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Chapter 4 
 

 

 

 

Indonesia Case Study description 
 

 

 

 

4.1 TerraSAR-X spacecraft 

 

TerraSAR-X is a German Earth observation satellite that was launched on June 15, 2007 in 

Baikonur (Kazakhstan) [32]. The partners of the missions are the German Aerospace Center 

(DLR), the German Federal Ministry of Education and Research and Astrium GmbH. The 

satellite is controlled from the DLR ground station in Weilheim. Since January 7, 2008, when 

the mission became fully operational, TerraSAR-X is providing value-added SAR data for 

scientific, commercial and research-and-development purposes [33]. 

 

TerraSAR-X acquires high-resolution and wide-area radar images independent of the weather 

conditions and presence/absence of sunlight. Its primary payload is an X-band radar sensor 

with a range of different modes of operation in the X-band [34], allowing it to record images 

with different swath widths, resolutions and polarizations. 

 

The satellite has a Sun-synchronous circular repeat orbit with a repeat period of 11 days. The 

orbit has a pre-defined Earth-fixed reference orbit, which closes after a repeat cycle of 167 

revolutions in 11 days (its time required to orbit the Earth is 94.85 minutes) [35]. 

 

Length 4.88 metres 

Diameter 2.4 metres 

Launch mass 1230 kilograms 

Payload mass About 400 kilograms 
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Radar frequency 9.65 Gigahertz 

Power consumption 800 watt on average 

Orbital altitude 514 kilometres 

Rocket Dnepr 1 

Inclination angle with respect to the 

equator 

97.4 degrees 

Operational life At least 5 years an extended lifetime of that 

least another 5 years (beyond 2018) is 

expected by the operator DLR 

 

 

The different modes of operation are the Spotlight mode, in which an area of 10 kilometres 

long and 10 kilometres wide is recorded at a resolution of 1 to 2 metres; the Stripmap mode, 

which covers a 30-kilometre-wide strip at a resolution between 3 and 6 metres; and the 

ScanSAR mode, in which a 100-kilometre-wide strip is captured at a resolution of 16 metres 

[36]. Hence, the use of the sensor can be tailored to the need of the application.  

 

 

 

 

 

 

 

 

 

 

 

The antenna of TerraSAR-X is an electronically separable Active Phases Array Antenna with 

a size of 4.78 m x 0.7 m. During nominal operations, the SAR antenna is oriented with an 

angle of 33.8° degrees off the nadir direction looking right of the flight direction [37]. The 

antenna allows a variety of polarimetric combinations: single or dual-polarization and even 

full polarimetric data takes, are possible. Depending on the selected imaging mode there is 

available one combination or other. 

Fig. 10. Artist view of TerraSAR-X satellite 

Table 2. Main parameters of TerraSAR-X satellite 
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Depending on the desired application, one of four different product types (processing levels) 

can be selected (Table 3) [37]. All the processing levels are available for the different modes 

of operation (StripMap, ScanSAR and SpotLight). 

 

 

 

4.2 TerraSAR-X delivery file format 

 

The TerraSAR-X Basic Image Product is delivered in a standard set of components [38]. One 

of its components is the annotation information file, provided in xml format, which contains a 

complete description of the Level 1b product components and is considered as metadata 

source (provides information about the mission, the acquisition and the orbit, among others). 

The image channels contain one or more polarimetric channels in separate binary data 

matrices. These matrices are in the DLR-defined COSAR binary format when the data to 

deliver is complex and in GeoTiff format when the detected products are delivered.  

 

The set also includes more files, like auxiliary raster files, quicklook images and map plots. 

The package is supplemented by additional administrative information, which describes the 

product delivery package and contains additional facility related information (e.g. detailed 

copyright information), and either archived into a tar file or put onto a medium. 

Processing Level Contents 

SSC 

(Single Look Slant Range 

Complex) 

Single look product of the focused radar signal.  The 

data are represented as complex numbers containing 

amplitude and phase information. 

MGD 

(Multi Look Ground Range 

Detected) 

Detected multi look product with reduced speckle 

and approximately square resolution cells. 

GEC 

(Geocoded Ellipsoid 

Corrected) 

Multi-look detected product, which is resampled and 

projected to the WGS84 reference ellipsoid assuming 

one average height. 

EEC 

(Enhanced Ellipsoid 

Corrected) 

Multi-look detected product, projected and resampled 

to the WGS84 reference ellipsoid and then corrected 

using an external Digital Elevation Model (DEM). 

Table 3. Processing levels of TerraSAR-X satellite 
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4.3 Description of the Indonesia dataset 

 

The dataset used in this thesis covers an area of Pangkalan Bun (Figure 11), a town in Central 

Kalimantan Province, Indonesia and was taken on 13
th

 March, 2008. Its acquisition mode is 

TerraSAR-X StripMap and the processing level is SSC (Single Look Slant Range Complex), 

hence the image channel is in CoSAR format. It has dual-polarization mode and an incidence 

angle of 33.7º. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some of the characteristics of the dataset are shown in Table 4. 

 

Number of rows (ground range) 23361 

Number of columns (azimuth) 10288 

Image data format CoSAR 

Image data depth 32 meters 

Polarization mode HH-VV (dual-pol) 

Ground range resolution 2.12 metres 

Azimuth resolution 6 meters 

Start time UTC 2008-03-13T22:19:55.140975 

Stop time UTC 2008-03-13T22:20:03.140925 

 

 

Due to the large area that the SAR image covers and the high computational demand that this 

implies, three different subareas (Figure 12) of the main dataset are selected to carry out the 

Fig. 11. Map of the area covered by the Case Study dataset 

Table 4. Characteristics of the TerraSAR-X Indonesia dataset 
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overall process of decomposition and classification. Working with different subareas also 

allows to check that the obtained results of the classification algorithm are independent of the 

input data. The selected subareas have some interesting zones for the posterior classification, 

like water, different types of vegetation and ships.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 shows in detail the three subsets chosen for the analysis and segmentation, relating 

its HH channel matrix image with an aerial image of the same area captured by Google Earth. 

Note that the quality of Google Earth image in subset C is quite poor, fact that difficults the 

identification of each target. Also note that the HH-channel image seems a little deformed 

since its resolution in azimuth and in range are not the same.  

Fig. 12. Reconstruction image of the entire dataset and HH channels of the three 

selected subsets 

Subset A 

Subset B 

Subset C 
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        Subset A 

        Subset B 

        Subset C 

Fig. 13. Aerial image of the three subsets captured by Google Earth and their corresponding HH 

channel matrix image. 
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Chapter 5 
 

 

 

 

H-α Decomposition applied to the Case Study 
 

 

 

 

5.1 Theory of H-α Decomposition 

 

Polarimetric decompositions are techniques used to generate polarimetric discriminators that 

can be used for analysis, interpretation and classification of SAR data [39]. These techniques 

allow the information extraction of the scattering processes that involve a specified target. 

There are two types of polarimetric decompositions; one is coherent decomposition, which is 

based in the decomposition of the scattering matrix, while the other, called incoherent 

decomposition is based in the decomposition of the coherency or covariance matrices [40]. H-

α decomposition is an incoherent decomposition that analyzes the power form (the coherency 

matrix in this case) of the scattering matrix. 

 

H-α decomposition is an entropy based decomposition method for quad polarization data 

proposed by Cloude and Pottier on 1997 [30]. This method is based on the hypothesis that the 

polarization scattering characteristics can be represented by the space of the entropy and the 

averaged scattering angle α by means of the eigenvalue analysis of Hermitian matrices. The 

H-α decomposition does not rely on the assumption of a particular underlying statistical 

distribution and so is free from the physical constraints imposed by such multivariate models. 

This method has such good properties as rotation invariance, irrelevance to specific 

probability density distributions and the coverage of the whole scattering mechanism space.  

 

In this thesis dual-polarization (HH and VV) SAR data is used, so the H-α decomposition 

method has been extended in order to be applied to this data type.  
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5.1.1 Extraction of the H-α parameters  

 

For the extraction of the entropy (H) and the alpha (α) parameters the coherency matrix 

explained in the Chapter 4 is needed. Remember that each pixel of the dual-polarization SAR 

data represents a 2 x 2 coherency matrix �! , which is nonnegative, definite and Hermitian. 

 

�! =
�!! �!"

�!" �!!
=

�!! �!"

�
∗
!" �!!

 (21) 

 

As mentioned previously, the H-α decomposition is computed by means of the eigenvalue 

analysis, so in (22), (23) and (24) the eigenvalue decomposition of the coherency matrix is 

done [30]. 
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�! = �
!!! cos�! sin�!�

!!! ! (24) 

 

The subscript H denotes the Hermitian matrix, which is the conjugate transpose, so U
H 

is 

equivalent to U
*T

.  

 

Once the eigenvalues λ1 and λ2 and the eigenvectors u1 and u2 of the coherency matrix have 

been obtained, it is possible to compute the entropy H (25), which defines the degree of 

statistical disorder of each distinct scatter type within the ensemble, and the alpha α (26), 

which is related directly to underlying average physical scattering mechanism and hence may 

be used to associate observables with physical properties of the medium [41]. 

 

� = −�!  ���! �!

!

!!!

 (25) 

� = �!  ���
!!( �!! )
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!!!
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where Pi (27) correspond to the pseudo-probabilities obtained from the eigenvalues λ1 and λ2. 

Since the eigenvalues are rotational invariant, the entropy H and the alpha α are also roll-

invariant parameters. 

 

�! =
�!

�!
!

!!!

,    � = 1, 2 (27) 

 

Computing the preceding equations for the whole coherency matrix results in the entropy and 

alpha matrices, which have the half size of the coherency matrix due to for each group of 2x2 

pixels in the coherency matrix, one value of entropy and one value of alpha are obtained. The 

entropy values are between 0 and 1, where a high value involves higher entropy in the pixel in 

question. The values of the alpha are between 0 and 90 degrees. 

 

5.1.2 Interpretation of H-α feature space 

 

The H-α plane is divided into nine basic regions characteristic of different scattering behavior, 

as shown in Figure 14 [30]. The basic scattering mechanism of each pixel of a polarimetric 

SAR image can be identified by comparing its entropy and α parameters to fixed thresholds. 

The location of the boundaries of the regions is set based on the general properties of the 

scattering mechanisms, but they can be modified to fit a particular dataset. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
    Fig. 14. H-α classification plane 
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Table 5 shows the typical scattering mechanism of each of the nine zones of the H-α feature 

space as well as its boundaries. Each zone is represented with a different color that will be 

useful for the results representation in Chapter 5.3. 

 

Zone Color Scattering mechanism Boundaries 

1  Low entropy surface scattering Alpha <= 40 and H <= 0.6 

2  Low entropy dipole scattering  40 < Alpha <= 46 and H <= 0.6 

3  Low entropy multiple scattering  Alpha > 46 and H <= 0.6 

4  Medium entropy surface scattering Alpha <= 34 and 0.6 < H <= 0.95 

5  
Medium entropy vegetation 

scattering 
34 < Alpha < 46 and 0.6 < H <= 0.95 

6  
Medium entropy multiple 

scattering  
Alpha >= 46 and 0.6 < H <= 0.95  

7  High entropy vegetation scattering  34 < Alpha < 46 and H > 0.95 

8  High entropy multiple scattering  Alpha > 46 and H > 0.95 

9  
High entropy surface 

scattering (nonfeasible) 
Alpha <= 34 and H > 0.95 

 

Table 5. Zones of H-α feature space 

 

The different boundaries in the H-α plane discriminate between surface reflection, volume 

diffusion and double bounce reflection along the α axis and low, medium and high degree of 

randomness along the entropy axis [30]. Surface scattering is characteristic for agriculture 

fields, bare soils, flat surfaces and calm water, volume diffusion appears mainly over forested 

areas and double bounce scattering is typical for urban areas and buildings. 

 

The alpha angle varies between 0° and 90° and allows the identification of the type of 

scattering process. If α = 0°, the scattering is related to plane surface, whereas for α = 45°, the 

result shows the scattering characteristics are those of a dipole. Between α = 0° and α = 45°, it 

results in an irregular surface and for α = 45° to α = 90° the response is the result of a double 

bounce scatterer. 

 

Lower values for entropy means that it is easier to extract information from the scattering. A 

higher value for entropy indicates that there are more than one scattering mechanisms and that 

they are equal in strength [42]. So, there is an increasing disability to differentiate scattering 

mechanisms as the entropy increases. If the entropy is close to zero, the alpha angle gives the 
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dominant scattering mechanism for that resolution cell i.e., scattering is volume, surface or 

double bounce. Entropy increases as a natural measure of the inherent reversibility of the 

backscatter data; hence it can be used for identification of underlying scattering mechanism. 

 

5.2 Application of H-α Decomposition to the Case Study  

 

The data flow diagram for the work carried in Matlab out using the Indonesia dataset is 

illustrated in Figure 15. 

 

 

 

 
The data flow has been applied to the three subsets of the Indonesia dataset and the results are 

shown in the Chapter 5.3. 

 

5.3 Decomposition results of the Case Study 

 

According to the flow diagram of Figure 15, the input dual-polarized COSAR Indonesia 

dataset has been read to extract separately the HH-channel and VV-channel matrices (Figure 

16). Although the process has been applied to the three subsets of the Indonesia dataset, for 

the firsts steps it is shown only the subset A.  

Input dual 
COSAR data 

Read input and 
arrange as 

Sinclair matrix 
(HH and VV) 

Apply 
multilook to the 

data (5x5 
window) 

Compute 
coherency 
matrix of 

multilooked 
data 

H-alpha 
computation 

for dual 
COSAR 

 Fig. 15. Overall data flow diagram for the Case Study  

Fig. 16. Polarimetric channels of the subset A: (a) HH-channel, (b) VV-channel  

(a) (b) 
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The calm river water appears like a dark area in the SAR images since most of the incident 

radar pulses are specularly reflected away so very little energy is scattered back to the radar 

sensor. Forests and vegetation are usually moderately rough on the wavelength scale. Hence, 

they appear as moderately bright features in the SAR image. In the right-top corner of Figure 

16 very bright targets appear, which indicates double-bounce effect where the radar pulse 

bounces off the horizontal ground towards the target and then the pulse is reflected from one 

vertical surface of the target back to the sensor. It happens because in this zone there are some 

buildings. 

 

Once the HH-channel and VV-channel have been extracted, a square multilook window of 

five pixels has been applied in order to reduce the speckle noise that appears often is SAR 

images and create a more homogeneous image. The speckle noise is formed from coherent 

summation of the signals scattered from ground scatterers distributed randomly within each 

pixel.  

 

 

 

After applying the speckle removal filter (Figure 17) there is not appreciated a substantial 

visual improvement in the image quality regarding the unfiltered input; however, for the 

computation of the coherency matrix this step is mandatory since it can considerably affect to 

the final results. 

 

Once the multilooked HH-channel and VV-channel have been obtained, the coherency matrix, 

which will be fundamental for the H-α decomposition, is computed. With the obtained 

Fig. 17. Polarimetric channels of the subset A with 5x5 multilook window: (a) HH-channel, (b) VV-

channel 

(a) (b) 
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coherency matrices (one for each subset), the H-α decomposition explained in 5.1 can be 

applied to the three different subsets of the Indonesia dataset.  

 

• Subset A 
 

 

In Figure 18.a the entropy of the subset A is shown. The highest values of entropy appear in 

the river and in some areas of the forest (mainly located at the right of the image). For smooth 

river surfaces, with little or no relief at the scale of the radar wavelength, there is little return 

energy as the incident wave undergoes specular reflection. These areas are associated with 

high alpha and high entropy, indicating that very low amplitude backscatter is mainly random 

noise. Forest areas with high entropy appear since they are areas with more sparse vegetation 

and dryer than the rest of the forest. In areas of dry soil some of the incident radar energy is 

able to penetrate into the soil surface, resulting in less backscattered intensity. The rest of the 

forest, occupying the main part of the image, has medium entropy due to the increased density 

of vegetation in a uniform way. The zones with the lowest values of entropy appear in the left 

of the image where there are some crops. Those crops follow a more ordered and 

homogeneous structure than the forests, which entails in lower values of entropy. 

 

In Figure 18.b the alpha angle of the subset A is shown. Medium-high alpha values appear in 

the river and some forests zones (the same areas that have the highest values of entropy) as a 

volume diffusion mode. The crops have the lowest alpha (with values lower than 30 degrees), 

which indicates surface scattering. In the top right of the image as well as in the bottom left, 

there are some very high alpha values due to in these zones there are some buildings with 

medium height (Figure 19.a and 19.b) that generates double bounce scattering, so the radar 

  Fig. 18. Parameters extracted from the subset A: (a) entropy, (b) alpha angle 

(a) (b) 
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beam bounces twice off the ground and the wall surfaces and most of the radar energy is 

reflected back to the radar sensor.  

 

 

The corresponding H-α plane for the subset A is represented in Figure 20.  

 

 

Each of the nine zones of the H-α plane has been represented with their corresponding color 

according to Table 5 (Figure 20.a). This will allow doing a first classification of the subset 

depending on the zone to which each pixel belongs (Figure 21). A density plot for the H-α 

plane is shown in Figure 20.b since it is difficult to visually determine in which areas there is 

more density of pixels. The color of each point of the density plot represents the frequency of 

pixels within that region of the grid, which enables to visualize which are the more 

characteristic scattering mechanisms of the terrain.  

Fig. 19. Zoom of the zones with the highest alpha in subset A produced by the yellow buildings. 

(a) (b) 

Fig. 20. H-α plane of the subset A: (a) zones with diferent colors, (b) density plot of the plane 

(a) (b) 
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The water of the river is mainly classified as medium entropy multiple scattering zone, as well 

as some areas in the top right corner that also had the higher image entropy values compared 

with the rest of the forest. When the classified image is seen in more detail (Figure 21.b) some 

pinky areas appear in the river, which correspond to even higher entropy due to the 

randomness caused by the water surface. The general part of forest in the image is a 

combination of medium entropy surface scattering and low entropy surface scattering, while 

the crops (at the left of the image) appear more clearly as low entropy surface scattering class 

due to the homogeneity of the area. The regions with buildings (Figure 19) are classified as 

low entropy multiple scattering zones (dihedral reflectors) due to the double bounce effect of 

the radar wave. 

 

• Subset B 

  Fig. 22. Parameters extracted from the subset B: (a) entropy, (b) alpha angle 

 

(a) (b) 

Fig. 21. Subset A classified using H-α plane: (a) subset A, (b) area of subset A in detail 

(a) (b) 
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In both Figures 22.a and 22.b the main forest and the water of the river behaves in a similar 

way than in the subset A; so in the water appears the highest entropy due to the smoothness of 

the surface causes specular reflection while in the forest there is a medium value of entropy. 

Unlike in subset A, near the top center and the left center of the subset B there are some forest 

areas with lower value of entropy, which indicates that the soil in this area is wetter so the 

large difference in electrical properties between water and air results in higher backscattered 

radar intensity. At the bottom right of subset B there is a zone with very low entropy and very 

high alpha referred to an area of buildings that generate a double bounce response.  

 

The corresponding H-α plane for the subset B is represented in Figure 23.  

 

 

Both figures (23.a and 23.b) are very similar to the ones of the subset A due to the similarity 

of the terrain. In Figure 23.b can be appreciated that the zone 8 has more density of pixels 

than the set A due to the higher quantity of river. 

 

A first classification of the subset B according to the zone to which each pixel belongs in the 

H-α plane is shown in Figure 24. The classification of the subset B follows a similar structure 

than in the subset A, so the water of the river is classified as medium entropy multiple 

scattering zone and the general part of forest is classified as a combination of medium entropy 

surface scattering and low entropy surface scattering. The previously mentioned wet areas of 

the forest appear more clearly as low entropy surface scattering class. The regions with 

buildings at the bottom right of the subset B are classified as low entropy multiple scattering 

zones due to the double bounce scattering mechanism at this area. 

 Fig. 23. H-α plane of the subset B: (a) zones with diferent colors, (b) density plot of the plane 

 

(a) (b) 
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• Subset C 

In both Figures 25.a and 25.b the forest and the water of the river behaves again in the same 

way than in the subset A (in the water appears the highest entropy values while in the forest 

there is a medium value of entropy). There are some clearly visible ships mainly on the left 

side of the river that are classified as targets with very low entropy and very high alpha due to 

the double bounce effect of the radar wave.  

 

The corresponding H-α plane for the subset C is represented in Figure 26. Both subfigures 

(Figure 26.a and Figure 26.b) are very similar to the ones of the subset A and B, although in 

Figure 26.b it can be appreciated that the zone 7 has more density of pixels than in the subset 

  Fig. 25. Parameters extracted from the subset C: (a) entropy, (b) alpha angle 

 

(a) (b) 

 Fig. 24. Subset B classified using H-α plane 
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B due to in this case the river, which has pixels with high entropy, occupies approximately a 

half part of the image. 

 

 

A first classification of the subset C according to the zone to which each pixel belongs in the 

H-α plane is shown in Figure 27.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The classification of the subset C follows again a similar structure than the subset A and B, 

being the water of the river classified as medium entropy multiple scattering zone and the 

forest as a combination of medium entropy surface scattering and low entropy surface 

scattering. The ships on the river are easily distinguishable over the water and are clearly 

   Fig. 26. H-α plane of the subset C: (a) zones with diferent colors, (b) density plot of the plane 

 

(a) (b) 

Fig. 27. Subset C classified using H-α plane: (a) subset C, (b) area of subset C in detail 

 

(a) (b) 
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classified as low entropy multiple scattering targets (dihedral reflectors) due to the generated 

double bounce of the wave. 

 

These first classifications of the three subsets based on the resulting H-α plane zones of each 

pixel of the images give an initial idea of the different image areas, but the resulting areas 

mainly are a combination of two or more classes so it results in noisy classification images 

with heterogeneous regions. Hence, in the next Chapter a classification algorithm is going to 

be applied to these first classification images in order to segment more properly the initial 

SAR data and achieve more homogenous zones. 
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Chapter 6 
 

 

 

 

Wishart classifier applied to the Case Study 
 

 

 

 

6.1 Supervised and unsupervised terrain classfication 

 

Terrain and land-use classifications are probably the most important applications of 

polarimetric synthetic aperture radar (PolSAR). Supervised and unsupervised terrain 

classification can be reached by means of many developed algorithms. In supervised 

classification, training sets for each class are used, based on ground truth maps or scattering 

contrast differences in PolSAR images. In unsupervised classification the image is classified 

automatically by finding clusters based on a certain criterion [43]. However, the final class 

identification may have to be inferred manually. 

 

Unsupervised classification methods are divided into three different categories [44]; the first 

only takes into account the statistical characteristics of SAR data (ignoring the physical 

scattering mechanisms of the media), the second classifies by inherent physical scattering 

characteristics (ignoring the statistical property) and the third both the statistical property and 

its physical scattering characteristics are combined. The second method has the advantage 

relative to the first of providing information for class type identification. 

 

In Chapter 5.3 has been shown the results of the classification proposed by Cloude and Pottier 

based on their target decomposition theory (Chapter 5) using the scattering mechanisms 

characterized by entropy H and alpha α angle. This classification uses the H-α plane divided 

into eight zones where the entropy and alpha associated with each zone provides information 

for terrain type assignment [6]. The problem of this method appears due to the zone 
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boundaries in the H-α plane are preset and the clusters may fall on a boundary or more than 

one class may be enclosed in a zone. 

 

In this thesis an algorithm proposed by Lee et al. has been developed, which is a combination 

of the unsupervised H-α decomposition classifier and the supervised Wishart classifier [6]. 

This algorithm uses the classification result of the Cloude and Pottier unsupervised 

classification [30] as input to the Wishart method. 

 

6.2 Wishart classifier algorithm 

 

As has been mentioned in Chapter 6.1, Wishart classifier algorithm uses the initial Cloude and 

Pottier classification map as training set for iterative Wishart classification [45]. The 

algorithm is formed for three main steps; first of all, the cluster center of coherency matrices, 

Vi, is computed for pixels in each zone using the initial classification map (28): 

 

�! =
1

�!

� ! ,  for all pixels in class �!

!!

!!!

 (28) 

 

where �  is the spatial averaged coherency matrix and �! is the total number of pixels in each 

class. With this equation eight cluster centers are obtained, one for each class. 

 

Once the clusters have been obtained each pixel is reclassified by applying the Wishart 

distance measure for the coherency matrix (29): 

 

� � ,�! = �� �! + �� �!
!!

�  (29) 

 

where � � ,�!  is the distance to the cluster �! and �  is  again the spatial averaged 

coherency matrix. For each coherency matrix eight distances are obtained, one for each 

cluster, and each pixel is then classified to the cluster with the lowest distance. Once the 

image is reclassified the result is then used to update the clusters, Vi, and reclassify the image 

again [46]. The iterating process stops when the number of pixels switching class becomes 

smaller than a predetermined number, or a termination criterion is met. 
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6.3 Application of the Wishart classifier to the Case Study 

 

The data flow diagram for the Wishart classification carried in Matlab out using the Indonesia 

dataset is illustrated in Figure 28. 

 

 

 

 

 
 

 

The data flow has been applied to the three subsets of the Indonesia dataset and the results are 

shown in the Chapter 6.4.  

 

Initial classification 
map (training set) 

Computate the centers 
of the clusters 

Computate the distance 
to each cluster 

Reclassify each pixel to 
the cluster with the 

lowest distance  

Is it the 
termination 

criterion 
reached? 

Final classified imaged 

  Yes 

Fig. 28. Data flow diagram of the Wishart classifier  

  No 

  Input 

       Output 

  Input 



 

 49 

6.4 Classification results of the Case Study 

 

According to the flow diagram of Figure 28 and as it has been said in Chapter 6.1, the input of 

the Wishart classifier is the classification map obtained in Chapter 5.3 with the H-α plane and 

it is used for the first iteration of the algorithm. Those initial classification maps (one for each 

subset of the Indonesia dataset) are shown in Figure 21 (subset A), 24 (subset B) and 27 

(subset C). 

 

• Subset A 

 

According to the flow diagram of Figure 28, the first step is the computation of the centers of 

the clusters of the initial classification map. Those centers have been ploted on the density H-

α plane obtained in Chapter 5.3 and are shown in Figure 29. 

 

  

 

 

 

 

 

 

 

 

 

The clusters centers have been computed using the coherency matrix and it is appreciated in 

Figure 29 that the centers are close to the region with more density of pixels. The centers of 

the clusters of the zones with less density of pixels can appear in other zones due to the 

centers have been computed using the coherency matrix and not the H-α plane.  

 

With the centers of the clusters, according to the flow diagram of the Figure 28, the Wishart 

distance is computed to reclassify each pixel to the cluster with lowest distance. The result of 

the first iteration of the Wishart classifier is shown in Figure 30.a.   

Fig. 29. Cluster centers of the initial classification map 

of the subset A. 
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Figure 30.a shows the result of the first iteration of the Wishart classifier. Compared with the 

initial classification map obtained with the H-α plane (Figure 21) the different zones of the 

image (forests, river, crops) are now much more differentiated, mainly the river, which has 

been fully classified as low entropy dipole scattering.  

 

Due to the resulting classified image has a considerable improvement, the termination 

criterion has not been met and this resulting image is now used as training set for the second 

iteration of the Wishart classifier. In Figure 30.b the centers of the clusters of the first iteration 

are shown and they are even closer to the region with more density of pixels. In addition, 

some clusters centers have changed its zone again. 

  

(a) (b) 

Fig. 30. First iteration of the subset A: (a) classified image, (b) cluster centers 

(a) (b) 

  Fig. 31. Second iteration of the subset A: (a) classified image, (b) cluster centers 



 

 51 

Figure 31.a shows the result of the second iteration of the Wishart classifier. Compared with 

the first iteration (Figure 30.a) the forest is now much more differentiated, the zones with 

more sparse vegetation and dryer than the rest of the forest have been fully classified as 

medium entropy surface scattering, while the rest of the forest, occupying the main part of the 

image, has been classified combining low and medium entropy with surface scattering due to 

the increased density of vegetation in a uniform way. 

 

In this second iteration the improvement regarding to the first iteration is also considerable 

and the termination criterion has neither been met, so the Wishart classifier is iterated again 

using the resulting classification as input for the third iteration. In Figure 31.b the centers of 

the clusters of the input to the third iteration are shown. 

 

 

Figure 32.a shows the result of the third iteration of the Wishart classifier. Compared with the 

second iteration (Figure 31.a), the zones with low entropy surface scattering have been 

homogenized slightly but the image is very similar and it has not much improvement. In this 

case, the termination criterion has been met and the classification has ended. Comparing the 

final image with the first classification map obtained with the H-α plane (Figure 21) the 

improvement is very significant and the different zones are now much more differentiated. 

 

• Subset B 

 

The Wishart classification applied to the subset B follows the same flow diagram (Figure 28) 

than in the previous subset.  

(a) (b) 

   Fig. 32. Third iteration of the subset A: (a) classified image, (b) cluster centers 
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(a) (b) 

  Fig. 34. First iteration of the subset B: (a) classified image, (b) cluster centers 

The cluster centers of the initial classification map of the subset B (Figure 24) are shown in 

Figure 33, using the density H-α plane obtained in Chapter 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The centers of the clusters are close to the region with more density of pixels and, as in the 

case of the subset A, the centers of the zones with less density of pixels can appear in other 

zones. 

 

Once the centers of the clusters have been obtained, the Wishart distance is computed to 

reclassify each pixel to the cluster with lowest distance. The reclassified image of the first 

iteration is shown in Figure 34.a. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 33. Cluster centers of the initial classification map 

of the subset B. 
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Figure 34.a shows the result of the first iteration of the Wishart classifier. Compared with the 

initial classification map obtained with the H-α plane (Figure 24), the river is now much more 

differentiated, which has been fully classified as low entropy dipole scattering. However, 

some parts of the image containing forests have been classified with the same class than the 

river, so due to the termination criterion has not been met, another iteration will be required. It 

is noted that in the bottom right of the image the ships and the buildings have been correctly 

classified as low entropy multiple scattering (in orange color). 

 

In Figure 34.b the centers of the clusters of the input to the second iteration are shown. Those 

centers, as has been done previously, will be used to classify the image again (Figure 35.a) by 

means of the Wishart distance. 

 

 

 

The zones with more sparse vegetation and dryer than the rest of the forest are now much 

more differentiated and have been fully classified as medium entropy surface scattering, while 

the rest of the forest, occupying the rest of the image, has been classified combining low and 

medium entropy with surface scattering due to the increased density of vegetation in a 

uniform way. The zones classified previously with the same class than in the water are now 

more reduced and the zones containing buildings and ships are still correctly classified as low 

entropy multiple scattering. 

 

In this second iteration the improvement regarding to the first iteration is very considerable 

and the termination criterion has neither been met, so another iteration of the Wishart 

(a) (b) 

 Fig. 35. Second iteration of the subset B: (a) classified image, (b) cluster centers 
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classifier is done using the resulting classification as input for the third iteration. In Figure 

35.b the centers of the clusters of the reclassified image are shown. 

 

 

 

Figure 36.a shows the result of the third iteration of the Wishart classifier. Compared with the 

second iteration (Figure 35.a), the zones that were wrongly classified as river are now 

classified as medium entropy multiple scattering and the zones with sparse vegetation and 

dryer than the rest of the forest are now slightly more differentiated. The zones containing 

buildings and ships (at bottom right) have been correctly classified as low entropy multiple 

scattering. 

 

• Subset C 

  

(a) (b) 

  Fig. 36. Third iteration of the subset B: (a) classified image, (b) cluster centers 

Fig. 37. Cluster centers of the initial classification map 

of the subset C. 
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According to the flow diagram of Figure 28, and as has been done in the previous subsets, the 

first step is the computation of the centers of the clusters of the initial classification map 

Figure 37. The cluster centers are close to the region with more density of pixels and in some 

cases leaving the area to which they correspond. 
 

With the centers of the clusters, according to the flow diagram of the Figure 28, the Wishart 

distance is computed to reclassify each pixel to the cluster with lowest distance. The result of 

the first iteration of the Wishart classifier is shown in Figure 38.a.   

 

 
Figure 38.a shows the result of the first iteration of the Wishart classifier applied to the subset 

C. Compared with the initial classification map obtained with the H-α plane (Figure 27) the 

river is now much more differentiated, which has been fully classified as medium entropy 

multiple scattering. However, the zones with forest have been classified as low and medium 

entropy surface scattering with a lot of dispersion. It should be noted that in the river the ships 

and the buildings have been correctly classified as low entropy multiple scattering.  

 

In Figure 38.b the centers of the clusters of the input to the second iteration are shown. Those 

centers, as has been previously done, will be used to classify the image again (Figure 39.a) by 

means of the Wishart distance. 

 

 

(a) (b) 

   Fig. 38. First iteration of the subset C: (a) classified image, (b) cluster centers 
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(a) (b) 

       Fig. 39. Second iteration of the subset C: (a) classified image, (b) cluster centers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The zones with forest are still classified as low and medium entropy surface scattering with a 

lot of dispersion, without observing any improvement. The ships and the buildings around the 

river are still correctly classified as low entropy multiple scattering, which means that this 

kind of classification can be useful for target detection.  

 

In this case, the termination criterion has been met in the second iteration but another iteration 

has been done in order to see how evolve the classifier. In Figure 39.b the centers of the 

clusters of the reclassified image are shown. 

  

(a) (b) 

     Fig. 40. Third iteration of the subset C: (a) classified image, (b) cluster centers 
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Figure 40.a shows the result of the third iteration of the Wishart classifier. Compared with the 

second iteration (Figure 39.a) the river contains more noise and some zones of the forest are 

now wrongly classified as complex structures. This third iteration gives worst results than the 

second, so the termination criterion was correctly reached in the previous iteration.  
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Chapter 7 
 

 

 

 

Conclusions 
 

 
In this thesis the H-α decomposition method and the unsupervised Wishart classifier have 

been applied to a dual-polarized polarimetric Synthetic Aperture Radar (SAR) dataset using 

MATLAB computing environment.  

 

It has been proved the power of the H-α decomposition method that characterizes the 

properties of the different types of scattering mechanism of the terrain. It has been observed 

that the highest values of entropy have been appeared in the river and in some areas of the 

forest. This is explained due to for smooth river surfaces, with little or no relief at the scale of 

the radar wavelength, there is little return energy as the incident wave undergoes specular 

reflection. These areas are associated with high alpha and high entropy, indicating that very 

low amplitude backscatter is mainly random noise. The lowest values of entropy and alpha 

have been found in the crops because they follow a more ordered and homogeneous structure. 

 

According to the results obtained with the algorithm proposed by Lee et al., which is a 

combination of the unsupervised H-α decomposition classifier and the supervised Wishart 

classifier, it has produced very good terrain classification, especially in the water that has 

been segmented in a uniform way. While iterating, the centers of the cluster were closer to the 

region with more density of pixels and often changing its zone. Finally, it has been proved 

that approximately after three iterations the results were stabilized and the termination 

criterion was reached.  

 

Although the full-polarization SAR data have more physical scattering information about the 

targets, it has been proved that the dual-polarized SAR data provides enough scattering 

information of the objective to generate good classification results with much lower 
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computational cost. It can be conclude that dual-polarized data can be a good alternative to 

full-polarization data, which requires high size of data and strong constraints in the data 

acquisition system. 
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