Per citar aquest document:
A Novel interest-point-based background subtraction algorithm
Dehghani, Alireza (Dublin City University. School of Computing)
Sutherland, Alistair (Dublin City University. School of Computing)

Data: 2014
Resum: Current Background Subtraction (BGS) algorithms are mostly pixel-based methods. We propose an Interest-Point(IP)-based BGS algorithm applicable in IP-based Computer Vision applications. Based on a block-wise processing strategy, the frames are divided into blocks of the same size. IPs inside each block are together Events. Throughout the frame sequence, the algorithm stores the Events in each block as well as the numbers of their occurrences (Repetition Index (RI)) in a Binary Tree. The RI is used to classify Events as either background or foreground. The background Events appear significantly more often than foreground Events. Events with an RI greater than a certain threshold are classified as background, the rest as foreground. This Event classification is used to label IPs of frames into the foreground and background IPs. Experimental results quantitatively show that the proposed algorithm delivers a good subtraction rate in comparison with other BGS approaches. Moreover, it creates a map of the background usable for further processing, it is robust to changes in illumination and can keep itself updated to changes in the background.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Background subtraction ; Foreground detection ; Interest points
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 13, Núm. 1 (2014) , p. 50-67, ISSN 1577-5097

Adreça alternativa:

18 p, 3.6 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA : Electronic Letters on Computer Vision and Image Analysis
Articles > Articles de recerca

 Registre creat el 2014-07-28, darrera modificació el 2016-06-04

   Favorit i Compartir