Per citar aquest document:
Analytic capacity, Calderón-Zygmund operators, and rectifiability
David, Guy

Data: 1999
Resum: For K ⊂ C compact, we say that K has vanishing analytic capacity (or γ(K) = 0) when all bounded analytic functions on C\K are constant. We would like to characterize γ(K) = 0 geometrically. Easily, γ(K) > 0 when K has Hausdorff dimension larger than 1, and γ(K) = 0 when dim(K) < 1. Thus only the case when dim(K) = 1 is interesting. So far there is no characterization of γ(K) = 0 in general, but the special case when the Hausdorff measure H1(K) is finite was recently settled. In this case, γ(K) = 0 if and only if K is unrectifiable (or Besicovitchirregular), i. e. , if H1(K ∩ Γ) = 0 for all C1-curves Γ, as was conjectured by Vitushkin. In the present text, we try to explain the structure of the proof of this result, and present the necessary techniques. These include the introduction to Menger curvature in this context (by M. Melnikov and co-authors), and the important use of geometric measure theory (results on quantitative rectifiability), but we insist most on the role of Calder´on-Zygmund operators and T(b)- Theorems.
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: Article ; recerca ; article ; publishedVersion
Publicat a: Publicacions matematiques, V. 43 N. 1 (1999) , p. 3-25, ISSN 0214-1493

Adreça original:
DOI: 10.5565/PUBLMAT_43199_01
DOI: 10.5565/37952

23 p, 182.6 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2006-03-13, darrera modificació el 2017-04-19

   Favorit i Compartir