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Abstract

When encountering a set of alternatives displayed in the form of
a list, the decision maker usually determines a particular alternative,
after which she stops checking the remaining ones, and chooses an
alternative from those observed so far. We present a framework in
which both decision problems are explicitly modeled, and axiomati-
cally characterize a stop-and-choose rule which uni�es position-biased
successive choice and satis�cing choice.
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1 Introduction

Classical choice theory discusses the act of choosing one or more alternatives

from a given set of alternatives. A close observation on our regular choice

problems indicates that often the choice behavior is a¤ected by the structure

with which the alternatives appear to the decision maker. In particular, there

are many situations where the decision problem takes the form of choice

from a list. Common examples are for instance buying decisions from an e-

commerce website where the products are displayed sequentially, or selecting

a combo-menu from a list of menus in some fast-food center. For such kind

of problems, Rubinstein and Salant (2006) introduce a very intuitive axiom

on choice functions from lists as to show that it is exactly the structure of

the list that helps the decision maker select an alternative from a given set

of alternatives. It is important to note here that the crucial assumption in

the mentioned work is that the decision maker observes all alternatives from

the given list.

However, in many circumstances an individual might not want to con-

tinue the search till the end of the sequence. This for instance might not be

feasible due to a decision maker�s limited cognitive capacity or just due to

the speci�c way in which the alternatives are presented to her (cf. Diehl and

Zauberman, 2005). In such a case, the individual faces two di¤erent deci-

sion problems: she has to determine a particular alternative, after which she

stops checking the remaining ones, and to choose an alternative from those

observed so far. Rubinstein and Salant (2006) fully characterize the selection

rule from the lists, while ignoring the search component of the decision. Our

aim in this paper is to unify the problems of choice and search when the

decision maker faces a list. For this, we introduce in Section 2 the notion of

a stop-and-choose rule as to analyze the e¤ect of the list structure on both

types of decision problems. Interestingly, we identify two di¤erent aspects
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of the search behavior when the decision maker reaches the end of a list: (i)

she observes the last alternative and decides to stop - here we say that the

stopping decision is endogenous to the decision maker; (ii) the decision maker

observes the last alternative and would like to search further, but cannot be-

cause the list ends - here we say that the stopping decision is exogenous to

her. As an example, let us consider the situation in which one is looking at

the menu in a restaurant and �nds nothing satisfactory enough in the list. It

may happen that the decision maker turns a page of the menu as to search for

other dishes, but �nds nothing more because that was the last page. In other

words, the search stops exogenously in such a case. An observer perceiving

this type of behavior has then some evidence about the process leading the

individual to her decision (cf. Eliaz and Rubinstein, 2012) and can clearly

distinguish between exogenous and endogenous stop.

The axioms we discuss in Section 3 take care of both types of search be-

havior, and incorporate various notions of consistency in the decision maker�s

choice. We show then in Section 4 that these axioms, being independent,

characterize a special stop-and-choose rule that uni�es successive choice and

satis�cing choice as introduced in Salant (2003) and Simon (1955), respec-

tively. This uni�cation is in terms of the generation of a complete binary

relation over the set of alternatives as well as of a partition of this set into

two subsets such that the rule uses either position-biased successive choice

(capturing the in�uence of the list�s structure in a more subtile manner) or

applies a satis�cing choice procedure depending on whether the correspond-

ing list contains alternatives only from one of these subsets or from both of

them.

Our work �ts into the strand of literature on sequential choice procedures

or choices with frames (cf. Mandler et al., 2011; Salant, 2011; Salant and

Rubinstein, 2008; Yildiz, 2012), and it is related also to works dealing with
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the analysis of search problems. For instance, Weitzman (1979) considers a

situation in which the decision maker has several boxes to open and each

box has a reward that is a random variable. The decision maker can then

choose to open the boxes in any order and if she stops, the pay-o¤ would

be the maximum value found so far. Weitzman (1979) characterizes then

the optimal decision strategy in this model. More recently, Masatlioglu and

Nakajima (2012) focus on choice problems when the search path depends

on an initial and externally observable reference point, while Caplin and

Dean (2011) characterize two types of search behavior (alternative-based

and reservation-based), and consider a rich data set as to test their models.

Let us however stress the fact that the mentioned papers do not address

the issue of how the sequence of alternatives the decision maker is facing

a¤ects her search decisions. Finally, the closest to our work is the paper by

Guney (2010), in which she characterizes a choice process where the decision

maker selects an alternative from a list by performing an iterative search

that utilizes her �mental constraint sets� and the order of alternatives in

the list. In general, one can interpret a mental constrained set attached to

a given alternative x as the set of alternatives the decision maker looks for

after visiting x. Thus, the search process characterized by Guney (2010) does

not necessarily involve observation of all alternatives in a list. Additionally,

the stopping behavior in our model, apart from being explicitly modeled,

depends only on the alternatives (and their order) in the corresponding lists.

2 Decision problem

Let X be a set of alternatives. A list ` is a �nite sequence of alternatives

drawn from X. We assume that each alternative from X appears only once

in a list, and denote the set of all possible lists from X by �. For ` 2 �, X(`)
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is the set of alternatives appearing in `, while the length le(`) of ` is de�ned

by le(`) := jX(`)j.
As already discussed in the Introduction, when confronted with a choice

problem from a list ` 2 �, an individual makes in fact two decisions. The
�rst one is to determine a particular alternative x 2 X(`) such that, having
observed x in `, she stops checking the remaining alternatives displayed in

`. The second decision is about choosing an alternative from the series of

alternatives that she has observed in the list before x. In other words, a stop-

and-choose rule (sc-rule) C assigns to each ` 2 � an ordered pair hx; ki 2
X(`)�(f;g [ f1; : : : ; le(`)g) such that x 2 [kk0=1 f`k0g if k 6= ;, and x 2 X(`)
if k = ;.
The above formulation of a sc-rule allows to di¤erentiate between the two

situations regarding an individual�s decision on �when to stop�as elaborated

in the Introduction. Suppose �rst that C(`) = hx; ki with k 2 f1; : : : ; le(`)g
for some ` 2 �. This corresponds to a situation of endogenous stop, that is,
the individual has decided to stop the search by herself and, if k < le(`), to

not encounter the rest of the list; of course, k = le(`) is also possible. On the

other hand, we interpret C(`) = hx; ki with k = ; as a case of exogenous stop,
where the decision maker wants to continue her search even after observing

the last alternative in `, but cannot because the list ends. Moreover, as an

endogenous stopping decision indicates the fact that the decision maker does

not want to encounter the remaining alternatives from the list, we assume in

what follows that, for any two lists `; `0 2 � with le(`0) > le(`) and `0i = `i
for all i 2 f1; : : : ; le(`)g, we have that C(`) = hx; ki with k 6= ; implies
C(`0) = hx; ki.
There are many decision procedures that �t well into the framework de-

scribed above. The common features of the examples we have chosen and

provide next, are as follows. First, each procedure is parametrized by a
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complete binary relation (not necessarily a strict one). Second, this binary

relation allows to explicitly partition the set of alternatives into two sets such

that the decision maker stops her search after observing an alternative from

one of these sets for �rst time in the list. Finally, in each of the examples,

when the decision maker stops her search the alternative being lastly ob-

served is also the chosen one.

Example 1 (Goods and bads: I) The decision maker partitions the set X

into a set of good alternatives (X1) and a set of bad ones (X2). She contin-

ues her search until she observes a good alternative from the list and chooses

it. If she does not encounter any good alternative, then the last alterna-

tive in the list is chosen. Thus, for ` 2 �, C(`) = h`k; ki if `i 2 X2 for all

i 2 f1; : : : ; k � 1g and `k 2 X1, and C(`) =


`le(`); ;

�
, otherwise.

Example 2 (Goods and bads: II) We change Example 1 as follows: if the

decision maker does not observe any good alternative till the list ends, then

she chooses the �rst alternative in the list; that is, for ` 2 �, we have

C(`) = h`1; ;i in this case. Apparently, this example might appear to be
not signi�cantly di¤erent from the earlier one, but as we will see later, the

di¤erence between them is crucial in terms of the properties of the search

behavior that we consider.

Example 3 (Limited memory capacity) The alternatives one may choose

from are again categorized into �good�or �bad�. The decision maker can

remember only the last k� alternatives in the series of alternatives seen so far.

She then stops if the last k� remembered alternatives are good and chooses

the last of them. If this never happens, the last alternative in the list is

chosen. In other words, for ` 2 �, we have C(`) = h`k; ki if `i 2 X1 for all

i 2 fk � k� + 1; k � k� + 2; : : : ; kg and `k�k� 2 X2, and C(`) =


`le(`); ;

�
,

otherwise.
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Example 4 (Satis�cing choice (Simon, 1955)) Suppose that the decision

maker has a strict linear order P over X and a satisfactory threshold alter-

native x�. Given a list of alternatives, she stops and chooses the �rst element

in the list that is not inferior to x�; if there is no such alternative, she chooses

the best element in the list according to P . Hence, for ` 2 �, C(`) = h`k; ki
if x�P`i for all i 2 f1; : : : ; k � 1g and `kPx� (or `k = x�), and C(`) = hy; ;i
with yP`i for all `i 2 X(`), `i 6= y, otherwise.

Example 5 (Successive choice (Salant, 2003)) The successive choice rule can

be de�ned in terms of a strict linear order P over X and works as follows.

For ` 2 �, the decision maker stores �rst `1 in a �register� and at stage t
of the computation, t 2 f1; : : : ; le(`)� 1g, she replaces the register value y
with `t+1 if `t+1Py. When the list ends, the alternative in the register, say

x(`), is chosen. In this case we have C(`) = hx(`); ;i for all ` 2 �.

3 Axioms

Let us consider a list ` and an alternative x not belonging to it, and suppose

that the decision maker exogenously stops for each of the lists ` and (x),

that is, she would like to continue her search but has to stop because the

lists terminate. Our �rst axiom incorporates an �additivity of continuation�

idea and naturally recommends the continuation of the search when x is

added after the last alternative from `. Note that no restriction on the

choice behavior is imposed in such a case.

Axiom 1 For ` 2 � and x 2 X n X (`), C(`) = hy; ;i and C(x) = hx; ;i
imply C(`; x) = hz; ;i.

The second axiom requires that if the decision maker decides to stop

after observing x in the list containing only that alternative (and thus, by
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de�nition, to choose x), then from any other list she should either stop im-

mediately after observing x (and choose x) or she must have decided to stop

before x. Notice that C(x) = hx; 1i implicitly contains the fact that the
decision maker does not even want to know whether the list continues or

terminates, and in that sense one can say that there is no alternative in X

letting the decision maker continue after observing x. We can then interpret

our second requirement as a consistency condition in the sense that if the

decision maker continues her search after encountering all alternatives before

x, then she must recall the fact that no alternative after x makes her continue

(and she has chosen x) and thus, she must stop after x and choose x.

Axiom 2 If C(x) = hx; 1i, then for any ` 2 � with `n = x we have either
C(`) = hy;mi for some m 2 f1; : : : ; n� 1g or C(`) = hx; ni.

Our third axiom resembles the weak axiom of revealed preference from

the standard theory of choice, and it starts with a situation in which the

decision maker exogenously stops and selects an alternative x from a list `.

We require then the decision maker to be consistent with her decision (and

continue selecting x) also in the following two situations: (i) she should never

choose any alternative (say y) that appears later than x in the list ` over x

in any list comprising only x and y, and (ii) her choice decision should be

independent of the way, in which alternatives after x in ` are arranged in any

list `0 coinciding with ` up to x.

Axiom 3 If C(`) = hx; ;i for ` 2 � with x = `k for some k 2 f1; : : : ; le(`)g,
then C(x; y) = hx; ;i for any y 2

�
`k+1; : : : ; `le(`)

	
. Moreover, we have

C(`1; : : : ; `k; `
0) = hx; ;i for any `0 2 � with X(`0) �

�
`k+1; : : : ; `le(`)

	
.

Finally, we consider again a situation of exogenous stop and interpret

C(x; y) = hx; ;i as a preference for x over y if the decision maker has to stop
after y. Then it is natural to require that this revealed preference is kept
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when y is attached as the last alternative to a list, from which x has also

been the selected alternative.

Axiom 4 If C(`) = C (`0) = hx; ;i for some `; `0 2 � with ` = (x; y), then
C(`0; y) = hx; ;i.

In order to show the independence of these four axioms, let us consider

the following examples of sc-rules each of which satis�es three of the axioms

but violates the fourth one.

Example 6 Let C be such that for all ` 2 �, C (`) = h`1; ;i if le(`) = 1 and
C(`) = h`1; 2i, otherwise. This rule clearly violates axiom 1, while satisfying

all other axioms.

Example 7 Consider the sc-rule C de�ned as follows: for all ` 2 �, C (`) =
h`1; 1i if le(`) = 1 and C(`) = h`2; 2i, otherwise. It is easy to see that the
rule satis�es axioms 1, 3, and 4. However, it violates axiom 2.

Example 8 Fix x� 2 X and de�ne C as follows: for all ` 2 �, C(`) = h`1; ;i
if X(`) � X n fx�g with le(`) 6= 2; C(`) = hx�; ki with x� = `k if x� 2 X(`);
and C(`) = h`2; ;i, otherwise. This rule satis�es axioms 1, 2, and 4. It clearly
violates axiom 3 since C(a; b; c) = ha; ;i and C(a; b) = hb; ;i.

Example 9 Fix x� 2 X and let C be de�ned as follows: for all ` 2 �,

C(`) = h`1; ;i if le(`) < 3 and x� =2 X(`); C(`) = h`3; ;i if le(`) � 3 and

x� =2 X(`); and C(`) = hx�; ki with `k = x�, otherwise. This rule satis�es our
�rst three axioms. Notice however that we have C(a; b) = ha; ;i = C(a; c)

and C(a; b; c) = hc; ;i in violation of axiom 4.

4 Characterization

As already mentioned in the Introduction, the decision procedure we charac-

terize uni�es position-biased successive choice and satis�cing choice. In order
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to de�ne this procedure, we �rst provide a generalization of the successive

choice function (called position-biased successive choice) used in Rubinstein

and Salant (2006). This generalization is parametrized by a complete binary

relation R (with P and I being its asymmetric and symmetric part, re-

spectively) allowed to contain indi¤erences and by a labeling rule (indicator

function) � : X �X ! f1; 2g. Since the main assumption in Rubinstein and
Salant (2006) is that the decision maker observes all alternatives appearing

in a list, we present the position-biased successive choice as a special sc-rule,

where for each list the decision maker would like to continue her search after

the list ends.

De�nition 1 Let R be a complete binary relation over X and � be an in-

dicator function. A sc-rule SuR;� is a position-biased successive choice rule

if for all ` 2 �, SuR;� (`) = hx; ;i with x 2 X(`) being determined ac-

cording to the following procedure. At the beginning of the procedure the

decision maker stores `1 in a �register�and at stage t of the computation,

t 2 f1; : : : ; le(`)� 1g, she replaces the register value y with `t+1 if (i) `t+1Iy
and �(y; `t+1) = 2; or (ii) `t+1Py. When the list ends the DM has x in the

register.

In other words, if `t+1Iy holds at some stage t, then the indicator function

� uses the ordering of y and `t+1 in the list to break the tie and to determine

the alternative to be registered at the end of stage t. Thus, this rule cap-

tures the in�uence of the way in which the alternatives are displayed on the

decision-making in a more subtle manner.

We show in what follows that the axioms presented above allow us (i) to

de�ne a complete binary relation R over X and an indicator function �, and

(ii) to partition the set of alternatives into two sets (X1 andX2) such that, on

lists containing alternatives only from X2, the decision procedure uses SuR;�,

while on lists containing alternatives from both X1 and X2, the procedure
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considers any alternative in X1 as being superior to any alternative from X2

and selects the alternative from X1 which appears �rstly in the list. In that

sense, the divide-and-choose rule we characterize below uni�es both position-

biased successive choice and satis�cing choice. An axiomatic characterization

of the position-biased successive choice on its own can then be derived as a

side result.

We show in Lemma 1 how axioms 1 and 2 help us suitably construct

R and partition X. Moreover, the joint application of axioms 1, 2, and 4

care for a consistent choice under exogenous stop when the last alternative

from a list has been deleted (Lemma 2). The interplay of all axioms gives

us then the characterization of a divide-and-choose rule (Theorem 1), while

the combination of axioms 3 and 4 allow us to provide a connection between

any (suitably restricted) sc-rule satisfying the axioms and the position-biased

successive choice rule (Corollary 1).

Lemma 1 If a sc-rule C satis�es axioms 1 and 2, then there exist a complete

binary relation R over X and a partition (X1; X2) of X such that xPy for

x 2 X1 and y 2 X2.

Proof. Let C be as above and consider the choice from the lists `0 = (a; b)

and `00 = (b; a) for a; b 2 X. By de�nition, the outcomes C (`0) = hb; 1i and
C (`00) = ha; 1i are excluded. Let us now suppose that C(`0) = ha; 2i and show
that this leads to contradictions. Consider �rst the outcomes from the lists

containing only a and b, respectively. By the de�nition of a sc-rule, C(a) =

ha; 1i implies C(`0) = ha; 1i, a contradiction. Thus, we should have C(a) =
ha; ;i. On the other hand, C(b) = hb; 1i leads by axiom 2 to either C(`0) =

ha; 1i or C(`0) = hb; 2i, and we have again a contradiction. We conclude
then that C(b) = hb; ;i should hold. Notice �nally that C(a) = ha; ;i and
C(b) = hb; ;i imply by axiom 1 that C(`0) = hc; ;i for some c 2 fa; bg in
contradiction to C(`0) = ha; 2i. We conclude then that C(`0) 6= ha; 2i. The

11



same type of reasoning gives us C (`00) 6= hb; 2i.
Consider now the combination of outcomes C (`0) = hb; 2i and C (`00) =

ha; 2i. If C(a) = ha; 1i or C(b) = hb; 1i, then, by the de�nition of a sc-
rule, one must have C(`0) = ha; 1i or C(`00) = hb; 1i, a contradiction. Thus,
C(a) = ha; ;i and C(b) = hb; ;i should hold. By axiom 1, C(a; b) = hc; ;i
for some c 2 fa; bg, a contradiction. Hence, having both C (`0) = hb; 2i and
C (`00) = ha; 2i is not possible. A similar argument rules out the following

combinations of outcomes: C (`0) = ha; ;i and C (`00) = ha; 2i; C (`0) = hb; ;i
and C (`00) = ha; 2i; C (`0) = hb; 2i and either C (`00) = hb; ;i or C (`00) =

ha; ;i.
As for the combination C (`0) = ha; ;i and C (`00) = hb; 1i, note that

C (`00) = hb; 1i implies by the de�nition of a sc-rule C(b) = hb; 1i which, by
axiom 2, excludes C (`0) = ha; ;i, a contradiction. The same type of reasoning
rules out the combination of C (`0) = ha; 1i and either C (`00) = hb; ;i or
C (`00) = ha; ;i.
Based on the other possible outcomes, for every a; b 2 X we de�ne:

(1) a �1 b if C (`0) = ha; ;i and C (`00) = hb; ;i,
(2) a �2 b if C (`0) = hb; ;i and C (`00) = ha; ;i,
(3) a �3 b if C (`0) = ha; 1i and C (`00) = hb; 1i,
(4) a �1 b if C (`0) = ha; ;i and C (`00) = ha; ;i,
(5) a �2 b if C (`0) = ha; 1i and C (`00) = ha; 2i.
Generate then the binary relation R as follows: for all a; b 2 X, aRb if

and only if either of the above �ve possibilities holds. In view of the above

application of axioms 1 and 2, R is complete. The asymmetric and symmetric

part of R are denoted by P and I, respectively, and these are derived from

R in the usual way.

De�ne now the partition (X1; X2) of X in the following way:

X1 = fx 2 X : x �2 y or x �3 y for some y 2 Xg , X2 = X nX1:
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Notice that if x �2 y or x �3 y holds for some y 2 X, then we have x �2 y
or x �3 y for all y 2 X: As to see it, recall that either of x �2 y and
x �3 y requires C(x; y) = hx; 1i and hence, by the de�nition of a sc-rule,
C(x; z) = hx; 1i should hold for any z 2 X.
Take now x 2 X1 and y 2 X2. If x �3 y, then the symmetry of �3

implies y 2 X1, a contradiction. Thus, the only remaining possibility is to

have x �2 y. Hence, we have xRy but not yRx, i.e., xPy should hold.

Lemma 2 If a sc-rule C satis�es axioms 1, 2, and 4, then C(`) =


`le(`); ;

�
for some ` 2 � and C(`0) = hx; ;i for `0 = ` n

�
`le(`)

	
imply C(x; `le(`)) =


`le(`); ;
�
.

Proof. Let `; `0 2 � be such that ` = (`0; le(`)), C(`) = hy; ;i with y = `le(`),
and C(`0) = hx; ;i. We have to show that C(x; y) = hy; ;i. Notice �rst that
if C(x) = hx; 1i or C(y) = hy; 1i, then axiom 2 requires the decision maker

to stop after observing x in `0 (and choose x) and after observing y in ` (and

choose y) in contradiction to C(`0) = hx; ;i and C(`) = hy; ;i, respectively.
We conclude that C(x) = hx; ;i and C(y) = hy; ;i should hold which, by
axiom 1, leads to C(x; y) = hz; ;i for some z 2 fx; yg. Finally, the possibility
of z = x is ruled out by the fact that ` = (`0; y) and C(x; y) = C(`0) = hx; ;i
imply by axiom 4 that C(`) = hx; ;i, a contradiction to C(`) = hy; ;i. Hence,
C(x; y) = hy; ;i should hold.

The proof of Lemma 2 becomes even shorter if the sc-rule C is required

to be exogenous (i.e., it is just a choice function from lists in the terminology

of Rubinstein and Salant (2006)), that is, if for all ` 2 �, C (`) = hx; ;i
for some x 2 X(`). Notice that in this case axioms 1 and 2 are vacuously
satis�ed and thus, we have the following simple observation.

Observation 1 If an exogenous sc-rule satis�es axiom 4, then Lemma 2 still

holds.
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Let us �nally provide the formal de�nition of a divide-and-choose rule

and show how the joint application of axiom 3 and the above two lemmas

shapes its characterization.

De�nition 4 Let R be a complete binary relation over X and � be an

indicator function. A sc-rule is a divide-and-choose rule if there exists a

partition (X1; X2) of X with x1Px2 for x1 2 X1 and x2 2 X2 such that

for all ` 2 � the following holds: (i) C(`) = SuR;� (`) if X(`) � X2, and

(ii) C(`) = hx; ki with x = `k for some k 2 f1; : : : ; le(`)g if `i 2 X2 for

i 2 f1; : : : ; k � 1g and `k 2 X1.

Theorem 1 A sc-rule satis�es axioms 1, 2, 3, and 4 if and only if it is a

divide-and-choose rule.

Proof. Let C be a sc-rule satisfying axioms 1, 2, 3, and 4, and let the

binary relation R and the partition (X1; X2) of X be as de�ned in the proof

of Lemma 1. Moreover, let � : X �X ! f1; 2g be an indicator function such
that for all a; b 2 X, �(a; b) = �(b; a) = 1 if a �1 b and �(a; b) = �(b; a) = 2 if
a �2 b. Take ` 2 � and note that two cases are possible: (i) X(`) \X1 6= ;
and (ii) X(`) \X1 = ;.
(i) X(`) \ X1 6= ;. We have to show that C(`) = hx; ki if `k = x 2 X1

and `i 2 X2 for all i 2 f1; : : : ; k � 1g. In view of Lemma 1, x 2 X(`) \X1

implies C(x; y) = hx; 1i for all y 2 X and thus, by the de�nition of a sc-

rule and axiom 2, C(`) = hz; ;i for some z 2 X(`) cannot happen. If

X(`) \ X2 = ;, then C(`) = hx; 1i immediately follows from x 2 X1 (that

is, from C(x; z) = hx; 1i for some z 2 X) and the de�nition of a sc-rule.
Suppose now that X(`) \ X2 6= ;. It follows from the de�nition of a sc-

rule and axiom 2 that C(`) = hy; ji for some j > k cannot happen. As

C(a) = ha; ;i holds for all a 2 X2 (otherwise, C(a) = ha; 1i would imply by
axiom 2 that C(a; b) = ha; 1i for all b 2 X n fag in contradiction to a 2 X2),

we have by the repeated application of axiom 1 that j < k cannot happen,
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either. Thus, the only possibility is to have j = k which implies y = x by

C(x) = hx; 1i and axiom 2. We conclude that C(`) = hx; ki with x = `k

should hold.

(ii) X(`) \ X1 = ;. By C(a) = ha; ;i for all a 2 X2, we have again

by the repeated application of axiom 1 that C(`) = hx; ;i should hold for
some x 2 X(`). In order to prove that C(`) = SuR;� (`), let us consider the
list `0 = ` n

�
`q+1; : : : ; `le(`)

	
for some q 2 f1; : : : ; le(`)g and an alternative

x 2 X(`) nX(`0), and show the following claim.

Claim 1 C(`0) = SuR;�(`0) implies C(`0; x) = SuR;�(`0; x).

Proof. Let C(`0) = SuR;�(`
0) = hy; ;i for some y 2 X(`0). By de�nition,

SuR;� (`
0; x) is either hx; ;i or hy; ;i. We consider these two possibilities se-

quentially.

(i) SuR;� (`0; x) = hy; ;i = C(`0). Suppose that C(`0; x) = hz; ;i with
z 6= y. If z 2 X(`0), then axiom 3 requires C(`0) = hz; ;i, and we have
a contradiction since z 6= y. Consider next the case of C(`0; x) = hx; ;i.
By Lemma 2, C(x; y) = hx; ;i. Hence, either x �1 y (and thus, xPy) or
x �1 y (implying xIy and �(x; y) = 1). Either of these two possibilities calls
for SuR;� (`0; x) = hx; ;i, a contradiction. We conclude then that C(`0; x) =
hy; ;i = SuR;�(`0; x) should hold.
(ii) SuR;� (`0; x) = hx; ;i. If C(`0; x) = hz; ;i with z 6= y and z 2 X(`0), we

have the same type of contradiction as above. Suppose now that C(`0; x) =

hy; ;i. By axiom 3, C(y; x) = hy; ;i. Hence, either y �1 x (and thus, yPx)
or x �2 y (implying xIy and �(x; y) = 2). Either of these two possibilities
requires SuR;� (`0; x) = hy; ;i, a contradiction. Hence, we have C(`0; x) =
hx; ;i = SuR;�(`0; x).

Finally, since C(`�) = SuR;�(`
�) with `� = (`1) trivially holds, we can

repeatedly use Claim 1 by adding the alternatives from X(`) nX(`0) in the
corresponding order as to conclude that C(`) = SuR;� (`) should hold.
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In view of the above result, one can immediately provide a characteriza-

tion of the position-biased successive choice rule by just noticing that it is

an exogenous sc-rule.

Corollary 1 An exogenous sc-rule satis�es axioms 3 and 4 if and only if it

is a position-biased successive choice rule.

Proof. Let C be a sc-rule as above. For every a; b 2 X de�ne a �1 b,
a �2 b, and a �1 b as in the proof of Lemma 1. Let the complete binary
relation R and the indicator function � be de�ned as in the proof of Lemma

1 and Theorem 1, respectively. Notice that, in view of Observation 1, we are

allowed to use Lemma 2 and conclude that the proof of the corollary directly

follows from part (ii) of the proof of Theorem 1.
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