

JUEGO 2D PARA ANDROID

Memoria del proyecto

de Ingeniería Técnica en Informática de Sistemas

 Realizado por

 Sergio Pérez Carretero

 y dirigido por

 Jordi Pons Aróztegui

Escuela de Ingeniería

 Sabadell, Septiembre de 2013

El sotasignat, Jordi Pons Aróztegui,

Professor de l'Escola d’Enginyeria de la UAB,

CERTIFICA:

Que el treball al que correspon la present memòria
ha estat realitzat sota la seva direcció per

Sergio Pérez Carretero

I per a que consti firma la present.
Sabadell, Setembre de 2013

Signat: Jordi Pons Aróztegui

Hoja de resumen

Título:

 Juego 2D para Android

Autor:

 Sergio Pérez Carretero

Tutor: Fecha:

 Jordi Pons Aróztequi Septiembre 2013

Titulación:

 Ingeniería Técnica en Informática de Sistemas

Palabras clave:

Castellano:, Smartphone, Sistema operativo, Java, AndEngine, Librería, OpenGL, App,
Android, SDK

Català: Smartphone, Sistema operatiu, Java, AndEngine, Llibreria, App, Android, SDK

English: Smartphone, Operating System, Java, AndEngine, Library, OpenGL, App,

Android, SDK.

Resumen del Proyecto:

 Castellano:

El proyecto consistirá en diseñar desde cero un juego para smartphones que utilicen el sistema
operativo Android. El objetivo del juego será sobrevivir a las oleadas de enemigos, que
aparecerán en el extremo derecho de la pantalla y se dirigirán al lado opuesto, durante el tiempo

suficiente para superar el nivel actual. Al mismo tiempo tendremos que tratar de esquivar los
obstáculos y recoger los objetos que nos proporcionarán un bonus de puntos.
En el juego habrá un número finito de niveles, cada uno más difícil que el anterior.

Català:

El projecte consistirà en dissenyar des de zero un joc per smartphones que utilitzin el sistema

operatiu Android. L’objectiu del joc serà sobreviure a las onades d’enemics, que apareixeran a
l’extrem dret de la pantalla i es dirigiran al costat oposat, durant el temps suficient per superar
el nivell actual. Al mateix temps haurem d’esquivar els obstacles i recollir els objectes que ens
proporcionaran un bonus de punts.

En el joc hi haurà un número finit de nivells, cadascun més difícil que l’anterior.

English:

The project will on designing from scratch a game for smartphones which use the Android

operating system. The game’s objective will to survive the enemy waves, that will appear from
the right border of the screen and will head to the opposite side, enough time to pass the
current level. Meanwhile will have to evade the obstacles and gather objects that will provide

us a bonus in points.

The game will have a finite number of levels, each one harder than the previous.

 I

Índice de Contenidos

1. Introducción01

1.1. Presentación 01

1.2. Motivación02

1.3. Objetivos02

1.4. Estudio del arte03

1.5. Contenido03

2. Estudio de Viabilidad05

2.1. Introducción05

2.1.1. Tipología y palabras clave05

2.1.2. Descripción05

2.1.3. Objetivos del Proyecto05

2.1.4. Partes interesadas06

2.1.5. Referencias07

2.2. Requisitos del Proyecto08

2.2.1. Requisitos Funcionales08

2.2.2. Requisitos no Funcionales08

2.2.3. Restricciones del Sistema08

2.2.4. Catalogación i priorización de los requisitos08

2.3. Alternativas y selección de la solución09

2.3.1. LibGDX 09

2.3.2. Cocos2d10

2.3.3. Crear un motor gráfico propio11

2.3.4. Solución Propuesta11

2.4. Planificación del Proyecto11

2.4.1. WBS (Work Breakdown Structure)12

2.4.2. Recursos del Proyecto13

2.4.3. Calendario de los Recursos13

2.4.4. Calendario del Proyecto13

2.4.5. Planificación Detallada14

2.4.6. Planificación Temporal15

2.5. Evaluación de Riesgos16

2.5.1. Lista de Riesgos16

2.5.2. Catalogación de Riesgos17

 II

2.5.3. Plan de Contingencia17

2.6. Presupuesto18

2.6.1. Estimación coste Personal18

2.6.2. Estimación coste de Recursos18

2.6.3. Resumen y análisis de coste – beneficio18

2.6.4. Conclusiones18

3. Recursos teóricos utilizados19

3.1. Palabras clave19

3.2. Lenguajes de programación utilizados19

3.3. Herramientas y entorno de trabajo19

3.4. Tecnología20

4. Diseño23

4.1. Clases23

4.1.1. Clase GameActivity23

4.1.2. Clase BaseScene24

4.1.3. Clase Cooldown25

4.1.4. Clase ResourcesManager25

4.1.5. Clase SceneManager25

4.1.6. Clase ObstaclePool/ProjectilePool/RewardPool/TargetsPool . .25

4.1.7. Clase MainMenuScene25

4.1.8. Clase FirstOptionsSubMenu/DifficultyMenuScene. . . .26

4.1.9. Clase GameScene26

4.1.10. Clase HighScoreScene26

4.1.11. Clase LoadingScene26

4.1.12. Clase SplashScene27

4.2. Diseño de la Base de Datos28

5. Funcionamiento de la Aplicación31

5.1. Descripción31

5.2. Parte Estática31

5.2.1. Pantalla de presentación31

5.2.2. Menú principal y de opciones32

5.3. Parte Dinámica34

5.3.1. Empezar Juego34

5.3.1.1. Pantalla de juego34

 III

5.3.1.2. Visualización de resultados35

5.4. Puesta en marcha35

6. Test y pruebas37

7. Conclusiones41

7.1. Desviación temporal41

7.2. Falta de recursos de trabajo41

7.3. Ampliaciones42

7.4. Valoración del Proyecto44

7.5. Valoración Personal44

Bibliografía45

Índice de Figuras

1. Introducción

1.1. Figura 1: Estadística S.O.01

2. Estudio de viabilidad

2.1. Figura 2: Ciclo de vida LibGDX10

2.2. Figura 3: Diagrama WBS13

2.3. Figura 4: Planificación detallada15

2.4. Figura 5: Diagrama de Gantt16

3. Recursos teóricos utilizados

3.1. Figura 6: Ciclo de vida de una actividad en Android27

3.2. Figura 7: Diagrama de flujo del juego30

4. Funcionamiento de la aplicación

4.1. Figura 8: Pantalla de presentación33

4.2. Figura 9: Pantalla de menú principal34

4.3. Figura 10: Pantalla de menú de opciones35

4.4. Figura 11: Pantalla de opciones de dificultad35

4.5. Figura 12: Pantalla de juego36

4.6. Figura 13: Pantalla de visualización de resultados.37

Índice de Tablas

1. Estudio de viabilidad

1.1. Tabla 1: Tabla de Priorización objetivos05

1.2. Tabla 2: Tabla de Stakeholders05

 IV

1.3. Tabla 3: Tabla de Perfiles de usuario05

1.4. Tabla 4: Tabla de Project Team06

1.5. Tabla 5: Tabla de Prioridad de los Requisitos Funcionales . . .08

1.6. Tabla 6: Tabla de Prioridad de los Requisitos No Funcionales . . .08

1.7. Tabla7: Tabla de Relación de los Req. Con los Obj. del sistema . .09

1.8. Tabla 8: Tabla de Fases y actividades del proyecto12

1.9. Tabla 9: Tabla de Recursos Humanos14

1.10. Tabla 10: Tabla de Catalogación de riesgos18

1.11. Tabla 11: Tabla de Plan de contingencia18

1.12. Tabla 12: Tabla de Estimación de coste personal19

1.13. Tabla 13: Tabla de Estimación de coste de recursos . . .19

2. Tests y pruebas

2.1. Tabla 14: Tabla de test – Samsung Galaxy Ace40

2.2. Tabla 15: Tabla de test – Nexus S40

2.3. Tabla 16: Tabla de test – Samsung Galaxy SII 2.3.740

2.4. Tabla 17: Tabla de test – Samsung Galaxy SII 4.1.041

2.5. Tabla 18: Tabla de test – HTC Desire HD41

2.6. Tabla 19: Tabla de test – Smasung Galaxy SII 4.1.241

3. Conclusiones

3.1. Tabla 20: Tabla de Desviación temporal43

JUEGO 2D PARA ANDROID Página 1 / 47

1. INTRODUCCIÓN

1.1. Presentación

El objetivo del proyecto es desarrollar un juego 2D para Android, concretamente uno catalogado

dentro del género arcade, al que llamaremos SpaceFighter.

Actualmente a nivel mundial sólo el 10% de la población posee un smartphone. Pero por país la

situación cambia. Así en Singapur prácticamente todos usan uno ya que el 90% de ellos es dueño

de uno. En la lista le sigue en segundo lugar Hong Kong con el 61%, y el tercero pasa a Europa

con Suecia con el 52%, y luego le sigue en la lista más países europeos que andan con porcentaje

promedio al 40%. De estos casi el 51% usaba Android a finales de 2011, como vemos en la

gráfica:

 Figura 1: Estadística S.O.

Y según los datos del tercer trimestre del 2012 en cuanto a uso de sistemas operativos móviles

en smartphones en todo el mundo, Android sigue predominando sobre el resto con un 72.4% de

uso.

Como datos curiosos tenemos que: el 61% de los smartphones son utilizados principalmente para

jugar. Y el 90% de las aplicaciones descargadas no se usan más de 10 veces.

Como esto es así, decidí hacer un juego 2D offline para la plataforma Android. 2D porque aunque

los juegos más comúnmente producidos hoy día son los 3D, los juegos 2D son más casuales que

los 3D, y teniendo en cuenta la estadística anterior, encajaría mejor en el contexto que tenemos.

Y offline por que mucha de la gente que usa smartphones para jugar lo hace mientras usa

transporte público donde la conectividad es reducida o nula.

JUEGO 2D PARA ANDROID Página 2 / 47

1.2. Motivación

Tengo dos motivaciones principales para realizar este proyecto: La primera es mejorar mi

comprensión del lenguaje java y aprender a usar el SDK (Software Development Kit) de Android.

Hasta el momento, mi contacto con el lenguaje ha sido casi nulo y nulo por completo en con las

herramientas proporcionadas de Google y en mi opinión es muy conveniente familiarizarse con

ambas debido a su gran extensión.

Mi segunda motivación, como en el caso de lo anteriormente mencionado, es también la primera

vez que voy a desarrollar un juego y la primera vez que uso AndEngine o cualquier otro motor

gráfico. Creo que me ayudará a comprender mejor el funcionamiento interno de los juegos en

general y ampliar conocimientos sobre operaciones de transformación de imágenes y otros temas

vistos en asignaturas de la propia titulación como Técnicas Gráficas, por ejemplo.

1.3. Objetivos

Un resumen de mis objetivos personales, a parte de crear un juego que sea, no innovador, pero

mínimamente entretenido, serían los siguientes:

 Conseguir algo de soltura desarrollando aplicaciones en Java.

 Aprender a trabajar con el SDK de Android, conocer sus herramientas, límites y

funcionamiento.

 Ver y entender el funcionamiento interno de los juegos en 2D (movimiento de sprites,

eventos, detección de colisiones y animación simultánea de imágenes).

Objetivos funcionales:

 Abarcar el máximo número de versiones de Android sobre las que funcione el juego:

Debido a la gran variedad de dispositivos que tienen instalado el sistema operativo

Android, hoy en día tenemos una numerosa cantidad de versiones del sistema a las que

tenemos que proporcionar compatibilidad, por suerte el motor que usaremos da soporte

hasta la versión 2.2, que equivaldría a dispositivos de alrededor de 3 años de antigüedad.

Y por último, los no funcionales:

 Conseguir que móviles con procesadores de 800 MHz puedan instalar y ejecutar el juego

sin problemas. Esto se traduce en, que la aplicación ocupe un espacio mínimo (entre 5 y

10MB como máximo) y que funcione de manera fluida (que no abuse del uso de RAM).

JUEGO 2D PARA ANDROID Página 3 / 47

 Que sea intuitivo: Es decir, que siga el funcionamiento de la mayoría de aplicaciones del

género y no sea necesario en ningún momento explicación alguna sobre la lógica del

juego.

 Que la base de datos sólo contenga datos vitales: Que la cantidad de datos almacenados

no supere 1MB de espacio.

1.4. Estado del Arte

Para la realización de este proyecto he tomado como referencia otros juegos del mismo género,

como lo son “Invaders”, o el clásico “Defender”, o incluso juegos del tipo conocido como “Side

Scrolling Game” como sería el mítico Super Mario. Este juego guardará mucha similitud con la

mecánica básica de estos títulos.

Me gustaría aportar e implementar cosas nuevas al género, pero tengo presente que en todos

ellos se necesitaron equipos de programadores, diseñadores gráficos con experiencia y más

tiempo del que yo dispongo, pero al menos me gustaría imitar el diseño general.

1.5. Contenido

A continuación mostraré el estudio de viabilidad donde veremos los requisitos tanto funcionales

como no funcionales del proyecto, alternativas en su elección de recursos, un calendario con las

fases del proyecto y una evaluación de riesgos. Aquí veremos si llevar este proyecto a cabo es

viable o si tenemos que elegir una alternativa.

Luego continuaré con un listado de los recursos que se necesitarán para la realización del proyecto

y su uso.

La siguiente parte contendrá lo referente al diseño de la aplicación y comentaremos la estructura

y contenido de la base de datos.

Finalmente encontraremos las conclusiones, aquí hablaremos de la desviación temporal respecto

a lo programado inicialmente, los fallos u objetivos no conseguidos y su posible solución o mejora

o ampliación, mi valoración personal sobre el proyecto y, por último, la bibliografía donde indicaré

todas las fuentes consultadas.

JUEGO 2D PARA ANDROID Página 4 / 47

JUEGO 2D PARA ANDROID Página 5 / 47

2. ESTUDIO DE VIABILIDAD

2.1 Introducción

Existen una gran variedad de juegos para Android y van en aumento tanto su calidad, como su

variedad en cuanto a géneros y categorías. Lo que intentaré es coger uno de los géneros más

extendidos y desarrollar un juego que contenga todas las características básicas de dicha

categoría.

2.1.1 Tipología y palabras clave

El juego se llamará SpaceFighter y será una aplicación implementada para la plataforma Android.

Las palabras claves son: Android, App, Java y AndEngine.

2.1.2 Descripción

Como se ha dicho anteriormente hoy en día el uso de los smartphones en la mayoría de países

desarrollados es muy elevado, y no tan solo para llamar, sino también para consultar el correo

electrónico, navegar por internet, escuchar música o jugar. Esto último ha derivado en la

formación de numerosos estudios indie* debido a la gran fuente de ingresos para los

desarrolladores de dichos estudios.

Cabe mencionar que muchos de esos juegos requieren conexión de datos para jugar a pesar de

no ser un juego multijugador propiamente dicho. Por tanto, en mi opinión un juego que solo

requiera de dicha conexión para descargarse e instalarse y posteriormente no la necesitase más

sería una mejora respecto a los anteriores.

2.1.3 Objetivos del proyecto

 Aprender a utilizar el SDK de Android y mejorar los conocimientos de java.(O1)

 Entender el funcionamiento de los juegos en 2D en términos generales. (O2)

 Diseñar un juego que proporcione cierto entretenimiento al usuario(O3)

 Desarrollar el juego haciendo que sea fácilmente ampliable, en cuanto a niveles,

incorporación de ítems, objetivos, etc. (O4)

 Implementar un sistema de base de datos para conservar el progreso del usuario. (O5)

 Añadir un sistema de puntuaciones. (O6)

Indie: Se dice que un juego es indie cuando ha sido desarrollado por un programador no profesional o por estudios con
presupuestos muy bajos.

JUEGO 2D PARA ANDROID Página 6 / 47

Priorización de los objetivos:

OBJETIVO CRÍTICO PRIORITARIO SECUNDARIO

O1 X

O2 X

O3 X

O4 X

O5 X

O6 X

 Tabla 1: Tabla de priorización objetivos.

2.1.4 Partes Interesadas

 Stakeholders:

Nombre Descripción Responsabilidad

A Responsable de la entidad Aprobación del proyecto.
Participa en su definición y
hace el seguimiento del
proyecto.

B Responsable contable Descripción de requisitos y
funcionalidades. Hace el
seguimiento del proyecto.

C Director del Proyecto Supervisa el trabajo del
alumno haciendo un
seguimiento constante del
proyecto.

 Tabla 2: Tabla de Stakeholders.

 Perfiles de usuario:

Nombre Perfil Responsabilidad

U1 Usuario Crear partida, seleccionar
opciones, jugar, etc.

 Tabla 3: Tabla de perfiles de usuario.

JUEGO 2D PARA ANDROID Página 7 / 47

 Project Team:

Nombre Descripción Responsabilidad

A Jefe del proyecto (CP) Define, gestiona, planifica y
controla el proyecto.

B Analista (A) Colabora con el jefe de
proyectos en el estudio de
viabilidad y en la
planificación. Participa en el
diseño y la validación.

C Programador (P) Diseña y desarrolla la
aplicación de acuerdo con el
análisis y la planificación
prevista. Participa en el
proceso de validación e
implementación.

D Técnico de pruebas (TP) Realiza los test y participa
en el proceso de control de
errores.

 Tabla 4: Tabla de Project Team.

2.1.5 Referencias

1. Normativa de Projectes d’Enginyeria Tècnica.

http://uab.cat/Document/541/595/Normativa_PFCNovembre2010.pdf

2. LOPD(Ley orgánica de Protección de Datos)

http://noticias.juridicas.com/base_datos/Admin/lo15-1999.html

3. Android Developer Agreement

http://www.android.com/es/developer-distribution-agreement.html

4. AndEngine main site.

 http://www.andengine.org/

Producto y documentación del proyecto.

El juego consistirá en sobrevivir a los enemigos que intentarán acabar con el jugador lanzando

naves contra él, al tiempo que deberá esquivar los obstáculos que se presenten. Cada vez que

se destruya un enemigo el jugador ganará puntos que se verán reflejados en la puntuación final.

 El sistema consta de:

 Se entregará una aplicación gratuita. En el futuro se podría subir a Google Play,

donde los usuarios de Android podrían descargarla.

 Se elaborará una memoria del proyecto.

http://uab.cat/Document/541/595/Normativa_PFCNovembre2010.pdf
http://noticias.juridicas.com/base_datos/Admin/lo15-1999.html
http://www.android.com/es/developer-distribution-agreement.html
http://www.andengine.org/

JUEGO 2D PARA ANDROID Página 8 / 47

2.2 Requisitos del Proyecto

Si el juego pide demasiados recursos del sistema, jugar en algunos dispositivos podría ser

imposible. Veamos a continuación los requisitos.

2.2.1 Requisitos funcionales

a) Continuación de partidas guardadas.

b) Sistema de pausa de juego.

c) Selección del nivel de dificultad.

d) Aumento de dificultad al subir de nivel.

e) Funcionamiento del juego sin errores ni ralentizaciones.

2.2.2 Requisitos no funcionales:

a) Conseguir que móviles con procesadores de 800 MHz puedan instalar y ejecutar el juego

sin problemas. Esto se traduce en, que la aplicación ocupe un espacio mínimo (entre 5 y

10MB como máximo) y que funcione de manera fluida (que no abuse del uso de RAM).

b) Que la interfaz sea intuitiva.

c) Conexión de internet solo necesaria para descarga.

d) Que el sistema de base de datos sólo contenga datos vitales: Que la cantidad de datos

almacenados no supere 1MB de espacio.

2.2.3 Restricciones del sistema:

a) La aplicación se ha de desarrollar para Android.

b) El sistema en el que se ejecute debe tener un mínimo de 10MB de memoria libre.

2.2.4 Catalogación y priorización de los requisitos

Prioridad de los Requisitos Funcionales

 A B C D E

Esencial X X

Condicional X X

Opcional X

Tabla 5: Tabla de P. de R.F.

JUEGO 2D PARA ANDROID Página 9 / 47

Prioridad de los Requisitos Funcionales

 A B C D

Esencial X X

Condicional X

Opcional X

Tabla 6: Tabla de P. de R.N.F.

Relación de los requisitos con los objetivos del sistema:

 REQUISITOS FUNCIONALES REQUISITOS NO FUNCIONALES

 A B C D E A B C D

O1 X X X X X X X X X

O2 X X X X X

O3 X X X X

O4 X X X X X X X X X

O5 X X X X X X X

O6 X X X

 Tabla 7: Tabla de Relación de los Req. con los Obj. del sistema

2.3 Alternativas y selección de la solución

2.3.1 LibGDX

Usar LibGDX en vez de AndEngine como motor gráfico del juego.

Características: LibGDX es un framework multiplataforma de desarrollo de juegos para

Windows, Linux y Android. Está escrito en Java con una mezcla de C/C++ para dar soporte y

rendimiento a tareas relacionadas con el uso de la física y procesamiento de audio. De esta forma,

sólo hay que preocuparse por la parte que codificas en lenguaje Java mientras el framework se

encarga de empaquetar todo el código nativo de las aplicaciones.

Este es el ciclo de vida de una aplicación utilizando LibGDX:

JUEGO 2D PARA ANDROID Página 10 / 47

 Figura 2: Ciclo de vida LinGDX.

Costes: Ninguno, es software gratuito.

2.3.2 Cocos2d

Cocos2d es un framework, basado en Pyglet, escrito en Python para crear juegos en 2D, y

presentaciones gráficas que también cuenta con una versión para iPhone.

Con pocas líneas de código se obtienen variados efectos visuales, rápido y fácil manejo de Sprites

y transiciones entre escenas.

Características: Con pocas líneas de código se obtienen variados efectos visuales, rápido y fácil

manejo de Sprites. Control de flujo entre escenas, aplicación de acciones a sprites de forma fácil,

menús, renderizado de textos, etc. Basado en OpenGL.

Costes: Ninguno, también es software gratuito.

JUEGO 2D PARA ANDROID Página 11 / 47

2.3.3 Crear un motor gráfico propio

Esta opción, aunque existe, yo no la considero como tal. Consistiría en escribir el código necesario

para proveer al juego de un motor de renderizado de gráficos 2D, un motor u otro sistema que

gestionase las físicas(colisiones, gravedad…), los cambios de escena, etc. Y que hiciese de forma

más o menos óptima todas las operaciones matemáticas que dichos elementos implican, como

escalado, rotación, traslación…

Costes: Económicos ninguno, pero programar todo lo mencionado precisaría de unos

conocimientos de los que carezco y de un esfuerzo y tiempo enormes, siendo mucho más difícil

la implementación de los recursos para crear el juego que el propio juego.

2.3.4 Solución propuesta

Por lo mencionado anteriormente la opción de crear mi propio motor gráfico queda descartada

ya que daría incluso más trabajo que aprender a usar cualquiera de los tres motores y hacer un

juego con él.

Aunque cualquiera de las tres opciones hubiera sido aceptable para el desarrollo del juego, la

opción de cocos2d parecía más multiplataforma y de uso general que AndEngine que sólo está

soportada por Android, además AndEngine tiene una extensión para incorporar cocos2d.

Finalmente en cuanto a LibGDX (y también cocos2d en menor medida) los ejemplos me

parecieron más simples y de fácil aprendizaje que los ejemplos de LibGDX, dichos ejemplos se

pueden descargar de Google Play y se puede comprobar como algunos ejemplos son simplemente

sobre cómo mover un sprite por la pantalla, lo cual realmente facilita mucho su aprendizaje.

2.4 Planificación del proyecto

El proyecto sigue una planificación lineal. Dicha metodología se suele dar en proyectos donde la

fecha de entrega está marcada por un usuario final o comprador.

Para estimar la duración se tendrá en cuenta, a parte del procedimiento técnico usado, recursos,

costes, etc. Durante desarrollo de la aplicación, a veces, los objetivos cambian de prioridad,

aumenta la complejidad prevista o el consiguiente aumento de costes. Estos problemas a veces

se pueden arrastrar hasta el final del proyecto.

El proyecto está planificado de la siguiente manera:

 Calendario del proyecto: El proyecto será desarrollado desde Enero de 2012 hasta el

Junio de 2012 con una dedicación media de 20 horas semanales. En total se le dedicarán

297 horas.

 Fecha de inicio: 10/01/2012

 Fecha de finalización: 30/06/2012

 Herramientas de planificación y control utilizadas: Microsoft Project.

JUEGO 2D PARA ANDROID Página 12 / 47

2.4.1 WBS(Work Breakdown Structure)

Fases y actividades del proyecto

 Tabla 8: Tabla de Fases y actividades del proyecto

Diagrama WBS:

 Figura 3: Diagrama WBS.

Fases Descripción

Iniciación Incluye la definición del proyecto, asignación y
matriculación.

Planificación Incluye el estudio de viabilidad y la planificación.

Análisis Incluye el análisis de requisitos funcionales y no
funcionales.

Diseño Incluye el diseño de la capa de datos, de control y de
interfaz. Diseño de los test.

Desarrollo Incluye el desarrollo de la aplicación.

Test i pruebas Incluye test unitarios y de integración.

Generación de
documentos

Incluye la documentación del proyecto.

Cierre del proyecto Incluye el cierre del proyecto. El director del proyecto
firma la aceptación y cierre del proyecto.

Defensa del proyecto Incluye la defensa del proyecto ante el jurado.

JUEGO 2D PARA ANDROID Página 13 / 47

2.4.2 Recursos del Proyecto

Recursos humanos

Recursos Humanos Valoración

Jefe del Proyecto (CP) 50€/h

Analista(A) 38€/h

Programador(P) 25€/h

Técnico de pruebas(TP) 20€/h

Diseñador Gráfico(DG) 22€/h

 Tabla 9: Tabla de Recursos Humanos.

Recursos Materiales

Se usarán recursos materiales propios. El desarrollo se hará utilizando software libre, tanto

Eclipse, un entorno de desarrollo gratuito, como las extensiones de AndEngine para este.

A parte se utilizará un PC con Windows 8 Pro para el desarrollo de la aplicación y un Samsung

Galaxy Ace, y en ocasiones un Samsung Galaxy SII, para hacer los test.

2.4.3 Calendario de los Recursos

Los recursos humanos se usarán durante todo el proyecto:

 Jefe del proyecto: Asignación del proyecto, aprobación de las diferentes fases del

proyecto y cierre del proyecto.

 Analista: Análisis y diseño, implantación y puntos de control de análisis, diseño y

desarrollo.

 Programador: Diseño, desarrollo y test. Parcialmente en la implantación.

 Técnico de pruebas: Fase de test.

 Diseñador Gráfico: Diseño. Diseñar las imágenes y texturas usadas para crear, objetos,

menús, etc.

Los recursos materiales se utilizarán principalmente en las fases de desarrollo, test e implantación.

2.4.4 Calendario del Proyecto

Todas las fases se desarrollan usando un modelo lineal. Por lo tanto, cada fase no empezará

hasta que la fase anterior no se haya completado.

En la fase de desarrollo se prevé un modelo ágil de tal manera que el diseño, el desarrollo y el

test sigan un modelo iterativo

La fase de generación de documentos será al final porque incluirá los documentos elaborados

durante el desarrollo del proyecto, inicio, estudio de viabilidad y planificación del proyecto.

JUEGO 2D PARA ANDROID Página 14 / 47

2.4.5 Planificación Detallada

Figura 4: Planificación detallada.

JUEGO 2D PARA ANDROID Página 15 / 47

2.4.6 Planificación Temporal

Figura 5: Diagrama de Gantt

JUEGO 2D PARA ANDROID Página 16 / 47

2.5 Evaluación de Riesgos

La evaluación de riesgos siempre es una de las partes más importantes antes del inicio de un

proyecto. Se han de definir muy bien los riesgos que nos podemos encontrar a lo largo del

proyecto.

2.5.1 Lista de Riesgos

R1. Falta de alguna tarea necesaria: Plan de proyecto. No se cumplen los objetivos del

proyecto.

R2. Presupuesto mínimo: Plan de proyecto. Pérdidas económicas y de calidad.

R3. Planificación temporal optimista: Plan de proyecto. No se acaba en la fecha prevista,

aumentan los recursos.

R4. Cambio de requisitos: Estudio de viabilidad, análisis. Retraso en el desarrollo y el

resultado.

R5: Fase de test incorrecta: Desarrollo, implantación. Falta de calidad, deficiencias en la

operativa, insatisfacción de usuarios, pérdida económica.

R6. Falta de adopción de medidas de seguridad: Estudio de viabilidad, análisis, desarrollo.

Pérdida de información, incumplimiento legal, pérdidas económicas.

R7. Incumplimiento de alguna norma, reglamento o legislación: En cualquier fase. No

se cumplen los objetivos, repercusiones legales.

R8: Herramientas de desarrollo inadecuadas: Desarrollo. Retraso en la finalización del

proyecto, empeoramiento de calidad.

R9: Equipo del proyecto demasiado reducido: Plan de proyecto. Retraso en la finalización

del proyecto, no se cumplen los objetivos.

R10: Abandono del proyecto antes de su finalización: En cualquier fase. Pérdidas

económicas, frustración.

JUEGO 2D PARA ANDROID Página 17 / 47

2.5.2 Catalogación de Riesgos

 Probabilidad Impacto

R1 Alta Crítico

R2 Alta Crítico

R3 Alta Crítico

R4 Alta Marginal

R5 Media Crítico

R6 Alta Crítico

R7 Media Crítico

R8 Baja Crítico

R9 Media Crítico

R10 Media Catastrófico

Tabla 10: Tabla de Catalogación de riesgos.

2.5.3 Plan de Contingencia

 Solución que adoptar

R1 Revisar el plan del proyecto, modificar la planificación.

R2 Renegociar con el cliente, afrontar posibles pérdidas, hacer un seguro,

reciclaje de elementos de software libre.

R3 Aplazar alguna funcionalidad, afrontar posibles pérdidas, hacer un seguro,

proponer condiciones de finalización.

R4 Renegociar con el cliente, aplazar una funcionalidad, modificar la planificación

y presupuesto

R5 Diseñar los test con antelación, realizar test automáticos, negociar contrato

de mantenimiento, dar garantías.

R6 Revisar la seguridad en cada fase, aplicar políticas de seguridad activas.

R7 Revisar las normas y legislación, consultar un experto, afrontar posibles

repercusiones penales.

R8 Mejorar la formación del equipo, prever herramientas alternativas, mejorar la

calidad.

R9 Pedir un aplazo, negociar con el cliente, afrontar pérdidas, contratación de

más personal.

R10 No tiene solución.

 Tabla 11: Tabla de Plan de contingencia.

JUEGO 2D PARA ANDROID Página 18 / 47

2.6 Presupuesto

2.6.1 Estimación Coste Personal

Jefe de Proyecto 120h 6000€

Analista 85h 3230€

Programador 273.43h 6835.75€

Diseñador Gráfico 24h 528€

Técnico de pruebas 14.83h 296.6€

TOTAL 517.26h 16890.35€

 Tabla 12: Tabla de Estimación de coste personal.

2.6.2 Estimación coste de recursos

 Coste

Amortización

PC Programador 600€

Microsoft Office 119€

Microsoft Project 360€

TOTAL 1079€

 Tabla 13: Tabla de Estimación de coste de recursos.

2.6.3 Resumen y análisis coste – beneficio

Coste de desarrollo del Proyecto 16942.34€

Coste de amortización del material 1079.00€

 Total: 17969.35€

2.6.4 Conclusiones

Tras realizar todos los análisis y estudios necesarios, considero que la realización del proyecto es

viable ya que, si bien implicará hacer la labor de todo el equipo de desarrollo antes expuesto con

el coste tanto en tiempo como económico que eso teóricamente supondría, al no ser este un

proyecto real y disponer ya de todas las herramientas y recursos necesarios o ser estos gratuitos

y ser el objetivo de este proyecto sobretodo el aprendizaje, y no la creación de un producto de

prestaciones comerciales, concluyo que el proyecto es, efectivamente, viable.

JUEGO 2D PARA ANDROID Página 19 / 47

3. Recursos teóricos utilizados

3.1 Palabras Clave

 Motor Gráfico: El motor gráfico es parte del programa que controla, gestiona y

actualiza los gráficos (en 2D o 3D) en tiempo real.
 Eclipse: Entorno de programación que nos permite programar, compilar , depurar y

ejecutar en Java.
 Compilar: En programación, llamamos compilar a traducir un lenguaje de alto

nivel(en este caso java) a código absoluto o lenguaje binario o máquina.
 Sprite: Consiste en un mapa de bits 2D que se dibujan directamente en un destino

de representación(pantalla) sin usar canalización de transformaciones, iluminación o
efecto. Por lo que requieren poco uso de CPU.

 CPU: Unidad de Procesamiento Central. Interpreta las instrucciones y procesa los
datos contenidos en los programas.

 Multitouch: La tecnología multitouch(o multitáctil) consiste en una pantalla táctil
que es capaz de reconocer simultáneamente múltiples puntos de contacto.

 Frame: Se trata de una imagen particular en una sucesión de imágenes.

3.2 Lenguajes de programación utilizados

Para el desarrollo de esta aplicación usaremos Java. En otras plataformas normalmente podemos

elegir lenguaje de programación ya que herramientas como, por ejemplo, Unity 3D, otro motor

gráfico, permite la utilización de Java, C/C++, Python, etc. y hasta un lenguaje de scripting propio

del motor. Pero para este juego nos vemos obligados a trabajar en Java, ya que Android sólo

soporta dicho lenguaje.

Cabe mencionar, que si bien antes había visto y ejecutado algunos pequeños aplicativos en Java,

nunca antes me había embarcado en un proyecto de estas dimensiones utilizando este lenguaje.

Java tiene detrás una compañía como es Oracle, y es uno de los lenguajes más extendidos hoy

día, lo cual implica se puede encontrar mucha documentación y ayuda mediante diferentes vías.

Además su sintaxis deriva mucho de C y C++, aunque no tiene tantas facilidades de bajo nivel,

lo cual ayuda mucho ya que sí que conozco algo más esos lenguajes.

Junto con Java, para programar en Android se requiere el SDK de dicho sistema operativo

proporcionado por Google de forma gratuita. El SDK (Software Development Kit) contiene una

serie de herramientas y complementos y extensiones que nos permiten, usar componentes

propios de Android, como por ejemplo ventanas de aviso, almacenar datos en memoria, etc.

3.3 Herramientas y entorno de trabajo

Inicialmente las herramientas utilizadas para llevar una planificación correcta del proyecto han

sido una versión estudiante del Microsoft Project para realizar la planificación del proyecto y el

diagrama de Gantt correspondiente.

El entorno de trabajo para este proyecto será un PC de sobremesa. También se usará un Galaxy

Ace y Galaxy SII para compilar, probar y depurar la aplicación, debido a que aunque si bien sí

JUEGO 2D PARA ANDROID Página 20 / 47

que podemos utilizar el emulador de Eclipse, éste es bastante lento y no ofrece toda la

funcionalidad y operatividad que nos ofrece el dispositivo físico en sí, como por ejemplo, la función

multitouch.

La herramienta utilizada para programar en Java será Eclipse Juno proporcionado por Google

que viene con las herramientas del SDK de Android listas para instalar. Todo ello sobre un sistema

operativo Windows 8 Pro. Tanto el SDK como Eclipse son software gratuito.

A parte de este software también utilizaremos AndEngine. Esta herramienta, creada por Nicolas

Gramlich, es un conjunto de funciones y librerías gratuitas, que nos facilitarán la programación

para este tipo de aplicaciones. Se encargará de gestionar el movimiento de sprites, animaciones,

físicas y otra serie de aspectos que Android no incorpora.

3.4 Tecnología

AndEngine es un motor gráfico 2D que usa OpenGL ES 2 para juegos para la plataforma Android.

En AndEngine se usa una terminología propia. A continuación explicaré los conceptos básicos:

 BaseGameActivity: El BaseGameActivity es la raíz del juego, que contiene el motor y

crea la vista donde se va a dibujar todo. Hay siempre un solo Engine por cada

BaseGameActivity. Si bien es cierto que se podrían crear varios, y referenciarlos

apropiadamente pero en ningún caso esto será necesario.

 Engine: El Engine es el motor interno del juego, se encarga de ir dibujando en pantalla

y actualizando objetos en la escena, frame a frame, que contiene todo el contenido que

lleva el juego. Normalmente hay una escena por Engine en un mismo momento del

tiempo, pero en algunos casos puede haber más de una, como por ejemplo para hacer

una pantalla partida (como en el famoso Tetris). En mi caso como no necesito tener

varias escenas al mismo tiempo en pantalla, simplemente voy cambiando entre escenas

y mostrándolas.

 IResolutionPolicy: Una implementación de IResolutionPolicy interface es parte del

EngineOptions. Te hace abstraerte de la resolución del terminal, tú trabajas para una

resolución y el AndEngine se encarga del resto, si el juego fuese a ejecutarse en un

dispositivo con una pantalla de diferente resolución AndEngine, mediante las librerías de

OpenGL, escalaría la resolución más próxima a la de ese dispositivo, pero siempre

manteniendo el IResolutionPolicy que indiquemos.

 Camera: Un objeto Camera define el rectángulo de la parte de la escena actualmente

visible, no tiene porqué ser la escena completa. Normalmente hay una cámara por

escena. Hay subclases específicas que permiten hacer zoom y mover la cámara

suavemente. Por ejemplo, podríamos diseñar una escena de 3000px por 2000px y hacer

una cámara de 200*200 que siguiera a un sprite o a tu dedo mediante un evento. De

esta forma conseguiríamos un efecto como el del videojuego Pokemon en el que la

cámara sigue al personaje principal cuando se desplaza.

http://www.andengine.org/

JUEGO 2D PARA ANDROID Página 21 / 47

 Scene: La clase Scene es el contenedor para todos los objetos que se van a dibujar en

la escena, visibles o no en ese momento. Una escena puede tener Layers(capas), que

son capas para ordenar objetos. Hay subclases de la Scene como

CameraScene/HUD/MenuScene que tienen comportamientos específicos.

 Entity: Una entidad es un objeto que puede ser dibujado, como imágenes, texto, líneas,

rectángulos y otras figuras. Una entidad tiene posición/rotación/zoom/color... Casi todo

lo que vemos en una Scene hereda de Entity y se pueden aplicar EntityModifiers que nos

permitirán aplicar ciertas acciones a dichos objetos, como por ejemplo, movimiento de

un punto A a uno B, rotación...

 ITextureRegion: Una ITextureRegion define un rectángulo en el que guardaremos en

memoria la imagen en sí, probablemente de un archivo .png por ejemplo. Antes, por

temas de cómo estaba implementado AndEngine las imágenes debían ser una potencia

de 2, por suerte ya no.

 BitmapTextureAtlas: Un BitmapTextureAtlas no es más que un contenedor para

ITextureRegion’s, si bien no es necesario usarlo ya que además añade cierta complejidad

a la hora de programar, sí es cierto que mejora el rendimiento. A grandes rasgos lo que

hace este objeto es declarar un rectángulo en el que podremos encajar diferentes

imágenes permitiendo así al motor cargar todas las imágenes de una sola vez.

 IUpdateHandler: Este elemento es un objeto que se puede asignar o bien al motor del

juego o bien a la escena. En cualquiera de los casos su función es ejecutar cada vez que

se cambie de frame, un fragmento de código de tu elección.

Todas las actividades que hereden de BaseGameActivity tendrán 4 funciones y seguirán esta

estructura básica:

public class GameActivity extends BaseGameActivity

{

 public EngineOptions onCreateEngineOptions()

 {

 return null;

 }

Esta es la primera función que se ejecuta cuando cargamos el activity. En ella definiremos el

objeto camera, sus opciones, las opciones del propio engine, por ejemplo si queremos habilitar

multitouch, el sonido o música para el juego, y devolveremos el engine.

public void onCreateResources(OnCreateResourcesCallback

pOnCreateResourcesCallback) throws IOException

 {

 }

JUEGO 2D PARA ANDROID Página 22 / 47

En la función onCreateResources es donde se lleva a cabo toda la reserva de memoria de los

sprites, sonidos y los tipos de fuentes para los textos que vayamos a utilizar. En mi caso, yo he

diseñado una clase manager que sería llamada una sola vez desde aquí a la que le pasamos el

engine, la camera, el contexto, es decir la actividad de Android y un objeto

VertexBufferObjectManager, que como su nombre indica no es más que un almacén en el que

guardaremos momentáneamente(de forma totalmente automática) los datos necesarios para las

diferentes operaciones que realicemos.

public void onCreateScene(OnCreateSceneCallback

pOnCreateSceneCallback) throws IOException

 {

 }

En la función onCreateScene es donde se dibuja la escena que se mostrará en pantalla. Aquí se

crean entidades tipo Background, Sprite, Text, AnimatedSprite, etc.

public void onPopulateScene(Scene pScene, OnPopulateSceneCallback

pOnPopulateSceneCallback) throws IOException

 {

 }

Por último, tenemos la función onPopulateScene. Bien, inicialmente esta función no era ni es

necesaria, fue incorporada más tarde por Nicolas Gramlich ya que la mayoría de los juegos tienen

una pantalla de presentación(SplashScreen) y esta función simplemente hacía más cómoda su

implementación. Su uso típico se trata de crear la escena tras haber creado la escena de

SplashScreen, podríamos verlo como un segundo onCreateScene.

En el caso de los sprites y textos les indico en qué posición de la escena deberán estar. A la hora

de crear objetos del tipo sprite también he de indicar cuáles serán sus texturas y en el caso de

los textos sus fuentes (que previamente tendremos que haber definido en la función

onCreateResources).

Después de haber creado estos objetos, AndEngine nos proporciona un seguido de funciones

para trabajar con ellos. Por ejemplo la función registerTouchArea(sprite1) registra el área

ocupada por el sprite y cuando el usuario toca dicha área esta lanza un evento o interrupción. A

mí se me permite escribir el código que desee que se ejecutará cuando esta interrupción sea

lanzada, esto puede servir por ejemplo para arrastrar un sprite por la pantalla siguiendo el

movimiento del dedo.

Además de esto, tenemos funciones como setColor() o setText() para los objetos de tipo texto,

scale(tamaño) para los sprites o animate(numeroDeRepeticiones, tiempoDeAnimación) para los

sprites animados.

JUEGO 2D PARA ANDROID Página 23 / 47

4. Diseño

4.1. Clases

A continuación explicaremos con más detalle la funcionalidad y el objetivo de cada clase. En

Android cada pantalla que vislumbremos es una clase de tipo Activity*. Cuando se lanza una

actividad equivale a lanzar una nueva ventana en Windows. Además de esto, el motor gráfico

que usamos (AndEngine) nos permite tener en una misma Activity diferentes Scenes. Esto

equivale a una misma ventana en Windows pero que disponga de diferentes visualizaciones.

Todas las clases de tipo Activity tendrán las funciones onCreateEngineOptions,

onCreateResources, onCreateScene y onPopulateScene proporcionadas por AndEngine, que se

encargarán de inicializar los datos de la cámara, cargar todos los Sprites e imágenes necesarias

y crear la Scene principal de la Activity. Una actividad puede tener más de una escena. Es más,

no es recomendable crear más de una actividad para todo el juego, ya que el cambio entre

actividades es más lento que el cambio entre escenas.

4.1.1. Clase GameActivity

Esta es la clase principal del juego, aunque realmente no hace mucho porque he intentado utilizar

siempre un modelo singleton, es decir que desde aquí sólo llamamos a instancias de otras clases

que son las que realmente hacen el trabajo. A pesar de lo mencionado, hay cosas que sí se deben

hacer aquí, como la ejecución de las funciones descritas más arriba. También, al ser esta la

actividad real que ejecutará Android, tendremos que gestionar aquí todo lo relacionado con el

sistema operativo. En mi caso aquí configuro a mi gusto el sistema de pausa de la aplicación ya

que el ciclo de vida de una aplicación de Android no me conviene a la hora de pausar mi juego.

Este es el ciclo de vida de una actividad en Android:

Activity: Cada uno de estos elementos supone una interacción con el usuario (generalmente una ventana), y se
corresponde con una clase que hereda de la clase Activity.

http://code.google.com/android/reference/android/app/Activity.html

JUEGO 2D PARA ANDROID Página 24 / 47

 Figura 6: Ciclo de una actividad en Android.

Por tanto, modifico el onPause() genérico de Android por uno que realmente pause el juego ya

que el engine no viene configurado así por defecto.

4.1.2. Clase BaseScene

Esta clase es muy simple, lo único que hace es heredar de la clase Scene que viene ya predefinida

por AndEngine y añade funciones abstractas creadas por mí que heredarán las escenas que

utilizaremos en el juego. Su única función es proporcionar algo más de comodidad a la hora de

programar.

JUEGO 2D PARA ANDROID Página 25 / 47

4.1.3. Clase Cooldown

Esta clase lo único que hará será, como su nombre indica, proporcionarnos un sistema de

reutilización de un objeto, en mi caso la uso para determinar con qué cadencia podemos disparar

proyectiles.

4.1.4. Clase ResourcesManager

Esta clase es la que se encargará realmente de cargar los recursos necesarios según se vayan

necesitando y de liberarlos una vez no sean necesarios. Se ha intentado implementar un patrón

singleton de manera que cada vez que necesitemos crear algún sprite o cualquier operación que

requiera de recursos externos como imágenes, sonidos o fuentes, esta clase será instanciada

para su uso específico.

4.1.5. Clase SceneManager

Aquí como en el caso anterior, he aplicado el mismo patrón, cada vez que necesitemos gestionar

un cambio de un tipo de escena a otro instanciaremos a SceneManager y esta se encargará de

crear la nueva escena, borrar la anterior y liberar el espacio que esta ocupase en memoria. A

parte también tendrá algunos métodos que nos permitirán obtener cierta información de la

escena actualmente mostrada en pantalla.

4.1.6. Clase ObtaclePool/ProjectilePool/RewardPool/TargetsPool

Este conjunto de clases tendrán la misma función las unas con las otras con la única excepción

de los objetos que emplearán. La mecánica de la clase es crear un sistema mediante el cual

podamos llamar a la clase y esta nos proporcione un objeto de cierto tipo, por ejemplo

TargetsPool nos proveerá de un sprite animado que será una nave enemiga. Dicho objeto tras

ser usado(ya sea porque ha salido de la escena o porque ha sido destruido) será reciclado y

puesto de nuevo a disposición de cualquiera que llame a la clase. Con este método lo que

conseguimos es que en lugar de estar creando y destruyendo objetos simplemente los

reubicamos, lo cual supone una mejora de rendimiento.

4.1.7. Clase MainMenuScene

Esta clase y todas las que sigan a partir de ahora serán “clases escena”, esto es, que su función

será sencillamente la de dibujar algo en la pantalla utilizando los recursos que les proporcionará

JUEGO 2D PARA ANDROID Página 26 / 47

el ResourcesManager. Todas estas clases heredarán de la clase previamente descrita, BaseScene.

Cambiaremos entre ellas usando el SceneManager.

Esta clase en concreto será la encargada de mostrar el menú principal, por el que podremos

navegar con libertad para poder iniciar la partida, entrar al menú de opciones o salir del juego.

4.1.8. Clase FirstOptionsSubMenu/DifficultyMenuScene

Estas dos clases tienen la misma funcionalidad. Por desgracia el sistema de menú que nos da

AndEngine en mi opinión está lejos de ser óptimo, ya que debido a que el motor trabaja con

escenas, el hecho de cambiar de una parte del menú a otra(submenús) si bien de cara al usuario

no supondrá ningún inconveniente, para el desarrollador sí que lo hará ya que tendrá que

programarlo como si fuesen escenas diferentes que heredan del menú padre.

La primera, FirstOptionsMenú, será la escena en la que tengamos la primera lista de opciones,

en mi caso será dificultad y un botón de volver al menú principal.

La segunda será la escena hija de la anterior, en la que se podrá seleccionar el nivel de dificultad

en el que deseemos jugar.

4.1.9. Clase GameScene

Esta clase será la más importante, se ocupará de dibujar y gestionar todo lo que pase en la

escena de juego. Por tanto, será la que contenga la mayor parte de la lógica del juego y la que

cree todos los objetos del juego y los utilice. Aquí crearemos un IUpdateHandler que será el que

gestione las colisiones, el que se modifique el número de vidas que nos quedan y actualice los

puntos que vamos consiguiendo al eliminar enemigos.

4.1.10. Clase HighScoreScene

Esta escena sencillamente nos mostrará los 3 mejores resultados, previamente almacenados, que

hayamos obtenido a lo largo del tiempo al completar un nivel y nos permitirá pasar al siguiente.

4.1.11. Clase LoadingScene

Nos creará una escena intermedia entre las escenas de juego y el menú principal tras pulsar el

botón de Play o al volver del juego al menú pulsando el botón de Back del dispositivo. Todo

mientras se cargan los recursos necesarios para mostrar la escena siguiente, como alternativa a

esperar en una pantalla en negro.

JUEGO 2D PARA ANDROID Página 27 / 47

4.1.12. Clase SplashScene

Esta clase nos mostrará la primera escena que veremos siempre al entrar al juego, sólo nos

mostrará un logo con el nombre del juego durante unos segundos y desaparecerá para dar paso

al menú principal.

Por supuesto, como he hecho que cada escena sea también una clase independiente eso implica

que pueden ser instanciadas varias veces con resultados diferentes. En el caso de GameScene,

esta clase se usaría para todos los niveles y nos permite cambiar detalles del nivel en concreto

en el que estemos(dificultad, enemigos, escenario…) con muy poco esfuerzo. O nos permitiría

crear diversas pantallas de carga distintas sin necesidad de crear una escena totalmente nueva.

El diagrama de flujo que seguirá el juego será de la siguiente manera:

 Figura 7: Diagrama de flujo del juego.

JUEGO 2D PARA ANDROID Página 28 / 47

4.2. Diseño de la Base de Datos

El diseño de la base de datos es el último de los puntos del diseño. Aunque lo estoy llamando

bases de datos no se trata de bases de datos convencionales, utilizando SQL por ejemplo. Si no

que Google ha diseñado para Android un sistema llamado SharedPreferences. La clase

SharedPreferences nos proporciona un framework general que nos permite guardar y recuperar

pares de tipos de datos primitivos. Se puede usar SharedPreferences para guardar booleans,

floats, ints, longs y strings. Estos datos guardados perdurarán a través de todas las sesiones que

el usuario inicie de esa aplicación(incluso si la aplicación se destruye).

Para obtener un objeto de la clase SharedPreferences. Utilizaremos unos de estos dos métodos:

 getSharedPreferences() - Usado si se necesitan varios archivos identificados por nombre

en los que almacenar datos.

 getPrecferences() – Usado si tan sólo necesitas un archivo de preferencias en el que

almacenar datos de tu aplicación.

Para escribir valores:

1- Llamamos a edit() para obtener un SharedPrefences.Editor.

2- Añadimos los datos con métodos como putBoolean() y putString.

3- Y confirmamos que queremos introducir los datos con un commit().

Para leer valores utilizamos métodos como getBoolean() y getString().

Como se puede observar la ventaja que tiene sobre el uso bases de datos tradicionales es que es

mucho más simple que estas. Pero la desventaja es que sólo nos permite relacionar dos datos

entre ellos y no nos permite hacer búsquedas compuestas ni crear tablas de gran tamaño, etc.

Es decir, las bases de datos son mucho más potentes que este sistema. Pero en mi caso que sólo

tenemos que almacenar un poco de información por cada nivel nos sirve perfectamente.

Los datos que almacenaremos al crear el objeto SharedPreferences inicialmente serán:

editor.putBoolean("INITIALIZED", true);

 editor.putInt("Level1HighScore1", 0);

 editor.putInt("Level1HighScore2", 0);

 editor.putInt("Level1HighScore3", 0);

 editor.putInt("Level2HighScore1", 0);

 editor.putInt("Level2HighScore2", 0);

 editor.putInt("Level2HighScore3", 0);

 editor.putInt("Difficulty", 2);

 editor.putInt("CurrentLevel", 1);

 editor.putInt("CurrentLifes", 3);

JUEGO 2D PARA ANDROID Página 29 / 47

Al principio creamos una entrada que comprobaremos cada vez que entremos al juego para saber

si hemos inicializado la base de datos. Es decir lo anteriormente descrito sólo se ejecutará al

instalar la aplicación. Luego todos los datos se actualizarán a tiempo real.

JUEGO 2D PARA ANDROID Página 30 / 47

JUEGO 2D PARA ANDROID Página 31 / 47

5. Funcionamiento de la aplicación

5.1. Descripción

El funcionamiento básico de la aplicación se divide en dos partes:

 Una parte estática dedicada a la presentación del logo del juego y la selección de

dificultad en el menú de opciones.

 Una segunda parte donde el jugador destruirá a las naves enemigas que se presenten

intentando no impactar contra ellas ni contra los meteoritos que se interpongan en su

trayectoria. Tambíen intentando reunir las esferas de energía que le proporcionarán un

pequeño bonus de puntos. El nivel se completará si el jugador consigue no ser destruido

dentro del límite de tiempo, ya que cada vez que lo haga perderá una vida y sólo

dispondrá de tres para superar el juego.

5.2. Parte Estática

5.2.1. Pantalla de presentación.

En esta primera pantalla veremos como aparece progresivamente el logotipo del juego y tras

unos segundos se atenúa hasta desaparecer.

Figura 8: Pantalla presentación.

JUEGO 2D PARA ANDROID Página 32 / 47

5.2.2. Menú principal y de opciones

Desde la pantalla de presentación iremos al menú de opciones, en esta pantalla podremos, a

parte de iniciar una partida, navegar por el menú de opciones y marcar la opción de dificultad en

la que queramos jugar. Tendremos para elegir entre fácil, normal o difícil. Si seleccionásemos la

opción de Play iniciaríamos una partida. En caso de ser la primera vez que ejecutamos el juego

o en caso de haber dejado una partida a medias automáticamente continuaremos desde el último

nivel en el que salimos de la aplicación y con el número de vidas que nos quedasen.

 Figura 9: Pantalla de menú principal.

JUEGO 2D PARA ANDROID Página 33 / 47

Figura 10: Pantalla de menú de opciones.

Figura 11: Pantalla de opciones de dificultad.

JUEGO 2D PARA ANDROID Página 34 / 47

5.3. Parte Dinámica

Aquí estará la parte del juego en la que podremos jugar realmente.

5.3.1. Empezar juego

En esta pantalla podremos hacer dos movimientos básicos desplazar nuestra nave de forma

vertical para esquivar tanto las naves enemigas como los meteoritos o recoger esferas de energía

y disparar a las naves enemigas ya sea para sumar puntos como para no impactar contra ellas y

morir. Esta parte tendrá a su vez dos partes también:

5.3.1.1. Pantalla de juego

En esta parte se desarrolla toda la mecánica anteriormente descrita, aquí podremos disparar a

las naves enemigas que surgirán del borde derecho de la escena y se dirigirán al izquierdo. Para

disparar sencillamente tocamos la pantalla en el punto a donde queramos dirigir el proyectil láser

y este se moverá en línea recta hacía el punto marcado. Para mover nuestra nave tocaremos el

sprite y lo arrastraremos a la posición que deseemos dentro del mismo eje vertical.

 Figura 12: Pantalla de juego.

JUEGO 2D PARA ANDROID Página 35 / 47

5.3.1.2. Visualización de resultados

Después de transcurrido un tiempo que irá incrementando según el nivel y la dificultad nos

aparecerá en pantalla un mensaje que nos indicará que hemos completado el nivel y tras unos

segundos iremos a una pantalla de clasificación en la que podremos observar nuestras tres

mejores puntuaciones en ese nivel.

 Figura 13: Pantalla de visualización de resultados.

5.4. Puesta en marcha

Se ha creado una interfaz muy intuitiva con la finalidad de poder usar la aplicación sin necesidad

de manuales.

Las aplicaciones en AndEngine tienen el problema de que el emulador de Eclipse actualmente no

funciona demasiado bien y no permite hacer ciertas cosas. Esto implica que todas las prueba se

deben hacer en algún dispositivo real con Android. El móvil ha sido un Galaxy Ace y el juego no

da errores pero sí un problema. El problema en cuestión es que tras cambiar varias veces entre

escenas en el móvil transforma todos los sprites de la pantalla en rectángulos de colores y

pasados unos instantes la aplicación se cierra.

A continuación detallaré las características básicas del dispositivo en el que se han realizado la

mayoría de pruebas y se ha depurado el código:

- Pantalla de 3.5 pulgadas y 480 pixeles de alto por 320 pixeles de ancho.

- Dimensiones 112.4 x 59.9 x 11.5 mm.

- 2GB de almacenamiento externo, 158MB de interno y 278MB de memoria RAM.

JUEGO 2D PARA ANDROID Página 36 / 47

- Procesador Qualcomm MSM7227 800MHz, GPU Adreno 200.

- TFT touchscreen capacitativo, 16M colores(permite multitouch).

- Bateria Standard, Li-Ion 1350 mAh.

- Android OS, v2.3.6 Gingerbread.

La instalación de la aplicación no requiere de la atención del usuario y la gestión de los datos se

hace automáticamente en segundo plano.

JUEGO 2D PARA ANDROID Página 37 / 47

6. Test y pruebas

Inicialmente el proyecto ha estado desarrollado con un pc con Microsoft Windows 8 Pro, con el

entorno de programación Eclipse instalado. La aplicación está pensada para dispositivos que usen

Android y por ese motivo se han hecho todas las pruebas sobre un Galaxy Ace, que tiene el

sistema Android nativo distribuido por Google, sin ningún tipo de modificación hecha por los

fabricantes (como es el caso de la gran mayoría de móviles de LG, Samsung, HTC...)

Mi opinión es que el dispositivo dispuesto para las pruebas es lo que ahora se considera un

teléfono de gama baja y no ha dado problemas de rendimiento o de sobrecalentamiento. Esto es

bastante bueno teniendo en cuenta que los smartphones que se venden a día de hoy son igual o

por lo general mucho más potentes que el Galaxy Ace y por tanto deducimos que si el juego ha

funcionado bien en este dispositivo con tan pocas prestaciones así debería de ser con otros

dispositivos mejores. Visto esto podríamos decir que los requisitos mínimos para la aplicación

serían los siguientes:

- 10MB de almacenamiento interno como mínimo y 158MB de memoria RAM.

- Procesador Qualcomm MSM7227 800MHz o mejor.

Las pruebas realizadas se han basado en usar la aplicación en dos dispositivos

diferentes(Samsung Galaxy Ace 2.3.6 GingerBread modificada y Samsung Galaxy SII con Android

4.1.2 JellyBean), ya que es el número de dispositivos a mi alcance. También mediante el uso del

emulador de Eclipse podemos realizar pruebas emulando diferentes versiones de Android y

configurando el Android Virtual Device Manager para que tenga las mismas características que

ciertos dispositivos físicos de los que no disponemos.

Los smartphones configurados y emulados son: Nexus S con Android 4.0.3, Samsung Galaxy SII

con Android 2.3.7 y 4.0.1 y HTC Desire HD 2.2 y en ninguno de ellos ha habido errores de

ejecución. El único problema ha sido en mi propio terminal, quizás por ser una versión modificada

de Android. Aunque haciendo una búsqueda por la red sobre el problema al parecer es un asunto

que tiene que ver con el modelo del hardware usado, a la que no se ha dado solución por parte

del desarrollador de AndEngine.

El juego está pensado para una pantalla con una resolución de 480x320. Para resoluciones

mayores como en el otro dispositivo físico en el que lo probé(Galaxy SII) observé que el propio

AndEngine usando OpenGL redimensionaba todo(tanto la escena como los objetos en ella

dibujados) dejando unos bordes negros y para resoluciones menores no se han hecho pruebas,

pero en este caso también se debería redimensionar la pantalla para adaptarse, aunque en mi

opinión no es recomendable jugar en esas resoluciones debido a que ya con la resolución de

480x320 resulta bastante más complicado jugar que en resoluciones mayores en las que los

propios dedos del jugador no entorpecen tanto al ser la pantalla algo más grande.

JUEGO 2D PARA ANDROID Página 38 / 47

Samsung Galaxy Ace

Prueba Resultados

Carga de la

Splashscreen.

La pantalla de presentación aparece lentamente y se va apagando poco a poco hasta dar

paso al menú de forma correcta. Funcionan los efectos.

Carga del juego. Cuando se pulsa el botón Play se crea una nueva partida sin problemas y todo se pone en

movimiento sin ralentizaciones.

Navegar por los

menús.

Ningún problema o fallo.

Eliminar enemigos y

mover la nave.

No hay errores, los sprites de los enemigos desaparecen para ser sustituidos por una

animación de explosión y se puede mover la nave al mismo tiempo que se dispara.

Superar nivel. Tras un mensaje y una breve espera se pasa a la pantalla de clasificación y se puede

continuar al siguiente nivel. Sin fallos.

Almacenaje de datos. Toda la información guardada se mantiene tras completar el nivel y tras destruir la aplicación

y volver a crearla. Todo correcto.

 Tabla 14: Tabla de test – Samsung Galaxy Ace.

Nexus S

Prueba Resultados

Carga de la

Splashscreen.

Sin errores.

Carga del juego. Cuando se pulsa el botón Play se crea una nueva partida sin problemas y todo se pone en

movimiento sin problemas.

Navegar por los

menús.

Ningún problema o fallo.

Eliminar enemigos y

mover la nave.

Los sprites desaparecen y se mueven cuando deben hacerlo y las animaciones funcionan

correctamente.

Superar nivel. Todo correcto.

Almacenaje de datos. Se conserva toda la información.

 Tabla 15: Tabla de test – Nexus S.

Samsung Galaxy SII 2.3.7

Prueba Resultados

Carga de la

Splashscreen.

Sin errores.

Carga del juego. Cuando se pulsa el botón Play se crea una nueva partida sin problemas y todo se pone en

movimiento sin problemas.

Navegar por los

menús.

Ningún problema o fallo.

Eliminar enemigos y

mover la nave.

Los sprites desaparecen y se mueven cuando deben hacerlo y las animaciones funcionan

correctamente.

Superar nivel. Todo correcto.

Almacenaje de datos. Se conserva toda la información.

 Tabla 16: Tabla de test – Samsung Galaxy SII 2.3.7.

JUEGO 2D PARA ANDROID Página 39 / 47

Samsung Galaxy SII 4.0.1

Prueba Resultados

Carga de la

Splashscreen.

Sin errores.

Carga del juego. Cuando se pulsa el botón Play se crea una nueva partida sin problemas y todo se pone en

movimiento sin problemas.

Navegar por los

menús.

Ningún problema o fallo.

Eliminar enemigos y

mover la nave.

Los sprites desaparecen y se mueven cuando deben hacerlo y las animaciones funcionan

correctamente.

Superar nivel. Todo correcto.

Almacenaje de datos. Se conserva toda la información.

 Tabla 17: Tabla de test – Samsung Galaxy SII 4.0.1.

HTC Desire HD

Prueba Resultados

Carga de la

Splashscreen.

Sin errores.

Carga del juego. Cuando se pulsa el botón Play se crea una nueva partida sin problemas y todo se pone en

movimiento sin problemas.

Navegar por los

menús.

Ningún problema o fallo.

Eliminar enemigos y

mover la nave.

Los sprites desaparecen y se mueven cuando deben hacerlo y las animaciones funcionan

correctamente.

Superar nivel. Todo correcto.

Almacenaje de datos. Se conserva toda la información.

 Tabla 18: Tabla de test – HTC Desire HD.

Samsung Galaxy SII 4.1.2

Prueba Resultados

Carga de la

Splashscreen.

Al ser un dispositivo físico real y no un emulador se puede observar una mejora muy notable

de la velocidad de instalación y el arranque de la app.

Carga del juego. Cuando se pulsa el botón Play se puede observar una clara mejoría en lo que a velocidad se

refiere al cambiar de escenas.

Navegar por los

menús.

Ningún problema o fallo.

Eliminar enemigos y

mover la nave.

Los sprites desaparecen y se mueven cuando deben hacerlo y las animaciones funcionan

correctamente.

Superar nivel. Todo correcto.

Almacenaje de datos. Se conserva toda la información.

 Tabla 19: Tabla de test – Samsung Galaxy SII 4.1.2.

JUEGO 2D PARA ANDROID Página 40 / 47

En lo que a la base de datos se refiere se comprobó varías veces que las puntuaciones se

almacenaban correctamente para cada nivel y se mantenían.

En el apartado de desarrollo del juego hubieron muchos fallos a nivel de programación, pero

todos fueron resueltos a medida que se depuraba el código. Fallos a nivel de lógica del juego

también hubo bastantes. El más significativo fue que para poder mover el sprite de la nave y

disparar el láser al mismo tiempo la función de multitouch tenía que estar siempre activada en el

engine, pero eso suponía un problema. Al poder procesar dos o más dedos al mismo tiempo

podías tocar la pantalla sin parar y eso ocasionaba que el juego tuviese una dificultad casi nula,

ya que lo único que teníamos que hacer era esquivar los meteoritos. Es por esta razón que se

creó la clase Cooldown para hacer que sólo se pudiese disparar cada cierto tiempo.

JUEGO 2D PARA ANDROID Página 41 / 47

7. Conclusiones

7.1. Desviación temporal

Al contrario de lo previsto, la parte de diseño que inicialmente consideré que llevaría poco tiempo,

no lo ha hecho. Este quizás ha sido el error más grave en lo que a este apartado se refiere. Esto

ha sido a causa de que aunque sí se previó el tiempo que llevaría el desarrollo y aprendizaje de

los diferentes lenguajes y solución de errores de forma dinámica, no se calculó bien la gran

cantidad de tiempo invertida en la edición de imágenes y sonidos, debido a que se desconocía la

complejidad de dicho proceso y se consideró que sería más simple. Nunca antes había utilizado

programas de edición de imágenes y sonidos como los usados para el proyecto, en mi caso he

usado Gimp 2.0 para las imágenes y Audacity para los sonidos, ambos son gratuitos.

Concepto Tiempo Estimado Tiempo Real

Iniciación 2h 2h

Planificación 61h 44h

Análisis 34h 31h

Diseño 55h 95h

Desarrollo 245h 205h

Test i pruebas 34h 20h

Implementación 15h 5h

Generación de documentos 30h 20h

Cierre del proyecto 1h 1h

Defensa del proyecto 24h 10h

Total 501h 433h

 Tabla 20: Tabla de Desviación temporal.

7.2. Falta de recursos de trabajo

Para facilitar el desarrollo de este proyecto, más que ninguna otra cosa, hubiese necesitado la

ayuda de algún diseñador y alguien con conocimientos de edición de sonidos. Ninguno de los dos

procesos me ha aportado demasiado en lo que a aprendizaje del sistema o el motor gráfico se

refiere y ambos han sido muy costosos en lo que a tiempo respecta. En parte causado todo por

ideas que tenía sobre cómo mostrar una imagen y no saber cómo hacerlo o bien tras invertir

cierta cantidad de horas intentándolo descubría que no se podían llevar a cabo.

En lo que a sonido respecta, si bien el impacto no ha sido tan agravado, cabe mencionar que no

tenía ni idea de cómo utilizar la enorme cantidad de posibilidades que ofrecía Audacity ni qué

debía modificar para conseguir los resultados que deseaba, por lo que modificaba parámetros a

ciegas y se convirtió en un proceso de prueba y error un poco engorroso.

JUEGO 2D PARA ANDROID Página 42 / 47

Dicho retraso ha ocasionado que ideas que aportaban algo más de riqueza a la lógica del juego

que tenía muy claras para su implementación no se hayan podido llevar a cabo en el tiempo que

poseía.

7.3. Ampliaciones

Si hubiera tenido un equipo con más personas se podrían haber implementado cosas como

diferentes tipos de láser, más animaciones, más objetos para recoger con distintos efectos

beneficiosos para el usuario, un sistema de compra de mejoras para la nave, sistema de

puntuaciones online o incluso un modo de combate Jugador vs. Jugador.

Como ya he dicho, he tenido que editar yo mismo las imágenes con las cuales creamos los sprites

del juego. La mayoría de las imágenes que se han usado han sido sacadas de bases de datos de

imágenes libres, es decir que aunque han sido creadas por otra persona y posteriormente

editadas por mí, en teoría poseo el permiso para utilizarlas como a mí me convenga, pero no

puedo estar seguro. Esto significa que la aplicación no puede subirse al Google Market ahora

mismo ya que si lo hiciera y percibiera ingresos podrían denunciarme por copyright.

Como ya he dicho arriba la cantidad de ampliaciones que puede recibir un juego de este género

son innumerables, no hay más que observar otros juegos de esta misma categoría para darse

cuenta de las posibilidades. La primera que yo haría sería implementar un sistema de compra de

mejoras para la nave utilizando los puntos ganados durante los diferentes niveles. Esto tal y como

está dispuesto actualmente la codificación de la app no sería para nada tan complicado. Tal vez

podríamos añadir al menú principal el botón “mejoras”, al pulsarlo se crearía un nuevo tipo de

escena en la que tendrías las mejoras disponibles, quizás desbloqueables según el nivel máximo

que se haya alcanzado. Hasta este punto todo sería muy sencillo de implementar debido a como

están organizadas las clases del proyecto. En cuanto las mejoras posibles, pues en mi opinión

podrían ser muy variadas, por ejemplo tenía la intención inicial de implementar un tipo de objeto

recogible que te proporcionase un escudo que te protegiese del daño durante unos instantes,

esto se podría implementar así o como mejora, activable cada x tiempo pulsando un botón en el

HUD.

Otra posible ampliación seria permitir el juego de jugador contra jugador online. Esto significaría

que a través de internet un jugador podría jugar contra otro. Además también se podría hacer

un sistema de puntuaciones o logros en función de estas batallas.

A nivel de configuración podría permitir al usuario elegir si desea que el teléfono vibre o no, o si

desea eliminar las animaciones. A mi parecer esto no era muy necesario ya que en la gran mayoría

de teléfonos el juego funcionará fluidamente y no debería de dar problemas.

JUEGO 2D PARA ANDROID Página 43 / 47

Más adelante el juego podría también contar con un mayor número de niveles y unidades

enemigas, obstáculos o incluso jefes finales para cada nivel.

De momento los enemigos no se diferencian de los meteoritos más que en la velocidad que

pueden alcanzar pero no sería muy complicado hacer que te disparasen también en los niveles

muy avanzados.

7.4. Valoración del proyecto

De los objetivos propuestos se han conseguido tanto los funcionales como los no funcionales.

Cabe destacar que el juego podría haber tenido mucha más jugabilidad, durabilidad, complejidad,

animaciones y efectos, etc. pero se ha de tener cuenta que por desgracia debido al

desconocimiento del entorno y plataforma para que se programaba la mayor parte del tiempo se

ha invertido en aprender y no en parte creativa del proyecto como me hubiese gustado.

7.5. Valoración personal

Personalmente creo que este proyecto me ha ayudado mucho a conocer el lenguaje Java, algo

del lenguaje específico de Android, aunque no mucho ya que en su mayor parte el motor gráfico

hace de capa intermedia y con él es con el que interactuamos la mayoría de veces, y como acabo

de destacar, sobretodo he aprendido sobre AndEngine, gráficos 2D y los problemas que pueden

surgir a medida que se desarrolla un proyecto utilizando esta herramienta.

Todo el trabajo realizado me ha parecido interesante, el trabajar con imágenes en movimiento y

arreglar errores visuales ocasionados por un error en la codificación no me ha parecido para nada

pesado, al contrario, resolver dichos errores me parecía satisfactorio, en cambio los fallos

provocados por la mala edición de alguna imagen y la correspondiente reedición de esta sí que

lo ha hecho.

Finalmente destacar que toda la implementación y ver cómo se va dando forma a las ideas que

van surgiendo me ha parecido muy entretenido y si bien al principio no me lo parecía, al final el

hecho de buscar ejemplos o tutoriales o descomponer los propios ejemplos proporcionados por

el creador de AndEngine y readaptarlos para aplicarlos como solución a tu problema me ha

parecido muy didáctico en lo que a programar se refiere.

JUEGO 2D PARA ANDROID Página 44 / 47

JUEGO 2D PARA ANDROID Página 45 / 47

Bibliografía

 Foro oficial de AndEngine en el que se exponen soluciones a muchos de los problemas

más comunes y donde hacer consultas a otros programadores:

http://www.andengine.org/forums/gles2/

 StackOverflow: web en la que se proponen preguntas a otros programadores, no sólo de

AndEngine si no de índole general:

 http://stackoverflow.com/

 Introducción a AndEngine(tutorial desactualizado):

http://droideando.blogspot.com.es/2011/03/introduccion-andengine-parte-i.html

 Blog personal en el que se explican muchas de las funcionalidades de AndEngine:

http://www.matim-dev.com/tutorials.html

 AndEngine Guides: Blog en el que se explican con gran detalle algunas de los tipos de

datos y otros elementos que emplea AndEngine:

http://andengineguides.wordpress.com/

 Video explicativo sobre la configuración de Eclipse para usar AndEngine:

http://www.youtube.com/watch?v=lQW1WQOCri0

 Ejemplos de AndEngine:

 https://github.com/nicolasgramlich

http://www.andengine.org/forums/gles2/
http://stackoverflow.com/
http://droideando.blogspot.com.es/2011/03/introduccion-andengine-parte-i.html
http://www.matim-dev.com/tutorials.html
http://andengineguides.wordpress.com/
http://www.youtube.com/watch?v=lQW1WQOCri0
https://github.com/nicolasgramlich

JUEGO 2D PARA ANDROID Página 46 / 47

JUEGO 2D PARA ANDROID Página 47 / 47

Signat: Sergio Pérez Carretero

