000000165 001 __ 165
000000165 005 __20140614130853.0
000000165 035 __ $a 00255610v83n2p159
000000165 041 0_ $a eng
000000165 100 1_ $a Tseng, Paul
000000165 245 10 $a Merit functions for semi-definite complementarity problems
000000165 520 3_ $a Merit functions such as the gap function, the regularized gap function, the implicit Lagrangian, and the norm squared of the Fischer-Burmeister function have played an important role in the solution of complementarity problems defined over the cone of nonnegative real vectors. We study the extension of these merit functions to complementarity problems defined over the cone of block-diagonal symmetric positive semi-definite real matrices. The extension suggests new solution methods for the latter problems..
000000165 546 __ $a Anglès.
000000165 599 __ $a recerca
000000165 653 1_ $a Semi-definite complementarity problems
000000165 653 1_ $a Merit functions
000000165 653 1_ $a Gap functions
000000165 653 1_ $a Implicit Lagrangian
000000165 653 1_ $a Fischer-Burmeister function
000000165 655 _4 $a Article
000000165 655 _4 $a info:eu-repo/semantics/article
000000165 655 _4 $a info:eu-repo/semantics/publishedVersion
000000165 773 __ $g vol. 83 n. 2 (1998) p. 159-185 $t Mathematical Programming $x 0025-5610
000000165 856 4_ $p 27 $s 1138740 $u http://ddd.uab.cat/uab/matpro/00255610v83n2p159.pdf
000000165 973 __ $f 159 $l 185 $m 10 $n 2 $v 83 $x 00255610v83n2 $y 1998
000000165 980 __ $a ARTPUB