Per citar aquest document: http://ddd.uab.cat/record/125595
A PGM-based System for Arabic HandwrittenWord Recognition
Kacem, Afef (University of Tunis)
Khémiri, Akram (University of Tunis)
Belaid, Abdel (University of Lorraine)

Data: 2014
Resum: This paper describes a system for off-line recognition of handwritten Arabic words. It uses simple andeasily extractable features to construct feature vectors for words in the vocabulary. Some of these features are statistical, based on pixel distributions and local pixel configurations. Others are structural, based on the presence of ascenders, descenders and diacritic points. The system is evolved based on horizontal and vertical Hidden Markov Models and Dynamic Bayesian Network. Our strategy consists of looking for various architectures and selecting those which provide the best recognition performance. Experiments on handwritten Arabic words from IFN/ENIT database and ancient manuscripts strongly support the feasibility of the proposed system. The recognition rates achieve 91. 89% (IFN/ENIT) and 94. 61% (ancient manuscripts).
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès.
Document: article ; recerca ; publishedVersion
Matèria: Feature and image descriptors ; Image modelling ; Statistical pattern recognition
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 13 Núm. 3 (2014) , p. 41-62 (Regular Issue) , ISSN 1577-5097

Adreça alternativa: http://www.raco.cat/index.php/ELCVIA/article/view/284235
DOI: 10.5565/rev/elcvia.575


16 p, 2.8 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA : Electronic Letters on Computer Vision and Image Analysis
Articles > Articles de recerca

 Registre creat el 2014-10-19, darrera modificació el 2016-06-04



   Favorit i Compartir