Autonoma
de Barcelona

o escola
Universitat 3 - -
d’enginyeria

5250: Agenda Deportiva

Memoria del Proyecto Final de Carrera
de Ingenierfa Informatica

realizado por

Julian Ruiz Burgos

y dirigido por

Xavier Roca Marva

Bellaterra 12 de Septiembre de 2013

Universitat

/e Autonoma e t Se
de Barcelona

Escola Técnica Superior d’Enginyeria

El sotasignat, Xavier Roca Marva

Professot/a de 1'Escola Técnica Superior d'Enginyetia de la UAB,
CERTIFICA:

Que el treball a que correspon aquesta memoria ha estat realitzat sota la
seva direccié per en

Julian Ruiz Burgos

I per tal que consti firma la present.

Signat: Xavier Roca Marva

Bellaterra, 13 de Septembre de 20013

Tabla de contenido

1. Introduccién

11 Motivaciones del proyecto y tematica del proyecto
1.2 Estado del arte

1.3 Descripcion de la aplicacion

1.4 Planificacion temporal

15 Herramientas utilizadas

2. Anadlisis de requerimientos

21 Identificacidn de los interesados

2.2 Diagrama Entidad/Relacion

2.3 Requerimientos funcionales
2.3.1 Modelo de Casos de uso
2.3.2 Diagramas de secuencia

3. Disefio

3.1 Método de desarrollo

3.2 Arquitectura de la aplicacion
3.2.1 Disefio de clases

3.3 Disefio de la base de datos
3.3.1 Estructura

3.4 Disefio de la Interfaz

4. Implementacién y pruebas

4.1 Lenguaje utilizado y herramienta de desarrollo
4.2 Implementacién de la aplicacion.

4.2.1 Sistema de clases

4.2.2 Implementacion de la base de datos.

4.2.3 Implementacion de la interfaz
4.3 Instalador y ejecutable

5. Conclusiones y vias de continuacién
6. Bibliografia

7. Anexos

7.1 Diagramas de Gantt
7.2 Diagrama Entidad/relacion
7.3 Diagramas de secuencia
7.3.1 Modulo General
7.3.2 Mobdulo Ejercicios
7.3.3 Modulo Dietista
7.3.4 M0odulo Calendario
7.4 Interfaz (Disefio)
7.5 Incidencias durante la implementacion

11
13
15
17

19

19
21
23
23
36

39

39
41
41
49
49
53

57

57
59
59
61
71
75

79

81

85

85
88
91
91
96
105
111
121
131

ILUSTRACION 1: DIETA, EJEMPLO EXTRAIDO DE WWW.SALUDYMEDICINA.ORG +vvevuvvrevrerveeesuressseeensuesssesesuesssesenseessseees 21
ILUSTRACION 2: "RUTINA VANE", EJEMPLO EXTRAIDO DE WWW.MUSCULACIONPARAPRINCIPIANTES.COM.....cvvvvvvvrrererennns 22
ILUSTRACION 3: REPRESENTACION GRAFICA DEL METODO ITERATIVO INCREMENTAL. EJEMPLO EXTRAIDO DE
WWW.SYNDERS.US. c.vtesuteeeureeeuseesnseesssessseesssesasessnsesansessssesansessnsesansessnsessssessnsessnsessssessnsessnsesssesssessssensns
ILUSTRACION 4: DIAGRAMA DE CLASES DEL MODULO EJERCICIOS
ILUSTRACION 5: DIAGRAMA DE CLASES DEL MODULO DIETISTA c..uttteiiireeeitieeeeiieeesnrteeesveeeesnsseeessaseeessnseeesssnseesssnnees

ILUSTRACION 6: DIAGRAMA DE CLASES DEL MODULO CALENDARIO.....ccuveeurerseersresseeseeesseesseessesnseassesseessesssesssesssessssssees 48
ILUSTRACION 7: ESTRUCTURA DE LA BASE DE DATOS, MODULO GENERAL ..vteuvveetreesereeteeeseresssseesssesssseesssesssssesseesssees 50
ILUSTRACION 8: ESTRUCTURA DE LA BASE DE DATOS, MODULO CALENDARIOvevvveeeereeeeeesseenseessesseesseessesssesssessesssees 50
ILUSTRACION 9: ESTRUCTURA DE LA BASE DE DATOS, MODULO EJERCICIOSvveevrrerereerreesereesireesiseessseessneensneesssesssneas 51
ILUSTRACION 10: ESTRUCTURA DE LA BASE DE DATOS, MODULO DIETISTA..euveeutererereeereeeseeeseenseessesseesseessesssesssesesssees 52
ILUSTRACION 11: DISENO DE LA VENTANA PRINCIPAL DEL MODULO GENERAL, LA VENTANA QUE APARECE AL EJECUTAR LA
APLICACION. .euetteeeiiteeeeiteeesettteesatteeesubteesaasbeeesasbteeeaabeeesaasbeeesassaeeeaabeeesansbeeesnsbeesaabeeesansbaeesansneesssreaenn 53
ILUSTRACION 12: DISENO DE LA VENTANA PRINCIPAL DEL MIODULO EJERCICIOS. .uvveevreerreesereeireesireeseeessseensneesssesnsnens 54

ILUSTRACION 13: DISENO DE LOS PASOS A SEGUIR POR EL USUARIO DE LA APLICACION PARA ANADIR UN NUEVO EVENTO.55

ILUSTRACION 14: DESCRIPCION DE LA CLASE STREAMREADER EN LA LIBRERIA DE CLASES DE MICROSOFT

ILUSTRACION 15: EXPLORADOR DE SOLUCIONES DE VISUAL STUDIO 2010coviiiiiiiiiiiiicnicicicnicicsie e

ILUSTRACION 16: DIAGRAMA DEL PROCEDIMIENTO DE IMPLEMENTACION DE LAS CLASESuvieuviinriiniiinecireeieeie e

ILUSTRACION 17: ARRIBA, CAPTURA DE LA IMPLEMENTACION DE LOS CONSTRUCTORES DE LA CLASE COMIDA; ABAJO, CAPTURA
DE LA IMPLEMENTACION DE LOS METODOS DE LA CLASE DE PRUEBAS QUE COMPRUEBAN EL CORRECTO

FUNCIONAMIENTO DE DICHOS CONSTRUCTORES. ...eeivietieuriiurintientienteetestesite st ste et et ean et ettt eane s snnes 60
ILUSTRACION 18: CAPTURA DEL FICHERO DE LA BASE DE DATOS EJERCICIOSBASE........coviiniiiiiiiiciiiciicteciccic e 61
ILUSTRACION 19: CAPTURA DE UN FICHERO QUE CODIFICA UN CALENDARIO.uoovviiiiiiiniitiiniesieie st sre e 62
ILUSTRACION 20: DIAGRAMA DE ESTADOS DE LA CARGA DE INFORMACION DE LA BASE DE DATOS.covuviirienieeieiieinneinnes 63

ILUSTRACION 21: LAS FUNCIONES CARGARBASEDATOSCATEGORIASBASE() Y
CARGARBASEDATOSCATEGORIASPERSONALIZADAS() LEEN DE LOS FICHEROS CATEGORIASBASE. TXT Y
<NOMBREUSUARIO>,TXT LA INFORMACION REFERENTE A LAS CATEGORIAS BASE Y LAS ESPECIFICAS DE CADA USUARIO
RESPECTIVAMENTE. ..eeutteeuteesuteesuseesseesaseeeseesseeesseesssesesssesseeesssesssseesasesnsesesssesssseesasesnsseesnsessnseessesnseesns 64

ILUSTRACION 22: LECTURA DE LOS EJERCICIOS BASE DEL FICHERO DE LA BASE DE DATOS...cceuvveeeeureeessureeessreeesssseeessanees 64

ILUSTRACION 23: PROCESO PARA LEER LOS EJERCICIOS PERSONALIZADOS DE USUARIO DEL FICHERO DE LA BASE DE DATOS....65

ILUSTRACION 24: GENERARARBOLCATEGORIASYEJERCICIOS() SE ENCARGA DE CREAR Y RELLENAR EL ARBOL QUE MOSTRARA

POR PANTALLA LAS CATEGORIAS Y EJERCICIOS CARGADODS.vvvveeeeeraurureeesesssasunrreseessssssssseeeesssssssssnseesssssssnes 66
ILUSTRACION 25: CAPTURA DE PANTALLA DE LA APLICACION EN EJECUCION DONDE SE MUESTRA EL ARBOL CON LAS
CATEGORIAS Y EJERCICIOS. .uveeeureeereeruteeeseesuteeaseesseesaseesateessseesaseesnseesasessnseesasessnseesaseessseesseesseesnseesnseesns 66
ILUSTRACION 26: CAPTURA DE LOS SEPARADORES DE CAMPO DEL FICHERO DE LA BASE DE DATOS QUE CONTIENE LAS RUTINAS
DEL USUARIOD. ¢ utteuteeeuteesuteesuteesuseesstesaseessseessseessseessseesssesasaeestesseeesaseesesesseensseesaseessseesaseensseesnseesseesas 66
ILUSTRACION 27: CAPTURA DEL CODIGO CORRESPONDIENTE A CARGAR LAS RUTINAS DEL FICHERO....uvveevveerereeereeneneenneas 67
ILUSTRACION 28: CAPTURA DE LA LISTA DE RUTINAS UNA VEZ EL ARBOL DE RUTINAS HA SIDO GENERADO.eervvrevrernneee 68
ILUSTRACION 29: DIAGRAMA DE ESTADOS DEL PROCESO DE GUARDAR CAMBIOS EN LA BD. ...eovvviiiiiiiieeeiiieeenieee e 68
ILUSTRACION 30: FRAGMENTO 1 DE CODIGO DEL METODO GUARDARCAMBIOS(). ESTE METODO ES EL ENCARGADO DE
GUARDAR LOS CAMBIOS LLEVADOS A CABO EN LA BASE DE DATOS. .vveeuverereesreeesseessreessseesssessssessssessssessssesssseesns 69
ILUSTRACION 31: FRAGMENTO 2 DEL CODIGO DEL METODO GUARDARCAMBIOS(). «ocuvveeveiiniieiiiiienieniieesieeesieeeseee s 69
ILUSTRACION 32: FRAGMENTO 3 DEL CODIGO DEL METODO GUARDARCAMBIOS(). «.ccveeeeeiieeeeeiieeeeitiee e et et 70
ILUSTRACION 33: FORMULARIO MODULOGENERALMENSAJECONFIRMACION ..cuvvvenerenieeeniressueeennsessseeesssessseeesseessseees 71
ILUSTRACION 34: CODIGO QUE SE EJECUTARA AL DISPARARSE LOS EVENTOS ENLAZADOS AL CLICK DE LOS BOTONES ACEPTAR Y
CANCELAR. <.t euteeetee et e st e st e sttt st e sttt s bt e ettt s bt e sttt e bt e s be e e st e e bt e e ateebe e e s abeenabeesabeenabeesabeesnteesabaenateenas 71

ILUSTRACION 35: FORMULARIO INFORMACION DE RUTINA, DISENO (IZQUIERDA) E IMPLEMENTACION FINAL (DERECHA)...... 72

ILUSTRACION 36: IMPLEMENTACION DEL FORMULARIO INFORMACIONRUTINA (1IZQUIERDA) Y LOS METODOS QUE SE ENCARGAN
DE LOS EVENTOS QUE SE ACTIVAN AL HACER DOBLE CLICK EN UNA CELDA Y PASAR POR ENCIMA DE LA TABLA DE
EJERCICIOS. cvvuveuveveetesseseesesessesesseseetesseseetesseseetessess et e s eseetessese et assess et asseseebesseseebessessebessessebeseseatesseneesensns 73

ILUSTRACION 37: CAPTURA DE LA VENTANA DE CREACION DE UN NUEVO PROYECTO DE TIPO INSTALLSHIELD. ...cccevuvvvennnee. 75

ILUSTRACION 38: ASISTENTE DE CREACION DEL PROYECTO INSTALADOR, PASO L. ..vvvvireneereereneeseereneeseeteeeseeseseneerennens 76
ILUSTRACION 39: ASISTENTE DE CREACION DEL PROYECTO INSTALADOR, PASO 2. ..v.vvvirereeresreseesesseneesessesesessesessssensens 76
ILUSTRACION 40: ASISTENTE DE CONFIGURACION DEL INSTALADOR, PASO 4voveueereereneereereeeseeseseseeseseseesesenseseenns 77
ILUSTRACION 41: CAPTURA DE LA CARPETA DONDE SE ENCUENTRA EL PROYECTO DEL INSTALADOR (IZQUIERDA) Y DE LOS
INSTALADOR Y ARCHIVOS NECESARIOS PARA LA INSTALACION DE LA APLICACION (DERECHA). ...cuvevevereneerereneerennen. 78
ILUSTRACION 42: CAPTURA DE LA CARPETA DONDE SE HA INSTALADO LA APLICACION ...c.vevvevereneeriereneerestesseseereseneesesnens 78

ILUSTRACION 43:

COMO SE PUEDE OBSERVAR PRACTICAMENTE TODAS LAS TAREAS DEL PROYECTO SE DESARROLLAN EN

PARALELO ENTRE ELLAS (RESPETANDO LA DURACION Y RESTRICCIONES DE PRECEDENCIA, ETC..veevuveerureenuveerveenveenns 85

ILUSTRACION 44

EN ESTE FRAGMENTO DEL DIAGRAMA DE GANTT SE MUESTRAN LOS PRIMEROS MESES DE DESARROLLO DEL

01 O O 1 e 86

ILUSTRACION 45:

2013......

ILUSTRACION 46:
ILUSTRACION 47:
ILUSTRACION 48:
ILUSTRACION 49:
ILUSTRACION 50:
ILUSTRACION 51:
ILUSTRACION 52:
ILUSTRACION 53:
ILUSTRACION 54:
ILUSTRACION 55:

ILUSTRACION 56:

ESTE FRAGMENTO DEL DIAGRAMA MUESTRA EL DESARROLLO DEL PROYECTO DE FEBRERO A AGOSTO DE
.. 87
DIAGRAMA ENTIDAD/RELACION DE LA APLICACIONvevvierevereerereereeeseeseeseseesesesseseesessesesenseseesenes
DIAGRAMA DE SECUENCIA DE LA CREACION DE UN NUEVO USUARIO.
DIAGRAMA DE SECUENCIA DE CONECTARSE Y DESCONECTARSE COMO USUARIOccveeveeneeneerereirenens
DIAGRAMA DE SECUENCIA DE VISUALIZAR LA INFORMACION PERSONAL DE UN USUARIO
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CARGAR UN MODULO SELECCIONADO POR EL USUARIO ...94

DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CERRAR LA APLICACION......ceerrurireriireeenieeeessireeesanees 95
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CREAR UN NUEVO EJERCICIO ..ccevvrerererereeereeeeeeeeeeeeeenens 96
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ABRIR UN EJERCICIO SIN POSIBILIDAD DE EDICION........... 97

DIAGRAMA DE SECUENCIA CORRESPONDIENTE A MODIFICAR LAS OPCIONES DE UN EJERCICIO EXISTENTE ...98
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ELIMINAR UN EJERCICIO DE LA BASE DE DATOS DE EJERCICIOS

DIAGRAMA DE SECUENCIA DE LAS INTERACCIONES PARA ANADIR UNA EJECUCION DE UN EJERCICIO EXISTENTE

A UNA RUTINA L iiiitiitiiiititiititettetenteteateteieententatsaseneansneentensensssensenenssnsensansaees VOLVER A LA REFERENCIA

ILUSTRACION 57:

DIAGRAMA DE SECUENCIA CORRESPONDIENTE A LAS INTERACCIONES ENTRE ELEMENTOS AL CREAR UNA

RUTINA NUEVA

OLVER A LA REFERENCIA

01
ILUSTRACION 58:
ILUSTRACION 59:
ILUSTRACION 60:
ILUSTRACION 61:
ILUSTRACION 62:
ILUSTRACION 63:
ILUSTRACION 64:
ILUSTRACION 65:
ILUSTRACION 66:
ILUSTRACION 67:
ILUSTRACION 68:
ILUSTRACION 69:

EXISTENTE
ILUSTRACION 70:

EXISTENTE
ILUSTRACION 71:

EXISTENTE

v
1
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A REPLICAR UNA RUTINA EXISTENTE ...ccvveeereranrieeeenennnns 102
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A GUARDAR UNA RUTINA COMO IMAGENceeeeruvreeennns 103
DIAGRAMA DE SECUENCIA DE CERRAR EL MODULO ABIERTO c.uuuveeeeuereeesireeeenureeessnreeesnreeessareeesnnns 104
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CREAR UN NUEVO ALIMENTO ..cuvverveeeerenieeenieennnees 105
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A MODIFICAR UN ALIMENTO EXISTENTE ..ouvveevvveeneveennnen 106
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ELIMINAR UN ALIMENTO EXISTENTE
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ANADIR UN ALIMENTO A UNA COMIDA EXISTENTE 108
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A CREAR UNA DIETA ~ VOLVER A LA REFERENCIA 109
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ANADIR UNA COMDIA A UNA DIETA EXISTENTE............. 110
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A LA CREACION DE UN NUEVO CALENDARIOcuvenee. 111
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ANADIR UN EVENTO DEL TIPO NORMALcevvvererennne. 112
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ANADIR UN EVENTO DE TIPO COMIDA A UN CALENDARIO
.. 113
DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ANADIR UN EVENTO DEL TIPO EJERCICIO A UN CALENDARIO
.. 114

DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ANADIR UN EVENTO DE TIPO DIETA A UN CALENDARIO

100

ILUSTRACION 72: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ANADIR UN EVENTO DEL TIPO RUTINA A UN CALENDARIO

[Y = L =SSP 116
ILUSTRACION 73: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A ELIMINAR UN EVENTO EXISTENTE ..vvvvvvverererereeeeeeeeennns 117
ILUSTRACION 74: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A REPLICAR UN EVENTO EXISTENTE...cvvvvevereerrerereeereeennns 118

ILUSTRACION 75: DIAGRAMA DE SECUENCIA CORRESPONDIENTE A EDITAR UN EVENTO EXISTENTE
ILUSTRACION 76: MODULO GENERAL VENTANA PRINCIPAL CON USUARIO YA LOGUEADOcuceiiiiiiiiiiiiniinieieie i

ILUSTRACION 77: DISENO DE LA VENTANA PRINCIPAL DEL MODULO CALENDARIO.cvevvierieneenieiesiinresnesneeneeneeae s 122
ILUSTRACION 78: DISENO DE LA VENTANA PRINCIPAL DEL MODULO CALENDARIO CON UN CALENDARIO ABIERTO EN MODO
VISTA MENSUAL. «.ccvveuvieitieteeeteete ettt sttt ettt b e e b et s aa e s he e s be e be et e et e e as e e be e be et e e b e eabesaeas 123
ILUSTRACION 79: DISENO DE LA VENTANA PRINCIPAL DEL MODULO CALENDARIO DESPUES DE SELECCIONAR LA OPCION DE VER
INFORMACION DE UN EVENTO....cuiiuriniiieiti ettt sttt s sttt sbe b eme e st b e sae b enaena e sneenes 124
ILUSTRACION 80: DISENO DE LA VENTANA PRINCIPAL DEL MODULO CALENDARIO EN MODO VISTA DIARIA...........ccvenenne. 125
ILUSTRACION 81: DISENO DE LA VENTANA PRINCIPAL DEL MODULO EJERCICIOS. A LA IZQUIERDA SE ENCUENTRAN LOS ARBOLES
DE EJERCICIOS Y DEBAJO LA LISTA DE RUTINAS.cuviiiiiieiit ittt ettt ettt et et et e 126
ILUSTRACION 82: DISENO DE LA VENTANA PRINCIPAL DEL MODULO EJERCICIOS CON LA BARRA DE PESTANAS.ccvevenee. 127
ILUSTRACION 83: DISENO DE LA VENTANA PRINCIPAL DEL MODULO EJERCICIOS CON LA PESTANA DE MOSTRAR LA
INFORMACION DE CATEGORIA 6 SELECCIONADA.cuveuviiiiiitiitieseesiesee st s s s s e et sas st s s s asae e 128
ILUSTRACION 84: DISENO DE LA VENTANA PRINCIPAL DEL MODULO EJERCICIOS CON LA PESTANA DE MOSTRAR LA
INFORMACION DE RUTINA 1 SELECCIONADAL.covviuiiiiiiitiitistesseetete sttt s sse et sae st snesnesnneasaesaees 129

1. Introduccion

1.1 Motivaciones del proyecto y tematica del proyecto

Este PFC nace de la idea de desarrollar un proyecto que una formacién y deporte —ya que
este ultimo es un aspecto muy importante para mi— y de la intencién de que el resultado
tenga una utilidad real, que cubra una necesidad real y resulte en una herramienta que otras
personas puedan aprovechar.

Con estas dos ideas en mente se describe el proceso de desarrollo de una aplicacién de
escritorio que permite a los usuarios de crear y administrar sus propias dietas, rutinas de
entrenamiento y crear calendarios donde organizar estas dietas y rutinas asi como otros
eventos personalizados.

Inicialmente estaba previsto que la aplicaciéon ademas permitiera a los usuarios tener
registros de resultados de pruebas de rendimiento y un registro del riesgo de lesion,
dependiendo del tipo de ejercicios realizados asi como un moédulo “inteligente” que
mediante algoritmos de inteligencia artificial y redes neuronales aconsejara al usuario los
cambios a realizar en su rutina y/o dieta para mejorar sus resultados. Por motivos que se
detallaran mas adelante estas ultimas caracteristicas descritas no han sido desarrolladas.

El motivo académicamente relevante, que es el que se trata en la memoria, es el proceso de
desarrollo de la aplicacién: todos los pasos y procedimientos llevados a cabo para el disefio

y creacion de dicha aplicacion.

10

1.2 Estado del arte

Aunque hoy en dfa existen muchos programas y aplicaciones relacionadas con el deporte
—especialmente con auge de los smartphones y tablets— la mayorfa de estas aplicaciones
unicamente ofrecen un registro de la sesiéon concreta y algunos aspectos de dicha sesion
(tlempo, recorrido...) que en muchos casos carecen de rigurosidad o son meras

aproximaciones dados unos valores fijos prefijados (como podria ser el consumo calérico).

Otro aspecto a destacar es que la mayorfa de estas aplicaciones estan ideadas para
dispositivos moviles y esto implica ciertas limitaciones en su disefio y uso, como por
ejemplo tener abiertos diferentes modulos de una misma aplicaciéon y navegar rapida y

facilmente entre estos, limitaciones que con una aplicacién de escritorio no existen.
Algunos ejemplos de aplicaciones de este tipo que podemos encontrar en la actualidad son:

Endomondo: esta aplicacion disefiada para dispositivos moéviles permite hacer “tracking”
del recorrido durante una sesioén y lo almacena en su base de datos que los usuarios pueden
consultar mas tarde en su web. Endomondo permite elegir qué clase de deporte o actividad se
va a realizar y el calculo de calorias varfa segin la eleccion, aunque este calculo es una
estimacion segin un estandar, no un calculo real ya que no tiene en cuenta factores como la

intensidad del ejercicio.

MapMyRun/Walk: Similar a Endomondo, otientada también a dispositivos moéviles. Igual
que el anterior recoge con la aplicacién movil el registro de la sesion realizada y permite ver

la informacién en su web.

Adidas MiCoach: Aplicacion muy completa. Ademas de las funciones de las aplicaciones
anteriores _Adidas MiCoach propone diferentes ejercicios a realizar segin el deporte
practicado y el objetivo. Estos ejercicios son predeterminados para el deporte en si, sin
tener en cuenta las caracteristicas personales del usuario. Permite usar dispositivos externos
como Kinect de Xbox, PSMove y otros para registrar en tiempo real los ejercicios. El
problema de esto ultimo es que se necesitan estos dispositivos extra para sacar el maximo

partido.

Esta es una selecciéon de entre un gran ndmero de aplicaciones existentes (las mas
conocidas o utilizadas). Como ya se ha comentado, la diferencia principal entre estas
aplicaciones y la aplicacién que se desarrolla en este proyecto es que éste ultimo no
pretende centrarse en sesiones individuales de entrenamiento sino mas bien en un planning
global de los entrenos y la/s dietas.

Otra diferencia substancial que la aplicacion propuesta tiene respecto a las anteriores es que
la aplicacion desarrollada en el proyecto no esta orientada a dispositivos méviles. Se podria
plantear, sin embargo, una aplicacién movil que hiciera el #acking en tiempo real del
ejercicio y después se conectara con la aplicacién de escritorio. Asi se conseguirfan registros
mas rigurosos. Debido al coste temporal y de desarrollo que esta extension supondria
quedara en una de las posibles lineas de continuacion del proyecto.

11

12

1.3 Descripcion de la aplicacion

Como ya se ha comentado en el punto 1.1 de la memoria la aplicacién permite al usuario
crear y administrar entrenamientos y dietas, asi como calendarios para realizar el
seguimiento de ambas. A continuacién se presenta una descripcion mas detallada de la

aplicacion.

Cada usuario dispone de un perfil personalizado que contiene informaciéon personal del

usuatrio.

El usuario puede crear y editar calendarios que utiliza para realizar el seguimiento —si lo
desea— de los ejercicios a realizar cada dia de la semana y las diferentes comidas que
tomar, segun la dieta que haya afiadido —si es que lo ha hecho. Este seguimiento se realiza
mediante eventos que el usuario puede afiadir al calendario. Estos eventos son de diferente
tipo, dependiendo de si son eventos que representan un ejercicio, una comida, una dieta o
rutina entera o bien un evento de texto simple. Todos los eventos contienen la informaciéon
correspondiente a la fecha y hora del evento, la duracion, la frecuencia de repeticion, si es
un evento editable o no, si se debe ignorar la informacién horaria, si es visible o no y
opciones de personalizacion de la apariencia: color, estilo de fuente, tamafo, etc. Ademas,
los eventos de tipo ejercicio contienen informacién especifica del ejercicio a realizar:
numero de repeticiones, seties, peso, etc.

Los ejercicios que el usuario puede utilizar se cargan de una base de datos que los clasifica y
organiza por categorfas segin diferentes aspectos (ya sean aspectos por defecto o categorias
creadas por el propio usuario). Cada ejercicio se compone de una descripcion, de la lista de
categorfas a las que pertenece y los musculos que ejercita. De la misma manera las
categorfas también se componen de una descripciéon y la lista de ejercicios que son
contenidos en dicha categoria.

De forma similar a los ejercicios, de la base de datos se cargan los alimentos y comidas. Los
alimentos son clasificados segin su tipo: cereales, carnes, etc. y las comidas segun si son
comidas por defecto o bien si son comidas creadas por el usuario. Los alimentos, ademas
del tipo, se componen de descripcion y aporte calérico. Las comidas se componen de una
lista de los alimentos que las forman, una descripcion y el aporte energético total de la
comida.

Las rutinas y dietas también se cargan de la base de datos y poseen una estructura analoga:
ambas se componen del nombre, la descripciéon y una tabla de los ejercicios o comidas a
realizar o tomar cada dia. Ademas tanto rutinas como dietas almacenan el consumo o

aporte calérico total respectivamente.

13

14

1.4 Planificacion temporal

La planificacién temporal inicial —descrita en el informe previo— hablaba de cuatro vias
de trabajo en paralelo: desarrollo de la aplicacion, documentaciéon de ambito deportivo,
documentaciéon de los conocimientos necesarios para la creacion del Mddulo Inteligente y
finalmente obtencién de muestras empiricas reales que luego se utilizarfan para evaluar
dicho médulo. Esta planificaciéon se describe en el Diagrama de Gantt del informe previo
—ILUSTRACION 43.

Conforme el desarrollo del proyecto iba evolucionando en el tiempo esta planificacion se
vio alterada por los distintos cambios en éste, asi como en el disefio de la aplicacion.

Al realizar el analisis de requerimientos de la futura aplicacion se llegd a la conclusion que
era inviable el disefilo del moédulo Inteligente ya que para poder crear este médulo era
necesaria tener casi la totalidad de la aplicacién disefiada con el resto de moédulos
totalmente funcionales y asi poder utilizarlos para representar los resultados obtenidos en
las muestras empiricas dentro de la aplicacion —era necesaria toda la estructura de
ejercicios, rutinas, comidas y dietas. En consecuencia, las tareas de documentacion para la
creacion de dicho moédulo y la obtenciéon de muestras empiricas desaparecen y el tiempo
previsto para su realizacién es absorbido por el resto de tareas. Del mismo modo, la tarea
de documentacién deportiva, en especial la documentacion referente a la parte de dietética,
también desaparece ya que al desaparecer el médulo znzeligente desaparece en el proyecto
actual la necesidad de estudiar este apartado, porque el médulo de dietas no tendra una
opcidn de creacion automatica de dietas ni rutinas.

Debido a estos cambios el proyecto, que inicialmente iba a centrarse en el mencionado
modulo znteligente y por tanto en el ambito de la inteligencia artificial, pasa a centrarse en el
desarrollo de la aplicacion, perteneciente al ambito de la Ingenierfa del Software.

La planificacién final del proyecto queda dividida, finalmente, en cuatro bloques: Analisis
de requerimientos, Disefio de clases, Disefio de la aplicaciéon e Implementacion y pruebas:
[L.USTRACION 44, ILUSTRACION 45

En el diagrama se observa que la mayoria de tareas se realizan de forma secuencial y esto es
debido a que el proyecto ha sido llevado a cabo por una sola persona y por lo tanto no se
podian realizar al mismo tiempo.

15

16

1.5 Herramientas utilizadas

La herramienta principal para desarrollar el proyecto ha sido Microsoft Visual Studio 2072.
Esta no ha sido elegida de forma trivial, sino que fue después de estudiar diversos aspectos
del desarrollo de la aplicacién que se decidié usar dicha herramienta. Los criterios o
aspectos estudiados fueron el lenguaje de programacién y en especial la inclusion de las
herramientas necesarias para desarrollar la interfaz grafica de la aplicacion.

En lo que respecta a las herramientas de desarrollo de la interfaz, Visual Studio 20712
contiene todos los elementos necesarios para desarrollar una aplicacién, incluyendo su
interfaz grafica, basada en formularios —Windows Forms— que el desarrollador tiene a su
disposicion. Visual Studio 2072 permite ademas el uso del framework .NET y enlazar de
forma sencilla con bases de datos SQL.

Otra herramienta utilizada ha sido Internet. Pese a ser una fuente de informacién mas que
una herramienta propiamente dicha, es necesario destacar la importancia que ésta ha tenido
durante todo el desarrollo del proyecto. Ademas del desarrollo de la aplicacién en si
Internet ha sido clave a la hora de solucionar problemas relacionados con la herramienta
anteriormente descrita. La cantidad inmensurable de sitios web, foros, tutoriales... que
pueblan Internet ponen a disposicién soluciones para cualquier problema o dificultad que
pueda surgir durante el desarrollo del proyecto y por eso es considerada como una

herramienta mas, quiza la mas importante de todas.

17

18

2. Analisis de requerimientos

2.1 Identificacion de los interesados

Cuando se habla de interesados —stakeholders— se piensa en todas aquellas personas u
organizaciones que pueden afectar de forma positiva o negativa al desarrollo del proyecto.
En el caso de este proyecto los principales interesados serfan el desarrollador del proyecto y
los usuarios finales de la aplicacion, entre los que también se incluye el desarrollador del

proyecto.

Formar parte de los interesados por partida doble —como creador y usuario final—
permite enfocar el desarrollo del proyecto de manera que a la hora de pensar y decidir qué
se va a hacer y como se va a hacer se tienen en cuenta directamente las necesidades del
usuario final. Por ejemplo: la idea es que la aplicacion final la puedan usar todo tipo de
usuarios independientemente de su habilidad con el uso de un ordenador y asi llegar al
maximo numero de usuarios posibles. Teniendo esto en mente es relativamente sencillo
disefiar qué tipo de interfaz conviene que la aplicacion tenga para facilitar el que el uso de la
aplicacion sea sencillo y fluido, con una curva de aprendizaje poco pronunciada.

Mas alla del usuario final podriamos pensar en interesados de caracter intermedio, es decir,
no usuarios de la aplicaciéon en si, pero si organismos o personas interesadas en adquirir la
aplicacion para dar un servicio a través de ella. Algunos interesados de este tipo podrian ser
entrenadores personales —que quieran utilizar la aplicacién para que sus clientes la usen y
asf administrar los calendarios de estos—, Jefes de equipos deportivos, etc.

19

20

2.2 Diagrama Entidad/Relacion

Los diagramas de Entidad/Relaciéon permiten representar las entidades relevantes de un

sistema de informacién y las interrelaciones entre dichas entidades.

En este proyecto, nuestro diagrama de Entidad/Relacién esta formado por las entidades

Usuario, Alimento, Comida, Dieta, Ejercicio, Categoria, Rutina, evento y Calendario:

* Usuario: Representa al individuo que utiliza la aplicacién.

* Alimento: Representa un alimento, como su nombre indica. Arwg Blanco, Atiin

fresco, etc. Son ejemplos de alimentos.

* Comida: Representa un nimero determinado de alimentos agrupados en una sola

entidad. Macarrones con tomate y queso, Huevos fritos con patatas, etc. Son ejemplos de

comidas.

* Dieta: Representa un nimero determinado de comidas agrupadas por dias para

formar lo que comunmente se conoce como una dieta. La imagen adjuntada a

continuacion es un ejemplo de dieta.

1 1 [: ! ;
i i WVN | SVSIEREN S mww <8 [Bt - | - bt il - L S WINVIELS W
Desayuno Un vaso de leche | Unvaso de leche Un vaso de leche | Un vaso deleche |Un vaso deleche [Un vaso de
con un punado de con media con un puriado de | con media con un puniado de | conun punado de | leche con media
cereales (maiz) y | tostada integral, cereales (avena, | tostada integral, cereales y una cereales y una o | tostada integral,
una o dos galletas | un poco de aceite trigo y arroz) y un poco de aceite | magdalena dos galletas. un poco de
tipo “Maria" o de oliva y jamén una o dos de oliva y jamén integral. Una Medio melocoton. | aceite de oliva y
“Digestive”. Medio | cocido. Un zumo galletas. Medio cocido. Un zumo mandarina. jamén cocido.
kiwi de naranja kiwi . de naranja Un zumo de
natural natural naranja natural,
Almuerzo Una manzana Una pera Un platano Una pera Un melocotén Un kiwi Macedonia de
frutas y nueces
Comida Ternera ala Crema de Pasta con pollo y | Ensalada. Lentejas casi Ensalada de Estofado de
plancha con verduras verduras Salteado de vegetarianas (con | arroz. Pez espada | verduras (patata,
verduras (patatas, (calabacin, salteados verduras judias, patata, ala plancha. champifiones,
guisantes y champifiones, (calabacin, (calabacin y zanahoria y Manzana. puerro y
judias) hervidas zanahoria). guisantes, patata) con lomo taquitos de zanahoria) con
Una pera Merluza hervida o tomate, de cerdo ala jamén). Un yogurt albondigas
ala plancha. champifiones...). | plancha. Medio natural caseras de pollo
Medio yogurt con Una manzana. yogurt natural con y ternera. Un
media fruta. media fruta. flan casero.
Merienda Un bocadillo Una tortilla ala | Escalopin casero | Un bocadillo Una tortilla ala | Un bocadillo Una crema de
pequeno francesa con pan | de pollo y pavo pequerio de francesa con pan | pequeno de lomo | champifiones
(sandwich) de y tomate. Un kiwi. | cocido con queso | jamén con aceite y tomate. Uva. con aceite y con atun. Un
jamon cocido y y tomate. Un y tomate. Un tomate. Un vasito | batido casero de
queso fresco, con yogurt de frutas. vasito (un bol (un bol pequeno) | leche y frutas
aceite y tomate. pequerio) de de queso fresco
Una mandarina queso fresco con con fruta (kiwi,
fruta (kiwi, melocotdn, uva,
melocotén, uva, pera...).
pera...).
Cena Un vaso de leche | Un vaso de leche | Un vaso de leche | Un yogurt con Un vaso de leche | Un yogurt con Un yogurt con

con cereales
(arroz inflado)

con una galleta.

con una
magdalena
integral.

cereales,

con cereales,

cereales
integrales
variados.

una galleta.

Tlustracion 1: Dieta, ejemplo extraido de www.saludymedicina.org

21

http://www.saludymedicina.org/

* Ejercicio: Representa un ejercicio o actividad fisica concreta, realizada de una
manera determinada con objetivo de ejercitar una o varias partes del cuerpo.
Flexiones, Dominadas, Carrera corta, etc. Son ejemplos de ejercicios.

» Categoria: Una categoria es una entidad abstracta en la que se agrupan diferentes
ejercicios, habitualmente por una o varias caracteristicas comunes como por
ejemplo el grupo muscular que trabajan, si son individuales o en grupo, si son para
mejorar uno u otro atributo, etc. Tren superior, Pal Chagui, Respiraciones, etc. Son
ejemplos de categorias.

* Rutina: Una rutina es un conjunto de ejercicios agrupados en uno o varios dias o
sesiones. LLa imagen adjuntada a continuacién es un ejemplo de rutina.

LUNES MIERCOLES VIERNES
ESPALDA ESPALDA ESPALDA
Remo con mancuernas 3x15 Jalones tras nuca 3x15 Jalones frontales 3x15
PECHO PECHO PECHO
Press plano mancuernas3x10 Aperturas planas 3x10 Pullover 3x10
HOMBRO HOMBRO HOMBRO
Press con mancuernas 3x15 Elevaciones laterales 3x15 Elevaciones frontales 3x15
BICEPS BICEPS BICEPS
curl alterno 3x15 Curl martillo 3x15 Curl concentrado 3x15
TRICEPS TRICEPS TRICEPS
extensiones en polea 3x15 extensiones en polea 3x15 extensiones en polea 3x15
patadas 3x15 Press Francés 3x15 patadas 3x15
PIERNA PIERNA PIERNA
Sentadilla 3x15 Extension cuéadriceps 3x15 Sentadilla 3x15
Peso muerto 3x15 Aductor/Abductor 3x20 Peso muerto 3x15
ABDOMEN ABDOMEN ABDOMEN
Elevacion de rodillas 3x20 Elevacion de rodillas 3x20 Elevacion de rodillas 3x20
Oblicuos con peso 3x20 Oblicuos con peso 3x20 Oblicuos con peso 3x20
Encogimientos 3x20 Encogimientos 3x20 Encogimientos 3x20

Tlustracion 2: "Rutina Vane", ejemplo extraido de www.musculacionparaprincipiantes.com

* Evento: Un evento representa un acontecimiento puntual de duracién finita
programado por el usuario. Un evento puede ser de tipos diferentes: un ejercicio,
una dieta, una rutina, etc. Son ejemplos de eventos posibles.

» Calendario: Representa lo que cominmente es conocido como calendario. En
calendario se pueden incluir eventos creados por el usuario.

Las relaciones entre estas entidades se ven representadas en el diagrama de
Entidad/Relacién adjuntado en el anexo siguiente (ILUSTRACION 46, pagina 90). Este

diagrama sera utilizado mas adelante para el disefio del sistema de clases y el consiguiente
diagrama de clases.

22

http://www.musculacionparaprincipiantes.com/

2.3 Requerimientos funcionales

A la hora de determinar los requerimientos funcionales de la aplicaciéon se han
documentado todas aquellas funcionalidades que la aplicacién deberfa tener. Esta
documentacion se realiza mediante casos de uso, describiendo asi los pasos para llevar a
cabo dicha funcionalidad y su efecto en la aplicacion.

La lista de casos de uso se encuentra en el documento de Modelo de casos de uso —el
proximo apartado de la memoria—, que como bien indica su nombre contiene todos los

casos de usos de la aplicacion, separados por médulos.

2.3.1 Modelo de Casos de uso

El propésito de este apartado es definir las funcionalidades del sistema y el contexto de este
—interacciéon con entidades externes o actores. Se presentan los diferentes diagramas de
casos de uso para los médulos en que se divide el sistema y las descripciones de cada actor

y caso de uso.

El modelo de casos de uso que se presenta consta de cuatro médulos y los diagramas de
casos de uso correspondientes a cada moédulo: General, Calendario, Ejercicios, Dietista.

El siguiente diagrama muestra la arquitectura inicial en que se divide el programa, en cuanto

a modulos se refiere.

I— —k

Maodulo Calendario Maodulo Ejercicios

Modulo General

I—

Modulo Dietista

23

2.3.1.1 Actores

Usuario

Este actor representa al usuario final del programa. El usuario interactda con el programa
mediante la instalacién de este en su ordenador.

Administrador

Este actor representa al usuario de tipo administrador. Este usuario puede modificar todos
los perfiles de usuario (del resto de usuarios) asi como configuraciones del programa que

no estan disponibles para los usuarios convencionales.

2.3.1.2 Casos de Uso

2.3.1.2.1 Mobdulo General

Crear Nuevo Usuario

Como indica el nombre este caso de uso describe los pasos para crear un nuevo usuario,
asi como las restricciones a tener en cuenta al hacerlo.

Ver Informacidén de Usuario

El objetivo del caso de uso es que el usuario pueda ver la informacién correspondiente al

usuario —nombre, apellidos, correo electrénico, etc.

Eliminar Usuario

Este caso de uso describe los pasos a seguir para eliminar un usuario existente. Implicara
eliminar la entrada de la base de datos asi como las entradas correspondientes a los otros
modulos y otras entradas derivadas.

Loguear Usuario

Este caso de uso describe el procedimiento para conectarse como usuario de la aplicacion.

24

Desconectar Usuario

Este caso de uso describe el procedimiento para desconectarse como usuario de la
aplicacion.

Cargar Mdédulo

Este caso de uso describe los pasos a seguir para cargar un modulo del programa. Cada
modulo a utilizar debe de ser cargado de forma independiente siguiendo los pasos descritos
en este caso de uso.

Cerrar Médulo

Este caso de uso describe la funcionalidad de cerrar un mddulo abierto. Esto afecta
unicamente al médulo en cuestion y a la base de datos, ya que se guardara el estado en que

se encuentra el modulo antes de cerrat.

Redimensionar Ventana

Este caso de uso describe la funcionalidad de redimensionar el tamano de la ventana.

2.3.1.2.2 Mobdulo Calendario

Crear Nuevo Calendario

En este caso de uso se describe la funcionalidad de crear un nuevo calendario y los pasos
y
para llevarla a cabo.

Abrir Calendario

Este caso de uso describe la funcionalidad de abrir un nuevo calendario y el procedimiento
para llevar a cabo dicha accion.

25

Cerrar Calendario

En este caso de uso se describe la funcionalidad de cerrar un calendario abierto, los pasos a

seguir y el alcance de esta accion.

Editar Opciones de Calendario

Este caso de uso describe la funcionalidad de modificar las opciones de un calendario
existente como pueden ser la fecha de inicio y fin de este, como se representa dicho

calendario, etc.

Eliminar Calendario

Este caso de uso describe el procedimiento para borrar un calendario de un usuario y los
efectos que esta accion tiene sobre el programa.

Guardar Calendario Como Imagen

Este caso de uso describe la funcionalidad de guardar un calendario existente como una
imagen y los pasos para realizar dicha accion.

Imprimir Calendario Existente

Este caso de uso describe la funcionalidad de imprimir un calendario existente y los pasos
para realizar dicha tarea.

Cambiar tipo de vista

Este caso de uso describe la funcionalidad de cambiar de tipo de visa de un calendario
(diaria, semanal, mensual, etc.)

Anadir Nuevo Evento

Este caso de uso describe la funcionalidad de afadir un nuevo evento a un calendario
existente y los pasos para llevar a cabo dicha accion.

26

Modificar Evento

Este caso de uso describe la funcionalidad de modificar un evento existente de un
calendario.

Replicar Evento

Este caso de uso describe la funcionalidad de replicar un evento existente como un nuevo
evento de un calendario. Este evento no tiene por qué ser una copia exacta del original,
sino que se puede personalizar como si de un nuevo evento se tratara.

Eliminar Evento

Este caso de uso describe la funcionalidad de eliminar un evento existente de un calendario
y los efectos de dicha accion.

Modificar Opciones de Mddulo

El objetivo del caso de uso es describir la funcionalidad que permite al usuario configurar
una serie de opciones o parametros del modulo Calendario. Esta configuracion afectara
unicamente al moédulo Calendario y al usuario logueado.

2.3.1.2.3 Médulo Ejercicios

Modificar Opciones de Mddulo

Este caso de uso describe la funcionalidad de modificar las opciones del Mddulo Ejercicios —
las opciones personalizables de cada médulo varfan segun qué médulo sea.

Cerrar Mdédulo

Este caso de uso describe la funcionalidad de cerrar el médulo abierto.

Crear Ejercicio

Este caso de uso describe la funcionalidad de crear un nuevo tipo de ejercicio.

27

Abrir Ejercicio

Este caso de uso describe la funcionalidad de abrir un ejercicio existente en la lista de
ejercicios.

Modificar Ejercicio

Este caso de uso describe la funcionalidad de modificar un tipo de ejercicio ya existente.

Eliminar Ejercicio

Este caso de uso describe la funcionalidad de borrar un ejercicio existente de la lista de
ejercicios o de una rutina y los efectos que esta accion tiene.

Afadir Ejercicio a Rutina

Este caso de uso describe la funcionalidad de afiadir un tipo de ejercicio existente a una

rutina.

Anadir Ejercicio como Evento a Calendario

Este caso de uso describe la funcionalidad de anadir un ejercicio a un calendario existente
como evento de este.

Crear Rutina

Este caso de uso describe la funcionalidad de crear una nueva rutina.

Abrir Rutina

Este caso de uso describe la funcionalidad de abrir una nueva rutina existente.

Cerrar Rutina

Este caso de uso describe la funcionalidad de cerrar una rutina abierta.

28

Editar Opciones de Rutina

Este caso de uso describe la funcionalidad de modificar las opciones de una rutina
existente.

Eliminar Rutina

Este caso de uso describe la funcionalidad de eliminar una rutina existente y los efectos de

dicha accion.

Replicar Rutina

Este caso de uso describe la funcionalidad de crear una copia de una rutina existente.

Imprimir Rutina

Este caso de uso describe la funcionalidad de imprimir una rutina.

Guardar Rutina como Imagen.

Este caso de uso describe la funcionalidad de guardar una rutina en formato de imagen.

Crear Categoria

Este caso de uso describe la funcionalidad de crear una nueva categorfa de ejercicios.

Abrir Categoria

Este caso de uso describe la funcionalidad de abrir una categoria existente.

Modificar Categoria

Este caso de uso describe la funcionalidad de modificar una categoria existente.

29

Afiadir Ejercicio a Categoria

Este caso de uso describe la funcionalidad de afiadir un tipo de ejercicio existente a una
categoria.

Eliminar Categoria

Este caso de uso describe la funcionalidad de eliminar una categoria existente.

2.3.1.2.4 Mobdulo Dietista

Modificar Opciones de Mddulo

Este caso de uso describe la funcionalidad de modificar las opciones del médulo Dietista
(las opciones personalizables de cada médulo varfan segin qué moédulo sea).

Cerrar Médulo

Este caso de uso describe la funcionalidad de cerrar el médulo abierto.

Crear Alimento

Este caso de uso describe la funcionalidad de crear un nuevo tipo de alimento.

Modificar Alimento

Este caso de uso describe la funcionalidad de modificar las propiedades de un alimento ya
creado.

Abrir Alimento

Este caso de uso describe la funcionalidad de abrir un alimento ya existente en la lista de
alimentos.

Eliminar Alimento

Este caso de uso describe la funcionalidad de eliminar un alimento ya existente en la lista de
alimentos.

30

Anadir Alimento a Comida

Este caso de uso describe la funcionalidad de anadir un alimento existente a una comida.

Crear Comida

Este caso de uso describe la funcionalidad de crear una nueva comida —las comidas
posteriormente se afladen a las dietas, o a los calendarios como eventos.

Modificar Comida

Este caso de uso describe la funcionalidad de modificar las propiedades de una comida
existente en la lista de comidas.

Abrir Comida

Este caso de uso describe la funcionalidad de abrir una comida existente en la lista de
comidas.

Anadir Comida como evento

Este caso de uso describe la funcionalidad de afiadit una comida como un evento
independiente —no como parte de una dieta— a un calendario existente.

Afiadir Comida a Dieta

Este caso de uso describe la funcionalidad de afiadir una comida a una dieta ya existente.

Eliminar Comida

Este caso de uso describe la funcionalidad de eliminar una comida existente de la lista de
comidas o de una dieta concreta.

Crear Dieta

Este caso de uso describe la funcionalidad de crear una nueva dieta.

31

Abrir Dieta

Este caso de uso describe la funcionalidad de abrir una dieta ya existente en la lista de
dietas.

Modificar Dieta

Este caso de uso describe la funcionalidad de modificar una dieta existente en la lista de
dietas.

Cerrar Dieta

Este caso de uso describe la funcionalidad de cerrar una dieta abierta.

Eliminar Dieta

Este caso de uso describe la funcionalidad de eliminar una dieta existente en la lista de
dietas.

32

2.3.1.3 Vistas

A continuacion se muestran las diferentes vistas funcionales del programa, separadas por médulos, cada una con sus casos de uso.

Mddulo General

Crear Usuario
d
Eliminar Usuario
A\ Loguear Usuario
Modificar Opciones
de Usuario
Usuario N/ Desconectar
Usuario
X' Cargar Médulo
)

' cerrar Médulo

Redimensionar
Ventana

Modulo Calendario

ditar Opciones de
Calendario

Extiende
\/

Crear Nuevo
Calendario

Usuario

Modificar Opciones
de Mddulo

Abrir Calendario

Cerrar Calendario

v, Eliminar Calendario

uardar Calendarid
W como imagen

MImprimir Calendario

A Cambiar Tipo de
Vista

Afiadir Nuevo

A Evento

Replicar Dia
X" Eliminar Evento

(O8]

3

\A

Replicar Evento

Modificar Evento

Médulo Ejercicios

Abrir Ejercicio
Abrir Rutina

Extiende
Extiende

Madificar Ejercicio

\lodificar Opciones
de Mddulo

Cerrar Mddulo Extiende

ditar Opciones de
Rutina

Crear Rutina

Cerrar Rutina

Afiadir ejercicio a
Rutina

Eliminar Rutina

Afadir ejercicio a
Categoria

Replicar Rutina ¥

Usuario

Anadir Ejercicid
como Evento a

Imprimir Rutina Calendario

Modificar Categoria

4 Crear Categoria k&~ Extiende

Guardar Rutina VA

como Imagen :
Extiende

Abrir Categoria

Eliminar Categoria

Mdédulo Dietista

Abrir Dieta

Modificar Dieta

Extiende

Extiende

Cerrar Dieta

Crear Dieta

Imagen

\lodificar Opciones
de Mddulo

Cerrar Mddulo

Usuario

Abrir Alimento

Modificar Alimento

Afadir Alimento a
Rutina

Modificar Comida

Extiende

N CrearComida ¥

Extiende Abrir Comida

A Afiadir Comida a
Dieta

como Evento a
Calendario

Eliminar Comida

2.3.2 Diagramas de secuencia

Los diagramas de secuencia son una herramienta muy util a la hora de modelar la
interaccion entre los diferentes objetos de la aplicaciéon y la implementaciéon de dicho
escenario. Se utiliza la descripcion de los casos de uso para determinar qué objetos son
necesarios para la implementacién de cada escenario. Las lineas verticales discontinuas
muestran la activaciéon de los objetos que intervienen en el escenario y los mensajes pasados
entre objetos se muestran mediante flechas horizontales.

Los diagramas de secuencia estan separados por médulos:

2.3.2.1 Modulo General

+* Crear Usuario (ILUSTRACION 47)
% Conectar y desconectar Usuario (ILUSTRACION 48)
#* Ver informacién de Usuario (ILUSTRACION 49)
% Cargar M6dulo (ILUSTRACION 50)
% Cerrar Aplicacion (ILUSTRACION 51)

2.3.2.2 Moédulo Ejercicios

% Crear Ejercicio (ILUSTRACION 52)
% Abrir Ejercicio (ILUSTRACION 53)
% Modificar Ejetcicio (ILUSTRACION 54)
%+ Eliminar Ejercicio (ILUSTRACION 55)
% Afadir Ejercicio a Rutina (ILUSTRACION 506)
% Crear o Modificar Rutina (ILUSTRACION 57)
< Replicar Rutina (ILUSTRACION 58)
% Guardar Rutina como Imagen (ILUSTRACI(?N 59)
& Cerrar Médulo (ILUSTRACION 60)

Algunos diagramas de secuencia se han omitido ya que al pensar en la estructura y forma de
interactuar de los elementos ya se hizo de tal manera que algunos casos de uso funcionaran
de manera analoga a otros. Este es el caso de los casos de uso de Crear Categoria, Abrir
Categoria, Modificar Categoria y Eliminar Categoria; analogos a Crear, Abrir, Modificar y Eliminar
Ejercicio respectivamente.

36

2.3.2.3 Modulo Dietista

+* Crear Alimento (ILUSTRACION 61)
** Modificar Alimento (ILUSTRACION 62)
+» Eliminar Alimento (ILUSTRACION 63)
% Afadir Alimento a Comida (ILUSTRACION 64)
¢ Crear/Modificar Dieta (ILUSTRACION 65)
% Afiadir Comida a Dieta (ILUSTRACION 66)

Como sucedia con el médulo anterior algunos diagramas de secuencia se han omitido ya

que su funcionamiento es analogo al de otros casos ya descritos anteriormente:

Crear, Abrir, Modjficar y Eliminar Comida son analogos respectivamente a Crear, Abrir,
Modificar y Eliminar Ejercicio (del médulo Ejercicios) respectivamente; Replicar Dieta es analoga
a Replicar Rutina del moédulo Ejercicios 'y finalmente Cerrar Mddulo sigue el mismo
procedimiento en todos los médulos.

2.3.2.4 Modulo Calendario

+* Crear Calendario (ILUSTRACION 67)
% Afadir evento de tipo Normal (ILUSTRACION 68)
% Afadir evento de tipo Comida (ILUSTRACION 69)
% Afadir evento de tipo Ejercicio (ILUSTRACION 70)
% Afadir evento de tipo Dieta (ILUSTRACION 71)
% Afadir evento de tipo Rutina (ILUSTRACION 72)
% FEliminar un evento (ILUSTRACION 73)

>

(ILUSTRACION 74)
(ILUSTRACION 75)

X/

%

Replicar un evento
Editar evento

3

%

Los diagramas de secuencia de Eliminary Abrir Calendario no se han representado ya que su
funcionamiento es analogo al de Eliminary Abrir Ejercicio, Comida, Etc.

Una vez terminado el analisis de requerimientos podemos pasar a la siguiente fase de
desarrollo: el disefio.

37

38

3. Diseiio

3.1 Método de desarrollo

El método de desarrollo empleado para llevar a cabo el proyecto ha sido un método
iterativo e incremental. Este método consiste en dividir el proceso de desarrollo en
iteraciones, desarrollando el software de forma incremental para asi poder aprovechar lo
aprendido y realizado en la iteraciéon anterior. El aprendizaje proviene del desarrollo
propiamente dicho y de las pruebas realizadas en cada iteraciéon del desarrollo que
comienza por una implementacién simple de los requerimientos del sistema. Esta
implementacion se irda mejorando hasta que la aplicacion esté completa. En cada iteracion
se realizan cambios en el disefio, se agregan nuevas funcionalidades y capacidades al
sistema.

Las ventajas de usar este método de desarrollo saltan a la vista, ya que ademas permite
decidir el rumbo que tomara la aplicacion teniendo en cuenta el trabajo realizado hasta el
momento y por encima de todo, gracias al factor aprendizaje cada nueva etapa de
desarrollo permite mas optimizacion que la etapa anterior ya que como se ha comentado se
pueden aplicar todas las mejoras y nuevos conocimientos adquiridos en las iteraciones
previas. Ademas, en este caso el cliente y desarrollador son la misma persona, lo que facilita
trabajar directamente con el cliente que suele ser uno de los principales problemas con este
método de desarrollo.

Las etapas en las que se divide el método de desarrollo descrito son: _Awdlisis de
requerimientos, Diserio, Implementacion y Test.

Begin

Ilustracion 3: Representacion grafica del método Iterativo incremental. Ejemplo extraido de www.synders.us

39

http://www.synders.us/

40

3.2 Arquitectura de la aplicacion

La arquitectura de la aplicaciéon contintia con la linea descrita en apartados anteriores de la

memortia: la divisiéon en mddulos es trasladada al ambito del desarrollo.

Aprovechando esta division la aplicacion queda constituida por cuatro modulos
funcionales, parcialmente independientes unos de otros — parcialmente porque aunque
operan de forma independiente es necesario en algunos casos haber cargado previamente
un moédulo concreto para cargar otro. Esto sucede con el Mddulo General, que se carga al
ejecutar la aplicacion. Este modulo debe estar abierto siempre, ya que es desde este modulo
desde el cual se abren el resto de moédulos. Asi mismo, para poder cargar el Mddulo

Calendario es necesario cargar también los médulos Ejercicios y Dietista.

Esta division, sin embargo, no se ve directamente reflejada en la estructura interna de las
clases de la aplicacion, sino que se podria decir que es mas una division légica que se vera
fisicamente plasmada en la fase de implementacion.

3.2.1 Diseilo de clases

Partiendo del diagrama Entidad/Relacién creado en la fase de Analisis de requetimientos y
teniendo en cuenta las funcionalidades que se pensaron para la aplicacion se llevé a cabo el
disefio de las clases y la estructura de datos interna de la aplicaciéon. En lo que respecta a las
clases nos encontramos con las siguientes clases —algunas de ellas en correspondencia
directa con las entidades del diagrama E/R mientras que otras entidades se corresponden
con mas de una clase. Para que resulte mas sencillo ver la relacién entre las entidades
teoricas —por llamarlas de alguna manera— de las clases internas se presentan las

entidades y se desctibe/n la/s clase/s a las que equivale/n.

3.2.1.1 Modulo General

No hay ninguna clase que pertenezca a este modulo. La entidad Uswuario, cuya clase
perteneceria a este modulo, no tiene correspondencia como clase. La informacion referente
al usuario es tratada por las estructuras internas que se explicaran en el siguiente apartado y
por la base de datos directamente, sin estar #zidas en una clase.

41

3.2.1.2 Moédulo Ejercicios

* Ejercicio: La entidad Ejervicio corresponde con tres clases distintas: la clase
abstracta Ejervicio, y las clases Ejercicio_Tipo y Ejercicio_Implementacion que heredan de
la primera. Esta separacion existe porque es necesaria la separacion entre lo que
llamamos el ejercicio genérico y lo que llamamos una ¢ecucion concreta de ese mismo
ejercicio. Tomamos como ejemplo un ejercicio: Flexiones comunes. Ejercicio_Tipo se
corresponde a la idea del ejercicio en si, el ente abstracto —en el sentido mas
platénico de la palabra— mientras que Ejervicio_lmplementacion representa la
realizacion de dicho ejercicio, es decir, una ejecucion real del ejercicio, determinado

por atributos como el nimero de repeticiones, el nimero de series, etc.

» Categoria: La clase Curegoria tiene correspondencia directa con la entidad del
mismo nombre. La clase Categoria interactia con la clase Ejercicio_Tipo. La clase esta
formada por un nombre, descripcion, una lista de Ejervicio_Tipo y los métodos para
manipular dicha lista.

Rutina: Esta clase tiene correspondencia directa con la entidad del mismo nombre. La
clase Rutina interacta con la clase Ejercicio_Implementacion. La clase esta formada por toda la
informacién correspondiente a la rutina —Nombre, Descripcion, Lista de Ejercicio...—,
los métodos para manipular dicha rutina—-Azadir y Eliminar Ejercicio. —, y los métodos
para calcular el consumo energético de dicha rutina.

En la pagina siguiente se adjunta el diagrama de clases correspondiente al moédulo Ejercicios.

42

2y Modulo_Ejercichss

T i
i
= Atributos = Atribubos
+ Descripcion @ String + CaloriasDiarias | List<float>
+ MusculosTrabajados @ List< String = + CaloriasTotales © float
+ Mombre : String + Descripeion : sbring
Bl Dperaciones + Dwracion : inl adminiete
+ OblenerhgeneCalorice] « ik + u:uﬁje::‘-:;-. List < List<Ejercicio_Implementacions > creajsigue
+ Mambre :
= Operacianes ? Lisuarky 1 Lisuaria
| + AnadirEjerciciolEjercicio ; Ejereicio_Tmplmeantacion) ; waid =3 Us
+ CakularCorsumaCalorica]] - void
+ CalcularCoresumaCaloricoDiario] © void w;‘ﬂﬂﬂiﬂw Viussic | B Alibut 1
+ EliminarDia{dia ; int) ; woid i + Aftura
+ EliminarEjarcicioidia : int, kEjarcicio ; ink} © vokd - 1
+ DbtanerConsumaCakoncalinicio ; ink, fin 7 ink) - float : Apelide
LRl Contrasania
Rutina il > + Direccidn de corren
. + Edad
adraistre Usuario + GrasaCorporal @ Integer us
T + TMC i
farmada por 1 + Lista de Calendarios
+ Lista da Calegorias peraonalizadas.
e + Lista de Comidas Personalizadas
+ Lista de Ejercicias Personalizados
Ejercicio_Tipa | 1..* Ejercicia_Implementscian | 1..* + Lista e Rutinas
Listade Dietas
MNombre
+ Nombre de Usuario
+ Peso
= Atribubos =l Atributas 4 Pragunta secreta
+ ListaCabegarias : List<Categorias» + ConsumoCakrico : floak i+ Operacianes
= | P + durecin - float Ejercicia_Implerneflacian
+ AfiadirCateqoriajcategaria : Categaria) + Pesa - int Lsuacial] 1
+ Ejercicic_Tipo{} + Repeticianes : int 1
+ EliminarCalegarialcabagaria : Calegaria) + Serigs : int
=l Dperaciones.
Epercicio_Tipo | '1..* + Ejercicia_Implementacial)
+ GrhbererConsumelalarico() : float
agrupa
Cabagana 0
=| Atributos
+ Descripeion ; String Categaria e
+ ListaEjercicias : List<Ejercicia_Tipos
+ Mombra © String 1
= Oparaciones
+ AfApdirEjercicio{Egercicio ; Ejercicio_Tipa}
+ Catagorial)
+ EliminarEjerciciolEjarcicio ; Ejercicio_Tipa}

Ilustracién 4: Diagrama de clases del médulo Ejercicios

3.2.1.3 Modulo Dietista

* Alimento: Esta clase tiene correspondencia directa con la entidad del mismo
nombre. La clase esta formada por la informacioén correspondiente a un alimento
—Nowzbre, Descripcion, Tipo, Cantidad, ete.

* Comida: Esta clase tiene correspondencia directa con la entidad del mismo
nombre. La clase estd formada por el nombre, descripcion y una lista de los
alimentos que la forman, los métodos para manipular dicha lista y los métodos para
calcular el aporte energético de la comida.

* Dieta: Esta clase tiene correspondencia directa con la entidad del mismo nombre.
La clase esta formada por toda la informacién correspondiente a la dieta que
representa —Nowmbre, descripcion, Tabla de comidas, ete. — y los métodos para
manipular dicha dieta —Asadiry Eliminar Comida, etc.

En la pagina siguiente se adjunta el diagrama de clases correspondiente al médulo Dzefista.

44

Modulo_Dietista

A «Clase de C#
Alimento

= Atributos

Alimento + AporteEnergetico: Integer

administra
Usuario | 1
A Usuario
= Atributos
+ Altura
+ apellido
+ Biotipo

+ Contrasefia

+ Direccidn de correo

+ Edad

+ GrasaCorporal : Integer

+ IMC

+ Lista de Calendarios

+ Lista de Categorias personalizadas
+ Lista de Comidas Personalizadas
+ Lista de Ejercicios Personalzados
+Lista de Rutinas
+ListadeDistas

+ Nombre

+Mombre de Usuario

+ Peso

+ Pregunta secreta

Operaciones

. + Cantidad : Integer
* + Descripcion : String

+ Nombre : String Alimento
+ Tipo : String formads por
= Operaciones <
+ alimento() e
Comidad@l.*
A «Clase de C#»
Comida
= Atributos
administra Comida + Calori.as'!'otales Integer
Usuario + Descripcion : String
+ ListaAlimentos : List<Alimento>
1 A «Clase de C2» = + Mombre : String
Dieta = Operaciones
Dieta Formadapor ~ Comida + AfiadirAlimento(alimento : Alimento) : void
= Atributos ‘ + CalcularaporteCalorico) : void
i e 1.* 1,* + Comida()
+ CaloriasDiarias : List<int> o) . -)
+ CaloriasTotales : int + EI|m|narAI|n1ento{aI|r.r|ento:Allmento}l:vmd
+ ComidasDia: Integer + ObtenertporteCalorico() : Integer
+ Descripcion : String
+ DwracionSemanas : Integer
creafsigue + Nombre : String
+ TablaComidas : List<List< Comida==
Dieta = Operaciones
Usuario + AfiadirComida(comida : Comida, posicionSemana : int, posicienDia : int) : void
s I + AfiadirComida(dia : Integer, kcomida: Integer): void

+ AfiadirComida{comida : Comida) : void

+ CalcularaporteCalorico{) : void

+ CalcularaporteCaloricoDiariof) @ void

+ Dietal)

+ EliminarComida(dia : Integer, kcomida : Integer) : void
+ ObtenerdporteCalorico() : Integer

+ ObtenerdporteCalorico{dia:int): int

+ ObtenerdporteCalorico{inicio zint, fin zint) rint

Tlustracion 5: Diagrama de clases del médulo Dietista

3.2.1.4 Modulo Calendario

Para el moédulo calendario se han utilizado varias clases pertenecientes a un proyecto de
cédigo libre llamado Calendar. NET 'y modificado segun las necesidades de la aplicacién ya
que las funcionalidades que permite dicho proyecto son muy limitadas y en ocasiones
funcionaban de forma errénea.

De serie, el proyecto Calendar. NET ofrecia un contro/ calendario que mostraba diferentes
eventos y disponia de dos tipos de vista distintos: vista mensual y vista diaria. A partir de
ahi hubieron de afiadirse todo el resto de funcionalidades modificando las clases de dicho
proyecto. Se ha afiadido la posibilidad de afadir eventos mediante la interfaz —antes
solamente se podian afiadir mediante codigo—, que estos eventos sean de diferentes tipos,
se han corregido multitud de errores en lo que se refiere al comportamiento de dicho
contro/— errores a la hora de mostrar los eventos por pantalla, solapamiento de eventos,
excepciones provocadas por malfuncionamiento a la hora de representar los meses por
pantalla, malfuncionamiento en la frecuencia de repeticiéon de los eventos, etc.—, se ha
afladido la posibilidad de modificar y eliminar eventos,etc. —algunos de estos cambios se
mencionan en el anexo de incidencias correspondiente al Mddulo Calendario

133.

Para personalizar dicho control para las necesidades de nuestro proyecto hubo que editar
exhaustivamente las clases que lo formaban: Calendar, 1Ewvent, CustomEvent,
CustomRecurringbunctionAttribute, — EventComparer, — EventComparerDuracion ~ —nueva—,
EventTooltip y EventDetails. Ademas se afiadieron nuevas clases para los diferentes tipos de
evento: EventoDieta, EventoEjercicio y EventoRutina.

* Calendar: Esta clase implementa la entidad del mismo nombre. La clase esta
formada por la informacién esencial del calendatio —fecha, lista de eventos, ete. —,
propiedades que controlan el funcionamiento interno de la clase y métodos tanto
para manipular el calendario como para manipular las propiedades internas de la
clase —Asadir, modificar y eliminar eventos, cambiar vista, etc..

* JIEvent: Esta clase es la interfaz que sirve de base para el resto de clases que
representan los tipos de evento posibles —CustomEvent, EventoDieta, EventoRutina y
EventoEjercicio. Fue necesario modificarla para afiadir el campo #po, que identifica
numéricamente qué tipo de evento es el evento. Sus campos incluyen la duracion,
fecha del evento, la frecuencia de repeticion, etc.

* CustomEvent: Esta clase implementa la interfaz IEvent y representa los eventos de
tipo normal —no son ni ejercicios, ni rutinas, etc. — y los eventos de tipo Comida.

! http:/ /www.codeproject.com/Articles/378900/Calendar-NET

46

http://www.codeproject.com/Articles/378900/Calendar-NET

* EventoEjercicio: Esta clase implementa también la interfaz IEvent y representa los
eventos de tipo Ejercicio. Ademas de los atributos y métodos base esta
implementacion afiade los campos especificos de un Ejercicio_Implementacion —Series,

Repeticiones, Duracion, Peso y ConsumoCalorico.

* EventoRutina: Esta clase implementa la interfaz IEvent y representa los eventos de
tipo Rutina. Ademas de los atributos y métodos base esta implementacion incluye

una lista de los eventos ejercicio que componen la rutina.
* EventoDieta: Analoga a la clase EventoRutina pero para los eventos de tipo Dieta.

* EventComparer y EventComparerDuracion: Ambas clases implementan la
interfaz IComparer. La primera compara dos eventos segin la hora a la que se
produce el evento y la segunda los compara segin la duracion de dichos eventos.

* EventTooltip: Esta clase hereda de la clase UserControl y representa la etiqueta que
aparece al pasar el cursor por encima de un evento. Sus atributos principales son el
color de la etiqueta, color del texto, la fuente, los margenes y el texto en si.

* EventDetails: Esta clase hereda de la clase Forz. Es la encargada de mostrar la
informacién de los eventos por pantalla y guardar las modificaciones que el usuario

realice en el evento.

En el diagrama de clases final se han omitido algunas clases del médulo calendario para
evitar sobrecargar el diagrama. En el diagrama aparecen dnicamente las clases principales
de cada médulo.

En la pagina siguiente se encuentra adjunto el diagrama de clases del médulo Calendario.

47

#: Modulo_Calendario

+ CustomRecurringFunction
+ Date : DateTime
+Enabled : bool
+ EventColor: Color
+ EventFont : Font
+ EventLengthInHours : float
+ EventText : String
+ EventTextColor : Color
+ IgnoreTimeComponent : bool
+ Rank : int
+ RecurringFrequency : RecurringFrequencies
+ ThisDayForwardOnly : bool
+ tipo zint
+ TooltipEnabled : bool
= Operaciones
+ Clone{) : IEvent
+ CustomEwvent()

+ ConsumaCalorico : float
+ CustomRecurringFunction
+ Date : DateTime
+duracion : float
+Enabled : bool
+EventColor: Color
+ EventFont : Font
+ EventLengthInHours : float
+ EventText : String
+EventTextColor: Color
+IgnereTimeComponent : bool
+Peso :float
+ Rank : int
+ RecurringFrequency : RecurringFrequencies
+Repeticiones :int
+ Series :int
+ ThisDayForwardOnly : bool
+ tipo :int
+ TooltipEnabled : bool

=l Operaciones
+ Clone() : IEvent
+ EventoEjercicio()

+ CustomRecurringFunction
+ Date : DateTime
+Enabled : bool
+ EventColor: Coler
+ EventFont : Font
+ EventLengthInHours : float
+ EventText : String
+ EventTextColor : Color
+ IgnoreTimeComponent : bool
+ ListaEventosEjercicio : List<IEvent=
+ Rank : int
+ RecurringFrequency : RecurringFrequencies
+ ThisDayFerwardOnly : bool
+ tipo :int
+ TooltipEnabled : bool
2 Operaciones
+ Clone() : IEvent
+ EventoRutina()

«Clase de C#»
Calendar.NET Calendar
= Atributos
+ AllowEditingEvents : bool A e
A Usuario + CalendarDate : DateTime
+ Calendarview: Calendarviews IEvent
) + DateHeaderFont: Font = Atributes
= Atributos +DayOPWeekFont : Font Calendar NET Calendar IEvent + CustomRecurringFunction
+Altur§ +DaysFot: Font 1 1 + Date : DateTime
+ADEI.“d° + DayViewTimeFont : Fent +Enabled : bool
+ Biotipo . £ DimDisabledEvents : Boaol +EventColor: Color
’ CPntrgsena + HighlightCurrentDay : Bool + EventFont : Font
+ Direceidn de corren + LoadPresetHolidays : bool Evento +EventLengthInHours : float
+ Edad + ShowArrowControls : bool ———= +EventText : String
+ GrasaCorporal : Integer i + ShowEventTooltips : bool = +EventTextColor: Color
* Emf de Calendari Usuario Lhluyeie + ShowTodayButton: bool +IgnoreTimeComponent : bool
+ Lista de Calendarios B .
+_events : List<Ievent> + Rank : int
: t:z:: ::E;:Ej“a:ﬂ:el:;:;":?g“ = Operaciones +RecurringFrequency : RecurringFrequ...
iz i .
+ Lista de Ejerdicios Personalizados + AddEvent(calendarEvent : IEvent) : void :FIS[EE.YEDMEMOMY +bool
+Lista de Rutinas + Calendarl +TIoD:It.||;rllEnabIed = bool
+ Listade Dietas + GetlistofEvents(): List<IEvent> —
+ Nombre +Removeall() : void = Operadiones
£ Nombre de Usuario + RemoveEvent{IEvent) : void + Clone(): IEvent
+ Peso + RenderDayCalendar{e: PaintEventargs): void Fa
+ Pregunta secreta + RenderMonthCalendar{e : PaintEventargs) : void I
T ETS - InitializeComponent]) i
siad |
Usuario L A 1
. | SEE. . .
e 1 1
| 1 1 1
1 1 1 1
1 1 ' '
| 1 1 1
| 1 1 1
L L L L
A CustomEvent A EventoEjercicio A EventoRutina A EventoDieta
= Atributos = Atributes = Atributos = Atributos

+ CustomRecurringFunction
+ Date : DateTime
+Enabled : bool
+EventColor: Color
+ EventFont: Font
+ EventLengthInHours : float
+ EventText : String
+ EventTextColor : Color
+ IgnoreTimeComponent : bool
+ ListaEventosComida : List<IEvent=>
+ Rank : int
+ RecurringFreguency : RecurringFrequencies
+ ThisDayForwardOnly : bool
+tipo :int
+ TooltipEnabled : bool
= Operaciones
+ Clone() : IEvent
+ EventoDieta()

Ilustraciéon 6: Diagrama de clases del m6dulo Calendario

3.3 Diseiio de la base de datos

A la hora de disenar la base de datos de la aplicacién se tomaron en cuenta diferentes criterios y
aspectos para valorar qué tipo de base de datos era mas conveniente. Pese a que lo mas habitual
hubiera sido crear una base de datos relacional en SQL para aprovechar las ventajas que este tipo
de base de datos ofrecen —una sola consulta puede rescatar mucha informacién, utilizan un
lenguaje estandarizado, son seguras, /beran al usuario de ciertas responsabilidades de coherencia y
control al manejar la informacién de la base de datos, una vez finalizadas estan dotadas de una
gran robustez...— se tomd la decision de crear una base de datos de las denominadas NoSQL,

concretamente una base de datos basada en documentos.

Por qué usar una base de datos de este tipo después de haber mencionado las bondades de una
base de datos en SQL? Este tipo de bases de datos son muy amigables con el programador ya que
ofrecen un margen de libertad muy amplio a la hora de decidir la estructura de cualquier aspecto
de la base de datos —por ejemplo como separar cada campo de las muestras, la jerarquia de los
documentos...—, su desarrollo es mas rapido que el de las bases de dato de otro tipo y no es
necesario ninguna herramienta ni software para implementarlas a parte de un editor de texto.

Por otro lado —y como consecuencia de la mencionada libertad que ofrecen— sus mayores
inconvenientes son que la coherencia e integraciéon de los datos depende totalmente del
programador y que para que alguien externo pueda trabajar con ella debe de aprender
exhaustivamente la estructura de dicha base de datos —este ultimo aspecto menos relevante en
nuestro caso ya que todo el proyecto lo realiza una sola persona.

Valorados estos aspectos se decidié dar preferencia a la libertad y sencillez para manipular la
informacion frente a mayor seguridad y/o robustez.

3.3.1 Estructura

La estructura de la Base de datos esta divida en dos elementos principales: directorios y ficheros.

Los ficheros almacenan informaciéon concreta de diferentes entidades —ejercicios, alimentos,
comidas, usuarios..— y los directorios organizan dichos ficheros segin el médulo y usuario al
que pertenecen. Esta estructura queda reflejada en los diagramas siguientes:

49

3.3.1.1 Modulo General

Mddulo
General

su

arios

Ilustracion 7: Estructura de la base de datos, Médulo General

3.3.1.2 Modulo Calendario

Madulo
Calendaria

Usuario 1

Usuario n

[Capturas

Tlustracion 8: Estructura de la base de datos, Médulo Calendatio

50

3.3.1.3 Moddulo Ejercicios

Madula
Ejercicios

Ejercicios

- onalia
FPersonalizados
de Usuaria
|

Categorias

= Categorias
Fersonalizadas

de Usuario

Rutinas

Rutinas
Fersonalizadas
de Usuario

Capt

Lras

Ilustracion 9: Estructura de la base de datos, Modulo Ejercicios

3.3.1.4 Modulo Dietista

Madulo Dietista

Alimentos

Alimentos
Personalizados
de Usuario

Comidas

Una descripcién mas detallada de la estructura interna de los ficheros que forman la base de datos y su funcionamiento aparece en el punto 4 de esta memoria—

Tmplementacion.

Comidas
FPersonalizadas
de Usuario

Dietas

Capt

Lras

= Dietas
- it
de Llsuario

Tlustracion 10: Estructura de la base de datos, Modulo Dietista

3.4 Diseiio de la Interfaz

El diseno de la interfaz se realiz6 primeramente a lapiz a mano alzada. Una vez realizado este
disefio previo a mano se usé la herramienta web de disefio de diagramas Creately’ para llevar a
cabo el disefio que después se utilizarfa para disefiar la implementacion final de la interfaz grafica
de la aplicacion.

A la hora de disefiar la interfaz se dio maxima prioridad a facilitar la interaccion entre el usuario y
la aplicacién. Se buscéd que la curva de aprendizaje de uso fuera lo menos empinada posible y que
el uso de la aplicaciéon fuera lo mas intuitivo posible, incluso para usuarios que no estén
habituados al uso del ordenador.

Ayuda

Ilustraciéon 11: Disefio de la ventana principal del Médulo General, la ventana que aparece al ejecutar la aplicacion.

Otro factor al que se le dio gran importancia fue intentar que la informacién fuera mostrada por
pantalla de forma clara y sencilla, evitando recargar de informacion las ventanas y pestafias. Esto,
junto con una paleta de colores suave, genera un ambiente en el que el usuario se siente relajado y
comodo al usar la aplicacion.

En la imagen de la pagina siguiente se muestra un disefio de la ventana principal del médulo
Ejercicios con varias pestafas abiertas.

2 www.creately.com/app

53

Médulo Ejercicio Categoria Rutina Herramientas
=] Root I Ejercicio 1 "Categoria 5 IRutina 2
[+] Categoria 1
i Nombre
L [=] Categoria 2 | | Nombre 1
5 Ejercicio 1
| Categorias | Categoria 1 A
Categoria 2
v
) Descripcion Descripcién del
Sl ejercicio
Rutina2
Rutina3

[enkine diagramming & design] CIr@ATEIY com

Ilustracion 12: Disefo de la ventana principal del Médulo Ejercicios.

Intentando facilitar el uso de la aplicacion se disefi6 la interfaz de tal manera que los pasos para
realizar las diferentes funcionalidades que ofrece la aplicacion sean en la medida de lo posible
secuenciales. Esto consigue que el usuario no se prerda a mitad de accidon. Por ejemplo, un usuario
que quiera afadir un nuevo evento, al seleccionar dicha opcidn, ira siguiendo un conjunto de
ventanas emergentes que iran apareciendo una seguida de la otra hasta acabar con el evento
afladido. El usuario ird tomando una decisién cada vez. De esta manera el usuario no podra
realizar ninguna otra accién mientras la que esta haciendo en este momento no esté terminada.
Asf se evita, ademas, generar situaciones que pueden crear conflictos internos en la aplicacion.
Esta forma de proceder se repite en la mayorfa de las funcionalidades de la aplicaciéon. Aun y asi
existen algunas excepciones: un usuario puede abrir diferentes pestafias en un mismo modulo,
para por ejemplo ver diferentes ejercicios a la vez, pero esto no implica realizar dos acciones a la
vez, ya que mientras se ve el contenido de una pestafia no se puede interactuar con las otras.

La ilustracién de la siguiente pagina representa los pasos a seguir por el usuario para afadir un
evento.

54

Maédulo

Calendario 4
Calendario 8
Calendario 12

Calendario 15

Seleccionar Tipo de Evento

Evento

Afiadir

Abrir

1 2
9 10
15 16

ks
‘ Seleccionar Calendario ‘ v ‘ '
0

Viernes

Cambiar Vista

Domingo

Evento 1 Details

Informacién Basica

RO

Nombre: Evento 1

Fecha

Duracién: 15 Horas

Opciones de Repeticién

2 Frecuencia

‘ Cada mes ‘ v ‘
Agafiencia
Fuente Times New ‘ v ‘
Color Evento Color Texto

Cancelar

T Tan

Ilustracién 13: Disefio de los pasos a seguir por el usuario de la aplicacién para afiadir un nuevo evento.

En el anexo INTERI'Z (DISENO) se han adjuntado otras ilustraciones del disefio de la interfaz

grafica de la aplicacion —de los distintos médulos. No se ha incluido ninguna ilustracién del
modulo dietista porque su disefio es idéntico al del médulo Ejercicios.

Una vez finalizado el disefio pasamos a la siguiente fase de desarrollo de la aplicacion: la

Tmplementacion.

55

56

4. Implementacion y pruebas

4.1 Lenguaje utilizado y herramienta de desarrollo

El lenguaje de programacion escogido ha sido C# ya que al ser un lenguaje de programacion
orientado a objetos facilita la conversion del disefio ez papel a la estructura de clases que ofrece
dicho lenguaje. Otro factor determinante es que Microsoft dispone de una librerfa de clases’
(similar a la API de Java) que permite consultar con facilidad las caracteristicas de las clases
existentes, su funcionamiento, utilidad, etc. Ademas es un lenguaje derivado directamente de
C/C++, un lenguaje muy utilizado durante toda la carrera y por lo tanto permite un trabajo mas

eficiente.

StreamReader Class

-NET Framework 4.5 | Other Versions = & out of 12 rated this helpful - Rate this topic

Implements a TextReader that reads characters from a byte stream in a particular encoding.
v Inheritance Hierarchy

Namespace: SystemIO
Assembly: mscorlib (in mscorlib.dll

» Syntax

The StreamReader type exposes the following members,

4 Constructors

Name Description
v\xﬂ,ﬁ StreamReader(Stream) Initializes a new instance of the StreamReader class for the specified stream.
& X StreamReader(String) Initializes a new instance of the StreamReader class for the specified file name.

v)(ﬂ,;a_i StreamReader(Stream, Boolean) | Initializes a new instance of the StreamReadler class for the specified stream, with the specified byte order mark
detection option,

Ilustracion 14: Descripcion de la clase StreamReader en la libreria de clases de Microsoft.

En el punto 1.5 de esta misma memoria—

3 http://msdn.microsoft.com/en-us/library

57

http://msdn.microsoft.com/en-us/library

Herramientas utilizadas— ya se menciona que la herramienta utilizada para desarrollar la
aplicacion ha sido Microsoft Visnal Studio 2010. Como se comenta en dicho punto, se eligié esta
herramienta porque agrupaba todas las necesidades que a nivel de desarrollo requeria nuestra
aplicacion. En una misma Solucion —como Visual Studio 1o llama— estan contenidos todos los
elementos que implementan la aplicacion, desde la implementacién del sistema de clases, los
juegos de pruebas de este, la implementacion de la interfaz e incluso los diagramas UML que sean
necesarios. A cada uno de estos 17sual Studio los denomina proyectos.

Explorador de soluciones
@ o-2d *RA

Buscar en el Explorador de soluciones (Ctrl+7) o

[+ Clases

B Entrenamientos Inteligentes

[Entrenarnientos Inteligentes Test
b g1 Instalador

b Sy ModelingProjectl

Ilustracién 15: Explorador de Soluciones de Visual Studio 2010

El unico punto negativo, si es que se le puede considerar de tal manera, es que esta herramienta
no permite el uso de ingenierfa inversa en algunos casos —como por ejemplo crear la
representaciéon en UML de una clase o conjunto de clases una vez estas estan terminadas.

58

4.2 Implementacion de la aplicacion.

4.2.1 Sistema de clases

La implementacion del sistema de clases que forman el nucleo de la aplicacion es una traduccion
directa de lo representado en el diagrama de clases del apartado Disesio de la memoria. A partir de
la descripcién de los atributos y métodos de cada clase —definidos en dicho apartado— estos se
fueron implementando y testeando clase a clase.

Disefio Clase 11—} |mp'|ECr||';Esr§2C|Dﬂ M TestClase 1
Disefio Clase 2 ——H Implli:rlr;esr;tgcmn M TestClase 2

Diseiio Clase rJ—h'mp"f:’l‘;‘fj’g?f'“" M TestClase N

Ilustracion 16: Diagrama del procedimiento de implementacion de las clases

Este método de proceder no implica que a cada clase le corresponda una clase de prueba. Las
clases de test se dividen por médulos y las clases que pertenecen a ese modulo se testean en
diferentes métodos de dicha clase. Por ejemplo: El correcto funcionamiento de las clases del
Moédulo Ejercicios —Ejercicio_tipo, Ejercicio_lmplementacion, Comida y Dieta— se comprueba en la
clase de pruebas —TestClass— ModuloEjerciciosTest. Esta clase incluye los métodos CrearEjercicio(),
AdpinistrarMiisculos Trabajados(), AdministrarRutina()... entre otros donde se comprueba el
funcionamiento de las clases anteriormente mencionadas.

59

7 l]namespace'Hodulo_Dletlsta

8 [{
3 using Modulo_Calendario;
la using System;
11 using System.Collections.Generic;
12 using System.Ling;
13 | using System.Text;
14 [Serializable]
15 = public class Comida
16 |
17 B public Comida()
18 {
19 this.Mombre = "No especificado™;
20 this.Descripcion = "No especificada”;
21 this.ListaAlimentos = new List<Alimento>»();
22
23 | 3
24 [public Comida(string nombre, string descripcion, List<Alimento> listaflimentos)
25 {
26 this.Nombre = nombre;
27 this.Descripcion = descripcion;
28 this.ListaAlimentos = listaflimentos;
29 this.CaloriasTotales = this.ListaAlimentos.Sum(item => item.AporteEnergetico);
e | 3
31 E= public virtual string Nombre
32 {
33 get;
34 set;
35 | 1
36
37 H public wvirtual string Descripcion
38 {
39 get;
W% - 4 3
2 Entrenamientos_Inteligentes_Test.ModuloDietistaTest |v @ CreacionDeAlimento()
65 [public woid CrearComidaVacia() 2
66 { .
67
68 Comida Patatasludias = new Comida();
69
79 Assert.AreEqual(Patatasludias.Nombre, "No especificado™);
71 Assert.AreEqual(Patatasludias.Descripcion, "No especificada™);
72 Assert.AreEqual(Patatasludias.CaloriasTotales, @);
73 Assert.AreEqual(Patatasludias.listaAlimentos.Count, 8); //lisa vacia
74
75 | i
76
77 [TestMethod]
78 O public woid CrearComida()
79 {
8@
81 string Nombre = “Patatas Cocidas y Judia Verde";
82 string Descripcion = "Muchos hidrates, saludable™;
83 List<Alimento> ListaAlimentos = new List<Alimento>();
84
85 Alimento Alimentol = new Alimento(“Alimento 1", "No especificado™, "No especificado™,
86 Alimento Alimento? = new Alimento(“Alimento 2", "No especificado™, "No especificado™,
B7
88 Listaflimentos.Add{Alimentol);
89 Listaflimentos.Add{Alimento2);
98
91 Comida PatatasJudias = new Comida(Nombre, Descripcion, Listailimentos);
92
93 Assert.AreEqual(Patatasludias.Nombre, "Patatas Cocidas y Judia Verde");
94 Assert.AreEqual(Patatasludias.Descripcion, "Muches hidratos, saludable™);
95 Assert.AreEqual(Patatasludias.CaloriasTotales, 754);

Ilustracion 17: Arriba, captura de la implementacion de los constructores de la clase Comida; Abajo, captura de la implementacion de los
métodos de la clase de pruebas que comprueban el correcto funcionamiento de dichos constructores.

60

4.2.2 Implementacion de la base de datos.

En el apartado de Diserio ya se explicé el disefio de la base de datos —basada en ficheros—
y los motivos para haber elegido dicho disefio y estructura asi que en este apartado nos
centraremos unicamente en los aspectos que hacen referencia a su implementacioén en la

aplicacion.

Estructura de los ficheros

La estructura principal de los ficheros de la base de datos es compartida por todos ellos:
cada linea del fichero representa un elemento —ya sea un usuario, una rutina, un ejercicio,
una dieta, etc. Cada linea, a su vez, esta dividida en campos por diferentes tipos de
separador segun si los campos contienen mas campos dentro de si o no. Esta explicacién se

ve mas clara con un ejemplo:

|=] Instnuiccionesbd | [EjerciciosBase bd l

1 k‘ll:nmb:e; Descripcion;Musculol |Musculo? |Musculo3;Categorial |Categorial

2 Flexiones Simples; Descripcion del ejercicio;Pectoral Mayor|TIriceps;Abdominales|Iren Superior

3 Sentadilla con Barra; De pie, apoye la barra en los hombros. Los pies deben mantenerse separados
4 Abdominales Simples;Tumbados boca arriba colocamos los pies apovados a un palmo de distancia del

Ilustracion 18: Captura del fichero de la base de datos EjerciciosBase.

En la linea nimero 1 encontramos la leyenda, que marca el patrén que siguen todas las
lineas. Este patrén lo utiliza la aplicacion para saber cuando hay un nuevo campo y qué es
cada uno de ellos. En este caso observamos que existen dos separadores: los caracteres ; y
|. El separador ; es un separador de primer nivel, mientras que el separador | lo es de
segundo nivel. Siguiendo esta légica, en la linea nimero 2 encontramos la informacion
referente al siguiente ejercicio:

e Nombre: Flexiones Simples.
e Descripciéon: Descripcion del ejercicio.
e Musculos trabajados: Pectoral Mayor, Triceps.

e Categorias: Abdominales, Tren Superior.

Y lo mismo sucede con el resto de lineas que forman el fichero.

61

Existen 6 niveles de separadores. Este es el menor nimero posible para evitar problemas a

la hora de separar los campos correctamente. Los separadores son:

1t Nivel 5
2° Nivel |
3t Nivel #
4° Nivel

Modulo Calendario }

Para evitar conflictos con el formato de fecha dd/ mm/ aa

Resto de Modulos /
5° Nivel {
6° Nivel [

Tabla 1: Separadores de campo

Se han seleccionado estos separadores pensando en caracteres que no fueran a ser
utilizados, caracteres cuya omision no dificultaran el uso de la aplicacién. Para evitar
problemas, se avisa al usuario de que no use ninguno de los caracteres de la tabla bajo

ningun concepto.

Esta estructura es comun para todos los ficheros de la base de datos a excepcion del
moédulo Calendario. A diferencia del resto de ficheros, donde cada linea representa un
elemento, en el caso de los calendarios cada uno de ellos esta representado por un fichero,
con un par de peculiaridades. La primera peculiaridad es la necesidad de un separador extra
para evitar problemas a la hora de guardar fechas —usar el separador / provocatia fallos a
la hora de guardar la informaciéon. La segunda es en la estructura en si. Las dos primeras
lineas de cada fichero calendario estan reservadas para la palabra clave FechaCalendario y la
fecha en si. La tercera linea marca la leyenda de como se representan los eventos que son

contenidos en el calendario.

{ Instrucciones bt lE EierciciosBasebd | [=] Pruebalid |

1 FechaCalendario

2 0&/07/2013 12:00:00

3 Tipo;Nombre;Fecha (MM/dd/zaza HH/mm);Duracidn(horas);Frecuencia;IgnorarComponenteTiempo; Sololectura;Event
4;Dieta Julian;1#2}Comida Base 1}06/24/2013 08:00:00}1}5}False}False}TruelTrue}t255{80{80}255{255{255#2}Co
S;Cachimba;l1#3}Flexiones Simples[2[2[2[0[2}06/24/2013 0B8:00:00}0,25}5FalzelFaleelTruelTruell28{128{0}255
2:Comida Base 1;07/22/2013 09:00:00:1;5;False;Falze;True;Truse;255|255|255;:0|0]0
1;Provecto =sesidn prueba creacidn evento;06/07/2013 15:00:00;4;1;False;False;True;True;3|180[200;0|0]|0

3;Flexiones Simples|3|30|0)0[30;06/03/2013 17:30:00;0.5;3;False;False;True;True; 255|122 64,255|255|255
|

1 & LN ks

Ilustracién 19: Captura de un fichero que codifica un calendario.

62

De acuerdo con la descripcion anterior, viendo la ustracin 19 extraemos la informacion
siguiente:

e Nombre del calendario: Pruebal —EIl nombre del archivo.
e Fecha del calendario: 07/06/2013, 12:00:00 —fecha en formato 24h— Linea 2.

e Numero de eventos: 5 —FEI nimero de lineas del archivo quitando las 3 primeras.

Y siguiendo la leyenda que marca la linea 3 podemos extraer la informacion
correspondiente a cada evento del calendario, en este caso cinco eventos —uno de cada
tipo posible.

La codificacién de todos los ficheros es la misma, UTF-8. Esto es importante tenerlo en
cuenta siempre que se quiera editar la base de datos directamente sobre los ficheros ya que
por defecto —habitualmente— los ficheros de texto son creados bajo la codificacion
ANSL Ignorar esta circunstancia provocarfa fallos en el funcionamiento ya que al leer el
archivo, la aplicacion recibe la orden especifica de que los ficheros estan codificados segin
la representacion UTF-8.

Interaccién con la aplicacion

La interaccién de la base de datos con la aplicacion es relativamente sencilla: cada vez que
se carga un modulo —sea cual sea— se carga de los ficheros de la base de datos toda la
informacién correspondiente a dicho moédulo a unas estructuras de listas internas. A partir
de este momento se utilizaran siempre dichas listas internas hasta que se cierre el médulo
—o se elija la opcion de guardar cambios si el médulo lo permite— que se guardaran todos
los cambios en los archivos de nuevo. Con esto lo que conseguimos es no tener que
acceder constantemente a la base de datos. Ademas, como el volumen de informacién a
tratar no es muy elevado incluso leyendo unos centenares de lineas de cada fichero, el

rendimiento de la aplicacién no se ve afectado.

Moédulo General

Cargamos
informacion desde la
BD

Ejecutamos la Cargando Moédulo
aplicacion General

Aplicacion no Iniciada Moédulo General Cargado

Resto de mddulos

Cargamos
informacion de los
ficheros de la Base de

datos

Cargando Médulo
Seleccionado

Seleccionamos
médulo a Cargar

Maodulo General Cargado Mddulo Seleccionado Cargado

Leyenda: | estado | (accion) . ©

estado inicial estado final

‘ 63 i ion] Create

Ilustracion 20: Diagrama de estados de la carga de informacion de la base de datos.

78
71
72
73
74
75
76
77
78
79
89
81
82
83
84
85
86
87
88

98
91
92
a3
94
a5
96
97
98
99
168
18l
1a2
183
1a4
185
186

147

A continuacién se mostrara el proceso descrito en el diagrama mediante capturas de

pantalla del codigo fuente. Cada captura incluye una descripcion del cédigo para ir

siguiendo el proceso de carga. Este proceso es analogo en todos los médulos, es por esto

que unicamente se muestran capturas del médulo ejercicios.

65
66
67
68

[y]

/fCargar el nombre y la descripcidén de las categorias de un archivo.

CargarBaseDatosCategoriasBase();
CargarBaseDatosCategoriasPersonalizadas();

Ilustracion 21: Las funciones CargarBaseDatosCategoriasBase() y CatgarBaseDatosCategoriasPersonalizadas()
leen de los ficheros CategoriasBase.txty <nombreusuario>.txtla informacion referente a las categorias base y

las especificas de cada usuario respectivamente.

/A continuacidn cargaremos los ejercicios base, por defecto de la aplicacidn.

System.I0.5treamReader ArchivoEjerciciosBase = new System.I0.StreamReader(”Base de datos/Mddulo Ejercicios/Ejercicios/EjerciciosBase.txt");
//Leemos la primera linea que es la de "informacidén” de los campos, se desecha: Nombre;Descripcion;Musculol|Musculo2|Musculo3;Categorial|Ca
ArchivoEjerciciosBase.Readline();

while (!ArchivoEjerciciosBase.EndOfStream)

{

linea = ArchivoEjerciciosBase.Readline();
campos = linea.Split(';');

J/List<String> ListaMusculos = new List<String>(campos[2].Split("|"});

List<Strings ListaMombreCategorias = new List<String>{campos[3].5plit{'|'});
List<Categoriar ListaCategoriasEjercicio = new List<Categoria»(CrearListalategorias(ListaNombreCategorias));

//Ejercicio_Tipo Ejercicio = new Ejercicio_Tipo(campos[@], campos[1], new List<String>(campos[2].Split("|')), ListaCategoriasEjercicio);
Ejercicio_Tipo Ejercicio
Ejercicio.MNombre
Ejercicic.Descripcion
Ejercicio.MusculosTrabajados = new List<String>(campos[2].5plit{"|"'});

= new Ejercicio_Tipo();

campos[@8];
campos[1];

foreach (Categoria cat in ListaCategoriasEjercicio)

¢ if (!lListaCategoriasBase.Any{categoria =» categoria.Mombre == cat.Nombre))
{
cat.AfadirEjercicio(Ejercicio);
ListaCategoriasBase.Add(cat);
Ejercicio.AfadirCategoria(LlistaCategoriasBase.Find(item =» item.Nombre == cat.Mombre)):
P
elsd
{
Ejercicio.listaCategorias.Add(ListaCategoriasBase.Find(item =» item.Nombre == cat.Nombre));
ListaCategoriasBase.Find{item => item.Nombre == cat.Nombre).AfadirEjercicio(Ejercicio);
H
hH

ListaEjerciciosBase.Add(Ejercicio);

Ilustraciéon 22: Lectura de los ejercicios base del fichero de la base de datos.

La Ilustracion 22 describe el proceso de lectura de los Ejercicios Base del archivo

EjerciciosBase.txt de la base de datos:

Se leen linea a linea cada uno de los ejercicios predefinidos. La primera linea se desecha ya

que es la leyenda que describe la informacién de los campos del fichero. Mientras haya

64

132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
145
158
151
152
153
154
155
156
157
158
159
168
16l

/fListaCategoriasBase.Add(new Categoria("Sin Categoria”,"Ejercicios gue no pertenecen a ninguna categoria”,new List<Ejercicio_Tipox()));

lineas —ejercicios— que leer se divide la linea en campos —linea 78— y se guardan los
campos del ejercicio en cuestion en la instancia de la clase Ejervicio_Tipo que hemos
creado—lineas 86, 87, 88. En caso de que el campo contenga mas campos dentro —como
por ejemplo la lista de categorfas— es dividido de nuevo —linea 81— y se recorre la lista

previamente creada de categorias buscando las categorias que aparecen en la lista de
categorias del ejercicio que estamos leyendo —LzstaCategoriasEjercicio. Cuando encontramos
una coincidencia afiadimos la categoria a la lista de categorfas de la instancia que hemos
creado anteriormente —linea 85. Una vez finalizado este proceso se cierra el descriptor de
fichero —linea 109— y se repite el mismo proceso con el fichero de ejercicios

personalizados del usuario en cuestion.

//Ahora cargamos los ejercicios personalizados del usuario en cuestidn
System.I0.5treamReader ArchivoEjerciciosPersonalizados = new System.IO.StreamReader("Base de datos/Mddulo Ejercicios/Ejercicios/Ejercicios Tipo
/fla primera linea corresponde de nuevo a la leyenda
ArchivoEjerciciosPersonalizados.Readline();

while (!ArchivoEjerciciosPersonalizados.EndOfStream)

{

H

linea = ArchivoEjerciciosPersonalizados.Readline();
campos = linea.5plit(';');

List<String»> ListaMusculos = new List<5tring>{campos[2].5plit('|"});
List<String» ListaNombreCategorias = new List<String>(campos[3].Split('['});
List<Categoria» ListaCategoriasEjercicio = new List<Categoria>{CrearlistaCategorias(ListaMombreCategorias));

La ca

J/Ejercicio_Tipo Ejercicio = new Ejercicio_Tipo{campos[@], campos[1], new List<String>(campos[2].5plit("|'}), ListaCategoriasEjercicio);

Ejercicio Tipo Ejercicio = new Ejercicio_Tipo();

Ejercicio.Nombre = campos[@];

Ejercicio.Descripcion = campos[1];

Ejercicio.MusculosTrabajados = new List<String>({campos[2].5plit('|'});

foreach (Categoria cat in ListaCategoriasEjercicio}

{
if (!ListaCategoriasBase.Any(categoria => categoria.Mombre == cat.Nombre))
{
if (!ListaCategoriasPersonalizada.Any({categoria =» categoria.Nombre == cat.Nombre))
{
cat.AfiadirEjercicio{Ejercicio);
ListaCategoriasPersonalizada.Add{cat);
Ejercicio.AfiadirCategoria(listaCategoriasPersonalizada.Find(item => item.Nombre == cat.Nombre});
}
else
{
Ejercicio.listaCategorias.Add(ListaCategoriasPersonalizada.Find{item => item.Mombre == cat.MNombre)};
ListaCategoriasPersonalizada.Find(item => item.Mombre == cat.Mombre).AfadirEjercicio(Ejercicio);
}
H
else
{
Ejercicio.listaCategorias.Add(ListaCategoriasBase.Find(item =» item.Nombre == cat.Mombre));
ListaCategoriasBase.Find(item =» item.Nombre == cat.Mombre).AfiadirEjercicio(Ejercicio);
H
1

this.listaEjerciciosPersonalizada.Add(Ejercicio);

ArchivoEjerciciosPersonalizados.Close();

Ilustracion 23: Proceso para leer los ejercicios personalizados de usuario del fichero de la base de datos.

La Ilustraciéon 23 describe el mismo proceso que la ilustracion 21 pero para los Ejercicios
personalizados del usuario en cuestion.

65

168
169
178
171
172
173
174
175
176
177
178
179
138

191

Una vez hecho esto se genera el arbol correspondiente a las categorias y ejercicios.

163 //Entonces peneramos el drbol de categorias y ejercicios

164 Eenerarﬂrhul[ategorias‘rEj erciciusf },|
=1

Ilustracion 24: GenerarArbolCategoriasYEjercicios() se encarga de crear y rellenar el arbol que mostrara por
pantalla las categorias y ejercicios cargados.

7 it

Médule Ejercicio Categoria Fu

25

s

- Flexiones Simples
. Flexiones con Mufiec:
- Abdominales

- Sin Categoria

- Personal Moves

- Ejercicios Apertura Cade
- Respiraciones

/- Pal Chagui

- &in Categoria(Personaliz:

(|

(|

Ilustracion 25: Captura de pantalla de la aplicacion en ejecucion donde se muestra el arbol con las categorias y
ejercicios.

Una vez generado el arbol de categorias y ejercicios la aplicacion carga de la base de datos
las rutinas del usuario y se genera el arbol de rutinas correspondiente.

System.I0.StreamReader ArchivoRutinas = new System.IO.StreamReader("Base de datos/Médulo Ejercicios/Rutinas/Rutinas Personalizadas de Usuario/" + this.Usua
String[] CamposPrincipales;

//La primera linea es la leyenda, se lee pero no se utiliza
/{Separadores de campo:

//1r nivel: ; Separa los diferentes campos principales de la rutina

/722 nivel: | Cada dia estd separado por uno de estos

/73r nivel: # Separa los diferentes campos de cada dia (dia y ejercicios del dia)

/742 nivel: / Separa los diferentes campos de la implementacidn del ejercicio (nombre, series, repeticones, etc)

//Leyenda: Nombre;Descripcidn;Dial#NombreEjerciciol/Series/Repeticiones/Peso/Duracion/ConsumoCalorico#NombreEjercicio2/Series/Repeticiones/Peso/Duracion/Col

Ilustracion 26: Captura de los separadores de campo del fichero de la base de datos que contiene las rutinas del usuario.

En la Ilustracion 26 se observa la leyenda de separadores del fichero que contiene las
rutinas.

66

218
218
228
221
222
223
224
235
226
227
228
229
238
231
232
233
234
235
236
237

238

while {!ArchivoRutinas.EndOfStream)
{

linea = ArchivoRutinas.Readline(};
CamposPrincipales = linea.Split(';");

Rutina rutinaleida = new Rutinal};

rutinaleida.Nombre = CamposPrincipales[@];
rutinaleida.Descripcion = CamposPrincipales[1];

string[] CamposlListaDias = CamposPrincipales[2].Split(']|');

foreach(string dia in CamposListaDias)

{
string[] CamposDia = dia.Split('#'};

for{int i = 1; i<CamposDia.Count(); i++) //el primer campoc es el indice numérico del dia, el resto, los ejercicios
{

string[] CamposEjercicio = CamposDia[i].Split('/');

Ejercicio_Tipo EjercicioTipo;

EjercicioTipo = ListaEjerciciosBase.Find(item =» item.Mombre == CamposEjercicio[@]);

it (EjercicioTipo == null) EjercicioTipo = ListaEjerciciosPersonalizada.Find(item => item.Mombre == CamposEjercicio[@]);
/751 EjercicioTipo == null significa que el ejercicio no es de la lista base, sino de la lista personalziada de ejercicios

Ejercicio_Implementacion ImplementacionConcreta = new Ejercicio Implementacion();
ImplementacionConcreta.lNombre = EjercicioTipo.Nombre;

ImplementacionConcreta.Descripcion = EjercicioTipo.Descripcion;
ImplementacionConcreta.MusculosTrabajados = EjercicioTipo.MusculosTrabajados;

if (CamposEjercicio[1] != "") ImplementacionConcreta.Series = Convert.ToInt32{CamposEjercicio[l]);

else ImplementacionConcreta.Series = -1;

it (CamposEjercicio[2] != "") ImplementacionConcreta.Repeticiones = Convert.ToInt32(CamposEjercicio[2]);
else ImplementacionConcreta.Repeticiones = -1;

if (CamposEjercicio[3] != "") ImplementacionConcreta.Peso = Convert.ToSingle(CamposEjercicio[3], System.Globalization.Cultur

else Ilplenentacinn(nncretﬂ.Peso = -1;

if (CamposEjercicio[4] != "") ImplementacionConcreta.duracion = Convert.ToSingle(CamposEjercicio[4], System.Globalization.Cu

else ImplementacionConcreta.duracion = -1;

if {CamposEjercicio[5] != "") ImplementacionConcreta.ConsumoCalorico = Convert.ToSingle{CamposEjercicio[5], System.Globalizz

else ImplementacionConcreta.ConsumoCalorico = -1;

rutinaleida.AfiadirEjercicio(ImplementacionConcreta, Convert.ToInt32(CamposDia[e]), 1);

H

rutinaleida.Duracion = Convert.ToInt32(CamposPrincipales[3]);
rutinaleida.CalcularConsumoCaloricoDiario();
rutinaleida.CalcularConsumoCalorico();

this.ListaRutinas.Add(rutinaleica);

¥
ArchivoRutinas.Close();

/funa vez tenemos la lista de las rutinas, procedemos a generar el arbol de rutinas gue se mostrara
GenerarArbolRutinas();

Ilustracion 27: Captura del codigo correspondiente a cargar las rutinas del fichero.

La Tlustracién 27 describe como la aplicacion lee linea a linea el fichero de rutinas y guarda
la informacién de cada rutina en la lista de rutinas interna. Como sucedia al leer los
ejercicios cada linea se divide en campos y se rellena la instancia de la clase rutina —linea
189, 191, 192. Cuando encontramos el campo correspondiente a la tabla de ejercicios se
vuelve a dividir dicho campo en dias —linea 194—, cada dfa a su vez se vuelve a dividir
para obtener los ejercicios que componen ese dia —linea 198— y cada ejercicio se divide
para obtener los campos que componen el ejercicio —linea 202— vy rellenamos la
informacién del ejercicio concreto en la instancia de la clase Ejercicio_Implementacion. Este
proceso se repite para todos los ejercicios y dias de la tabla de ejercicios de la rutina que se
esta cargando —lineas 186 a 223. Una vez leida y afiadida la tabla de ejercicios se guardan el
resto de campos de la rutina: Dzuracidn, linea 228; se calcula el consumo calérico —lineas
229 y 230— y se afiade la rutina a la lista de rutinas — linea 232. Una vez finalizado el
proceso se cierra el descriptor de fichero y se genera el arbol de rutinas.

67

Ilustracion 28: Captura de la lista de rutinas una vez el arbol de rutinas ha sido generado.

Esta forma de proceder se repite para todos los médulos, con las variaciones necesarias
segun las peculiaridades especificas de cada fichero.

Como ya se ha comentado al comienzo de este punto el otro momento en que la base de
datos interactia con la aplicacion es a la hora de cerrar un moédulo —habiendo
seleccionado la opcién cerrar de la barra de menus— o al seleccionar la opcion Guardar
cambios si es que el médulo lo permite. Existe una excepcion con el médulo Gerneral. En este
médulo los cambios no se guardan al salir —que serfa al cerrar la aplicacién— sino que
cuando se crea un nuevo usuario —por ejemplo— todos los ficheros y carpetas de la base

de datos que seran necesarios mas adelante se crean en ese momento.

Modulo Calendario/Ejercicios/Dietista

seleccionamos la
opcion Cerrar
Médulo

Guardamos
informacion en la BD

Mdédulo aun en
) ejecucion

Maodulo cargado Médulo Cerrado

Leyenda: . ©

estado inicial estado final

i) Create

Ilustracion 29: Diagrama de estados del proceso de guardar cambios en la BD.

68

511
512
513
514
515
516
517

A continuacion se describe el proceso de volcado de la informacién de las listas internas a
la base de datos del moédulo Calendario. El moédulo Ejercicios 'y Dietista sigue un

funcionamiento analogo.

588 [private void GuardarCambios()

se1 | {

5@2 //fabrimos el archivo con los nombres de los calendarios del usuario

583 System.IO0.Streamriter ArchivoNombresCalendario = new System.IO.Streamdriter(“Base de
504 foreach (String nombre in this.ListaNombreCalendarios)

585 {

586 archivoNombresCalendario.Writeline(nombre);

587 3

588

589 ArchivoNombresCalendaric.Close();

51@

Ilustracion 30: Fragmento 1 de cédigo del método GuardarCambios(). Este método es el encargado de guardar
los cambios llevados a cabo en la base de datos.

Al seleccionar la opcién de guardar los cambios en el médulo Calendario primeramente se
guardan todos los nombres de los calendarios de dicho usuario en un fichero. Unicamente

se guarda el nombre. Esto se describe en el codigo capturado en la Ilustracion 30.

Hecho esto, para cada calendario de la lista se crea un fichero —se sobrescriben los que ya
existieran— y se inserta la informacion linea a linea —Ilustracion 31 e Ilustracion 32.

//Guardamos cada calendario en un archive
foreach(Calendar.NET.Calendar calendario in this.ListaCalendarios)

{

System.I0.5treamdriter ArchivoCalendario = new System.I0.Streamiriter("Base de datos/Mddulo Calendaric/"
ArchivoCalendario.WriteLine("FechaCalendario™);

ArchivoCalendario.Writeline(calendario.CalendarDate. ToString(System.Globalization. CultureInfo. InvariantC
ArchivoCalendario.WriteLine("Tipo;Nombre;Fecha (MM/dd/aaaa HH/mm);Duracidnihoras);Frecuencia;IgnorarComp

Ilustracién 31: Fragmento 2 del cédigo del método GuardarCambios().

En la ilustracién superior: la palabra clave FechaCalendario, linea 515; la fecha propiamente
dicha, linea 516; y la leyenda de la estructura de las lineas evento, linea 517. Entonces cada
evento del calendario se guarda el fichero como una nueva linea de este —Ilustracion 32,
en la pagina siguiente.

69

518
519
528
521
522
523
524
525
526
527
528
529
538
531
532
533
534
535
536

538
539
5448
541
542
543
ca4
545
544
547
548
549
558
551
552
553
554
555
556
557
558
559
5648
561
562
563
564
565

567
568
569
578
571
572
573
574

fareach (IEvent ewvento in calendario.GetListofEvents())
1
int recurrencia = (int)evento.RecurringFrequency;
switch (ewvento.tipo)
1
case 1:
ArchivoCalendario.Writeline(evento.tipo.ToString() + ";" + evento.EventText + ;" + eve
break;
case 2:
ArchivoCalendario.Writeline(evento.tipo. ToString() +
break;
case 3
EventoEjercicio eventoEj = (EventoEjercicio) ewvento.Clone();
ArchivoCalendario.Writeline(evento.tipo.ToString() + ;" + evento.EventText + "|" + eve
break;
case 4:
EventoDieta eventoDieta = (EventoDieta) evento.Clone():
List<Strings eventosDia = new List<strings»();
int i = 1;
foreach (List<IEvent> dia in eventoDieta.ListaEventosComida)

{

+ evento.EventText + ";" + eve

List<5String> eventosInternos = new List<String>();
fareach (IEvent eventoComida in dia)

1
b

String stringEventosInternos = i.ToString() + "#" + String.Join("#", eventosInternos
eventosDia.Add(stringEventosInternas);
it++;

eventosInternos.Add(eventoComida.tipo.ToString() + "}" + eventoComida.EventText

b
String stringEventosDia = String.Join("|", ewentosDia);
ArchivoCalendario.Writeline(eventoDieta. tipo. ToString() + ;" + eventoDieta.EventText +
[/Seguir
break;
case 5:
EventoRutina eventoRutina = (EventoRutina) ewvento.Clone();
List«String» eventosDiaRutina = new List<string>();
int § = 1;
foareach (List¢IEvent: dia in eventoRutina.listaBEventosEjercicia)
{
List<String» eventosInternos = new List<String>();
foreach (EventoEjercicio ewventoEjercicio in dia)
1
string nombreYatrib = eventoEjercicio.EventText 4+ "[" + eventoEjercicio.Series.T
eventosInternos.Add{eventoEjercicio.tipo.ToString() + "}" + nombreYatrib + "}" +
b
String stringEventosInternos = j.ToString() + "#" + String.Join("#", eventosInternos
eventosDiaRutina.Add(stringEventosInternos);
I+
b
String stringEventosDiaRutina = String.Join(
archivoCalendario.Writeline (eventoRutina. tipo.ToString() +
break;

» eventosDiaRutina);
":" + eventoRutina.EventText

b
1

ArchivoCalendario.Close();

Ilustracion 32: Fragmento 3 del codigo del método GuardarCambios().

Segun el tipo de evento que sea, la linea se ensambla de una u otra forma. En el caso de ser
de tipo 4 —Dieta, lineas 533 y en adelante — o 5—Rutina, lineas 552 y en adelante— hay
que recotrer los eventos znternos que forman al evento principal.

Una vez finalizado el proceso se cierra el descriptor de fichero.

4.2.3 Implementacion de la interfaz

La implementacién de la interfaz grafica de la aplicaciéon se ha realizado mediante
tormularios —Windows Forms. Estos formularios implementan cada una de las ventanas,
pestafias y PopUps que forman la aplicaciéon. La herramienta de desarrollo Visual Studio
permite la creacién de proyectos de este tipo y su interaccion es intuitiva.

A la hora de implementar la interfaz grafica se siguié con la filosofia descrita en el punto
3.4 —Disesno de la Interfag, pagina 53— de facilitar en la medida de lo posible la interaccion
entre el usuario y la aplicacion.

Qué es un formulario?

Los formularios son un tipo de representaciéon de una interfaz grafica de usuario. Una form
contiene dentro de si controles y componentes con los que el usuario interactuara una vez
ejecutada la aplicacion. Botones, fextBox, tablas, fimers... son ejemplos de este tipo de
elementos.

Los formularios utilizan un sistema de eventos que se disparan bajo determinadas
circunstancias —cuando el usuario clica en la pantalla, cuando escribe, cuando pasa un
determinado tiempo...— y se encargan de llevar a cabo la funcionalidad que se ha asignado
para cuando dicho evento se active. Un ejemplo de formulario, extraido de la aplicacion, es
el formulario descrito en las ilustraciones siguientes:

[o

o =

Acepta

Tlustracion 33: Formulario ModuloGeneralMensajeConfirmacion

private void BotonAceptar_Click(object sender, Eventirgs e)

1
this.DialogResult = DialogResult.OK;
¥
private void BotonCancelar Click(object sender, Eventirgs e)
1
this.DialogResult = DialogResult.Cancel;
¥

Ilustracion 34: Cédigo que se ejecutara al dispararse los eventos enlazados al click de los botones Aceptary
Cancelar.

Dentro de los formularios, ademas de tratar la interacciéon del usuario con la aplicacion
también se controlan todos los cambios que estas interacciones suponen para la aplicacion.
Cuando un usuario crea un Ejercicio, lo elimina, lo modifica, etc. es dentro de los propios
formularios que se implementa la légica que controla que esto se lleve a cabo
correctamente y que no haya incoherencias de datos.

Implementacidn de interfaz

El proceso de convertir la interfaz de una idea en papel/ a un elemento plenamente funcional
de la aplicacion pasa por un niumero de pasos.

Click derecho en nombre de 5 pestaia pars cerar
| Nombre | Rutina 2 | Nombre: Principal

_ Descripeién: |La rutina principal del usuario Bizancio
Descripcion de la rutina

Duracién: 3 Semanas

[Duracien | |242Semanas il Dl Diad

Salir
C Calérico Total: 345089 Kcal

Ilustracién 35: Formulario Informacion de Rutina, disefio (izquierda) e implementacion final (derecha)

El primer paso es trasladar la apatriencia del disefio al formulario. Esto se consigue
afladiendo los elementos que aparecen en el diseflo como controladores y componentes.
Estos elementos son los botones, tablas, cajas de texto, etiquetas, etc. Finalizado este paso
lo que tenemos es la fachada del formulario, la apariencia final de este.

El siguiente paso es configurar el comportamiento de estos controles y componentes. Hay
que especificar para cada uno de ellos que tipo de reacciéon queremos segun el tipo de
interaccién o estimulo que el usuario les dé. Esto lo conseguiremos mediante los
mencionados eventos. Cada evento esta ligado a un Ewvent Handler, que define qué accién o
acciones se llevaran a cabo cuando se produzca el evento.

Flexiones Simples Flexiones con Mufieca Sentadilla con Barra

. - - Abdominales Simples Knee To-Knee Stretch Respiracion de fuego
Dia 1 Dia 2 Dia 3 Bandal Chagui
Ejercicio 1 Ejercicio 2 Ejercicio 2
Ejercicio 5 Ejercicio 3 Ejercicio 7
Ejercicio 4 Ejercicio 3
Consumo Calérico | | 24234 KCAL |

T — private vold TablaEjercicios CellDoubleClick(object sender, DataGridvViewCellEventArgs e)
Click derecho en nombre de i3 pestadia pas cemar {
if (TablaEjercicios.Rows[e.RowIndex].Cells[e.ColumnIndex].Value != null)
Nombre: Principal {
Modulo_Ejercicios.Ejercicio_Tipo EjercicicAfbrir = this.parentForm.GetlistaEjerciciosBase().Find(i
Descripcion: |La niin 2 principal del usuario Bizancio ' namespace Modulo_Ejercicios 'E')"Ta‘:i:'”Eje"':iCi:'E Ejerciciofbierto;
I
1

Ejercicioffbrir = this.parentForm.GetListaEjerciciosPersonalizada().Find(item => item.Nombre.E
EjercicioAbierto = new ModuloEjerciciosPestafiaInformacionEjercicios(EjercicioAAbrir, this.pare
Doble Click(), h
Duracién: 3 Semanas else EjercicioAbierto = new ModuloEjerciciosPestafiaInformacionEjercicios(EjercicioAdbrir, this.par
EjercicioAbierto.FormClosed += ((s, args) =» this.parentForm.CerrarPestafia());
Dial Dia2 Dw_y E:!erc::Lc:!.cu'-‘«h:!.er'to.h‘indowStatE = F:ul'T'.:.in:I:J'.-.State.r-'.axirnized,'
EjercicioAbierto.Dock = DockStyle.Fill;
Flexiones Simples Flexiones C(il Mufieca Sentadilla coi Barra TabPage PestafiafbrirEjercicio = new TabPage();
Abdominales Simples Knee-To-Knee Stretch Kespiracion de fusgo PestafiadbrirEjercicio.Text = EjercicicfAbrir.Nombre;
Bandal Chagui EjercicioAbierto.Toplevel = false;
Ejercicicdbierto.Parent = PestafiadbrirEjercicio;
this.parentForm.afiadirPestafiaBarraHerramientas(PestafiafbrirEjercicia);
this.parentForm.GetBarraPestafias().5electedTab = PestafiaAbrirEjercicio;
EjercicioAbierto.ControlBox = false;

EjercicioAbierto.Show();

b

private woid TablaEjercicios_CellMouseEnter(object sender, DataGridviewCellEventArgs e)
1

if ((e.ColumnIndex »>= @) && (e.RowIndex >= 8))

{

if (TablaEjercicios[e.ColumnIndex, e.RowIndex].Value != null)

{

}
h
|

Ilustracién 36: Implementacion del formulario InformacionRutina (izquierda) y los métodos que se encargan de los eventos que se activan al hacer doble click en una celda y pasar por encima de la tabla
de ejercicios.

Modulo_Ejercicios.Ejercicio_Implementacion ejercicio = this.rutina.listaEjercicios[e.Co

string info = "Ejercicie:\t\t" + ejercicio.Nombre + "\nSeries:\t\t" + ejercicio.Series.
TablaEjercicios.Rows[e.RowIndex].Cells[e.ColumnIndex].ToolTipText = info;

Consumo Calérico Total: 345.089 Kecal

En la Tlustracién 36 se puede observar este segundo paso que hemos descrito en el parrafo anterior a ésta. A la izquierda tenemos el formulario y a la
derecha el codigo que se ejecuta al dispararse el evento Ce//DoubleClick del formulario —hacer doble click sobre una celda de la tabla de ejercicios— y

el cédigo que se ejecuta al dispararse el evento Ce//MouseEnter —al entrar el cursor dentro de una celda de la tabla de ejercicios.

El tercer y dltimo paso de este proceso de pasar del disefio a la implementacién es el de
comprobar el correcto funcionamiento de la implementacion que se acaba de llevar a cabo.
LLa manera de probar el funcionamiento no es otra que ejecutar la aplicaciéon y seguir los
pasos que el usuario seguirfa para hacer uso de la funcionalidad que el formulario
implementa. En el caso del formulario que estamos usando como ejemplo ejecutariamos la
aplicacion, cargarfamos el médulo Ejervicios y abrirfamos una rutina. Una vez hecho esto
probarfamos que efectivamente el funcionamiento deseado y el funcionamiento real sean el

mismo.

Este proceso descrito se repite para todos y cada uno de los formularios que forman la
aplicacion.

Pruebas e incidencias durante la implementacion

Como ya se ha explicado en el tltimo parrafo del apartado anterior las pruebas de la fase de
implementacién consistian en comprobar el correcto funcionamiento de cada una de las
funcionalidades implementadas. En el anexo 7.5 —Incidencias durante la implementacion,
pagina 131— se encuentran documentadas las incidencias surgidas durante la fase de
implementacion.

4.3 Instaladory ejecutable

Para crear el instalador de la aplicacién hemos de crear un nuevo proyecto en nuestra
solucion de Visual Studio del tipo Instalacion e Implementacion, concretamente un proyecto

InstallS hield.

‘R PROYECTO COMPILAR DEPURAR EQUIPO SQL HERRAMIEMTAS PRUEBA ARQUITECTURA ANALIZAR WVENTANA AYUDA

d ¥ - - p Iniciar - Debug - A _ = | | -
- —
N yecto
Muduluq —r s @ B e oot i Sm— $
#zEntren| | © Reciente \MET Framework 4.5 ~ Ordenar por: Predeterminado > Buscar en la Plantillas instalado (Ctrl+E] 0 ~ ~ }
168
4 Instalado Z S PR < iciones (C
101 PR instaliShield Limited Edition Project Instalacion e implementac U SR 2 TSR i
ig; 4 Plantillas Create a new InstallShield Limited Edition iz]
b Visual G C:J Habilitar InstalShield Limited Edition Instalacién e implementac project.
1o4 jentes
165 LightSwitch
. entes Te
106 I Otros lenguajes
167 4 Otros tipos de proyectos
log Extensibilidad
1e9) ca 2
110 4 Instalacién e implementacién
111 b 3082
112 Soluciones de Yisual Studio
113 Proyectos de modelado
114 Ejemplos
115
118 (4 4
1171 | ¥ Enlinea '8 Propied:
118
119
128 . 1
121
122 \JAny CPU
123 MNombre: Setup_Ejemplo| |
124 o \ \ \ \) -)
125 Ubicacion: chusers\juliantdocuments\visual studio 2012\Projects i Byutianic
Solucién: Crear nueva solucién =
Mombre de la solucion: Setup_Ejemplo Crear directorio para la solucién
[] Agregar al control de cadigo fuente
| Bician,

100% - ' l

‘adne ds la hiicneda de cimhnlne Reciltadnc de métricas del cadinn

Ilustracion 37: Captura de la ventana de creacion de un nuevo proyecto de tipo InstallShield.

Una vez el proyecto esta creado hay que seguir los pasos que el asistente nos indica para ir
configurando los diferentes aspectos del instalador. El primer paso consiste en rellenar la
informacién correspondiente al nombre de la compafiia, nombre y version de la aplicacion,
web de la compania y el icono de la aplicacién —Ilustracién 38, pagina 76.

— - - = I T ea— — e e

L9l Project Assistant (Setup_Ejemplo) + * Expl

= Application Information
Spedify general application information.

The Application Information page assists you in requesting general information about your application. This
information is used from within the installation as well as from the Add or Remove Programs in the
Windows Control Panel. &

Spedify your company name:

Busc

Pl
Bizancio
Specify your application name:
[E5) Edit the default installation location.
Aplicacion PFC
omerpices e e
1.00.0000
General Information _
& Update Notifications Specify your company Web address:
www.webejemplo.com
:' : Select the icon to display with your application in Add or Remove Programs. Pro
: Tell me more about automatic update s P
! notification. : C:\Users!Julian\Downloads \BlackMesa-Setup.exe
: Learn more about Add/Remove :
! Programs. i
E i@ Learn about how the company name E
b and product name are used by the i
1 installation. 1
i| g Tell me more about the installation life
: cyde. :

(A<

Application Installation \ i Application
Information equirements Architecture i Shortouts

:sultados de la basqueda de simbolos Resultados de métricas del cadigo

Ilustracion 38: Asistente de creacion del proyecto instalador, paso 1.

El siguiente paso del asistente consiste en elegir los requisitos de software adicional de la
aplicacion —Ilustracion 39, pagina 76—, si es necesario un sistema operativo en concreto y
si es necesario algin otro software. En nuestro caso es necesario tener .NET 4.5 instalado.

- @l e - - | P Asociar.. -~ CD_RON - | 4 = % ‘u ﬁj El @ Options... @ -

< ct Assistant (Setup_Ejernplo) + - Em

= 3 Installation Requirements
Spedfy the softw and operating
ur installation.

Does your application require any spedfic operating systems?
©) Yes Mo

Windows Server 2012 Windows Server 2008 Windows 2000
Windows 8 Windows Vista

Windows Server 2008 R2 Windows Server 2003

Windows 7 Windows XP

m
-1 I

B Does your application require any software to be installed on the machine?
,) Requirements

Required Software Run-time Message
Adobe Reader 10.0

Adobe Reader 9

Microsoft .NET Framework 3.5 Pro
Microsoft .NET Framework 3.5 5P1

Microsoft .MET Framework 4.0 Client package

Microsoft .MET Frameweork 4.0 Full package

Microsoft .MET Framework 4.5 Full package Microsoft .MET Framework 4.5 Full package or area
Internet Explorer .0

Internet Explorer 9.0

Microsoft Office 2003

Mirrnenft CFfice 007

How can I create custom
reguirements?

i) When does the installation check for
requirements?

Al000orROOOOOo

Installation
Requirements

sultados de la busoueda de simbolos Resultados de métricas del cédiao

Ilustracion 39: Asistente de creacion del proyecto instalador, paso 2.

El siguiente paso no esta disponible en la edicion limitada de InstallShield. Este paso es el de
personalizar la arquitectura de la instalacion, especificando si se da opcién al usuario de
elegir qué componentes instalar o no, etc.

Saltamos entonces al siguiente paso, seleccionar los archivos necesarios para el
funcionamiento de la aplicacion, en nuestro caso las carpetas y ficheros que forman la base

de datos.
P-oa b - O - P Asociar. - CDRONV - A _ [% B 5@ @ options.. @ -
LAl Project Assistant (Setup_Ejemplo) + X -
)~ Application Files

Add your application files to the

installation Use this page to add your application files to the installation. The directories in the destination tree represent how your applic
5 on.

look when it is installed on to your customer's machine.

9 Al Application Data -

3 (£ Launch Windows Explorer. Etination Computer
[AppDataFalder]
[CommonFilesFolder]
[ProgramFilesFolder]

Mame Size Link Te Mod

[]) Files and Folders {0 Bizancio
Feature Files E‘@ Aplicacion PFC [INSTALLDIR]
{C3) Base de datos

@) How do I add files to a fixed folder
location?

How can I add more “variable™ folders
to the defaults already being displayed
to me?

Add Project l : l l
Outputs Add Files Add Folders

4
—
Installation Application Application
Information Requirements Architecture Files Shortouts

lesultados de la bisqueda de simbolos Resultados de métricas del cédigo

Ilustracion 40: Asistente de configuracion del instalador, paso 4

El quinto paso de la configuraciéon del instalador consiste en seleccionar los accesos
directos en el mend de inicio de programas de Windows. En nuestro caso no
seleccionamos ninguno.

Tampoco seleccionaremos ningtn archivo para afadir al registro de Windows, sexto paso
de la configuracion.

El dltimo paso de la configuracion del instalador es seleccionar si queremos que aparezca
un mensaje de acuerdo de licencia, si queremos que el usuario tenga que introducir su
nombre y compafifa a la que pertenece, si permitimos al usuario cambiar dénde se instalara
la aplicacién y st damos la opcién de ejecutar la aplicacion directamente tras la instalacion.

m
'S
g

Una vez hemos completado el ultimo paso del asistente ya podemos generar el proyecto. El
instalador se encuentra ahora en la carpeta correspondiente al proyecto InstallShield que
hemos creado:

Lk ENTIFEN@MIENTOS INTENCENTES F INSTAlIA00r * INSTdlc

Mormbre . Fech
- icluir en biblioteca + Compartir con = Muewva ¢
. Base de datos 05,0 .
.. Diagrama de Clases 05/00 * MNombre
.. Entrenamientos Inteligentes 05/00 | program files
. Entrenamientos Inteligentes Test 4 0x0409
b Instaladar ﬁ! Entrenamientos Inteligentes
. ModelingProjectl setup
| ModelingProjectlLib 05,0 = £ Setup
L Setupl 28/
. TestResults o5/
fa¥ Entrenamientos Inteligentes 28/
{51 Entrenamientos Inteligentesv1 050 A

Ilustracion 41: Captura de la carpeta donde se encuentra el proyecto del instalador (izquierda) y de los
instalador y archivos necesarios para la instalacion de la aplicacion (derecha).

Si ejecutamos el archivo sefup.exe se inicia el proceso de instalacion de la aplicacion.
Seguimos los pasos de la instalacién y una vez terminada encontraremos el ejecutable de la
instalacion en la carpeta que hayamos especificado.

. Equipo » Discolocal (C) » Archivos de programa (x86) » Bizancic » Entrenamientos Inteligentes » v | 5 | F

- Incluir en biblioteca = Compartir con = Mueva carpeta

tos |Q MNombre Fecha de modifica.. Tipo Tamafio

argas .. Base de datos 06,/09/2013 15:41 Carpeta de archivos

tbox l@ Entrenamientos Inteligentes 05/09/2013 21:55 Aplicacién 442 KBI

torio 41 Entrenamientos Inteligentes.exe [113 17:56 XML Configuratio.., 1KB

Irive %] Microsoft.CSharp.dll 112 0:40 Extension de la apl... 48 KB

s recientes %] ModelingProjectlLib.dll 05/09/2013 21:55 Extensidn de la apl... 18 KB
%) System.Dynamic.dil 09/07/2012 0:40 Extension de la apl... 122 KB

ecas

Imentos =

Jenes

Ilustracion 42: Captura de la carpeta donde se ha instalado la aplicacion

5. Conclusionesy vias de continuacion

Todo el proceso descrito en la memoria culmina con el ejecutable de la aplicacién

plenamente funcional.

Durante el proceso de desarrollo —desde la idea inicial hasta su estado final— el proyecto
ha ido evolucionando y adaptindose a las necesidades y circunstancias que iban surgiendo.
En consecuencia, el resultado final difiere en algunos aspectos de lo inicialmente planeado.
El proyecto —que se pensé como un proyecto centrado mayoritariamente en la creacién
de una aplicaciéon que aprovechara los beneficios ofrecidos por los algoritmos de
inteligencia artificial y las redes neuronales— acabd convirtiéndose en un proyecto
centrado en el ambito de la Ingenieria del Software, concretamente en el desarrollo
completo de una aplicacion desde cero. Este cambio de rumbo, sin embargo, no afecta a la
idea principal y mas importante del proyecto: unir formacién e interés personal en un

proyecto cuyo resultado cubriera una necesidad real.

Al final de este proyecto lo que obtenemos —ademas de multitud de nuevos
conocimientos producto del trabajo llevado a cabo— es una aplicacion que puede ser usada
para administrar programas de entrenamiento —en los que se incluye el apartado
alimenticio— y que permite el seguimiento de estos mediante un sistema de calendarios y

eventos que el usuario puede personalizar.

Vias de continuacion

Como en cualquier proyecto existen siempre vias de continuacién que amplien el abanico
de funcionalidades y opciones ofrecidas, asi como revisiones que ayuden a mejorar el
funcionamiento del mismo. Estas son algunas de estas vias posibles:

e Implementar una base de datos SQL: En el apartado de disefio ya se discutio
acerca del uso de una base de datos SQL o no y, aunque se decidié optar por otro
tipo de solucién, una via de continuacién serfa implementar la base de datos en
formato SQL. Esto facilitarfa la ampliacién de la aplicaciéon a otras plataformas —
web, Android...

e Mbobdulo Inteligente: Este médulo quedd excluido por causas relacionadas con la
planificaciéon temporal y serfa una de las principales vias de continuacién del
proyecto.

e Version WEB/Movil: Teniendo en cuenta que hoy en dia la conexién a internet
es algo tan comin como tener un ordenador, una versiéon web/moévil de la
aplicacion incrementaria el valor de esta y permitiria acceder a ella desde cualquier
ordenador.

80

6. Bibliografia

1.

Walkthrongh: Creating and Running Unit Tests for Managed Code
a. Direccion: http://msdn.microsoft.com/en-us/library/ms182532.aspx

b. Descripcion: Cémo crear y utilizar Uit Tests para un proyecto en C#.

Calendar NE'T
a. Direccion: http://www.codeproject.com/Articles/378900/Calendar-NET
b. Descripcion: Control utilizado como base para crear el control Calendario,

el controlador principal del médulo calendario.

Calories Burned During Exercise, Activities, Sports and Work
a. Direccion: http://www.nutristrategy.com/caloriesburned.htm

b. Descripcion: Tabla de actividades con el consumo calérico aproximado
segun el peso del deportista.

Timetable Tutorial
a. Direccion: http://code.daypilot.org/65101/timetable-tutorial-asp-net-c-

vb-net

b. Descripcion: Tutorial para crear una tabla horaria en Ajax.

Printing the form

a. Direccion: http://msdn.microsoft.com/en-us/library/aa287529

(v=vs.71).aspx

b. Descripcion: Ejemplo de coémo imprimir un formulario.

Tabla de Calorias de los alimentos
a. Direccion: http://www.vitalimentos.es/cuantas-calotias/

b. Descripcion: Tabla de calorias de cada alimento agrupados por tipo.

Estiramientos Piernas
a. Direccion: http://www.estiramientos.es/index.phprfilt=piernas

&size=gran
b. Descripcion: Ejemplos de diferentes estiramientos para el tren inferior.

TabControl: How to capture Mouse RightClick on Tab
a. Direccion: http://social. msdn.microsoft.com/Forums/windows/en-
US/e09d081d-a7£5-479d-bd29-44b6d163ebc8/ tabcontrol-how-to-capture-
mouse-rightclick-on-tab
b. Descripcion: Hilo del foro del MSDN de Microsoft donde se comenta
coémo detectar que el botén derecho del ratén ha sido pulsado.

How can 1 make my own event in CH?

a. Direccion: http://stackoverflow.com/questions/623451 /how-can-i-make-

my-own-event-in-c

81

http://msdn.microsoft.com/en-us/library/ms182532.aspx
http://www.codeproject.com/Articles/378900/Calendar-NET
http://www.nutristrategy.com/caloriesburned.htm
http://code.daypilot.org/65101/timetable-tutorial-asp-net-c-vb-net
http://code.daypilot.org/65101/timetable-tutorial-asp-net-c-vb-net
http://msdn.microsoft.com/en-us/library/aa287529(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa287529(v=vs.71).aspx
http://www.vitalimentos.es/cuantas-calorias/
http://www.estiramientos.es/index.php?filt=piernas&size=gran
http://www.estiramientos.es/index.php?filt=piernas&size=gran
http://social.msdn.microsoft.com/Forums/windows/en-US/e09d081d-a7f5-479d-bd29-44b6d163ebc8/tabcontrol-how-to-capture-mouse-rightclick-on-tab
http://social.msdn.microsoft.com/Forums/windows/en-US/e09d081d-a7f5-479d-bd29-44b6d163ebc8/tabcontrol-how-to-capture-mouse-rightclick-on-tab
http://social.msdn.microsoft.com/Forums/windows/en-US/e09d081d-a7f5-479d-bd29-44b6d163ebc8/tabcontrol-how-to-capture-mouse-rightclick-on-tab
http://stackoverflow.com/questions/623451/how-can-i-make-my-own-event-in-c
http://stackoverflow.com/questions/623451/how-can-i-make-my-own-event-in-c

10.

11.

12.

13.

14.

15.

16.

17.

b. Descripcion: Pagina de la web www.stackoverflow.com en que se comenta
la creacién de un evento personalizado.

DateTime Structure
a. Direccion: http://msdn.microsoft.com/en-us/library/system.datetime.
QSQX
b. Descripcion: Propiedades de la estructura DateTime.
mongoDB
a. Direccion: http://www.mongodb.org/
b. Descripcion: Pagina principal de las base de datos orientadas a
documentos.
How to clone a control?

a. Direccion: http://social. msdn.microsoft.com/Forums/vstudio/
en-US/cf04£12e-eb88-4814-b413-b7c£72010231 /how-to-clone-a-control

b. Descripciéon: Hilo del foro del MSDN de Microsoft donde se comenta

c6émo clonar un control —propiedades, event handlers, etc.

It is possible to copy all the properties of a certain control? (CH# window forms)
a. Direccion: http://stackoverflow.com/questions/3473597 /it-is-possible-

to-copy-all-the-properties-of-a-certain-control-c-window-forms
b. Descripcion: Pagina de la web www.stackoverflow.com donde se comenta

si es posible copiar todas las propiedades de un control determinado.

How to Clone/ Serialize/ Copy & Paste a Windows Forms Control
a. Direccion: http://www.codeproject.com/Articles/12976/How-to-Clone-

Serialize-Copy-Paste-a-Windows-Forms

b. Descripcion: Enfoque de cémo clonar un Control con todas sus

propiedades y event handlers.

Control.Inlalidate vs. Control. Refresh()?
a. Direccion: http://bytes.com/topic/c-sharp/answers/244445-control-

invalidate-vs-control-refresh

b. Descripcion: Pagina de la web www.bytes.comr donde se comenta la diferencia
entre los métodos Il alidate y Refresh().

Enumerate and copy properties from one object to another object of same tjpe.
a. Direccion: http://stackoverflow.com/questions/4546381/enumerate-and-

copy-properties-from-one-object-to-another-object-of-same-type

b. Descripcion: Pagina de la web S7ackOverflow en que se comenta como
copiar las propiedades de un objecto a otro del mismo tipo.
How to instantly change label text during a method at runtime?
a. Direccion: http://stackoverflow.com/questions/15265520/how-

to-instantly-change-label-text-during-a-method-at-runtime

82

http://www.stackoverflow.com/
http://msdn.microsoft.com/en-us/library/system.datetime.aspx
http://msdn.microsoft.com/en-us/library/system.datetime.aspx
http://www.mongodb.org/
http://social.msdn.microsoft.com/Forums/vstudio/en-US/cf04f12e-eb88-4814-b413-b7cf72010231/how-to-clone-a-control
http://social.msdn.microsoft.com/Forums/vstudio/en-US/cf04f12e-eb88-4814-b413-b7cf72010231/how-to-clone-a-control
http://stackoverflow.com/questions/3473597/it-is-possible-to-copy-all-the-properties-of-a-certain-control-c-window-forms
http://stackoverflow.com/questions/3473597/it-is-possible-to-copy-all-the-properties-of-a-certain-control-c-window-forms
http://www.stackoverflow.com/
http://www.codeproject.com/Articles/12976/How-to-Clone-Serialize-Copy-Paste-a-Windows-Forms
http://www.codeproject.com/Articles/12976/How-to-Clone-Serialize-Copy-Paste-a-Windows-Forms
http://bytes.com/topic/c-sharp/answers/244445-control-invalidate-vs-control-refresh
http://bytes.com/topic/c-sharp/answers/244445-control-invalidate-vs-control-refresh
http://www.bytes.com/
http://stackoverflow.com/questions/4546381/enumerate-and-copy-properties-from-one-object-to-another-object-of-same-type
http://stackoverflow.com/questions/4546381/enumerate-and-copy-properties-from-one-object-to-another-object-of-same-type
http://stackoverflow.com/questions/15265520/how-to-instantly-change-label-text-during-a-method-at-runtime
http://stackoverflow.com/questions/15265520/how-to-instantly-change-label-text-during-a-method-at-runtime

b. Descripcion: Pagina de la web StackOverflow en que se comenta como

modificar el texto de una etiqueta durante la ejecucion de un programa.

18. Document-oriented database
a. Direccion: http://en.wikipedia.org/wiki/Document-oriented database

b. Descripcion: Articulo de la Wikipedia sobre las bases de datos orientadas a

documentos.

19. What are the advantages and disadvantages of SQL.2
a. Direccion: http://wiki.answers.com/Q)/What are the advantages and
disadvantages of SQI.#page3
b. Descripcion: Ventajas y desventajas de las bases de datos SQL.

83

http://en.wikipedia.org/wiki/Document-oriented_database
http://wiki.answers.com/Q/What_are_the_advantages_and_disadvantages_of_SQL#page3
http://wiki.answers.com/Q/What_are_the_advantages_and_disadvantages_of_SQL#page3

84

7. Anexos

7.1 Diagramas de Gantt

Informe previo:

04, 2012 |Q1, 2013 |Q2, 2013
‘Name tol:ler|Novernl:|er |Decemtler |Jar|uary |FEI:|ruary |March |A|:|ri| |May |JIJI'IE
0 ¥ Projecte
1 ¥ Documentacié
2 ¥ Recerca
3 Recerca Esportiva
4 Recerca Médul Intel-ligent
5 Informe previ
[Usuaris | interessats
T Programacio modular
B Memdria
a Captacio mostres empirigues
10 T Disseny de l'aplicacio
il Caracteristigues funcionals
12 Maduls
13 Diagrama Entitat-Relacié
14 Diagrama de classes
15 ¥ Implementacit
16 Eleccié Llenguatge de programacia
17 Programacié de l'aplicacié
18 Proves i cormreccions
19 Presentacio -

Ilustracion 43: Como se puede observar practicamente todas las tareas del proyecto se desarrollan en paralelo entre ellas (respetando la duracién y restricciones de precedencia, etc.

Volver a la referencia

85

Diagrama de Gantt final, fase 1:

Q4, 2012 a1,2013
|Name :er| MNovember | Cecember |Jar1|_4.:1ry,.r
S —

0 ¥ Proyecto

1 Informe Previo

2 Usuarios e interesados

Ilustracion 44: En este fragmento del diagrama de Gantt se muestran los primeros meses de desarrollo del proyecto.

Volver a la referencia

Diagrama de Gantt final, fase 2:

||_'.‘|2, 2013 ’ |IZ.'-3, 3 E
F |Harne February |March | April |Ma~,r |_Iune |_Iub,r August

¥ Disefio de la aplicacidn
¥ Andlisis de requarimientos
Modulo General
Médulo Calendario
Modulo Ejercicios
Modulo Dietista

=N - R B R = B S)

¥ Disefio de la estructura y entidades
10 Disefio de clases

kil Diagrama de Clases
12 Diagramas de secuencia

13 ¥ IDiseiio de 1a aplicacion

" Modulo General
15 Madulo Calendaria

||..I' |

18 Modulo Ejercicios

A Modulo Dietista

18 7 Implementacion dela aplicacién s -]
1= Module General -
20 Modulo Ejercicios

Fal Modulo Dietista -

] Modulo Cakendario -

23 Memoria
24 Presentacidn -

Ilustracion 45: Este fragmento del diagrama muestra el desarrollo del proyecto de Febrero a Agosto de 2013.

Volver a la referencia

87

7.2 Diagrama Entidad/relacion

Dieta Comida —é Alimento

funciona como

\ @—H Calendario

>

Lsuario Evento ot contiene

[=4]
e
x4}
(=1
[4¢]

funciona coma

Lo

funciona comao

Rutina — Ejercicio >_’—< Categoria

Ilustracion 46: Diagrama Entidad/Relacion de la aplicacion

Volver a la Referencia

7.3 Diagramas de secuencia

7.3.1 Modulo General
Crear Usuario

| Usuario | Modulo General Ventana Nuevo | :BD Usuarios
H Ventana Principal Usuario
: ' — T
— ! i
1
Crear Nuevo Usuario !
i
New Form() >
EHE <4— Cargar Usuarios Existentes—|::|
1 ——
:]
rA H
1
1
—
Introducir Datos
— ‘;) Verificar Datos
;
Ll
3 |
1
e
Guardar Nuevo Usuario—ﬂ
Mensaje:-Okay
a o
Ilustracién 47: Diagrama de Secuencia de la creacién de un nuevo usuario. Moébdulo General

Loguear y desconectar Usuario

=0

Modulo General
v Principal

e s

Error: Usuario/Contrasefia

Ilustraciéon 48: Diagrama de secuencia de conectarse y desconectarse como Usuario

—— Introducir Usuario y Contraseﬁa—J—

Desconectar Usuario

T
|
|
|

@

Modulo General
v Princi
Usuario Logueado

4— Cargar Usuarios Existentes

D Comprobar Datos

Correcto: New Form()—>|:|

Ok: New Form()

Volver a la Referencia

Ver informacién de Usuario

| Usuario | Médulo General Ventana “BD Usuarios
H Ventana Principal i !
1 . ||||ﬂ| macion ﬂg 1
5 i i !
I
Wer Informacion de usuario ! i
: !
|
MNew Form() |
|
|
HE i Cargar Usuarios Emstentes—D
1
1
a = = .
1 | : |
; i ! !

Ilustracion 49: Diagrama de secuencia de visualizar la informacion personal de un Usuario

Volver a la Referencia

Cargar Médulo

Cargar Madulo

MNew Farm()

Seleccionar Mddulo

Mew Form()

Cargar Informacian

|
]
E

Ilustraciéon 50: Diagrama de secuencia correspondiente a cargar un médulo seleccionado por el usuario

Volver a la referencia

Cerrar Aplicaciéon

Cerrar Aplicacion

Ilustracion 51: Diagrama de secuencia cotrespondiente a cerrar la aplicacion

Volver a la referencia

7.3.2 Médulo Ejercicios

Crear Ejercicio

_—

Crear Ejercicio

Rellenar Informacion nuevo ejercicio

Mew Form() =

»

|

— [ew Ejercicio_Tipo()

) Comprobar si e}{istqI
1
1
1

Ok: Afadir a la Bade de datos

Ilustracion 52: Diagrama de secuencia correspondiente a crear un nuevo ejercicio

Volver a la referencia

Abrir Ejercicio

| Usuario | Médulo Ejercicios Médulo Ejercicios.
! Ventana Principal Pestana
| : Informacion.
| ! Elercicio
Seleccionar Ejeru::it:in—ll_ i
i MNew Formi)
i —

Ilustracién 53: Diagrama de secuencia correspondiente a Abrir un ejercicio sin posibilidad de edicién

Volver a la referencia

Modificar Ejercicio

Mddulo Ejercicios Modulo Ejercicios
”3“.’1”9 | Ventana Principal Pestaria Editar I
: : Eiercic
Selen:u::innarEjern:icin—ll_ i
i Mew Form() ———s I MQQ—LH |

Muodificar Informacion del ejercicio New Ejercicio_Tipo()

) Comprobaciones dé Coherencia
1
1

Ok: Substituir en B.0D

Ilustracién 54: Diagrama de Secuencia correspondiente a modificar las opciones de un ejercicio existente

Volver a la referencia

Eliminar Ejercicio

Usuario - — | -BD Ejercicios |
— Modulo Ejercicios,

— Seleccionar Ejercicio

Pedir confirmacion —————

Confirmar borradao
Barrar de la BD —m

Ilustracion 55: Diagrama de secuencia correspondiente a eliminar un ejercicio de la base de datos de ejercicios

Volver a la referencia

Afiadir ejercicio a rutina

y Princi PonUp Afadi

(2]
B
o L
O
o
o
]
w
g
m
o
I
2
e}
o

Mew Form()=—=

I::'—Rellenarcampos Ejeru:iu:io: :
i Comprobaciones de Coherenci
I

BE. oK

E

- e]

1
e new Ejercicio_Implementacion(}
T i
! !
|
]

Mew Form()

]

: Seleccionar Rutina
]

0K

Mew Form()

Seleccionar Posicidn en Rutina

{

oK

Guardar cambios en Base de Datos

L

Ilustracién 56: Diagrama de secuencia de las interacciones para afiadir una ejecucion de un ejercicio existente a una rutina Volver a la referencia

100

Crear Rutina

T Modulo Ejercicios. Lédulo Ejercicios Mddulo Ejercicios Madulo Ejercicios. | :BDRutinas |
: P e C—r o
: Eﬂlﬂ-ﬂﬂ-mml Pestafa Crear PopUp Anadir Mﬁ .
! i H Implementacién Posicidn
1 | H |
D—Seleccmnarﬁutlna i | | ™
i I : Ejercicio_lmplementacion

1 _L :
i a

I

|

1

1

1
Mew Form()— — Mew Rutina[]'D

1

1

D—Rellenarﬂﬂndiﬂcar campos Rutina

BUCLE f—————————new Ejeru:ic:in_lmplementac:inn[]—b-|
i i
1 I
]

Rellenar campos Ejercicio

1 I
Mew Form() i
I

1
1
1
1
1
1
1
1
1
:

T
! [OK
1
i Mew Form()

- . . e .
: Seleccionar Posicidn en Rutina

]]
! oK
1
1
1
H e
i :
. i -

D Confirmar operacién——
0 1 Guardar rutina en Base de Datos

I:ll—get Focus()

.-__.r:l_-_-__-_-__-_-__-_-__-_-__-_--_-__-_-__-_-__-_-__-_-__-_-__-_-

Ilustracion 57: Diagrama de secuencia correspondiente a las interacciones entre elementos al crear una rutina nueva Volver a la referencia

101

Replicar Rutina

| Usuario | Médulo Ejercicios | :BD_Rutinas

Rutina

e

Seleccionar Rutina

Mew Fnrm[}—l-_'_

— [ew Rutinal)

Mombrar nueva rutina —ms

D Comprobaciones de coherencia

Confirmar operacian
e G la@rdar replica

Ilustraciéon 58: Diagrama de secuencia correspondiente a replicar una rutina existente

Volver a la referencia

102

Guardar Rutina como Imagen

Mew Farmi)
— M ew Bitmap()

[:—GuardarﬁapturEADD
1

Ilustracion 59: Diagrama de secuencia correspondiente a guardar una rutina como imagen

Volver a la referencia

103

Cerrar Médulo

eRe!

Eﬂ]ﬂ.ﬂﬂ.Eﬂ.ﬂﬂLﬂﬂ.L

Cerrar Mddulo !

Guardar cambios realizados

+—0Get Fm:us[]-;{j

--------.‘:’.--------

Ilustracion 60: Diagrama de secuencia de cerrar el médulo abierto

Volver a la referencia

104

7.3.3 Modulo Dietista
Crear Alimento

-------.|:|.--------

T

Crearﬁlmean

Rellenar informacidn

Mew Furm[}glL

Ok Afiadir ala BD

Ilustraciéon 61: Diagrama de secuencia correspondiente a crear un nuevo alimento

Volver a la Referencia

105

Modificar Alimento

TRealimrmndiﬂcacinnes

Hew Fn:Jrrﬂ[]|4IL

— (O} Substituir en la

Ilustracién 62: Diagrama de secuencia correspondiente a modificar un alimento existente

Volver a la Referencia

106

Mew Alimentn[}—ﬂ

1
1

)] Comprobaciones de doherencia
1

RSP u 5 [

Eliminar Alimento

—— Selecionar Alimento———
#—— P edir Confirmacidn

Canfirmar

OK: Eliminar de la EID—IE:I

Ilustracién 63: Diagrama de secuencia correspondiente a eliminar un alimento existente

Volver a la Referencia

107

Afiadir alimento a comida

: BD _Alimento

Usuaric | |H2ﬂﬂ°-ﬂiﬂﬁlﬂ-| lodulo Diefisia Bop.

7
@
=1
=
:
3
]
o
=
2
(=1

%r

Mew Formi)

Seleccionar alimenta
1

Confirmar

DK

i

Mew Farmi)

Seleccionar comida

Comprobaciones de cohérencia

Confirmar)
—— G uardar cambios en EID-D|:|

Ilustracion 64: Diagrama de secuencia correspondiente a afiadir un alimento a una comida existente

- .-------.---L:.

---.l___I---.D.--------

Volver a la Referencia

108

Crear/Modificar Dieta

==

V Princi

Seleccionar Crear/Editar Dieta

[T

MNew Form{()=—=s

2 e

Modulo Dietista
Pestana Crear Cieta

Comida

Rellenar/Maodificar campos Dieta
I

—

EUCLE

L
|
=
[1¢]
=
o
=
B

Mew Formi)

Rellenar campos Comida

M oK

i

i

i

new Ccnrniu:lall:]—b-D i
i |

i

i

i

Mew Farm()

Seleccionar Posicidn en Dieta

OK

Confirmar operacidn

I-'_—Il—get Focus()

Ilustracién 65: Diagrama de secuencia correspondiente a crear una dieta

Guardar rutina en Base de Datos

Volver a la Referencia

109

Afiadir comida a dieta

1
1
1
Seleccionar comida
1
Confirmar

_1:]7 Mew FUrm(}—EI

]

Ok

1Seleccionar Dieta

Confirmar:

Dieta
1
i
Mew Form[}—{
L

Mew Form()

Seleccionar posicion en dieta

Confirmar

Volver a la Referencia

Ilustracién 66: Diagrama de secuencia correspondiente a afiadir una comdia a una dieta existente

110

Guardar cambios en EIDEl

7.3.4 Modulo Calendario
Crear Calendario

Crear[}alendarm;t:jimew Form() !

it

Introducir Nnmb_re y Fecha
1

Confirmar

g

oK

: Calendar.MNet
Calendar

i
)
i
} Comprobarexistencia
i
I
)
)

Mew Calendar()

- t]

Guardar en BD

Ilustracion 67: Diagrama de secuencia correspondiente a la creacion de un nuevo calendario

Volver a la Referencia

111

[V}---mmmmmmmmmmmm e e

Afiadir evento Normal

| Usuario |

Seleccionar Afiadir Evento

O

PopUp Seleccionar, EventDetails
Tioo E e

]

t:j—New Farmi)

Evento Nnrmal_

— W CustnmEuent(}—E
— N e EuentDetails(}-.—{:I
1

Maostrar Form EventDetails()

0

1
Rellenar Evento

Confirmar

Volver a la Referencia

Seleccionar Calendario

1

1

1

1

1 :
1 I
1 I
' :
QK :

1

MNew Formi)

1 i
1 1
1 I
! !

QOkK: Mombre Calendario
I
LGet Calendario
I
) Afiadir evento al calendario i

Guardar Cambios en BD

Ilustracion 68: Diagrama de secuencia correspondiente a afiadir un evento del tipo normal

112

Anadir evento comida

e

1
1
:
Seleccionar Ariadir Evento !

f:]— Mew Farmi()

Evento comida

R

.
R
.

Mew Form() . CustomEvent

Seleccionar Comida

[

iCalendar.Net
EventDetails

Confirmar:

— Mew CustomEvent(}—{t]

Mew EventDetails()

..m.---------

Mastrar Form EventDetails()

I
R ellenar Evento i
E Confirmar
r QK
1
Mew Form
=|]
1 Seleccionar Calendario
1
1
s OK: Nombre Calendario

| :BD Calendarios |

Get Calendario

) Afiadir evento al calendario

Guardar Cambios en BD

Ilustracién 69: Diagrama de secuencia correspondiente a afiadir un evento de tipo comida a un calendario existente

Volver a la Referencia

113

Anadir evento ejercicio

U - Modulo C ndari - - - — C ar.Net
i | Tipo Evento Elercicio i
1 1] Implementacion 1
| Seleccionar Afiadir Evento i ! H .

1 1 1
1 1 1
f::'— Mew Form() H H
i i : i
i ! 1 !
Evento Ejercicio i i
L] i MNew Farm(}) : EventoEjercicio H
1 1 1
[1 1 I 1
'— : Seleccionar Ejeru:iu:io: i : Calendar,Net i
E Rellenar Ejercicio : i EventDetails E
1 T
i : Confirmar E E i
L i i : ! i
H ' —4— 0K ! I H
1 1
! i — I ew EventoEjerciu:in[}—E' i !
1 H 1
i i New EventDetails() F i
1
1 1 1
i i Mostrar Form EventDetailz()
. | : Rellenar Evento :
L i - Confirmar
; i 1. oK
! H Mew Form
i i L 0
1
I:j i 1 Seleccionar Calendario
1 1
1 1
i i s OK: Mambre Calendario
E i Get Calendario
i i —
1 - . .
! ! Anadir evento al calendario
1 1
i i | Guardar Cambios en BD

| :BD Calendarios |

Ilustracion 70: Diagrama de secuencia correspondiente a afiadir un evento del tipo ejercicio a un calendario existente

Volver a la Referencia

114

Afiadir evento dieta

1
1
:
Seleccionar Afadir Evento !

L]

1

1

1

:
: f:l—New Form() ' : CustomEvent
i i

1

1

1
1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
:]
- | | a
Evento Dista+ i !
i I:__— MNew Formi()—n - ! !
: : ! [:EventoDieta | : :
. ! : Seleccionar Dieta : i i i
|: ; + Confirmar——ut i i i
]
a i ox : s i
! ! — Mew EvemoDieta[}—tl ! !
1 1 1 1
i ; New EventDetails() ; i
1 1 H 1 1
1
i | 1 WMostrar Farm EventDetails ()4 : i i
1 ' o 1
—'—l Rellenar Evento principal Dieta : i !
L : ! Confirmar : H i
T 1 1 1
a i = oK : | a
H H —— TEW CustorﬁEvent[}—i‘_l 1 T ! H
! 1 | BUCLE i ! i !
! ! Mew EventDetaiIs(}—E ! ! !
1 1 1 1 1
i E | Mastrar Form EventDetails (} ———————————F ! i
+ Rellenar Evento par comida de dieta E i
1 H 1
i : Canfirmar 1 E !
1 1 1 1
| |] > s i
i i L Mew Form() i
1
1 1 1 1
D : i Seleccionar Calendario i
1 1 1
! E OK: Mombre Calendario i
1 1 1
! H Get Calendario [:l
: ; .
1
! i) Afadir evento al calendario !
1 1 1
1 1 1
1 ! Guardar Cambios en BD
: : . (il

Ilustracion 71: Diagrama de secuencia correspondiente a afiadir un evento de tipo dieta a un calendario existente

Volver a la Referencia

115

Afiadir evento rutina

[000 0 O KO

Usuario Modulo Calendario.]] Calendar.let] J
Rutina Hora Calendario

Seleccionar Afiadir Evento

D t:'—New Formi)

Evento Rutina [
—— MNew Formi) —m —'

Seleccionar Rutina

.

: EventoEjercicio

Confirmar——i
1 oK

— MNew EventoRutina(}—t’

Mew EventD etails ()} ————F |

Mostrar Form EventDetails ()

Rellenar Evento principal Rutin-a
: ! Confirmar

BUCLE Seleccionar hora | I E Ne\n\:Form[} : [i
comienzo eslon H ' T 1

de ese dia — :DK .

¥

H

1

— New EvenfoEJermcm[};q_J
BUCLE :
New EventDetails () ————————p

Mostrar Form EventDetails () ————————¥
L

L]
Rellenar Evento por comida de dieta

Confirmar

—"F oK .

Mew Farm()

Seleccionar Calendario

D--

OK: Mombre Calendario

Get Calendario

) Afiadir evento al calendario

Guardar Cambios en BD

Ilustracion 72: Diagrama de secuencia correspondiente a afiadir un evento del tipo rutina a un calendario existente

Volver a la Referencia

116

o0

Eliminar evento

Click derecho
sobre Evento

D—Shnw Faorm()

Canfirmar

D‘*hﬂnstrar Cambios
[]
1

Seleccionar
Eliminar Evento

Mew Form()

:) Eliminar de la lista de eventos

1]

Tlustracion 73: Diagrama de secuencia correspondiente a eliminar un evento existente

Volver a la Referencia

117

Replicar Evento

e e

Click derecho
sobre Evento

Show Form()

Seleccionar
copiar Evento

Mew Form()

Maombre y fecha de |E! copia
Confirmar : Afiadir a la lista

1 de eventos
D‘*hﬂnstrar Cambios

i

1

il

Ilustracién 74: Diagrama de secuencia correspondiente a replicar un evento existente

Volver a la Referencia

118

Editar evento

) HO)

:Calendar.Met Calendar.MET
Calendar EventDetails

Médulo Calendario.

D—Shnw Form()

Click derecho
sobre Evento

E@
|

Seleccionar
Editar Evento

|

Mew
EventDetails()

Show Form e
EventDetail=()

M odificar evento
Confirmar

Ij—r-.ﬂnstrar Cambios

Ilustracion 75: Diagrama de secuencia correspondiente a editar un evento existente

L

oK

Guardar Cambios en evento

Volver a la Referencia

119

120

7.4 Interfaz (Disefio)

Desconectar Usuario

Opciones de Usuario

Informacion de Usuario

Ilustracién 76: Médulo General ventana principal con usuario ya logueado

Volver a la Referencia

121

Modulo

Calendario 8
Calendario 12

Calendario 15

Calendario Herramientas
_

Ilustracion 77: Disefio de la ventana principal del Médulo Calendario.

Volver a la Referencia

122

[onine diagramming & design] create[y.:om

H&' 7veno 7aenano 7erram|enas

Calendario 1 || Calendario 2 1

Calendario 4

Calendario 8
Hoy CALENDARIO 1 Cambiar Vista
Calendario 12 <l|:| ‘:> E J

Calendario 15 Lunes Martes Miércoles Jueves Viernes Sabado Domingo

Modificar

9 10 Cor 12 13 14
Elimi vento
iminar Comida
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 1 2 3 4

nkne diagramming & design] Creately com

Ilustracion 78: Disefio de la ventana principal del Médulo Calendario con un calendario abierto en modo Vista mensual.

Volver a la Referencia

123

H&' _ven l _aenano _erramlenas

Calendario 1 || Calendario 2

Calendario 4

Calendario 8

<::| ‘:> Evento 1 Details

Calendario 12

. Informacién Basica
Calendario 15 Lunes Martes Miércoles
Fecha ’W‘ m
1 5 3 Nombre: Evento 1
Duracion: 15 Horas
[Modificar

9 10 Copiar Opciones de Repeticién
Eliminar
Frecuencia Cada mes v
15 16 17
Apariencia
22 23 24 Fuente Times New Roman v

Color Evento . Color Texto .
29 30 31 |

[onine diagramming & design] Clreate

Ilustracién 79: Disefio de la ventana principal del Moédulo Calendario después de seleccionar la opcion de Ver informacion de un evento

Volver a la Referencia

124

Calendaario nerramientas

Calendario 4 Calendario 1 @ || Calendario 2

Calendario 8
Calendario 12 <: l:> CALENDARIO 1

H bt 1 1Al _JSalhllh SN
Calendario 15

01:00

E Cambiar Vista j

1/1/2000 | fEEH

Evento 1

Modificar

Copiar

Eliminar

03:00

04:00 Evento Ejercicio 5

05:00

06:00

07:00

onkne diagramming & design] CFreately com
Ilustraciéon 80: Disefio de la ventana principal del Médulo Calendario en modo Vista Diaria

Volver a la Referencia

125

Modulo Ejercicio Categoria Rutina Herramientas

Categori
|=| Categori

o Ejercicio

1
L-
1
1
1
1
L=

Rutina1
Rutina2
Rutina3

[onfine diagramming & design) creately.com

Ilustracion 81: Disefio de la ventana principal del Médulo Ejercicios. A la izquierda se encuentran los arboles de Ejercicios y debajo la lista de Rutinas.

Volver a la Referencia

126

Modulo Ejercicio Categoria Rutina Herramientas
g feT ol Tee o I
' [+] Categoria 1

[=] Categoria 2
0 Ejercicio 1

L-
[l
1
1
1
L=

Rutina1
Rutina2
Rutina3

fonfine diagramming & design] Créately com

Ilustracién 82: Disefio de la ventana principal del Médulo Ejercicios con la barra de pestafias.

Volver a la Referencia

127

Modulo Ejercicio Categoria Rutina Herramientas

=] Root | Categoriab @

Categoria 1

L_ (=] Categoria 2 Categoria 5

i Ejercicio 1
Ejercicio 1 n
Ejercicio 2 I
. Descripcion del
AU ejercicio
Rutina2
Rutina3

[onkine diagramming & design] CreatE|)/.com

Ilustraciéon 83: Disefio de la ventana principal del médulo Ejercicios con la pestafia de mostrar la informacion de Categoria 6 seleccionada.

Volver a la Referencia

128

Médulo Ejercicio

= Root

' Categoria 1
[=] Categoria 2

i Ejercicio 1

L
1
1
1
1
L

Rutina1
Rutina2
Rutina3

Categoria Rutina Herramientas

HRutina2 ©

Descripcion de la rutina

242 Semanas

Ejercicio 1 Ejercicio 2 Ejercicio 2

Ejercicio 5 Ejercicio 3 Ejercicio 7

Ejercicio 4 Ejercicio 3

24234 KCAL

Ilustracién 84: Disefio de la ventana principal del médulo Ejercicios con la pestafia de mostrar la informacion de Rutina 1seleccionada.

Volver a la Referencia

129

130

7.5 Incidencias durante la implementacion

Mddulo General

B

DS

DS

L)

Incidencia 1
* Formulario: ModuloGenerall entanaPrincipal.cs

* Descripcion: Path del archivo #suarios.zxt de la base de datos incorrecto.

Incidencia 2
* Formulario: ModuloGeneralMensajeError.cs

* Descripcion: texto de la zextbox incorrecto.

Incidencia 3
* Formulario: ModuloGenerall entanalNuevoUsuario.cs
* Descripcion: Glich al clicar la pestafia Informacion Bioljgica tras clicar en
botén Siguiente cuando se ha cometido un error al introducir el nombre o la

contrasena.

Incidencia 4
» Formulario: ModuloGenerall’ entanalNuevoUsuario.cs
* Descripcion: Revisar que al guardar un usuario en la base de datos, si no se
aflade el ultimo campo (alergias), no se produzcan errores al leer dicho

usuario de la base de datos.

Incidencia 5
* Formulario: ModuloGenerall’ entanaNunevoUsuario.cs
* Descripcion: La codificaciéon de los archivos ha de ser en UTF-8 para

evitar problemas con caracteres especiales.

Incidencia 6
* Formulario: ModuloGenerall” entanalNuevoUsuario.cs
* Descripcion: Los usuarios se sobreescriben al agreagarlos a la base de

datos.

Incidencia 7
* Formulario: ModnloGenerall entanaPrincipal.cs y
ModnloGenerall entanaPrincipalUsnariol ogueado.cs
* Descripciéon: No se puede reloguear con un usuario diferente (o el mismo)

una vez logueado.

131

Médulo Ejercicios

*0

¢ Incidencia 1
* Formulario: MdduloEjerciciosV entanaPrincipal.cs
* Descripcion: Al hacer doble click en una categoria se abre como si fuera

un ejercicio.

+* Incidencia 2

L)

* Formulario: MdduloEjerciciosV entanaPrincipal.cs
* Descripcion: Si se abre un ejercicio y se intenta abrir de nuevo sin cambiar

la seleccién, se produce un error.

*0

¢ Incidencia 3
* Formulario: ModuloEjerciciosV entanaPrincipal.cs
* Descripciéon: A veces se produce un error al cerrar el médulo porque la

aplicacion intenta generar un arbol de ejercicios cuando ya no existen.

>

% Incidencia 4

L)

* Formulario: ModuloEjerciciosV entanaPrincipal.cs

" Descripcion: Al asignar el valor -1 a los campos que no aparecen en una
rutina se producen micro errores en el calculo de las calorfas consumidas a
nivel de rutina (ya que se asigna el valor -1 también al consumo calérico si
no es introducido).

+* Incidencia 5
» Formulario: ModuloEjerciciosPestarialditarRutina.cs
* Descripciéon: Al borrar todos los ejercicios de una rutina el contador de

calorias se queda a cero y no vuelve a subir al afladirse nuevos ejercicios.

% Incidencia 6
* Formulario: ModuloEjerciciosV entanaPrincipal.cs
* Descripcion: Las capturas de pantalla no guardan el contenido de las
texctbox de tipo RichTextBox.

Mddulo Dietista

No hay incidencias reportadas ya que el funcionamiento es practicamente igual al del

moédulo Ejercicios.

132

Modulo Calendario

% Incidencia 1
* Formulario: ModuloCalendarioEventDetails.cs
* Descripcion: Segin el tipo de evento que se edite hay que cargar unos
campos u otros en el formulario.

+* Incidencia 2
» Formulario: ModuloCalendarioEventDetails.cs
* Descripcion: Al cargar una dieta como evento hay que preguntar a qué
hora se ingerira cada comida —un evento por comida.
+* Incidencia 3
» Formulario: Calendar NET Calendar.cs

* Descripcioén: En la vista Diz a Dia no se cargan los eventos correctamente.

%+ Incidencia 4

®» Formulario: Calendar. NET Calendar.cs

* Descripcion: Hay que revisar la recurrencia de los eventos. El control deja
de funcionar segun el tipo de recurrencia elegido.

* Incidencia 5
* Formulario: Calendar. NET Calendar.cs
* Descripcion: El control por defecto no permite elegir la hora a la que se

realiza un evento, solo la fecha.

¢ Incidencia 6

» Formulario: ModuloCalendariol entanaPrincipal.cs

* Descripciéon: La relaciéon entre la duracion de un evento de tipo
EventoEjercicio y 1a duraciéon del ejercicio en si ha de revisarse ya que si se
establece una relacion 1:1 —el evento dura lo que dure la ejecucion del
ejercicio— este no se ve reflejado en pantalla cuando la duraciéon del
ejercicio es muy corta.

% Incidencia 7
* Formulario: ModuloCalendariol’ entanaPrincipal.cs
* Descripcion: Cuando dos eventos se superponen temporalmente hay que
dividir el espacio de muestra para que ambos eventos sean visibles en la
vista Dia a Dia.

% Incidencia 8
* Formulario: ModuloCalendariol entanaPrincipal.cs

* Descripcion: Por qué algunos eventos se ven repetidos en la vista Diz a
Dia?

133

% Incidencia 9
» Formulario: ModuloCalendariol entanaPrincipal.cs
* Descripcion: Si un evento dura bhum —h, horas; », minutos— si 7 es
diferente de cero, este valor se ignora.

% Incidencia 10
» Formulario: ModuloCalendariol entanaPrincipal.cs
* Decripciéon: Revisar y redisefar toda la funcién encargada de dibujar el
calendario para solucionar los problemas con las funciones de recurrencia
de los eventos.

% Incidencia 11
* Formulario: ModuloCalendariol entanaPrincipal.cs
* Descripcion: En el modo de vista Mensual del calendario, si un mismo dia
incluye mas de cuatro eventos se dejan de visualizar el resto por falta de
espacio.

134

Contraportada
Catala

Aquesta memoria recull el procés seguit per al desenvolupament i implementacié d’una
aplicacié Software. Aquest procés s’inicia amb la presentacié del tema, estat de lart i
planificacié6 temporal per continuar amb Ianalisi de requeriments de laplicaci6 —
identificaci6 dels interessats, entitats existents i les relacions d’aquestes...— el disseny de la
mateixa —mctode de desenvolupament emprat, arquitectura..— la implementacié de
'aplicaci6 i les proves corresponents.

Finalment la memoria es completa amb les conclusions 1 vies de continuaci6 aixi com la

bibliografia i annexos complementaris.

Castellano

Esta memoria recoge el proceso seguido para el desarrollo e implementacién de una
aplicacién Software. Este proceso se inicia con la presentacion del tema, estado del arte y
planificacion temporal para continuar con el analisis de requerimientos de la apliacion —
identificacion de los interesados, entidades existentes y sus relaciones...— el disefio de la
misma —método de desarrollo, arquitectura...— la implementacién de la aplicacion y las

pruebas correspondientes.

Finalmente la memoria se completa con las conclusiones y las vias de continuacion asi
como la bibliografia y anexos complementarios.

English

This report joins the several stages that make up the process followed to develop and
implement a Software application. This process starts with the presentation of the project’s
subject, the state of the art and its planning; to continue with the requirements analysis —
stakeholder identification, existent entities and their relationships...—, the design of the
application —development method used, architecture...—, the implementation and the

application testing.

Finally the report is completed with the conclusions and future development paths, the
bibliography and complementary annexes.

135

