Per citar aquest document: http://ddd.uab.cat/record/64519
Colour Image Segmentation using Fast Fuzzy C-Means Algorithm
Bhoyar, Kishor
Kakde, Omprakash

Data: 2010
Resum: This paper proposes modified FCM (Fuzzy C-Means) approach to colour image segmentation using JND (Just Noticeable Difference) histogram. Histogram of the given colour image is computed using JND colour model. This samples the colour space so that just enough number of histogram bins are obtained without compromising the visual image content. The number of histogram bins are further reduced using agglomeration. This agglomerated histogram yields the estimation of number of clusters, cluster seeds and the initial fuzzy partition for FCM algorithm. This is a novell approach to estimate the input parameters for FCM algorithm. The proposed fast FCM(FFCM) algorithm works on histogram bins as data elements instead of individual pixels. This significantly reduces the time complexity of FCM algorithm. To verify the effectiveness of the proposed image segmentation approach, its performance is evaluated on Berkeley Segmentation Database(BSD). Two significant criteria namely PSNR(Peak Signal to Noise Ratio) and PRI (Probabilistic Rand Index) are used to evaluate the performance. Although results show that the proposed algorithm applied to the JND histogram bins converges much faster and also gives better results than conventional FCM algorithm, in terms of PSNR and PRI.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès.
Document: article ; recerca ; publishedVersion
Matèria: Colour Image Segmentation ; JND Histogram ; Fuzzy C-means Clustering ; Fast FCM ; Segmentación de imágenes en color ; Histograma JND ; Segmentació d'imatges en color
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 9, Núm. 1 ( 2010) , p. 18-31, ISSN 1577-5097



14 p, 319.4 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA : Electronic Letters on Computer Vision and Image Analysis

 Registre creat el 2010-11-24, darrera modificació el 2014-06-07



   Favorit i Compartir
QR image