Per citar aquest document: http://ddd.uab.cat/record/37159
Monolithic CMOS-MEMS resonant beams for ultrasensitive mass detection / Jaume Verd Martorell ; directora: Núria Barniol Beumala
Verd Martorell, Jaume (Universitat Autònoma de Barcelona. Departament d'Enginyeria Electrònica)
Barniol i Beumala, Núria, dir. (Universitat Autònoma de Barcelona. Departament de Enginyeria Electrònica)

Publicació: Bellaterra: Universitat Autònoma de Barcelona, 2008
Resum: Estructures ressonants en forma de biga (p. e. ponts o palanques) són molt interessants com a element transductor en sensors físics, químics i biològics basats en sistemes micro-/nanoelectromecànics (M-/NEMS) degut a la seva simplicitat, al gran rang de dominis que poden sensar, i a la seva extremada alta sensibilitat. Aquesta tesis està focalitzada en el disseny, fabricació i caracterització de CMOS-MEMS monolítics basats en bigues ressonants a escala sub-micromètrica per a la seva utilització en la detecció ultra sensible de massa amb un dispositiu portable. Els ressonadors operen en mode dinàmic on la massa es mesurada com un canvi de la seva freqüència de ressonància que és induïda electrostàticament i llegida d'una forma capacitiva mitjançant un circuit CMOS integrat monolíticament. Dues aproximacions tecnològiques diferents són considerades per tal de fabricar bigues ressonants a escala sub-micromètrica sobre xips CMOS prèviament processats, possibilitant una integració monolítica: (i) post processant els xips CMOS amb tècniques de nano fabricació per obtenir les estructures ressonants o (ii) definint els ressonadors al mateix temps que els circuits CMOS. Per les dues aproximacions, es presenten dispositius de metall i de polysilici amb sensibilitats de massa sense precedents (per a sensors CMOS monolítics) dins el rang dels atto-/zeptograms. Es presenta una comparativa dels resultats aconseguits mitjançant les dues aproximacions tecnològiques. Es dissenyen circuits de lectura CMOS d'alta sensibilitat per amplificar el corrent capacitiu amb guanys de transimpedància (utilitzant una tecnologia comercial CMOS 0. 35-μm) de fins a 120 dBΩ a 10 MHz possibilitant la detecció del desplaçament del ressonador amb resolucions de fins a ~10 fm/√Hz semblants a les obtingudes pels millors sistemes de detecció òptics reportats i sense la necessitat d'un equipament complexa. Es presenta la caracterització elèctrica, a l'aire i al buit, de dispositius CMOS-MEMS fabricats que corroboren la capacitat de l'aproximació monolítica presentada per mesurar la característica freqüencial de ressonadors a escala sub-micromètrica. S'aconsegueix una transducció electrostàtica òptima i es mesuren respostes freqüencials elèctriques amb pics elevats (fins a 20 dB o més) i grans canvis de fase (fins a 160º) al voltant de la freqüència de ressonància. També es reporten mesures on s'observen efectes de softening/harderning de la constant de molla i d'histèresis produïts per les no linealitats així com la detecció del moviment Brownià intrínsec demostrant el bon matching de soroll entre el ressonador i el circuit de lectura. També es presenten els resultats de calibració, de mesures en temps real, i d'anàlisi de la resolució dels dispositius fabricats obtenint valors de fins a ~30 zg/√Hz (equivalent a ~6 pg/cm2√Hz) en condicions de buit que indiquen la millora respecte a treballs anteriors en termes de sensibilitat, resolució i procés de fabricació. Es presenta i es testeja un circuit oscil·lador Pierce CMOS adaptat per a treballar amb ressonadors de ~10 MHz i amb resistències mecàniques equivalents de fins a 100 MΩ demostrant que és factible la detecció d'attograms amb un dispositiu sensor completament portable.
Resum: Resonant beams structures are very attractive transducers for physical, chemical and biological sensors based on micro-/nanoelectromechanical systems (M-/NEMS) due to its simplicity, wide range of sensing domains, and extremely high sensitivity. This Ph. D. thesis is focused on the design, fabrication and characterization of monolithic CMOS-MEMS based on sub-micrometer scale resonant beams for its application in ultrasensitive mass detection with a portable device. The resonators operate in dynamic mode where the mass is measured as a change of its resonant frequency which is electrostatically induced and capacitive readout by means of a monolithically integrated CMOS circuitry. Two different technological approaches are considered to fabricate sub-micrometer scale resonant beams on pre-processed CMOS chips allowing a monolithic integration: (i) nano post-processing of the CMOS chip to obtain the resonant beams or (ii) definition of the resonant beams at the same time that the CMOS circuits. From both approaches, metal and polysilicon devices exhibiting unprecedented mass sensitivities (for monolithic CMOS sensors) in the atto-/zeptogram range are reported. Comparison of the results following both approaches is given. High-sensitivity readout CMOS circuits are specifically designed to amplify the capacitive current with transimpedance gains (using a commercial 0. 35-μm CMOS technology) up to 120 dBΩ at 10 MHz allowing to detect the resonator displacement with resolutions up to ~10 fm/√Hz which are similar than the best reported optical readout systems without the need of a bulky setup. Electrical characterization, in air and in vacuum conditions, of fabricated CMOS-MEMS devices is presented corroborating the ability of the presented monolithic approach in measuring the frequency characteristics of sub-micrometer scale beam resonators. Optimal electrostatic transduction is achieved measuring electrical frequency responses with high peaks (up to 20 dB or more) and large phase shifts (up to 160º) around the resonance frequency. Measurements showing soft/hard-spring effect and hysteretic performance due to nonlinearities are also reported as well as the detection of intrinsic Brownian motion demonstrating the noise-matching between the resonator and the readout circuit. Results from calibration, real time mass measurements, and resolution analysis on fabricated devices obtaining values down to ~30 zg/√Hz (equivalent to ~6 pg/cm2√Hz) in vacuum conditions are also reported indicating the improvement from previous works in terms of sensitivity, resolution, and fabrication process. A specific CMOS Pierce oscillator circuit adapted to work with ~10 MHz beam resonators showing motional resistance up to 100 MΩ is presented and tested demonstrating the feasible attogram detection with a completely portable sensor device.
Nota: Bibliografia
Nota: Tesi doctoral - Universitat Autònoma de Barcelona. Escola Tècnica Superior d'Enginyeria, Departament de Enginyeria Electrònica, 2008
Nota: Consultable des del TDX
Nota: Títol obtingut de la portada digitalitzada
Drets: ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
Llengua: Anglès.
Document: Tesis i dissertacions electròniques ; doctoralThesis
Matèria: Metall òxid semiconductors complementaris ; Ressonadors ; Sistemes microelectromecànics
ISBN: 9788469165539

Adreça alternativa:: http://hdl.handle.net/10803/5356


188 p, 3.8 MB

El registre apareix a les col·leccions:
Documents de recerca > Tesis doctorals

 Registre creat el 2009-05-07, darrera modificació el 2016-06-05



   Favorit i Compartir