamada y cancelar la ejecucién de ese
proceso.

5.3 Android

En este apartado describiremos el diagrama de clases y componentes de la aplicacion y
ademas contaremos con el apartado grafico que es uno de los aspectos fundamentales de la
aplicacion.

Todas las acciones que el usuario puede hacer conllevan la interaccidon con la interfaz grafica

del usuario y estas peticiones actualizan esa interfaz grafica para mostrar los datos devueltos
por el sevidor.

Empezaremos a describiendo el funcionamiento del framework que Android nos ofrece y la
parte mas directa con el usuario que son las Activities.

5.3.1 Activities

Las activities son la capa de presentacién de las aplicaciones. Las interfaces graficas de las
aplicaciones se construyen extendiendo de la clase Activity. Las Activities usan Fragments y
Vistas para mostrar la informacion y la disposicidon en que ésta se mostrara y para responder a
las acciones del usuario.

Uno de los aspectos mas importantes de las aplicaciones es el ciclo de vida de las Activities.

Universitat Autbnoma de Barcelona 37

Albert Férriz Pérez Control de dispositivos con Android

Las aplicaciones de Android no controlan sus proppios ciclos de vida sino que se ocupa de eso
el RunTime, y lo hace por cada aplicaciones que esta funcionando y por extensién de cada
Activity dentro de cada proceso.

Aunque el Run Time se ocupa del manejo de las Activities y de cuando debe termina su
proceso, el estado de una Activity ayuda a determinar cual es la prioridad de una Aplicacion.
Las Activities se crean y se destruyen o son sacadas de la pila de Activities de la aplicaicon.
Mientras se realizan esas transiciones, podemos encontrar las Activities en cuatro estados
diferentes:

Activa

Cuando una activity esta arriba de la pila de activities significa que esta en primer plano, que
es visible y que el usuario estd interaccionado con ella. Android intentard mantener
funcionando la Activity a cualquier precio matando otras Activities que esten por debajo si es
necesario para asegurarse que la Activity principal tiene todos los recursos que necesite. Esta
activity pasara estar pausada cuando otra Activity sea la activa.

Pausada

En algunos casos la Activity podra estar visible, pero no tendra el foco. En esta situacién la
Activity estara pausada. Se llega a este estado si una Activity transparente o que no sea a
pantalla completa pasa a estar activa delante de otra, como puede ser el caso cuando se
muestra un Dialog con un mensaje informativo o esperando alglna confirmacion por parte del
usuario.

Cuando una Activity estd pausada se le trata como si estuviese activa aunque no tenga
interaccion con el usuario.

En algun caso extremo se puede matar una Activity que estd pausada en caso de que se
necesiten recursos para la que si esta activa.

Cuando una Activity pasa a ser totatalmente invisble se para.

Parada

La activity permanece en memoria y guarda toda la informacidn referente a los estados. En
este caso, si el sistema necesita memoria esta activity es una candidadta a ser eliminada para
obtener esos recursos.

Cuando una activity esta en este estado es importante guardar todos los datos y el estado de
la interfaz de usuario y detener cualquier operaciéon que no sea critica. Una vez que se ha
salido de la activity o se ha cerrado, pasa a estar inactiva.

Inactiva

Antes de matar una activity y antes de que se muestre, su estado es inactivo.
Las activities que estan en este estado, se han eliminado de la pila y se tienen que
volver a iniciar antes de que se puedan mostrar al usuario.

Universitat Autbnoma de Barcelona 38

Albert Férriz Pérez Control de dispositivos con Android

Activity Is Killable

e
'
Activity. Acthity. || Activite. | L] Activity. Acthity. Activity.
onCreate onRestorelnstanceState onStart onResume onSavelnstanceState onPause
< Activity.
onRestart

'
Active Lifetime

Activity.
onsStop

Activity.
onDestroy

Visible Lifetime

i
i
i
v
"
]
i
v
"
]
L
O
i
"
i
v
L
[
r
i

Fuil Lifetime

Figura 5: Ciclo de vida de las activities

Entre las transiciones de los estados comentados anteriormente, el sistema llama a un
conjunto de métodos que se llaman para asegurar que la activity reacciona a los diferentes
cambios de estado.

f Resumed Y
L [visible) o
onResume() onPause()
onResume()
/ started /" Paused
% {visible) i ' partially visible)
onStart(] onstop()
on3tart()
P . &= ™,
i) e < / Stopped 1
 — Created] Restart()————— (hidden) —
onCreate() M0 e Nt e UnDeitrcy[]
I

Ial Destroyed

Figura 6: Ciclo de vida de las activities y callbacks

Universitat Autbnoma de Barcelona 39

Albert Férriz Pérez Control de dispositivos con Android

5.3.2 Diagramas de clase basico

| ActionBar.TablListener | | FragmentActivity

MainActivity

A

I

ProgramacionEncendidoFragment | | MainFragment | I RegistrarTemperaturaFragment

| TemperaturaActualFragment | | EstadoTermostatoFragment | | EstadisitcasFragment

ConexionServidor

Diagrama 7: UML de clases basico Android

Como podemos ver en el diagrama, tenemos unas clases que extienden de la clase Fragment.
Un fragment es forma parte del framework de Android y representa el comportamiento de
una parte independiente de una activity. Los fragments nos proporcionan flexibilidad a la
hora de componer las interfaces graficas y también aporta al poder reusarlo en otras partes de
la aplicacién. En una activity pueden convivir diferentes fragments y cada uno de ellos tiene
su propia ciclo de vida aunque ésta depende principalmente del ciclo de vida de la activity.
Cuando la la activity se pausa los fragments también, si se destruye los fragments
también.

Un fragment siempre ha de estar dentro (pertenecer) a una activity y en nuestro proyecto
cada fragment pasara a formar parte de MainActivity segun el usuario lo requiera.

Cada fragment tendra asociado un layout con los widgets necesarios para que el usuario puede
interactuar con la aplicaciéon y poder mostrar la informacién en pantalla.

Universitat Autbnoma de Barcelona 40

Albert Férriz Pérez Control de dispositivos con Android

Antes de empezar a describir que tarea lleva a cabo cada fragment, debemos detenerlos antes
en explicar una de las clases que usaremos para proceder a hacer todas las peticiones al
servidor, la clase AsyncTask.

Android se preocupa mucho por que la experiencia de usuario sea fluida. A veces las
aplicaciones se pueden colgar, quedarse “congeladas” durante unos instantes o tarda mucho el
llevar a cabo un proceso. Estas situaciones se conocen como ANR (Application Not
Responding) y se lanzan después de que la IU este bloqueada durante 5 segundos.

Cuando Android detecta una de estas situaciones y la aplicaion deja de responder, se le
muestra al usuario un Dialog preguntandole si quiere esperar a que la aplicacion vuelva a
funcionar o quiere cerrarla.

Las aplicaciones que hacen uso de peticiones de internet (como es nuestro caso) son
susceptibles de encontrarse en la situacion de ANR.

Para evitar esto Android nos propone sacar fuera del proceso principal de la interfaz de usuario
todas estas operaciones que pueden bloquear la aplicacion, y ejecutarlos en Threads
diferentes.

El problema que aparece si usamos Threads aparte es que perdemos el contexto de la
aplicacion y en el caso de que tengamos que actualizar o mostrar informacion por pantalla al
usuario, la aplicacion se complicara.

Pero Android nos proporciona la clase AsyncTask que nos soluciona estos dos problemas.
AsyncTask nos permite ejecutar estas aplicaciones que pueden ser bloqueantes en background,
sin bloquear el hilo principal de la aplicacién que es el de la UI. Ademas nos permite actualizar
la UI en caso de que lo necesitemos.

En el método doInBackground es donde se lleva a cabo el cédigo que puede bloquear la Ul y
llamando al método publishProgress desde dentro de doInbackground se ejecuta el
método onProgressUpdate y desde ahi podemos actualizar la IU.

En nuestra aplicacion cada fragment que hace peticiones al servidor, implementa estas
acciones extendiendo de una clase AsyncTask creadas como clases privadas.

EstadisticasFragment

+EstadisticasFragment(]
+onCreateView(inflater :LayoutInflater, container: Viewbroup,
savedInstanceState (Bundlel: View

Diagrama 8: UML de EstadisticasFragment

Se encarga de hacer las peticiones sobre los datos de temperaturas recogidos por el servidor y
los muestra en pantalla. El método onCreateView carga el layout asociado.

Universitat Autbnoma de Barcelona 41

Albert Férriz Pérez Control de dispositivos con Android

TemperaturaActualFragment

+tuTemperaturafctual : TextView
+tvhrados: TextView
-AsyncTask<Void, Float, Veid=::0btenTemperatura

+TemperaturafctualFragment ()

+onCreateView(inflater: LayoutInflater ,container:Viewbroup,
savedlnstanceStateBundle:Bundle) @ View

+setllserVisibleHint (isVisibleTolser :boolean): woid

Diagrama 9: UML de TemperaturaActualFragment

Solicita al servidor cual es la temperatura actual que estd ogbteniendo el sensor de
temperatura. El socket permanece a la escucha para recibir todos los cambios que se detectan
y lo muestra por pantalla. El método onCreateView carga el layout asociado.

EstadoTermostatoFragment

- btnEncender: Button

+ btnApagar: Button

+ estadoAsync: final CambiarEstadoTermostato
+AsyncTask<Boolean, Void, Void=>::CambiarEstadoTermostato

+ EstadoTermostatoFragment (inflater: LayoutInflater,
container :Wiewhroup,
savedInstanceState: Bundle)

+ onCreateViewl)

Diagrama 10: UML de EstadoTermostatoFragment

Hace las peticiones al servidor para encender o apagar la calefaccion. Comprueba antes cual es
el estado en que se encuentra. El método onCreateView carga el layout asocidado.

Universitat Autbnoma de Barcelona 42

Albert Férriz Pérez Control de dispositivos con Android

5.3.3 Interfaz de usuario

En Android las interfaces graficas se crean un ficheros independientes del coédigo. Estos
ficheros son los Layouts y definen la estructura visual de la interfaz de usuario. Los layouts y
los componentes que forman parte de la UI estan escritos en XML.

En cada activity o fragment se cargan estos ficheros que definen la Ul y de esta manera
queda asociado la activity o fragment a el layout concreto. Una vez estan asociados podremos
acceder a los componentes del layout desde el codigo y podremos realizar las modificaciones
que consideremos.

Disponemos de diferentes maneras de acceder a las actividades o fragments, ya sea de en
forma de Tabs o de la forma mas general que es accediendo desde los botones que nos lleven
a las diferentes pantallas.

En nuestro proyecto hemos implementado una de las ultimas formas de navegacién y mas
eficientes entre pantallas llamada Swipe Views y lo combinaremos con Tabs.

Las vistas Swipe proporcionan una navegacién lateral entre pantallas, asi el usuario sélo ha de
desplazar la pantalla hacia uno de los laterales para acceder a otra pantalla.

Coninod

o 19

Figura 7: Navegacion entre las diferentes activities

Universitat Autbnoma de Barcelona 43

Albert Férriz Pérez

Pantalla Principal

@ Control Temperatura

PRINCIPAL ACTUAL TERMOSTATO

ContrOITemperatura

S OO =

Figura 8: Activity principal

Universitat Autbnoma de Barcelona

Control de dispositivos con Android

Esta es la primera pantalla que aparecera al
abrir la aplicacion de Android.

La primera activity que se carga es el
MainActivity que serd el contenedor de
todos los fragments que forman parte de la
aplicacion.

El primer fragment que se carga es
MainFragment.

Este Unicamente se encargard de mostrar el
layout. No habra ningun tipo de interaccién
con el los componentes.

44

Albert Férriz Pérez
Temperatura actual

5
& &

@ Control Temperatura

PRINCIPAL ACTUAL TERMOSTATO

GRADOS

]

Figura 9: Activity Actual

Universitat Autbnoma de Barcelona

Control de dispositivos con Android

En esta pantalla se le mostrara al usuario
la temperatura que esta registrando el
sensor de temperatura.

El fragment que carga esta vista es
TemperaturaActualFragment.

Cuando navegamos entre pantallas vy
llegamos a esta, cuando la vista pasa a ser
visible el fragment se encarga de llamar al
AsyncTask que hara la peticién al servidor.

El socket se quedara leyendo lo que recibe
del servidor hasta que el usuario navega
hacia otra pantalla. Entonce el fragment
volvera a llamar a otro AsyncTask para
decirle al servidor que cancele el envio de
los cambios de temperatura.

Este proceso se repetira cada vez que esta
pantalla esté activa.

Se activa el Tab Actual para mostrar en la
pantalla que estamos.

45

Albert Férriz Pérez

Termostato

@ Control Temperatura

ACTUAL TERMOSTATO REGISTRAR

Grados

Activando el registro se monitorizara y guardaran las
temperaturas.Podra consultar los datos en la pantalla
de estadisiticas

Monitorizar cada .i. A

Inciar monitorizacion

S O =

Figura 10: Activity Termostato

Universitat Autbnoma de Barcelona

Control de dispositivos con Android

La pantalla de Termostato nos da las
opciones de enceder o apagar la
calefaccion y de registrar la temperatura
cada x tiempo.

Para el encendido de la calefaccion
deberemos proporcionar los grados a los
gue queremos que se matenga encendida.

Cuando navega hasta esta pantalla se
pregunta al servidor cual es el estado del
termostato.

El encendido y apagado tiene su propio
asynctask que hara las peticiones al
servidor cuando el switch de encender y
apagar cambie de estado.

En el registro de temperatura el usuario
podrd especificar cada cuando quiere
registrar la temperatura actual.
Introducira el niumero y seleccionara en el
spinner si son minutos o segundos.

Si ya hemos iniciado un proceso de
registro en servidor, el botéon de “Iniciar
monitorizacién” pasara a mostrar el texto
“Detener monitorizacién”.

El registro de temperatura también tiene
su propio asynctask para hacer las
peticiones al servidor, que se ejecutara
cada vez que el usuario presione el boton.

El fragment que se carga es
EstadoTermostatoFragment.

46

Albert Férriz Pérez

Estadisticas

@ Control Temperatura

REGISTRAR ESTADISTICAS

PROGRAMACION

Temperatura media
registrada del 12 de
Agosto al 1 de

Septiembre

Temperatura alcanzada el

3 1 0 29 de Agosto alas 12:15

Temperatura alcanzada el

0 1 de Septiembre a las
3:40

< [

Figura 11: Activity Estadisticas

Universitat Autbnoma de Barcelona

Control de dispositivos con Android

Como su nombre bien indica, en esta
pantalla se muestran los datos que se han

recogido al activar el registro de
temperaturas de la pantalla anterior. Nos
devuelve 3 resultados con las

temperaturas media, maxima y minima de
todos los datos de que se dispone en el
servidor, ademas del momento en que se
registro esa temperatura.

El asyncTask hace la peticién al servidor y
se queda esperando hasta la recepcion de
los datos.

La actualizaciones son constantes si hemos
activado el registro y por tanto cada vez
gue se entre en esta pantalla se solicitaran
los datos nuevamente.

El fragment que se carga es
EstadisticasFragment.

47

Albert Férriz Pérez Control de dispositivos con Android

Programacion

En la pantalla de programacion es donde

& . .
el usuario puede programar el encendido
de la calefaccion.

@ Control Temperatura
La eleccion es multiple ya que puede

REGISTRAR ESTADISTICAS PROGRAMACION seleccionar una combinacion de dias y

meses, solo dias o solo meses.

También especificard de que hora a que
hora estard encendidas proporcionando
un rango de horas.

LUN MAR MIE JUE VIE SAB DOM
El asyncTask enviard la seleccion que
haya hecho el usuario y la guardara y
ejecutara el encendido segiun o
especificado.

ENE FEB MAR ABR MAY

B _§___ _§ __ _§ ___ Para desactivar cualquier programacion

previa, se desactivaran todas las opciones

<UL JUL AGO SEP ocT y el botén de “Programar” pasara a ser
“Desactivar”.

—_ S Se puede sobrescribir una programacion
anterior simplemente creando una nueva.

Encender 00 : 00 Apagar 00 : 00

e

Programar

S O =

Figura 12: Activity Programacién

Universitat Autbnoma de Barcelona 48

Albert Férriz Pérez Control de dispositivos con Android

5.3.4 Notificaciones

Como comentamos en el punto 5.1, cuando estamos fuera del alcance de una red local
necesitamos saber cual es la Ip que nos ha asignado el ISP para poder conectar con nuestro
servidor, pero esta IP cambia dindmicamente y necesitamos saber cuando nuestra IP ha
cambiado y cual es la nueva direccion.

Para informarnos de este cambio el servidor nos envia notificaciones al al teléfono mévil con la
nueva ip.

o Control Temperatura 00:18

El servidor ha cambiado de IP. La nueva IP
es 79.15

Figura 13: Notificacién cambio de IP

Para gestionar la recepcion de las notificaciones y el manejo de estas y del contenido que nos
proporcionan usaremos las clases GCMBroadcastReceiver, GCMIntentService vy
GCMRegister.

GcmRegister

SENDER ID: S5tring

regld: String

gcm: GoogleCloudMessaging
context: Context

¥+ + + +

registrarse{): void

Diagrama 11: UML de GcmRegister

Antes de poder recibir notificaciones, necesitamos que nuestro dispositivo se registre en los
servidores de GCM. Cuando un dispositivo se registra obtiene un ID que identificara al
dispositivo al que enviar las notificaciones. De estos pasos se encarga la clase GCMRegister.

WakefulBroadcastReceiver

GcmBroadcastReceiver

+ onReceive{context:Context,.intent:Intent): wvoid

Diagrama 12: UML de GcmBroadcastReceiver

Universitat Autbnoma de Barcelona 49

Albert Férriz Pérez Control de dispositivos con Android

GCMBroadcastReceiver lleva a cabo la recepcion de los mensajes de GCM. Como podemos
ver hereda de la clase WakefulBroadcastReceiver que es un tipo especial de receptores de
broadcast que se asegura de la CPU estd activa aunque la pantalla no esté activa para que el
proceso de pasar los mensajes a la clase que se encargara de tratar la informacién contenida
en la notificacién no se queda sin concluir.

IntentService

GecmintentService

MOTIFICATION ID: static final int
miMotificationManager: NotificationManager
builder: NotificationCompat.Builder

GomIntentService()
onHandleIntent(intent: Intent): wvoid
sendMotification{msg:5tring): wvoid

+

+ + + |+

Diagrama 13: UML de GcmIntentService

GCMIntentService es la clase que se encarga de gestionar el mensaje recibido. Obtiene los
datos de la nueva IP para usarlos par la aplicacién y muestra la notificacion que vera el usuario
en la prte superior de su teléfono donde podra ver el icono de la aplicacién y un pequeiio texto
informandole que se ha obtenido la nueva ip del servidor.

5.4 SQLite

Cuando el usuario decide registrar las temperaturas durante unos intervalos de tiempo, esta
informacién se guarda en una base de datos llamada SQLite. Esta base de datos nos ofrece
toas lo que necesitamos para almacenar la informacién relacionada con la temperatura y las
fechas.

Esta base de datos no precisa de configuracion, tiene un tamano realmente pequefio y es igual
de eficaz y confiable que otras bases de datos de mas renombre.

Diagrama 14: UML de Base de Datos

Unicamente usaremos una tabla para almacenar estos datos. Podremos realizar desde cédigo

Universitat Autbnoma de Barcelona 50

Albert Férriz Pérez Control de dispositivos con Android

varios tipos de de estadisticas y filtrar por rangos de fecha y hora.
5.5 Pi4]

Esta es la libreria para Java que usara el servidor para realizar todas las comunicaciones con
los pins GPIO de Raspberry.

Pi4] es un proyecto creado por una comunidad de usuarios que proporcionan un puente entre
las librerias nativas y el lenguaje Java para proporcionan un acceso completo a las pins de
raspberry.

Aunque es proyecto aun se encuentra en fase de desarrollo es muy estable.
Algunas de las funciones disponibles para la version 0.0.5 son:

 Export de pins GPIO

- Configurar de los pins GPIO para entrada/salida

+ Configurar el limite de deteccion de cambio para los pins GPIO

+ Enviar pulsos

- Leer los estados de los pins GPIO

- Permanece a la escucha de cambios de estado (basado en interrupciones)

Universitat Autbnoma de Barcelona 51

Albert Férriz Pérez Control de dispositivos con Android

pruebas

Introduccién
Para asegurarnos de que el software que hemos programado cumple con los requisitos

especificados y que funciona correctamente, someteremos el software a las pruebas requeridas
para hacer estas comprobaciones.

Pruebas realizadas

Recepcion/Envio descubrimiento
Creacion del Thread

En caso de que en Main de la aplicacion del servidor encuentre un error al crear la clase
TCPServer que extiende de Thread. Este debe lanzar una expcepcion NullPointerException.

Iniciaremos la aplicacion varias veces para comprobar que la creacion se crea correctamente.

Forzaremos que falle la creacién de la clase para comprobar que capturamos la excepcion.

Tipo de prueba Resultado

Creacion del Thread

Forzamos el error y comprobamos excepcién

Creacion del socket

Comprobamos que se crea el socket correctamente y permite el envio y recepcién de datos. En
caso de que surja algun problema al abrir el socket lanzard una expcepcion IOException.
Comprobaremos si controla la excepcion lanzada, informa al usuario mostrandole el mensaje
por consola y para la ejecucién del programa.

Si el numero de puerto al que se pone a escuchar el socket esta fuera del rango de puertos
permitidos (0 a 65535) se lanzard una excepcion del tipo IllegalArgumentException.
Comprobaremos que captura la excepcion, informa al usuario mostrandole la informacion por
consola y paramos la ejecucién del programa.

Universitat Autbnoma de Barcelona 52

Albert Férriz Pérez Control de dispositivos con Android

Tipo de prueba Resultado

Creacion del socket
Captura error nimero puerto fuera del rango

Maximo de conexiones del servidor

Existe un maximo de clientes permitidos haciendo peticiones al servidor.

Cuando se supera el limite de clientes conectados el servidor debe rechazar la conexion.
Comprobaremos que el comportamiento al alcanzar el maximo + 1 por parte del servidor es el
de cerrar la conexién con el cliente.

Tipo de prueba Resultado

Cerrar socket al sobrepasar el limite de conexiones

Comprobacion de cambio de IP

Se crea un Thread que ejecutard una comprobacién de la IP cada x tiempo. Comprobaremos
que se crea correctamente y forzaremos que falle para comprobar que lanza la excepcién
NullPointerException. En caso de que falle la creacion se notificard por consola al usuario con
un mensaje y reintentara la creacion del socket.

Comprobaremos que la consulta de cambio de IP se realiza en el tiempo especificado.

Forzaremos el cambio de IP para comprobar si envia la notificacién y el dispositivo lo recibe
con la nueva IP.

Tipo de prueba Resultado

Creacion del Thread
Consulta de IP en el tiempo especificado
Forzamos el error y comprobamos excepcion

Bucle de recepcion de peticiones

Cuando el cliente ha establecido la conexion con el servidor, el servidor se queda en un bucle
esperando a la recepcion de peticiones. Se detendra el bucle en el caso de que el cliente cierre
la conexidn o envie la orden explicita de cerrar la conexion.

Comprobaremos que el bucle se detiene cuando recibe la peticiéon de parar y cierra la conexion
con el cliente correctamente y acaba el Thread correspondiente con esta conexion.

Comprobaremos que el servidor cierra el socket si el cliente cierra la conexidon repentinamente.
Se lanzara una excepcidon que deberemos capturar. Saldremos del bucle y acabara el Thread.

Universitat Autbnoma de Barcelona 53

Albert Férriz Pérez Control de dispositivos con Android

Tipo de prueba Resultado
Recibimos la orden de detener la ejecucion
Sale del bucle y cierra la conexion con el cliente
Se cierra el Thread

Tipo de prueba Resultado
Cierra el socket si el cliente cierra la conexidn
Tratamos la excepcién y salimos del bucle
Se cierra el Thread

Peticiones de clases o métodos no existentes

El cliente envia las peticiones especificando la clase y el método a ejecutar y los parametros si
se requiere. En el caso de que no exista la clase o el método se lanzaran excepciones.

Cuando se solicita un método o una clase que no existe, el tipo de los parametros no es
correcto u otras posibles situaciones en las que no se pueda llevar a cabo la llamada al objeto
y método requerido, se lanzaran las siguiente excepciones: NoSuchMethodException,
SecurityException, IllegalAccessException, IllegalArgumentException,
InvocationTargetException

Tipo de prueba Resultado

Capturamos la excepcion que se lanza al invocar una clase
inexistente

Capturamos la excepcion que se lanza al invocar un método
inexistente

Capturamos la excepcion que se lanza al invocar un método
con tipos erréneos, o nimero de parametros incorrectos.

Obtener temperatura

El envio de la temperatura se envia cada vez que esta cambia y mientras el usuario no cancele
el envio.

Comprobaremos que envia la temperatura cada vez que cambia la temperatura aplicando calor
al sensor de temperatura y dejando que vuelva a la temperatura ambiente donde el cambio de
temperatura es minimo vy el envio del cambio se realizard con menos frecuencia.

Tipo de prueba Resultado

Envio de la temperatura con cada cambio de temperatura
siempre que el usuario no cancele la monitorizacion.

Universitat Autbnoma de Barcelona 54

Albert Férriz Pérez Control de dispositivos con Android

Detener procesos que se ejecutan cada x tiempo

Los procesos que se han de ejecutar cada x tiempo se ejecutan en Threads aparte.
Se creara un objeto que guardara el proceso y la clase y el método que lo ha ejecutado. Cada
vez que se cree uno de estos objetos se almacenara en una lista.

El usuario enviara la peticion de detencion de ese proceso, especificando la clase y el método.
Se buscara ese proceso en la lista y se detendra. Comprobaremos que encuentra el proceso, y
gue lo detiene. Si no existe el proceso mostrara por consola que no existe ningln proceso con
esas caracteristicas y continuara el programa normalmente.

Tipo de prueba Resultado

Creacion del objeto ScheduledRequests que identifica los
procesos que se ejecutan cada x tiempo

Detiene el proceso cuando el usuario solicita la detencién

Si no se encuentra ningun método con los parametros
especificados, muestra un mensaje por consola y continua la
ejecucion.

Gestion sensor y pins Raspberry

Comprobaremos que podemos encender y apagar la calefaccién enviando las peticiones a los
pins seleccionados.

Deteccién y lectura de la temperatura del sensor, en caso de que no pueda leer la temperatura
el valor sera 0.

El acceso a los recursos de Raspberry se han de hacer como superusuario, en caso contrario la
aplicacion se detiene.

Tipo de prueba Resultado

Encendido y apagado
Sensor de temperatura

Acceso como superusuario y como usuario sin privilegios

Universitat Autbnoma de Barcelona 55

Albert Férriz Pérez Control de dispositivos con Android

conclusiones

Introduccion

Dedicaremos el ultimo apartado de la memoria para aportar las conclusiones finales del
proyecto que se ha realizado.

7.1 Valoracion

Para llevar a cabo el proyecto se han utilizado muchas tecnologias diferentes y de diferentes
complejidades.

Podriamos diferenciar 3 grandes bloques, que han supuesto grandes retos para solucionar.

Por un lado el uso de Raspberry Pi ha supuesto que tuviese que documentarme sobre el
aparatdo electrdnico del proyecto com el uso de sensores, relés, resistencias y conexiones. La
investigacién sobre como funcionan este tipo de dispositivos me permitido tener una vision
global de los proyectos que se pueden llegar a llevar a cabo con este tipo de dispositivos.
Ademas esta investigacion me he parmitido conocer los otros dispositivos que complementan a
Raspberry, como pude ser Arduino, y el gran potencial que esta combiancién dispone.

En lo referente a la comunicacién entre diferentes dispositivos mediante sockets y el uso de
Threads ha sido de las partes mas complejas de resolver. Esto me ha supuesto la investigacion
y la lectura de muchos recursos y por supuesto muchas hora de programacion.

Y por ultimo destacaria la parte de Android que ha sido la otra parte que ha requerido muchas
horas de investigacion y busqueda en los difertentes tutoriales que Google nos ofrece.

Lo mas importante a destacar es el conocimiento que he obtenido al tener que investigar en
los tres bloques descritos anteriormente. Ha supuesto todo un reto personal y una gran
satisfaccion poder cumplirlo con éxito.

Ademas me ha hecho interesarme mucho por los proyectos que se desarrollan con Raspberry y

Android. Sin duda continuaré investigando con todo lo relaciondo con estos campos ya que,
personalmente, el campo de innovacién es realmente grande.

7.2 Objetivos marcados

Por la naturaleza del proyecto y de que trabajamos con tecnologias de las que hemos ido
aprendiendo durante la realizacién de este, durante el desarrollo del proyecto hemos
encontrado problemas inesperados que han ralentizado el progreso.

Debido a esto no hemos podido cumplir con algunas de las funcionalidades que se habian
propuesto llevar a cabo, debido a la falta de tiempo.

Universitat Autobnoma de Barcelona 56

Albert Férriz Pérez Control de dispositivos con Android

A pesar de esto se han cumplido con todas las funcionalidades necesarias para hacer las dos
aplicaciones, tanto Raspberry como Android, funcionen satisfactoriamente y ofrecer un
producto acabado al usuario.

7.3 Lineas futuras

Habiendo cumplido con practicamente todos los requisitos propuestos y basandonos en el
objetivo global del que se propuso este proyecto, se propondran ampliaciones al proyecto.
Registros

Uno de los objetivos del proyecto era el del control de diferentes dispositivos y el de la
recoleccion de los datos que estos dispositivos u otros sensores nos puedan proporcionar.

La recoleccion de estos datos es log ue le aportara la informacion al usuario sobre sus
CONSUMos.

Por tanto una de las ampliaciones futuras sera la ampliacion de la base de datos del servidor
con diferentes tablas para capturar informacién de otros dispositivos o sensores.

Estadisticas

Los datos recogidos y almacenados deberian poder mostrarse al usuario de diferentes maneras
para que le sean los mas Uutiles posibles.

La ampliacion de las formas de visualizacién de estos datos tanto en dispositivos méviles como
en una aplicacion web, o el uso de filtros para seleccionar los datos precisos, seria otra de las
ampliaciones a llevar a cabo.

Aplicacién WEB

Aunque la consulta de los datos el teléfono movil es una forma facil y rapida de consulta de
datos, esta es bastante limitada.

La flexibilidad que nos ofrecen las aplicaciones web es un punto a considrear para posibles
ampliaciones, y ofrecer al usuario otras formas de consulta de sus datos con formas mas
potentes y visuales.

Control otros dispositivos

El control de otros dispositivos o componentes de una casa, como podrian ser las luces, es uno

de los campos naturales de ampliacién de este proyecto. Ademas la integracién del control de
diferentes dispositivos en una misma aplicacion.

Universitat Autobnoma de Barcelona 57

Albert Férriz Pérez

8 bibliografia

[1] Android Developers
http://developer.android.com/index.html

[2] Raspberry Pi
http://www.raspberrypi.or

[3] The Pi4] Project
http://pi4j.com

[4] RPi Low-level peripherals
http://elinux.org/RPi_Low-level peripherals

[5] Professional Android 4 Application Development
Reto Meier, Wrox

[6] Bruce Eckel, Piensa en Java 22 Edicion
Pearson, Prentice Hall

[7] Java 7 API Specification
http://docs.oracle.com/javase/7/docs/api/

[8] Java Tutorials: Concurrency

http://docs.oracle.com/javase/tutorial/essential/concurrency/

[9] Java Tutorials: Java Remote Method Invocation (RMI)
http://docs.oracle.com/javase/tutorial/rmi/index.html

[10] Java Tutorials: Sockets
http://docs.oracle.com/javase/tutorial/sdp/index.html

[11] SQLite Documentation
http://www.sqlite.org/docs.html

Universitat Autbnoma de Barcelona

Control de dispositivos con Android

58

http://developer.android.com/index.html
http://www.sqlite.org/docs.html
http://docs.oracle.com/javase/tutorial/sdp/index.html
http://docs.oracle.com/javase/tutorial/rmi/index.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/
http://docs.oracle.com/javase/7/docs/api/
http://elinux.org/RPi_Low-level_peripherals
http://pi4j.com/
http://www.raspberrypi.org/

Albert Férriz Pérez Control de dispositivos con Android

[12] Sommerville, Ingenieria del software 92 Edicidn
Addison-Wesley, Pearson

[13] Raspberry Pi Temperature Sensor, University of Cambridge
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature

[14]Google Cloud Messaging for Android
http://developer.android.com/google/gcm/index.html

Universitat Autbnoma de Barcelona 59

http://developer.android.com/google/gcm/index.html
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature/

Albert Férriz Pérez Control de dispositivos con Android

Anexos

Albert Férriz Pérez Control de dispositivos con Android

indice de tablas

Tabla 1: Costes de material

Tabla 2: Coste/hora del personal

Tabla 3: Tareas y asignacion

Tabla 4: Coste del proyecto por categorias

Tabla 5: Especificaciones de Raspberry A/B

Tabla 6: Especificaciones Cubieboard

Tabla 7: Asignacion horas/tarea de Analista

Tabla 8: Coste de las horas asignadas al Analista

Tabla 9: Asignacion horas/tarea del Ingeniero de Software
Tabla 10: Coste de las horas asignadas al Ingeniero de Software
Tabla 11: Asignacion horas/tarea del Tester

Tabla 12: Coste de las horas asignadas al Tester

Indice de figuras

Figura 1: Raspberry modelo B

Figura 2: Arquitectura por capas de Android

Figura 3: Proceso de conexion en una red local
Figura 4: Proceso de comunicacion por GCM

Figura 5: Ciclo de vida de las activities

Figura 6: Ciclo de vida de las activities y callbacks
Figura 7: Navegacion entre las diferentes activities
Figura 8: Activity principal

Figura 9: Activity Actual

Figura 10: Activity Termostato

Universitat Autbnoma de Barcelona

10

10

15

18

27

28

28

28

29

29

16

20

32

33

39

39

43

44

45

46

60

Albert Férriz Pérez Control de dispositivos con Android

Figura 11: Activity Estadisticas 46
Figura 12: Activity Programacion 48
Figura 13: Notificacién cambio de IP 49

Indice de diagramas

Diagrama 1: UML de clases basico del servidor 33
Diagrama 2: UML completo de clases del servidor 34
Diagrama 3: UML de clases TcpServer y MainCotroller 35
Diagrama 4: UML Controlador y Modelo y Termostato 36
Diagrama 5: UML de la clase SQLiteConexion 36
Diagrama 6: UML de la clase ScheduledRequest 37
Diagrama 7: UML de clases basico Android 40
Diagrama 8: UML de EstadisticasFragment 41
Diagrama 9: UML de TemperaturaActualFragment 42
Diagrama 10: UML de EstadoTermostatoFragment 42
Diagrama 11: UML de GcmRegister 49
Diagrama 12: UML de GecmBroadcastReceiver 49
Diagrama 13: UML de GcmlIntentService 50
Diagrama 14: UML de Base de Datos 50

Universitat Autbnoma de Barcelona 61

Albert Férriz Pérez Control de dispositivos con Android
Glosario

Hardware
El término hardware hace referencia a los diferentes componente fisicos que forman parte de
un sistema informatico.

Microcontrolador

Un microcontrolador es un circuito integrado (también conocido como chip) que se encarga de
ejecutar las instrucciones almacenadas en la memoria. Un microcontrolador estd compuesto
por una unidad central de procesamiento, memoria y periféricos de entrada y salida.

Red local
Interconexion de diferentes dispositivos en una misma red.

UDP

UDP es el acronimo de User Datagram Procol. Es un protocolo perteneciente a la capa de
transporte y permite el envio de datagramas sin que exista un establecimiento previo de la
conexion.

TCP

TCP es el acronimo de Transmision Control Protocol. Al igual queUDP perenece a la capa de
transporte. TCP es un protocolo orientado a la conexion, lo que significa que préviamente
establece una conexion entre los dos dispositivos. Ademas permite el control de errores de
envio/recepcion.

BBDD

Es la base de datos donde se almacenan los datos, donde esta informacion es indexada y
estructurada de forma que se pueda obtener esta informacidn posteriormente de forma rapida.

Memoria RAM

Es la memoria de acceso rapido de la que disponen todos los ordenadores. Es donde se
almacenan los datos de los programas en ejecucién en un ordenador y las instrucciones que
estas deben hacer.

Plugin
Los plugins son pequefas funcionalidades que se instalan en un programa ya existente, para
anadirle nuevas caracteristicas y funcionalidades.

Gestor de control de versiones

Los gestores de versiones facilitan el desarrollo del software, almacenando los cambios que se
van produciendo a lo largo del desarrollo. Nos permite hacer modificaciones en el cédigo de un
programa sin afectar a la version principal y posteriormente unir los dos cédigos. También
facilita el desarrollo en equipo ya que evita que un desarrollador pise los cambios realizados
por otro.

Universitat Autbnoma de Barcelona 62

Albert Férriz Pérez Control de dispositivos con Android

Repositorio

El repositorio es donde se almacena el cddigo que gestiona el Gestor de control de versiones.
Todos los desarrolladores obtendran el cddigo de este repositorio central y lo actualizaran con
los nuevos cambios que haya realizado.

GPIO

GPIO es el acronimo de General Purpose Input Output son los pins de Raspberry Pi donde
podremos conectar dispositivos externos, como pueden ser leds, motores de pulsos, circuitos
externos.

I12C (Inter-Integrated Circuit)
Algunos de los pins de Raspberry Pi disponen de I2C, que es un bus de comunicaciones en
serie. Se usa para comunicar microcontroladores y sus periféricos.

PWM (Pulse With Modulation)
Algunos de los pins de Raspberry Pi disponen de PWM, que es una sefial que se envia
periédicamente para transmitir informacion para, por ejemplo, el control de motores.

Ethernet

Ethernet es una tecnologia que se usa en las redes locales y que especifica las caracteristicas
de cableado y sefnalizacion del nivel fisico y los formatos e las tramas de datos de la capa de
enlace de datos.

CPU
Es la parte principal de un ordenador, es donde se llevan a cabo todas las instrucciones
especificadas por los programas, las interpreta y las ejecuta.

GPU
Es un procesador similiar a la CPU pero que en este caso se encarga Unicamente del
procesamiento grafico.

SoC (System on Chip)
Son las tecnologias que integran algunos componentes que forman parte en un ordenador, en
un unico circuito integrado.

ARM

Es un arquitectura de procesadores que esta compuesta por 32 instrucciones. Son
procesadores simples y ideales para dispositivos de baja potencia, por este motivo son los que
mas se usan en dispositivos moviles.

Hardware libre
Son los dispositivos de hardware de los cuales las especificaciones y los diagramas son
publicos y que pueden ser recreados por cualquiera.

Dalvik Virtual Machine
Es la maquina virtual que utiliza Android para ejecutar los programas de Android.

Universitat Autbnoma de Barcelona 63

Albert Férriz Pérez Control de dispositivos con Android

Framework
Es un conjunto de herramientas y patrones que usaremos para la implementacidon de una
aplicacion, donde nos proporcionara las librerias y clases necesarias.

SDK
Es el kit de desarrollo necesario para poder crear programas para un sistema concreto.

Kernel

El kernel es la parte principal de un Sistema Operativo. Facilia el acceso seguro al hardware,
gestiona la memoria y gestiona los procesos.

Sockets

Un socket es una abstraccion que representa los puntos de conexién de un ordenador a otro a
través de una red.

Puertos

Un puerto esta estrechamente relacionado con el socket, ya que representa donde nos hemos
de conectar del socket y que parte de nuestro socket dejamos para que otros se conecten a
nosotros.

IP
Es un protocolo de internet que identifica los dispositivos dentro de esta.

ISP
Son las empresas que contratamos para que nos provean acceso a internet.

Universitat Autbnoma de Barcelona 64

Control de dispositivos con Android

Albert Férriz Pérez

60far <
4|_u¢=.._.=_d.ln H|H&
& -
T —————
Ifafx[rafs]riwlalalx[1][s[riwlalalx[r[s]r{wjalalx[1][s[r[w[al]AalX
£T,d3s ot €T, 035 50| £T, das zo €T, 082 97| £T, 088 6T €T, 082 ZT] €T, 082 50 ET, INT6Z] ET,|
ET/60/OT UN| ET/RO/AT UN] SEIPQ) uld g1
£1/A0/60 UN| ET/80/0Z Un| SEJOY (i seganig 71
* “T/80/L7 1BWT/L0fpT 3IW SEIOUSH pospuy | 11
- ET/L0/TT un|:T/o0/cT JeW Seioy (g idAssgdsey | o1
“1/80/17 1ew:T/o0/Sz 1ew seip 5/ ugiewesdold 6
] j ET/00/4T UN|:T/00/6T BIW SBIOY $T ploJpuy g
c - *1/90/6T 21w ET/90/LT Un| Sesoy QT id husagdsey | ¢
mw lL £1/00fy un| £T/o0/fTUn] Sepg 3lemyos |ap ouasig| g
Q j S1/90/8T JeW ET/90/LTUN] Seloy g ugnIuRg | S
© e S £1/o0/cTanl£1/00/0T UN| SeloyoT slsijeuy ¥
m [i—— *T/90/8T Jew £1/90/0T unj SEIp £ sozlwlenbasasey ¢
© ouwnpy £ 1 |£T/90/0T un| €T/90/E0 Un| SBIOYHT uoejuawniog 7
2 _m_c.....moﬂo ET/o0/E0Un| £T/00/E0Un] SEIpQ ol 1
O TITs[r[W[a[A[X[T[S[T[W[aQ[A[X[T[S[T[W[Q[A[X[T[S][T[W]Q
O g g1, Il ct] £T, I 80 £T, I 10 ET, unl 47 ET, unl 41| ET,unl o1 g7, unl €g| ud oawoy ugieIng salejapaiquoy Pl

65

Universitat Autbnoma de Barcelona

Sabadell, Septiembre de 2013

Firmado: Albert Férriz Pérez

