000085170 001 __ 85170
000085170 005 __20140925171214.0
000085170 024 8_ $9 artpubuab $9 driver $a oai:ddd.uab.cat:85170
000085170 024 7_ $2 doi $a 10.5565/PUBLMAT_56112_06
000085170 035 __ $9 articleid $a 02141493v56n1p147
000085170 041 __ $a eng
000085170 100 __ $a Cruz-Uribe, David
000085170 245 1_ $a Sharp norm inequalities for commutators of classical operators
000085170 520 3_ $a We prove several sharp weighted norm inequalities for commutators of classical operators in harmonic analysis. We found suffcient Ap-bump conditions on pairs of weights (u; v) such that [b; T], b 2 BMO and T a singular integral operator (such as the Hilbert or Riesz transforms), maps Lp(v) into Lp(u). Because of the added degree of singularity, the commutators require a \double log bump" as opposed to that of singular integrals, which only require single log bumps. For the fractional integral operator I  we  nd the sharp one-weight bound on [b; I ], b 2 BMO, in terms of the Ap;q constant of the weight. We also prove sharp two-weight bounds for [b; I ] analogous to those of singular integrals. We prove two-weight weak type inequalities for [b; T] and [b; I ] for pairs of factored weights. Finally we construct several examples showing our bounds are sharp.
000085170 540 __ $9 info:eu-repo/semantics/restrictedAccess $a Tots els drets reservats $u http://www.europeana.eu/rights/rr-f/
000085170 546 __ $a Anglès.
000085170 599 __ $a recerca
000085170 653 1_ $a Commutators
000085170 653 1_ $a Two-weight inequalities
000085170 653 1_ $a Sharp weighted bounds
000085170 655 _4 $a info:eu-repo/semantics/article
000085170 655 _4 $a info:eu-repo/semantics/publishedVersion
000085170 700 __ $a SFO
000085170 700 __ $a Moen, Kabe
000085170 773 __ $g Vol. 56, Núm. 1 ( 2012), p. 147-190 $t Publicacions matemàtiques $x 0214-1493
000085170 856 40 $p 44 $s 556491 $u http://ddd.uab.cat/uab/pubmat/02141493v56n1/pubmat_a2012v56n1p147.pdf
000085170 973 __ $f 0147 $l 190 $m  $n 1 $v 56 $x 02141493v56n1 $y 2012
000085170 980 __ $a ARTPUB $b PUBMAT $b UAB