000076165 001 __ 76165
000076165 005 __20140607130752.0
000076165 024 8_ $9 driver $9 artpubuab $a oai:ddd.uab.cat:76165
000076165 024 7_ $2 doi $a 10.5565/PUBLMAT_55211_10
000076165 035 __ $9 articleid $a 02141493v55n2p475
000076165 041 __ $a eng
000076165 100 __ $a Chung, Daewon
000076165 245 1_ $a Weighted inequalities for multivariable dyadic paraproducts
000076165 520 3_ $a Using Wilson’s Haar basis in Rn, which is different than the usual tensor product Haar functions, we define its associated dyadic paraproduct in Rn. We can then extend “trivially” Beznosova’s Bellman function proof of the linear bound in L2(w) with respect to [w]A2 for the 1-dimensional dyadic paraproduct. Here trivial means that each piece of the argument that had a Bellman function proof has an n-dimensional counterpart that holds with the same Bellman function. The lemma that allows for this painless extension we call the good Bellman function Lemma. Furthermore the argument allows to obtain dimensionless bounds in the anisotropic case.
000076165 540 __ $a Tots els drets reservats $u http://www.europeana.eu/rights/rr-f/
000076165 546 __ $a Anglès.
000076165 599 __ $a recerca
000076165 655 _4 $a article
000076165 655 _4 $a info:eu-repo/semantics/article
000076165 655 _4 $a info:eu-repo/semantics/publishedVersion
000076165 773 __ $g Vol. 55, Núm. 2 (2011), p. 475-499 $t Publicacions Matemàtiques $x 0214-1493
000076165 856 40 $p 25 $s 213881 $u http://ddd.uab.cat/uab/pubmat/02141493v55n2/02141493v55n2p475.pdf
000076165 973 __ $f 0475 $l 499 $m  $n 2 $v 55 $x 02141493v55n2 $y 2011
000076165 980 __ $a ARTPUB $b UAB $b PUBMAT