Web of Science: 11 citations, Scopus: 10 citations, Google Scholar: citations
designGG : an R-package and web tool for the optimal design of genetical genomics experiments
Li, Yang (University of Groningen. Groningen Biomolecular Sciences and Biotechnology Institute (Haren, Països Baixos))
Swertz, Morris A. (University of Groningen. Groningen Biomolecular Sciences and Biotechnology Institute (Haren, Països Baixos))
Vera Rodríguez, Gonzalo (University of Groningen. Groningen Biomolecular Sciences and Biotechnology Institute (Haren, Països Baixos))
Fu, Jingyuan (University of Groningen. Department of Genetics (Groningen, Països Baixos))
Breitling, Rainer (University of Groningen. Groningen Biomolecular Sciences and Biotechnology Institute (Haren, Països Baixos))
Jansen, Ritsert C. (University of Groningen. Groningen Biomolecular Sciences and Biotechnology Institute (Haren, Països Baixos))

Date: 2009
Abstract: Background: High-dimensional biomolecular profiling of genetically different individuals in one or more environmental conditions is an increasingly popular strategy for exploring the functioning of complex biological systems. The optimal design of such genetical genomics experiments in a cost-efficient and effective way is not trivial. Results: This paper presents designGG, an R package for designing optimal genetical genomics experiments. A web implementation for designGG is available at http://gbic. biol. rug. nl/designGG webcite. All software, including source code and documentation, is freely available. Conclusion: DesignGG allows users to intelligently select and allocate individuals to experimental units and conditions such as drug treatment. The user can maximize the power and resolution of detecting genetic, environmental and interaction effects in a genome-wide or local mode by giving more weight to genome regions of special interest, such as previously detected phenotypic quantitative trait loci. This will help to achieve high power and more accurate estimates of the effects of interesting factors, and thus yield a more reliable biological interpretation of data. DesignGG is applicable to linkage analysis of experimental crosses, e. g. recombinant inbred lines, as well as to association analysis of natural populations.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Published in: BMC bioinformatics, Vol. 10, N. 188 (June 2009) , p. 1-7, ISSN 1471-2105

DOI: 10.1186/1471-2105-10-188
PMID: 19538731


7 p, 1.2 MB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2014-10-23, last modified 2022-04-20



   Favorit i Compartir