Per citar aquest document: http://ddd.uab.cat/record/145332
Vector fields with homogeneous nonlinearities and many limit cycles
Gasull, Armengol
Yu, Jiang
Zhang, Xiang

Data: 2015
Resum: Consider planar real polynomial differential equations of the form x'=Lx X_n(x), where x=(x,y) R^2, L is a 2×2 matrix and X_n is a homogeneous vector field of degree n > 1. Most known results about these equations, valid for infinitely many n, deal with the case where the origin is a focus or a node and give either non-existence of limit cycles or upper bounds of one or two limit cycles surrounding the origin. In this paper we improve some of these results and moreover we show that for n 3 odd there are equations of this form having at least (n 1)/2 limit cycles surrounding the origin. Our results include cases where the origin is a focus, a node, a saddle or a nilpotent singularity. We also discuss a mechanism for the bifurcation of limit cycles from infinity.
Drets: Tots els drets reservats.
Llengua: Anglès
Document: article ; recerca ; preprint
Matèria: Limit cycles ; nilpotent singularity ; Polynomial differential equations
Publicat a: Journal of Differential Equations, Vol. 258 (2015) , p. 3286-3303

DOI: 10.1016/j.jde.2015.01.009


19 p, 397.8 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > GSD (Grup de sistemes dinàmics)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2016-01-12, darrera modificació el 2016-06-04



   Favorit i Compartir