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Abstract

The objective of this paper is to correct and improve the results obtained by Van der
Ploeg (1984a, 1984b) and utilized in the theoretical literature related to feedback stochastic
optimal control sensitive to constant exogenous risk-aversion (see, Jacobson, 1973, Karp,
1987 andWhittle, 1981, 1989, 1990, among others) or to the classic context of risk-neutral
decision-makers (see, Chow, 1973, 1976a, 1976b, 1977, 1978, 1981, 1993). More realistic
and attractive, this new approach is placed in the context of a time-varying endogenous risk-
aversion which is under the control of the decision-maker. It has strong qualitative implications
on the agent’s optimal policy during the entire planning horizon.
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1. Introduction and Survey

Behavior optimization is very important in any positive economic analysis. The need to
solve optimization problems arises in almost all fields of economic inquiry. In the real world,
it exists many situations in which a rational decision-maker is constrained to face up to mul-
tiple uncertainties relative to the behavior of a dynamic stochastic environment. In general,
the decision model either makes assumptions on how the decision-maker will reponds to his
environment or derive this behavior from optimality-based considerations.
Uncertainty is an intimate dimension of economics. This generally arises because of inherent

difficulties of perception and information processing. We are generally uncertain about the
structure of the model, the numerical values of its parameters of interest and the future values
of exogenous or random variables.
It is well-known the crucial role that the information plays in the decision making process

of individual agents facing uncertainty. More information is always beneficial. It cannot have a
negative value. Incorporation and judicious use of further prior information into the statistical
procedures will produce better estimators. Greater information will, in general, reduce the
environmental complexity and hence the decision-maker’s uncertainty.
In practice, the decision-maker bases his decisions on some body of knowledge. He does not

know which state in the future will in fact hold. In this sense, the knowledge must be viewed as
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future oriented expertise. When that base of knowledge evolves over time, regulatory decisions
evolve over time. In dynamic behavior situations, generally the uncertainty is only gradually
solved through time and the decision-maker may be afforded continuously the opportunity to
revise his plan of action. Under uncertainty, the optimal sequence of decisions depends on
not only the expected losses, but also the flexibility, in terms of availability of future options
associated with each decision. Does not matter the preferred decision-maker’s policy, the un-
certainty will alter this considerably. We recall here some efficient methods in order to reduce
the uncertainty, as the control of the future, the increased power of prediction, or by diffusion
(see, Knight, 1971).
The theory has generally little to say about where and how the error terms propagate in

equations. Roughly speaking, the decision-maker face up to diversifiable errors from the system.
They can arise from several sources. Real world is never free of disturbance.
In practice, the true distribution of the data (or a parametric family containing it) is never

precisely known. Uncertain disturbances and parametric variations cannot be specified ahead of
time. In other words, the decision-maker does not know ex-ante how these will be resolved. The
evolution of the dynamic stochastic process is partially subject to the control of the economic
agent who is imperfectly informed as regards the law of motion. The information acquired is
perturbed by unobserved random shocks with a more-or-less known distribution. As regards
the parameters of interest, they are not individually observable and hence they are not known
with certainty.
For econometric purposes, it is often assumed that a steady state is always observed for

the environment state equation. In other words, the parameters of interest are supposed tem-
porarily unstable. However, in the absence of stationarity, the dynamics become much more
interesting. Until the work of Rosenberg (1968), a little attention was given to the fact that
the parameters in the econometric relationships are likely to vary systematically over time. He
explored a number of ways in which misspecification may lead to parameters variation over time.
As long as the dynamic effects of parameters variations are slow in comparison to state vari-
ations, control design can be based on a time-invariant dynamic model. Fast parameters may
be indistiguishable from state components, in which case the parameters should be included in
an augmented state vector for estimation and possibly for control.
The bayesian analysis can be viewed as a potentially attractive approach for this type of

modelling. The analysis of economic policy problems from a decision theoretic point-of-view
is more satisfactory in this context. The point estimates are replaced by the entire posterior
distribution. In the real world, the priors of the decision-maker may change. Incorrect beliefs
about the unknown parameters will induce a significant bias in the controls and target variables.
For a bayesian decision-maker, the uncertainty has several dimensions. It may manifest in
incomplete knowledge about the response parameters, in incomplete learning from sample
estimates of parameters from a finite set of observations, or due to the model stochasticity.
However, to base decisions on estimates of the parameters that characterize the decision

problem is not always optimal. We can find, in this sense, numerical examples which can
prove that basing decisions on conventional parameter estimates can leed to large losses of
decision-maker’s utility (see, Klein et al., 1978).
Even if the agent “knows” the parameters of the model, it is possible that he cannot observe

perfectly the stochastic process (e.g., the state variable is observed with noise), or that the
information is incomplete (e.g., he has an incomplete signal about the current state). As a
consequence, the forecasts may be dispersed. Moreover, supposing that the agent can observe
“perfectly” the environment, the true model generally depends on other exogenous variables
which escape to the control. These can be observed completely or not, the agent can be
conscious or not of their existence. Missing data will have a negative impact on the estimated
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parameters or statistics and thus, on the optimality of the control instruments. There will
hence be a considerable deviation of the system from its optimal reference path. On the other
hand, the process of learning will be much more slower due to the loss of information.
The decision-maker can utilize the history of the process and develop an approximate model

in order to analyze the behavior of the system. Unless we profit of the particular structure of
the problem, it will generally be very expansive to generate information to approximate a
(large) model with enough accuracy. To include this as part of an iteration procedure would
be an order of magnitude more complex. Satisfactory approximations are difficult to obtain.
A close approximation is sufficient but not necessary for solving the problem. There is a
trade-off between the utility of a better approximation and the increase in computational costs
which limit our ability to study the model in a data relevant manner. Generally, we have a
hierarchy of costs for different levels of approximation of the “true” model. The agent seeks to
model the main features of the data generating process in a relatively simplified representation
(which becomes gradually more complicated if additional data become available) based on the
observables and related to prior economic theory. The problem is whether this simplification
does or does not involve a loss of information.
Because of the measurement error and other random effects, there is considerable uncertainty

in determining whether the observed data actually are generated from the true model. Economic
models are only rough approximations of the true data generating process, generally unknown.
It is useful to note here that a local linear approximation of the model is made around a random
point (due to the error term) near of the true value which is not known before the decision
period. Local here means that only the behavior of the model in small neighborhoods of suitably
chosen points is considered. For a narrow neighborhood of the optimum point, the linearity
hypothesis is more likely to be a good approximation. If the model is without stationary
state, we can iteratively determine the point about which to approximate. The question is
how well this approximation might work. We point out that the learning aspect demandes
a study on the robustness of the strategies obtained by linearization. In this sense, it exists
numerical algorithms which permit the respecification of the criterion after each maximization
(see, Rustem, 1979). It will increase the precision of parameter estimates. How useful are the
models based on approximate solutions to optimal behavior, this is a question whose response
is given by the various numerical applications.
The mathematical theory of stochastic optimal control is well developed (see, Fleming &

Rishel, 1975, Kendrick, 1981 and Karatzas & Shreve, 1988, among others). Mathe-
matically speaking, an optimal control problem is concerned with the determination of the best
ways to achieve a set of objectives as indexed by a criterion function when the performance is
judged over many periods and when the dynamic behavior of the system is subject to a set of
constraints. In the terminology of the control theory, the variables are divided into those which
represent the condition or state of the objective functional (the so called state variables), and
those which guide or control the state variables (the so called control variables).
Depending on the difficulty of the problem, the dynamic optima can be either theoretically

analyzed or empirically tested. Improvements in finding closed-form solutions of dynamic sto-
chastic models is still very slow. In order to obtain analytically tractable results, restrictions
which are less attractive from an economic point of view have to be imposed.
The only model which can be solved in any generality is the linear-quadratic approximation

model which gives linear decision rules under given specific conditions, very convenient for
theoretical analyses and attractive on computational grounds.
Linear models are widely used in the literature due to their theoretical simplicity and flex-

ibility or for avoiding hard numerical estimation. One can think of a dynamic model as being
linear if its global properties can be completely characterized by its local behavior. Non-linear
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dynamic models do not have this property of equivalence between local and global dynamics
and thus are substantially more complicated to analyze. The non-linearity typically impedes
analytical solutions for an optimization problem. The non-linear modelling is generally less
amenable, especially by the presence of uncertainty. This is an other reason for which the
literature is generally focused on the linear model.
Non-linearity may arise in diverse ways in the econometric applications and there are many

possible approaches for specifying non-linear models. We can have, for example, non-linearity
in parameters and /or in variables (see, Amemiya, 1974) as well as non-linearities in time
series or with respect to the system disturbances.
In non-linear dynamic models (described by non-smooth functional forms), very special

assumptions have to be made in order to obtain closed-form solutions. If the dimension of
non-linear models is high, then the analytical treatment becomes very difficult. Moreover,
they present considerable difficulties in terms of initialization and convergence. The existence
of the optimum as well as the speed of convergence of the algorithm is restricted to certain
configurations of the initial parameters of interest. It implies an adjustment mechanism of the
tatonnement type.
The deviation caused by non-linearities in the model is quite important in the sense that the

stochastic optimal trajectory does not follow the desired path closely. The more non-linear the
model is, the more difficult will be to track the targets. As flexible as the non-linear dynamic
model may be, there is a substantial specification uncertainty.
When the analytical formula cannot be obtained easily, the analysis of the problem requires

the use of some numerical computational algorithms or simulation techniques-based methods.
They remain the only viable way to obtain insights about the system studied. However, dif-
ficulties in numerical computation arise, because the dynamic optimization problem may be
characterized by multiple optima. It generates difficulties as regards the numerical implemen-
tation.
Confrontation with data is very important. The theoretical model must be consistent with

the empirical model. In recent years, a number of numerical methods have been proposed in the
literature of stochastic simulation (see, Taylor and Uhling, 1990, Marcet, 1994, Amman,
1995, Rust, 1996 and Judd, 1998, among others). The continue increase in the computers
computational speed makes feasible new adaptive control rules /learning algorithms (designed
for experimentation) and enlarges the class of the models that can be approached by simulation
using the data generating process. They are playing an increasingly important role in economic
analysis (especially in controlling economic dynamics) and allow to gain experience from large
structural models (whose properties are largely revealed by empirical experimentation). In
order for numerical experiments to be effected rigorously, it is important to dispose of error
bounds or accuracy estimates of the computed solutions (see, Manuel and Aguiar, 1998).
The dynamic programming method (in discretized version) provides in this sense, a con-

structive recursive procedure for computing the optimal decision rules. This procedure (based
on a process of backward induction) amounts to a solution algorithm that allows us to obtain
numerical solutions to specific problems as well as analytic characterizations of a wide class of
problems.
Unfortunately, the amount of computation required to obtain the dynamic programming

solution rises exponentially with the number of variables in the model, due to “the curse
of dimensionality” (see, Pitchford, 1977). The handling of policy instruments requires
information on all states of the system, making the policy rule complicated from the point of
view of implementation. It is more difficult to investigate the properties of the optimal policy
when one allows for complex history dependence.
It is therefore essential to maintain a balance between the desire for a more sophisticated
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economic model and the need for nominal configuration in terms of computer use. This is what
makes the research in this area both difficult and interesting. In order to control the simulation
of the optimal policy, it is very important to use the analytic information from asymptotic
theory.
A weakness of these simulation techniques-based methods is that the properties of the model

may depend on a particular specification of the true model (i.e., a particular set of parameters
and functions chosen for simulation), and one may get a distorted picture of the properties.
In general, when information is gathered in the real world, the data generating process is not
independent and free of noise.
The simulation results must not be considered as a perfect substitute of the theory but

only as an instrument which may confirm the theoretical results. If an anomaly arrives, this is
presumably due to a particular drawing of pseudo-random numbers (it exists uncertainty in the
choice of experiments). It is possible that two decision-makers legitimately make substantially
different inference from the same data. In general, the transition from theoretical models to
empirical models is severely constrained by the quantity and the quality of the available data.
The data may not contain enough information to decide a particular issue. The bias of the
sample selection is viewed as an error of specification (see, Heckman, 1979) and a source of
numerical instability in the empirical model, leading to loss of significant digits in some or all
results.
In the most practical situations (typically in parametric models), a less complicate model is

likely to be preferred if we wish to pursue the accuracy of the estimation or to profit of important
analytic advantage. There is, for example, a gain of information from the theoretical analysis
of the linear model viewed as an a priori specification. It may serve as a good illustrative
theoretical example by simplifying the analysis considerably. Thus, in the context of a game,
the linearity of the model allows us for a complete characterization of the set of equilibria (which
is not the case for a non-linear model). The assumption of linearity in functional relationships
serves to simplify the conceptual and computational development of the theory.
Efficient dynamic specification tests seem to be relevant for the model selection. In principle,

any dynamic optimization model is empirically testable. It allows to study the behavior of the
model under different environments. Empirically, there are often conflicts in the criteria of
the selecting a model to achieve multiple objectives. Several procedures exist for testing the
specification of an econometric model in the presence of one or more other models which purport
to explain the same phenomenon (see, Davidson and Mackinnon, 1981, among others).
It is useful to note that the rejection of the null hypothesis should not lead to automatic

acceptance of the alternative hypothesis, as the test could have a greater power against other
deficiencies (see, Sargan, 1988). In other words, the fact that the test fails to reject an
hypothesis should not necessarily leads to accept it. Thus, the linearity may not be rejected
(when testing for linearity) if, for example, other variables are added to the initially specified
linear model (see, Granger and Terasvirta, 1993). By consequence, it is helpful to know
when we can decide that the non-linearity is the element which causes misspecification in the
linear model.
The linear approach is not preferable when it works with a naive and extremely simplified

model (too simple to capture the effects of environmental uncertainty). It is necessary to have
a robust specification of the linear model. It is also well-known that misspecified theoretical
models could forecast well if the process remains constant, while good models could forecast
poorly if the data variance is high. In other words, a model can be acceptable despite having
a poor fit and, the fact that a rival model has a better fit does not necessarily make it a better
one (see, Hendry, 1995). Sometimes, it happens that although the model is restrictive and
in some ways unrealistic, it brings out many of the key insights. If a model is found to be
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superior, the matter which remains to be solved is to prove if the difference between the two
specifications is significant. Naturally, all the results of the linear model must be asymptotically
valid in the non-linear specification case. This is the encompassing principle which requires a
model to be able to explain characteristics of rival models. However, a model including another
does not necessarily encompass this model (see, Gourieroux and Monfort, 1995).
When parameterizations are not a part of prior knowledge or the space of parameters has

high dimension, a nonparametric approach is more appropriate. It allows for a more robust
model specification. The methods based on nonparametric smoothing provide valid inference
under a much broader class of structure letting speak the data without constraints and dictate
from themselves the true form of the regression instead to specify the functional form of this
(or the distribution of the residuals). The regression function is not so reduced to a class
of functions and preserves all its freedom. However, in the case of a non-parametric decision
problem the agent (in fact, the modeler) has less information about the uncertainty distribution
than in the parametric problem. The higher the set of parameters, the less informed the agent.
Moreover, the robustness of nonparametric methods is not free and nonparametric statistics
are less efficient than traditional parametric methods.
Sometimes, even a nonparametric model may not be identified without imposing some

restrictions and thus making it semiparametric. In this case, it is useful to use a prior in-
formation on the regression shape in the form of a parametric model (the functional of the
interset is smoother) in the nonparametric regression, that is, we nonparametrically encompass
the parametric model (see, Gozalo and Linton, 1995). A semiparametric model involves a
finite dimension parameter and an unknown nuisance function. This kind of models combines
the flexibility of a nonparametric model with the efficiency property of a parametric model.
Each econometric approach has its advantages /strenghts and limitations /weaknesses. New

approaches rise new difficulties. The objective of the modeller is to discover the most appro-
priate model that explains the observed data. In general, there are many implicit restrictions
derived from the economic theory. Any specification would be preferred, the builded model
must be consistent with the economic theory, data admissible, congruent with the data and
computationally attractive (see, Hendry, 1995).
Even if the decision-maker’s strategy is perfect, the control can still be improved because

we cannot completely eliminate the uncertainty from the system. Various difficulties are en-
countered by the decision-maker when modelling real economic phenomena. There are multiple
sources of uncertainty that he must deal with by using optimal adequate solutions.
We conclude from this short methodological introduction that there is no royal way to de-

velop good models. In other words, there are no precise rules for econometric model design. The
economic theory is generally based on restrictive hypotheses, non-verified in totality. Usually,
they are technical hypotheses, convenient for theoretical and analytical purposes. Simple hy-
potheses are very rare in econometrics and these reflects the limits of the modelling. In general,
stronger results require stronger assumptions and thereby harder informational requirements.
Very often in the literature, arbitrary and untested hypotheses are chosen by the modeller for
their practical convenience. The more general approach is one with a set of minimal and fea-
sible assumptions but usually various difficulties are encountered in this case. The modelling
is only an additional tool of observation, and it cannot describe an economic phenomenon in
its globality. Statistical and economic models are only rough approximations of the true data
generating process. Divergences often arise between theory and experimental evidence. Theo-
retical predictions are sometimes compared to empirical results although they do not fulfil the
same set of assumptions. This is mainly due to the absence of an unified theory. Complex real
world interactions between economy and environment is the main barrier to applied research
within the field of economic modelling.
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This paper is organized as follows. Section 2 deals with the problem statement and makes
preliminary considerations. Section 3 presents the model. Section 4 deals with the probabilistic
hypotheses on the acquisition of information. Section 5 corrects the theoretical results of Van
der Ploeg (1984a, 1984b) on the estimation of the feedback optimal policy in the context
of a constant exogenous risk-aversion. Section 6 introduces the concept of endogenous risk-
aversion. Section 7 improves the formulas obtained for the optimal feedback control rules in
Section 5, by considering the more realistic case of a time-varying endogenous risk-aversion
subjected to the control of the decision-maker. Section 8 draws some conclusions and makes
suggestions for further research.

2. Problem Statement and Preliminary Considerations

Facing a risky environment, a rational decision-maker disposes of an optimal set of control
instruments in order to constrain the system to follow a fixed optimal trajectory which ensures
its equilibrium and stability. The goal is the path. There will generally exist a trade-off
between the efficiency of the control instruments and the decision-maker’s fixed objectives in
an uncertain an changing world.
The rationality of the decision-maker is characterized by the anticipation that the environ-

ment will be affected by other factors than the control instruments. It implies an forward-
looking behavior. These factors are completely or partially observed and may be exogenous or
endogenous variables as well as continuous unobserved random shocks. This can also be viewed
as consistent choice /action or the pursuit of the decision-maker’s self-interest (see, Walsh,
1996).
In a more general context, the instrument can be used for experimenting, the goal being

to learn the “true” parameter of interest. Strategic experimentation is an important aspect of
optimal decision making for a wide class of learning problems. The purpose of the experimenta-
tion is to gain additional information (which is valuable for future decisions) in order to obtain
an optimal learning. Optimal control with learning about unknown parameters has been ap-
plied to a variety of economic problems (e.g., optimal investment with production uncertainty,
monopolistic pricing with unknown demand, fiscal and monetary policy with imperfect knowl-
edge about the macroeconomy). If the cost of information is too expansive for permitting the
learning (e.g., the model is high non-linear and we search for the better linear approximation,
or the system uncertainties are large), we can be pleased with a rational random behavior
(see, Barbosa, 1975). If the dynamic environment is highly sensitive to non-rational actions,
then the stochastic control will be optimal if we can reconcile the desire of the risk with the
non-stationarity of the process and the instability of the equilibrium. Optimal decisions gen-
erally involve a certain degree of experimentation. The more the decision-maker cares about
future performance of the dynamic process, the more he will experiment. The objective of the
decision-maker, in this case, is to determine the optimal level of policy experimentation. A
rapid decline in the variability of the system state can be associated with an optimal experi-
mentation. This substantially improves the speed of learning and the bias in the control and
target variables (see, Wieland, 2000).
In practice, decisions are based on parameters which are not known with certainty and

may vary over time. When parameter uncertainty is large, experimentation becomes signifi-
cantly important. It increases with the variance of the unknown parameters. The degree of
experimentation is expected to be smaller with time-varying parameters than with constant
ones. In contrast to the constant fixed parameters case (when the incentive to experiment is
temporary; it disappears over time as parameter estimates become more precise), the incentive
to experiment remains high and never ceases when parameters vary over time (see, Beck &
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Wieland, 2002). On the other hand, doesn’t matter the type of specification, the incentive
to experiment will naturally increase with the variance of the random shocks as well as their
degree of persistence.
The notion of rational decision making in an uncertain environment is associated with the

expected utility-function maximization behavior. Rationality lies in the correspondence of the
decision-maker’s action with some goal or objective. For example, he does not refuse to act in
accordance with the efficient outcome (that is, at best of his interest). However, the decision-
maker’s preferences are generally incomplete. It is very rare in econometrics to be able to fully
specify the utility function. No decision-maker has sufficient a priori knowledge to fully specify
his utility function.
The decision model is based on the joint use of the econometric model and of the decision-

maker’s preference function. The latter will be optimized under the constraint represented by
the former and, very likely, other necessary constraints. The decision will be not separated from
the decision procedure and the judgment of rationality carries on the whole. The control rule
will be characterized by informational requirements and the decision criterion. As regards the
decision-maker’s strategy, this is based on an adaptive expectation mechanism and on a feedback
rule. Because the environment is generally non-stationary, it will influence the outcome of any
decision, so that, the decision-maker will have to analyze the evolution of a dynamic system in
which the present state is a consequence of the decision taken yesterday. His optimal actions
are conditional on past history.
A decision problem under uncertainty consists essentially in establishing a preference order-

ing over a set of stochastic variables.
From dynamic economic theory we know that optimal decision rules vary systematically

with exogenous changes in the structure of series relevant to the decision-maker. It follows
that changes in policy will systematically alter the structure of series being forecasted by the
decision-maker, and therefore, the behavioral econometric relationships as well. Important
cumulative effects of the parameters change on the time path of the state and control variables
will be present.
At each control period, the level of uncertainty of the decision-maker is given by the deviation

of the actual state of the system from his local objective. High deviations from the fixed
targets correspond to a high level of uncertainty. The decision-maker adjusts to keep small
the difference between actual and assumed system characteristics by monitoring the system
fluctuations. He optimally chooses the control instruments on the basis of a non-decreasing
endogenous information set.
The optimality of the strategy is generally defined relative to the information the decision-

maker has at the time the strategy is used. It exists so a relationship between the instruments
efficiency and the optimal policy chosen by the agent. The decision-maker can use a knowledge
base of past and present information to effect a control strategy, but future information is
unavailable. Because exogenous shocks in the future are not predictable, the decision-maker
strategy cannot incorporate them into the decision.
For the purpose of this analysis, it is assumed that the decision-maker emploies a closed-

loop strategy which generally depends on the history of the process and thus includes feedback
information. The decision-maker will constantly monitor the output of the process under con-
trol. The information is employed in real time. The knowledge upon which the decisions are
based increases gradually with the passage of the time and due to the wisdom derived from ex-
perience. The decisions made in the past will be reflected in changes in the state of the system
itself and they will influence the perception of the future actions to be analyzed. Because the
source of randomness may differ from one application to another, the decision making response
may vary.
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It may be the case when the relevant information acquisition cost is high, most likely due
to the permanent random shocks in the system or because of the slow inertia of the economic
environment (generally, the environment changes very slowly in relation to the speed at which
the economic agents learn). In a closed-loop strategy, the policy does not require some large
periods of engagement from the part of the decision-maker. In other words, the control rules
will be sensitive to the choice of the working horizon (a fixed number of stages in which the
observations may be made, the agent’s actions are taken, and the environment signals may be
sent). Generally, the length of the working horizon does not only depend on the number of
periods but also on the unity of measure chosen. A question remains: What is the optimal
length of the planning horizon on which the decision-maker bases his decisions?
An infinite-horizon problem is not generally compatible with a closed-loop strategy. The

conceptual and mathematical elegance of infinite horizon models is impractical for a compu-
tational viewpoint (even if the policy is easier to implement). To solve such a problem, it is
initially convenient to consent ourselves with finite horizon approximates by including some
terminal criterion. The advantage of a finite horizon also lies in the possibility to use forward
recursive filtering techniques (see, Kalman, 1960, Kalman & Bucy, 1971, Anderson &
Moore, 1979, and Harvey, 1990, among others) which allows to monitor the expectation
formation process and implicitly the evolution of the stochastic system. In other words, the
noisy observations are filtered in order to estimate the distribution of the state variable. This is
specific to an incremental learning model based on a sequential forecast which varies with time
and history. Adaptive filtering is one of the major contributions in modern stochastic control
theory. It can be applied to treat unobserved components and data revision, or to generate
innovation sequences. However, it must be viewed as a complement to econometrics methods,
rather than as a substitute. It does not allow to manage large amounts of finite information.
Its major drawback is that it generally restricts attention to the normal distribution.
It is useful to note that the solution found in finite horizon must converge to the solution

found in infinite horizon. The infinite-horizon problem can be viewed as an approximation of
the finite-horizon problem with a large planning horizon.
The decision-maker tries to reduce the endogenous uncertainty associated with his actions

by acquiring information from the begining of the control to the moment of decision. He has
the possibility to learn from errors and to make a self-evaluation of his actions. We can say that
a closed-loop strategy is robust, in the sense that it anticipates the possibility of a disturbance.
It can thus prevent unexpected shocks. The feedback control responds not only to the effects of
the random inputs, but also to the measurement errors as well. Thus, it is not necessary to be
able to identify and measure the sources of disturbance. If the decision-maker is interested in
determining the effect of parameter changes on the optimal control policy, then the closed-loop
strategy is generally the best way to do so. For optimal policy experiments and associated
hypotheses testing of the optimal control problem, the closed-loop (or feedback) solution is
also preferable. This type of strategy has the advantage to continuously improve the decision-
maker’s optimal policy. Also, for optimal policy experiments and associated hypotheses testing
of the optimal control problem, the closed-loop solution will be preferable. We can see the
implementation of the optimal closed-loop control as a form of integral control. Due to the
imperfect information about the reaction of the system over time, it is perfectly reasonable to
consider a maximization of short-term for the utility in the context of a closed-loop strategy.
The performance of the closed-loop control is superior to any open-loop control in the

stochastic dynamic context (see, Cruz, 1975, Xepapadeas, 1992, and Wiedmer et al.,
1996). More the period of control is longer, more the effect of cumulated errors on the agent’s
optimal policy is significant. If the system evolution is perturbed at each step by a random
shock, the open-loop policy will not integrate this stochastic characteristic for computing the
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future decisions. The information purchased during the period of control (that is, the history
of the process) is not taken into account by the agent so that he will lose the strategic learn-
ing. This will affect the optimal policy efficiency as it is adopted on a long-term. Only the
information purchased before starting the control process will be utilized. All the errors on
the initial state of the system will be intactly transmitted until the end of the control period.
An other weakness of this policy can appear when the exogenous variables of the model are
affected by coefficients which vary in time. The dependence of the coefficients realizations at
each point in the horizon is not required. In general, any dynamic discrete-time problem may
be reformulated as a static problem (only one-period time horizon) and the open-loop control
solution may be derived.
The closed-loop strategy is a refinement of the open-loop concept. The open-loop and closed-

loop strategies are equivalent only under the perfect forecast assumption, which is unrealistic, in
most circumstances. In general, the closed-loop solution deviates from the open-loop solution.
Disadvantages of the open-loop controls are that they require much information about the
future development of the system and that they are not robust. It is by using a closed-loop
strategy that economic theory can be exploited at best.
Dynamic feedback entails measurements, and these may be uncertain or indirect. With

uncertain or indirect measurements, it is necessary to estimate the state history that is most
likely to have caused the measurements. Thus, the control principles and the estimation prin-
ciples can be used together to solve the stochastic optimal control problem. In other words,
the control and estimation strategies can be designed concurrently (that is, one depends upon
the other).
Learning is one of the three aspects of the agent’s uncertainty problem (beside the parametric

uncertainty and stochasticity) and has many dimensions. It can take place at various levels of
a decision problem. As learning constitutes a form of economic estimation, it is desirable to
develop learning algorithms in a context that allows for dynamic structure. Learning possibility
can occur only in dynamic models and appears more likely with longer planning horizons. The
relative efficiency of the learning generally depends on the method chosen. An optimal behavior
may arise from a learning process. However, if the model is very noisy, then the potential for
learning is limited. In function of the success of model approximation, the learning may be
more or less efficient.
A double learning dynamic is taken into account in our analysis: one which describes how

the decision-maker adjusts his behavior towards risk over time, and an other which reveals
the impact of his optimal actions on the system performances. It is useful to note that the
reinforcement or stimulus-response learning is not based in our modelling on the principle that
actions which have led to good outcomes in the past are more likely to be repeated in the
future.
Economic models involving learning often have the potential for converting independent

shocks into correlated movements in observables. Models with learning induce persistent ef-
fects of transitory shocks. This is an important feature of models with stochastic endogenous
fluctuations.
Accurate representations of the reality generally involve active learning, allowing economic

agent to experiment. This is the case when decisions are made as much to acquire information.
The timing of information is a crucial aspect. The agent can acquire additional information by
receiving a noisy signal about the true state of the world. The degree of information embedded
in the observation of the state variable generally depends on the values of the control variables,
so that the extent of learning about the latent parameters can be influenced directly by the
agent. He has some influence over the rate at which information arrives, so that his behavior
may generate information. It can reduce the uncertainty with which he is faced. We can affirm
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that the active learning makes the agent more experienced over time. Learning from experience
is a form of active learning (see, Balvers and Cosimano, 1990). In general, the uncertainty
will depreciate the economic agent’s activity and will produces a temporary stability followed by
a longer or shorter period of adaptation in instability which implies for the agent an additional
effort allocated in the active learning.
It is important to underline the benefits from active learning in a stochastic optimization

model (see, Easley & Kiefer, 1988, or Kiefer & Nyarko, 1989, among others). We will
incorporate the value of learning into the optimization problem. The algorithm will anticipate
future learning when choosing the control for each period, and thus will perturb the system
early in time in order to reduce the variance of the parameters estimated later in time.
The control process is limited by the speed with which the decision-maker reacts to cautious

changes in the environment. We speak here about the inertia of the decision-maker to non-
significant environmental changes. This is concretized in deleted observations of the decision-
maker. He generally reacts to sudden shifts of the dynamic system. On the other hand, there
is an inherent inertia effect of the environment due to its capacity of reaction.
Control actions adapt as a consequence of changes in endogenous variables and also affect the

observability of the system. It will exist, by consequence, feedback between the decision-maker’s
instruments and the system target variable. It will implicitly generate a short-run causality
chain. When the variables are not perfectly related, or they are not perfectly controlled, there
are more possibilities for observing causality. Sometimes apparent causality occurs because of
the presence of unobserved variables. In any discussion of causality, the timing of when things
happen is of crucial importance. It must put variables when they occur rather than they are
first observed.
The decision-maker’s optimal control has a dual effect. It reveals information as regards the

state and parameters of the system while achieving the optimal objective. It is important to
note that the decision-maker’s actions are taken in real time, whereas his decisions will usually
be formulated in advance. In other words, the time passes between taking a decision (which
generally implies a selection from several known alternatives) and its implementation. This
selection implies the existence of an well-defined goal.

3. The Model

Consider a stochastic data generating process managed by a system of discrete dynamic
simultaneous equations. Several theoretical and empirical arguments can be enumerated in
support of this model specification:
i) The current practice in the specification of parametric econometric models places consid-

erable emphasis on the simultaneous relationships between variables. The economy is a system
and the simultaneity is a property of the system. This is the most obvious reason for joint
modelling and was the basis for the advances in econometrics started firstly by Haavelmo
(1944).
ii) Due to the sheer complexity of the behavior of an economic system, we very often need

a dynamic specification (that is, there are lagged dependent variables among the regressors
in the model). The use of distributed lags in econometric research is quite old (see, Koyck,
1954). An advantage of this type of specification is that the time lags of a variable can serve
as surrogates for the unobserved variables of the system. The policy optimization problem
is essentially dynamic in nature. It would be unrealistic to assume that policy-makers would
make their decisions without taking into consideration the past performance of the economy
being controlled. However, the optimization of the process will usually entail the consequence
that future policy affects present policy. Note here that there is an intimate link between the
dynamic and the stochastic specification.
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iii) Econometric models have naturally the tendency to be discrete-time models. In practical
applications, the data available are in the form of sampled time series and therefore, the values
of the variables are known only at discrete points of time. In a real economy, the agents generally
make decisions at each period and the periods are defined by discrete numbers. Decisions occur
in sequences. In other words, the process of decision is discrete. This is because the dynamic of
the economy is observed only at discrete intervals of time. It appears realistic to assume that the
agents act sequentially (at each period), taking into account all the available information. The
agents do not modify their decisions continuously. They have only a finite number of possible
actions. Empirical models are often built in discrete time setting. Although the models may be
perceived in continuous time, their implementation for simulation purposes is most likely to be
in discrete-time environment. Numerical solutions necessarily require the reformulation of the
problem into a discrete-time finite horizon approximation. In order to estimate the parameters
of a continuous time model, it is necessary to relate them to the discretely observed data. The
continuous approach is convenient for theorizing but it is less realistic. In the econometric
practice, few explanatory variables are continuous. Many of them are dummies, qualitative
variables, or counts. Others, even if continuous in nature, are recorded at intervals and can be
treated as discrete.
Complex economic systems are generally characterized by vectors of endogenous and exoge-

nous variables. Let xt ∈ Rq be the value of the selected control-related (external) variable at
time t (regarded as a strategic instrument-variable of the decision-maker), yt ∈ Rp the system
(observable) target internal-variable in t (modelled as a partly or indirectly controlled variable)
and zt ∈ Rr an exogenous variable not subjected to the decision-maker’ control which is ob-
served outside the system under consideration and so unaffected by the control process. It may
be forecasted by the decision-maker but cannot be influenced by him.
Note that xt is not strictly exogenous, in general the actions being dependent variables on

the history and current state of the system. Generally, for employing the input xt, the decision-
maker will incur a certain cost. He will also incur adjustment costs for necessary changes in
the inputs. Inevitably, there is an arbitrary element in the choice of control variables and an
insufficient variability in the instruments.
We also point out that the target variables are usually a small subset of the total number

of endogenous variables in a model.
Whether or not the variable zt is exogenous depends upon whether or not that variable

can be taken as “given” without losing information for the purpose at hand. Specifically, the
exogeneity of the variable zt depends on the parameters of interest of the decision-maker and
on the purpose of the model (statistical inference, forecasting, or policy analysis).
The decision-maker chooses an action at any date after he observes the value of the exoge-

nous process {zt} for that date. Thus, the optimal action xt will depend on the observed value
of zt. The variations in the process zt over time will therefore result in variations in the process
xt. Complete learning of the true parameter vector will then depend upon whether in the limit
the process xt varies linearly or nonlinearly with the process {zt}. Changes in uncertainty about
exogenous variables zt do not lead to changes in the decision-maker’s bias. This is not the case
when there is a change in uncertainty about policy response parameters.
In general, the size of a model is due more to exogenous variables than to endogenous ones.

Due to the stochastic nature of the problem, in practice, it is generally employed a small model.
In what follows, we make the following basic assumptions:

Assumption 1. The evolution of the environment is modeled by the multivariate linear
stochastic process:

yt = Atyt−1 + Ctxt +Btzt +Dt + ut, t = 1, ..., T .
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• βt = (At, Ct, Bt, Dt) is the endogenous vector of interest parameters, which will be
estimated taking into account the information available at time t. It specifies the structure of
the model and is utilized to compute the control instrument xt.
The parameters in the econometric relationships are supposed to vary systematically, ac-

cording to the information accumulated in the system over time. They are temporarily unstable.
The decision-maker knows that shocks will occur in the future, which will need to be counter-
acted. Thus, future stabilization of the system will be much more effective with more precise
estimates of the unknown parameters. The most efficient estimators, in this case, are obtained
by using the full information estimation, that is, the whole system is specified and estimated
simultaneously.
For optimality reasons, the agent will reestimate the parameters of the model at each time

t by taking the feedback effects of learning into account. The uncertainty on the system
parameters is thus renewed at each period. The parameter estimates are only revised in response
to forecast errors. This regular reevaluation of the parameters certifies that the evolution of
the estimated model follows that one of the true process. The process of continuous learning
implies an iterative adjustment process and ensures a consistent estimation of the parameters
of interest because of the increasingly finer information.

Remark 1. In practice, the decision-maker is confronted with an inherent instability of the
system over time. It may be characterized by periods of relatively stable behavior. It exists
an intimate link between the dynamic stability of the process and the amount of information
it reveals. This is a general phenomenon. Even if we suppose a temporal invariance for the
parameter of interest, it cannot ensure the stationarity of the process {yt}. Moreover, even if
we suppose that zt ≡ z, it is possible that the process be explosive.

Remark 2. In practice, even if the history of the process is longer, the memory of its
states is shorter. The predictable impact of yt−1 on yt depends on the degree of persistence
parameter At. This is the lagged dependent variable which determines the dynamic of the
system. It represents the internal force of the system. The smaller the multiplicative slope
parameter Bt, the greater needs to have a compensating moving in the control variable xt. If
the parameter on the control variable is large, a small change in the control can cause a much
larger change in future state. Time-variation in the unknown parameter Bt implies that the
uncertainty regarding this parameter is renewed again and again. A well-known feature of such
control problems is the possibility of a trade-off between current control and estimation.

• ut ∼ iN (0,Ψ), ut ∈ Rp, is an exogenous unobserved random shock modelled, for simplic-
ity, by a multivariate normal distribution with zero mean and finite variance Ψ. It symbolizes
the unforeseeable elements of the real world, as such the shocks which perturb hazardously
the environment, or the errors of measurement. However, nothing forces the data generating
process to be stable. The stable distribution is a statistical phenomenon.
Nothing a priori is known about the form of the error distribution. Usually, the form of

heteroskedasticity is not specified. The fixed and unknown variance-covariance matrix (as it will
typically be in practice) is a non-negative symmetric matrix (but not necessarily of full rank)
supposed to depend on an unknown nuisance parameter vector which can be either restricted
or not. Unless the model implies a certain form for the covariance matrix, it is desirable to use
an estimator that is consistent under the weakest possible conditions (see, Newey & West,
1987, and Andrews, 1991).
There are many statistical ways to generate heteroscedasticity, such as: incorrect data

transformation (generally, applied to the dependent variable) or choice of the functional form,
changes in the distributions of shocks, the economic behavior and so on. Generally, the het-
eroscedasticity cannot be completely eliminated. The misspecification of the error covariance
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matrix is a source of inefficiency in the estimation of the regression parameters (see, Engle,
1974).
It is also important to note that the assumption of independence of errors often does not

hold or may be of interest to test it. Given that the misspecification is often traduced in practice
by autocorrelated errors in the model, it is important to test for autocorrelation before starting
the problem of optimization and control.

Assumption 2. The first step in the decision making process is the selection of a feasible
objective. Let η not.

= {yg1 , yg2 , ..., ygT} be the optimal path desired by the decision-maker. This
characterizes his individual preferences on the environment. The targets represents, to a certain
extent, the decision-maker’s anticipation on the future dynamic of the system, given its back-
ward evolution. They are not uniquely defined. The targets and the dynamics are modelled
simultaneously.
Taking into account foreseeable movements in y, the decision-maker will fix some small

values for the targets:
0 < ygt ≤ l

0
t < 1, t = 1, ..., T

where l
0
t are low optimal bounds. However, it must said that no unique criterion unambiguously

determines the values of the targets ygt . Assigning extreme values to the targets in order to be
sure that the solution of the model always keeps the values of the objectives on one side of the
targets, would not be a realistic economic strategy for the decision-maker.
For stochastic control systems, there are many path which the system states may follow

given the control and initial data. In this case, the best system performance depends on the
information available to the controller at each time t. In the stochastic context, it will exist
permanent and significant errors on the control. The negative effect of the system stochasticity
will be the control deviation. Since a real-time control process is necessarily discrete, we
cannot hope to converge precisely to any target value, but only to some neighborhood of it. In
other words, after the process of control is ended, the decision-maker will obtain a stochastic
neighbouring-trajectory which is expected to be close to the reference-optimal trajectory. The
goal of the control is to maintain the process most of its time near the equilibrium state η. An
other explanation why the targets are generally unattainable may be their incompatibility with
the state of the system. To a certain extent, the fixed targets are subjective.
It is useful to note that an a priori analysis of the deterministic control problem is often

crucial (see, Sargent, 1987).

Remark 3. When there is no cost on the control, then the decision-maker does not have as
objective to follow a fixed optimal trajectory. This is the case of a myopic (or pseudo-optimal)
decision behavior.

Assumption 3. The timing of the control is as follows: At each stage t, the agent im-
plements an action xt which is a stimulus for the system. This is purported to contribute
towards equilibrium and stability of the environment. A shock ut is realized and the agent
observes the output yt (the impulse response) from which he extracts a dynamic signal about
the environment trend. The question is: how this signal will influence the behavior of the
decision-maker?
This output and the corresponding action provide information on the data generating

process. The decision-maker will utilize this output-signal for non strategic learning (he learns
the “true” parameters of interest), or strategic learning (specific to a closed-loop strategy) in
order to reduce the uncertainty on the future behavior of the system. Note that the uncertainty
is reduced only ex-post. The shock ut will have a persistent effect on yt, which will disappear
gradually over time.
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Remark 4. At the end of time period t − 1, the control rule xt is applied and the target
variable yt is determined. Thus, the values of xt and yt are determined at time t− 1. During
the period t− 1 to t the environment reacts to these values, as they become generally known,
and by the time t arrives, yt is determined from the state equation. Consequently, there is an
apparent instantaneous relationship between xt and yt in the state equation.
The time lag between t − 1 and t is a decision lag, and it should be strongly emphasized

that this lag need not correspond to the interval between observations of the environment
represented by the data available for analysis. So, the decision lag (or decision time) and the
observation interval (or observation time-periods) need not coincide, such that one decision
period may equal N observation periods (N could be greater than or less than unity).

Assumption 4. The optimality of the instrument is considered with respect to a global
criterion which measures the system deviations M yt

not.
= yt−ygt , t = 1, ..., T . The optimal policy

will ensure the minimal deviation between the state of the system and the target (an a priori
value or level of aspiration).
Let W[1,T ](y1, y2, ..., yT ) be this criterion, supposed twice continuously differentiable and

strictly convex at least in the feasible area of the model.
A quadratic objective function may be condisered as a good local approximation of the

true preferences, exactly as a model approaches the behavior of the environment around the
observed variables. This is a reasonable one since it induces a high penalty for large deviations
of the state variable from the target but a relatively small penalty for small deviations. These
endogenous deviations exist because of the phenomenon of “learning bunching” (that is, small
learning biases are present during some periods while large biases occur during others). Even
in cases where the quadratic objective function is not entirely justified, it is still used since it
leads to an elegant analytical solution in the linear model case and a computationally feasible
numerical solution for the non-linear model. Although the use of an explicit overall criterion is
not generally possible, most of the theoretical and practical works accept the hypothesis of a
quadratic loss function.
In addition, nothing impedes to suppose that the loss function is additive period by period,

on one hand in order to simplify the deduction of the formulas for the optimal instrument and
on the other hand, because it will make possible to apply the Bellman (1961) optimality
principle backwards through time (the decisions being independently stochastic). We therefore
consider, in what follows, a global quadratic additively recursive criterion:

W[1,T ](y1, ..., yT )
def
=

TX
t=1

Wt(yt)

whereWt is a quadratic asymmetrical loss function, strictly convex and twice differentiable:

Wt(yt)
def.
= (yt − ygt )

0Kt(yt − ygt ) + 2(yt − ygt )
0dt

The asymmetry of the criterion in the target values derives from the difference in penalty
costs that the decision-maker may attach to errors, depending on whether they are errors of
shortfall or errors of overshooting about the target. He is not indifferent with regard to the sign
of the system deviations over time. There is an asymmetrical treatment of errors to either side
of the target, that is, a positive deviation from a target is not penalized as a negative deviation
of the same magnitude.
The criterion for making decisions is a function that puts weight (or measure) on the

possible outcomes indicating their desirability or undesirability. The parameters Kt and dt
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allow to weight differently the various loss components. In other words, we will not have
equivalent deviations of the target variables during the optimization process. The weights used
are, of course, anything but objective, since the deviation of all target variables may be not of
the same importance.
In general, the decision for choosing certain parameters Kt and dt reflects the decision-

maker’s priorities and also depends on the available amount of information concerning the
future development of the system parameters. However, it is unlikely that the decision-maker
will be able to assign values to the weights which correctly represent his preferences. The idea
is to choose the parameters which yield a smoother control (that is, less fluctuating) and hence
a more stable closed-loop system. If the future evolution of the system is unpredictable, then
the best weighting matrix Kt which can be chosen is the identity matrix, while the best value
for the vector dt is the unity vector.
At each stage t, the parameters Kt and dt are updated and new optimal values are chosen in

order to satisfy the requirements of the decision-maker. These requirements are based on policy
values at each stage, and do not require any direct information about the actual weighting the
policymaker may have in his mind.
It is important to note that although widely adopted in the literature, the assumption of

the availability of an explicit expression for W[1,T ] is not free from critiques, especially when
real world problems are considered (see, Bock & Pauly, 1978). It exists situations where the
decision-maker is not able, or is not willing to formulate an explicit criterion function. How
sensitive is this assumption and how sensitive to this assumption are the control results rest
still a sensible subject in this area.

Assumption 5. At each period t, the agent computes his optimal policy bxt before to know
the initial state of the process y0. He therefore obtains a random optimal policy, conditional to
y0: bxt = argmax

xt

Et−1[Ut(W[1,t], ϕt) | y0]

where Et−1(·) not.= E(· | It−1) represents the operator of conditional expectation based on infor-
mation available in t− 1, ϕt is the absolute risk-aversion index at time t based on a truncated
history of the process and rational anticipations of the system behavior in the future, and Ut

is the agent’s anticipative (local) utility function defined by:

Ut(W[1,t], ϕt)
def.
=

2

ϕt

[exp(−ϕt

2
·W[1,t])− 1]

with

W[1,t]
def.
=

tX
s=1

Ws(ys) (evolutive loss)

It follows that:

−U
00(W[1,t], ϕt)

U 0(W[1,t], ϕt)
=

ϕt

2

where a prime denotes the partial derivative with respect to W[1,t].

Therefore,
ϕt(W[1,t])

2
measures locally (at the pointW[1,t]) the agent’s risk-aversion. Note here

that the non-linearity of the utility function is more commonly represented as risk-aversion. For
further details, see Protopopescu, D., 2007.
This is Jacobson (1973, 1977) the first who has posed in evidence an exponential utility

for the problems of stochastic optimal control with (symmetrical) quadratic criterion. Generally
speaking, the utility depends on the purposes for which it is developed. It does not exist but for
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the agent, and thus, it has a subjective character. This is derived from individual preferences.
It is very rare in econometrics to be able to fully specify the utility function. No decision-maker
has sufficient a priori knowledge to fully specify his utility function. The stochastic disturbance
in the system will produce random shocks in the decision-maker’s preferences over time. The
maximum expected utility solution does not necessarily correspond to a stochastic optimal
policy with minimum variance.
In general, the initial state y0 (a past observation of the dynamic process) is either fixed

or randomized (in this latter case, it is possible to have an a priori distribution on y0 based
on the information acquired until the date t = 0). Because a real system is always subject to
permanent shocks, it is not possible to control its initial state exactly. This will amplify the
uncertainty on the system behavior. It will be crucial to achieve a correct treatment of the
starting value y0 and to measure its impact. Small differences in initial conditions can have
large effects on long-run outcomes.

Remark 5. A necessary (but not sufficient) condition for the unicity of the instrument is
that the number of target variables be inferior to the number of instruments (p ≤ q).

Remark 6. The only constraints in the above optimization problem are the model equations
for each time point in the policy period. However, if nonconvexities arise in the criterion
(objective function), this may greatly complicate the search for the optimal control instruments
(see, Amman and Kendrick, 1995), and additional constraints for smoothing and bounding
the controls may also be present.

Remark 7. It is far from probable that the decision-maker exactly maximizes his utility
at each stage of the control. We rather face a nearly optimization behavior, where the control
variable is continuously and optimally adjusted to maximize some objective function (see,
Van de Stadt, H. et al., 1985, Varian, 1990 and LELAND, 1990, among others).
The stochastic disturbance in the system will produce random shocks in the decision-maker’s
preferences over time.

4. Probabilistic Hypotheses on the Acquisition of Information

Given that some random strategies are employed, the stochastic environment must be de-
scribed by a complete finite probability space (Ω,F , PΩ,H) endowed with a filtration H (i.e.,
an increasing sequence of σ sub-algebras of F) satisfying the “usual” technical conditions.
Denote by F the σ-algebra of P(Ω). PΩ is the decision-maker’s subjective probability

measure on Ω (P(Ω) = 1) and represents the stochastic law of the environment (the agent may
be uncertain about the state of the world). In statistical applications, PΩ is an element of a
family of sampling probabilities.
Let I = ∪

t≤T
It be the space of all possible “elementary events” in the given environment. It

plays the role of Ω. Suppose that the family of events Ω is atomless, that is, that any event
but ∅ (the impossible event) is the union of two exclusive events which are also different from
∅. This assumption expresses the idea that a refinement of the description of an uncertain
environment can always be made. Some additional specific assumptions should be made.

Assumption 6. (Non-anticipation): The history of the process, the past actions and
the history of the exogenous variables constitute the maximum that can be fully observed and
known at a given moment t.

Assumption 7. (Non-causality): The future actions cannot affect the current dynamic
of the process. The principle of causality requires that the dynamics of the process being such
that present or past actions can affect only future outcomes and not vice versa.
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Assumption 8. (Retention of information): At the date t, the information It is It+1-
measurable. Once the information is obtained, this is definitively acquired. In particular, the
past actions are memorized. Uncertainty will be solved over time according to a discrete-

filtration H not.
= {Ft | t = 0, ..., T} with FT

def.
= P(Ω) and F0

def.
= {∅,Ω} almost trivial (meaning

that Ω is the only event of non-zero probability in F0), filtered to the right which respect to
the operator of inclusion (i.e., Ft = ∩

s>t
Fs for all t, and so Ft ⊂ Fs whenever s ≥ t). In other

words, nothing is forgotten, the memory of the process increasing over time.

5. Linear Feedback Optimal Strategy: The Classic Context

The objective of this section is to correct the theoretical results of Van der Ploeg (1984a,
1984b) for the estimation of the feedback optimal strategy in the context of a linear dynamic
stochastic environment. We consider here the case where the decision maker’s risk-aversion is
constant and exogenous by hypothesis. Let ϕ be the absolute risk-aversion index fixed during
the entire control period [1, T ].

Proposition 1. (i) Under the hypotheses stated in Section 2 and Section 3, the optimal
feedback control equation for the period t is given by:

bxt(It−1, zt, βt,Kt, dt, y
g
t ) | y0 = Gt · yt−1 + gt, t = 1, ..., T

where:
Gt

def.
= −(C 0

t
eHtCt)

−1(C 0
t
eHtAt)

gt
def.
= −(C 0

t
eHtCt)

−1C 0
t[ eHt (Btzt +Dt)− (Ip − ϕKt(Ψ

−1 + ϕ ·Ht)
−1)ht]eHt

not.
= Kt − ϕ ·HtM

−1
t (ϕ)Ht, MT (ϕ)

not.
= Ψ−1 + ϕ ·HT

(ii) It exists the following backward recurrences (t = T, T − 1, ..., 1):

Ht−1 = Kt−1 + (At + CtGt)
0 eHt(At + CtGt)

ht−1 = Kt−1y
g
t−1 − (At + CtGt)

0 [ eHt(Ctgt +Btzt +Dt)− (Ip − ϕ ·Kt(Ψ
−1 + ϕ ·Ht)

−1)ht]

with initial conditions
HT

not.
= KT and hT

not.
= KTy

g
T − dT

Proof. The dynamic programming problem is approached in finite discrete-time and uncer-
tain future. Given the assumptions of non-anticipation, retention of information, and additivity
for the global loss function W[1,T ], the multiperiod stochastic optimization problem (T sub-
periods) can be decomposed into a sequence of local optimization problems (see, Bellman,
R., 1961):

argmax
x1,...,xT

E0UT (W[1,T ], ϕ) = argmax
x1(·)

E0[argmax
x2(·)

E1(...argmax
xT (·)

ET−1UT (W[1,T ], ϕ)]

where UT (W[1,T ], ϕ)
def
= 2

ϕ
{exp[−(ϕ

2
)W[1,T ]] − 1} represents the agent’s utility function at time

T , Et−1(·) not.
= E(· | It−1) is the operator of conditional expectation based on the information

available to the agent at time t− 1, and ϕ defines the absolute risk-aversion index fixed for the
entire period of control.
It comes to maximize period by period (sequential decision problem), working every time

conditionally to the information acquired. The optimal policy is computed step by step starting
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from xT towards x1 (backward through time). We first consider the decision problem for the
last period T , given all the information available at the end of period T − 1. We can write:

ET−1UT (W[1,T ](yT ), ϕ) =
2

ϕ
ET−1[exp{−(

ϕ

2
)WT (yT )} exp{−(

ϕ

2
)
T−1X
t=1

Wt(yt)}− 1]

Because the last exponentiel does not depend on xT , we have:

bxT = argmax
xT

ET−1UT (W[1,T ](yT ), ϕ) = argmax
xT

ET−1[exp{−(
ϕ

2
)WT (yT )}]

The assumption of rational expectations makes the problem difficult because the expected
value of a non-linear function is not generally the non-linear function of the expected value of
the random variable. Under appropriate regularity conditions, we can interchange the order of
integration and differentiation, that is, we can differentiate within the conditional expectation
operator.
For the computation of ET−1[exp{−(ϕ2 )WT (yT )}] (which is supposed to exist), we proceed

as follows:

ET−1[exp{−(
ϕ

2
)WT (yT )}] = ET−1[exp{−(

ϕ

2
) · (M y0TKT M yT + 2 M y0TdT )}]

= ET−1[exp{−(
ϕ

2
)(y0THTyT − 2y0ThT + fT )}]

where:

M yT
not.
= yT − ygT , HT

def.
= KT , hT

not.
= KTy

g
T − dT , fT

not.
= yg0T (hT − dT )

Substituting ATyT−1 + CTxT +BTzT +DT + uT for yT , we obtain:

VT
not.
= ET−1[exp{−(

ϕ

2
)WT (yT )}] = ET−1[exp{−(

ϕ

2
) · y0THTyT + ϕ · y0ThT − (

ϕ

2
)fT}]

= ET−1[exp{−(
ϕ

2
) · u0THTuT − ϕ · u0T [KT · (ATyT−1 + CTxT +BTzT +DT )− hT ]− (

ϕ

2
)fT}·

exp{−(ϕ
2
) · {(ATyT−1 + CTxT +BTzT +DT )

0[KT (ATyT−1 + CTxT +BTzT +DT )− 2hT ]}}]

= ET−1[exp (ω2 (uT ))] expω1(IT−1, xT , zT , βT , KT , dT , y
g
T )

= expω1(IT−1, xT , zT , βT ,KT , dT , y
g
T )

Z
Rp

(2π)−
p
2 | detΨ |−1

2 exp{−1
2
eu0TΨ−1euT} expω2 (euT ) deuT

with ω2 (euT ) a quadratic function in euT .
One can write:

I
not.
=

Z
Rp

(2π)−
p
2 | detΨ |−1

2 exp{−1
2
eu0TΨ−1euT} expω2 (euT ) deuT

=

Z
Rp

(2π)−
p
2 | detΨ |− 1

2 exp{−1
2
eu0T (Ψ−1 + ϕ ·HT )euT + (linear in eu0T )}deuT

= | det(Ψ−1 + ϕ ·HT ) |−
1
2 | detΨ |−1

2

Z
Rp

(2π)−
p
2 | det(Ψ−1 + ϕ ·HT ) |

1
2 expω3 (euT ) deuT
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with ω3 (euT ) a quadratic function in euT . Now, we find uT ∈ Rp such that:

ω3 (euT ) = −1
2
(euT − uT )

0 (Ψ−1 + ϕ ·HT ) (euT − uT ) + independent of euT
By consequence, we must impose the following equality:

−1
2
eu0T (Ψ−1 + ϕ ·HT )euT − ϕ · eu0T [KT · (ATyT−1 + CTxT +BTzT +DT )− hT ]− (

ϕ

2
)fT

= −1
2
eu0T (Ψ−1 + ϕ ·HT )euT + eu0T (Ψ−1 + ϕ ·HT )uT −

1

2
u0T (Ψ

−1 + ϕ ·HT )uT

+independent of euT
It follows that:

independent of euT = 1

2
u0T (Ψ

−1 + ϕ ·HT )uT − (
ϕ

2
)fT

not.
= ω4 (uT )

and
−ϕ · eu0T [KT · (ATyT−1 + CTxT +BTzT +DT )− hT ]

= eu0T (Ψ−1 + ϕ ·HT )uT

that is,

uT = −ϕ(Ψ−1 + ϕ ·HT )
−1[KT · (ATyT−1 + CTxT +BTzT +DT )− hT ]

Thus, the integral becomes:

I = | det(Ψ−1 + ϕ ·HT ) |−
1
2 | detΨ |−1

2 exp{1
2
u0T (Ψ

−1 + ϕ ·HT )uT − (
ϕ

2
)fT}·Z

Rp

(2π)−
p
2 | det(Ψ−1 + ϕ ·HT ) |

1
2 exp{−1

2
(euT − uT )

0 (Ψ−1 + ϕ ·HT ) (euT − uT )}deuT
The last integral is equal to 1 because the integrand is the probability density function of a

p-dimensioanl normal random variable:

euT ∼ N (uT , (Ψ−1 + ϕ ·HT )
−1)

One can write:
| det(Ψ−1 + ϕ ·HT ) |−

1
2 | detΨ |− 1

2

= | det[Ψ−1(Ip + ϕ ·Ψ ·HT )Ψ] |−
1
2 = | det (Ip + ϕ ·Ψ ·HT ) |−

1
2

If we replace uT by its value, we find without difficulty:

I = | det(Ip + ϕ ·Ψ ·HT ) |−
1
2 exp{−(ϕ

2
)[KT (ATyT−1 + CTxT +BT zT +DT )− hT ]

0

·− (ϕ) · (Ψ−1 + ϕ ·HT )
−1 · [KT (ATyT−1 + CTxT +BTzT +DT )− hT ]− (

ϕ

2
)fT}

= | det(Ip + ϕ ·Ψ ·HT ) |−
1
2 expω4(IT−1, xT , zT , βT ,KT , dT , y

g
T )

By consequence, we have:

VT
not.
= ET−1[exp{−(

ϕ

2
)WT (yT )}] = expω1(IT−1, xT , zT , βT ,KT , dT , y

g
T ) · I
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= | det(Ip+ϕ·Ψ·HT ) |−
1
2 exp{ω1(IT−1, xT , zT , βT ,KT , dT , y

g
T )+ω4(IT−1, xT , zT , βT , KT , dT , y

g
T )}

= | det(Ip + ϕ ·Ψ ·HT ) |−
1
2 expω5(IT−1, xT , zT , βT ,KT , dT , y

g
T )

After several algebraic manipulations, we find:

ω5(IT−1, xT , zT , βT ,KT , dT , y
g
T ) = −(

ϕ

2
)(ATyT−1 + CTxT +BTzT +DT )

0

·[KT − ϕHT (Ψ
−1 + ϕ ·HT )

−1HT ](ATyT−1 + CTxT +BT zT +DT )

+ϕ(ATyT−1 + CTxT +BTzT +DT )
0[Ip − ϕ ·KT (Ψ

−1 + ϕ ·HT )
−1]hT

+(
ϕ

2
)ϕh0T (Ψ

−1 + ϕ ·HT )
−1hT − (

ϕ

2
)fT

= −(ϕ
2
)(y0T−1A

0
T + x0TC

0
T + z0TB

0
T +D0

T ) eHT (ATyT−1 + CTxT +BTzT +DT )

+ϕ(y0T−1A
0
T + x0TC

0
T + z0TB

0
T +D0

T )[Ip − ϕ ·KT (Ψ
−1 + ϕ ·HT )

−1]hT

+(
ϕ

2
)ϕh0T (Ψ

−1 + ϕ ·HT )
−1hT − (

ϕ

2
)fT = −(

ϕ

2
)[y0T−1A

0
T
eHTCTxT

+x0TC
0
T
eHT (ATyT−1 +BTzT +DT ) + x0TC

0
T
eHTCTxT + (z

0
TB

0
T +D0

T ) eHTCTxT ]

+ϕx0TC
0
T [Ip − ϕ ·KT (Ψ

−1 + ϕ ·HT )
−1]hT + independent of xT

where:

eHT
not.
= KT − ϕ ·HTM

−1
T (ϕ)HT

MT (ϕ)
not.
= Ψ−1 + ϕ ·HT = Ψ−1(ϕΨ+H−1

T )HT

Using the well-known formulas for the derivatives of matricial functions, the first order
condition in xT writes:

−(ϕ
2
)C 0

T
eHTATyT−1 − (

ϕ

2
)C 0

T
eHT (ATyT−1 +BT zT +DT )− ϕC 0

T
eHTCTxT

−(ϕ
2
)C 0

T
eHT (BTzT +DT ) + ϕC 0

T [Ip − ϕ ·KT (Ψ
−1 + ϕ ·HT )

−1]hT = 0
(ϕ6=0)⇔

−C 0
T
eHTATyT−1 − C 0

T
eHT (BTzT +DT ) + C 0

T [Ip − ϕ ·KT (Ψ
−1 + ϕ ·HT )

−1]hT = C 0
T
eHTCTxT

It follows that: bxT (IT−1, zT , βT , KT , dT , y
g
T ) = GT · yT−1 + gT (1)

GT
not.
= −(C 0

T
eHTCT )

−1(C 0
T
eHTAT ) (2)

gT
not.
= −(C 0

T
eHTCT )

−1C 0
T [ eHT (BTzT +DT )− (Ip − ϕKT (Ψ

−1 + ϕ ·HT )
−1)hT ] (3)

The expected utility level for the period T is obtained by substituting for xT in UT :bVT not.
= | det(Ip + ϕ ·Ψ ·HT ) |−

1
2 expω5(IT−1, bxT , zT , βT ,KT , dT , y

g
T )

= | det(Ip + ϕ ·Ψ ·HT ) |−
1
2 exp{−(ϕ

2
)[(AT + CTGT ) · yT−1 + CTgT +BTzT +DT ]

0·

· eHT [(AT + CTGT ) · yT−1 + CTgT +BTzT +DT ]

+ϕ[(AT + CTGT ) · yT−1 + CTgT +BTzT +DT ]
0[Ip − ϕ ·KT (Ψ

−1 + ϕ ·HT )
−1]hT
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+(
ϕ

2
)ϕh0T (Ψ

−1 + ϕ ·HT )
−1hT − (

ϕ

2
)fT}

= | det(Ip + ϕ ·Ψ ·HT ) |−
1
2 exp{−(ϕ

2
)[y0T−1(AT + CTGT )

0 eHT (AT + CTGT ) · yT−1

+2y0T−1(AT +CTGT )
0 eHT (CTgT +BT zT +DT ) + (CTgT +BTzT +DT )

0 eHT (CTgT +BTzT +DT )

−2y0T−1(AT + CTGT )
0(Ip − ϕ ·KT (Ψ

−1 + ϕ ·HT )
−1)hT − 2(CTgT +BTzT +DT )

0

·(Ip − ϕ ·KT (Ψ
−1 + ϕ ·HT )

−1)hT − ϕh0T (Ψ
−1 + ϕ ·HT )

−1hT + fT ]}
Now, we include the period T − 1 in our optimization problem. We have:

bxT−1 def.
= argmax

xT−1

ET−2{ET−1UT (W[1,T ](yT ), ϕ)} =

= argmax
xT−1

ET−2[ET−1[exp{−(
ϕ

2
)WT (yT )} exp{−(

ϕ

2
)
T−1X
t=1

Wt(yt)}− 1]]

= argmax
xT−1

ET−2[ET−1[exp{−(
ϕ

2
)WT (yT (bxT ))} · exp{−(ϕ

2
)WT−1(yT−1)}]]

= argmax
xT−1

ET−2[exp{−(
ϕ

2
)WT−1(yT−1)}ET−1[exp{−(

ϕ

2
)WT (yT (bxT ))}]]

The expected utility level for the two last sub-periods is therefore:

VT−1
not.
= ET−2[exp{−(

ϕ

2
)WT−1(yT−1)}bVT ] = | det(Ip + ϕ ·Ψ ·HT ) |−

1
2

·ET−2[exp{−(
ϕ

2
)[y0T−1KT−1yT−1 − 2y0T−1KT−1y

g
T−1 + yg0T−1KT−1y

g
T−1

+y0T−1(AT + CTGT )
0 eHT (AT + CTGT ) · yT−1 + 2y0T−1(AT + CTGT )

0 eHT (CTgT +BTzT +DT )

−2y0T−1(AT + CTGT )
0(Ip − ϕ ·KT (Ψ

−1 + ϕ ·HT )
−1)hT

+(CTgT +BTzT +DT )
0 eHT (CTgT +BTzT +DT )− 2(CTgT +BTzT +DT )

0

·(Ip − ϕ ·KT (Ψ
−1 + ϕ ·HT )

−1)hT − ϕh0T (Ψ
−1 + ϕ ·HT )

−1hT + fT ]}]
not.
= | det(Ip + ϕ ·Ψ ·HT ) |−

1
2 ·ET−2[exp{−(

ϕ

2
)[y0T−1HT−1yT−1 − 2y0T−1hT−1 + fT−1]}]

where, by identification, we obtain the following recurrences:

HT−1 = KT−1 + (AT + CTGT )
0 eHT (AT + CTGT )

hT−1 = KT−1y
g
T−1 − (AT + CTGT )

0 [ eHT (CTgT +BTzT +DT )

−(Ip − ϕ ·KT (Ψ
−1 + ϕ ·HT )

−1)hT ]

fT−1 = yg0T−1KT−1y
g
T−1 + (CTgT +BTzT +DT )

0 eHT (CTgT +BTzT +DT )

−2(CTgT +BTzT +DT )
0 · (Ip − ϕ ·KT (Ψ

−1 + ϕ ·HT )
−1)hT + fT − ϕh0T (Ψ

−1 + ϕ ·HT )
−1hT

The solution for bxT−1 will be identical with (1) with T replaced by T − 1, where GT−1 and
gT−1 are defined by (2) and (3), respectively, with a similar change in time subscripts. We
can thus apply a backward induction in time (t = T, T − 1, ..., 1) in order to find the decision-
maker’s optimal strategy for all sub-periods. At the end of this process, we find bx1 = G1y0+ g1
as the optimal policy for the first period and the associated maximum expected utility for all
periods. The determination of the optimal bx1 depends on the method of forward-looking which
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is used in the optimality for the future decisions. We cannot obtain an optimal policy for the
first period if we do not know its behavior in the future.
The matrices Gt are obtained by solving the matrix equations:

Gt = −(C 0
t
eHtCt)

−1(C 0
t
eHtAt)

Ht−1 = Kt−1 + (At + CtGt)
0 eHt(At + CtGt)

backward in time with initial condition HT = KT . Also, the vectors gt are obtained by solving:

gt = −(C 0
t
eHtCt)

−1C 0
t[ eHt (Btzt +Dt)− (Ip − ϕKt(Ψ

−1 + ϕ ·Ht)
−1)ht]

ht−1
not.
= Kt−1y

g
t−1 − (At + CtGt)

0 [ eHt(Ctgt +Btzt +Dt)− (Ip − ϕ ·Kt(Ψ
−1 + ϕ ·Ht)

−1)ht]

backward in time with initial condition hT = KTy
g
T − dT .

These formulas correct those obtained by Van der Ploeg (1984a, 1984b) and utilized
in the literature related to stochastic feedback optimal control (see, Jacobson, 1973, Karp,
1987 and Whittle, 1981, 1989, 1990, among others). In particular, for ϕ = 0, we obtain a
correction of the classic results obtained by Chow (1973, 1976a, 1976b, 1977, 1978, 1981,
1993) in the risk-neutral context.
Note that in the stationary case (very often utilized for econometric purposes), when all

system parameters as well as the parameters of the optimal feedback control equation are
supposed to be time-invariant, the constraints for the matrices (G, g) will be modified with
respect to the case ϕ = 0. We will have not only a dependence on ϕ (which allows for estimating
or testing its values), but also a more complicated discrete Riccati non-linear stochastic matrix
equation (which must be iterated back in time in order to obtain the optimal policy in any
period). The resulting decision rules will have recursive and adaptive properties (e.g., Kalman
filters) in the sense that they can be sequentially updated by incorporating posterior knowledge
about means and variances when the information sequence is increasing.
It is possible that differences between ex-ante decisions and ex-post results (in other words,

between ex-ante and ex-post optimality) exist. What was in a decision-maker’s ex-ante best
interest is not necessarily in his ex-post best one.
Even if the linear approximation is only roughly, we can however implement a feedback strat-

egy for a closed-loop dynamic process which is sufficiently good, on one hand for obtaining the
evaluation of the policy for the first period and on the other hand for the actual implementation
in the future.

6. Endogenous Risk-Aversion

The uncertainty always attends the risk. In the real world, the decision-maker is confronted
with multiple risks (generally, different phenomena are characterized by different risks). His
decision is not made independently; it is made together with other decisions that place the
decision-maker in risky situations. Decisions made to avoid even partially one source of risk
may be affected by the presence of others.
It is well-known that economic agents behave on average risk-neutral for small and repeated

decisions, but the most common attitude of economic agents in all important decision making
problems is one generated by risk-aversion (they prefer the expected value of the risk to the
risk itself). Such a behavior characterizes most decision-makers, at least for large gains or
large losses. An agent who expects in the future high deviations from the fixed targets can be
considered to be risk-averse.
In general, the aversion is associated with increasing uncertainty while the uncertainty is

naturally associated with incomplete information about future behavior of the system. One can
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interpret the risk as the decision-maker’s degree of confidence in the future. It decreases with
the uncertainty. Traditionally, the risk-aversion is equivalent to the concavity of the agent’s
utility function or a decreasing marginal utility. However, this is just a way of expressing
risk-averse preferences.
In the literature on risk, one generally assume that uncertainty is uniformly distributed

over the entire working horizon, when the absolute risk-aversion index is negative and constant.
From this perspective, the risk is totally exogenous, and thus independent of endogenous risks.
The classic procedure is “myopic” with regard to potential changes in the future behavior of
the agent due to inherent fluctuations of the system over time. The traditional measures of
risk-aversion are generally too weak for making comparisons between risky situations. This can
be highlighted in concrete problems in finance and insurance, context for which the Arrow-
Pratt measures (in the small) give ambiguous results (see, Ross, 1981). We extend the
Arrow-Pratt approach (1964, 1971a, 1971b), which takes into account only attitudes
towards small exogenous risks, by integrating in the analysis potentially high endogenous risks
which are at least partially controllable by the agent. This point of view has strong implications
on the agent’s adaptive behavior towards risk in an evolving environment.
In any uncertain environment, the decision-maker must form expectations. When his un-

certainty is high it may well be that there is a discrepancy between what he expects and reality.
In an noisy environment, the expectations may be disappointed.
The decision-maker can influence the likelihood of the environment states by using a rein-

forcement learning strategy. We say that he is not myopic in the sense of expecting. A myopic
behavior leads to an important bias in the controls and targets variables. Future anticipations
play an important role in how the agent will decide what strategic actions and optimal risk
to take. Agent’s behavior will depend on forecasts of future environmental state. If the data
generating process changes in ways not anticipated by the model, then forecasts lose accuracy.
Without uncertainty, the distinction between the present and the future is confused and there
is no anticipation.
Suppose that the agent is a strategic decision-maker. He thinks about the future. Depending

on the way the agent perceives future outcomes, both risk sensitivity and optimal decisions will
be affected during the process of optimization and control. The forecast is updated each time
as new observation becomes available. The agent’s rationality is characterized by the fact that
the sequence of updated forecasts will converge to the equilibrium of the system.
Different forecasts are obtained from different information structure. There are several

sources of forecast uncertainty, including parameter non-constancy, estimation uncertainty,
variable uncertainty, innovation uncertainty and model misspecification.
A correct evaluation of the past is crucial for making optimal predictions in the future. This

is necessary for an optimal assessment of the agent’s risk-aversion over time. Fluctuations in
the system target variable generate a time-varying risk-aversion for the decision-maker during
the period of control.
We make the following useful notations:

St, p_d
not.
= k yt−1 − ygt−1 k2 +...+ k yt−k1 − ygt−k1 k

2

(the sum of squared past deviations at time t)

St, a_f_d
not.
= k yat|It − ygt k2 +...+ k yat+k2|It+k2 − ygt+k2 k

2

(the sum of squared anticipated future deviations at time t)

St, w_p_d
not.
= k yt−1 − ygt−1 k2 Lt−1 + ...+ k yt−k1 − ygt−k1 k

2 Lt−k1
(the weighted sum of squared past deviations at time t)
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St, w_a_f_d
not.
= k yat|It − ygt k2 Lt + ...+ k yat+k2|It+k2 − ygt+k2 k

2 Lt+k2

(the weighted sum of squared anticipated future deviations at time t)

where ygt+i (i = 0, ..., k2) represent fixed targets in the future (taking into account foreseeable
movements in y), yat+i|It+i (i = 0, ..., k2) are expected values of the target variable at time t+ i

based on non-decreasing endogenous information sets It+i and Lt−j1 (j1 = 1, ..., k1), Lt+j2

(j2 = 0, ..., k2) are weighting scalars attached to the system deviations (in the past and future)
with respect to the equilibrium path η.
Econometric forecasting is a very useful instrument of the decision-maker. In a real decision

making problem, the forecast must be as accurate and efficient as possible. A necessary prelim-
inary step for the decision-maker in order to optimally choose the target path, is to make some
a priori expectations on the future evolution of the system based on its past performances. A
question arises. Are the current and past values of the process yt sufficient to forecast yt+k
(k = 1, ..., k2)?
These ex-ante expectations refer to those which held prior to the acquisition of information

and generally imply a discrete-time process of tatonnement. They must be unique and in
accord with the agent’s observations and generally are dependent on the initial value of the
state variable. The more they are distant in time, the more they are difficult to assess. (due
to the extreme uncertainty of the far future). The ex-ante and ex-post forecast errors will
be viewed, in this context, as some indicators of uncertainty and of difficulty of the decision
making.
We are now in a position to give a definition of the agent’s risk-aversion index by taking

into account past performances of the system (a truncated history) and rational anticipations
of the system behavior in the future.

Definition. Using t to denote time, the absolute risk-aversion index ϕt evolves according
to:

ϕt
def.
=

St, w_p_d + St, w_a_f_dp
(St, p_d + St, a_f_d)2 + l

, t = 1, ..., T

where l ≥ 1 is a positive integer which characterizes the agent’s type, and:

1 ≤ k1 < T, k2 ≥ 0, 1 ≤ k1 + k2 ≤ T − 1
−1 < Lt−1 ≤ ... ≤ Lt−k1 ≤ 0, − 1 < Lt ≤ ... ≤ Lt+k2 ≤ 0

The weights may differ across individuals. They are updated each time as new observation
becomes available. The decision-maker gives a higher importance to the past and future devi-
ations which are closer to the moment of implementation of a new optimal action. Smaller the
weight is, higher is the importance given by the agent to the system deviation from his local
objective.
Given the potential destabilizing role of a long memory, the agent will include in the analysis

only a limited history of the process. Distant past observations might increase significantly the
biais of the estimators in the econometric model. Generally, they provide an imprecise signal
for the decision-maker.
In general, it exists an arbitrary element as regards the choice of the backward lag k1. The

objective is to find the better compromise between fit and complexity. The larger the forward
lag k2 is, the more the prediction error increases. Distant forecasts are difficult to formulate
due to unpredictable external disturbances which generally affect the system performance.
It is only by taking into account both, the past and the expected future, that the agent can

optimally evaluate the risk in an evolving environment. It allows for a better risk allocation
at each period of control. A mixing of objectivity and subjectivity will always characterize

25



the agent’s degree of risk-aversion. The complexity of this mixing is given by the changing
environment design and the agent’s typology.
The higher the degree of risk-aversion at time t, the lower the absolute risk-aversion index

ϕt. It may be possible that ϕt ≈ 0 for t = 1, ...T . In this case, the agent is characterized
by an almost null risk-aversion during the period of control. An other possibility is to obtain
ϕt1 = ϕt2 for t1 6= t2, that is, a constant risk-aversion for distinct periods of time. When ϕt ≈ ϕ
(costant) for t = 1, ..., T , then the agent will have an almost constant risk-aversion during the
entire planning horizon [1, T ]. It is important to distinguish between local risk-aversion (at
each period t) and global risk-aversion over the entire period of control.
The experimental evidence shows that individuals overweight extreme events. Let ϕmin be an

optimal risk-aversion threshold fixed by the decision-maker before starting the control and for
the entire working horizon [1, T ]. The objective is not to exceed this fixed threshold, if not the
agent becomes excessively risk-averse for the current period of control, being characterized by an
extreme pessimism. This optimal threshold is chosen such that it offers the best characterization
of the agent’s type. An agent with a higher (smaller) risk-aversion before starting the control
will choose a smaller (higher) threshold ϕmin. If ϕt characterizes the local risk-aversion of the
agent (at time t), ϕmin will characterize his global risk-aversion (over the whole). For further
details, see Protopopescu, D., 2007.

7. Linear Optimal Feedback Strategy Sensitive to Controlled Endogenous Risk-
Aversion

In this section, we improve the formulas obtained for the optimal feedback control rules in
the context of a constant exogenous risk-avesrion, by considering here the more realistic case
of a time-varying endogenous risk-aversion subjected to the control of the decision-maker.

Proposition 2. Under the hypotheses stated in Section 2 and Section 3, the linear
feedback control equations for a rational decision-maker characterized by endogenous risk-
aversion are given by:

bxt(It−1, zt, βt, Kt, dt, y
g
t ) | y0 = Gt · yt−1 + gt, t = 1, ..., T

with the following optimal reaction coefficients:

Gt
not.
= −(C 0

tHtCt)
−1(C 0

tHtAt)

gt
not.
= −(C 0

tHtCt)
−1C 0

t[Ht (Btzt +Dt)− (Ip − ϕtKt(Ψ
−1 + ϕt ·Ht)

−1)ht]

Ht
not.
= Kt − ϕt ·HtM

−1
t (ϕt)Ht, Mt(ϕt)

not.
= Ψ−1 + ϕt ·Ht ht

not.
= Kty

g
t − dt

Proof. In practical economic applications with real world data, the linear models have to
face up to the following constraint: the decision variables and sometimes the state variables have
to be constrained in the sense of inequalities and hence the characterization of decision regions is
very important. Generally, the decision-maker is restricted in the use of the instruments. Very
often, the optimal policies tend to fluctuate with a large amplitude (the stochastic solutions
will have a certain dispersion). Instruments variability will generally have a large influence,
increasing the error on the targets. The observable fluctuations in instruments are due to the
initial impact of the unpredictable shocks and forecast errors. One remedy to avoid drastic
changes from one period to another is to impose preselected upper and lower bounds on the
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values of the control variables (see, Sandblom & Banasik, 1985). These bounds are chosen
at the beginning of the application and kept fixed till the end.

Remark 8. However, this remedy may introduce new sources of error. The bounds on
instrument variation will produce truncated distributions and so will introduce a bias on in-
strument variation. Moreover, the variation of instruments is given not by their actual efficiency,
but by their relative position in the set of available instruments. Consequently, this will generate
discontinuities in the relation between instrument efficiency and optimal policy.
At each period t, the agent will maximize his expected utility function under a set of dynamic

constraints imposed in order to avoid drastic changes in the control variable:

argmax
xt∈Λt

Et−1Ut[W[1,t], ϕt]

s.t. :

⎧⎪⎪⎨⎪⎪⎩
yt = Atyt−1 + Ctxt +Btzt +Dt + ut
L0t ≤ xt ≤ L

0
t (amplitude bounds)

L00t ≤ xt − xt−1 ≤ L
00
t (change bounds)

y0, yt > 0, t = 1, ..., T (economic constraints)

where
W[1,t](y1, ..., yt)

def
=

X
s=1,t

Ws(ys)

with Wt an asymmetrical quadratic local loss function, strictly convex and twice
differentiable:

Ws(ys)
def.
= (ys − ygs)

0Ks(ys − ygs) + 2(ys − ygs)
0ds = ys

0Ksys − 2y0shs + fs

hs
not.
= Ksy

g
s − ds fs

not.
= yg0s (hs − ds)

Λt
not.
=
n
xt | 0 < L0t ≤ xt ≤ L

0
t and L00t ≤ xt − xt−1 ≤ L

00
t

o
⊂ Rq

(the agent’s feasible strategies space at time t)

The first set of constraints is imposed in order to keep the instruments within specific
positive bounds through time. Constraints of economic rationality impose that L0t, L

0
t and yt

take some positive values. Possible negative realizations of the instruments are ruled out. The
wider the bound on the instrument, the higher the importance given by the decision-maker to
the variation of the instrument in that direction so that they fit to the active learning process.
The amplitude bounds allow the use of more instruments than targets.
It is assumed that the decision-maker chooses these bounds at each iteration of the control

algorithm. Thus, he can exploit the information on the previous instruments when fixing the
bounds for the next instruments, by allowing a greater variability for an efficient instrument
rather than for an inefficient one. The bounds on the instruments are simply the limits up
to which the decision-maker decides to extend the research of the optimal solution at each
iteration.
As regards the last set of constraints, this indicates that the variation of the control variable

between two consecutive periods lies within a prespecified bounded interval. The values of this
variation can be either positive or negative.
The two sets of constraints taken together are called boundary conditions. They restrict

the set of potential optima. We have the following inequalities:

min {L01, ..., L0T} ≤ xt ≤ max
n
L
0
1, ..., L

0
T

o
∀ t = 1, ..., T

min {L001, ..., L00T} ≤ xt − xt−1 ≤ max
n
L
00
1, ..., L

00
T

o
∀ t = 1, ..., T
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The bounded control approach with bounds not only on the magnitude but also on the rate
of change of the controls holds much benefit.

Remark 9. If Ω ⊂ Rq is the set of admissible values of the instruments from the decision-
maker’s point of view, then an optimal solution of the above optimization problem which is to
be acceptable to the decision-maker will must belong to Ω. This set is not specified in terms of
analytical restrictions, but supposed to exist in the mind of the decision-maker. The fact that
Ω is not specified is, in practice, almost invariably the case. If the decision-maker can specify
Ω analytically, these restrictions can be incorporated in the feasible region of the model,

eΛ def.
=
n
xt | L0t ≤ xt ≤ L

0
t and L00t ≤ xt − xt−1 ≤ L

00
t | t = 1, ..., T

o
We note that the nonnegativity constraints on the state and control variables are never

binding (dependent each other) in an optimal plan (see, Epstein, 1981).
Remark 10. In the context of a non-linear model, a local linearization allows for the pos-

sible bounds on the objectives (whose values depend on the decision vector) to be transformed
into linear inequality constraints on the exogenous instruments. Note also that possible bounds
on the instruments can be transformed into linear inequality constraints on the objectives.

During the entire period of control, a revision process of the feedback information is required.
New information resolves the uncertainty step by step. The value of the optimal instrumentbxt is hence obtained by a revision of the expectations at each previous stage of the control. In
other words, the agent’s optimal decisions evolve over time as result of the periodic learning.
Following the same reasoning employed in Proposition 1 for an arbitrary period t, we

obtain without difficulty the analytical formulas for the feedback optimal equations.
We can write:

bxt = argmax
xt

Et−1Ut(W[1,t](yt), ϕt) = argmax
xt

Et−1[exp{−(
ϕt

2
)Wt(yt)}]

where:

Et−1[exp{−(
ϕt

2
)Wt(yt)}] = Et−1[exp{−(

ϕt

2
)(y0tHtyt − 2y0tht + ft)}]

with:
Ht

def.
= Kt, ht

not.
= Kty

g
t − dt, ft

not.
= yg0t (ht − dt)

Substituting Atyt−1 + Ctxt +Btzt +Dt + ut for yt, we obtain finally:

V t
not.
= Et−1[exp{−(

ϕt

2
)Wt(yt)}] = Et−1[exp (ω2 (ut))] expω1(It−1, xt, zt, βt,Kt, dt, y

g
t )

= expω1(It−1, xt, zt, βt, Kt, dt, y
g
t )

Z
Rp

(2π)−
p
2 | detΨ |− 1

2 exp{−1
2
eu0tΨ−1eut} expω2 (eut) deut

with βt
not.
= (At, Bt, Ct, Dt) and ω2 (eut) a quadratic function in eut.

We can write:

I
not.
=

Z
Rp

(2π)−
p
2 | detΨ |− 1

2 exp{−1
2
eu0tΨ−1eut} expω2 (eut) deut

= | det(Ψ−1 + ϕt ·Ht) |−
1
2 | detΨ |− 1

2

Z
Rp

(2π)−
p
2 | det(Ψ−1 + ϕt ·Ht) |

1
2 expω3 (eut) deut
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with ω3 (eut) a quadratic function in eut. Now, we need ut ∈ Rp such that:

ω3 (eut) = −1
2
(eut − ut)

0 (Ψ−1 + ϕt ·Ht) (eut − ut) + independent of eut
As before, we obtain:

ut = −ϕt · (Ψ−1 + ϕt ·Ht)
−1[Kt · (Atyt−1 + Ctxt +Btzt +Dt)− ht]

Following the same steps as in Proposition 1, the integral becomes:

I = | det(Ip + ϕt ·Ψ ·Ht) |−
1
2 expω4(It−1, xt, zt, βt, Kt, dt, y

g
t )

It follows that:

V t
not.
= Et−1[exp{−(

ϕt

2
)Wt(yt)}] = expω1(It−1, xt, zt, βt, Kt, dt, y

g
t ) · I

= | det(Ip + ϕt ·Ψ ·Ht) |−
1
2 expω5(It−1, xt, zt, βt,Kt, dt, y

g
t )

with:

ω5(It−1, xt, zt, βt, Kt, dt, y
g
t ) = −(

ϕt

2
)[y0t−1A

0
t
eHtCtxt + x0tC

0
t
eHt(Atyt−1 +Btzt +Dt)

+x0tC
0
t
eHtCtxt+(z

0
tB

0
t+D0

t) eHtCtxt]+ϕtx
0
tC

0
t[Ip−ϕt ·Kt(Ψ

−1+ϕt ·Ht)
−1]ht+ independent of xt

where:

eHt
not.
= Kt − ϕt ·HtM

−1
t (ϕt)Ht

Mt(ϕt)
not.
= Ψ−1 + ϕt ·Ht = Ψ−1(ϕtΨ+H−1

t )Ht

The first order condition in xt writes:

−C 0
t
eHtAtyt−1 − C 0

t
eHt (Btzt +Dt) + C 0

t[Ip − ϕt ·Kt(Ψ
−1 + ϕt ·Ht)

−1]ht = C 0
t
eHtCtxt

It follows that:

bxt(It−1, zt, βt, Kt, dt, y
g
t ) | y0 = Gt · yt−1 + gt, t = 1, ..., T

where:
Gt

not.
= −(C 0

tHtCt)
−1(C 0

tHtAt)

gt
not.
= −(C 0

tHtCt)
−1C 0

t[Ht (Btzt +Dt)− (Ip − ϕtKt(Ψ
−1 + ϕt ·Ht)

−1)ht]

Ht
not.
= Kt − ϕt ·HtM

−1
t (ϕt)Ht

The coefficients of the optimal policy (behavioral equation) depends, in this new formulation
of the problem, on the risk-aversion index specific to each period of control. This is expected
to contribute to the equilibrium and stability of the system as well as to improve the agent’s
future utilities. The optimal feedback control will stabilize the system because it allows for a
free flow of information about the system evolution.
The decision rule is systematically reviewed and revised in response to new signals from

the environment. The decision-maker will thus refine the distance between the current target
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variable and the fixed system characteristics. The deviations from the targets will be minimal
amongst all possible deviations, because the imperfections on bx1, ..., bxt−1 will not affect bxt.
Thus, the optimal policy is robust to the variance of the shocks. It is interesting to note that
the sufficient variables for describing bxt belong to some spaces of constant dimension, while the
endogenous information set It generates a sequence of spaces of increasing dimension.
The parameters of the behavioral equation are related to the parameters of both economic

environment and objective function. The former are derived from the latter through opti-
mization. By consequence, if the parameters of the economic environment (or of the objective
function) change, the parameters of the behavioral equation will also change. Knowledge of the
former parameters can be used to derive the parameters of the behavioral equation, which can
then be utilized to obtain forecasts of the endogenous target variable. The parameters of the
state equation also change if the generating mechanism for xt changes.
The existence of the optimum may be thus restricted to certain configurations of the pa-

rameters of interest. Accurate estimates are necessary for an efficient implementation of the
above numerical methods. They represent a basic information for an optimal algorithm and
hence are very important as regards the accuracy of the numerical simulations.
Consider first the case when there exist an optimum for each period of control. We give in

this sense a graphical representation of the agent’s optimal actions during the entire planning
horizon as well as the simulated performance of the system with respect to the fixed targets.
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Figure 1:

For this scenario, it is supposed that the agent’s objective is to keep the instruments within
the optimal interval from 0 to 3.5
When there is no optimal solution at a given period of time, the decision-maker will choose

the most recent solution which has conducted the system close to its optimal target. Three
distinct scenarios can be imagined here:

30



i) the variable of control takes a negative value. We give below a suggestive graphic in this
sense.
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Figure 2:

For this scenario, the agent obtains a negative value for bx3. In this case, he will choose for
the period t = 3 between bx1 and bx2, depending on their performance with respect to the targets
yg1 and respective y

g
2.

ii) the variable of control does not satisfy the condition regarding the amplitude bounds.
For an illustration, we give below a suggestive graphic.
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Figure 3:

For the above scenario, the agent’s objective is to keep the instruments within the interval
of interest (0, 4) during the control period. For the period t = 5, the condition of amplitude
limitation is not satisfied while the change bounds (−4 and 4) are not exceeded.
iii) the variable of control does not satisfy the condition regarding the change bounds.
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Figure 4:

The agent’s objective, for this scenario, is to keep the instruments within the interval (0, 5].
In this case, both boundary conditions are not satisfied for the period t = 10.
It is important to note that is possible to implement the same optimal action for distinct

periods of time. We illustrate this possibility by a suggestive graphic.
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Figure 5:

The agent’s objective is to obtain small deviations of the system with respect to the fixed
targets during the entire control period. We give below a suggestive graphical representation
for this scenario.
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Figure 6:

However, in the case of a very noisy environment, severe problems can be caused to the agent
in optimizing the system trajectory. Two distinct scenarios can be considered to illustrate this
possibility:
1) the agent does not succeed to constrain the system to follow the optimal trajectory η

during the entire planning horizon.
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Figure 7:

2) the agent exceeds considerably the fixed optimal targets at each period of the planning
horizon. All the deviations of the system are (very) large, that is:

k yt − ygt kÀ 1, ∀ t = 1, ..., T.
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Figure 8:

We present now a short analysis of the agent’s optimal actions with respect to the risk-
aversion index level during the control period. Three distinct cases are discussed here: i) when
the agent is chracterized by a small risk-aversion; ii) when the agent is characterized by a high
risk-aversion; iii) when the agent’s risk-aversion index is fluctuating between −1 and 0. We
give below two superposed graphics that illustrate the first two cases.
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Figure 9:

The optimal actions are generally different for different attitudes to risk during the planning
horizon. They are not monotone functions with respect to the risk-aversion index parameter.
The dependence between bxt and ϕt is non-linear. The agent’s optimal actions can be smaller
or higher in magnitude, depending on the context of the problem. They are not necessarily
correlated with the agent’s risk-aversion type.
We illustrate below the case where the risk-aversion index is fluctuating between −1 and 0.

An exceeding of the threshold ϕmin will have a non-negligible local effect on the agent’s optimal
policy.
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Figure 10:

It is crucial for the decision-maker to optimally choose the weighting parameters Kt and dt
before proceeding at the maximization of his objective function on the regulation horizon.
In general, Kt is chosen to be a symmetrical positive semi-definite diagonal matrix attaching

penalty constant weights to deviations of the state variable from its desired level. If Kt is not
diagonal, then penalties also attach to covariances of deviations of the state variable from its
desired level.
The variations of the weighting parameters will affect the extensiveness of the agent’s loss

function. It is therefore very important to know the effect of Kt and dt on the agent’s behavior
during the process of optimization and control.
The role played by the ponderation matrix Kt can be easily illustrated in the univariate

model case. Thus, using the matrix differential rules, one obtains the first-order condition for
M yt:

2Kt M yt + 2dt = 0⇔ M yt = −
dt
Kt

(if Kt 6= 0)

By consequence, if dt 6= 0, each increase (decrease) of the parameter Kt causes an increase
(decrease) of the distance between the value of yt measured and that one fixed at time t. We
illustrate this behavior for the two cases discussed above.
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Figure 11:
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Figure 12:

The learning algorithm presented in this paper solves completely the linear-quadratic control
problem with suitable initial and boundary conditions in the case where the decision-maker
is characterized by an endogenous risk-aversion during the entire planning horizon. A non-
negligible advantage of this strategic decision rule is that it is more simple to compute and
easy to use. This new control approach has the potential to better predict the behavior of the
system over time because the learning algorithm implemented by the decision-maker integrates
a controlled risk-aversion at each step of the control. It improves the decision-maker’s ability
to understand the environment response to some of his actions. Moreover, in the context of a
dynamic stochastic game, it will improve the agent’s ability to understand a rival’s pattern of
play.

8. Concluding Remarks and Possible Extensions

The purpose of this paper is to correct and improve the formulas for the feedback linear
optimal equations obtained by Van der Ploeg (1984a, 1984b) and Chow (1973, 1976a,
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1976b, 1977, 1978, 1981, 1993) in the classic context of a controlled decision process, when
the decision-maker is characterized by a constant exogenous risk-aversion.
We extend the previous studies to the more realistic and attractive case of a controlled

endogenous risk-aversion. The present paper offer to decision-makers (e.g., governments, firms,
economic agents) decision rules that allow for a better management and control of dynamic
stochastic environments characterized by important endogenous fluctuations.
We present here possible directions for future research, including both theoretical extensions

and empiric work.
We can investigate, from this new perspective, the case of a total separation between the

control of the process and the control of the instrument. In this particular context, the optimal
control will be independent of the accuracy of the information on the current state. The
separation of parameter estimation from the decision making process generally yields lower
utility than an integrated approach which takes account of estimator uncertainty. The resulting
utility loss can be substantial. It is expected that the precision of the combined estimate is
greater than the precision of separate estimates, because it allows for a better evaluation of
the true. The problem can be extended easily to the case when the parameters of the model
satisfy some equality restrictions. Such restrictions usually relate to a small class of control
instruments and do not necessarily hold for all equations.
An other important application is the case of an asymmetric criterion function expressed

as a sum of weighted squares of deviations from given target values for the objectives and
instruments. The desired values of the instruments are thus included in the quadratic loss
function in order to prevent them from going too far away from realistic values. However, we
must be conscious that no unique criterion unambiguously determines the target values for
the instruments. In this formulation of the problem, it is taken into account the importance
given by the decision-maker to the reduction of the difference between the instruments and
their corresponding target values. In other words, the corresponding weighting parameters
are related to the relative loss attributed to the non-achievement of the target values for the
instruments.
The case of endogenous targets is an other good topic for further research. The fixed goal

is flexible with respect to the possible changes (the nature can change its goal) and can be
modified (in a new formulation of the problem) without incurring additional cost, time, or
effort. A decision problem is often redefined during the decision process itself. This is because,
usually, a target path is prescribed without any consideration of the question whether it can
be obtained. In this more general context, it is expected that the agent’s attitude to risk
will be improved and thus, the implemented actions will be more consistent with the planned
objectives.
Economic intuition tell us that the learning may produce stabilizing and destabilizing effects.

Exogenous stochastic shocks can perturb the system being propagated forward by the learning
rules. When the decision-maker is uncertain about the dynamic of the system, the process
of learning is generally expected to generate local instability. There are potential effects of
a change in the parameters of the system on the stable steady states of the system. The
estimation of the parameters of interest may be a possible source of instability. In other words,
there exists a trade-off between learning and instability. Usually, the data are not rich enough to
estimate successfully the structural models. After computing the optimal policy, the decision-
maker’s objective is to analyze the dynamic behavior of the controlled stochastic process. Is it
stationary or explosive? In other words, are the target variables stable or not? Do distributed
lags have any effect on system stability? If the system is stable but uncontrollable, then the
state variable remains bounded and almost unaffected by the choice of the control variable.
This type of analysis is necessary in most practical control applications. In the literature on
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control theory, only little effort has been spent on stability issues in stochastic environments
(see, Chow, 1993). Because the system is stochastic, the meaning of stability is ambiguous.
It highlights the need for further research in this exciting area of research.
Although linear models are conceptually convenient and analytically flexible, they do not

always provide an adequate framework for modelling the economic behavior. More complex
models are needed if policy intervention is the purpose of modelling. A comparative empiri-
cal study between several alternative approaches (e.g., non-linear modelling, bayesian learning,
semiparametric /nonparametric model specification) is a good topic for further research. We
need empirical knowledge of the optimal policy performance in different contexts of decision
making, from this new risk-averse perspective. Dynamic numerical simulations may be used
to obtain information on how economic agent’s optimal decisions vary over time. Generally,
different methods may lead to important differencies when these are used on simulated data
and to different statistics. Different contexts call for different actions. An interesting ques-
tion is whether the differences between two distinct procedures lead to qualitatively different
predictions on the form that risk-averse learning should take. This problem deserves special
attention. Work remains to be done for more general specifications.
The analysis can be extended to the case of imperfect ex-post information. A study of

economic effects of information and uncertainty is very useful. In the literature on control, it is
supposed that all the variables are observable, but generally the dynamic information is limited
by sample size and masked by noise. This complicates considerably the empiric analysis. There
are substantial losses in efficiency when only the subset of data that has complete observations
is used in estimation. The quality and the quantity of information is critically important to the
decision-maker’s learning process. It generally affects the agent’s optimal decisions over time.
When the sampling process does not identify the distribution of interest (e.g., left-truncated and
/or right-censored data), it is very important to use all the available reliable a priori information
to analyze the model. This information can be numerical, may take the form of a belief or can
be a particular specification suggested by the economic theory. It is crucial to establish in this
case what information is observable and what is unobservable. In this case, the classic methods
of estimation and optimal decision making will be biased. We need to analyze how change the
classic methods in order to ensure the convergence and the bias reduction when allowing for
endogenous uncertainty and dynamic risk-aversion.
Of a great interest is also the case of an working horizon which extends as time evolves.

The moving horizon length will be thus an endogenous parameter. It allows to incorporate new
information of the system at any point of time. It is obtained, in this case, a moving horizon
decision rule based on a continuous refinement process of the risk-aversion index. This type of
analysis allows to combine the finite and infinite horizon optimization problems in the context
of a controlled endogenous risk-aversion.
Significant differences exist between an individual control problem (viewed as a game against

nature), when the agent is submitted only to environment constraints, and respective a con-
trolled dynamic game (where each player is, in addition, constrained by the opponent’s behav-
ior). Many interesting applications of real interest in the context of dynamic stochastic games
(Nash or Stackelberg) can be exploited from this new perspective. In this case, the equilibrium
of the game is subjected to many constraints which mix the parameters of interest. Two dis-
tinct cases can be considered, depending upon the nature of the game (the type of interactions):
cooperative or non-cooperative behavior. The objective, in each case, is the same: obtaining
the system stability with optimal risk-sharing between the players. We can also test (under
heteroskedasticity) if a given discrete time-series arises from a game with closed-loop Nash /
Stackelberg strategies. In the literature, the preocupation on the (theoretical and empirical)
tests aspects in controlled dynamic stochastic games is almost unexistent. We encourage other
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researchers to take up the challenge.
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