Per citar aquest document: http://ddd.uab.cat/record/2002
Weighted two-parameter Bergman space inequalities
Wilson, J. Michael (University of Vermont. Department of Mathematics and Statistics)

Data: 2003
Resum: For f , a function defined on Rd1 ×Rd2 , take u to be its biharmonic extension into R+ +1 × Rd2 +1 . In this paper we prove strong d1 + sufficient conditions on measures µ and weights v such that the inequality 1/q q ∇2 u dµ(x1 , x2 , y1 , y2 ) d +1 d +1 R+1 ×R+2 1/p ≤ f p v dx Rd1 ×Rd2 will hold for all f in a reasonable test class, for 1 < p ≤ 2 ≤ q < ∞. Our result generalizes earlier work by R. L. Wheeden and the author on one-parameter harmonic extensions. We also obtain sufficient conditions for analogues of (∗) to hold when the entries of ∇1 ∇2 u are replaced by more general convolutions.
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: article ; recerca ; publishedVersion
Matèria: Bergman spaces ; Weighted norm inequalities ; Littlewood-Paley theory
Publicat a: Publicacions matematiques, V. 47 N. 1 (2003) , p. 161-193, ISSN 0214-1493

DOI: 10.5565/PUBLMAT_47103_08


33 p, 276.3 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2006-03-13, darrera modificació el 2016-10-28



   Favorit i Compartir