Per citar aquest document:
Invariant tori in the lunar problem
Meyer, Kenneth R. (University of Cincinnati. Department of Mathematical Sciences)
Palacian, Jesus F. (Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática)
Yanguas, Patricia (Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática)

Data: 2014
Resum: Theorems on the existence of invariant KAM tori are established for perturbations of Hamiltonian systems which are circle bundle ows. By averaging the perturbation over the bundle ow one obtains a Hamiltonian system on the orbit (quotient) space by a classical theorem of Reeb. A non-degenerate critical point of the system on the orbit space gives rise to a family of periodic solutions of the perturbed system. Conditions on the critical points are given which insure KAM tori for the perturbed ow. These general theorems are used to show that the near circular periodic solutions of the planar lunar problem are orbitally stable and are surrounded by KAM 2-tori. For the spatial case it is shown that there are periodic solutions of two types, either near circular equatorial, that is, the infinitesimal particle moves close to the plane of the primaries following near circular trajectories and the other family where the ifinitesimal particle moves along the axis perpendicular to the plane of the primaries following near rectilinear trajectories. We prove that the two solutions are elliptic and are surrounded by invariant 3-tori applying a recent theorem of Han, Li, and Yi. In the spatial case a second averaging is performed, and the corresponding or- bit space (called the twice-reduced space) is constructed. The flow of the averaged Hamiltonian on it is given and several families of invariant 3-tori are determined using Han, Li, and Yi Theorem.
Drets: Tots els drets reservats
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Averaging ; Normalization ; Symmetry reduction ; Orbit space ; Restricted three-body problem ; Planar and spatial lunar problems ; Invariant theory ; Periodic solutions ; Action-angle coordinates ; Invariant KAM tori
Publicat a: Publicacions matemàtiques, Vol. Extra, Núm. (2014) , p. 353-394, ISSN 0214-1493

Adreça original:
DOI: 10.5565/PUBLMAT_Extra14_19
DOI: 10.5565/287228

42 p, 5.2 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2014-05-19, darrera modificació el 2017-05-24

   Favorit i Compartir