Per citar aquest document:
Scopus: 4 cites,
Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress
Pandey, Renu (Indian Agricultural Research Institute)
Zinta, Gaurav (University of Antwerp. Department of Biology)
AbdElgawad, Hamada (University of Antwerp. Department of Biology)
Ahmad, Altaf (Aligarh Muslim University. Department of Botany)
Jain, Vanita (Indian Agricultural Research Institute)
Janssens, Ivan A. (University of Antwerp. Department of Biology)

Data: 2015
Resum: Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P-limitation responses in plants. Analysis of expression patterns of some typical P-limitation induced genes under high [CO2] suggests that long-term exposure of plants to high [CO2] would have a tendency to stimulate similar transcriptional responses as observed under P-limitation. However, studies on the combined effect of high [CO2] and low P on gene expression are scarce. Such studies would provide insights into the development of P efficient crops in the context of anticipated increases in atmospheric [CO2].
Nota: Número d'acord de subvenció EC/FP7/610028
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: article ; recerca ; acceptedVersion
Matèria: Elevated CO2 ; Growth ; Mycorrhiza ; Phosphorus limitation ; Photosynthesis ; Root morphology ; Root exudation ; Transcriptional regulation
Publicat a: Biotechnology advances, Vol. 33, Issues 3-4 (May-August 2015) , p. 303-316

DOI: 10.1016/j.biotechadv.2015.03.011

62 p, 1.4 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals) > Imbalance-P
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2016-03-15, darrera modificació el 2016-09-19

   Favorit i Compartir