

 1

5250: Agenda Deportiva

Memoria del Proyecto Final de Carrera

de Ingeniería Informática

realizado por

Julián Ruiz Burgos

y dirigido por

Xavier Roca Marva

Bellaterra 12 de Septiembre de 2013

 2

 3

Escola Tècnica Superior d’Enginyeria

El sotasignat, Xavier Roca Marva

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota la
seva direcció per en

Julián Ruiz Burgos

I per tal que consti firma la present.

Signat: Xavier Roca Marva

Bellaterra, 13 de Septembre de 20013

 4

 5

Tabla de contenido

1. Introducción 9

1.1 Motivaciones del proyecto y temática del proyecto 9
1.2 Estado del arte 11
1.3 Descripción de la aplicación 13
1.4 Planificación temporal 15
1.5 Herramientas utilizadas 17

2. Análisis de requerimientos 19

2.1 Identificación de los interesados 19
2.2 Diagrama Entidad/Relación 21
2.3 Requerimientos funcionales 23

2.3.1 Modelo de Casos de uso 23
2.3.2 Diagramas de secuencia 36

3. Diseño 39

3.1 Método de desarrollo 39
3.2 Arquitectura de la aplicación 41

3.2.1 Diseño de clases 41
3.3 Diseño de la base de datos 49

3.3.1 Estructura 49
3.4 Diseño de la Interfaz 53

4. Implementación y pruebas 57

4.1 Lenguaje utilizado y herramienta de desarrollo 57
4.2 Implementación de la aplicación. 59

4.2.1 Sistema de clases 59
4.2.2 Implementación de la base de datos. 61
4.2.3 Implementación de la interfaz 71

4.3 Instalador y ejecutable 75

5. Conclusiones y vías de continuación 79

6. Bibliografía 81

7. Anexos 85

7.1 Diagramas de Gantt 85
7.2 Diagrama Entidad/relación 88
7.3 Diagramas de secuencia 91

7.3.1 Módulo General 91
7.3.2 Módulo Ejercicios 96
7.3.3 Módulo Dietista 105
7.3.4 Módulo Calendario 111

7.4 Interfaz (Diseño) 121
7.5 Incidencias durante la implementación 131

 6

ILUSTRACIÓN 1: DIETA, EJEMPLO EXTRAÍDO DE WWW.SALUDYMEDICINA.ORG ... 21

ILUSTRACIÓN 2: "RUTINA VANE", EJEMPLO EXTRAÍDO DE WWW.MUSCULACIONPARAPRINCIPIANTES.COM 22

ILUSTRACIÓN 3: REPRESENTACIÓN GRÁFICA DEL MÉTODO ITERATIVO INCREMENTAL. EJEMPLO EXTRAÍDO DE

WWW.SYNDERS.US... 39

ILUSTRACIÓN 4: DIAGRAMA DE CLASES DEL MÓDULO EJERCICIOS .. 43

ILUSTRACIÓN 5: DIAGRAMA DE CLASES DEL MÓDULO DIETISTA ... 45

ILUSTRACIÓN 6: DIAGRAMA DE CLASES DEL MÓDULO CALENDARIO .. 48

ILUSTRACIÓN 7: ESTRUCTURA DE LA BASE DE DATOS, MÓDULO GENERAL ... 50

ILUSTRACIÓN 8: ESTRUCTURA DE LA BASE DE DATOS, MÓDULO CALENDARIO .. 50

ILUSTRACIÓN 9: ESTRUCTURA DE LA BASE DE DATOS, MÓDULO EJERCICIOS ... 51

ILUSTRACIÓN 10: ESTRUCTURA DE LA BASE DE DATOS, MÓDULO DIETISTA.. 52

ILUSTRACIÓN 11: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO GENERAL, LA VENTANA QUE APARECE AL EJECUTAR LA

APLICACIÓN. ... 53

ILUSTRACIÓN 12: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO EJERCICIOS. .. 54

ILUSTRACIÓN 13: DISEÑO DE LOS PASOS A SEGUIR POR EL USUARIO DE LA APLICACIÓN PARA AÑADIR UN NUEVO EVENTO. 55

ILUSTRACIÓN 14: DESCRIPCIÓN DE LA CLASE STREAMREADER EN LA LIBRERÍA DE CLASES DE MICROSOFT. 57

ILUSTRACIÓN 15: EXPLORADOR DE SOLUCIONES DE VISUAL STUDIO 2010 ... 58

ILUSTRACIÓN 16: DIAGRAMA DEL PROCEDIMIENTO DE IMPLEMENTACIÓN DE LAS CLASES ... 59

ILUSTRACIÓN 17: ARRIBA, CAPTURA DE LA IMPLEMENTACIÓN DE LOS CONSTRUCTORES DE LA CLASE COMIDA; ABAJO, CAPTURA

DE LA IMPLEMENTACIÓN DE LOS MÉTODOS DE LA CLASE DE PRUEBAS QUE COMPRUEBAN EL CORRECTO

FUNCIONAMIENTO DE DICHOS CONSTRUCTORES. .. 60

ILUSTRACIÓN 18: CAPTURA DEL FICHERO DE LA BASE DE DATOS EJERCICIOSBASE. ... 61

ILUSTRACIÓN 19: CAPTURA DE UN FICHERO QUE CODIFICA UN CALENDARIO. ... 62

ILUSTRACIÓN 20: DIAGRAMA DE ESTADOS DE LA CARGA DE INFORMACIÓN DE LA BASE DE DATOS. 63

ILUSTRACIÓN 21: LAS FUNCIONES CARGARBASEDATOSCATEGORIASBASE() Y

CARGARBASEDATOSCATEGORIASPERSONALIZADAS() LEEN DE LOS FICHEROS CATEGORIASBASE.TXT Y

<NOMBREUSUARIO>.TXT LA INFORMACIÓN REFERENTE A LAS CATEGORÍAS BASE Y LAS ESPECÍFICAS DE CADA USUARIO

RESPECTIVAMENTE. .. 64

ILUSTRACIÓN 22: LECTURA DE LOS EJERCICIOS BASE DEL FICHERO DE LA BASE DE DATOS. .. 64

ILUSTRACIÓN 23: PROCESO PARA LEER LOS EJERCICIOS PERSONALIZADOS DE USUARIO DEL FICHERO DE LA BASE DE DATOS. ... 65

ILUSTRACIÓN 24: GENERARARBOLCATEGORIASYEJERCICIOS() SE ENCARGA DE CREAR Y RELLENAR EL ARBOL QUE MOSTRARÁ

POR PANTALLA LAS CATEGORÍAS Y EJERCICIOS CARGADOS. .. 66

ILUSTRACIÓN 25: CAPTURA DE PANTALLA DE LA APLICACIÓN EN EJECUCIÓN DONDE SE MUESTRA EL ÁRBOL CON LAS

CATEGORÍAS Y EJERCICIOS. ... 66

ILUSTRACIÓN 26: CAPTURA DE LOS SEPARADORES DE CAMPO DEL FICHERO DE LA BASE DE DATOS QUE CONTIENE LAS RUTINAS

DEL USUARIO. .. 66

ILUSTRACIÓN 27: CAPTURA DEL CÓDIGO CORRESPONDIENTE A CARGAR LAS RUTINAS DEL FICHERO. 67

ILUSTRACIÓN 28: CAPTURA DE LA LISTA DE RUTINAS UNA VEZ EL ÁRBOL DE RUTINAS HA SIDO GENERADO. 68

ILUSTRACIÓN 29: DIAGRAMA DE ESTADOS DEL PROCESO DE GUARDAR CAMBIOS EN LA BD. ... 68

ILUSTRACIÓN 30: FRAGMENTO 1 DE CÓDIGO DEL MÉTODO GUARDARCAMBIOS(). ESTE MÉTODO ES EL ENCARGADO DE

GUARDAR LOS CAMBIOS LLEVADOS A CABO EN LA BASE DE DATOS. ... 69

ILUSTRACIÓN 31: FRAGMENTO 2 DEL CÓDIGO DEL MÉTODO GUARDARCAMBIOS(). .. 69

ILUSTRACIÓN 32: FRAGMENTO 3 DEL CÓDIGO DEL MÉTODO GUARDARCAMBIOS(). .. 70

ILUSTRACIÓN 33: FORMULARIO MODULOGENERALMENSAJECONFIRMACION ... 71

ILUSTRACIÓN 34: CÓDIGO QUE SE EJECUTARÁ AL DISPARARSE LOS EVENTOS ENLAZADOS AL CLICK DE LOS BOTONES ACEPTAR Y

CANCELAR. ... 71

ILUSTRACIÓN 35: FORMULARIO INFORMACIÓN DE RUTINA, DISEÑO (IZQUIERDA) E IMPLEMENTACIÓN FINAL (DERECHA) 72

ILUSTRACIÓN 36: IMPLEMENTACIÓN DEL FORMULARIO INFORMACIONRUTINA (IZQUIERDA) Y LOS MÉTODOS QUE SE ENCARGAN

DE LOS EVENTOS QUE SE ACTIVAN AL HACER DOBLE CLICK EN UNA CELDA Y PASAR POR ENCIMA DE LA TABLA DE

EJERCICIOS. ... 73

 7

ILUSTRACIÓN 37: CAPTURA DE LA VENTANA DE CREACIÓN DE UN NUEVO PROYECTO DE TIPO INSTALLSHIELD. 75

ILUSTRACIÓN 38: ASISTENTE DE CREACIÓN DEL PROYECTO INSTALADOR, PASO 1. ... 76

ILUSTRACIÓN 39: ASISTENTE DE CREACIÓN DEL PROYECTO INSTALADOR, PASO 2. ... 76

ILUSTRACIÓN 40: ASISTENTE DE CONFIGURACIÓN DEL INSTALADOR, PASO 4 .. 77

ILUSTRACIÓN 41: CAPTURA DE LA CARPETA DONDE SE ENCUENTRA EL PROYECTO DEL INSTALADOR (IZQUIERDA) Y DE LOS

INSTALADOR Y ARCHIVOS NECESARIOS PARA LA INSTALACIÓN DE LA APLICACIÓN (DERECHA). 78

ILUSTRACIÓN 42: CAPTURA DE LA CARPETA DONDE SE HA INSTALADO LA APLICACIÓN .. 78

ILUSTRACIÓN 43: COMO SE PUEDE OBSERVAR PRÁCTICAMENTE TODAS LAS TAREAS DEL PROYECTO SE DESARROLLAN EN

PARALELO ENTRE ELLAS (RESPETANDO LA DURACIÓN Y RESTRICCIONES DE PRECEDENCIA, ETC. 85

ILUSTRACIÓN 44: EN ESTE FRAGMENTO DEL DIAGRAMA DE GANTT SE MUESTRAN LOS PRIMEROS MESES DE DESARROLLO DEL

PROYECTO. ... 86

ILUSTRACIÓN 45: ESTE FRAGMENTO DEL DIAGRAMA MUESTRA EL DESARROLLO DEL PROYECTO DE FEBRERO A AGOSTO DE

2013. ... 87

ILUSTRACIÓN 46: DIAGRAMA ENTIDAD/RELACIÓN DE LA APLICACIÓN .. 90

ILUSTRACIÓN 47: DIAGRAMA DE SECUENCIA DE LA CREACIÓN DE UN NUEVO USUARIO. MÓDULO GENERAL 91

ILUSTRACIÓN 48: DIAGRAMA DE SECUENCIA DE CONECTARSE Y DESCONECTARSE COMO USUARIO 92

ILUSTRACIÓN 49: DIAGRAMA DE SECUENCIA DE VISUALIZAR LA INFORMACIÓN PERSONAL DE UN USUARIO 93

ILUSTRACIÓN 50: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CARGAR UN MÓDULO SELECCIONADO POR EL USUARIO ... 94

ILUSTRACIÓN 51: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CERRAR LA APLICACIÓN ... 95

ILUSTRACIÓN 52: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CREAR UN NUEVO EJERCICIO 96

ILUSTRACIÓN 53: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ABRIR UN EJERCICIO SIN POSIBILIDAD DE EDICIÓN 97

ILUSTRACIÓN 54: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A MODIFICAR LAS OPCIONES DE UN EJERCICIO EXISTENTE ... 98

ILUSTRACIÓN 55: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ELIMINAR UN EJERCICIO DE LA BASE DE DATOS DE EJERCICIOS

 .. 99

ILUSTRACIÓN 56: DIAGRAMA DE SECUENCIA DE LAS INTERACCIONES PARA AÑADIR UNA EJECUCIÓN DE UN EJERCICIO EXISTENTE

A UNA RUTINA ... VOLVER A LA REFERENCIA 100

ILUSTRACIÓN 57: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A LAS INTERACCIONES ENTRE ELEMENTOS AL CREAR UNA

RUTINA NUEVA

 V

OLVER A LA REFERENCIA

 1

01

ILUSTRACIÓN 58: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A REPLICAR UNA RUTINA EXISTENTE 102

ILUSTRACIÓN 59: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A GUARDAR UNA RUTINA COMO IMAGEN 103

ILUSTRACIÓN 60: DIAGRAMA DE SECUENCIA DE CERRAR EL MÓDULO ABIERTO ... 104

ILUSTRACIÓN 61: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CREAR UN NUEVO ALIMENTO 105

ILUSTRACIÓN 62: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A MODIFICAR UN ALIMENTO EXISTENTE 106

ILUSTRACIÓN 63: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ELIMINAR UN ALIMENTO EXISTENTE 107

ILUSTRACIÓN 64: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A AÑADIR UN ALIMENTO A UNA COMIDA EXISTENTE 108

ILUSTRACIÓN 65: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CREAR UNA DIETA VOLVER A LA REFERENCIA 109

ILUSTRACIÓN 66: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A AÑADIR UNA COMDIA A UNA DIETA EXISTENTE 110

ILUSTRACIÓN 67: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A LA CREACIÓN DE UN NUEVO CALENDARIO 111

ILUSTRACIÓN 68: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A AÑADIR UN EVENTO DEL TIPO NORMAL 112

ILUSTRACIÓN 69: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A AÑADIR UN EVENTO DE TIPO COMIDA A UN CALENDARIO

EXISTENTE... 113

ILUSTRACIÓN 70: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A AÑADIR UN EVENTO DEL TIPO EJERCICIO A UN CALENDARIO

EXISTENTE... 114

ILUSTRACIÓN 71: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A AÑADIR UN EVENTO DE TIPO DIETA A UN CALENDARIO

EXISTENTE... 115

 8

ILUSTRACIÓN 72: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A AÑADIR UN EVENTO DEL TIPO RUTINA A UN CALENDARIO

EXISTENTE... 116

ILUSTRACIÓN 73: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ELIMINAR UN EVENTO EXISTENTE 117

ILUSTRACIÓN 74: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A REPLICAR UN EVENTO EXISTENTE............................... 118

ILUSTRACIÓN 75: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A EDITAR UN EVENTO EXISTENTE 119

ILUSTRACIÓN 76: MÓDULO GENERAL VENTANA PRINCIPAL CON USUARIO YA LOGUEADO ... 121

ILUSTRACIÓN 77: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO CALENDARIO. ... 122

ILUSTRACIÓN 78: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO CALENDARIO CON UN CALENDARIO ABIERTO EN MODO

VISTA MENSUAL. .. 123

ILUSTRACIÓN 79: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO CALENDARIO DESPUÉS DE SELECCIONAR LA OPCIÓN DE VER

INFORMACIÓN DE UN EVENTO ... 124

ILUSTRACIÓN 80: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO CALENDARIO EN MODO VISTA DIARIA 125

ILUSTRACIÓN 81: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO EJERCICIOS. A LA IZQUIERDA SE ENCUENTRAN LOS ÁRBOLES

DE EJERCICIOS Y DEBAJO LA LISTA DE RUTINAS. ... 126

ILUSTRACIÓN 82: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO EJERCICIOS CON LA BARRA DE PESTAÑAS. 127

ILUSTRACIÓN 83: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO EJERCICIOS CON LA PESTAÑA DE MOSTRAR LA

INFORMACIÓN DE CATEGORÍA 6 SELECCIONADA. .. 128

ILUSTRACIÓN 84: DISEÑO DE LA VENTANA PRINCIPAL DEL MÓDULO EJERCICIOS CON LA PESTAÑA DE MOSTRAR LA

INFORMACIÓN DE RUTINA 1 SELECCIONADA. ... 129

 9

1. Introducción

1.1 Motivaciones del proyecto y temática del proyecto

Este PFC nace de la idea de desarrollar un proyecto que una formación y deporte —ya que

este último es un aspecto muy importante para mí— y de la intención de que el resultado

tenga una utilidad real, que cubra una necesidad real y resulte en una herramienta que otras

personas puedan aprovechar.

Con estas dos ideas en mente se describe el proceso de desarrollo de una aplicación de

escritorio que permite a los usuarios de crear y administrar sus propias dietas, rutinas de

entrenamiento y crear calendarios donde organizar estas dietas y rutinas así como otros

eventos personalizados.

Inicialmente estaba previsto que la aplicación además permitiera a los usuarios tener

registros de resultados de pruebas de rendimiento y un registro del riesgo de lesión,

dependiendo del tipo de ejercicios realizados así como un módulo “inteligente” que

mediante algoritmos de inteligencia artificial y redes neuronales aconsejara al usuario los

cambios a realizar en su rutina y/o dieta para mejorar sus resultados. Por motivos que se

detallarán más adelante estas últimas características descritas no han sido desarrolladas.

El motivo académicamente relevante, que es el que se trata en la memoria, es el proceso de

desarrollo de la aplicación: todos los pasos y procedimientos llevados a cabo para el diseño

y creación de dicha aplicación.

 10

 11

1.2 Estado del arte

Aunque hoy en día existen muchos programas y aplicaciones relacionadas con el deporte

—especialmente con auge de los smartphones y tablets— la mayoría de estas aplicaciones

únicamente ofrecen un registro de la sesión concreta y algunos aspectos de dicha sesión

(tiempo, recorrido…) que en muchos casos carecen de rigurosidad o son meras

aproximaciones dados unos valores fijos prefijados (como podría ser el consumo calórico).

Otro aspecto a destacar es que la mayoría de estas aplicaciones están ideadas para

dispositivos móviles y esto implica ciertas limitaciones en su diseño y uso, como por

ejemplo tener abiertos diferentes módulos de una misma aplicación y navegar rápida y

fácilmente entre estos, limitaciones que con una aplicación de escritorio no existen.

Algunos ejemplos de aplicaciones de este tipo que podemos encontrar en la actualidad son:

Endomondo: esta aplicación diseñada para dispositivos móviles permite hacer “tracking”

del recorrido durante una sesión y lo almacena en su base de datos que los usuarios pueden

consultar más tarde en su web. Endomondo permite elegir qué clase de deporte o actividad se

va a realizar y el cálculo de calorías varía según la elección, aunque este cálculo es una

estimación según un estándar, no un cálculo real ya que no tiene en cuenta factores como la

intensidad del ejercicio.

MapMyRun/Walk: Similar a Endomondo, orientada también a dispositivos móviles. Igual

que el anterior recoge con la aplicación móvil el registro de la sesión realizada y permite ver

la información en su web.

Adidas MiCoach: Aplicación muy completa. Además de las funciones de las aplicaciones

anteriores Adidas MiCoach propone diferentes ejercicios a realizar según el deporte

practicado y el objetivo. Estos ejercicios son predeterminados para el deporte en sí, sin

tener en cuenta las características personales del usuario. Permite usar dispositivos externos

como Kinect de Xbox, PSMove y otros para registrar en tiempo real los ejercicios. El

problema de esto último es que se necesitan estos dispositivos extra para sacar el máximo

partido.

Esta es una selección de entre un gran número de aplicaciones existentes (las más

conocidas o utilizadas). Como ya se ha comentado, la diferencia principal entre estas

aplicaciones y la aplicación que se desarrolla en este proyecto es que éste último no

pretende centrarse en sesiones individuales de entrenamiento sino más bien en un planning

global de los entrenos y la/s dietas.

Otra diferencia substancial que la aplicación propuesta tiene respecto a las anteriores es que

la aplicación desarrollada en el proyecto no está orientada a dispositivos móviles. Se podría

plantear, sin embargo, una aplicación móvil que hiciera el tracking en tiempo real del

ejercicio y después se conectara con la aplicación de escritorio. Así se conseguirían registros

más rigurosos. Debido al coste temporal y de desarrollo que esta extensión supondría

quedará en una de las posibles líneas de continuación del proyecto.

 12

 13

1.3 Descripción de la aplicación

Como ya se ha comentado en el punto 1.1 de la memoria la aplicación permite al usuario

crear y administrar entrenamientos y dietas, así como calendarios para realizar el

seguimiento de ambas. A continuación se presenta una descripción más detallada de la

aplicación.

Cada usuario dispone de un perfil personalizado que contiene información personal del

usuario.

El usuario puede crear y editar calendarios que utiliza para realizar el seguimiento —si lo

desea— de los ejercicios a realizar cada día de la semana y las diferentes comidas que

tomar, según la dieta que haya añadido —si es que lo ha hecho. Este seguimiento se realiza

mediante eventos que el usuario puede añadir al calendario. Estos eventos son de diferente

tipo, dependiendo de si son eventos que representan un ejercicio, una comida, una dieta o

rutina entera o bien un evento de texto simple. Todos los eventos contienen la información

correspondiente a la fecha y hora del evento, la duración, la frecuencia de repetición, si es

un evento editable o no, si se debe ignorar la información horaria, si es visible o no y

opciones de personalización de la apariencia: color, estilo de fuente, tamaño, etc. Además,

los eventos de tipo ejercicio contienen información específica del ejercicio a realizar:

número de repeticiones, series, peso, etc.

Los ejercicios que el usuario puede utilizar se cargan de una base de datos que los clasifica y

organiza por categorías según diferentes aspectos (ya sean aspectos por defecto o categorías

creadas por el propio usuario). Cada ejercicio se compone de una descripción, de la lista de

categorías a las que pertenece y los músculos que ejercita. De la misma manera las

categorías también se componen de una descripción y la lista de ejercicios que son

contenidos en dicha categoría.

De forma similar a los ejercicios, de la base de datos se cargan los alimentos y comidas. Los

alimentos son clasificados según su tipo: cereales, carnes, etc. y las comidas según si son

comidas por defecto o bien si son comidas creadas por el usuario. Los alimentos, además

del tipo, se componen de descripción y aporte calórico. Las comidas se componen de una

lista de los alimentos que las forman, una descripción y el aporte energético total de la

comida.

Las rutinas y dietas también se cargan de la base de datos y poseen una estructura análoga:

ambas se componen del nombre, la descripción y una tabla de los ejercicios o comidas a

realizar o tomar cada día. Además tanto rutinas como dietas almacenan el consumo o

aporte calórico total respectivamente.

 14

 15

1.4 Planificación temporal

La planificación temporal inicial —descrita en el informe previo— hablaba de cuatro vías

de trabajo en paralelo: desarrollo de la aplicación, documentación de ámbito deportivo,

documentación de los conocimientos necesarios para la creación del Módulo Inteligente y

finalmente obtención de muestras empíricas reales que luego se utilizarían para evaluar

dicho módulo. Esta planificación se describe en el Diagrama de Gantt del informe previo

—ILUSTRACIÓN 43.

Conforme el desarrollo del proyecto iba evolucionando en el tiempo esta planificación se

vio alterada por los distintos cambios en éste, así como en el diseño de la aplicación.

 Al realizar el análisis de requerimientos de la futura aplicación se llegó a la conclusión que

era inviable el diseño del módulo Inteligente ya que para poder crear este módulo era

necesaria tener casi la totalidad de la aplicación diseñada con el resto de módulos

totalmente funcionales y así poder utilizarlos para representar los resultados obtenidos en

las muestras empíricas dentro de la aplicación —era necesaria toda la estructura de

ejercicios, rutinas, comidas y dietas. En consecuencia, las tareas de documentación para la

creación de dicho módulo y la obtención de muestras empíricas desaparecen y el tiempo

previsto para su realización es absorbido por el resto de tareas. Del mismo modo, la tarea

de documentación deportiva, en especial la documentación referente a la parte de dietética,

también desaparece ya que al desaparecer el módulo inteligente desaparece en el proyecto

actual la necesidad de estudiar este apartado, porque el módulo de dietas no tendrá una

opción de creación automática de dietas ni rutinas.

Debido a estos cambios el proyecto, que inicialmente iba a centrarse en el mencionado

módulo inteligente y por tanto en el ámbito de la inteligencia artificial, pasa a centrarse en el

desarrollo de la aplicación, perteneciente al ámbito de la Ingeniería del Software.

La planificación final del proyecto queda dividida, finalmente, en cuatro bloques: Análisis

de requerimientos, Diseño de clases, Diseño de la aplicación e Implementación y pruebas:

ILUSTRACIÓN 44, ILUSTRACIÓN 45

En el diagrama se observa que la mayoría de tareas se realizan de forma secuencial y esto es

debido a que el proyecto ha sido llevado a cabo por una sola persona y por lo tanto no se

podían realizar al mismo tiempo.

 16

 17

1.5 Herramientas utilizadas

La herramienta principal para desarrollar el proyecto ha sido Microsoft Visual Studio 2012.

Ésta no ha sido elegida de forma trivial, sino que fue después de estudiar diversos aspectos

del desarrollo de la aplicación que se decidió usar dicha herramienta. Los criterios o

aspectos estudiados fueron el lenguaje de programación y en especial la inclusión de las

herramientas necesarias para desarrollar la interfaz gráfica de la aplicación.

En lo que respecta a las herramientas de desarrollo de la interfaz, Visual Studio 2012

contiene todos los elementos necesarios para desarrollar una aplicación, incluyendo su

interfaz gráfica, basada en formularios —Windows Forms— que el desarrollador tiene a su

disposición. Visual Studio 2012 permite además el uso del framework .NET y enlazar de

forma sencilla con bases de datos SQL.

Otra herramienta utilizada ha sido Internet. Pese a ser una fuente de información más que

una herramienta propiamente dicha, es necesario destacar la importancia que ésta ha tenido

durante todo el desarrollo del proyecto. Además del desarrollo de la aplicación en sí

Internet ha sido clave a la hora de solucionar problemas relacionados con la herramienta

anteriormente descrita. La cantidad inmensurable de sitios web, foros, tutoriales… que

pueblan Internet ponen a disposición soluciones para cualquier problema o dificultad que

pueda surgir durante el desarrollo del proyecto y por eso es considerada como una

herramienta más, quizá la más importante de todas.

 18

 19

2. Análisis de requerimientos

2.1 Identificación de los interesados

Cuando se habla de interesados —stakeholders— se piensa en todas aquellas personas u

organizaciones que pueden afectar de forma positiva o negativa al desarrollo del proyecto.

En el caso de este proyecto los principales interesados serían el desarrollador del proyecto y

los usuarios finales de la aplicación, entre los que también se incluye el desarrollador del

proyecto.

Formar parte de los interesados por partida doble —como creador y usuario final—

permite enfocar el desarrollo del proyecto de manera que a la hora de pensar y decidir qué

se va a hacer y cómo se va a hacer se tienen en cuenta directamente las necesidades del

usuario final. Por ejemplo: la idea es que la aplicación final la puedan usar todo tipo de

usuarios independientemente de su habilidad con el uso de un ordenador y así llegar al

máximo número de usuarios posibles. Teniendo esto en mente es relativamente sencillo

diseñar qué tipo de interfaz conviene que la aplicación tenga para facilitar el que el uso de la

aplicación sea sencillo y fluido, con una curva de aprendizaje poco pronunciada.

Más allá del usuario final podríamos pensar en interesados de carácter intermedio, es decir,

no usuarios de la aplicación en sí, pero si organismos o personas interesadas en adquirir la

aplicación para dar un servicio a través de ella. Algunos interesados de este tipo podrían ser

entrenadores personales —que quieran utilizar la aplicación para que sus clientes la usen y

así administrar los calendarios de estos—, Jefes de equipos deportivos, etc.

 20

 21

2.2 Diagrama Entidad/Relación

Los diagramas de Entidad/Relación permiten representar las entidades relevantes de un

sistema de información y las interrelaciones entre dichas entidades.

En este proyecto, nuestro diagrama de Entidad/Relación está formado por las entidades

Usuario, Alimento, Comida, Dieta, Ejercicio, Categoría, Rutina, evento y Calendario:

 Usuario: Representa al individuo que utiliza la aplicación.

 Alimento: Representa un alimento, como su nombre indica. Arroz Blanco, Atún

fresco, etc. Son ejemplos de alimentos.

 Comida: Representa un número determinado de alimentos agrupados en una sola

entidad. Macarrones con tomate y queso, Huevos fritos con patatas, etc. Son ejemplos de

comidas.

 Dieta: Representa un número determinado de comidas agrupadas por días para

formar lo que comúnmente se conoce como una dieta. La imagen adjuntada a

continuación es un ejemplo de dieta.

Ilustración 1: Dieta, ejemplo extraído de www.saludymedicina.org

http://www.saludymedicina.org/

 22

 Ejercicio: Representa un ejercicio o actividad física concreta, realizada de una

manera determinada con objetivo de ejercitar una o varias partes del cuerpo.

Flexiones, Dominadas, Carrera corta, etc. Son ejemplos de ejercicios.

 Categoría: Una categoría es una entidad abstracta en la que se agrupan diferentes

ejercicios, habitualmente por una o varias características comunes como por

ejemplo el grupo muscular que trabajan, si son individuales o en grupo, si son para

mejorar uno u otro atributo, etc. Tren superior, Pal Chagui, Respiraciones, etc. Son

ejemplos de categorías.

 Rutina: Una rutina es un conjunto de ejercicios agrupados en uno o varios días o

sesiones. La imagen adjuntada a continuación es un ejemplo de rutina.

Ilustración 2: "Rutina Vane", ejemplo extraído de www.musculacionparaprincipiantes.com

 Evento: Un evento representa un acontecimiento puntual de duración finita

programado por el usuario. Un evento puede ser de tipos diferentes: un ejercicio,

una dieta, una rutina, etc. Son ejemplos de eventos posibles.

 Calendario: Representa lo que comúnmente es conocido como calendario. En

calendario se pueden incluir eventos creados por el usuario.

Las relaciones entre estas entidades se ven representadas en el diagrama de

Entidad/Relación adjuntado en el anexo siguiente (ILUSTRACIÓN 46, página 90). Este

diagrama será utilizado más adelante para el diseño del sistema de clases y el consiguiente

diagrama de clases.

http://www.musculacionparaprincipiantes.com/

 23

2.3 Requerimientos funcionales

A la hora de determinar los requerimientos funcionales de la aplicación se han

documentado todas aquellas funcionalidades que la aplicación debería tener. Esta

documentación se realiza mediante casos de uso, describiendo así los pasos para llevar a

cabo dicha funcionalidad y su efecto en la aplicación.

La lista de casos de uso se encuentra en el documento de Modelo de casos de uso —el

próximo apartado de la memoria—, que como bien indica su nombre contiene todos los

casos de usos de la aplicación, separados por módulos.

2.3.1 Modelo de Casos de uso

El propósito de este apartado es definir las funcionalidades del sistema y el contexto de este

—interacción con entidades externes o actores. Se presentan los diferentes diagramas de

casos de uso para los módulos en que se divide el sistema y las descripciones de cada actor

y caso de uso.

El modelo de casos de uso que se presenta consta de cuatro módulos y los diagramas de

casos de uso correspondientes a cada módulo: General, Calendario, Ejercicios, Dietista.

El siguiente diagrama muestra la arquitectura inicial en que se divide el programa, en cuanto

a módulos se refiere.

 24

2.3.1.1 Actores

Usuario

Este actor representa al usuario final del programa. El usuario interactúa con el programa

mediante la instalación de este en su ordenador.

Administrador

Este actor representa al usuario de tipo administrador. Este usuario puede modificar todos

los perfiles de usuario (del resto de usuarios) así como configuraciones del programa que

no están disponibles para los usuarios convencionales.

2.3.1.2 Casos de Uso

2.3.1.2.1 Módulo General

Crear Nuevo Usuario

Como indica el nombre este caso de uso describe los pasos para crear un nuevo usuario,

así como las restricciones a tener en cuenta al hacerlo.

Ver Información de Usuario

El objetivo del caso de uso es que el usuario pueda ver la información correspondiente al

usuario —nombre, apellidos, correo electrónico, etc.

Eliminar Usuario

Este caso de uso describe los pasos a seguir para eliminar un usuario existente. Implicará

eliminar la entrada de la base de datos así como las entradas correspondientes a los otros

módulos y otras entradas derivadas.

Loguear Usuario

Este caso de uso describe el procedimiento para conectarse como usuario de la aplicación.

 25

Desconectar Usuario

Este caso de uso describe el procedimiento para desconectarse como usuario de la

aplicación.

Cargar Módulo

Este caso de uso describe los pasos a seguir para cargar un módulo del programa. Cada

módulo a utilizar debe de ser cargado de forma independiente siguiendo los pasos descritos

en este caso de uso.

Cerrar Módulo

Este caso de uso describe la funcionalidad de cerrar un módulo abierto. Esto afecta

únicamente al módulo en cuestión y a la base de datos, ya que se guardará el estado en que

se encuentra el módulo antes de cerrar.

Redimensionar Ventana

Este caso de uso describe la funcionalidad de redimensionar el tamaño de la ventana.

2.3.1.2.2 Módulo Calendario

Crear Nuevo Calendario

En este caso de uso se describe la funcionalidad de crear un nuevo calendario y los pasos

para llevarla a cabo.

Abrir Calendario

Este caso de uso describe la funcionalidad de abrir un nuevo calendario y el procedimiento

para llevar a cabo dicha acción.

 26

Cerrar Calendario

En este caso de uso se describe la funcionalidad de cerrar un calendario abierto, los pasos a

seguir y el alcance de esta acción.

Editar Opciones de Calendario

Este caso de uso describe la funcionalidad de modificar las opciones de un calendario

existente como pueden ser la fecha de inicio y fin de este, como se representa dicho

calendario, etc.

Eliminar Calendario

Este caso de uso describe el procedimiento para borrar un calendario de un usuario y los

efectos que esta acción tiene sobre el programa.

Guardar Calendario Como Imagen

Este caso de uso describe la funcionalidad de guardar un calendario existente como una

imagen y los pasos para realizar dicha acción.

Imprimir Calendario Existente

Este caso de uso describe la funcionalidad de imprimir un calendario existente y los pasos

para realizar dicha tarea.

Cambiar tipo de vista

Este caso de uso describe la funcionalidad de cambiar de tipo de visa de un calendario

(diaria, semanal, mensual, etc.)

Añadir Nuevo Evento

Este caso de uso describe la funcionalidad de añadir un nuevo evento a un calendario

existente y los pasos para llevar a cabo dicha acción.

 27

Modificar Evento

Este caso de uso describe la funcionalidad de modificar un evento existente de un

calendario.

Replicar Evento

Este caso de uso describe la funcionalidad de replicar un evento existente como un nuevo

evento de un calendario. Este evento no tiene por qué ser una copia exacta del original,

sino que se puede personalizar como si de un nuevo evento se tratara.

Eliminar Evento

Este caso de uso describe la funcionalidad de eliminar un evento existente de un calendario

y los efectos de dicha acción.

Modificar Opciones de Módulo

El objetivo del caso de uso es describir la funcionalidad que permite al usuario configurar

una serie de opciones o parámetros del módulo Calendario. Esta configuración afectara

únicamente al módulo Calendario y al usuario logueado.

2.3.1.2.3 Módulo Ejercicios

Modificar Opciones de Módulo

Este caso de uso describe la funcionalidad de modificar las opciones del Módulo Ejercicios —

las opciones personalizables de cada módulo varían según qué módulo sea.

Cerrar Módulo

Este caso de uso describe la funcionalidad de cerrar el módulo abierto.

Crear Ejercicio

Este caso de uso describe la funcionalidad de crear un nuevo tipo de ejercicio.

 28

Abrir Ejercicio

Este caso de uso describe la funcionalidad de abrir un ejercicio existente en la lista de

ejercicios.

Modificar Ejercicio

Este caso de uso describe la funcionalidad de modificar un tipo de ejercicio ya existente.

Eliminar Ejercicio

Este caso de uso describe la funcionalidad de borrar un ejercicio existente de la lista de

ejercicios o de una rutina y los efectos que esta acción tiene.

Añadir Ejercicio a Rutina

Este caso de uso describe la funcionalidad de añadir un tipo de ejercicio existente a una

rutina.

Añadir Ejercicio como Evento a Calendario

Este caso de uso describe la funcionalidad de añadir un ejercicio a un calendario existente

como evento de este.

Crear Rutina

Este caso de uso describe la funcionalidad de crear una nueva rutina.

Abrir Rutina

Este caso de uso describe la funcionalidad de abrir una nueva rutina existente.

Cerrar Rutina

Este caso de uso describe la funcionalidad de cerrar una rutina abierta.

 29

Editar Opciones de Rutina

Este caso de uso describe la funcionalidad de modificar las opciones de una rutina

existente.

Eliminar Rutina

Este caso de uso describe la funcionalidad de eliminar una rutina existente y los efectos de

dicha acción.

Replicar Rutina

Este caso de uso describe la funcionalidad de crear una copia de una rutina existente.

Imprimir Rutina

Este caso de uso describe la funcionalidad de imprimir una rutina.

Guardar Rutina como Imagen.

Este caso de uso describe la funcionalidad de guardar una rutina en formato de imagen.

Crear Categoría

Este caso de uso describe la funcionalidad de crear una nueva categoría de ejercicios.

Abrir Categoría

Este caso de uso describe la funcionalidad de abrir una categoría existente.

Modificar Categoría

Este caso de uso describe la funcionalidad de modificar una categoría existente.

 30

Añadir Ejercicio a Categoría

Este caso de uso describe la funcionalidad de añadir un tipo de ejercicio existente a una

categoría.

Eliminar Categoría

Este caso de uso describe la funcionalidad de eliminar una categoría existente.

2.3.1.2.4 Módulo Dietista

Modificar Opciones de Módulo

Este caso de uso describe la funcionalidad de modificar las opciones del módulo Dietista

(las opciones personalizables de cada módulo varían según qué módulo sea).

Cerrar Módulo

Este caso de uso describe la funcionalidad de cerrar el módulo abierto.

Crear Alimento

Este caso de uso describe la funcionalidad de crear un nuevo tipo de alimento.

Modificar Alimento

Este caso de uso describe la funcionalidad de modificar las propiedades de un alimento ya

creado.

Abrir Alimento

Este caso de uso describe la funcionalidad de abrir un alimento ya existente en la lista de

alimentos.

Eliminar Alimento

Este caso de uso describe la funcionalidad de eliminar un alimento ya existente en la lista de

alimentos.

 31

Añadir Alimento a Comida

Este caso de uso describe la funcionalidad de añadir un alimento existente a una comida.

Crear Comida

Este caso de uso describe la funcionalidad de crear una nueva comida —las comidas

posteriormente se añaden a las dietas, o a los calendarios como eventos.

Modificar Comida

Este caso de uso describe la funcionalidad de modificar las propiedades de una comida

existente en la lista de comidas.

Abrir Comida

Este caso de uso describe la funcionalidad de abrir una comida existente en la lista de

comidas.

Añadir Comida como evento

Este caso de uso describe la funcionalidad de añadir una comida como un evento

independiente —no como parte de una dieta— a un calendario existente.

Añadir Comida a Dieta

Este caso de uso describe la funcionalidad de añadir una comida a una dieta ya existente.

Eliminar Comida

Este caso de uso describe la funcionalidad de eliminar una comida existente de la lista de

comidas o de una dieta concreta.

Crear Dieta

Este caso de uso describe la funcionalidad de crear una nueva dieta.

 32

Abrir Dieta

Este caso de uso describe la funcionalidad de abrir una dieta ya existente en la lista de

dietas.

Modificar Dieta

Este caso de uso describe la funcionalidad de modificar una dieta existente en la lista de

dietas.

Cerrar Dieta

Este caso de uso describe la funcionalidad de cerrar una dieta abierta.

Eliminar Dieta

Este caso de uso describe la funcionalidad de eliminar una dieta existente en la lista de

dietas.

 33

2.3.1.3 Vistas

A continuación se muestran las diferentes vistas funcionales del programa, separadas por módulos, cada una con sus casos de uso.

Módulo General

Módulo Calendario

 34

Módulo Ejercicios

 35

Módulo Dietista

 36

2.3.2 Diagramas de secuencia

Los diagramas de secuencia son una herramienta muy útil a la hora de modelar la

interacción entre los diferentes objetos de la aplicación y la implementación de dicho

escenario. Se utiliza la descripción de los casos de uso para determinar qué objetos son

necesarios para la implementación de cada escenario. Las líneas verticales discontinuas

muestran la activación de los objetos que intervienen en el escenario y los mensajes pasados

entre objetos se muestran mediante flechas horizontales.

Los diagramas de secuencia están separados por módulos:

2.3.2.1 Módulo General

 Crear Usuario

 Conectar y desconectar Usuario

 Ver información de Usuario

 Cargar Módulo

 Cerrar Aplicación

(ILUSTRACIÓN 47)
 (ILUSTRACIÓN 48)

 (ILUSTRACIÓN 49)
 (ILUSTRACIÓN 50)

(ILUSTRACIÓN 51)

2.3.2.2 Módulo Ejercicios

 Crear Ejercicio

 Abrir Ejercicio

 Modificar Ejercicio

 Eliminar Ejercicio

 Añadir Ejercicio a Rutina

 Crear o Modificar Rutina

 Replicar Rutina

 Guardar Rutina como Imagen

 Cerrar Módulo

 (ILUSTRACIÓN 52)
(ILUSTRACIÓN 53)
(ILUSTRACIÓN 54)
(ILUSTRACIÓN 55)
(ILUSTRACIÓN 56)
(ILUSTRACIÓN 57)
(ILUSTRACIÓN 58)
(ILUSTRACIÓN 59)
(ILUSTRACIÓN 60)

Algunos diagramas de secuencia se han omitido ya que al pensar en la estructura y forma de

interactuar de los elementos ya se hizo de tal manera que algunos casos de uso funcionaran

de manera análoga a otros. Este es el caso de los casos de uso de Crear Categoría, Abrir

Categoría, Modificar Categoría y Eliminar Categoría; análogos a Crear, Abrir, Modificar y Eliminar

Ejercicio respectivamente.

 37

2.3.2.3 Módulo Dietista

 Crear Alimento

 Modificar Alimento

 Eliminar Alimento

 Añadir Alimento a Comida

 Crear/Modificar Dieta

 Añadir Comida a Dieta

(ILUSTRACIÓN 61)
(ILUSTRACIÓN 62)
(ILUSTRACIÓN 63)
(ILUSTRACIÓN 64)
(ILUSTRACIÓN 65)
(ILUSTRACIÓN 66)

Como sucedía con el módulo anterior algunos diagramas de secuencia se han omitido ya

que su funcionamiento es análogo al de otros casos ya descritos anteriormente:

Crear, Abrir, Modificar y Eliminar Comida son análogos respectivamente a Crear, Abrir,

Modificar y Eliminar Ejercicio (del módulo Ejercicios) respectivamente; Replicar Dieta es análoga

a Replicar Rutina del módulo Ejercicios y finalmente Cerrar Módulo sigue el mismo

procedimiento en todos los módulos.

2.3.2.4 Módulo Calendario

 Crear Calendario

 Añadir evento de tipo Normal

 Añadir evento de tipo Comida

 Añadir evento de tipo Ejercicio

 Añadir evento de tipo Dieta

 Añadir evento de tipo Rutina

 Eliminar un evento

 Replicar un evento

 Editar evento

(ILUSTRACIÓN 67)
(ILUSTRACIÓN 68)
(ILUSTRACIÓN 69)
(ILUSTRACIÓN 70)
(ILUSTRACIÓN 71)
(ILUSTRACIÓN 72)
(ILUSTRACIÓN 73)
(ILUSTRACIÓN 74)
(ILUSTRACIÓN 75)

Los diagramas de secuencia de Eliminar y Abrir Calendario no se han representado ya que su

funcionamiento es análogo al de Eliminar y Abrir Ejercicio, Comida, Etc.

Una vez terminado el análisis de requerimientos podemos pasar a la siguiente fase de

desarrollo: el diseño.

 38

 39

3. Diseño

3.1 Método de desarrollo

El método de desarrollo empleado para llevar a cabo el proyecto ha sido un método

iterativo e incremental. Este método consiste en dividir el proceso de desarrollo en

iteraciones, desarrollando el software de forma incremental para así poder aprovechar lo

aprendido y realizado en la iteración anterior. El aprendizaje proviene del desarrollo

propiamente dicho y de las pruebas realizadas en cada iteración del desarrollo que

comienza por una implementación simple de los requerimientos del sistema. Esta

implementación se irá mejorando hasta que la aplicación esté completa. En cada iteración

se realizan cambios en el diseño, se agregan nuevas funcionalidades y capacidades al

sistema.

Las ventajas de usar este método de desarrollo saltan a la vista, ya que además permite

decidir el rumbo que tomará la aplicación teniendo en cuenta el trabajo realizado hasta el

momento y por encima de todo, gracias al factor aprendizaje cada nueva etapa de

desarrollo permite más optimización que la etapa anterior ya que como se ha comentado se

pueden aplicar todas las mejoras y nuevos conocimientos adquiridos en las iteraciones

previas. Además, en este caso el cliente y desarrollador son la misma persona, lo que facilita

trabajar directamente con el cliente que suele ser uno de los principales problemas con este

método de desarrollo.

Las etapas en las que se divide el método de desarrollo descrito son: Análisis de

requerimientos, Diseño, Implementación y Test.

Ilustración 3: Representación gráfica del método Iterativo incremental. Ejemplo extraído de www.synders.us

http://www.synders.us/

 40

 41

3.2 Arquitectura de la aplicación

La arquitectura de la aplicación continúa con la línea descrita en apartados anteriores de la

memoria: la división en módulos es trasladada al ámbito del desarrollo.

Aprovechando esta división la aplicación queda constituida por cuatro módulos

funcionales, parcialmente independientes unos de otros — parcialmente porque aunque

operan de forma independiente es necesario en algunos casos haber cargado previamente

un módulo concreto para cargar otro. Esto sucede con el Módulo General, que se carga al

ejecutar la aplicación. Este módulo debe estar abierto siempre, ya que es desde este módulo

desde el cual se abren el resto de módulos. Así mismo, para poder cargar el Módulo

Calendario es necesario cargar también los módulos Ejercicios y Dietista.

Esta división, sin embargo, no se ve directamente reflejada en la estructura interna de las

clases de la aplicación, sino que se podría decir que es más una división lógica que se verá

físicamente plasmada en la fase de implementación.

3.2.1 Diseño de clases

Partiendo del diagrama Entidad/Relación creado en la fase de Análisis de requerimientos y

teniendo en cuenta las funcionalidades que se pensaron para la aplicación se llevó a cabo el

diseño de las clases y la estructura de datos interna de la aplicación. En lo que respecta a las

clases nos encontramos con las siguientes clases —algunas de ellas en correspondencia

directa con las entidades del diagrama E/R mientras que otras entidades se corresponden

con más de una clase. Para que resulte más sencillo ver la relación entre las entidades

teóricas —por llamarlas de alguna manera— de las clases internas se presentan las

entidades y se describe/n la/s clase/s a las que equivale/n.

3.2.1.1 Módulo General

No hay ninguna clase que pertenezca a este módulo. La entidad Usuario, cuya clase

pertenecería a este módulo, no tiene correspondencia como clase. La información referente

al usuario es tratada por las estructuras internas que se explicarán en el siguiente apartado y

por la base de datos directamente, sin estar unidas en una clase.

 42

3.2.1.2 Módulo Ejercicios

 Ejercicio: La entidad Ejercicio corresponde con tres clases distintas: la clase

abstracta Ejercicio, y las clases Ejercicio_Tipo y Ejercicio_Implementación que heredan de

la primera. Esta separación existe porque es necesaria la separación entre lo que

llamamos el ejercicio genérico y lo que llamamos una ejecución concreta de ese mismo

ejercicio. Tomamos como ejemplo un ejercicio: Flexiones comunes. Ejercicio_Tipo se

corresponde a la idea del ejercicio en sí, el ente abstracto —en el sentido más

platónico de la palabra— mientras que Ejercicio_Implementación representa la

realización de dicho ejercicio, es decir, una ejecución real del ejercicio, determinado

por atributos como el número de repeticiones, el número de series, etc.

 Categoría: La clase Categoría tiene correspondencia directa con la entidad del

mismo nombre. La clase Categoría interactúa con la clase Ejercicio_Tipo. La clase está

formada por un nombre, descripción, una lista de Ejercicio_Tipo y los métodos para

manipular dicha lista.

 Rutina: Esta clase tiene correspondencia directa con la entidad del mismo nombre. La

clase Rutina interactúa con la clase Ejercicio_Implementación. La clase está formada por toda la

información correspondiente a la rutina —Nombre, Descripción, Lista de Ejercicio...—,

los métodos para manipular dicha rutina—Añadir y Eliminar Ejercicio. —, y los métodos

para calcular el consumo energético de dicha rutina.

En la página siguiente se adjunta el diagrama de clases correspondiente al módulo Ejercicios.

 43

Ilustración 4: Diagrama de clases del módulo Ejercicios

 44

3.2.1.3 Módulo Dietista

 Alimento: Esta clase tiene correspondencia directa con la entidad del mismo

nombre. La clase está formada por la información correspondiente a un alimento

—Nombre, Descripción, Tipo, Cantidad, etc.

 Comida: Esta clase tiene correspondencia directa con la entidad del mismo

nombre. La clase está formada por el nombre, descripción y una lista de los

alimentos que la forman, los métodos para manipular dicha lista y los métodos para

calcular el aporte energético de la comida.

 Dieta: Esta clase tiene correspondencia directa con la entidad del mismo nombre.

La clase está formada por toda la información correspondiente a la dieta que

representa —Nombre, descripción, Tabla de comidas, etc. — y los métodos para

manipular dicha dieta —Añadir y Eliminar Comida, etc.

En la página siguiente se adjunta el diagrama de clases correspondiente al módulo Dietista.

 45

Ilustración 5: Diagrama de clases del módulo Dietista

 46

3.2.1.4 Módulo Calendario

Para el módulo calendario se han utilizado varias clases pertenecientes a un proyecto de

código libre llamado Calendar.NET 1 y modificado según las necesidades de la aplicación ya

que las funcionalidades que permite dicho proyecto son muy limitadas y en ocasiones

funcionaban de forma errónea.

De serie, el proyecto Calendar.NET ofrecía un control calendario que mostraba diferentes

eventos y disponía de dos tipos de vista distintos: vista mensual y vista diaria. A partir de

ahí hubieron de añadirse todo el resto de funcionalidades modificando las clases de dicho

proyecto. Se ha añadido la posibilidad de añadir eventos mediante la interfaz —antes

solamente se podían añadir mediante código—, que estos eventos sean de diferentes tipos,

se han corregido multitud de errores en lo que se refiere al comportamiento de dicho

control— errores a la hora de mostrar los eventos por pantalla, solapamiento de eventos,

excepciones provocadas por malfuncionamiento a la hora de representar los meses por

pantalla, malfuncionamiento en la frecuencia de repetición de los eventos, etc.—, se ha

añadido la posibilidad de modificar y eliminar eventos,etc. —algunos de estos cambios se

mencionan en el anexo de incidencias correspondiente al Módulo Calendario

133.

Para personalizar dicho control para las necesidades de nuestro proyecto hubo que editar

exhaustivamente las clases que lo formaban: Calendar, IEvent, CustomEvent,

CustomRecurringFunctionAttribute, EventComparer, EventComparerDuracion —nueva—,

EventTooltip y EventDetails. Además se añadieron nuevas clases para los diferentes tipos de

evento: EventoDieta, EventoEjercicio y EventoRutina.

 Calendar: Esta clase implementa la entidad del mismo nombre. La clase está

formada por la información esencial del calendario —fecha, lista de eventos, etc. —,

propiedades que controlan el funcionamiento interno de la clase y métodos tanto

para manipular el calendario como para manipular las propiedades internas de la

clase —Añadir, modificar y eliminar eventos, cambiar vista, etc..

 IEvent: Esta clase es la interfaz que sirve de base para el resto de clases que

representan los tipos de evento posibles —CustomEvent, EventoDieta, EventoRutina y

EventoEjercicio. Fue necesario modificarla para añadir el campo tipo, que identifica

numéricamente qué tipo de evento es el evento. Sus campos incluyen la duración,

fecha del evento, la frecuencia de repetición, etc.

 CustomEvent: Esta clase implementa la interfaz IEvent y representa los eventos de

tipo normal —no son ni ejercicios, ni rutinas, etc. — y los eventos de tipo Comida.

1 http://www.codeproject.com/Articles/378900/Calendar-NET

http://www.codeproject.com/Articles/378900/Calendar-NET

 47

 EventoEjercicio: Esta clase implementa también la interfaz IEvent y representa los

eventos de tipo Ejercicio. Además de los atributos y métodos base esta

implementación añade los campos específicos de un Ejercicio_Implementación —Series,

Repeticiones, Duración, Peso y ConsumoCalórico.

 EventoRutina: Esta clase implementa la interfaz IEvent y representa los eventos de

tipo Rutina. Además de los atributos y métodos base esta implementación incluye

una lista de los eventos ejercicio que componen la rutina.

 EventoDieta: Análoga a la clase EventoRutina pero para los eventos de tipo Dieta.

 EventComparer y EventComparerDuracion: Ambas clases implementan la

interfaz IComparer. La primera compara dos eventos según la hora a la que se

produce el evento y la segunda los compara según la duración de dichos eventos.

 EventTooltip: Esta clase hereda de la clase UserControl y representa la etiqueta que

aparece al pasar el cursor por encima de un evento. Sus atributos principales son el

color de la etiqueta, color del texto, la fuente, los márgenes y el texto en sí.

 EventDetails: Esta clase hereda de la clase Form. Es la encargada de mostrar la

información de los eventos por pantalla y guardar las modificaciones que el usuario

realice en el evento.

En el diagrama de clases final se han omitido algunas clases del módulo calendario para

evitar sobrecargar el diagrama. En el diagrama aparecen únicamente las clases principales

de cada módulo.

En la página siguiente se encuentra adjunto el diagrama de clases del módulo Calendario.

 48

Ilustración 6: Diagrama de clases del módulo Calendario

 49

3.3 Diseño de la base de datos

A la hora de diseñar la base de datos de la aplicación se tomaron en cuenta diferentes criterios y

aspectos para valorar qué tipo de base de datos era más conveniente. Pese a que lo más habitual

hubiera sido crear una base de datos relacional en SQL para aprovechar las ventajas que este tipo

de base de datos ofrecen —una sola consulta puede rescatar mucha información, utilizan un

lenguaje estandarizado, son seguras, liberan al usuario de ciertas responsabilidades de coherencia y

control al manejar la información de la base de datos, una vez finalizadas están dotadas de una

gran robustez…— se tomó la decisión de crear una base de datos de las denominadas NoSQL,

concretamente una base de datos basada en documentos.

Por qué usar una base de datos de este tipo después de haber mencionado las bondades de una

base de datos en SQL? Este tipo de bases de datos son muy amigables con el programador ya que

ofrecen un margen de libertad muy amplio a la hora de decidir la estructura de cualquier aspecto

de la base de datos —por ejemplo cómo separar cada campo de las muestras, la jerarquía de los

documentos…—, su desarrollo es más rápido que el de las bases de dato de otro tipo y no es

necesario ninguna herramienta ni software para implementarlas a parte de un editor de texto.

Por otro lado —y como consecuencia de la mencionada libertad que ofrecen— sus mayores

inconvenientes son que la coherencia e integración de los datos depende totalmente del

programador y que para que alguien externo pueda trabajar con ella debe de aprender

exhaustivamente la estructura de dicha base de datos —este último aspecto menos relevante en

nuestro caso ya que todo el proyecto lo realiza una sola persona.

Valorados estos aspectos se decidió dar preferencia a la libertad y sencillez para manipular la

información frente a mayor seguridad y/o robustez.

3.3.1 Estructura

La estructura de la Base de datos está divida en dos elementos principales: directorios y ficheros.

Los ficheros almacenan información concreta de diferentes entidades —ejercicios, alimentos,

comidas, usuarios...— y los directorios organizan dichos ficheros según el módulo y usuario al

que pertenecen. Esta estructura queda reflejada en los diagramas siguientes:

 50

3.3.1.1 Módulo General

Ilustración 7: Estructura de la base de datos, Módulo General

3.3.1.2 Módulo Calendario

Ilustración 8: Estructura de la base de datos, Módulo Calendario

 51

3.3.1.3 Módulo Ejercicios

Ilustración 9: Estructura de la base de datos, Módulo Ejercicios

 52

3.3.1.4 Módulo Dietista

Ilustración 10: Estructura de la base de datos, Módulo Dietista

Una descripción más detallada de la estructura interna de los ficheros que forman la base de datos y su funcionamiento aparece en el punto 4 de esta memoria—

Implementación.

 53

3.4 Diseño de la Interfaz

El diseño de la interfaz se realizó primeramente a lápiz a mano alzada. Una vez realizado este

diseño previo a mano se usó la herramienta web de diseño de diagramas Creately2 para llevar a

cabo el diseño que después se utilizaría para diseñar la implementación final de la interfaz gráfica

de la aplicación.

A la hora de diseñar la interfaz se dio máxima prioridad a facilitar la interacción entre el usuario y

la aplicación. Se buscó que la curva de aprendizaje de uso fuera lo menos empinada posible y que

el uso de la aplicación fuera lo más intuitivo posible, incluso para usuarios que no estén

habituados al uso del ordenador.

Ilustración 11: Diseño de la ventana principal del Módulo General, la ventana que aparece al ejecutar la aplicación.

Otro factor al que se le dio gran importancia fue intentar que la información fuera mostrada por

pantalla de forma clara y sencilla, evitando recargar de información las ventanas y pestañas. Esto,

junto con una paleta de colores suave, genera un ambiente en el que el usuario se siente relajado y

cómodo al usar la aplicación.

En la imagen de la página siguiente se muestra un diseño de la ventana principal del módulo

Ejercicios con varias pestañas abiertas.

2 www.creately.com/app

 54

Intentando facilitar el uso de la aplicación se diseñó la interfaz de tal manera que los pasos para

realizar las diferentes funcionalidades que ofrece la aplicación sean en la medida de lo posible

secuenciales. Esto consigue que el usuario no se pierda a mitad de acción. Por ejemplo, un usuario

que quiera añadir un nuevo evento, al seleccionar dicha opción, irá siguiendo un conjunto de

ventanas emergentes que irán apareciendo una seguida de la otra hasta acabar con el evento

añadido. El usuario irá tomando una decisión cada vez. De esta manera el usuario no podrá

realizar ninguna otra acción mientras la que está haciendo en este momento no esté terminada.

Así se evita, además, generar situaciones que pueden crear conflictos internos en la aplicación.

Esta forma de proceder se repite en la mayoría de las funcionalidades de la aplicación. Aun y así

existen algunas excepciones: un usuario puede abrir diferentes pestañas en un mismo módulo,

para por ejemplo ver diferentes ejercicios a la vez, pero esto no implica realizar dos acciones a la

vez, ya que mientras se ve el contenido de una pestaña no se puede interactuar con las otras.

La ilustración de la siguiente página representa los pasos a seguir por el usuario para añadir un

evento.

Ilustración 12: Diseño de la ventana principal del Módulo Ejercicios.

 55

En el anexo INTERFAZ (DISEÑO) se han adjuntado otras ilustraciones del diseño de la interfaz

gráfica de la aplicación —de los distintos módulos. No se ha incluido ninguna ilustración del

módulo dietista porque su diseño es idéntico al del módulo Ejercicios.

Una vez finalizado el diseño pasamos a la siguiente fase de desarrollo de la aplicación: la

Implementación.

Ilustración 13: Diseño de los pasos a seguir por el usuario de la aplicación para añadir un nuevo evento.

 56

 57

4. Implementación y pruebas

4.1 Lenguaje utilizado y herramienta de desarrollo

El lenguaje de programación escogido ha sido C# ya que al ser un lenguaje de programación

orientado a objetos facilita la conversión del diseño en papel a la estructura de clases que ofrece

dicho lenguaje. Otro factor determinante es que Microsoft dispone de una librería de clases3

(similar a la API de Java) que permite consultar con facilidad las características de las clases

existentes, su funcionamiento, utilidad, etc. Además es un lenguaje derivado directamente de

C/C++, un lenguaje muy utilizado durante toda la carrera y por lo tanto permite un trabajo más

eficiente.

Ilustración 14: Descripción de la clase StreamReader en la librería de clases de Microsoft.

En el punto 1.5 de esta misma memoria—

3 http://msdn.microsoft.com/en-us/library

http://msdn.microsoft.com/en-us/library

 58

Herramientas utilizadas— ya se menciona que la herramienta utilizada para desarrollar la

aplicación ha sido Microsoft Visual Studio 2010. Como se comenta en dicho punto, se eligió esta

herramienta porque agrupaba todas las necesidades que a nivel de desarrollo requería nuestra

aplicación. En una misma Solución —como Visual Studio lo llama— están contenidos todos los

elementos que implementan la aplicación, desde la implementación del sistema de clases, los

juegos de pruebas de este, la implementación de la interfaz e incluso los diagramas UML que sean

necesarios. A cada uno de estos Visual Studio los denomina proyectos.

Ilustración 15: Explorador de Soluciones de Visual Studio 2010

El único punto negativo, si es que se le puede considerar de tal manera, es que esta herramienta

no permite el uso de ingeniería inversa en algunos casos —como por ejemplo crear la

representación en UML de una clase o conjunto de clases una vez estas están terminadas.

 59

4.2 Implementación de la aplicación.

4.2.1 Sistema de clases

La implementación del sistema de clases que forman el núcleo de la aplicación es una traducción

directa de lo representado en el diagrama de clases del apartado Diseño de la memoria. A partir de

la descripción de los atributos y métodos de cada clase —definidos en dicho apartado— estos se

fueron implementando y testeando clase a clase.

Ilustración 16: Diagrama del procedimiento de implementación de las clases

Este método de proceder no implica que a cada clase le corresponda una clase de prueba. Las

clases de test se dividen por módulos y las clases que pertenecen a ese módulo se testean en

diferentes métodos de dicha clase. Por ejemplo: El correcto funcionamiento de las clases del

Módulo Ejercicios —Ejercicio_tipo, Ejercicio_Implementación, Comida y Dieta— se comprueba en la

clase de pruebas —TestClass— ModuloEjerciciosTest. Esta clase incluye los métodos CrearEjercicio(),

AdministrarMúsculosTrabajados(), AdministrarRutina()... entre otros donde se comprueba el

funcionamiento de las clases anteriormente mencionadas.

 60

Ilustración 17: Arriba, captura de la implementación de los constructores de la clase Comida; Abajo, captura de la implementación de los
métodos de la clase de pruebas que comprueban el correcto funcionamiento de dichos constructores.

 61

4.2.2 Implementación de la base de datos.

En el apartado de Diseño ya se explicó el diseño de la base de datos —basada en ficheros—

y los motivos para haber elegido dicho diseño y estructura así que en este apartado nos

centraremos únicamente en los aspectos que hacen referencia a su implementación en la

aplicación.

Estructura de los ficheros

La estructura principal de los ficheros de la base de datos es compartida por todos ellos:

cada línea del fichero representa un elemento —ya sea un usuario, una rutina, un ejercicio,

una dieta, etc. Cada línea, a su vez, está dividida en campos por diferentes tipos de

separador según si los campos contienen más campos dentro de sí o no. Esta explicación se

ve más clara con un ejemplo:

En la imagen superior se pueden observar los elementos descritos en el párrafo anterior.

En la línea número 1 encontramos la leyenda, que marca el patrón que siguen todas las

líneas. Este patrón lo utiliza la aplicación para saber cuándo hay un nuevo campo y qué es

cada uno de ellos. En este caso observamos que existen dos separadores: los caracteres ; y

|. El separador ; es un separador de primer nivel, mientras que el separador | lo es de

segundo nivel. Siguiendo esta lógica, en la línea número 2 encontramos la información

referente al siguiente ejercicio:

 Nombre: Flexiones Simples.

 Descripción: Descripción del ejercicio.

 Músculos trabajados: Pectoral Mayor, Tríceps.

 Categorías: Abdominales, Tren Superior.

Y lo mismo sucede con el resto de líneas que forman el fichero.

Ilustración 18: Captura del fichero de la base de datos EjerciciosBase.

 62

Existen 6 niveles de separadores. Este es el menor número posible para evitar problemas a

la hora de separar los campos correctamente. Los separadores son:

1r Nivel ;

2º Nivel |

3r Nivel #

4º Nivel
Módulo Calendario

Resto de Módulos

}

Para evitar conflictos con el formato de fecha dd/mm/aa
/

5º Nivel {

6º Nivel [
Tabla 1: Separadores de campo

Se han seleccionado estos separadores pensando en caracteres que no fueran a ser

utilizados, caracteres cuya omisión no dificultaran el uso de la aplicación. Para evitar

problemas, se avisa al usuario de que no use ninguno de los caracteres de la tabla bajo

ningún concepto.

Esta estructura es común para todos los ficheros de la base de datos a excepción del

módulo Calendario. A diferencia del resto de ficheros, donde cada línea representa un

elemento, en el caso de los calendarios cada uno de ellos está representado por un fichero,

con un par de peculiaridades. La primera peculiaridad es la necesidad de un separador extra

para evitar problemas a la hora de guardar fechas —usar el separador / provocaría fallos a

la hora de guardar la información. La segunda es en la estructura en sí. Las dos primeras

líneas de cada fichero calendario están reservadas para la palabra clave FechaCalendario y la

fecha en sí. La tercera línea marca la leyenda de cómo se representan los eventos que son

contenidos en el calendario.

 Ilustración 19: Captura de un fichero que codifica un calendario.

 63

De acuerdo con la descripción anterior, viendo la Ilustración 19 extraemos la información

siguiente:

 Nombre del calendario: Prueba1 —El nombre del archivo.

 Fecha del calendario: 07/06/2013, 12:00:00 —fecha en formato 24h— Línea 2.

 Numero de eventos: 5 —El número de líneas del archivo quitando las 3 primeras.

Y siguiendo la leyenda que marca la línea 3 podemos extraer la información

correspondiente a cada evento del calendario, en este caso cinco eventos —uno de cada

tipo posible.

La codificación de todos los ficheros es la misma, UTF-8. Esto es importante tenerlo en

cuenta siempre que se quiera editar la base de datos directamente sobre los ficheros ya que

por defecto —habitualmente— los ficheros de texto son creados bajo la codificación

ANSI. Ignorar esta circunstancia provocaría fallos en el funcionamiento ya que al leer el

archivo, la aplicación recibe la orden específica de que los ficheros están codificados según

la representación UTF-8.

Interacción con la aplicación

La interacción de la base de datos con la aplicación es relativamente sencilla: cada vez que

se carga un módulo —sea cual sea— se carga de los ficheros de la base de datos toda la

información correspondiente a dicho módulo a unas estructuras de listas internas. A partir

de este momento se utilizarán siempre dichas listas internas hasta que se cierre el módulo

—o se elija la opción de guardar cambios si el módulo lo permite— que se guardarán todos

los cambios en los archivos de nuevo. Con esto lo que conseguimos es no tener que

acceder constantemente a la base de datos. Además, como el volumen de información a

tratar no es muy elevado incluso leyendo unos centenares de líneas de cada fichero, el

rendimiento de la aplicación no se ve afectado.

Ilustración 20: Diagrama de estados de la carga de información de la base de datos.

 64

A continuación se mostrará el proceso descrito en el diagrama mediante capturas de

pantalla del código fuente. Cada captura incluye una descripción del código para ir

siguiendo el proceso de carga. Este proceso es análogo en todos los módulos, es por esto

que únicamente se muestran capturas del módulo ejercicios.

Ilustración 21: Las funciones CargarBaseDatosCategoriasBase() y CargarBaseDatosCategoriasPersonalizadas()
leen de los ficheros CategoriasBase.txt y <nombreusuario>.txt la información referente a las categorías base y

las específicas de cada usuario respectivamente.

La Ilustración 22 describe el proceso de lectura de los Ejercicios Base del archivo

EjerciciosBase.txt de la base de datos:

Se leen línea a línea cada uno de los ejercicios predefinidos. La primera línea se desecha ya

que es la leyenda que describe la información de los campos del fichero. Mientras haya

Ilustración 22: Lectura de los ejercicios base del fichero de la base de datos.

 65

líneas —ejercicios— que leer se divide la línea en campos —línea 78— y se guardan los

campos del ejercicio en cuestión en la instancia de la clase Ejercicio_Tipo que hemos

creado—líneas 86, 87, 88. En caso de que el campo contenga más campos dentro —como

por ejemplo la lista de categorías— es dividido de nuevo —línea 81— y se recorre la lista

previamente creada de categorías —— buscando las categorías que aparecen en la lista de

categorías del ejercicio que estamos leyendo —ListaCategoriasEjercicio. Cuando encontramos

una coincidencia añadimos la categoría a la lista de categorías de la instancia que hemos

creado anteriormente —línea 85. Una vez finalizado este proceso se cierra el descriptor de

fichero —línea 109— y se repite el mismo proceso con el fichero de ejercicios

personalizados del usuario en cuestión.

La Ilustración 23 describe el mismo proceso que la ilustración 21 pero para los Ejercicios

personalizados del usuario en cuestión.

Ilustración 23: Proceso para leer los ejercicios personalizados de usuario del fichero de la base de datos.

 66

Una vez hecho esto se genera el árbol correspondiente a las categorías y ejercicios.

Ilustración 24: GenerarArbolCategoriasYEjercicios() se encarga de crear y rellenar el arbol que mostrará por
pantalla las categorías y ejercicios cargados.

Ilustración 25: Captura de pantalla de la aplicación en ejecución donde se muestra el árbol con las categorías y
ejercicios.

Una vez generado el árbol de categorías y ejercicios la aplicación carga de la base de datos

las rutinas del usuario y se genera el árbol de rutinas correspondiente.

En la Ilustración 26 se observa la leyenda de separadores del fichero que contiene las

rutinas.

Ilustración 26: Captura de los separadores de campo del fichero de la base de datos que contiene las rutinas del usuario.

 67

La Ilustración 27 describe como la aplicación lee línea a línea el fichero de rutinas y guarda

la información de cada rutina en la lista de rutinas interna. Como sucedía al leer los

ejercicios cada línea se divide en campos y se rellena la instancia de la clase rutina —línea

189, 191, 192. Cuando encontramos el campo correspondiente a la tabla de ejercicios se

vuelve a dividir dicho campo en días —línea 194—, cada día a su vez se vuelve a dividir

para obtener los ejercicios que componen ese día —línea 198— y cada ejercicio se divide

para obtener los campos que componen el ejercicio —línea 202— y rellenamos la

información del ejercicio concreto en la instancia de la clase Ejercicio_Implementación. Este

proceso se repite para todos los ejercicios y días de la tabla de ejercicios de la rutina que se

está cargando —líneas 186 a 223. Una vez leída y añadida la tabla de ejercicios se guardan el

resto de campos de la rutina: Duración, línea 228; se calcula el consumo calórico —líneas

229 y 230— y se añade la rutina a la lista de rutinas — línea 232. Una vez finalizado el

proceso se cierra el descriptor de fichero y se genera el árbol de rutinas.

Ilustración 27: Captura del código correspondiente a cargar las rutinas del fichero.

 68

Ilustración 28: Captura de la lista de rutinas una vez el árbol de rutinas ha sido generado.

Esta forma de proceder se repite para todos los módulos, con las variaciones necesarias

según las peculiaridades específicas de cada fichero.

Como ya se ha comentado al comienzo de este punto el otro momento en que la base de

datos interactúa con la aplicación es a la hora de cerrar un módulo —habiendo

seleccionado la opción cerrar de la barra de menús— o al seleccionar la opción Guardar

cambios si es que el módulo lo permite. Existe una excepción con el módulo General. En este

módulo los cambios no se guardan al salir —que sería al cerrar la aplicación— sino que

cuando se crea un nuevo usuario —por ejemplo— todos los ficheros y carpetas de la base

de datos que serán necesarios más adelante se crean en ese momento.

Ilustración 29: Diagrama de estados del proceso de guardar cambios en la BD.

 69

A continuación se describe el proceso de volcado de la información de las listas internas a

la base de datos del módulo Calendario. El módulo Ejercicios y Dietista sigue un

funcionamiento análogo.

Ilustración 30: Fragmento 1 de código del método GuardarCambios(). Este método es el encargado de guardar
los cambios llevados a cabo en la base de datos.

Al seleccionar la opción de guardar los cambios en el módulo Calendario primeramente se

guardan todos los nombres de los calendarios de dicho usuario en un fichero. Únicamente

se guarda el nombre. Esto se describe en el código capturado en la Ilustración 30.

Hecho esto, para cada calendario de la lista se crea un fichero —se sobrescriben los que ya

existieran— y se inserta la información línea a línea —Ilustración 31 e Ilustración 32.

En la ilustración superior: la palabra clave FechaCalendario, línea 515; la fecha propiamente

dicha, línea 516; y la leyenda de la estructura de las líneas evento, línea 517. Entonces cada

evento del calendario se guarda el fichero como una nueva línea de este —Ilustración 32,

en la página siguiente.

Ilustración 31: Fragmento 2 del código del método GuardarCambios().

 70

Según el tipo de evento que sea, la línea se ensambla de una u otra forma. En el caso de ser

de tipo 4 —Dieta, líneas 533 y en adelante — o 5—Rutina, líneas 552 y en adelante— hay

que recorrer los eventos internos que forman al evento principal.

 Una vez finalizado el proceso se cierra el descriptor de fichero.

Ilustración 32: Fragmento 3 del código del método GuardarCambios().

 71

4.2.3 Implementación de la interfaz

La implementación de la interfaz gráfica de la aplicación se ha realizado mediante

formularios —Windows Forms. Estos formularios implementan cada una de las ventanas,

pestañas y PopUps que forman la aplicación. La herramienta de desarrollo Visual Studio

permite la creación de proyectos de este tipo y su interacción es intuitiva.

A la hora de implementar la interfaz gráfica se siguió con la filosofía descrita en el punto

3.4 —Diseño de la Interfaz, página 53— de facilitar en la medida de lo posible la interacción

entre el usuario y la aplicación.

Qué es un formulario?

Los formularios son un tipo de representación de una interfaz gráfica de usuario. Una form

contiene dentro de sí controles y componentes con los que el usuario interactuará una vez

ejecutada la aplicación. Botones, textBox, tablas, timers… son ejemplos de este tipo de

elementos.

Los formularios utilizan un sistema de eventos que se disparan bajo determinadas

circunstancias —cuando el usuario clica en la pantalla, cuando escribe, cuando pasa un

determinado tiempo…— y se encargan de llevar a cabo la funcionalidad que se ha asignado

para cuando dicho evento se active. Un ejemplo de formulario, extraído de la aplicación, es

el formulario descrito en las ilustraciones siguientes:

Ilustración 33: Formulario ModuloGeneralMensajeConfirmacion

Ilustración 34: Código que se ejecutará al dispararse los eventos enlazados al click de los botones Aceptar y
Cancelar.

.

 72

Dentro de los formularios, además de tratar la interacción del usuario con la aplicación

también se controlan todos los cambios que estas interacciones suponen para la aplicación.

Cuando un usuario crea un Ejercicio, lo elimina, lo modifica, etc. es dentro de los propios

formularios que se implementa la lógica que controla que esto se lleve a cabo

correctamente y que no haya incoherencias de datos.

Implementación de interfaz

El proceso de convertir la interfaz de una idea en papel a un elemento plenamente funcional

de la aplicación pasa por un número de pasos.

El primer paso es trasladar la apariencia del diseño al formulario. Esto se consigue

añadiendo los elementos que aparecen en el diseño como controladores y componentes.

Estos elementos son los botones, tablas, cajas de texto, etiquetas, etc. Finalizado este paso

lo que tenemos es la fachada del formulario, la apariencia final de este.

El siguiente paso es configurar el comportamiento de estos controles y componentes. Hay

que especificar para cada uno de ellos que tipo de reacción queremos según el tipo de

interacción o estímulo que el usuario les dé. Esto lo conseguiremos mediante los

mencionados eventos. Cada evento está ligado a un Event Handler, que define qué acción o

acciones se llevarán a cabo cuando se produzca el evento.

Ilustración 35: Formulario Información de Rutina, diseño (izquierda) e implementación final (derecha)

 73

En la Ilustración 36 se puede observar este segundo paso que hemos descrito en el párrafo anterior a ésta. A la izquierda tenemos el formulario y a la

derecha el código que se ejecuta al dispararse el evento CellDoubleClick del formulario —hacer doble click sobre una celda de la tabla de ejercicios— y

el código que se ejecuta al dispararse el evento CellMouseEnter —al entrar el cursor dentro de una celda de la tabla de ejercicios.

Ilustración 36: Implementación del formulario InformacionRutina (izquierda) y los métodos que se encargan de los eventos que se activan al hacer doble click en una celda y pasar por encima de la tabla
de ejercicios.

Doble Click()

 74

El tercer y último paso de este proceso de pasar del diseño a la implementación es el de

comprobar el correcto funcionamiento de la implementación que se acaba de llevar a cabo.

La manera de probar el funcionamiento no es otra que ejecutar la aplicación y seguir los

pasos que el usuario seguiría para hacer uso de la funcionalidad que el formulario

implementa. En el caso del formulario que estamos usando como ejemplo ejecutaríamos la

aplicación, cargaríamos el módulo Ejercicios y abriríamos una rutina. Una vez hecho esto

probaríamos que efectivamente el funcionamiento deseado y el funcionamiento real sean el

mismo.

Este proceso descrito se repite para todos y cada uno de los formularios que forman la

aplicación.

Pruebas e incidencias durante la implementación

Como ya se ha explicado en el último párrafo del apartado anterior las pruebas de la fase de

implementación consistían en comprobar el correcto funcionamiento de cada una de las

funcionalidades implementadas. En el anexo 7.5 —Incidencias durante la implementación,

página 131— se encuentran documentadas las incidencias surgidas durante la fase de

implementación.

 75

4.3 Instalador y ejecutable

Para crear el instalador de la aplicación hemos de crear un nuevo proyecto en nuestra

solución de Visual Studio del tipo Instalación e Implementación, concretamente un proyecto

InstallShield.

Ilustración 37: Captura de la ventana de creación de un nuevo proyecto de tipo InstallShield.

Una vez el proyecto está creado hay que seguir los pasos que el asistente nos indica para ir

configurando los diferentes aspectos del instalador. El primer paso consiste en rellenar la

información correspondiente al nombre de la compañía, nombre y versión de la aplicación,

web de la compañía y el icono de la aplicación —Ilustración 38, página 76.

 76

Ilustración 38: Asistente de creación del proyecto instalador, paso 1.

El siguiente paso del asistente consiste en elegir los requisitos de software adicional de la

aplicación —Ilustración 39, página 76—, si es necesario un sistema operativo en concreto y

si es necesario algún otro software. En nuestro caso es necesario tener .NET 4.5 instalado.

Ilustración 39: Asistente de creación del proyecto instalador, paso 2.

 77

El siguiente paso no está disponible en la edición limitada de InstallShield. Este paso es el de

personalizar la arquitectura de la instalación, especificando si se da opción al usuario de

elegir qué componentes instalar o no, etc.

Saltamos entonces al siguiente paso, seleccionar los archivos necesarios para el

funcionamiento de la aplicación, en nuestro caso las carpetas y ficheros que forman la base

de datos.

El quinto paso de la configuración del instalador consiste en seleccionar los accesos

directos en el menú de inicio de programas de Windows. En nuestro caso no

seleccionamos ninguno.

Tampoco seleccionaremos ningún archivo para añadir al registro de Windows, sexto paso

de la configuración.

El último paso de la configuración del instalador es seleccionar si queremos que aparezca

un mensaje de acuerdo de licencia, si queremos que el usuario tenga que introducir su

nombre y compañía a la que pertenece, si permitimos al usuario cambiar dónde se instalará

la aplicación y si damos la opción de ejecutar la aplicación directamente tras la instalación.

Ilustración 40: Asistente de configuración del instalador, paso 4

 78

Una vez hemos completado el último paso del asistente ya podemos generar el proyecto. El

instalador se encuentra ahora en la carpeta correspondiente al proyecto InstallShield que

hemos creado:

Ilustración 41: Captura de la carpeta donde se encuentra el proyecto del instalador (izquierda) y de los
instalador y archivos necesarios para la instalación de la aplicación (derecha).

Si ejecutamos el archivo setup.exe se inicia el proceso de instalación de la aplicación.

Seguimos los pasos de la instalación y una vez terminada encontraremos el ejecutable de la

instalación en la carpeta que hayamos especificado.

Ilustración 42: Captura de la carpeta donde se ha instalado la aplicación

 79

5. Conclusiones y vías de continuación

Todo el proceso descrito en la memoria culmina con el ejecutable de la aplicación

plenamente funcional.

Durante el proceso de desarrollo —desde la idea inicial hasta su estado final— el proyecto

ha ido evolucionando y adaptándose a las necesidades y circunstancias que iban surgiendo.

En consecuencia, el resultado final difiere en algunos aspectos de lo inicialmente planeado.

El proyecto —que se pensó como un proyecto centrado mayoritariamente en la creación

de una aplicación que aprovechara los beneficios ofrecidos por los algoritmos de

inteligencia artificial y las redes neuronales— acabó convirtiéndose en un proyecto

centrado en el ámbito de la Ingeniería del Software, concretamente en el desarrollo

completo de una aplicación desde cero. Este cambio de rumbo, sin embargo, no afecta a la

idea principal y más importante del proyecto: unir formación e interés personal en un

proyecto cuyo resultado cubriera una necesidad real.

Al final de este proyecto lo que obtenemos —además de multitud de nuevos

conocimientos producto del trabajo llevado a cabo— es una aplicación que puede ser usada

para administrar programas de entrenamiento —en los que se incluye el apartado

alimenticio— y que permite el seguimiento de estos mediante un sistema de calendarios y

eventos que el usuario puede personalizar.

Vías de continuación

Como en cualquier proyecto existen siempre vías de continuación que amplíen el abanico

de funcionalidades y opciones ofrecidas, así como revisiones que ayuden a mejorar el

funcionamiento del mismo. Estas son algunas de estas vías posibles:

 Implementar una base de datos SQL: En el apartado de diseño ya se discutió

acerca del uso de una base de datos SQL o no y, aunque se decidió optar por otro

tipo de solución, una vía de continuación sería implementar la base de datos en

formato SQL. Esto facilitaría la ampliación de la aplicación a otras plataformas —

web, Android...

 Módulo Inteligente: Este módulo quedó excluido por causas relacionadas con la

planificación temporal y sería una de las principales vías de continuación del

proyecto.

 Versión WEB/Móvil: Teniendo en cuenta que hoy en día la conexión a internet

es algo tan común como tener un ordenador, una versión web/móvil de la

aplicación incrementaría el valor de esta y permitiría acceder a ella desde cualquier

ordenador.

 80

 81

6. Bibliografía

1. Walkthrough: Creating and Running Unit Tests for Managed Code

a. Dirección: http://msdn.microsoft.com/en-us/library/ms182532.aspx

b. Descripción: Cómo crear y utilizar Unit Tests para un proyecto en C#.

2. Calendar.NET

a. Dirección: http://www.codeproject.com/Articles/378900/Calendar-NET

b. Descripción: Control utilizado como base para crear el control Calendario,

el controlador principal del módulo calendario.

3. Calories Burned During Exercise, Activities, Sports and Work

a. Dirección: http://www.nutristrategy.com/caloriesburned.htm

b. Descripción: Tabla de actividades con el consumo calórico aproximado

según el peso del deportista.

4. Timetable Tutorial

a. Dirección: http://code.daypilot.org/65101/timetable-tutorial-asp-net-c-

vb-net

b. Descripción: Tutorial para crear una tabla horaria en Ajax.

5. Printing the form

a. Dirección: http://msdn.microsoft.com/en-us/library/aa287529

(v=vs.71).aspx

b. Descripción: Ejemplo de cómo imprimir un formulario.

6. Tabla de Calorías de los alimentos

a. Dirección: http://www.vitalimentos.es/cuantas-calorias/

b. Descripción: Tabla de calorías de cada alimento agrupados por tipo.

7. Estiramientos Piernas

a. Dirección: http://www.estiramientos.es/index.php?filt=piernas

&size=gran

b. Descripción: Ejemplos de diferentes estiramientos para el tren inferior.

8. TabControl: How to capture Mouse RightClick on Tab

a. Dirección: http://social.msdn.microsoft.com/Forums/windows/en-

US/e09d081d-a7f5-479d-bd29-44b6d163ebc8/tabcontrol-how-to-capture-

mouse-rightclick-on-tab

b. Descripción: Hilo del foro del MSDN de Microsoft donde se comenta

cómo detectar que el botón derecho del ratón ha sido pulsado.

9. How can I make my own event in C#?

a. Dirección: http://stackoverflow.com/questions/623451/how-can-i-make-

my-own-event-in-c

http://msdn.microsoft.com/en-us/library/ms182532.aspx
http://www.codeproject.com/Articles/378900/Calendar-NET
http://www.nutristrategy.com/caloriesburned.htm
http://code.daypilot.org/65101/timetable-tutorial-asp-net-c-vb-net
http://code.daypilot.org/65101/timetable-tutorial-asp-net-c-vb-net
http://msdn.microsoft.com/en-us/library/aa287529(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa287529(v=vs.71).aspx
http://www.vitalimentos.es/cuantas-calorias/
http://www.estiramientos.es/index.php?filt=piernas&size=gran
http://www.estiramientos.es/index.php?filt=piernas&size=gran
http://social.msdn.microsoft.com/Forums/windows/en-US/e09d081d-a7f5-479d-bd29-44b6d163ebc8/tabcontrol-how-to-capture-mouse-rightclick-on-tab
http://social.msdn.microsoft.com/Forums/windows/en-US/e09d081d-a7f5-479d-bd29-44b6d163ebc8/tabcontrol-how-to-capture-mouse-rightclick-on-tab
http://social.msdn.microsoft.com/Forums/windows/en-US/e09d081d-a7f5-479d-bd29-44b6d163ebc8/tabcontrol-how-to-capture-mouse-rightclick-on-tab
http://stackoverflow.com/questions/623451/how-can-i-make-my-own-event-in-c
http://stackoverflow.com/questions/623451/how-can-i-make-my-own-event-in-c

 82

b. Descripción: Página de la web www.stackoverflow.com en que se comenta

la creación de un evento personalizado.

10. DateTime Structure

a. Dirección: http://msdn.microsoft.com/en-us/library/system.datetime.

aspx

b. Descripción: Propiedades de la estructura DateTime.

11. mongoDB

a. Dirección: http://www.mongodb.org/

b. Descripción: Página principal de las base de datos orientadas a

documentos.

12. How to clone a control?

a. Dirección: http://social.msdn.microsoft.com/Forums/vstudio/

en-US/cf04f12e-eb88-4814-b413-b7cf72010231/how-to-clone-a-control

b. Descripción: Hilo del foro del MSDN de Microsoft donde se comenta

cómo clonar un control —propiedades, event handlers, etc.

13. It is possible to copy all the properties of a certain control? (C# window forms)

a. Dirección: http://stackoverflow.com/questions/3473597/it-is-possible-

to-copy-all-the-properties-of-a-certain-control-c-window-forms

b. Descripción: Página de la web www.stackoverflow.com donde se comenta

si es posible copiar todas las propiedades de un control determinado.

14. How to Clone/Serialize/Copy & Paste a Windows Forms Control

a. Dirección: http://www.codeproject.com/Articles/12976/How-to-Clone-

Serialize-Copy-Paste-a-Windows-Forms

b. Descripción: Enfoque de cómo clonar un Control con todas sus

propiedades y event handlers.

15. Control.InValidate vs. Control.Refresh()?

a. Dirección: http://bytes.com/topic/c-sharp/answers/244445-control-

invalidate-vs-control-refresh

b. Descripción: Página de la web www.bytes.com donde se comenta la diferencia

entre los métodos InValidate y Refresh().

16. Enumerate and copy properties from one object to another object of same type.

a. Dirección: http://stackoverflow.com/questions/4546381/enumerate-and-

copy-properties-from-one-object-to-another-object-of-same-type

b. Descripción: Página de la web StackOverflow en que se comenta cómo

copiar las propiedades de un objecto a otro del mismo tipo.

17. How to instantly change label text during a method at runtime?

a. Dirección: http://stackoverflow.com/questions/15265520/how-

to-instantly-change-label-text-during-a-method-at-runtime

http://www.stackoverflow.com/
http://msdn.microsoft.com/en-us/library/system.datetime.aspx
http://msdn.microsoft.com/en-us/library/system.datetime.aspx
http://www.mongodb.org/
http://social.msdn.microsoft.com/Forums/vstudio/en-US/cf04f12e-eb88-4814-b413-b7cf72010231/how-to-clone-a-control
http://social.msdn.microsoft.com/Forums/vstudio/en-US/cf04f12e-eb88-4814-b413-b7cf72010231/how-to-clone-a-control
http://stackoverflow.com/questions/3473597/it-is-possible-to-copy-all-the-properties-of-a-certain-control-c-window-forms
http://stackoverflow.com/questions/3473597/it-is-possible-to-copy-all-the-properties-of-a-certain-control-c-window-forms
http://www.stackoverflow.com/
http://www.codeproject.com/Articles/12976/How-to-Clone-Serialize-Copy-Paste-a-Windows-Forms
http://www.codeproject.com/Articles/12976/How-to-Clone-Serialize-Copy-Paste-a-Windows-Forms
http://bytes.com/topic/c-sharp/answers/244445-control-invalidate-vs-control-refresh
http://bytes.com/topic/c-sharp/answers/244445-control-invalidate-vs-control-refresh
http://www.bytes.com/
http://stackoverflow.com/questions/4546381/enumerate-and-copy-properties-from-one-object-to-another-object-of-same-type
http://stackoverflow.com/questions/4546381/enumerate-and-copy-properties-from-one-object-to-another-object-of-same-type
http://stackoverflow.com/questions/15265520/how-to-instantly-change-label-text-during-a-method-at-runtime
http://stackoverflow.com/questions/15265520/how-to-instantly-change-label-text-during-a-method-at-runtime

 83

b. Descripción: Página de la web StackOverflow en que se comenta cómo

modificar el texto de una etiqueta durante la ejecución de un programa.

18. Document-oriented database

a. Dirección: http://en.wikipedia.org/wiki/Document-oriented_database

b. Descripción: Artículo de la Wikipedia sobre las bases de datos orientadas a

documentos.

19. What are the advantages and disadvantages of SQL?

a. Dirección: http://wiki.answers.com/Q/What_are_the_advantages_and_

disadvantages_of_SQL#page3

b. Descripción: Ventajas y desventajas de las bases de datos SQL.

http://en.wikipedia.org/wiki/Document-oriented_database
http://wiki.answers.com/Q/What_are_the_advantages_and_disadvantages_of_SQL#page3
http://wiki.answers.com/Q/What_are_the_advantages_and_disadvantages_of_SQL#page3

 84

 85

7. Anexos

7.1 Diagramas de Gantt

Informe previo:

Volver a la referencia

Ilustración 43: Como se puede observar prácticamente todas las tareas del proyecto se desarrollan en paralelo entre ellas (respetando la duración y restricciones de precedencia, etc.

 86

Diagrama de Gantt final, fase 1:

Ilustración 44: En este fragmento del diagrama de Gantt se muestran los primeros meses de desarrollo del proyecto.

Volver a la referencia

 87

Diagrama de Gantt final, fase 2:

Ilustración 45: Este fragmento del diagrama muestra el desarrollo del proyecto de Febrero a Agosto de 2013.

Volver a la referencia

 88

7.2 Diagrama Entidad/relación

 89

 90

Ilustración 46: Diagrama Entidad/Relación de la aplicación

Volver a la Referencia

 91

7.3 Diagramas de secuencia

7.3.1 Módulo General

Crear Usuario

Ilustración 47: Diagrama de Secuencia de la creación de un nuevo usuario. Módulo General

 92

Loguear y desconectar Usuario

Ilustración 48: Diagrama de secuencia de conectarse y desconectarse como Usuario

Volver a la Referencia

 93

 Ver información de Usuario

Ilustración 49: Diagrama de secuencia de visualizar la información personal de un Usuario

Volver a la Referencia

 94

 Cargar Módulo

Ilustración 50: Diagrama de secuencia correspondiente a cargar un módulo seleccionado por el usuario

Volver a la referencia

 95

 Cerrar Aplicación

Ilustración 51: Diagrama de secuencia correspondiente a cerrar la aplicación

Volver a la referencia

 96

7.3.2 Módulo Ejercicios

Crear Ejercicio

Ilustración 52: Diagrama de secuencia correspondiente a crear un nuevo ejercicio

Volver a la referencia

 97

 Abrir Ejercicio

Ilustración 53: Diagrama de secuencia correspondiente a Abrir un ejercicio sin posibilidad de edición

Volver a la referencia

 98

 Modificar Ejercicio

Ilustración 54: Diagrama de Secuencia correspondiente a modificar las opciones de un ejercicio existente

Volver a la referencia

 99

 Eliminar Ejercicio

Ilustración 55: Diagrama de secuencia correspondiente a eliminar un ejercicio de la base de datos de ejercicios

Volver a la referencia

 100

 Añadir ejercicio a rutina

Ilustración 56: Diagrama de secuencia de las interacciones para añadir una ejecución de un ejercicio existente a una rutina Volver a la referencia

 101

Crear Rutina

Ilustración 57: Diagrama de secuencia correspondiente a las interacciones entre elementos al crear una rutina nueva Volver a la referencia

 102

 Replicar Rutina

Ilustración 58: Diagrama de secuencia correspondiente a replicar una rutina existente

Volver a la referencia

 103

 Guardar Rutina como Imagen

Ilustración 59: Diagrama de secuencia correspondiente a guardar una rutina como imagen

Volver a la referencia

 104

 Cerrar Módulo

Ilustración 60: Diagrama de secuencia de cerrar el módulo abierto

Volver a la referencia

 105

7.3.3 Módulo Dietista

Crear Alimento

Ilustración 61: Diagrama de secuencia correspondiente a crear un nuevo alimento

Volver a la Referencia

 106

 Modificar Alimento

Ilustración 62: Diagrama de secuencia correspondiente a modificar un alimento existente

Volver a la Referencia

 107

 Eliminar Alimento

Ilustración 63: Diagrama de secuencia correspondiente a eliminar un alimento existente

Volver a la Referencia

 108

 Añadir alimento a comida

Ilustración 64: Diagrama de secuencia correspondiente a añadir un alimento a una comida existente

Volver a la Referencia

 109

 Crear/Modificar Dieta

Ilustración 65: Diagrama de secuencia correspondiente a crear una dieta Volver a la Referencia

 110

 Añadir comida a dieta

Ilustración 66: Diagrama de secuencia correspondiente a añadir una comdia a una dieta existente Volver a la Referencia

 111

7.3.4 Módulo Calendario

Crear Calendario

Ilustración 67: Diagrama de secuencia correspondiente a la creación de un nuevo calendario

Volver a la Referencia

 112

 Añadir evento Normal

Ilustración 68: Diagrama de secuencia correspondiente a añadir un evento del tipo normal Volver a la Referencia

 113

Añadir evento comida

Ilustración 69: Diagrama de secuencia correspondiente a añadir un evento de tipo comida a un calendario existente

Volver a la Referencia

 114

Añadir evento ejercicio

Ilustración 70: Diagrama de secuencia correspondiente a añadir un evento del tipo ejercicio a un calendario existente

Volver a la Referencia

 115

Añadir evento dieta

Ilustración 71: Diagrama de secuencia correspondiente a añadir un evento de tipo dieta a un calendario existente

Volver a la Referencia

 116

Añadir evento rutina

Ilustración 72: Diagrama de secuencia correspondiente a añadir un evento del tipo rutina a un calendario existente

Volver a la Referencia

 117

 Eliminar evento

Ilustración 73: Diagrama de secuencia correspondiente a eliminar un evento existente

Volver a la Referencia

 118

 Replicar Evento

Ilustración 74: Diagrama de secuencia correspondiente a replicar un evento existente

Volver a la Referencia

 119

 Editar evento

Ilustración 75: Diagrama de secuencia correspondiente a editar un evento existente

Volver a la Referencia

 120

 121

7.4 Interfaz (Diseño)

Ilustración 76: Módulo General ventana principal con usuario ya logueado

Volver a la Referencia

 122

Ilustración 77: Diseño de la ventana principal del Módulo Calendario.

Volver a la Referencia

 123

Ilustración 78: Diseño de la ventana principal del Módulo Calendario con un calendario abierto en modo Vista mensual.

Volver a la Referencia

 124

Ilustración 79: Diseño de la ventana principal del Módulo Calendario después de seleccionar la opción de Ver información de un evento

Volver a la Referencia

 125

Ilustración 80: Diseño de la ventana principal del Módulo Calendario en modo Vista Diaria

Volver a la Referencia

 126

Ilustración 81: Diseño de la ventana principal del Módulo Ejercicios. A la izquierda se encuentran los árboles de Ejercicios y debajo la lista de Rutinas.

Volver a la Referencia

 127

Ilustración 82: Diseño de la ventana principal del Módulo Ejercicios con la barra de pestañas.

Volver a la Referencia

 128

Ilustración 83: Diseño de la ventana principal del módulo Ejercicios con la pestaña de mostrar la información de Categoría 6 seleccionada.

Volver a la Referencia

 129

Ilustración 84: Diseño de la ventana principal del módulo Ejercicios con la pestaña de mostrar la información de Rutina 1 seleccionada.

Volver a la Referencia

 130

 131

7.5 Incidencias durante la implementación

Módulo General

 Incidencia 1

 Formulario: ModuloGeneralVentanaPrincipal.cs

 Descripción: Path del archivo usuarios.txt de la base de datos incorrecto.

 Incidencia 2

 Formulario: ModuloGeneralMensajeError.cs

 Descripción: texto de la textbox incorrecto.

 Incidencia 3

 Formulario: ModuloGeneralVentanaNuevoUsuario.cs

 Descripción: Glich al clicar la pestaña Información Biológica tras clicar en

botón Siguiente cuando se ha cometido un error al introducir el nombre o la

contraseña.

 Incidencia 4

 Formulario: ModuloGeneralVentanaNuevoUsuario.cs

 Descripción: Revisar que al guardar un usuario en la base de datos, si no se

añade el último campo (alergias), no se produzcan errores al leer dicho

usuario de la base de datos.

 Incidencia 5

 Formulario: ModuloGeneralVentanaNuevoUsuario.cs

 Descripción: La codificación de los archivos ha de ser en UTF-8 para

evitar problemas con caracteres especiales.

 Incidencia 6

 Formulario: ModuloGeneralVentanaNuevoUsuario.cs

 Descripción: Los usuarios se sobreescriben al agreagarlos a la base de

datos.

 Incidencia 7

 Formulario: ModuloGeneralVentanaPrincipal.cs y

ModuloGeneralVentanaPrincipalUsuarioLogueado.cs

 Descripción: No se puede reloguear con un usuario diferente (o el mismo)

una vez logueado.

 132

Módulo Ejercicios

 Incidencia 1

 Formulario: MóduloEjerciciosVentanaPrincipal.cs

 Descripción: Al hacer doble click en una categoría se abre como si fuera

un ejercicio.

 Incidencia 2

 Formulario: MóduloEjerciciosVentanaPrincipal.cs

 Descripción: Si se abre un ejercicio y se intenta abrir de nuevo sin cambiar

la selección, se produce un error.

 Incidencia 3

 Formulario: ModuloEjerciciosVentanaPrincipal.cs

 Descripción: A veces se produce un error al cerrar el módulo porque la

aplicación intenta generar un árbol de ejercicios cuando ya no existen.

 Incidencia 4

 Formulario: ModuloEjerciciosVentanaPrincipal.cs

 Descripción: Al asignar el valor -1 a los campos que no aparecen en una

rutina se producen micro errores en el cálculo de las calorías consumidas a

nivel de rutina (ya que se asigna el valor -1 también al consumo calórico si

no es introducido).

 Incidencia 5

 Formulario: ModuloEjerciciosPestañaEditarRutina.cs

 Descripción: Al borrar todos los ejercicios de una rutina el contador de

calorías se queda a cero y no vuelve a subir al añadirse nuevos ejercicios.

 Incidencia 6

 Formulario: ModuloEjerciciosVentanaPrincipal.cs

 Descripción: Las capturas de pantalla no guardan el contenido de las

textbox de tipo RichTextBox.

Módulo Dietista

No hay incidencias reportadas ya que el funcionamiento es prácticamente igual al del

módulo Ejercicios.

 133

Módulo Calendario

 Incidencia 1

 Formulario: ModuloCalendarioEventDetails.cs

 Descripción: Según el tipo de evento que se edite hay que cargar unos

campos u otros en el formulario.

 Incidencia 2

 Formulario: ModuloCalendarioEventDetails.cs

 Descripción: Al cargar una dieta como evento hay que preguntar a qué

hora se ingerirá cada comida —un evento por comida.

 Incidencia 3

 Formulario: Calendar.NET Calendar.cs

 Descripción: En la vista Día a Día no se cargan los eventos correctamente.

 Incidencia 4

 Formulario: Calendar.NET Calendar.cs

 Descripción: Hay que revisar la recurrencia de los eventos. El control deja

de funcionar según el tipo de recurrencia elegido.

 Incidencia 5

 Formulario: Calendar.NET Calendar.cs

 Descripción: El control por defecto no permite elegir la hora a la que se

realiza un evento, solo la fecha.

 Incidencia 6

 Formulario: ModuloCalendarioVentanaPrincipal.cs

 Descripción: La relación entre la duración de un evento de tipo

EventoEjercicio y la duración del ejercicio en sí ha de revisarse ya que si se

establece una relación 1:1 —el evento dura lo que dure la ejecución del

ejercicio— este no se ve reflejado en pantalla cuando la duración del

ejercicio es muy corta.

 Incidencia 7

 Formulario: ModuloCalendarioVentanaPrincipal.cs

 Descripción: Cuando dos eventos se superponen temporalmente hay que

dividir el espacio de muestra para que ambos eventos sean visibles en la

vista Día a Día.

 Incidencia 8

 Formulario: ModuloCalendarioVentanaPrincipal.cs

 Descripción: Por qué algunos eventos se ven repetidos en la vista Día a

Día?

 134

 Incidencia 9

 Formulario: ModuloCalendarioVentanaPrincipal.cs

 Descripción: Si un evento dura hh:mm —h, horas; m, minutos— si m es

diferente de cero, este valor se ignora.

 Incidencia 10

 Formulario: ModuloCalendarioVentanaPrincipal.cs

 Decripción: Revisar y rediseñar toda la función encargada de dibujar el

calendario para solucionar los problemas con las funciones de recurrencia

de los eventos.

 Incidencia 11

 Formulario: ModuloCalendarioVentanaPrincipal.cs

 Descripción: En el modo de vista Mensual del calendario, si un mismo día

incluye más de cuatro eventos se dejan de visualizar el resto por falta de

espacio.

 135

Contraportada

Català

Aquesta memòria recull el procés seguit per al desenvolupament i implementació d’una

aplicació Software. Aquest procés s’inicia amb la presentació del tema, estat de l’art i

planificació temporal per continuar amb l’anàlisi de requeriments de l’aplicació —

identificació dels interessats, entitats existents i les relacions d’aquestes...— el disseny de la

mateixa —mètode de desenvolupament emprat, arquitectura...— la implementació de

l’aplicació i les proves corresponents.

Finalment la memòria es completa amb les conclusions i vies de continuació així com la

bibliografia i annexos complementaris.

Castellano

Esta memoria recoge el proceso seguido para el desarrollo e implementación de una

aplicación Software. Este proceso se inicia con la presentación del tema, estado del arte y

planificación temporal para continuar con el análisis de requerimientos de la apliación —

identificación de los interesados, entidades existentes y sus relaciones…— el diseño de la

misma —método de desarrollo, arquitectura…— la implementación de la aplicación y las

pruebas correspondientes.

Finalmente la memoria se completa con las conclusiones y las vías de continuación así

como la bibliografía y anexos complementarios.

English

This report joins the several stages that make up the process followed to develop and

implement a Software application. This process starts with the presentation of the project’s

subject, the state of the art and its planning; to continue with the requirements analysis —

stakeholder identification, existent entities and their relationships…—, the design of the

application —development method used, architecture…—, the implementation and the

application testing.

Finally the report is completed with the conclusions and future development paths, the

bibliography and complementary annexes.

