Chapter 4

Indonesia Case Study description

4.1 TerraSAR-X spacecraft

TerraSAR-X i1s a German Earth observation satellite that was launched on June 15, 2007 in
Baikonur (Kazakhstan) [32]. The partners of the missions are the German Aerospace Center
(DLR), the German Federal Ministry of Education and Research and Astrium GmbH. The
satellite is controlled from the DLR ground station in Weilheim. Since January 7, 2008, when
the mission became fully operational, TerraSAR-X is providing value-added SAR data for

scientific, commercial and research-and-development purposes [33].

TerraSAR-X acquires high-resolution and wide-area radar images independent of the weather
conditions and presence/absence of sunlight. Its primary payload is an X-band radar sensor
with a range of different modes of operation in the X-band [34], allowing it to record images

with different swath widths, resolutions and polarizations.

The satellite has a Sun-synchronous circular repeat orbit with a repeat period of 11 days. The
orbit has a pre-defined Earth-fixed reference orbit, which closes after a repeat cycle of 167

revolutions in 11 days (its time required to orbit the Earth is 94.85 minutes) [35].

Length 4.88 metres
Diameter 2.4 metres

Launch mass 1230 kilograms
Payload mass About 400 kilograms
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Radar frequency 9.65 Gigahertz

Power consumption 800 watt on average

Orbital altitude 514 kilometres

Rocket Dnepr 1

Inclination angle with respect to the | 97.4 degrees

equator

Operational life At least 5 years an extended lifetime of that

least another 5 years (beyond 2018) is
expected by the operator DLR

Table 2. Main parameters of TerraSAR-X satellite

The different modes of operation are the Spotlight mode, in which an area of 10 kilometres
long and 10 kilometres wide is recorded at a resolution of 1 to 2 metres; the Stripmap mode,
which covers a 30-kilometre-wide strip at a resolution between 3 and 6 metres; and the
ScanSAR mode, in which a 100-kilometre-wide strip is captured at a resolution of 16 metres

[36]. Hence, the use of the sensor can be tailored to the need of the application.

Fig. 10. Artist view of TerraSAR-X satellite

The antenna of TerraSAR-X is an electronically separable Active Phases Array Antenna with
a size of 4.78 m x 0.7 m. During nominal operations, the SAR antenna is oriented with an
angle of 33.8° degrees off the nadir direction looking right of the flight direction [37]. The
antenna allows a variety of polarimetric combinations: single or dual-polarization and even
full polarimetric data takes, are possible. Depending on the selected imaging mode there is

available one combination or other.
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Depending on the desired application, one of four different product types (processing levels)
can be selected (Table 3) [37]. All the processing levels are available for the different modes
of operation (StripMap, ScanSAR and SpotLight).

Processing Level Contents
SSC Single look product of the focused radar signal. The
(Single Look Slant Range data are represented as complex numbers containing
Complex) amplitude and phase information.
MGD Detected multi look product with reduced speckle
(Multi Look Ground Range | and approximately square resolution cells.
Detected)
GEC Multi-look detected product, which is resampled and
(Geocoded Ellipsoid projected to the WGS84 reference ellipsoid assuming
Corrected) one average height.
EEC Multi-look detected product, projected and resampled
(Enhanced Ellipsoid to the WGS84 reference ellipsoid and then corrected
Corrected) using an external Digital Elevation Model (DEM).

Table 3. Processing levels of TerraSAR-X satellite

4.2 TerraSAR-X delivery file format

The TerraSAR-X Basic Image Product is delivered in a standard set of components [38]. One
of its components is the annotation information file, provided in xml format, which contains a
complete description of the Level 1b product components and is considered as metadata
source (provides information about the mission, the acquisition and the orbit, among others).
The image channels contain one or more polarimetric channels in separate binary data
matrices. These matrices are in the DLR-defined COSAR binary format when the data to

deliver is complex and in GeoTiff format when the detected products are delivered.

The set also includes more files, like auxiliary raster files, quicklook images and map plots.
The package is supplemented by additional administrative information, which describes the
product delivery package and contains additional facility related information (e.g. detailed

copyright information), and either archived into a far file or put onto a medium.
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4.3 Description of the Indonesia dataset

The dataset used in this thesis covers an area of Pangkalan Bun (Figure 11), a town in Central
Kalimantan Province, Indonesia and was taken on 13" March, 2008. Its acquisition mode is
TerraSAR-X StripMap and the processing level is SSC (Single Look Slant Range Complex),
hence the image channel is in CoSAR format. It has dual-polarization mode and an incidence

angle of 33.7°.
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Some of the characteristics of the dataset are shown in Table 4.

Number of rows (ground range) | 23361

Number of columns (azimuth) | 10288

Image data format CoSAR

Image data depth 32 meters

Polarization mode HH-VV (dual-pol)

Ground range resolution 2.12 metres

Azimuth resolution 6 meters

Start time UTC 2008-03-13T22:19:55.140975
Stop time UTC 2008-03-13T22:20:03.140925

Table 4. Characteristics of the TerraSAR-X Indonesia dataset

Due to the large area that the SAR image covers and the high computational demand that this

implies, three different subareas (Figure 12) of the main dataset are selected to carry out the
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overall process of decomposition and classification. Working with different subareas also
allows to check that the obtained results of the classification algorithm are independent of the
input data. The selected subareas have some interesting zones for the posterior classification,

like water, different types of vegetation and ships.

Subset A

Subset B

" Subset C

Fig. 12. Reconstruction image of the entire dataset and HH channels of the three
selected subsets

Figure 13 shows in detail the three subsets chosen for the analysis and segmentation, relating
its HH channel matrix image with an aerial image of the same area captured by Google Earth.
Note that the quality of Google Earth image in subset C is quite poor, fact that difficults the
identification of each target. Also note that the HH-channel image seems a little deformed

since its resolution in azimuth and in range are not the same.
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Subset A

Subset B

Subset C

Fig. 13. Aerial image of the three subsets captured by Google Earth and their corresponding HH
channel matrix image.
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Chapter 5

H-o Decomposition applied to the Case Study

5.1 Theory of H-a Decomposition

Polarimetric decompositions are techniques used to generate polarimetric discriminators that
can be used for analysis, interpretation and classification of SAR data [39]. These techniques
allow the information extraction of the scattering processes that involve a specified target.
There are two types of polarimetric decompositions; one is coherent decomposition, which is
based in the decomposition of the scattering matrix, while the other, called incoherent
decomposition is based in the decomposition of the coherency or covariance matrices [40]. H-
a decomposition is an incoherent decomposition that analyzes the power form (the coherency

matrix in this case) of the scattering matrix.

H-a decomposition is an entropy based decomposition method for quad polarization data
proposed by Cloude and Pottier on 1997 [30]. This method is based on the hypothesis that the
polarization scattering characteristics can be represented by the space of the entropy and the
averaged scattering angle a by means of the eigenvalue analysis of Hermitian matrices. The
H-a decomposition does not rely on the assumption of a particular underlying statistical
distribution and so is free from the physical constraints imposed by such multivariate models.
This method has such good properties as rotation invariance, irrelevance to specific

probability density distributions and the coverage of the whole scattering mechanism space.

In this thesis dual-polarization (HH and VV) SAR data is used, so the H-a decomposition
method has been extended in order to be applied to this data type.

33



5.1.1 Extraction of the H-a parameters

For the extraction of the entropy (H) and the alpha (o) parameters the coherency matrix
explained in the Chapter 4 is needed. Remember that each pixel of the dual-polarization SAR

data represents a 2 x 2 coherency matrix [T, ], which is nonnegative, definite and Hermitian.

T14 le] [ Ty, le]
T, | = =1 .. 21
Tl =r, 1ol =lry, 1 D

As mentioned previously, the H-a decomposition is computed by means of the eigenvalue
analysis, so in (22), (23) and (24) the eigenvalue decomposition of the coherency matrix is

done [30].

T. T A
[T,] = T“ le] = U[ ! 2 ]U” = Luull + Au,ul! (22)
21 122 2
Up  Upz
= = |u u
Uz1 uzz] [t 2] (23)
u; = e/®i[cosa; sina;eld]T (24)

The subscript H denotes the Hermitian matrix, which is the conjugate transpose, so U is

equivalent to U™,

Once the eigenvalues 4; and 4, and the eigenvectors u; and u, of the coherency matrix have
been obtained, it is possible to compute the entropy H (25), which defines the degree of
statistical disorder of each distinct scatter type within the ensemble, and the alpha a (26),
which is related directly to underlying average physical scattering mechanism and hence may

be used to associate observables with physical properties of the medium [41].

H= _Pi logz Pi (25)

i=1

a= Z P; cos™1(Juy;D (26)

i=1
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where P; (27) correspond to the pseudo-probabilities obtained from the eigenvalues A; and A,.
Since the eigenvalues are rotational invariant, the entropy H and the alpha a are also roll-

invariant parameters.

Ai

=g
=17

i=1,2 (27)

Computing the preceding equations for the whole coherency matrix results in the entropy and
alpha matrices, which have the half size of the coherency matrix due to for each group of 2x2
pixels in the coherency matrix, one value of entropy and one value of alpha are obtained. The
entropy values are between 0 and 1, where a high value involves higher entropy in the pixel in

question. The values of the alpha are between 0 and 90 degrees.
5.1.2 Interpretation of H-o feature space

The H-a plane is divided into nine basic regions characteristic of different scattering behavior,
as shown in Figure 14 [30]. The basic scattering mechanism of each pixel of a polarimetric
SAR image can be identified by comparing its entropy and o parameters to fixed thresholds.
The location of the boundaries of the regions is set based on the general properties of the

scattering mechanisms, but they can be modified to fit a particular dataset.
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Fig. 14. H-a classification plane
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Table 5 shows the typical scattering mechanism of each of the nine zones of the H-a feature
space as well as its boundaries. Each zone is represented with a different color that will be

useful for the results representation in Chapter 5.3.

Zone | Color Scattering mechanism Boundaries
Low entropy surface scattering Alpha <=40 and H <= 0.6
Low entropy dipole scattering 40 < Alpha<=46 and H <= 0.6
Low entropy multiple scattering Alpha>46 and H <= 0.6

Medium entropy surface scattering Alpha <=34 and 0.6 <H <= 0.95

Medium entropy vegetation
‘ 34 < Alpha <46 and 0.6 <H <=0.95
scattering

Medium entropy multiple
Alpha >=46 and 0.6 <H <= 0.95

scattering
High entropy vegetation scattering 34 < Alpha <46 and H > 0.95
High entropy multiple scattering Alpha > 46 and H > 0.95
High entropy surface

O ool (@) 9} Bl W N =

Alpha <= 34 and H > 0.95
scattering (nonfeasible)

Table 5. Zones of H-a feature space

The different boundaries in the H-a plane discriminate between surface reflection, volume
diffusion and double bounce reflection along the o axis and low, medium and high degree of
randomness along the entropy axis [30]. Surface scattering is characteristic for agriculture
fields, bare soils, flat surfaces and calm water, volume diffusion appears mainly over forested

areas and double bounce scattering is typical for urban areas and buildings.

The alpha angle varies between 0° and 90° and allows the identification of the type of
scattering process. If o = 0°, the scattering is related to plane surface, whereas for a = 45°, the
result shows the scattering characteristics are those of a dipole. Between o = 0° and o = 45°, it
results in an irregular surface and for o = 45° to a = 90° the response is the result of a double

bounce scatterer.

Lower values for entropy means that it is easier to extract information from the scattering. A
higher value for entropy indicates that there are more than one scattering mechanisms and that
they are equal in strength [42]. So, there is an increasing disability to differentiate scattering

mechanisms as the entropy increases. If the entropy is close to zero, the alpha angle gives the
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dominant scattering mechanism for that resolution cell i.e., scattering is volume, surface or
double bounce. Entropy increases as a natural measure of the inherent reversibility of the

backscatter data; hence it can be used for identification of underlying scattering mechanism.

5.2 Application of H-a Decomposition to the Case Study

The data flow diagram for the work carried in Matlab out using the Indonesia dataset is

illustrated in Figure 15.

Read input and Apply C%%gggze H-alpha

Input dual arrange as multilook to the matrix 0%] computation
COSAR data Sinclair matrix data (5x5 ltilooked for dual
(HH and VV) window) multiooke COSAR

data

Fig. 15. Overall data flow diagram for the Case Study

The data flow has been applied to the three subsets of the Indonesia dataset and the results are

shown in the Chapter 5.3.

5.3 Decomposition results of the Case Study

According to the flow diagram of Figure 15, the input dual-polarized COSAR Indonesia
dataset has been read to extract separately the HH-channel and VV-channel matrices (Figure
16). Although the process has been applied to the three subsets of the Indonesia dataset, for
the firsts steps it is shown only the subset A.

ChannelHH Channel ¥V

@ = — (b)

Fig. 16. Polarimetric channels of the subset A: (a) HH-channel, (b) VV-channel
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The calm river water appears like a dark area in the SAR images since most of the incident
radar pulses are specularly reflected away so very little energy is scattered back to the radar
sensor. Forests and vegetation are usually moderately rough on the wavelength scale. Hence,
they appear as moderately bright features in the SAR image. In the right-top corner of Figure
16 very bright targets appear, which indicates double-bounce effect where the radar pulse
bounces off the horizontal ground towards the target and then the pulse is reflected from one
vertical surface of the target back to the sensor. It happens because in this zone there are some

buildings.

Once the HH-channel and VV-channel have been extracted, a square multilook window of
five pixels has been applied in order to reduce the speckle noise that appears often is SAR
images and create a more homogeneous image. The speckle noise is formed from coherent
summation of the signals scattered from ground scatterers distributed randomly within each

pixel.

Channel HH with 5xS multilook Channel ¥¥ with 5x5 multilook

(a) | | (b)

Fig. 17. Polarimetric channels of the subset A with 5x5 multilook window: (a) HH-channel, (b) VV-
channel

After applying the speckle removal filter (Figure 17) there is not appreciated a substantial
visual improvement in the image quality regarding the unfiltered input; however, for the
computation of the coherency matrix this step is mandatory since it can considerably affect to

the final results.

Once the multilooked HH-channel and VV-channel have been obtained, the coherency matrix,

which will be fundamental for the H-o decomposition, is computed. With the obtained
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coherency matrices (one for each subset), the H-o decomposition explained in 5.1 can be

applied to the three different subsets of the Indonesia dataset.

e Subset A

Alphaangle

90

(b)
Fig. 18. Parameters extracted from the subset A: (a) entropy, (b) alpha angle

In Figure 18.a the entropy of the subset A is shown. The highest values of entropy appear in
the river and in some areas of the forest (mainly located at the right of the image). For smooth
river surfaces, with little or no relief at the scale of the radar wavelength, there is little return
energy as the incident wave undergoes specular reflection. These areas are associated with
high alpha and high entropy, indicating that very low amplitude backscatter is mainly random
noise. Forest areas with high entropy appear since they are areas with more sparse vegetation
and dryer than the rest of the forest. In areas of dry soil some of the incident radar energy is
able to penetrate into the soil surface, resulting in less backscattered intensity. The rest of the
forest, occupying the main part of the image, has medium entropy due to the increased density
of vegetation in a uniform way. The zones with the lowest values of entropy appear in the left
of the image where there are some crops. Those crops follow a more ordered and

homogeneous structure than the forests, which entails in lower values of entropy.

In Figure 18.b the alpha angle of the subset A is shown. Medium-high alpha values appear in
the river and some forests zones (the same areas that have the highest values of entropy) as a
volume diffusion mode. The crops have the lowest alpha (with values lower than 30 degrees),
which indicates surface scattering. In the top right of the image as well as in the bottom left,
there are some very high alpha values due to in these zones there are some buildings with

medium height (Figure 19.a and 19.b) that generates double bounce scattering, so the radar
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beam bounces twice off the ground and the wall surfaces and most of the radar energy is

reflected back to the radar sensor.

(b)
Fig. 19. Zoom of the zones with the highest alpha in subset A produced by the yellow buildings.

The corresponding H-a plane for the subset A is represented in Figure 20.
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Fig. 20. H-a. plane of the subset A: (a) zones with diferent colors, (b) density plot of the plane

Each of the nine zones of the H-a plane has been represented with their corresponding color
according to Table 5 (Figure 20.a). This will allow doing a first classification of the subset
depending on the zone to which each pixel belongs (Figure 21). A density plot for the H-a
plane is shown in Figure 20.b since it is difficult to visually determine in which areas there is
more density of pixels. The color of each point of the density plot represents the frequency of
pixels within that region of the grid, which enables to visualize which are the more

characteristic scattering mechanisms of the terrain.
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(@
Fig. 21. Subset A classified using H-a plane: (a) subset A, (b) area of subset A in detail

The water of the river is mainly classified as medium entropy multiple scattering zone, as well
as some areas in the top right corner that also had the higher image entropy values compared
with the rest of the forest. When the classified image is seen in more detail (Figure 21.b) some
pinky areas appear in the river, which correspond to even higher entropy due to the
randomness caused by the water surface. The general part of forest in the image is a
combination of medium entropy surface scattering and low entropy surface scattering, while
the crops (at the left of the image) appear more clearly as low entropy surface scattering class
due to the homogeneity of the area. The regions with buildings (Figure 19) are classified as
low entropy multiple scattering zones (dihedral reflectors) due to the double bounce effect of

the radar wave.

e SubsetB

(b)

Fig. 22. Parameters extracted from the subset B: (a) entropy, (b) alpha angle
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In both Figures 22.a and 22.b the main forest and the water of the river behaves in a similar
way than in the subset A; so in the water appears the highest entropy due to the smoothness of
the surface causes specular reflection while in the forest there is a medium value of entropy.
Unlike in subset A, near the top center and the left center of the subset B there are some forest
areas with lower value of entropy, which indicates that the soil in this area is wetter so the
large difference in electrical properties between water and air results in higher backscattered
radar intensity. At the bottom right of subset B there is a zone with very low entropy and very

high alpha referred to an area of buildings that generate a double bounce response.

The corresponding H-a plane for the subset B is represented in Figure 23.

eidegrens)

Alptiaang

Fig. 23. H-a plane of the subset B: (a) zones with diferent colors, (b) density plot of the plane

Both figures (23.a and 23.b) are very similar to the ones of the subset A due to the similarity
of the terrain. In Figure 23.b can be appreciated that the zone 8 has more density of pixels

than the set A due to the higher quantity of river.

A first classification of the subset B according to the zone to which each pixel belongs in the
H-a plane is shown in Figure 24. The classification of the subset B follows a similar structure
than in the subset A, so the water of the river is classified as medium entropy multiple
scattering zone and the general part of forest is classified as a combination of medium entropy
surface scattering and low entropy surface scattering. The previously mentioned wet areas of
the forest appear more clearly as low entropy surface scattering class. The regions with
buildings at the bottom right of the subset B are classified as low entropy multiple scattering

zones due to the double bounce scattering mechanism at this area.
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Fig. 24. Subset B classified using H-a plane

e  Subset C

Entropy Alphaangle

e 90

Fig. 25. Parameters extracted from the subset C: (a) entropy, (b) alpha angle

In both Figures 25.a and 25.b the forest and the water of the river behaves again in the same
way than in the subset A (in the water appears the highest entropy values while in the forest
there is a medium value of entropy). There are some clearly visible ships mainly on the left
side of the river that are classified as targets with very low entropy and very high alpha due to

the double bounce effect of the radar wave.
The corresponding H-a plane for the subset C is represented in Figure 26. Both subfigures

(Figure 26.a and Figure 26.b) are very similar to the ones of the subset A and B, although in

Figure 26.b it can be appreciated that the zone 7 has more density of pixels than in the subset
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B due to in this case the river, which has pixels with high entropy, occupies approximately a

half part of the image.

Aptadngle (cegrees)

Mphaangle (decress)

L ;
[X] 0.2 [X3 i [X3 03 0.7 [ 03 1 o at 12 03 04 5 08 a7 i} oA 1
Enrony Entrog

(a) (b)
Fig. 26. H-0. plane of the subset C: (a) zones with diferent colors, (b) density plot of the plane

A first classification of the subset C according to the zone to which each pixel belongs in the

H-a plane is shown in Figure 27.

(@) (b)

Fig. 27. Subset C classified using H-a plane: (a) subset C, (b) area of subset C in detail

The classification of the subset C follows again a similar structure than the subset A and B,
being the water of the river classified as medium entropy multiple scattering zone and the
forest as a combination of medium entropy surface scattering and low entropy surface

scattering. The ships on the river are easily distinguishable over the water and are clearly
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classified as low entropy multiple scattering targets (dihedral reflectors) due to the generated

double bounce of the wave.

These first classifications of the three subsets based on the resulting H-a plane zones of each
pixel of the images give an initial idea of the different image areas, but the resulting areas
mainly are a combination of two or more classes so it results in noisy classification images
with heterogeneous regions. Hence, in the next Chapter a classification algorithm is going to
be applied to these first classification images in order to segment more properly the initial

SAR data and achieve more homogenous zones.
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Chapter 6

Wishart classifier applied to the Case Study

6.1 Supervised and unsupervised terrain classfication

Terrain and land-use classifications are probably the most important applications of
polarimetric synthetic aperture radar (PolSAR). Supervised and unsupervised terrain
classification can be reached by means of many developed algorithms. In supervised
classification, training sets for each class are used, based on ground truth maps or scattering
contrast differences in PoISAR images. In unsupervised classification the image is classified
automatically by finding clusters based on a certain criterion [43]. However, the final class

identification may have to be inferred manually.

Unsupervised classification methods are divided into three different categories [44]; the first
only takes into account the statistical characteristics of SAR data (ignoring the physical
scattering mechanisms of the media), the second classifies by inherent physical scattering
characteristics (ignoring the statistical property) and the third both the statistical property and
its physical scattering characteristics are combined. The second method has the advantage

relative to the first of providing information for class type identification.

In Chapter 5.3 has been shown the results of the classification proposed by Cloude and Pottier
based on their target decomposition theory (Chapter 5) using the scattering mechanisms
characterized by entropy H and alpha a angle. This classification uses the H-a plane divided
into eight zones where the entropy and alpha associated with each zone provides information

for terrain type assignment [6]. The problem of this method appears due to the zone
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boundaries in the H-a plane are preset and the clusters may fall on a boundary or more than

one class may be enclosed in a zone.

In this thesis an algorithm proposed by Lee et al. has been developed, which is a combination
of the unsupervised H-o decomposition classifier and the supervised Wishart classifier [6].
This algorithm uses the classification result of the Cloude and Pottier unsupervised

classification [30] as input to the Wishart method.
6.2 Wishart classifier algorithm

As has been mentioned in Chapter 6.1, Wishart classifier algorithm uses the initial Cloude and
Pottier classification map as training set for iterative Wishart classification [45]. The
algorithm is formed for three main steps; first of all, the cluster center of coherency matrices,

Vi, is computed for pixels in each zone using the initial classification map (28):
1<
v, = ;Z(T)j, for all pixels in class w; (28)
i 4
J=1

where (T) is the spatial averaged coherency matrix and n; is the total number of pixels in each

class. With this equation eight cluster centers are obtained, one for each class.

Once the clusters have been obtained each pixel is reclassified by applying the Wishart

distance measure for the coherency matrix (29):
d((T), V) = In|V| + Tr (Vi (T)) (29)

where d((T),V,,) is the distance to the cluster V,, and (T) is again the spatial averaged
coherency matrix. For each coherency matrix eight distances are obtained, one for each
cluster, and each pixel is then classified to the cluster with the lowest distance. Once the
image is reclassified the result is then used to update the clusters, V;, and reclassify the image
again [46]. The iterating process stops when the number of pixels switching class becomes

smaller than a predetermined number, or a termination criterion is met.
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6.3 Application of the Wishart classifier to the Case Study

The data flow diagram for the Wishart classification carried in Matlab out using the Indonesia

dataset is illustrated in Figure 28.

Input
( )
Initial classification
map (training set)
Input l 7
( )
Computate the centers
of the clusters
. J
( l )
Computate the distance
to each cluster
No
. J

l

Reclassify each pixel to
the cluster with the
lowest distance

l

Is it the
termination
criterion
reached?

l Yes

Final classified imaged

Output

Fig. 28. Data flow diagram of the Wishart classifier

The data flow has been applied to the three subsets of the Indonesia dataset and the results are

shown in the Chapter 6.4.
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6.4 Classification results of the Case Study

According to the flow diagram of Figure 28 and as it has been said in Chapter 6.1, the input of
the Wishart classifier is the classification map obtained in Chapter 5.3 with the H-a plane and
it is used for the first iteration of the algorithm. Those initial classification maps (one for each

subset of the Indonesia dataset) are shown in Figure 21 (subset A), 24 (subset B) and 27
(subset C).

e Subset A

According to the flow diagram of Figure 28, the first step is the computation of the centers of
the clusters of the initial classification map. Those centers have been ploted on the density H-

o plane obtained in Chapter 5.3 and are shown in Figure 29.

NN N N N T
3553353379

PRt B Wi

Alpha angle (degrees)

0.5
Entropy

Fig. 29. Cluster centers of the initial classification map
of the subset A.

The clusters centers have been computed using the coherency matrix and it is appreciated in
Figure 29 that the centers are close to the region with more density of pixels. The centers of
the clusters of the zones with less density of pixels can appear in other zones due to the

centers have been computed using the coherency matrix and not the H-a plane.

With the centers of the clusters, according to the flow diagram of the Figure 28, the Wishart
distance is computed to reclassify each pixel to the cluster with lowest distance. The result of

the first iteration of the Wishart classifier is shown in Figure 30.a.
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Fig. 30. First iteration of the subset A: (a) classified image, (b) cluster centers

Figure 30.a shows the result of the first iteration of the Wishart classifier. Compared with the
initial classification map obtained with the H-a plane (Figure 21) the different zones of the
image (forests, river, crops) are now much more differentiated, mainly the river, which has

been fully classified as low entropy dipole scattering.

Due to the resulting classified image has a considerable improvement, the termination
criterion has not been met and this resulting image is now used as training set for the second
iteration of the Wishart classifier. In Figure 30.b the centers of the clusters of the first iteration
are shown and they are even closer to the region with more density of pixels. In addition,

some clusters centers have changed its zone again.

2phaangi (dasrass)

(a)
Fig. 31. Second iteration of the subset A: (a) classified image, (b) cluster centers
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Figure 31.a shows the result of the second iteration of the Wishart classifier. Compared with
the first iteration (Figure 30.a) the forest is now much more differentiated, the zones with
more sparse vegetation and dryer than the rest of the forest have been fully classified as
medium entropy surface scattering, while the rest of the forest, occupying the main part of the
image, has been classified combining low and medium entropy with surface scattering due to

the increased density of vegetation in a uniform way.

In this second iteration the improvement regarding to the first iteration is also considerable
and the termination criterion has neither been met, so the Wishart classifier is iterated again
using the resulting classification as input for the third iteration. In Figure 31.b the centers of

the clusters of the input to the third iteration are shown.

Alpha angke | e grees)

] [
Ertropy

(@) (b)

Fig. 32. Third iteration of the subset A: (a) classified image, (b) cluster centers

Figure 32.a shows the result of the third iteration of the Wishart classifier. Compared with the
second iteration (Figure 31.a), the zones with low entropy surface scattering have been
homogenized slightly but the image is very similar and it has not much improvement. In this
case, the termination criterion has been met and the classification has ended. Comparing the
final image with the first classification map obtained with the H-a plane (Figure 21) the

improvement is very significant and the different zones are now much more differentiated.

e SubsetB

The Wishart classification applied to the subset B follows the same flow diagram (Figure 28)

than in the previous subset.
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The cluster centers of the initial classification map of the subset B (Figure 24) are shown in

Figure 33, using the density H-a plane obtained in Chapter 5.3.
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Fig. 33. Cluster centers of the initial classification map
of the subset B.

The centers of the clusters are close to the region with more density of pixels and, as in the

case of the subset A, the centers of the zones with less density of pixels can appear in other

zonces.

Once the centers of the clusters have been obtained, the Wishart distance is computed to

reclassify each pixel to the cluster with lowest distance. The reclassified image of the first

iteration is shown in Figure 34.a.
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Fig. 34. First iteration of the subset B: (a) classified image, (b) cluster centers
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Figure 34.a shows the result of the first iteration of the Wishart classifier. Compared with the
initial classification map obtained with the H-a plane (Figure 24), the river is now much more
differentiated, which has been fully classified as low entropy dipole scattering. However,
some parts of the image containing forests have been classified with the same class than the
river, so due to the termination criterion has not been met, another iteration will be required. It
is noted that in the bottom right of the image the ships and the buildings have been correctly

classified as low entropy multiple scattering (in orange color).

In Figure 34.b the centers of the clusters of the input to the second iteration are shown. Those
centers, as has been done previously, will be used to classify the image again (Figure 35.a) by

means of the Wishart distance.

Fig. 35. Second iteration of the subset B: (a) classified image, (b) cluster centers

The zones with more sparse vegetation and dryer than the rest of the forest are now much
more differentiated and have been fully classified as medium entropy surface scattering, while
the rest of the forest, occupying the rest of the image, has been classified combining low and
medium entropy with surface scattering due to the increased density of vegetation in a
uniform way. The zones classified previously with the same class than in the water are now
more reduced and the zones containing buildings and ships are still correctly classified as low

entropy multiple scattering.

In this second iteration the improvement regarding to the first iteration is very considerable

and the termination criterion has neither been met, so another iteration of the Wishart
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classifier is done using the resulting classification as input for the third iteration. In Figure

35.b the centers of the clusters of the reclassified image are shown.
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Fig. 36. Third iteration of the subset B: (a) classified image, (b) cluster centers

Figure 36.a shows the result of the third iteration of the Wishart classifier. Compared with the
second iteration (Figure 35.a), the zones that were wrongly classified as river are now
classified as medium entropy multiple scattering and the zones with sparse vegetation and
dryer than the rest of the forest are now slightly more differentiated. The zones containing
buildings and ships (at bottom right) have been correctly classified as low entropy multiple

scattering.

e  Subset C
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Fig. 37. Cluster centers of the initial classification map
of the subset C.
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According to the flow diagram of Figure 28, and as has been done in the previous subsets, the
first step is the computation of the centers of the clusters of the initial classification map
Figure 37. The cluster centers are close to the region with more density of pixels and in some

cases leaving the area to which they correspond.

With the centers of the clusters, according to the flow diagram of the Figure 28, the Wishart
distance is computed to reclassify each pixel to the cluster with lowest distance. The result of

the first iteration of the Wishart classifier is shown in Figure 38.a.
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Fig. 38. First iteration of the subset C: (a) classified image, (b) cluster centers

Figure 38.a shows the result of the first iteration of the Wishart classifier applied to the subset
C. Compared with the initial classification map obtained with the H-a plane (Figure 27) the
river is now much more differentiated, which has been fully classified as medium entropy
multiple scattering. However, the zones with forest have been classified as low and medium
entropy surface scattering with a lot of dispersion. It should be noted that in the river the ships

and the buildings have been correctly classified as low entropy multiple scattering.
In Figure 38.b the centers of the clusters of the input to the second iteration are shown. Those

centers, as has been previously done, will be used to classify the image again (Figure 39.a) by

means of the Wishart distance.
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Fig. 39. Second iteration of the subset C: (a) classified image, (b) cluster centers

The zones with forest are still classified as low and medium entropy surface scattering with a
lot of dispersion, without observing any improvement. The ships and the buildings around the
river are still correctly classified as low entropy multiple scattering, which means that this

kind of classification can be useful for target detection.

In this case, the termination criterion has been met in the second iteration but another iteration
has been done in order to see how evolve the classifier. In Figure 39.b the centers of the

clusters of the reclassified image are shown.
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Fig. 40. Third iteration of the subset C: (a) classified image, (b) cluster centers
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Figure 40.a shows the result of the third iteration of the Wishart classifier. Compared with the
second iteration (Figure 39.a) the river contains more noise and some zones of the forest are
now wrongly classified as complex structures. This third iteration gives worst results than the

second, so the termination criterion was correctly reached in the previous iteration.
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Chapter 7

Conclusions

In this thesis the H-o decomposition method and the unsupervised Wishart classifier have
been applied to a dual-polarized polarimetric Synthetic Aperture Radar (SAR) dataset using
MATLAB computing environment.

It has been proved the power of the H-o decomposition method that characterizes the
properties of the different types of scattering mechanism of the terrain. It has been observed
that the highest values of entropy have been appeared in the river and in some areas of the
forest. This is explained due to for smooth river surfaces, with little or no relief at the scale of
the radar wavelength, there is little return energy as the incident wave undergoes specular
reflection. These areas are associated with high alpha and high entropy, indicating that very
low amplitude backscatter is mainly random noise. The lowest values of entropy and alpha

have been found in the crops because they follow a more ordered and homogeneous structure.

According to the results obtained with the algorithm proposed by Lee et al., which is a
combination of the unsupervised H-o decomposition classifier and the supervised Wishart
classifier, it has produced very good terrain classification, especially in the water that has
been segmented in a uniform way. While iterating, the centers of the cluster were closer to the
region with more density of pixels and often changing its zone. Finally, it has been proved
that approximately after three iterations the results were stabilized and the termination

criterion was reached.

Although the full-polarization SAR data have more physical scattering information about the
targets, it has been proved that the dual-polarized SAR data provides enough scattering

information of the objective to generate good classification results with much lower
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computational cost. It can be conclude that dual-polarized data can be a good alternative to
full-polarization data, which requires high size of data and strong constraints in the data

acquisition system.
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