Per citar aquest document:
The M-components of level sets of continuous functions in WBV
Ballester, Coloma
Caselles, Vicent

Data: 2001
Resum: We prove that the topographic map structure of upper semicontinuous functions, defined in terms of classical connected components of its level sets, and of functions of bounded variation (or a generalization, the WBV functions), defined in terms of M-connected components of its level sets, coincides when the function is a continuous function in WBV. Both function spaces are frequently used as models for images. Thus, if the domain [omega] of the image is Jordan domain, a rectangle, for instance, and the image u [member of] C([omega]) [intersection] WBV([omega]) (being constant near [delta omega]), we prove that for almost all levels [lambda] of u, the classical connected components of positive measure of[u [greater than or equal] [lambda]] coincide with the M-components of [u [greater than or equal] [lambda]]. Thus the notion of M-component can be seen as a relaxation of the classical notion of connected component when going from C([omega]) to WBV([omega]).
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: Article ; recerca ; article ; publishedVersion
Publicat a: Publicacions matematiques, V. 45 N. 2 (2001) , p. 477-527, ISSN 0214-1493

Adreça original:
DOI: 10.5565/PUBLMAT_45201_10
DOI: 10.5565/38027

51 p, 383.2 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2006-03-13, darrera modificació el 2017-04-25

   Favorit i Compartir