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Abstract

This paper examines competition in a spatial model of two-candidate elec-
tions, where one candidate enjoys a quality advantage over the other candi-
date. The candidates care about winning and also have policy preferences.
There is two-dimensional private information. Candidate ideal points as well
as their tradeoffs between policy preferences and winning are private informa-
tion. The distribution of this two-dimensional type is common knowledge.
The location of the median voter’s ideal point is uncertain, with a distribu-
tion that is commonly known by both candidates. Pure strategy equilibria
always exist in this model. We characterize the effects of increased uncer-
tainty about the median voter, the effect of candidate policy preferences, and
the effects of changes in the distribution of private information. We prove
that the distribution of candidate policies approaches the mixed equilibrium
of Aragones and Palfrey (2002a), when both candidates’ weights on policy
preferences go to zero.
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1 Introduction

Aragones and Palfrey (2002a) lay out a framework for studying the effect of
candidate quality on political competition. That framework uses standard
Downsian competition between two candidates who maximize the probability
of winning, with a single twist: one candidate has a quality advantage. That
is, any voter will strictly prefer the “higher quality” candidate (Candidate
A) to the “lower quality” candidate (Candidate D) if the candidates locate
so that the voter is indifferent between the two candidates on the policy
dimension. In that paper, we showed that candidates diverge, and that this
divergence occurs in predictable ways. In equilibrium the higher quality
candidate ends up reinforcing her advantage by adopting relatively more
centrist platforms, in a probabilistic sense.

Three limitations about that simple model are (1) candidates may have
policy preferences, but the model assumes they only care about holding office;
(2) the equilibrium is in mixed strategies;' and (3) candidates have perfect
information about each other’s objective functions, which is unrealistic. This
paper extends the model in a natural way that relaxes all three limitations,
and leads to new insights about candidate competition when there are quality
differences between the two candidates.

A key insight comes from Harsanyi’s (1973) paper on purification of mixed
strategies. That paper shows that for games like the one considered in
Aragones and Palfrey (2002a) one can almost always approximate a mixed
strategy equilibrium by a pure strategy equilibrium to a game in which the
players have private information. That is, if we consider the model with
complete information to be only a first approximation to the real world,
where the “correct” model would be one with private information, then in-
deed the mixed strategy equilibrium makes sense as a first approximation to
a Bayesian equilibrium of a somewhat more complicated game.

Our approach is to introduce incomplete and asymmetric information
about candidate policy preferences. We consider two-dimensional private in-
formation. It is common to assume that the candidates care not only about
the probability of winning, but also about the policy that is implemented by
the winning candidate.? In our model, the weight each candidate places on

Tt is hard to imagine how candidates would actually implement mixed strategies in a
location game.

’In a related paper, Groseclose (2001) examines a model of asymmetric candidates
where candidates have a mixture of policy preferences and preferences for holding office.
However, in that paper the exact weights between the two objectives are the same for
both candidates and are common knowlegde. As a result, pure strategies often fail to exist
in that model. Other recent theoretical papers on candidate competition with quality



winning is private information and is independently drawn for each of the
two candidates. The second component of private information is that neither
candidate is certain of the other candidate’s exact ideal point. Both of these
generalizations capture important and realistic aspects of political competi-
tion. While candidates may have some information about each other’s ideal
point, based on past records, and candidates may know a little bit about
how much the other candidate trades off policy preferences and the value
of holding office, both are arguments of a utility function, and neither can
be observed directly. Moreover, much of what a candidate says is rhetor-
ical, which makes it difficult to take campaign platforms of candidates as
straightforward representations of their ideal points. In fact, we know from
results by Wittman (1977, 1983), Calvert (1985), and others, that policy mo-
tivated candidates will generally not adopt their ideal point as a platform.
Furthermore, the actual policies adopted by the elected candidate may not
necessarily reflect her ideal point, since it may simply be done to fulfill cam-
paign promises or to satisfy her constituency or party.

In this two-dimensional asymmetric information model, we characterize
the best response functions of the two candidates and use the properties
of these best response functions to fully characterize the equilibrium. Best
responses of each candidate depend on five variables: the candidate’s quality,
the amount of uncertainty, the probability the other candidate locates at the
center, the candidate’s ideal point, and the candidate’s own value of holding
office.

First, we show that locating at an extreme position other than one’s own
ideal point is never a best response for either candidate. Next, we show that
this implies, that best responses are fully characterized by cutoff rules, which
means that it is optimal for a candidate to locate in the center if and only if
his or her value of holding office is sufficiently great.

Third, we show that, for the advantaged candidate, best responses are
upward sloping, in the sense that her cutoff value increases in the cutoff
value of the disadvantaged candidate. That is, candidate A is more likely to
locate in the center if she thinks candidate D is more likely to locate at the
center. The opposite is true for candidate D, who is less likely to locate in
the center, the more likely he things A will locate at the center.

Fourth, we show that an increase in uncertainty about the median voter
leads both candidates to be less likely to adopt the moderate platform. An
alternative interpretation is that as the electorate becomes more polarized
(i.e. the probability the median voter is moderate decreases), the candidates
also become more polarized.

asymmetry are Ansolobehere and Snyder (2000) and Berger, Munger, and Potthoff (2000).



Fifth, putting these results together we can show how the equilibrium
distributions of candidate locations vary with the polarization parameter.
Here we find that the equilibrium platform of A becomes more polarized
when the electorate becomes more polarized, but that is not the case for
candidate D. In fact, for D the effect can go either way because of conflicting
forces. On the one hand, locating at his ideal point is more attractive for D
because the probability the median voter has the same ideal point as D has
increased. On the other hand, since that is A’s equilibrium response, it is less
attractive. The sum of these two effects can be either positive or negative.

We then look at the effect of decreasing the asymmetric information be-
tween the two candidates. When both candidates’ office-holding weights col-
lapse to 1 (it becomes common knowledge between the candidates that both
only care about holding office), we recover all of the results of the symmetric
information model. However, the direction of convergence is interesting. The
equilibrium probability that D locates in the center converges from above,
and the equilibrium probability that A locates in the center converges from
below. Thus one surprising effect of asymmetric information is that it leads
D to moderate. This occurs even though the expected value of holding office
is decreasing. In contrast, however, asymmetric information leads A to adopt
more extreme policies on average.

Finally, we characterize the boundary case of complete information about
A, which provides insights into the intuition for the general case. First, we
show that only mixed strategy equilibria exist when the value of holding office
is high enough. If this occurs, then we obtain comparative statics similar to
Aragones and Palfrey (2002a). Increased uncertainty leads the advantaged
candidate to adopt more extreme positions and the disadvantaged candidate
to be more moderate. However, in contrast to the earlier paper, each candi-
date simply mixes between its ideal point and the central policy rather than
mixing over all three policies. Thus, a new interpretation of this result is
that the effect of increased uncertainty is for the advantaged candidate to
move closer to her ideal point (in expectation) and for the disadvantaged
candidate to move away from his ideal point. Results of previous work on
competition with policy preferences suggest that more uncertainty would lead
both candidates to move toward their ideal points. This points to an inter-
esting interaction effect between candidate quality, uncertainty, and policy
preferences, which can lead to non-intuitive results.

In this boundary case we also analyze the effect of the value of holding
office on equilibrium location choices. We again find an opposite effect for
the two candidates. Candidate A adopts more central locations when the
value of office increases, but Candidate D adopts more extreme locations
when the value of office increases, another counterintuitive effect, driven by
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the fact that candidate D needs to differentiate his position from A in order
to win.

The rest of the paper proceeds as follows. The next section describes the
formal model. Section 3 presents the derivation of the unique equilibrium.
The properties of the equilibrium are analyzed in section 4. Finally, section
5 contains some concluding remarks.

2 The Model

The policy space, g consists of 3 points on the real line, {0, .5, 1}, which we
will refer to as L (left) C' (center), and R(right). There are two candidates,
A and D, who are referred to as the advantaged candidate and the disad-
vantaged candidate, respectively. Each voter has a utility function, with two
components, a policy component, and a candidate image component.® The
policy component is characterized by an ideal point in the policy space g,
with utility of alternatives in the policy space a strictly decreasing function
of the Euclidean distance between the ideal point and the location of the
policy, symmetric around the ideal point. We assume there exists a unique
median voter ideal point, denoted by z,,. Candidates do not know z,,, but
share a common prior belief about it, which is symmetric around C. We
denote by a € [0,1/2] the probability that x,, = L, which also equals the
probability that x,, = R. Hence the probability that z,, = C equals 1 — 2a.

The quality advantage of A is captured by an additive constant to the
utility a voter obtains if A wins the election. That is, the utility to a voter
i with ideal point z; if A wins the election is U; (x4) = § — |x; — x4| and
the utility to ¢ if candidate D wins is U; (xp) = — |x; — xp|, where candi-
dates’ policy positions are denoted by x4 and xp and the magnitude of A’s
advantage is § € [0,1/2).*

2.1 Candidates’ Objective Functions

Candidates have ideal points, just like voters. The ideal point of candidate j
is denoted ¢;. Candidates know their own ideal point. They do not know the
ideal point of the other candidate, but do know that the other candidate’s
ideal point is equally likely to be L or R. The game takes place in two
stages. In the first stage, candidates simultaneously choose positions in g.

3There could be either a finite number of voters or a continuum.

4Two further generalizations of this model would be: (1) to allow different candidates
to have different beliefs about x; or (2) to allow different voters to have different image
terms.



As in the standard Downsian model, candidates implement their announced
positions if they win the election. In the second stage, each voter votes for
the preferred candidate (taking account of the quality advantage). In case of
indifference, a voter is assumed to vote for each candidate with probability
equal to 1/2.

Since the behavior of the voters is unambiguous in this model, we define
an equilibrium of the game only in terms of the location strategies of the two
candidates in the first round. Given a pair of candidate locations, (x4, xp)
we denote by ma(x4,xp) and wp(z4, zp) the probability of winning for can-
didate A and for candidate D, respectively, as a function of (z4,xp), where
7TA($A,1‘D) + WD(I’A,.ID) =1.

FEach candidate maximizes an objective function that is a linear combina-
tion of the probability of winning and a second component corresponding to
the candidate’s privately known policy preferences. Formally, the objective
function of candidate A and D are given, respectively, by:

Ua(za,zplya,Aa) = Aama(za,zp)
—(1 = Aa){ma(za,7p) [ya — va| +7p(x4,2D) Y2 — DI}
UD($A>$D|ZJD, )\D) = )\D7TD<anxD)

—(1 = Ap){ma(za,zp) lyp — xa|l + mp(za,2p) lyp — zp|}

Thus, A; is the weight candidate j places on holding office. This weight
is private information. That is, candidate j knows A; but does not know the
other candidate’s value of holding office. Each \; is independently drawn
from a commonly known distribution, with cdf F}; over [0, 1]. We assume, for
each j, F;(0) =0, Fj(1) =1, and F} is continuously increasing on [0, 1], and
refer to this as the reqularity assumption. To summarize, each candidate has
a two-dimensional type (y;, A;) which is private information. The types are
drawn independently and the distribution of types is common knowledge.

3 Derivation of Unique Equilibrium

The first thing to notice is that if candidate D’s ideal point is 0, then locating
at 1 is never a weak best response for all A\p € [0, 1]. Similarly, if candidate
D’s ideal point is 1, then locating at 0 is never a weak best response for all
Ap € [0,1]. Therefore, in equilibrium, the probability that D locates at 0 is
bounded above by .5 and the probability that D locates at 1 is also bounded
above by .5. Iterating this never a weak best response elimination for A
implies that if candidate A’s ideal point is 0, then locating at 1 is never a
weak best response for all A4 € [0,1]. Similarly, if candidate A’s ideal point
is 1, then locating at 0 is never a weak best response for all A4 € [0, 1].

)



Therefore, given candidate j’s ideal point, and given any strategy of the
other player, we only need to consider two possibilities for j’s best response.
Fither j’s best response is to locate at his ideal point, or to locate at .5.
Which is optimal will depend not only on the opponent’s strategy, but also
on ;. Specifically, there will exist a cutpoint, A} € [0,1] such that locating
at .5 is strictly optimal for j if and only if A\; > AJ.

Hence equilibrium strategies take a very simple form, where candidate j
chooses to moderate or not, depending only on the value of A;. Thus, an
equilibrium will consist of a pair, (A, A},) such A% is an optimal response to

5, and A}, is an optimal response to \. Given (A%, \}), this determines
the probability candidate j locates at .5, which is simply prob{\; € [A}, 1]}.
We denote

Py = prob{Aa € Ny 1} = 1 — Fa(A3)

ax;, = prob{Ap € [Ap, 1]} =1 — Fp(Ap)

and, dropping the dependence on A, we refer to p (or ¢) as the induced mized
strategy of candidate A (or D).

Finally, by symmetry, this implies that the induced mixed strategy for A
is (152, p, 152) and the induced mixed strategy for D is (152, ¢,45%). Given
any symmetric induced mixed strategy for A, (%,p, l—gp), we can derive
the optimal A-cutpoint for D, from which we can derive the induced mixed
strategy for D, from which we can derive the optimal A-cutpoint for A,
from which we can derive the induced mixed strategy for A. A Bayesian
Nash equilibrium is a fixed point of this composed mapping. Formally, one
calculates the equilibrium by the equality conditions that must hold at each
of the cutpoints. That is, at a candidate’s (interior)® cutpoint, the candidates

are exactly indifferent between locating at their ideal point or locating at .5.

3.1 Candidate A’s Best Responses

Without loss of generality, assume that A’s ideal point is L.°® We derive
best responses for A, by identifying conditions on «, A4, and ¢, such that
choosing C' is a best response. With this in mind, fix & and A4 and suppose
that D is using some type-contingent (possibly mixed) strategy that implies
an induced mixed strategy of ¢ € (0,1). Then the expected payoff to A for
locating at L when his office holding weight is equal to A4 is given by:

°If the cutpoint is at A = 0 or A = 1 then we have an inequality condition.
6By symmetry, the payoffs and strategy calculations are the same when candidate A’s
ideal point is R.



1— 1—
VA — a( QQAA+qAA+ QQAA)

A 1
= S2-q+a]+5[(1-20)g +af
Similarly, the expected payoff to A for locating at C' when his office-

holding weight is equal to A4 is given by:

1-— 1-—
VE = a( 2q>\A+(])\A+ 2q>\A)+

1-— 1—\ 1-—
+(1—204)( Qq)\A_q 2A+ 2q>\A)

1-— 1—A 1-—
+a( Qq)\A—q 2A—< 2q>(1—)\A)>

A
= 7A[2qa—2a+3)] —

N —

Comparing payofts for A:

MM2—qg+qa)+2qa—a—q < M2 —20+3)—-1<
l-a—-q(l -2« N
Aa > al )E)‘A<Q)

1-2a+q(1+a)

If 0 < ¢ < 5% then X} (q) > 1, so the best response is to locate at her
ideal point. Thus, p = 0 for all values of A4 < 1, for this range of q.
If 32~ < ¢ < 1 then X(¢q) € (0,1). In fact, over this range, we get

%q@ < 0. That is, A’s A-cutoff is strictly decreasing in ¢ over this range
of ¢, from a maximum of \j(5%) = 1 to a minimum of (1) = 5.
Similarly, suppressing the dependence of the reaction function of «, we can
write P(q) = 1— F4[\%(q)], and we have 81;_((](]) > 0 when ¢ € (5%, 1], ranging
from a minimum of P(5%-) = 0 to a maximum of P(1) = 1 — F4[3%;]. Thus,
the reaction function of candidate A is




0 if 0<gq
P (q) :{ 1— Fa[Ny(q)] if 3% <

This is illustrated by the solid upward sloping curve in figure 1.

FIGURE 1 ABOUT HERE

3.2 Candidate D’s Best Responses

Next consider candidate D. Without loss of generality, assume that D’s ideal
point is R.® Fix o and Ap. Suppose A is using a strategy that implies an
induced mixed strategy p € (0,1). Then the expected payoff to D for locating
at R when his office holding weight is equal to \p is given by:

V(@ Ap,p) = a (_ (%) 1 ap) - pihe ] ;po)
+(1—2a) (_ (%) (- Ap) 4 p —2AD L1 ;po)

1-— 1-—
+Oé( 2p)\D —i—p)\D—i-—pO)

2
l+pa 1—-«
2 2

Similarly, the expected payoff to D for locating at C' when his office-
holding weight is equal to \p is given by:

"The curve represents P*(q) as a concave function. This is done because in a sense this
is the typical case when the distributions of A converge to 1. A necessary and sufficient
condition for P* to be a concave function of ¢ is:

" 21 -2a+q¢(1+ )1+ )
Faz—F4 (1-2a)2+(1—-02)

8By symmetry, the payoffs and strategy calculations are the same when candidate D’s
ideal point is L.



VP (a,Ap,p) = < ( 2p> (1—Ap) — 1_AD ( 2p> (3AD—1>)
+

3A\p —1

3)\D—1 1—MAp 1
- ((52) (35=) 2+ () (
3)\[)—1 1—)\[) 1—p
() (250) 5+ 52
_ 2pa—2p—204+3_1
P 2 2

To compute best replies for D, we simply compare VP (a, Ap,p) and
D )
VC (Oé, )\Dap)'

VRD<a7)‘D7p> > (Oé, )\Dvp)VCD A
Ap(14+pa)—1—a > Ap(2pa—2p—2a+3)—1<&
a > 2(1-a)-p2-a))ip

If 239 < p <1 then a > (2(1 — @) — p(2 — @)), so the best response for
D is to locate at his ideal point. Thus, ¢ = 0 for all values of A\p, for this
range of p.
If 0 < p < 222 then s ey = Ap(p) € (0,1). In fact, over this
9Ap(p)
dp

> 0. That is, D’s A-cutoff is strictly increasing in p
over this range of p, from a minimum of A\},(0) = 5% to a maximum of
/\A(2 —52) — 1. Similarly, we can write Q(p) = 1 — Fp[A}(p)], and we have
p %W () when p € 0, 22:3;‘), ranging from a maximum of Q(0) = 5%
mlmmum of Q(3222) = 0. Thus, the reaction function of candidate D is

range, we get

_ 0 if 522 <p<l1
Q)= 1 _ i) 02 <
This is illustrated by the solid downward sloping curve’ in figure 1. It is
evident from the figure that there is a unique equilibrium in pure strategies,
which we state and prove formally below.

9The curve represents Q(p) as a concave function. This is in some sense a typical case,
particularly when the distributions of A converge to 1. A necessary and sufficient condition
for Q to be a concave function of p is:

Fp > —2Fp /X5 (D).

2
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Theorem 1: There is a unique equilibrium in pure strategies for all
values of o, and for all Fp and F)4 satisfying the regularity assumption.

Proof: There are two cases.
Case 1: ;% < 1- Fp[35%-]. This case is illustrated in the Figure 1.

At p =0, candldate D’s cutoff value, A\}(p)
2— 3a

2—2a

tinuously to 1, which occurs when p = < 1. Hence, D’s induced mixed
strategy response, Q(p), is equal to 1 — F pl3%z] if p = 0, and decreases
continuously (by the regularity assumptlon) to 0 for 232 < p. For candi-
date A, X(q) = 1 for all values of ¢ € [0, 52-]. Then \}(q) is strictly and

continuously decreasing until ¢ = 1, at Wthh pomt, Ni(q) = 5% . Therefore

A’s induced mixed strategy response, P(q), is equal to 0 if ¢ € [0, 5%], and

increases continuously (by the regularity assumption) to 5% when ¢ = 1.

Since 5% < 1 — Fp[3%-] there is exactly one intersection between Q(p)
and P(g). This 1ntersect10n point is in the interior of [0,1]? and takes on

values ¢* € (5 aa 1 Fpl5%-]) andp € (0,229),

? 2—«

Case 2: 3~ >1— F D[ 5-]. There is again a single intersection, but
it is not interior, smce the mtersectlon occurs at p* =0, ¢* = 1 — Fp[5* 2a] <
o
2—a’”

4 Properties of the Equilibrium Mapping

Here we study several properties of the equilibrium mapping. First we look
at how the equilibrium changes when «, the index of voter polarization (or
uncertainty about the median voter) changes. Then we study the effects of
changing the distribution of weights that candidates place on their policy
preferences.

4.1 The Effects of Changing o
It is straightforward to show that P(q) is weakly decreasing in « (strictly

decreasing for ¢ > 5*-). This is illustrated in Figure 1, with the dotted
upward sloping curve to the upper left of the solid P(q) curve. As « increases
the g-intercept of P(g) which equals 5%, increases and the p-intercept of
P(q), which equals 1 — F4(5%;), decreases.

Similarly, Q(p) is also weakly decreasing in « (strictly decreasing for
p < %= 3a) This is shown in Figure 1, by the dotted downward sloping curve
to the lower left of the solid Q(p) curve. As « increases the g-intercept of Q(p)

which equals 1 — Fp(5%-), decreases as does the p-intercept of Q(p), which

10



22_307. These two results are stated and proved below in Proposition

Proposition 1: (comparative statics with respect to «)
a) dQ ) <0 for all p and de) < 0 for p < 352,

b) dl;éq) < 0 for all ¢ and dl;éq <0 for ¢ > 3%

Proof: An informal argument is given in the paragraph above. The
formal argument simply requires partial differentiation of P (¢) and Q (p)

with respect a. For Q (p) when p < 2 3a , we get
0Q(p) ~  0JFpIXp
1oJe" T 9\ da
_ R 9w
Y dox
_ 0Fp2(1—a)—p2-—a)+a(2—p)
) 2(1—a) —p2-a)?
TN 2(1—a)—p(2— )
< 0
since aF G2 >0 and % > 0. When % < p <1 we always have

that 8Q = 0.
Slmllarly, for P (¢) when 5% < ¢, we get

OP(q) OFA0N
Jda T 9N Oa
0ROy
) dav
_ 0FA(-142¢9)(1-204+q(1—a)+ (2—q¢)(1 —a —q(1 — 2))
) [1—2a+q(1+ )

_OFy 2¢> + (¢ — 1)
ON [1 —2a+q(1+ a)?
< 0

since dFA > 0and 2¢>+ (¢ —1)> > 0. When ¢ < 7%= we always have that
Pla) — “om
(%

Both of these effects, which lead candidates to adopt less moderate po-
sitions when « increases, are intuitive, since they are direct effects. As «

11



increases, the median voter’s ideal point is more likely to be at one of the
two extremes, either L or R. Therefore all types of both candidates find it
less advantageous to locate in the center, holding constant the strategy of the
other player. Hence either player’s cutoff value increases, given any induced
mixed strategy of the other player.

The equilibrium effect of this shift reflects the same intuition as discussed
in Aragones and Palfrey (2002a). In order to increase the chance of winning,
candidate A wants to locate close to the median voter, and also wants to
locate close to D. Since the direct effect on D is to move in the direction
of the median voter (i.e. A} (p) decreases when « increases), both of these
effects on A go in the same direction. Hence % < 0. The effect on D
is more complicated. While the direct effect on D is to follow the median
voter (suggesting that ¢* should decrease), the indirect effect on D goes in
the opposite direction, since D wants to distance himself from A. Since these
effects go in opposite directions, we cannot 51gn The sign can be either
positive or negative. Figure 1 shows a case in Wthh > (, but it could
easily go the other way.

Proposition 2: (equilibrium comparative statics with respect to «)

i) & <0
-\ dg* o —2(1—p* dp*
i)Gh < 0iff a((2—2)) <%

Proof: An informal argument is given in the paragraph above.

(i) The formal argument that % < 0 is straightforward. Consider
(p* (@), q* (o)) and (p* ('), ¢" (/) and suppose that a < /. We will show
that p* (o) < p* (a) :

If ¢* (/) = ¢" (@) , we have that ¢" (o) = Q (e, p" (@) < Q (e, p" (&)
since a < o' and Q( ) < 0. Therefore, since ¢* (/) > ¢* (), we have that
¢ (@) = Q(a,p* (« )) < Q(a,p* (o)) . Since %I()) < 0, this implies that
p* () <p*(a).

If ¢* (« )<q(),wehavethatp( N =P, ¢ () <
because ¢* (o) < ¢* (« )aundaP > 0. And P (¢, ¢" (a)) < P

(a

p* () since 2 a( 9 < and a <. Therefore we have that p*

(i) To prove that ~ < 0iff = 2 a)) < % notice that

P (o, q" (
(a,q" (o) =
) *

<p*(a).

~—

(07

da do O\
d (Xp (o, p* (@))) >0

da

dg* d(1 = Fp(Ap (p* () (8FD (Ap (" (a)))> <d(AE (. p" (@)))

—

12



: OFp(N)
since —5y= > 0.

From above,

d(Ap(a,p (@) 2(1=p) +a@2- o)W

dox  R20-a)-p2-a)
and hence
A0 lr (@)
da -
<
21 -p)+a(2—-a) pdcia) > 0
Therefore,
dq*
< 0
do -
<~
—20-p) o g
a(2—a) T do

4.2 The Effects of Changing the Distribution of Office-
holding Weights, F'y and Fp

4.2.1 Converging to Complete Information about A\

In this subsection we study the effects of changing the distribution of A4
and A\p. When either distribution function shifts to the right, the value of
the corresponding A is more likely to be higher, in the sense of stochastic
dominance.!’ This implies that the reaction function of the candidate whose
distribution function has shifted will also shift in the same direction. That
is, the candidate’s best response is more likely to locate in the center since
the candidate is more likely to place a higher weight on winning. This in
turn implies unambiguous comparative statics results for p* and ¢*, which
are summarized in the next proposition.

Proposition 3: Let Fp(Ap) < Gp(Ap) for all Ap, and F4(M4) <
Ga (Ma) for all Ap, where Fp, Gp, Fa, and G4 each satisfy the regularity

0 Formally, given two distribution functions F' and G defined on [0,1], F stochastically
dominates G if F'(X) < G (A) for all A € [0,1].

13



assumption. Then

P (Fa,Fp) < p"(Ga,Fp)
p* (Fa, Fp) < p"(Fa,Gp)
q" (Fa, Fp) < q"(Fa,Gp)
q" (Fa, Fp) > q"(Ga, Fp)

Proof: Since Fp(Ap) < Gp(Ap) for all A\p we obtain P (Fa,q) >
P (G 4, q) for all ¢. Similarly, if Fp (Ap) < Gp (Ap) for all A\p, then Q (Fp,p) >
Q (Gp,p) for all p. This implies that the equilibrium values for p* will be
larger when either distribution function shifts to the right. That is, if Fj first
order stochastically dominates G; (j = A, D) we will have that p* (Fa, Fp) <
p* (G, Fp) and p* (Fa, Fp) < p* (Fa,Gp), because Q (p) is decreasing and
P (¢) is increasing. The equilibrium values for ¢* will be greater when Fp
shifts to the right, that is, if Fp first order stochastically dominates Gp we
will have that ¢* (Fa, Fp) < ¢* (Fa,Gp), because P (¢) is increasing. Fi-
nally, ¢* decreases when F4 shifts to the right. That is, if F4 first order
stochastically dominates G4 we will have that ¢* (Fa, Fp) > ¢* (G4, Fp),
because Q (p) is decreasing. Therefore, we have that on the equilibrium path
as both distribution functions shift to the right p* increases and ¢* could
either increase or decrease.ll

As we continue to shift these distributions to the right (keeping the sup-
port at [0,1]) in the limit the distributions become concentrated at Ay =
Ap = 1. This is illustrated in figure 2. The solid curves show the same reac-
tion functions as in figure 1. The dotted curves show the reaction functions
when the distributions are very close to degenerate on \y = A\p = 1. We
have also marked the limit equilibrium, for Ay = Ap = 1:

. _ 2—3«a
p= 2—«
. «
7 = 2—«

which is the same equilibrium point as in Aragones and Palfrey (2002a).
Thus, the mixed strategy equilibrium in that paper can be approximated
arbitrarily closely as a pure strategy equilibrium when players have private
information about policy preferences. That is, this limiting case gives iden-
tical mixed strategies'! as in Aragones and Palfrey (2002a), except here the

"However, the players actually mix only at the limit. For any distributions of A4 and
Ap satisfying the regularity assumption, no matter how concentrated around A4 = 1 and
Ap = 1, there is a unique pure strategy equilibrium in type-contingent strategies.
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candidates have policy preferences that are private information.
FIGURE 2 ABOUT HERE

It is also worth remarking on the direction of convergence as the distri-
butions approach Ay, = Ap = 1. Candidate A converges to p* = % from
below while candidate D converges to ¢* = 52— from above. That is, for any
distributions F4 and Fp that satisfy the regularity condition, the effect of
policy preferences on the two candidates is for A to be more extreme that
she would be without policy preferences, while D is more moderate than the
case of no policy preferences. Recall that when candidates only care about
holding office, then D tends to hold extremist views (even though he does
not prefer them) and A tends toward the moderate location (even though she
does not prefer a moderate policy). The effect of incomplete information and
policy preferences is to dampen this extremist/moderate distinction between
D and A. The effect is especially interesting for D, since (stochastically) in-
creased preferences by D for extreme policies lead him to adopt equilibrium
strategies that are actually less extreme.

4.2.2 The Boundary Case of Complete Information about A\

We next examine the properties of the equilibrium correspondence in the
boundary case where F4 and Fp converge to any degenerate pair of weights
for holding office, (Aa, Ap) € [0,1]2. This is illustrated in figure 3, which
shows the equilibrium limit points for all values in the unit square.

FIGURE 3 ABOUT HERE

First consider the diagonal of this figure, corresponding to limiting distri-
butions where at the limit Ay = A\p = A. As a reference point, the point of
the upper left, W, corresponds to both candidates only caring about winning,
where we know from above that the unique equilibrium has mixed strategies,
p* = q* = 5. For almost all values of A the equilibrium is unique.

If A < 5%, the unique equilibrium is pure, with p* = 0 and ¢* = 0. That
is, if the candidates place enough weight on policy preferences, they locate
at their ideal points and never in the center.

If A > =2~ there is a unique equilibrium in mixed strategies with:

7—2a°
. 2(1 — )\ — «
p =
A2 — )
o= l—a—(1-2a)A

AMl+a)+1-2a
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If A = 55, there is a continuum of equilibria. In all of these equilibria,
A plays p* = 0. When p* = 0 and A = 5%, D is indifferent between locating
at the center and at his ideal point. As long as D chooses C' with probability

no greater than 2420% 0 A'g hest response is her ideal point, so the set of

2—5a+ba?’ )
equilibria are p* = 0, ¢* € [0, 22:“525‘7_&0‘2]

The comparative statics of (p*, ¢*) when A is increased along the diagonal
is qualitatively the same as the comparative statics of stochastically increas-
ing Ay and A\p. That is, % > 0 and % < 0. The intuition is exactly the
same. This is formally proved below.

Proposition 4: (comparative statics with respect to A, when \ is com-
mon knowledge) £ > 0 and %L < 0.

Proof: The formal argument simply requires partial differentiation of p*
and ¢* with respect A. For ¢*, we get

¢ —(1-20)°—(1-a?)

ON A1+ a)+1-—2a)

<0

For p*, we get
o _ @
ON N (2-a)

Next, we consider the case where A4 and A\p are common knowledge, but
Aa # Ap. These correspond to the off-diagonal points in figure 3. There are
three regions to consider. First, if A\p < 5%, then D cares enough about
policy that there is a unique pure strategy equilibrium with p* = ¢* = 0.
That is, both candidates locate at their ideal points. If A\p > $%- and
Aa < 3%, there is a unique pure strategy equilibrium with p* = 0 and
¢* = 1. In this region, policy matters much more to A than to D. If
Ap > 55~ and A4 > 5%, Then both care enough about winning that a pure
strategy equilibrium cannot exist, and we are in the region with a unique
mixed strategy equilibrium. On the boundaries between the mixed and pure
strategy regions, multiple equilibria typically exist, with one player indifferent
(with a continuum of possible equilibrium mixing strategies) and the other
player adopting a pure strategy.

Finally, we consider the comparative statics results with respect to «, in
the mixing region.!? Straightforward derivations give:

oq* 3N —2)\+1

9o Ml+a)+1-—2af >0

>0 |

12The comparative statics with respect to o are flat in the other regions. However, the
boundaries between regions will change as a function of .
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and
op* =214+ Na

oo N2 -—a)?
These comparative statics are qualitatively the same as the case studied
in Aragones and Palfrey (2002a), with Ay = A\p = 1.

<0

5 Conclusions

This paper examined an equilibrium model of candidate competition, com-
bining the effects of five variables that are important factors shaping voter
and candidate behavior in competitive elections: candidate quality, candi-
date policy preferences, the value of holding office, asymmetric information
between candidates, and the uncertainty that candidates face about the dis-
tribution of voter preferences. It extends in a significant way the results
of earlier models of candidate quality by Aragones and Palfrey (2002a) and
Groseclose (2001), and shows how results in those papers arise as special
cases in the framework of this paper.

The asymmetric information arises because candidates do no know the
other candidate’s value of holding office and do not know precisely the pol-
icy preferences of the other candidate. This asymmetric information not
only makes the model more realistic, but actually simplifies the analysis as
well. In particular, we show that even with a very small amount of private
information by candidates, unique pure strategy equilibrium always exists.
Furthermore, due to a continuity result of Harsanyi (1973), this implies that
the mixed strategy equilibria identified in Aragones and Palfrey (2002a) are
good approximations of pure strategy equilibria in this paper. In other words,
the mixed equilibria, which are difficult to interpret empirically, are an ar-
tifact of the symmetric information candidates have about each other. The
results in this paper show that even a tiny amount of asymmetry will con-
vert these mixed equilibria into pure equilibria that share similar empirical
implications.

With asymmetric information, we show that an increase in uncertainty
about the median voter leads both candidates to be less likely to adopt the
moderate platform. An alternative interpretation is that as the electorate
becomes more polarized (i.e. the probability the median voter is moderate
decreases), the candidates also become more polarized.

In equilibrium we find that A’s platform becomes more polarized when
the electorate becomes more polarized (« increases), but that is not the case
for candidate D. In fact, for D there are two effects that go in opposite
directions, so the total effect is ambiguous.
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With complete information about A\, we show that there is a unique mixed
strategy equilibrium if and only if the value of holding office is high enough
for both candidates. In this case, we obtain the same main comparative static
results of Aragones and Palfrey (2002a). The case of complete information
also allows comparisons to the model of Groseclose (2001), although he con-
siders a continuous policy space with known candidate ideal points and does
not look at mixed equilibria. The two similar findings are that A moves to
the center as A increases, and that only mixed equilibria exist if the value of
holding office is sufficiently high.

Our theoretical findings complement the wealth of empirical evidence
about the importance of candidate quality in competitive elections, evidence
that has for the most part been gathered and studied without the guidance
of formal theoretical models.!> Dating back at least to the seminal work
of Stokes (1963) on the ”valence dimension” of politics, numerous studies
have identified a wide variety of effects of quality and other valence factor.
This paper combines several essential features of candidate competition in
a simple model that has clear and interesting implications about the nature
of equilibrium platforms. Among the most interesting is the interactive ef-
fects of candidate quality, the degree of polarization (or uncertainty) in the
electorate, and the information candidates have about each other. There is
a strong interaction between quality and these information variable. That
is, the effects of polarization on candidate behavior go in opposite directions
depending on candidate quality. This suggests a role for empirical studies to
explore these theoretical hypotheses. Experimental research (Aragones and
Palfrey 2002b) has verified all of the qualitative implications of the model,
but it would be very useful to obtain field data to see if the conjectures also
hold up in mass elections.

13 A notable exception is the work of Banks and Kiewiet (1989) which investigates the
effect of candidate quality and asymmetric information on entry decisions by challengers
in congressional elections.
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