Per citar aquest document: http://ddd.uab.cat/record/1895
Canard cycles and homoclinic bifurcation in a 3 parameter family of vector fields on the plane
Silva, Paulo Ricardo da

Data: 1999
Resum: Let the 3-parameter family of vector fields given by(A) y∂ ∂x + [x2 + µ + y(ν0 + ν1x + x3)] ∂ ∂y with (x, y, µ, ν0, ν1) ∈ R2 × R3 ([DRS1]). We prove that if µ → −∞ then (A) is C0-equivalent to(B) [y − (bx + cx2 − 4x3 + x4)]∂ ∂x + ε(x2 − 2x) ∂ ∂y for ε ↓ 0, b, c ∈ R. We prove that there exists a Hopf bifurcation of codimension 1 when b = 0 and also that, if b = 0, c = 12 and ε > 0 then there exists a Hopf bifurcation of codimension 2. We study the “Canard Phenomenon” and the homoclinic bifurcation in the family (B). We show that when ε ↓ 0, b = 0 and c = 12 the attracting limit cycle, which appears in a Hopf bifurcation of codimension 2, stays with “small size” and changes to a “big size” very quickly, in a sense made precise here.
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: Article ; recerca ; article ; publishedVersion
Publicat a: Publicacions matematiques, V. 43 N. 1 (1999) , p. 163-189, ISSN 0214-1493

DOI: 10.5565/PUBLMAT_43199_06


27 p, 217.1 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2006-03-13, darrera modificació el 2016-06-12



   Favorit i Compartir