000000167 001 __ 167
000000167 005 __20140614130853.0
000000167 035 __ $a 00255610v83n2p277
000000167 041 0_ $a eng
000000167 100 1_ $a Carrizosa, E.
000000167 245 10 $a Location and shape of a rectangular facility in R^n. Convexity properties
000000167 520 3_ $a In this paper we address a generalization of the Weber problem, in which we seek for the center and the shape of a rectangle (the facility) minimizing the average distance to a given set (the demand-set) which is not assumed to be finite. Some theoretical properties of the average distance are studied, and an expression for its gradient, involving solely expected distances to rectangles, is obtained. This enables the resolution of the problem by standard optimization techniques..
000000167 546 __ $a Anglès.
000000167 599 __ $a recerca
000000167 653 1_ $a Regional location
000000167 653 1_ $a Facilities
000000167 653 1_ $a Average distance
000000167 655 _4 $a Article
000000167 655 _4 $a info:eu-repo/semantics/article
000000167 655 _4 $a info:eu-repo/semantics/publishedVersion
000000167 700 1_ $a Muñoz-Márquez, M.
000000167 700 1_ $a Puerto, J.
000000167 773 __ $g vol. 83 n. 2 (1998) p. 277-290 $t Mathematical Programming $x 0025-5610
000000167 856 4_ $p 14 $s 428001 $u http://ddd.uab.cat/uab/matpro/00255610v83n2p277.pdf
000000167 973 __ $f 277 $l 290 $m 10 $n 2 $v 83 $x 00255610v83n2 $y 1998
000000167 980 __ $a ARTPUB