Per citar aquest document: http://ddd.uab.cat/record/129670
Entropy-based evaluation of context models for wavelet-transformed images
Aulí Llinàs, Francesc (Universitat Autònoma de Barcelona. Departament d'Enginyeria de la Informació i de les Comunicacions)

Data: 2015
Resum: Entropy is a measure of a message uncertainty. Among others aspects, it serves to determine the minimum coding rate that practical systems may attain. This paper defines an entropy-based measure to evaluate context models employed in wavelet-based image coding. The proposed measure is defined considering the mechanisms utilized by modern coding systems. It establishes the maximum performance achievable with each context model. This helps to determine the adequateness of the model under different coding conditions and serves to predict with high precision the coding rate achieved by practical systems. Experimental results evaluate four well-known context models using different types of images, coding rates, and transform strategies. They reveal that, under specific coding conditions, some widely-spread context models may not be as adequate as it is generally thought. The hints provided by this analysis may help to design simpler and more efficient wavelet-based image codecs.
Nota: Número d'acord de subvenció MICINN/RYC-2010-05671
Nota: Número d'acord de subvenció MINECO/TIN2012-38102-C03-03
Nota: Número d'acord de subvenció AGAUR/2014-SGR-691
Drets: Tots els drets reservats
Llengua: Anglès
Document: article ; recerca ; submittedVersion
Publicat a: IEEE Transactions on Image Processing, Vol. 24, Issue 1 (Jan. 2015) , p. 57-67, ISSN 1057-7149

DOI: 10.1109/TIP.2014.2370937


Pre-print
11 p, 301.1 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Enginyeries > Group on Interactive Coding of Images (GICI)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2015-02-26, darrera modificació el 2016-06-04



   Favorit i Compartir