Per citar aquest document:
Scopus: 21 cites, Web of Science: 17 cites,
A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems
Garcia Quinchia, Alex (Universitat Autònoma de Barcelona. Departament de Microelectrònica i Sistemes Electrònics)
Falco, Gianluca (Politecnico di Torino)
Falletti, Emanuela (Politecnico di Torino)
Dovis, Fabio (Politecnico di Torino)
Ferrer, Carles (Ferrer i Ramis) (Universitat Autònoma de Barcelona. Departament de Microelectrònica i Sistemes Electrònics)

Data: 2013
Resum: Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i. e. , identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Allan variance ; Power spectral density ; INS/GPS ; Error modeling ; MEMS ; AR models ; Wavelet de-noising
Publicat a: Sensors, Vol. 13 (2013) , p. 9549-9588, ISSN 1424-8220

DOI: 10.3390/s130809549

40 p, 3.4 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2016-02-25, darrera modificació el 2016-10-04

   Favorit i Compartir