Per citar aquest document: http://ddd.uab.cat/record/113095
Smooth sets and two problems in the Dirichlet space / author Daniel Seco Forsnacke ; advisor Artur Nicolau Nos
Seco Forsnacke, Daniel
Nicolau, Artur, dir. (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Universitat Autònoma de Barcelona. Departament de Matemàtiques

Publicació: [Barcelona] : Universitat Autònoma de Barcelona, 2013
Descripció: 1 recurs electrònic (92 p.)
Resum: Estudiamos los conjuntos suaves en el sentido de nido por Hungerford en espacios eucl deos. Probamos una versin ms fuerte del Teorema de Hungerford sobre la dimensi on de Haus- dor de la frontera de estos conjuntos y mostramos la invariancia de la de nici on mediante una clase de homeomor smos del espacio ambiente. Despu es consideramos las sucesiones de muestreo del espacio de Dirichlet a cierto espacio de sucesiones. Proporcionamos condiciones su cientes y condiciones necesarias para que una sucesi on sea de muestreo. Tambi en proporcionamos una condici on su ciente distinta, expresada en t erminos de la medida arm onica en determinados dominios de tipo champ an. Finalmente, para funciones f en espacios de tipo Dirichlet D , damos m etodos para determinar constructivamente polinomios optimos pn que minimizan kpf��1k entre todos los polinomios p de grado n como m aximo. Entonces obtenemos estimaciones nas para la tasa de decaimiento de kpnf �� 1k a medida que n tiende hacia 1, para ciertas clases de funciones f. Por ultimo, inspirados por la conjetura de Brown-Shields, probamos que determinadas condiciones logar tmicas sobre f implican la ciclicidad, y describimos algunos fen omenos computacionales correspondientes a los ceros de polinomios optimos.
Resum: We study smooth sets in the sense de ned by Hungerford on Euclidean spaces. We prove a sharp form of Hungerford's Theorem on the Hausdor dimension of the boundary of these sets and show the invariance of the de nition under a class of homeomorphisms of the ambient space. We then consider sampling sequences from the Dirichlet space into a certain space of sequences. We provide some su cient and some necessary conditions for a sequence to be sampling. We also provide a di erent su cient condition, which is expressed in terms of harmonic measure in some champagne-type domains. Finally, for functions f in Dirichlet-type spaces D , we give methods to determine constructively optimal polynomials pn that minimize kpf ����� 1k among all polynomials p of degree at most n. We then obtain sharp estimates for the rate of decay of kpnf �����1k as n approaches 1, for certain classes of functions f. To conclude, inspired by the Brown- Shields conjecture, we prove that certain logarithmic conditions on f imply cyclicity, and we describe some computational phenomena pertaining to the zeros of optimal polynomi- als.
Nota: Tesi doctoral - Universitat Autònoma de Barcelona. Departament de Matemàtiques, 2013
Drets: ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
Llengua: Anglès
Document: Tesis i dissertacions electròniques ; doctoralThesis
Matèria: Dirichlet, Sèries de ; Conjunts, Teoria de ; Geometria projectiva
ISBN: 9788449036774

Adreça alternativa: http://hdl.handle.net/10803/117217


92 p, 512.9 KB

El registre apareix a les col·leccions:
Documents de recerca > Tesis doctorals

 Registre creat el 2013-11-06, darrera modificació el 2016-04-17



   Favorit i Compartir