Per citar aquest document:
Algorithms for selecting parameters of combination of acyclic adjacency graphs in the problem of texture image processing
Viet Sang, Dinh

Data: 2014
Resum: Nowadays the great interest of researchers in the problem of processing the interrelated data arrays including images is retained. In the modern theory of machine learning, the problem of image processing is often viewed as a problem in the field of graph models. Image pixels constitute a unique array of interrelated elements. The interrelations between array elements are represented by an adjacency graph. The problem of image processing is often solved by minimizing Gibbs energy associated with corresponding adjacency graphs. The crucial disadvantage of Gibbs approach is that it requires empirical specifying of appropriate energy functions on cliques. In the present work, we investigate a simpler, but not less effective model, which is an expansion of the Markov chain theory. Our approach to image processing is based on the idea of replacing the arbitrary adjacency graphs by tree-like (acyclic in general) ones and linearly combining of acyclic Markov models in order to get the best quality of restoration of hidden classes. In this work, we propose algorithms for tuning combination of acyclic adjacency graphs.
Nota: Advisors: Prof. Sergey Dvoenko. Date and location of PhD thesis defense: 24 October 2013, Dorodnicyn Computing Centre of Russian Academy of Sciences
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: other ; abstract ; publishedVersion
Matèria: Image Processing ; Image Segmentation ; Supervised Learning ; Hidden Markov Model ; Markov Chain ; Graph Model
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 13, Núm. 2 (2014) , p. 35-37, ISSN 1577-5097

Adreça alternativa:

Abstract & references
3 p, 72.2 KB

335 p, 17.2 MB

30 p, 3.3 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA : Electronic Letters on Computer Vision and Image Analysis

 Registre creat el 2014-07-29, darrera modificació el 2016-06-04

   Favorit i Compartir