Per citar aquest document:
How to separate between Machine-Printed/Handwritten and Arabic/Latin Words?
Kacem Echi, Afef (University of Tunis)
Saïdani, Asma (University of Tunis)
Belaïd, Abdel (University of Lorraine)

Data: 2014
Resum: This paper gathers some contributions to script and its nature identification. Different sets of features have been employed successfully for discriminating between handwritten and machine-printed Arabic and Latin scripts. They include some well established features, previously used in the literature, and new structural features which are intrinsic to Arabic and Latin scripts. The performance of such features is studied towards this paper. We also compared the performance of five classifiers: Bayes (AODEsr), k-Nearest Neighbor (k-NN), Decision Tree (J48), Support Vector Machine (SVM) and Multilayer perceptron (MLP) used to identify the script at word level. These classifiers have been chosen enough different to test the feature contributions. Experiments have been conducted with handwritten and machine-printed words, covering a wide range of fonts. Experimental results show the capability of the proposed features to capture differences between scripts and the effectiveness of the three classifiers. An average identification precision and recall rates of 98. 72% was achieved, using a set of 58 features and AODEsr classifier, which is slightly better than those reported in similar works.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Script and nature Classification ; Feature extraction
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 13, Núm. 1 (2014) , p. 1-16, ISSN 1577-5097

Adreça alternativa:

17 p, 592.5 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA : Electronic Letters on Computer Vision and Image Analysis
Articles > Articles de recerca

 Registre creat el 2014-04-29, darrera modificació el 2016-06-04

   Favorit i Compartir