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Abstract

When encountering a set of alternatives displayed in the form of
a list, the decision maker usually determines a particular alternative,
after which she stops checking the remaining ones, and chooses an
alternative from those observed so far. We present a framework in
which both decision problems are explicitly modeled, and axiomati-
cally characterize a stop-and-choose rule which unifies position-biased
successive choice and satisficing choice.
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1 Introduction

Classical choice theory discusses the act of choosing one or more alternatives
from a given set of alternatives. A close observation on our regular choice
problems indicates that often the choice behavior is affected by the structure
with which the alternatives appear to the decision maker. In particular, there
are many situations where the decision problem takes the form of choice
from a list. Common examples are for instance buying decisions from an e-
commerce website where the products are displayed sequentially, or selecting
a combo-menu from a list of menus in some fast-food center. For such kind
of problems, Rubinstein and Salant (2006) introduce a very intuitive axiom
on choice functions from lists as to show that it is exactly the structure of
the list that helps the decision maker select an alternative from a given set
of alternatives. It is important to note here that the crucial assumption in
the mentioned work is that the decision maker observes all alternatives from
the given list.

However, in many circumstances an individual might not want to con-
tinue the search till the end of the sequence. This for instance might not be
feasible due to a decision maker’s limited cognitive capacity or just due to
the specific way in which the alternatives are presented to her (cf. Diehl and
Zauberman, 2005). In such a case, the individual faces two different deci-
sion problems: she has to determine a particular alternative, after which she
stops checking the remaining ones, and to choose an alternative from those
observed so far. Rubinstein and Salant (2006) fully characterize the selection
rule from the lists, while ignoring the search component of the decision. Our
aim in this paper is to unify the problems of choice and search when the
decision maker faces a list. For this, we introduce in Section 2 the notion of
a stop-and-choose rule as to analyze the effect of the list structure on both

types of decision problems. Interestingly, we identify two different aspects



of the search behavior when the decision maker reaches the end of a list: (i)
she observes the last alternative and decides to stop - here we say that the
stopping decision is endogenous to the decision maker; (ii) the decision maker
observes the last alternative and would like to search further, but cannot be-
cause the list ends - here we say that the stopping decision is exogenous to
her. As an example, let us consider the situation in which one is looking at
the menu in a restaurant and finds nothing satisfactory enough in the list. It
may happen that the decision maker turns a page of the menu as to search for
other dishes, but finds nothing more because that was the last page. In other
words, the search stops exogenously in such a case. An observer perceiving
this type of behavior has then some evidence about the process leading the
individual to her decision (cf. Eliaz and Rubinstein, 2012) and can clearly
distinguish between exogenous and endogenous stop.

The axioms we discuss in Section 3 take care of both types of search be-
havior, and incorporate various notions of consistency in the decision maker’s
choice. We show then in Section 4 that these axioms, being independent,
characterize a special stop-and-choose rule that unifies successive choice and
satisficing choice as introduced in Salant (2003) and Simon (1955), respec-
tively. This unification is in terms of the generation of a complete binary
relation over the set of alternatives as well as of a partition of this set into
two subsets such that the rule uses either position-biased successive choice
(capturing the influence of the list’s structure in a more subtile manner) or
applies a satisficing choice procedure depending on whether the correspond-
ing list contains alternatives only from one of these subsets or from both of
them.

Our work fits into the strand of literature on sequential choice procedures
or choices with frames (cf. Mandler et al., 2011; Salant, 2011; Salant and
Rubinstein, 2008; Yildiz, 2012), and it is related also to works dealing with



the analysis of search problems. For instance, Weitzman (1979) considers a
situation in which the decision maker has several boxes to open and each
box has a reward that is a random variable. The decision maker can then
choose to open the boxes in any order and if she stops, the pay-off would
be the maximum value found so far. Weitzman (1979) characterizes then
the optimal decision strategy in this model. More recently, Masatlioglu and
Nakajima (2012) focus on choice problems when the search path depends
on an initial and externally observable reference point, while Caplin and
Dean (2011) characterize two types of search behavior (alternative-based
and reservation-based), and consider a rich data set as to test their models.
Let us however stress the fact that the mentioned papers do not address
the issue of how the sequence of alternatives the decision maker is facing
affects her search decisions. Finally, the closest to our work is the paper by
Guney (2010), in which she characterizes a choice process where the decision
maker selects an alternative from a list by performing an iterative search
that utilizes her “mental constraint sets” and the order of alternatives in
the list. In general, one can interpret a mental constrained set attached to
a given alternative x as the set of alternatives the decision maker looks for
after visiting . Thus, the search process characterized by Guney (2010) does
not necessarily involve observation of all alternatives in a list. Additionally,
the stopping behavior in our model, apart from being explicitly modeled,

depends only on the alternatives (and their order) in the corresponding lists.

2 Decision problem

Let X be a set of alternatives. A list ¢ is a finite sequence of alternatives
drawn from X. We assume that each alternative from X appears only once
in a list, and denote the set of all possible lists from X by A. For £ € A, X (/)



is the set of alternatives appearing in ¢, while the length le(¢) of ¢ is defined
by le(f) := | X (¢)].

As already discussed in the Introduction, when confronted with a choice
problem from a list / € A, an individual makes in fact two decisions. The
first one is to determine a particular alternative x € X (¢) such that, having
observed x in /, she stops checking the remaining alternatives displayed in
¢. The second decision is about choosing an alternative from the series of
alternatives that she has observed in the list before x. In other words, a stop-
and-choose rule (sc-rule) C assigns to each ¢ € A an ordered pair (z,k) €
X(0)x ({0yu{1,...,le(0)}) such that z € UY,_, {€ps} if k # 0, and = € X (¢)
if k= 0.

The above formulation of a sc-rule allows to differentiate between the two
situations regarding an individual’s decision on “when to stop” as elaborated
in the Introduction. Suppose first that C'(¢) = (z, k) with k£ € {1,...,le({)}
for some ¢ € A. This corresponds to a situation of endogenous stop, that is,
the individual has decided to stop the search by herself and, if £ < le(¢), to
not encounter the rest of the list; of course, k = le({) is also possible. On the
other hand, we interpret C'(¢) = (z, k) with k = () as a case of exogenous stop,
where the decision maker wants to continue her search even after observing
the last alternative in ¢, but cannot because the list ends. Moreover, as an
endogenous stopping decision indicates the fact that the decision maker does
not want to encounter the remaining alternatives from the list, we assume in
what follows that, for any two lists ¢,¢ € A with le(¢') > le(¢) and £, = ¢;
for all i € {1,...,le(f)}, we have that C'(f) = (z,k) with k& # () implies
CcW) = (x,k).

There are many decision procedures that fit well into the framework de-
scribed above. The common features of the examples we have chosen and

provide next, are as follows. First, each procedure is parametrized by a



complete binary relation (not necessarily a strict one). Second, this binary
relation allows to explicitly partition the set of alternatives into two sets such
that the decision maker stops her search after observing an alternative from
one of these sets for first time in the list. Finally, in each of the examples,
when the decision maker stops her search the alternative being lastly ob-

served is also the chosen one.

Example 1 (Goods and bads: I) The decision maker partitions the set X
into a set of good alternatives (X;) and a set of bad ones (X5). She contin-
ues her search until she observes a good alternative from the list and chooses
it. If she does not encounter any good alternative, then the last alterna-
tive in the list is chosen. Thus, for ¢ € A, C'(¢) = (¢, k) if ¢; € X, for all
i€{l,....,k—1} and ¢, € X1, and C(£) = (li(s), D), otherwise.

Example 2 (Goods and bads: II) We change Example 1 as follows: if the
decision maker does not observe any good alternative till the list ends, then
she chooses the first alternative in the list; that is, for £ € A, we have
C(f) = (f,,0) in this case. Apparently, this example might appear to be
not significantly different from the earlier one, but as we will see later, the
difference between them is crucial in terms of the properties of the search

behavior that we consider.

Example 3 (Limited memory capacity) The alternatives one may choose
from are again categorized into “good” or “bad”. The decision maker can
remember only the last £* alternatives in the series of alternatives seen so far.
She then stops if the last £* remembered alternatives are good and chooses
the last of them. If this never happens, the last alternative in the list is
chosen. In other words, for ¢ € A, we have C'(¢) = (¢, k) if ¢; € X; for all
i€f{k—k"+1k—k+2,....k} and l4_j» € Xo, and C(€) = ({10, 0),

otherwise.



Example 4 (Satisficing choice (Simon, 1955)) Suppose that the decision
maker has a strict linear order P over X and a satisfactory threshold alter-
native z*. Given a list of alternatives, she stops and chooses the first element
in the list that is not inferior to x*; if there is no such alternative, she chooses
the best element in the list according to P. Hence, for £ € A, C({) = (¢, k)
if z*P¢; for alli € {1,...,k — 1} and ¢, Pz* (or ¢, = z*), and C'(¢) = (y,0)
with yP¢; for all ¢; € X (¢), ¢; # y, otherwise.

Example 5 (Successive choice (Salant, 2003)) The successive choice rule can
be defined in terms of a strict linear order P over X and works as follows.
For ¢ € A, the decision maker stores first ¢; in a “register” and at stage ¢
of the computation, ¢ € {1,...,le(¢) — 1}, she replaces the register value y
with ¢;q if ¢, 1 Py. When the list ends, the alternative in the register, say
x({), is chosen. In this case we have C(¢) = (x(¢),0) for all £ € A.

3 Axioms

Let us consider a list £ and an alternative x not belonging to it, and suppose
that the decision maker exogenously stops for each of the lists ¢ and (z),
that is, she would like to continue her search but has to stop because the
lists terminate. Our first axiom incorporates an ‘additivity of continuation’
idea and naturally recommends the continuation of the search when z is
added after the last alternative from ¢. Note that no restriction on the

choice behavior is imposed in such a case.
Axiom 1 For £ € A and z € X \ X (¢), C(¢) = (y,0) and C(z) = (x,0)
imply C'(¢,x) = (z,0).

The second axiom requires that if the decision maker decides to stop

after observing x in the list containing only that alternative (and thus, by



definition, to choose z), then from any other list she should either stop im-
mediately after observing = (and choose z) or she must have decided to stop
before x. Notice that C(z) = (z,1) implicitly contains the fact that the
decision maker does not even want to know whether the list continues or
terminates, and in that sense one can say that there is no alternative in X
letting the decision maker continue after observing x. We can then interpret
our second requirement as a consistency condition in the sense that if the
decision maker continues her search after encountering all alternatives before
x, then she must recall the fact that no alternative after x makes her continue

(and she has chosen z) and thus, she must stop after x and choose x.

Axiom 2 If C(x) = (z,1), then for any ¢ € A with ¢, = = we have either
C(0) = (y,m) for some m € {1,...,n — 1} or C(¢) = (z,n).

Our third axiom resembles the weak axiom of revealed preference from

the standard theory of choice, and it starts with a situation in which the
decision maker exogenously stops and selects an alternative = from a list £.
We require then the decision maker to be consistent with her decision (and
continue selecting ) also in the following two situations: (i) she should never
choose any alternative (say y) that appears later than = in the list ¢ over x
in any list comprising only = and y, and (ii) her choice decision should be
independent of the way, in which alternatives after x in ¢ are arranged in any
list ¢ coinciding with ¢ up to x.
Axiom 3 If C'(¢) = (x,0) for ¢ € A with x = ¢, for some k € {1,...,le({)},
then C(z,y) = (x,0) for any y € {€k+1,...,£le(g)}. Moreover, we have
C(ly, ..., b, 0") = (2,0) for any ¢’ € A with X (¢') C {ékH, . ,&6(@)}.

Finally, we consider again a situation of exogenous stop and interpret

C(x,y) = (x,0) as a preference for x over y if the decision maker has to stop

after y. Then it is natural to require that this revealed preference is kept



when y is attached as the last alternative to a list, from which x has also

been the selected alternative.

Axiom 4 If C(¢) = C(¢') = {(x,0) for some ¢,¢' € A with ¢ = (z,y), then
Cl,y) = (x,0).

In order to show the independence of these four axioms, let us consider
the following examples of sc-rules each of which satisfies three of the axioms

but violates the fourth one.

Example 6 Let C be such that for all ¢ € A, C (¢) = (¢1,0) if le(¢) =1 and
C(0) = (¢1,2), otherwise. This rule clearly violates axiom 1, while satisfying

all other axioms.

Example 7 Consider the sc-rule C' defined as follows: for all £ € A, C' (¢) =
(01,1 if le(¢) = 1 and C(¢) = ({s,2), otherwise. It is easy to see that the

rule satisfies axioms 1, 3, and 4. However, it violates axiom 2.

Example 8 Fix z* € X and define C as follows: for all £ € A, C(¢) = (¢1,0)
if X(¢) C X\ {z*} with le(?) # 2; C(0) = (x*, k) with z* = {} if 2* € X ({);
and C'(¢) = (5, (), otherwise. This rule satisfies axioms 1, 2, and 4. It clearly
violates axiom 3 since C(a, b, c) = (a,0) and C(a,b) = (b, D).

Example 9 Fix z* € X and let C be defined as follows: for all ¢ € A,
Cl) = (¢1,0) if le(¢) < 3 and z* ¢ X (£); C(¢) = (¢3,0) if le(¢) > 3 and
z* ¢ X(0); and C(¢) = (z*, k) with £, = z*, otherwise. This rule satisfies our
first three axioms. Notice however that we have C(a,b) = {(a,0) = C(a,c)

and C(a,b,c) = (c,0) in violation of axiom 4.

4 Characterization

As already mentioned in the Introduction, the decision procedure we charac-

terize unifies position-biased successive choice and satisficing choice. In order

9



to define this procedure, we first provide a generalization of the successive
choice function (called position-biased successive choice) used in Rubinstein
and Salant (2006). This generalization is parametrized by a complete binary
relation R (with P and I being its asymmetric and symmetric part, re-
spectively) allowed to contain indifferences and by a labeling rule (indicator
function) ¢ : X x X — {1,2}. Since the main assumption in Rubinstein and
Salant (2006) is that the decision maker observes all alternatives appearing
in a list, we present the position-biased successive choice as a special sc-rule,
where for each list the decision maker would like to continue her search after

the list ends.

Definition 1 Let R be a complete binary relation over X and ¢ be an in-
dicator function. A sc-rule Sup; is a position-biased successive choice rule
if for all ¢ € A, Sugs(¢) = (2,0) with x € X(¢) being determined ac-
cording to the following procedure. At the beginning of the procedure the
decision maker stores ¢; in a “register” and at stage t of the computation,
t € {1,...,le(¢) — 1}, she replaces the register value y with ¢, if (i) ¢411y
and 0(y, ls11) = 2; or (ii) f441Py. When the list ends the DM has x in the

register.

In other words, if ¢; 11y holds at some stage ¢, then the indicator function
0 uses the ordering of y and ¢; 1 in the list to break the tie and to determine
the alternative to be registered at the end of stage t. Thus, this rule cap-
tures the influence of the way in which the alternatives are displayed on the
decision-making in a more subtle manner.

We show in what follows that the axioms presented above allow us (i) to
define a complete binary relation R over X and an indicator function 9, and
(ii) to partition the set of alternatives into two sets (X; and X5) such that, on
lists containing alternatives only from X5, the decision procedure uses Sug s,

while on lists containing alternatives from both X; and Xs, the procedure

10



considers any alternative in X; as being superior to any alternative from X,
and selects the alternative from X; which appears firstly in the list. In that
sense, the divide-and-choose rule we characterize below unifies both position-
biased successive choice and satisficing choice. An axiomatic characterization
of the position-biased successive choice on its own can then be derived as a
side result.

We show in Lemma 1 how axioms 1 and 2 help us suitably construct
R and partition X. Moreover, the joint application of axioms 1, 2, and 4
care for a consistent choice under exogenous stop when the last alternative
from a list has been deleted (Lemma 2). The interplay of all axioms gives
us then the characterization of a divide-and-choose rule (Theorem 1), while
the combination of axioms 3 and 4 allow us to provide a connection between
any (suitably restricted) sc-rule satisfying the axioms and the position-biased

successive choice rule (Corollary 1).

Lemma 1 If a sc-rule C' satisfies axioms 1 and 2, then there exist a complete
binary relation R over X and a partition (X1, Xs) of X such that xPy for
r € Xy and y € Xs.

Proof. Let C be as above and consider the choice from the lists ¢ = (a, b)
and ¢ = (b,a) for a,b € X. By definition, the outcomes C (¢') = (b, 1) and
C (¢") = (a, 1) are excluded. Let us now suppose that C'(¢') = (a, 2) and show
that this leads to contradictions. Consider first the outcomes from the lists
containing only a and b, respectively. By the definition of a sc-rule, C'(a) =
(a,1) implies C'(¢') = (a, 1), a contradiction. Thus, we should have C(a) =
(a,0). On the other hand, C'(b) = (b, 1) leads by axiom 2 to either C'(¢') =
(a,1) or C(¢') = (b,2), and we have again a contradiction. We conclude
then that C(b) = (b, () should hold. Notice finally that C'(a) = (a,?) and
C(b) = (b,0) imply by axiom 1 that C'(¢') = {(c,() for some ¢ € {a,b} in
contradiction to C'(¢') = (a,2). We conclude then that C(¢') # (a,2). The

11



same type of reasoning gives us C (¢") # (b, 2).

Consider now the combination of outcomes C (¢') = (b,2) and C (¢") =
(a,2). If C(a) = (a,1) or C(b) = (b,1), then, by the definition of a sc-
rule, one must have C(¢') = (a,1) or C(¢") = (b,1), a contradiction. Thus,
C(a) = {(a,0) and C(b) = (b, D) should hold. By axiom 1, C(a,b) = {c, D)
for some ¢ € {a, b}, a contradiction. Hence, having both C (¢') = (b,2) and
C (¢") = (a,2) is not possible. A similar argument rules out the following
combinations of outcomes: C (¢') = (a,0) and C (¢") = (a,2); C (¢') = (b,0)
and C (") = (a,2); C(¢') = (b,2) and either C (¢") = (b,0) or C (¢") =
(a, ).

As for the combination C (¢') = (a,0) and C (¢") = (b,1), note that
C (0") = (b,1) implies by the definition of a sc-rule C'(b) = (b, 1) which, by
axiom 2, excludes C' (¢') = (a, ()}, a contradiction. The same type of reasoning
rules out the combination of C' (¢') = (a,1) and either C (¢") = (b,0) or
C ") = (a,0).

Based on the other possible outcomes, for every a,b € X we define:

(1) a ~ bif C (&) = (a,0) and C (£") = (b, ),
(2) a~e bif C (') = (b,0) and C (¢") = (a, D),
(3)a~3bif C(¢) = (a,1) and C'(¢") = (b, 1),
(4) a1 bif C () = (a,0) and C (¢") = (a, D),
(5) a9 bif C (V') = (a,1) and C (¢") = (a,2).

Generate then the binary relation R as follows: for all a,b € X, aRb if
and only if either of the above five possibilities holds. In view of the above
application of axioms 1 and 2, R is complete. The asymmetric and symmetric
part of R are denoted by P and I, respectively, and these are derived from
R in the usual way.

Define now the partition (X7, Xs) of X in the following way:
Xi={xeX:x=gyorxzn~gyforsomeyec X}, Xy =X\ Xj.

12



Notice that if x > y or & ~3 y holds for some y € X, then we have x =4 y
or x ~3 y for all y € X. As to see it, recall that either of x >y y and
x ~3 y requires C(z,y) = (x,1) and hence, by the definition of a sc-rule,
C(x,z) = (z,1) should hold for any z € X.

Take now x € X; and y € Xs5. If x ~3 y, then the symmetry of ~j3
implies y € X;, a contradiction. Thus, the only remaining possibility is to

have x =5 y. Hence, we have xRy but not yRz, i.e., x Py should hold. m

Lemma 2 If a sc-rule C satisfies axioms 1, 2, and 4, then C({) = <Ele(€)7 (Z)>
for some € € A and C(0') = (z,0) for ¢! = 0\ {liey} imply C(z, b)) =
(lre(): 0)-

Proof. Let ¢,¢' € A be such that ¢ = (¢, le(()), C(¢) = (y,0) with y = (i),
and C(¢') = (x,(). We have to show that C'(z,y) = (y,0). Notice first that
if C(z) = (x,1) or C(y) = (y, 1), then axiom 2 requires the decision maker
to stop after observing x in ¢ (and choose x) and after observing y in ¢ (and
choose y) in contradiction to C'(¢') = (z,0) and C(¢) = (y, D), respectively.
We conclude that C'(z) = (z,0) and C(y) = (y,0) should hold which, by
axiom 1, leads to C(z,y) = (z,0) for some z € {z,y}. Finally, the possibility
of z = x is ruled out by the fact that ¢/ = (¢, y) and C(z,y) = C(¢') = (x, ()
imply by axiom 4 that C(¢) = (x, ), a contradiction to C(¢) = (y, (). Hence,
C(z,y) = (y,0) should hold. m

The proof of Lemma 2 becomes even shorter if the sc-rule C' is required
to be exogenous (i.e., it is just a choice function from lists in the terminology
of Rubinstein and Salant (2006)), that is, if for all £ € A, C'(¢) = (x,0)
for some x € X (¢). Notice that in this case axioms 1 and 2 are vacuously

satisfied and thus, we have the following simple observation.

Observation 1 If an exogenous sc-rule satisfies axiom 4, then Lemma 2 still
holds.

13



Let us finally provide the formal definition of a divide-and-choose rule
and show how the joint application of axiom 3 and the above two lemmas

shapes its characterization.

Definition 4 Let R be a complete binary relation over X and ¢ be an
indicator function. A sc-rule is a divide-and-choose rule if there exists a
partition (X7, Xs) of X with x;Pxy for z; € X; and zo € X5 such that
for all £ € A the following holds: (i) C(¢) = Sugrs (¢) if X(¢) C X,, and
(ii) C(¢) = (z,k) with x = ¢, for some k € {1,...,le({)} if {; € X, for
ie{l,....,k—1} and ¢ € X;.

Theorem 1 A sc-rule satisfies axioms 1, 2, 3, and 4 if and only if it is a

divide-and-choose rule.

Proof. Let C' be a sc-rule satisfying axioms 1, 2, 3, and 4, and let the
binary relation R and the partition (X, X3) of X be as defined in the proof
of Lemma 1. Moreover, let 6 : X x X — {1,2} be an indicator function such
that for all a,b € X, 6(a,b) = 6(b,a) =1if a ~¢ b and 6(a,b) = 6(b,a) = 2 if
a ~g b. Take ¢ € A and note that two cases are possible: (i) X(¢) N X; # 0
and (i) X (¢) N X; = 0.

(i) X(¢) N X1 # (. We have to show that C(¢) = (z,k) if {, =z € X;
and ¢; € Xy for all ¢ € {1,...,k—1}. In view of Lemma 1, z € X (¢) N X,
implies C(x,y) = (x,1) for all y € X and thus, by the definition of a sc-
rule and axiom 2, C'(¢{) = (z,0) for some z € X(¢) cannot happen. If
X)) N Xy =0, then C(¢) = (x,1) immediately follows from x € X; (that
is, from C(x,z) = (z,1) for some z € X) and the definition of a sc-rule.
Suppose now that X(¢) N Xy # (. It follows from the definition of a sc-
rule and axiom 2 that C'(¢) = (y,j) for some j > k cannot happen. As
C(a) = (a, D) holds for all a € X, (otherwise, C'(a) = (a, 1) would imply by
axiom 2 that C(a,b) = (a,1) for all b € X \ {a} in contradiction to a € X3),
we have by the repeated application of axiom 1 that j < k£ cannot happen,

14



either. Thus, the only possibility is to have j = k which implies y = = by
C(z) = (x,1) and axiom 2. We conclude that C(¢) = (z, k) with = = ¢
should hold.

(ii) X(¢) N X; = 0. By C(a) = (a,0) for all a« € X, we have again
by the repeated application of axiom 1 that C'(¢) = (x,() should hold for
some = € X (¢). In order to prove that C'(¢) = Sugs (¢), let us consider the
list £ = €\ {lgs1,-.., Ly} for some g € {1,...,le(¢)} and an alternative
z e X(0)\ X(¢), and show the following claim.

Claim 1 C(¢') = Sugs(¢') implies C({',x) = Surs(¢, x).
Proof. Let C(¢) = Sups(l') = (y,0) for some y € X(¢'). By definition,

Suprs (¢, x) is either (z,0) or (y,0). We consider these two possibilities se-
quentially.

(i) Surs(0',z) = (y,0) = C(¢'). Suppose that C(¢',z) = (z,0) with
z #y. If z € X(¢), then axiom 3 requires C'(¢') = (z,0), and we have
a contradiction since z # y. Consider next the case of C(¢',z) = (x,0).
By Lemma 2, C(x,y) = (x,0). Hence, either x >; y (and thus, zPy) or
x ~1 y (implying xly and §(z,y) = 1). Either of these two possibilities calls
for Sugrs (¢',z) = (x,0), a contradiction. We conclude then that C'(¢',z) =
(y,0) = Sups(¢',x) should hold.

(ii) Sups (0, x) = (z,0). X C(l',x) = (2,0) with z # y and z € X (¢), we
have the same type of contradiction as above. Suppose now that C(¢',x) =
(y,0). By axiom 3, C(y,z) = (y,0). Hence, either y > x (and thus, yPz)
or x ~y y (implying x/y and §(z,y) = 2). Either of these two possibilities
requires Sugs (¢,x) = (y,0), a contradiction. Hence, we have C'(¢',z) =

(x,0) = Sups(l',z). m

Finally, since C'(¢*) = Sups(¢*) with ¢* = (¢;) trivially holds, we can
repeatedly use Claim 1 by adding the alternatives from X (¢) \ X (¢') in the
corresponding order as to conclude that C'(¢) = Supgs (¢) should hold. m
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In view of the above result, one can immediately provide a characteriza-
tion of the position-biased successive choice rule by just noticing that it is

an exogenous sc-rule.

Corollary 1 An exogenous sc-rule satisfies axioms 3 and 4 if and only if it

18 a position-biased successive choice rule.

Proof. Let C be a sc-rule as above. For every a,b € X define a ~1 b,
a ~9 b, and a >; b as in the proof of Lemma 1. Let the complete binary
relation R and the indicator function ¢ be defined as in the proof of Lemma
1 and Theorem 1, respectively. Notice that, in view of Observation 1, we are
allowed to use Lemma 2 and conclude that the proof of the corollary directly

follows from part (ii) of the proof of Theorem 1. m
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